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STABILITY AND DECAY RATE OF
VISCOUS CONTACT WAVE TO ONE-DIMENSIONAL
COMPRESSIBLE NAVIER-STOKES EQUATIONS*

XINXIANG BIANT AND LINGLING XIEf

Abstract. This paper studies the large-time asymptotic stability and optimal time-decay rate of
viscous contact wave to one-dimensional compressible Navier-Stokes equations. We prove that one-
dimensional compressible Navier-Stokes equations are asymptotically stable for viscous contact wave
with arbitrarily large strength, under large initial perturbations. The time optimal decay rate of viscous
contact wave is also obtained under the small initial perturbations. In the proof, the Lagrange transform
is used to cancel the convection terms, which are difficult to estimate due to the lower spatial derivatives
compared with the diffusion terms.
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1. Introduction
The two-dimensional compressible isentropic Navier-Stokes equations read as

pt+div(pu) =0, r=(11,19) ER2t>0, (L.1)
(pw) +div(pu®@w) + Vp(p) = pAu+ (u+ M) Vdivu, '

where p=p(t,z) >0,u=u(t,x) = (u1,us)(t,x) and p represent the fluid density, velocity
and pressure, respectively, = (21,22) € R? is the spatial variable and ¢ >0 is the time
variable. The pressure p=p(p) is given by the well-known ~-law:

p(p)=Ap”,

with the adiabatic constant v >1 and the fluid constant A > 0. If we consider the one-
dimensional solution p=p(t,z1), w= (ui,u2)(t,z1) to the two-dimensional compress-
ible Navier-Stokes Equations (1.1), then p(t,z), (u1,uz)(t,x)" satisfy the following one-
dimensional(1D) compressible Navier-Stokes equations

Pt+(PU1>z:0a $€R7 t>07
(pur)e + (puf +p(p)a = (24 + Atz (1.2)
(pu2)t + (puiug)z = pUozy.

The initial data to (1.2) is prescribed by
(pau17u2)(0ax):(p03u107u20)(x)_>(ﬁv’alaﬂﬂﬂ:)v as (E—):l:OO, (13)
with the far-field constant state (p,41,424 ) satisfying p>0 and s # toy.
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316 STABILITY AND DECAY RATE OF VISCOUS CONTACT WAVE

Note that in the above 1D system (1.2), the first two Equations (1.2),(i=1,2) are
exactly the classical 1D isentropic compressible Navier-Stokes equations decoupled with
the third one (1.2),. However, (1.2),; depends on the solution to (1.2),(i=1,2) and it
leads to new solution behaviors. More precisely, the large-time asymptotic behaviors of
the solution to 1D compressible Navier-Stokes Equations (1.2)-(1.3) are expected to be
determined by the corresponding 1D compressible Euler equations:

pe+(pu1)e =0, TER, t>0,
(pur)e + (pui +p(p))z =0, (1.4)
(puz)i+ (puruz). =0,

with Riemann initial data

(57711,@27)’ :E<0a

(pau17u2)(07x):{ (1.5)

(ﬁaalaa}‘-)? x>0.

The Euler Equations (1.4) with normal Riemann initial data contains broad classes of
basic waves: shock waves, rarefaction waves on genuinely nonlinear characteristic fields,
contact discontinuous waves on linearly degenerate characteristic fields by Lax [16] and
Riemann [29].

It is observed that the compressible Euler Equations (1.4) are strictly hyperbolic
in the non-vacuum region. Due to the third Equation (1.4),, besides the two gen-
uinely nonlinear characteristic fields, there exists a linearly degenerate characteristic
field, which is quite different from the classical isentropic Euler Equations (1.4), , with
only genuinely nonlinear fields. Therefore, besides the nonlinear shock or rarefaction
waves, there is a linearly degenerate wave, i.e., contact discontinuity, to the compressible
Euler Equations (1.4).

