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LIFESPAN ESTIMATES OF SOLUTIONS TO THE WEAKLY
COUPLED SYSTEM OF SEMILINEAR WAVE EQUATIONS WITH
SPACE DEPENDENT DAMPINGS*

SEN MINGT, HAN YANG!, AND XIONGMEI FAN$

Abstract. This paper is devoted to investigating the weakly coupled system of semilinear wave
equations with space dependent dampings and power nonlinearities |v|?, |u|?, derivative nonlinearities
|ve|P, |ug|?, mixed nonlinearities |v|?, |u¢|P, combined nonlinearities |v¢|P1 +|v|91, |ug|P2 4 |u|92, com-
bined and power nonlinearities |v¢|PL 4 |v|91, |u|?92, combined and derivative nonlinearities |v¢|Pt + |v|9L,
|ut|P2, respectively. Formation of singularities and lifespan estimates of solutions to the problem in
the sub-critical and critical cases are illustrated by making use of test function technique. The main
innovation is that upper bound lifespan estimates of solutions are associated with the Strauss exponent
and Glassey exponent.

Keywords. Weakly coupled system; Semilinear wave equations; Test function technique; Forma-
tion of singularities; Lifespan estimates.
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1. Introduction
Our main goal in this work is to investigate the following weakly coupled system of
semilinear wave equations with space dependent dampings

H n
U — Au+ —————uy = fr(v, ), reR",t>0,
tt (1+|£L’|)B t fl( t)

1
v — Av+ ————vp = fo(u, uy), z€R", >0, (1.1)
tt (1+|$|)ﬁ t f2( t)
(U,ut7U,Ut)(l'70):E(Uo,ul,vo,vl)(l'), xean

where p>0, f>2, the nonlinear terms fi(v,v;), fo(u,u;) are illustrated in the forms
of power type nonlinearities fi(v,v:)=|v|?, fa(u,us) =|u|?, derivative type nonlin-
earities |v¢|?, |u¢|?, mixed type nonlinearities |v|?,|u:|P, combined type nonlinearities
|vg[Pr +|v]9t, |ug|P? + |u]92, combined and power type nonlinearities |vg|P! + |v|?, |u|?2,
combined and derivative type nonlinearities |v¢|P* 4 |v]9, |us|P2, respectively. Indexes
in the nonlinear terms satisfy 1 <p, p1,p2, q, g1, g2 < 0o. For brevity, we assume that the
constant R satisfies R>2. Bg(0)={z||z| < R}. up,vo € H'(R") and uy,v; € L*(R") are
non-negative functions and compactly supported in Br(0)(R>2). In addition, all the
initial values wug, w1, vg,v1 do not vanish identically. € >0 is a parameter describing the
size of initial values. It is well known that a solution u has compact support when the
initial values have compact supports. Therefore, we directly assume that the solution
has compact support set.

Let us start with a brief review on the Cauchy problem for classical wave equation

utt*Au:f(uaut)a (:U,t)ERnX(0,00),
u(z,0)=cf(z), u(x,0)=cg(z), xecR"

(1.2)
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376 THE WEAKLY COUPLED SYSTEM OF SEMILINEAR WAVE EQUATIONS

Problem (1.2) with power nonlinearity f(u,u;)=|ulP possesses the Strauss exponent
ps(n), which is the positive solution to the quadratic equation

r(p,n)=—[(n—1)p* - (n+1)p—2]=0.

We refer readers to the works in [9,20,28,39,42,43] for more details. If 1 <p<pg(n), a
solution to problem (1.2) blows up in finite time. There exists a unique global solution
when p>pg(n). Problem (1.2) with derivative nonlinearity f(u,u:)=|u|’ admits the
Glassey exponent pg(n) = Z—ﬂ Concerning the Glassey exponent, upper bound lifespan
estimate of solution to the problem when 1 <p<pg(n) and global existence result when
p>pa(n) are considered in [16,41]. Ikeda et al. [12] present a simple proof for upper
bound lifespan estimates of solutions to semilinear wave equation and related weakly
coupled system by introducing a test function, which is related to the hypergeometric
function.