There is extensive literature on the stability analysis of viscous contact waves. The
nonlinear stability of a weak contact discontinuity for the compressible Euler equations
with uniform viscosity was proved by Xin [31]. This was generalized by Liu and Xin
[21] to the stability of contact discontinuity for a class of general systems of nonlinear
conservation laws with uniform viscosity. This result was improved by Xin and Zeng [32].
Huang et al. first [9] showed the asymptotic stability of viscous contact waves for
the compressible Navier-Stokes equations with free boundary. When the zero mass
condition is added to the initial perturbations, it was studied in [10]. The zero mass
condition was removed in [12]. There also exist some interesting results on the stability
of composite waves. Zeng [33] showed the large-time asymptotic nonlinear stability of
the superposition of viscous shock waves and contact discontinuity for system of viscous
conservation laws with artificial viscosity under small initial perturbations. Recently,
the stability of the combination of viscous contact waves and rarefaction waves to one-
dimensional compressible Navier-Stokes system was studied in [7]. We refer to [4,8,18,
19,22,30] for viscous shock waves, [20,24-26] for rarefaction waves, [2,5,13,14, 23] for
viscous contact discontinuities, [3,6,11,17] for the composition of viscous contact waves
and rarefaction waves, and the references therein.

In the present paper, we are concerned with the nonlinear time-asymptotic stability
and optimal time-decay rate of viscous contact wave to the 1D compressible Navier-
Stokes Equations (1.2)-(1.3), which is a viscous version of contact discontinuity solution
to (1.4)-(1.5). Since (1.2), , is decoupled with (1.2),, we have that p—p, u; —u; as
t — 400, by Kanel’s result [15]. Due to the existence of (1.2), and the different far-field
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states of ugg, the asymptotic function @g(x,t) satisfies the diffusion equation
(piz)¢ + (purtig)x = Pz, (1.6)
with
B Ug—, T < O,
U2 (Ov $) =93 _
o4, x>0.

From (1.2), and (1.6), we find that the convection terms of the corresponding error
equation cannot be controlled due to the lower spatial derivatives compared with the
diffusion terms. The main idea in this paper is to use the Lagrange transform to
cancel the convection terms in (1.2), and (1.6). By this transform, one-dimensional
compressible Navier-Stokes Equations (1.2) has the following form:

UVt — Uiy :07
Uy +p(v)y = (2p+N) (L), (1.7)

U2t = /j’(uf;l )Iu

where the volume v :% and pressure p(v) =v~"7. The initial data (1.3) is converted to
(v,u1,u2)(0,2) = (vo,u10,U20) = (U,11, U2+ ), as x— too. (1.8)

Correspondingly, the large-time behavior of the solution to the 1D compressible Navier-
Stokes Equations (1.7) is determined by the viscous wave (0,41,u2) with the constant
states (0= %,ﬂl) and @ = uo(1+t,x) satisfying the different diffusion equation

_ o
. 1.9
U2t BUQ ( )
with
Us—, ¢ <0,
T2 (0,2) = (1.10)
Uo4, € > 0.
The diffusion Equation (1.9)-(1.10) has a self-similar solution @z ( %) satisfying
k K Clal?
Sorla(l+6e)=0)(1+8) " Fem T, VE=123,-, (1.11)
x
with the uniform-in-time positive constants O(1) and C.
Let
¢(t,$) Z:’U(t,l’) -7, 1/}1 (t#T) =u1 (t,CC) —uq,
Yo(t,x) :=us(t,z) —tua(1+t,2), VU:=(¢1,19),
By (1.7) and (1.9), we can get:
Qst _¢1a: 207
Y1+ (P(0) = p(0))a = 2+ A) (22)s (1.12)

Voo = (225 +p[ (3 — 1) 82a]
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with the initial perturbation
Go=v0—U, PY1=u1o—Us, YP2=uzo— Uzo,
where ¢o,¢10,%20 € H'(R). Let

X(0,t1) = {(6,9)|(¢,91,92) € CO[0,t1]; H' (R)), ¢ € L*([0,11]; L*(R),
(Y10,¥22) € LP([0,t1]; H' (R)) } .

The following theorem involves the global existence and the asymptotic stability of
(6,) in X(0,400).

THEOREM 1.1 (Stability). There exists a constant Cy only depending on the ini-
tial perturbations ||(¢o,%o)||1, such that the error Equations (1.12) has a unique global
smooth solution (¢,¥) in X(0,00) satisfying

sup ||<¢>,\If>\|%+/0 (6o 1P+ 1] 2)dr < C4, (1.13)

0<t<o0o
and. L [|(6,9)(t,)] o) =0,

REMARK 1.1. Here viscous contact waves can have arbitrarily large strength and
perturbations. The Lagrange transform may not be applied directly to the higher di-
mension, since the lower spatial derivative still exists and it comes from the diffusion
terms even if the compressible Navier-Stokes Equations (1.1) are transformed into the
Lagrangian coordinates. Therefore, it is an interesting future work to study the stabil-
ity for the two-dimensional compressible Navier-Stokes Equations (1.1) with the initial
data (1.3).

The optimal time-decay rate is obtained in the following theorem.

THEOREM 1.2 (Optimal decay rate). Assume that Eq is sufficiently small and Fy is
bounded. Then,

1(6,91)]|oe SCEo(14+8)72,  |[tha]|oo < CFo(1414)7 2,

where Eg = ||(¢0,%10)|2+|(¢0,¥10)|| L1, Fo = |[¢20]]2 + %20 1 -

There exists an optimal decay rate =2 for the error Equations (1.12)1’2 with small
perturbations ¢g,19. When the initial perturbations are not small, the problem is still
open. For our concerned optimal decay rate, the small perturbations are only added to
¢Oaw10~

The rest of the paper is to prove Theorem 1.1 and Theorem 1.2. We present the
following notations used in this paper. The notation H'(Q2) (1>0,l€Z) denotes the
usual Sobolev space with the norm ||-||;, and L?(Q) := H°(Q2) with the norm || || :=1|- | o-
We write by C,C] a generic positive constant independent of T', but only C; depends
on ¢0,\I/0.

2. Proof of Theroem 1.1

In this section, we give the proof of Theroem 1.1. The global existence is based on
the local existence and a prior estimate for the solution to the perturbation Equations
(1.12) in X(0,t). The asymptotic behavior of (¢,¥) is proved by the one-dimensional
Sobolev’s inequality. The local existence is standard and thus omitted. In the following,
we will give a prior estimate.
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PROPOSITION 2.1 (A prior estimate). Let (¢, ¥) € X (0,t9), Vg € (0,T], there exists a
constant Cy only depending on ||(¢o,%o)||1 such that

to
pr@%M+A (e P+ [2)dr < C.

0<t<to

To get such a prior estimate, we first derive the L? energy estimates (cf., Lemma 2.1)
and the first-order derivative estimates (cf., Lemma 2.2).

In Lemma 2.1, we give the L? energy estimates. In fact, we only need to obtain
the energy estimate of 15 by using the fact that p is bounded upper and lower, and the
estimates of ¢, in [15].

LEMMA 2.1.  There exists a constant Cy only depending on ||dol|1 and ||Po]| such that
to
sup (||¢||§+H‘I’H2)+/ (loll* + W |[*)dr < Ci. (2.1)
0<t<to 0

Proof. By Kanel [15], it holds that

to
2 (I + [0 ] *) + / (gl + [e12]1*)dr < C(llol [ +l|¢b10]?), (2.2)

and
c l<v<c,

for some uniform-in-time positive constant C. Thus, we only need to get the L? estimate

for 1.
We multiply (1.12); by ¢,

/’M/JQw

2 1 1
% = _/J'<f - 7)77/2:{(/}29:-
v v v

(080t (2220 4 — iaat], +

By integrating the above equation over [0,¢] Xx R and using Young’s inequality, we get

/wz (t,z) dw—l—,u/ /%dxm
/7/}20d$ ,u/ / ——— UQxﬂszdl‘dT
<5 /R ¢§de+ / /R wz“’dde—i—C / /R ul, o> dxdr, (2.3)

a\m\Q
where fig, ~e” 1+ /y/14+t:=w,(t,x) for some positive constant a.
Inspired by the method in Huang, Li, and Matsumura [7} we can get the estimate
for the third term of the right-hand side in (2.3). Let f(t,z) f_ (wa(t,y ) dy, then