The Cauchy problem of linear damped wave equation

ugr — Au+c(z,t)u, =0, rzeR™ t>0,
(1.3)

(u,ut)($,0):€(U0,u1)($), reR™

catches a lot of attention (see [24,27,34]), where the coefficient in damping term satisfies
c(z,t) =apa(t)b(z) =ag(1+1)~*(1+|z|)~?, ag is a positive constant. We have time
dependent damping when a€R,3=0. Behavior of solution can be classified in the
following cases. If a€(—o0,—1), the solution does not decay to zero in general. If
a€[—1,1), the solution behaves like that of heat equation. If a > 1, the solution behaves
like that of wave equation. The damping is scale invariant when a=1. Asymptotic
behavior of solution depends on the constant ag. On the other hand, we have space
dependent damping when =0, 3 €R. The solution behaves like that of heat equation
when € (—00,1). In the case §=1, the damping is scaling invariant weak damping.
The damping is scattering when € (1,00). This implies that the solution behaves like
that of wave equation without damping.
Recently, the nonlinear wave equation with time or space dependent damping

{utt—Au—l—c(x,t)ut:f(u,ut), zeR™ t>0, (1.4)

(u, ut)(2,0) =e(ug, ur ) (x), zeR"

attracted more attention (see detailed illustrations in [2,4-8,10,11,13-15,17-19,21-27,
29,30,33,38,40]). Blow-up result and lifespan estimate of solution to problem (1.4) with
a=0, 8>2 and nonlinear terms f(u,u;)=|ulP, |u:|P are studied in [24] by applying test
function method. Taking advantage of the Kato lemma and iteration approach, Lai et
al. [21] illustrate upper bound lifespan estimate of solution to semilinear wave equation
with scale invariant damping term and mass term. Hamouda et al. [8] establish blow-up
result and lifespan estimate of solution to problem (1.4) with scale invariant damping
(=1, 5=0) and nonlinear term f(u,u;)=|us|?+ |u|?.

The weakly coupled system of semilinear wave equations with time dependent damp-
ings

utt—Au—&—ﬁut:ﬁ(v,vt), zeR™ >0,
vtt—Av—l—ﬁvt:fg(u,ut), zeR™ t>0, (1.5)

(u, ug, v,v¢)(x,0) = (€ug, eur, evg, evy)(z) x€R”
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has been studied by many scholars (see [1,3,31,32,35-37]). Palmieri et al. [35] consider
problem (1.5) with scattering damping (a>1) and fi(v,v:)=|v|P, fo(u,us)=]|ul?. Up-
per bound lifespan estimates of solutions to the Cauchy problem in the sub-critical and
critical cases are derived by exploiting test function technique and iteration approach.
Taking advantage of iteration technique, Palmieri et al. [36] investigate problem (1.5)
with scattering damping term and f; (v,v;) =|v¢|P, fa(u,us) = |ug]? in the sub-critical and
critical cases. Palmieri et al. [37] derive blow-up results and lifespan estimates of solu-
tions to problem (1.5) with f1(v,v:) =|v|?, fa(u,ut) = |u|P in the sub-critical and critical
cases by employing iteration technique and slicing method. Ming et al. [31] establish
upper bound lifespan estimates of solutions to problem (1.5) with combined nonlinear-
ities f1(v,ve) = v [P + 0| T, folu,uy) = |ugP? +|u|? in the sub-critical and critical cases
by making use of iteration method.

Enlightened by the works in [12,24,31,35-37], our interest is to establish blow-up
results and lifespan estimates of solutions to problem (1.1) in the sub-critical and criti-
cal cases. Owing to the similarity of structure of the equations, we expect that lifespan
estimates of solutions to problem (1.1) are the same as those of wave equation. It is
worth pointing out that problem (1.5) with power nonlinearities |v|P, |u|?, derivative
nonlinearities |v¢|?, |u|? and mixed nonlinearities |v|%, |u|? in the case p=0 is consid-
ered in [12]. Upper bound lifespan estimates of solutions are verified by applying test
function method, which is connected with the hypergeometric function. Making use
of iterative technique, Palmieri et al. [35-37] consider problem (1.5) with power non-
linearities |v|P, |u|?, derivative nonlinearities |v¢|P, |u¢|? and mixed nonlinearities |v|?,
|ut|?, respectively. In this work, the innovation is that upper bound lifespan estimates
of solutions to problem (1.1) are derived by applying test function approach, which is
based on the test function in [24]. In addition, this test function is different from the
function in [12]. It is worth mentioning that blow-up results and lifespan estimates of
solutions to problem (1.4) with power nonlinearity |u|?, derivative nonlinearity |u|P in
the case =0, 3> 2 are verified in Lai et al. [24], which is a special case of problem (1.1)
with power nonlinearities |v|P, |u|? and derivative nonlinearities |v;|P, |u|? when p=gq.
In addition, we establish upper bound lifespan estimates of solutions to problem (1.1)
with mixed nonlinearities |v|?, |us|P, combined nonlinearities |vy|P* +|v| %, |ug|P2 + |u|?2,
combined and power nonlinearities |v¢|Pt + |v|%, |u|?2, combined and derivative nonlin-
earities |vy[P* +|v]9, |ue|P?. To our knowledge, the results in Theorems 1.3-1.6 are new.

Throughout the paper, we denote

1 _ n—1
FSS(n7p7q):(p+2+6)(pq_l) 1_T7
p+1 n-1

F =
ca(n,p,q) 1 2
1 _ n—1
Fsal(n,p,q)=(§+1+q)(pq—1) B
1 _ n—1
FSG,Z(napaQ):(2+a)(pq71) 1777

0192 +2ga+1 n—1 Q1(J2+QQ1+1_TL—1}
p2(q1q2—1) 2 7 pi(qrge—1) 2 7
0192 +2go+1 n—1 q1q2+2q1+1_n—1}
02(q1q2—1) 2 7 pilqiga—1) 2 7

FCC(TL,pl»p%QM Q2) :max{

Leos(n,pi,qi, q2) =max{
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2+1  n—=1 qpptpa+1 n-—-1

FCG(n,pl)ql’pz):maX{pl(Chm*l) 2 " pa(qup2—1) 2 b
Ls(n,q1)= 2ql((nlqi)1)’

FG(nvpl)Zﬁ—nT_l,

Looms(n,p1,q1) = pl(ﬁ]j——ll) - n; :

Exponent p’ stands for the conjugate exponent of p, which satisfies %—i— i =1.

Definition of weak solutions and the main results in this paper are illustrated as
follows.

DEFINITION 1.1.  Let (ug,u1), (vo,v1) € HY(R™) x L?(R"). Assume that

uweC([0,T), H (R™)nC([0,T),L*(R™)),
ve C([0,T), H (R™)NC*([0,T),L*(R™)).

Ut ELZOC( 0,7)xR™) and ve L} ([0,T) xR™) when the nonlinear terms are f(v,
o7, fo(u,u)=|ue|P in problem (1.1). w,€LP?.([0,T)xR"™), uwe L ([0, )

v e L7 ([0,T) xR™) and ve L ([0,T) x R™) when the nonlinear terms are fi (v,vt
[og[Pr+|o]T, fa(u, ug) = |ueP2 +|u|® in problem (1.1). we L ([0,T)xR"),
LY ([0,T) xR™) and ve L ([0,T) xR™) when the nonlinear terms are fi(v,v,
[ve|Pr 4 |o|?, fa(u, ue) =|u|?? in problem (1.1). wu,e L2.([0,T7)xR™), v, € L7}.([0,T)
R") and ve L{ ([0,T)xR™) when the nonlinear terms are fi(v,v;)=|v¢[P* +|v|%,
folu, u) =|ug|P? in problem (1.1). It holds that

\/u-\—/ 3\/

XA m o=

loc

5/nu1(£b)¢(:r,0)dx
T
1
+€/1;1L Wu0($)¢(x70)d$+/o o fl(U,’Ut)(Jj’S)qﬁ(gjys)dde

T T
—/ / ut(x,s)¢t(x,s)dxds+/ Vu(z,s)Vo(z,s)drds
0 n 0 Rn

T
_/0 / mu(xvs)@(fﬂﬁ)dxds 16)

and

s/n v1(x)¢(z,0)dx

T
1
+€/RHW o(7)o(z, O)dl‘-i-/ fg(u ut)(x,8)p(x,s)dxds

// zch)txsd:cder//Vva:chbxs)dxds

_/0 /n WU($7S)¢t($,S)dxd3, (1.7)
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where ¢ € C°([0,T) xR™), t€ (0,T). Then, (u,v) are called weak solutions of problem

(1.1).