3

1FCt)loo Call4+8)72, [|fe(ot)]|oo < Call+1)75.
Multiplying (1.12), by (p(v) —p(v))f,

1 1/}1ac

5 (P() =p(@))*w® = [5(p(v) = p(9))*f = 2p+ 1) == (p(v) = p(O) f],
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=1(p(v) = p(©)) f)e — 1 (p(v) —p(V))e f — b1 (p(v) —p(v)) fi

(2 0) 22 (p(0) —p()) S+ (2043 P2 ((0) ~ (@)

By Holder’s inequality, it yields that

/ /Ildxdp/@zjl o)) fdalt

<C[ll(¢,v0)(t, )H2+|l(¢o,wlo)ll B
We integrate by part over Iy and obtain

/ / Tydadr = — / / V) byis fdudr
/0/ V)19 fdxdT
// )z} fdadr — //Ip V| W3widadr,

the first part of which is bounded by
f// ¢xw1fdfvd7<0/ £ ool 6211111 ool 7
< [ @0 ol Il sl or
0
t t .
s/ ||¢x\|2df+c/ (L) | el
0 0

t
SC/ ||(¢a:a¢1w)||2d7-+c sup ||'(/11(T")||67
0 0<r<t

and the other part is a good term. By Hélder’s inequality, we have

t t
//fgdxdrsc/ 11111611 | felloodr
0 R 0

<C sup || sup ||¢]]
0<r<t 0<r<t

<C sup [|lo(r, )|+ [vo2 (7,)[1?].
0<r<t

Similarly, I, and I5 can be estimated as

/Ot/RLLda:dT:(qurA)/ot/Rw;wpf(v)%fdxdT

t
gc/o brell-[1gell -1 Flloadr

t t
s/ ||w1z|\2dr+c/ 62 2dr.
0 0

(2.4)
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t t
/ 4mehsc/"mmawmmm—pw»wuﬂwmwh
0

<1t [ 10 -popuiiar+0 [ puar

Combining these estimates, (2.2) and (2.4) imply that

t
/ /(¢2+wf)w2dxd7§01. (2.5)
0 JR

We combine (2.5) with (2.3) and then get the following estimates

t
mw|WﬂP+/WWmu%Tsoh (2.6)
0<r<t 0

for some uniform-in-time positive constant C; only depending on ||¢o||1 and ||¥o||. Due
0 (2.2) and (2.6), Lemma 2.1 is proved. |

In the following, we will give the first-order derivative estimates. In fact, it suffices
to derive the first-order derivative estimate of )s.

LEMMA 2.2.  There exists a positive constant C1 only depending on ||(¢o,¥o)||1 such
that

to
wpm¢MM+A (1l 2+ 1T, |12)dr < C.

0<t<to

Proof. By Kanel’s result [15], we have

to
sup (G001 + [ 1621+ 1012l Dt <, (2.7
0<t<to 0

and
Cc'<p<o,

for some uniform-in-time positive constant Cy that only depends on ||(¢o,%10)|[1. We
only need to get the L? estimate for 1o,. Multiplying (1.12)5 by —tp2za,

2
(%’(/ém)t""(w2xw2t>z+u%:_uw2ww2zx( ) +/~L[<l_%) 2w]xw2wz-

By Holder’s inequality and Young’s inequality, it holds that

QzZJQxx
1

t 1 t
- / / [ tbaen (D)adwdr < Cp / ||¢21||oo‘
0o JR v 0

| palldr

3
2
|| pzlldr

t
scg/HwAP-

1/)2xa:
1
v

t
S w+08wH%W/H%MWT
16 ’U2 0<r<t 0
w2xz 2
il dr+C,
- 16 0 ’U% T+
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where the last inequality uses Lemma 2.1. Then we have