THEOREM 1.1. Let (u,v) be weak solutions to problem (1.1) with fi(v,v)=|v|?,
fa(u,ug) =ul?. If supp(u,v) C{(z,t) R"x[0,T)||z| <t+ R}, then there exists a pos-
itive constant g =&q(ug, u1,vo,v1, M, p,q, R, i, B) such that for all 0<e<eq, the solu-
tions (u,v) blow up in finite time. The upper bound lifespan estimates of solutions T'(¢)
satisfy

CE—FEé(7L,p7q)> FSS(napa CI) > 07
T(e) < { exp(Ce™mn{plra=alpa=Dh) = Tgg(n,p,q) =0, p#q, (1.8)

exp(ceip(pil))v FSS(nap7 Q):O7 p=q,

where T'gs(n, p,q) =max{Fss(n,p,q), Fss(n,q,p)} >0, C>0 is independent of .

THEOREM 1.2.  Let (u,v) be weak solutions to problem (1.1) with fi(v,v:)=|v4|?,
fa(u,ug) = |ug | If supp(u,v) C {(z,t) €ER" x [0,T)||z| <t + R}, then the solutions (u,v)
blow up in finite time. The upper bound lifespan estimates satisfy

Cgirgé(n’nq)? FGG(n7p7 Q) > Oa
T(e) <q exp(Ce= @~V Tgg(n,p,q)=0, p#4q, (1.9)

exp(Ce™ D) Tga(n,p,q)=0, p=gq,

where Taa(n, p, ¢) =max{Fec(n,p,q), Faa(n,q,p)} >0, C>0 is independent of €.

REMARK 1.1. Similar to the derivation in [24] with some modifications, we can derive
the lifespan estimates of solutions in (1.8) and (1.9). We omit the detailed proofs of
Theorems 1.1 and 1.2 for simplicity.

THEOREM 1.3. Let (u,v) be weak solutions to problem (1.1) with fi(v,v:)=]v|?,
fa(u, ug) = |ug [P If supp(u,v) C{(z,t) ER™ x [0,T)||x| <t+ R}, then the solutions (u,v)
blow up in finite time. The upper bound lifespan estimates satisfy

Csirgé(n’nq)a FSG(”,p, Q) >Oa
€xp CE—p(Pq—l))7 FSG,] n,p,q :0>FSG,2 n,p,q),

e < ) (n.7.9) (n.2,9) (1.10)
exp(Ce™"P=) Fsg 1(n,p, q) <0=Fsa,2(n,p, q),

eXp(Cgi(pQ71))7 FSG,l(nvpa Q) =0 :FSG,Q(napa q)7

where 'sa(n,p, ) =max{Fsqg 1(n,p,q), Fsa,2(n,p,q)} >0, C>0 is independent of €.

THEOREM 1.4.  Let (u,v) be weak solutions to problem (1.1) with fi(v,v;)=|v|P* +
[0]7, folu,us) =|uelP? +|ul®2. If supp(u,v) C{(x,t) eR™ x [07T)‘ |z| <t+ R}, then the
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solutions (u,v) blow up in finite time. The upper bound lifespan estimates satisfy

_ —1
Ce Tcc(n,p1,p2,41,492) ch(n,pl,pz,qhqz) >0,

exp(oa—m(qmz—l))
+2¢1+1 n-1
FCC(",p1,P2,Q1,q2)=0>q1q2 el — . p2=gqo,
p1(qig2—1) 2
exp(csfm(qufl))
+2¢2+1 n-—1
Toc(n,pi,pe, qi,qo) =0> L TZRTL 220 g,

p2(qig2 —1) 2

exp(Ce_(m_l)),
4
FCC(Tl,p1,p2,Q1,QQ)ZO,p1:p2,q1:q2,p1:pc(n), q1>1+m7
T(e) < . (1.11)
< _Tan,
Ce c(n,p1) ,
Toc(n,p1,p2,q1,42) 20, p1 =p2, 1 =q2, p1 <pc(n), q1>2p1—1,
CE—Fcomb(n,mm)*l
Fcc(n7p1,p2,q1,lp)20,p1Ipz,lh:lp,
Ccoms(n,p1,q1) >0,p1 <q1 <2p1 —1,
Cé_*l“smyln)’l
Ceo(n,pr,p2; q1,42) > 0,p1 =p2, 1 = g2, @1 <ps(n), p1>q,
exp(Csfgl(qlfl))
Teo(n,p1,p2,q1,q2) >0, p1 =p2, 1 =q2, 1 =ps(n), p1>qi,
where T'oc(n,p1,p2,q1,92) > 0. The second and third lifespan estimates in

(1.11) are derived in the case p1#ps or q1#qa when Toe(n,p1,p2,q1,492)=0.
max{Ts(n,q1),Ta(n,p1)} >0 or Teomp(n,p1,q1) >0, C >0 is independent of e.