t 2 t
/ / N u211w2x1dxd7-<£/ wQﬂfﬂf dT+C/ ||a21x¢‘|2d7-
16 V2 0
t 2 t
sﬂ/ Dara d¢+c/ (1+)~2dr
16 0 v2 0
t 2
H ’(/}2:c$
<= dr+C,
- 16/0 v% Tt
‘ 1 vz
[ [ stststiir < / ““%'“’sz lalldr
0
wQTT /
dr+C d
<5 | |55 dm+e | Noelar
/(/)221
— d .
ST T+C
Thus,
t
sup [+ [ el Par <, (2.8)
0<r<t 0

for some uniform-in-time positive constant Cy only depending on ||(¢o,Po)||1. The
relations (2.7) and (2.8) imply that Lemma 2.2 is true. d

Combining Lemma 2.1 and Lemma 2.2, we can directly get Proposition 2.1.

Proof. (Proof of Theorem 1.1.) With the standard and omitted local existence,
the first part of Theorem 1.1 is obtained. Next we turn to the remaining part of the
Theorem 1.1. We claim that

° d
2
[ {ten i+ | Lo,

Since the estimates (1.13) are established, in fact, it suffices that we check
fooo |%||¢z,\111||‘d7< +00. By Cauchy’s inequality and the Equation (1.12),, we obtain

dr=2 / ‘ / Gotrade
0 R

ﬂ/ /mmmmm
0 R

< / 0] 2+ / [
0 0

< +00.

}d7'<+oo.

>l d
7|l i

Similarly, we use (1.12), to prove that

oo
d’T:2/ ‘/wlzwlﬂrdm dr
0 R

((wlzwl‘r)m - Q;Z)lmxwlf)dl’ dr
R

(o) d 5
pal]

0
00
A
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dr

s / w‘ / Gras (a4 (), — (0() - p(0)) )

v

sc/o mewwcjo ||wu||oo\|¢m|\~||¢m\|d7+c/0 [1asl |- [|és]ldr
SC/ \|¢m|\2d7+0/ ||wu||%-||wm||%~||<z>x||df+0/ ] 2
0 0 0

§0/ menzmc*/ 60l 2dr+C sup |\¢x||4/ th1] 2
0 0 0<7<00 0

< +o00.

Finally, it holds from (1.12), that

oo d oo
/ ‘d|1/}2z|2 dT=2/ ’/wwmd:c
0 T 0 R

:2A ’A((w2zw27)m_w2mz¢27)dx
:2/0 /RwZz:v(,u‘(ﬁ21+¢21 )Iilu‘ﬂ%;m )dl’

v
SC/ ||¢2m\|2d7+c/ \|ﬂ2m:\|2d7+c/ |22 |oo|[Y222| - |62 ||dT
0 0 0

dr

dr

dr

+c/0 2]l [ |62l

gc/ ||1/;2m\|2d7+0/ (1+T)*%dr+c/ b2
0 0 0

+c/0 bl |} 2zl - 6ol dr

<C [ Nwaual Par+C [ f6alPar+C sup Yl [ lailPar+
0 0 0<7<00 0
< H-o00.

Therefore, [;|-L||¢,,¥,]||dr <+oo is checked. By the one-dimensional Sobolev’s in-
equality, it implies that

i [1(6,9) (1, | = @) =0.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The proof is based on the linear spectral
theory discussed in Matsumura [27,28]. First we introduce the pointwise difference
between the fundamental solution to the linearlized hyperbolic-parabolic equations and
to the linearlized parabolic equations in Zeng [34], which is crucial in our analysis of
decay rate to viscous contact wave. The solution to the linearlized parabolic equations
is equivalent to heat kernel in the usual Sobolev’s norm. Combining local linearization
with suitably small initial data Ey defined in (3.6), we obtain Lemma 3.2 and Lemma
3.3.
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For the convenience of readers, we review the results obtained in Zeng [34]. The
system (1.12), , around the constant state (0,%1) is linearized as