THEOREM 1.5.  Let (u,v) be weak solutions to problem (1.1) with fi(v,v)=|ve|P* +
%, fa(u, ug) =|u|®. If supp(u,v) C {(z,t) ER" x [0,T)||x| < t+ R}, then the solutions
(u,v) blow up in finite time. The upper bound lifespan estimates satisfy

C€—ch(n,p1,q1,q2)71’ ch(n7p17Q1aQQ)>Oa

exp(cg—pl(1)1112—1))7

+2¢2+1 n-1
FCS(nyplyqlaQZ):O>Q1q2 & - y P1 =41,
- exp(Cg_qz(ql‘“_l)),

@g+2+1 n-1
p1(q1g2—1) 2
orTes(n,pi,q1,q2) =0,p1 =q1 =qo,

FCS(”vPvalafh) =0>

where Tcg(n, p1,q1,q2) >0, C >0 is independent of €.

THEOREM 1.6. Let (u,v) be weak solutions to problem (1.1) with f1(v,v;)=
[vePr +|v]9, folu,us) =|uelP2. If supp(u,v) C{(x,t) eR™ x [O,T)‘ |z| <t+ R}, then the
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solutions (u,v) blow up in finite time. The upper bound lifespan estimates satisfy

CE_FCG("’L7P17QMP2)717 FCG(napla q1,p2) >0,
exp(Ce~PrPrp2=1)),

@ip2t+p2+1 n—1
p2(qip2 —1) 2
T(e)< exp<C€7p2(qlp27l))a (1.13)
21 +1 n—1

FCG n,pi,q1,p =0> - )
(m.p1,41,p2) p1(qip2—1) 2

exp(Cs_min {pl(P1p2_1)7172(q1p2—1)})7

Lca(n,p1,q1,p2) =0> ,P1=11,

@p2+pe+1l n—-1_ 2q1+1 —nilfOp*q
pa(qp2—1) 2 "pilgipe—1) 2 A

where T'ca(n, p1,q1,p2) >0, C >0 is independent of .

REMARK 1.2. We recognize that Lai et al. [24] investigate the single equation with
power nonlinearity |u|?, derivative nonlinearity |u:|?, which are special cases of problem
(1.1) with power nonlinearities |v|?, |u|? and derivative nonlinearities |v¢|?, |us|? when
p=gq, respectively. Based on the proof of lifespan estimate for solution to single wave
equation with space dependent damping term Wut (8>1) in [19], we believe that
the results in our paper still hold when 1< <2 by making use of the test function
in [19], especially for the case when p=gq.

REMARK 1.3. It is worth noticing that lifespan estimates of solutions to problem
(1.1) with fi(v,v:)=v|?, fa(u,us)=]us/P are established in Theorem 1.3. Problem
(1.1) with f1(v, v¢) = v + [0, fa(u, ur) = |ue?? +[u[ when Too(n, p1,p2, ¢1,42) 2
0, p1=p2 and g1 =¢2 is equivalent to problem (1.4) with f(u,u;)=|us|P* + |u|?* when
a=0. We derive the lifespan estimates of solutions in Theorem 1.4. Lifespan estimates
of solutions to problem (1.1) with nonlinearities f1(v,vs)=|v¢|P* 4+ |v|?, fo(u,us) =|u|?
and f1(v,v) =P+ |v|?, folu,u) =|ulP? are illustrated in Theorems 1.5 and 1.6,
respectively. Our main new contribution of this paper is to derive lifespan estimates of
solutions to the problem (1.1) with different nonlinear terms by utilizing different test
functions.

2. Proof of Theorem 1.3

2.1. Several lemmas. Before going further, we collect four related lemmas.
LEMMA 2.1. [2/] Let $>0. It holds that

t+R
/ (147)%e A0 dr < C(t+ R)™,
0

where a« €R, C is a positive constant.

Based on the key observation in [24], we will choose ®(z,t) (see Lemma 2.2 below)
as the test function.

LEMMA 2.2 ([24]). Assume that Apr=¢1 and = (z,t)=e '¢1(x). It holds that

20— Ap— M S00=0, ADP=0,

(1+J])
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where ¢1(x) satisfies

e +e ", n=1,

/ e*dS,, n>2.
S'n,—l
n—1

Moreover, 0< ¢1(x) <C(14|z|)~ "7 el®l, C is a positive constant.