¢t — 1. =0, t>0, TR,
¢1t +p/¢z :ﬂlwlmm (31)
®(0,2) =Po(x),

with p' =p/(9) <0, p1 = 2“%)‘ >0and ®=(¢,91), Po=(¢o,110). We denote the Fourier
transform of v(z) by v"(£). Then the linearized system (3.1) is transformed into

¢p —igyt =0,
Uiy +0'i€YN = pa (i€) %97
©(0,£)" =05 (¢)-

The solution is expressed as

N (t,€) = [e* O P_ (&) + MO PL(E)]D) (€),

where
rel6) =gy [ - (5,
ip1 €
li 21 . 1
2 (P15 2 o (HF15y2
Pue)= | A CER e

2
/

p 1
:IZQ\/—p’—(%&)2 2T 2\/—p

By taking the inverse Fourier transform, it holds that

(13%)2

O(t,x) = F~H{[e* O P_ (&) + M O P (€))7 (6)}

1 '
= ——G(t,2)*Po(z)+er1 " Ady(x),

V2T

where
Glt2) = FH{e O P_(¢) +- MO P (¢) —ehi' A}, (3:2)
10
A=oq]
and “x” denotes the convolution with respect to x.

In order to give pointwise estimate for G(¢,z), we need to consider the linearlized
parabolic system

ét - ’(Z]lx = %1213017
let +p/(,2~51 = %élmxa (33)
B(0,2) =Do(x).
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We take the Fourier transform to (3.3) and it yields that
O —igP" =15 (i€) 0",
AR Z§¢A (i),
B(0,6)" =4 (6).
The solution is expressed as
B (1,€) = [} P +er O Py (6),

where

Ar(§)=— —5 Fit/—p,

e 1
- 5 5
Py = — 1 p].
T3 2

By taking the inverse Fourier transform, we have that

B(t,7) = \/%G(t ) o (x),

where

Gt,x)=F e ©Otp_ 4 ©tp )
1 _ett/=pNH? 1 (m=ty/=pH2 .

L e 1 Sl 3.4
Vit Vit * 38.4)

The following lemma describes the pointwise difference between G(t,z) and G(t,z).

LEMMA 3.1 (Lemma 2.8, [34]). Let G(t,z) and G(t,z) be defined by (3.2) and (3.4).
Then

~ 1 z4ty/—p’)? z—ty/—p’)2
1G(t,2) — C(t,2)| < C(1 1)~ 313 (e 52 4 o~ =y

Due to (3.4) and Lemma 3.1, we obtain the estimates

10LG(t, )| <C(1+8)" "5, 0<I<3,l€Z,
102G (t,.)||r <C(AL+8) 7
Set

EO = ||(¢07¢10)||2 + H(¢03¢10)||L1, FO = H,l/}20||2 +||w20||L1 ) (36)
Now, we could exploit (3.5) and (1.12), , to derive the decay rate to (¢,41).
LEMMA 3.2.  Assume that Ey is suitably small. Then
[(¢,01)|| S CEo(1418)7 3,
||(¢zvd)1m)||1<CE()(1—|—t) %
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Proof.  We consider the initial value problem to the system (1.12), ,

¢t"¢1xzz07
1t +p/(6)¢w_ 2#17+>\1/}1za::f1(tax)7 (37)
O(2,0)=Pg(x),

where

(t,0) = [(=p(0) +p(0) +5(0)8) + (204 Nibraly = =)= g1a(t,2),

We utilize G(¢,2) defined by (3.2) to obtain the integral equation

@(t,x):\/%G(t,x)*éo(x)%—e%tfl@o / Glt—s,2) (0, fr(s,2)) " ds.
(3.8)

Set

My(t)= sup [(1+7)7||®]|+ (1+7)7[|@x 1]
0<r<t

We consider L? estimate for ®(¢,x). By Minkowshi’s inequality and Young’s inequal-
ity for the convolution of two functions (cf., [1]), the first two terms on the right-hand
side of (3.8) are bounded by

(1,2)* Do(x) + 51 Ao (2) || < CUIG(|- [Boll o + ¥ B0l | < CEo(1 )~

|7

The last term can be divided into two terms, one of which can be majored by

|m/ Glt—s,2)% (0, f1 (5,2)) T ds

\/—2?/0 Go(t—s,2)%(0,91(s,2)) " ds

<c/0 1Ga(t— 5.1 lga (s, )] 2 ds

sc/j<1+t—s>-%<||¢\|2+||wu||-||¢|\>ds

SOMl(t)Q/Z(1+t—s)’%(1+s)’%dt

0
1

<CM(t)*(1+t)" 1,

and the other term is estimated by

'|r/ (0, fi(s,z)) T ds

SCL |G (E—=s, )l [f1(s; )l Lrds
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t 1
<C [ (rt=s) @] ] ds
5

SCM1(t)2ﬂt(1+t—s)_i(1+8)_1ds
2
<COM;(t)?(1+1)7T,
where we use the definition of Mj(t). Thus,
||| < CEo(1+t)" 1 +CMy(£)*(1+8)7 1. (3.9)

We differentiate the integral Equation (3.8) with respect to z,

1
@x(t,x):EGm(t,x)*q)O( )—i—em A@Oz—l——/ G (0, f1(s,2)) " ds.
(3.10)
Similarly,
H G (t,2) * Do (z) + e ADoy || < C|Galt, || [|@o| |12 +e#1 || Pos|| < CEo(1+1)71.
The last term is controlled by
/' o (0. f1 (s,2)) T ds | = /' ot —5,2) (0,91 (5,)) Tds
Var f
<C IIGm( 5, )1 1gi(s,-)|[Lrds
<c/ (1t —35) (1612 + [ 6ral - 1] ds
<OM,(t)? / (14t—s)"5(1+s)"2ds
0
<COM;y (1) (1+1)7 1,
and

Lt —8,T) * s,z)) " ds t _g . s \ds
Hﬁméa“t’) (0. fi(s,2)) d Scélaﬁ BRI

t
§0ﬁ<ru—@-ﬂ@mw@ah@
2

gCMl(t)Q/t(l—i—t—s)_i(1+s)‘1ds

2
3

<CMy(t)*(1+t)77.

Thus

7

|®,]| < CEo(1+1)~ 1 +CM;(£)2(1+t)" 1. (3.11)
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Finally, we differentiate the integral Equation (3.10) with respect to x

G (t, ) *Po(x) —|—e§TtA<I>o,m + \/%fg Goz(t—s,2)* (O,fl(s,x))'l'ds,
(3.12)

D, (t,x)= \/%

to get the L? estimate of ®,,. Similarly,

The last term is estimated by

SO/O Gz (t— 5,1 11(5, )] 2 s

o= Cona(t,0) 5 @0+ 71 A0 | < C1| Gl (8, |[ @l 13 +€1] @l | < CEO(148)~F

1 %
:Hm/ Gaaa(t—5,2)(0,01(5,2)) " ds

\/%/05 Goo(t—s5,2)%(0, f1(s,2)) " ds

SC/0§(1+t—S)_%(\I¢>II2+kull-H¢|I)d8

SCMI(t)Q/2(1+t—s)—%(1+s)—%d3
0
<OM;(H)2(1+1)74,

and

H\/%/;Gm(t—s,x)*(O,fl(s,x))—rds <Cét|Gﬂ?w(t_sv')||Ll'|fl(sa')Hds

t
SCL 1Gaa(t=5, )|z - (1¢lloc - (162l + [1¥121] - [|§aloo + 122 |- [@]o ) ds

t
gc/ A+t —5)" (117 - [[del? + |12l |02l |2 |6wal |2 + 1012|621 |[120]|)ds

k3
2

t
gCMl(t)z/ (14t—s5)""(145) ids

2

<CM(t)?(144) " Tin(1+t).
Thus,
|®pa|| SCEo(148) % +CMy(8)*(1+1) " TIn(1+1). (3.13)

Combining these estimates (3.9), (3.11) and (3.13), we obtain the inequality M (¢) <
CEy+CM(t)?, from which follows the desired estimate M (t) < C'Ej if Ej is sufficiently
small. Therefore, this lemma is proved. ]