¢1(x) =

LEMMA 2.3 ([24]). Let ba(x,t):fol e, (2)n?dn with a>0. It holds that

O2by — Abg — i Oyb, =0, (2.1)

(L+]=()
where Yy (x) ~ oy () = [qu_r €™V dw(~ |771;\%e"7£‘) for large |nz|, Ay, =np,. More-
over, by (x,t) satisfies

o 2
—bo(x,t) =—bei1(2,t),

at ﬁba(ﬂf,t):bchkg(l‘,t% Aba(l‘7t>:ba+2($,t)
and
_ n—1
(t+R+|x])~ ¢, 0<a<?,
ba(l‘,t)w n—1 n—1 n—1
(t+R+|z)7 = (E+R—[z) = 7% a>——.

LEMMA 2.4 ([12]). Let2<to<T and 0<¢€C([to,T)). Assume that

< Kqtg'(t), te(to,T),
p(t)"* < Kot(logt)?2 ¢/ (t), te(to,T),

where §, K1, K3 >0, p1,p2>1. If po <p1+1, then there exist two positive constants oy
and K3 such that

T < exp(K357 Plp*110_21+1 )

for all 5€(0,8p), where K3 is independent of 6.

2.2. Proof of Theorem 1.3.
Proof.  Let n(t) € C*°([0,00)) satisfy

1 t<1
b —27

n(t)= decreasing, —<t<lI,
0, t>1

and [/ (¢)| < C, |n" ()| <C. We set nr(t)=n(%) for t€(1,T). We define

1
(1) = 2 O () =0(~7),
Zia
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where M €[1,T).
Letting ¢ (z,t) = fnigl(t)é(x,t) = 777]25/ (t)e tpy(z), replacing ¢(z,s) with U(z,s) =

O(x,s) in (1.6), integrating by parts, sending ¢t —7 and employing Lemma 2.2 yield
T
EC(uo,u1)+/ / lv(x, )20 (x, s)dxds
0o Jrn
T ’ ’
0 "
Similar to the derivation in (3.16) in [24] and utilizing Lemma 2.1, we acquire
n—1 T /
(eCug,ur))PTm =P g/ / 072 |uy|Pdads. (2.3)
0 Jre

Analogously, we have

T
(eC(vo, v1))" T " _/ 620 |0]dds. (2.4)
o Jrn

Choosing the test function ¢(x,s) :n%p/ in (1.6) gives rise to

T
C(uo,ul)a—i—/ / [o(x,s) |93 dads

/ / ug(z,s) am (1+| DﬁnT )dxds
=hL+D. (2.5)

Estimates of the terms I1 — I5 in (2.5) are similar to (3.4) in [24], we achieve
2 1+n(p 1) T 2’ 1
/ / [v|%n pdxds<C’T (/ |ue [Py’ dads)v. (2.6)
0 R‘Il

In a similar way, we conclude

T 2’ —2+(n—-1)(g—1) T 2’ 1
/ / |ue [Py’ deds <CT a (/ / [v|9n7" dzds)a. (2.7)
0 R™ 0 Rn
Applying (2.6) and (2.7) yields

pq+p+1

T
/ | P17 Y drds < CT™ "%
0o Jre

and

T
/ v| 2P deds < CT"™ st (2.9)
0 Rn

Combining (2.3) and (2.8), we come to the estimate

T(e) < CeFsaampa),
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Similarly, utilizing (2.4) and (2.9) leads to
T(e)< Ce Fsa(npa),
Therefore, we derive the first lifespan estimate in (1.10).

In the case Fsg 1(n,p,q)=0>Fsc 2(n,p,q), applying (2.3), (2.7) and Lemma 2.3,
we acquire

T
/ [u(,8)|90a03F drds > CePq, (2.10)
0 R7l

where a= " — %. Replacing ¢ with 8,51#:77]25;/{)@ in (1.6) and using (2.1) yield

T
EC(UQ7U1)+/ [v(x,8)|%n3P bydads
RTL
_9 K
/ /nut x,s) tnM 8t77M Oib, —|—(1+| I aﬂ]M o )dxds

/ /n .’,C S 77]V[ (33 Aba—matba)dxds

/ /n ug(x,8) tnM 26t77M Oib, —l—maﬂ]M o )dxds
— I+ I+ Is. (2.11)

It follows that

T T » .
15| < CM~2( / | [PO3F dads) 7 ( / / bitdzds) T
0o Jrn L H{l=z|<s+R}

1 T ’
< O D) // ueP0% dds) (2.12)
0 R™
L] <CM™! // |ut\P9pdxds%/ / b7 dads)
{Je|<s+R}
<OMHET D (1og M) 5 x / u|POY dxds)>  (2.13)
0 R7Z

and
T , )
|15 SCM_l(/ / lus PO dxds) e
o Jrr
M rs+R n—1—p’
—(mFl 1y (I+7) p—1
X (/1\24 /0 (s+2+r)" V2 7% 7(1+r)p/(5_1)dxds) P
— T ’
oM / / (e [P62F dads) . (2.14)
o Jrr
Combining (2.11) with (2.12)-(2.14), we arrive at

T
/ [(x,8)|%n30 by dads
0o Jre
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<OM T (10g M) / / e [P0 dxds)

n(p—1)
)

< OMIHEE D) (00 1) 5 / e P62 dardis) ». (2.15)
O R’”

Plugging (2.7) into (2.15), applying condition Fs¢ 1(n,p,q) =0 and Lemma 2.3 yield

T
([ [ 1ows)imiy badadsy
0 R™

T
§C(logM)q(p_1)/ [(x,8)| 030 bydads. (2.16)
0o Jrr
We set
M T )
Y w](M) = / ( / / w(z, )02 (s)dzds)o~do. (2.17)
1 O n
Consequently, we conclude
L =M / / (x,5)0; (s)dxds (2.18)
and
Y [w] <C’10g2/ / w(z,s)ny (s)dzds. (2.19)

Utilizing (2.10), (2.16), (2.17)-(2.19) with w(z,s)=|v(z,s)|?be(z,s), Lemma 2.4 with
d=¢eP?, py=pq and py=q(p—1)+1, we obtain the second lifespan estimate in (1.10).

In the case Fsg2(n,p,q) =0> Fsg1(n,p,q), recalling (2.4), (2.6) and Lemma 2.3,
we deduce

T
/ / g P62 dads > CeP, (2.20)
O n

where a =251 -1 ;- Replacing ¢ with ¢ = n b in (1.7) yields

T
aC(vo,v1)+/ g (2, 5)[PE "bodads
R!L

_16 I+ 15 (2.21)

Estimates of the terms Is — I in (2.21) is similar to (2.12)-(2.14). Applying (2.6), (2.21)
and Lemma 2.3 leads to

T
([ [ tustes)iy vadodsy
0 Rn

T
< (logM)p(q_l)/ / |ut(x,s)|pba77M dxds. (2.22)
0 Jre
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Utilizing (2.17)-(2.19) with w(zx,s)=|us(z,s)Pby(z,s), (2.20), (2.22) and Lemma 2.4,
we arrive at the third lifespan estimate in (1.10).
In the case Fsg 2(n,p,q) =0=Fsg,1(n,p,q), it is deduced from (2.3) that

T
(eC(ug,up))P <T "+ TP / / 03 Juy|Pdxds
0 n
T ’
§C/ e (,5)|Pba03r dads. (2.23)
0 Rn

Combining (2.22) with (2.23), we derive the fourth lifespan estimate in (1.10). This
finishes the proof of Theorem 1.3. O

3. Proof of Theorem 1.4
Proof. Choosing the test function ¢ = 77M2 in (1.6) yields

T !’
(cC(upur)) + / / (loel?* + o] 2% dads

2 2(12 2(12
/ /" u(z,s)(0;ny, 7(1+| M 8,577M )dzds. (3.1)

Similar to the derivation in (2.7), we achieve
/ / (Jor[P* + o] )t dardis)
< CT_2+("_1)(q2_1)/ / \u|qzn;qédxds. (3.2)
0 n
Analogously, we have
T ’
([ e o dods)
0 Jrn
T ’
< C’T72+(”71)(q171)/ / \U|q177;q2dxds. (3.3)
0o Jrn

From (3.2) and (3.3), we acquire

2(q2+1)

T /
/ / (Jua P2 -+ [u]2)2% davds < T~ 557 (3.4)
0 n

Letting ¢ = —ny; 2oy — ?\Zé e t¢1(x) and replacing ¢ with ¥ =29;1 in (1.6) give rise
to

T
<C(ugyu) + / / (loel?* + 0] )0, s)dads

T
24; 24; H 2q;
= ’U,t 82’)’] 2q>+28t’l’] 2(%(1)—782577 Z(I))dl'ds (35)
/0 /n t (L+[a])?