Finally, we exploit (1.12), to obtain the decay estimate of 5.
LEMMA 3.3. Assume that Eg is suitably small and Fy is bounded. Then,

1+

10Labs|| < CFy(14+8) "5, 0<1<2,l€Z.
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Proof. We rewrite (1.123) as
Vot — Boae = pltge (3 — )] = fa(2,t) = g2a (2,1),
{wgouzoﬂz(l,x).
The solution can be expressed as
K 11
Yo (t,x) :H(t,x)*wgoJru/O H(t—s,x)x* [UQx(E — j)]mds,

L t
:H(t,x)*wgo—i—/ HI(t—s,x)*gg(s,x)ds—i-/ H(t—s,x)* fa(s,x)ds,
0 %

where H (t,z) is the fundamental solution to heat equation 1o, = £1)o,, satisfying

1421

|0 H(t2)[|[ <C(1+6)" T, 0<I<2I€Z

Set

My(t)= sup [(1+7)T||¢2]|+ (1 +7) [t ||+ (L +7) T [¢200 ][]
0<r<t

Thus, by Holder’s inequality and the definition of Ms(t), we get

1 follor < C ]|+ [[$ae]) - [|62]] + C 20z || + |2z |||
<CEy(14t) '+ CEMy(t)(141)"2,
g2l £t < C(lza || + 122 IDIIG]] < CEo(1+1) "2 +CEMa(t)(1+1) 1.

By Lemma 3.2, we can get the following estimate for ||i)s]]

IIwzHSIIH(t)H-IlwzolleL/OEIIHx(t—S)II-I\gz(S)IIL1d8+L [ H (= 9)[-]|f2(s)l|ds

<CFy(1+t)7% +C’E0/2 (1+t—s) 5 (1+s)"2ds
0
t

+CE0M2<t)/2(1+t—s)—%<1+s)—1ds+0Eo/ (14t—s5)" 3 (14+5)""ds
0

t
+C’E0M2(t)/ (1+t—s)"5(1+s)" 2ds

<CFy(141t) % +CEy(14+1) "% +CEyMy(t)(14+t)~ T In(1+1).
(3.14)

[|th22|| can be bounded by
3 t
Wl < V=)l + [ 1ot =)l gl lgodst [ Ho(e= )11 oo
2

<CFy(1+t)"% +C’E0/2 (1+t—s)"%(1+s) 2ds
0

% t
+CE0M2(t)/ (1+t—s)—%(1+s)—1ds+CE0/ (14t—s) 5 (1+s) 'ds
0

i
2
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t -
+CE0M2(t)/ (14t—s) % (1+s) 2ds

2

<CFy(141)" T +CEy(14t) " +CE My (t)(14+t)~ In(1+1). (3.15)

Finally, ||t)242|| is majored by
3
||1/12m\|§\IHxx(t*S)l\'llwonLlJr/ [ Haao (t=5)||-[|g2(s)][ 1 ds
0

%
+ M=) 1ol ds
0

<CR(1+1)71 +CE0/2 (1+t—s)"T(1+s)"2ds
0
t

+C’E0M2(t)/§(1+t—s)*%(1+s)*1ds+C’E0/ (14t—s)"F(14+5) 'ds
0

+CE0M2(t)[(1+t—s)—i(1+s)—3ds
2
<CFy(1+41)" T +CEy(14t)~ 1 +CE My (t)(1+1) " T In(1+1). (3.16)
Therefore, combining estimates (3.14), (3.15) and (3.16), we obtain the inequality
Ms(t) < CFo+CEg+CEoMs(t)(1+1) " 2in(1+1),

from which follows the desired estimate M (t) < CFy if Ey is sufficiently small. Therefore,
this lemma is proved. ]

Proof. (Proof of Theorem 1.2.) From one-dimensional Sobolev’s inequality and
Lemma 3.2, we can get

[1(6 1)l oo < CEo(1+4) 7%,
if Fy is sufficiently small. By Lemma 3.3, we have that
[[2]|00 < CFo(1+1) 7%,
Thus, we finish the proof. ]
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