Similar to the derivation in (2.3), it holds that

T ’
(eC(ug, uy ) P> T"=27P2 < /0 /R 62 |y, P2 duvds. (3.6)
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Analogously, we obtain

T ’
(eC(vg, v1))P* T "2 7L < /0 / 0292 v, P davds. (3.7)

Employing (3.4) and (3.6), we conclude the lifespan estimate

9192+292+1  n-—1 )—1
2

T(E) < Cg_( pa(a1az—1)

Analogously,, we acquire

a192+291+1  n— 1) 1

T(g) < Cg_( p1(a1a2—1)

Hence, we derive the first lifespan estimate in (1.11).

— ©142+2g2+1  n—1 Qat2aitl  n-1
In the case Tco(n, p1,p2,q1,92) = 5 =0> p1(q192—1)

p2(q192—1) and py =
g2, utilizing (3.3) and (3.6) yields

/ / (|vg|Pt 4+ |v]?) anT2dacds>/ / |v|Q1b77q2dxds>€qw2 (3.8)

where a—T——.

P2
Similar to the derivation in (2.15), applying (3.3) and Lemma 2.3 yields
T ot
(/ / (|’ut|p1+\v|q1)banl\j2d$ds)q1p2
0 n

T
< (o2 = [ [ (ol ol b dods. (39)
O n

Making use of (2.17)-(2.19) with w(x,s) = (|v¢[P* +|v]?)be (2, ), (3.8), (3.9) and Lemma
2.4, we arrive at

T(e) <exp(CeP2(@p2=1)y,

Therefore, we obtain the second lifespan estimate in (1.11).

_ 9132+2¢:+1 _ n—1 q192+2q2+1  n—1 _
In the case Fcc(n,php%qh CI2) p1(q192—1) 2 =0> p2(q192—1) 2 and p; =

q1, employing (3.2) and (3.7) gives rise to

// (|ue]P? 4 |u|®2) aan"‘dxds>/ / \u|qzb77q2dxds>5p1q2 (3.10)

where a—T——.

p1
Similarly, thanks to (3.2) and Lemma 2.3, we have

([ Qs sy

S(logM)‘D(pl_l)/ / (Jue]P? + |u|?2) anMstcds (3.11)
0 n

Combining (2.17)-(2.19) with w(z,s) = (Jus|P2 + |u|?2)ba(z,s), (3.10), (3.11) with Lemma
2.4, it holds that

T(e) <exp(Ce Pr(Praz=1)y, (3.12)
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As a result, we prove the third lifespan estimate in (1.11).

For the case T'ce(n, p1,p2,q1,q2) >0, p1 =p2 and g1 =¢o, we consider the single
semilinear wave equation with nonlinear term f(u,wu;)=|us|P* +|u|?*. Similar to the
derivation in (3.6), we obtain

T ’
(eC(ug, uy))PrTm "7 Pt S/ 612\31|ut|p1dxds. (3.13)
0o Jre

Choosing the test function ¢ = 77]\211 in (1.6) leads to
C(uo,ul)e+/ / (e, 8)|P + (s 9)] ™ 2% dardis

/ /n u(z,s) t27712v(1h*(1_|_| B 8t77M )dxds. (3.14)

Similar to the derivation in (3.4) in [24], we derive

T ’ gq1+1
C(Uo,ul)f-i-/ / (Jue(x,s)P* —|—|u(x,s)|‘“)77?pq1dxdsSCTTL*TL. (3.15)
0 n

Plugging (3.13) into (3.15) yields

n—1

- q1+11 —
T(g)SCg p1(a1—1) 2

Thus, we obtain the sixth lifespan estimate in (1.11).
It is worth noticing that if

FComb(nvplaql)_l SFS(nvql)_17 (316)
we acquire p; <q1. If g1 <2p; —1, then we have
FCOmb(nvplaql)il SFG(nvpl)il' (317)

We recognize that the sixth lifespan estimate in (1.11) is better than the fifth and
seventh lifespan estimates in (1.11) when p; <¢; <2p; —1. On the other hand, we derive
the seventh lifespan estimate in (1.11) for ¢1 <ps(n), p1 >¢ and the eighth lifespan
estimate in (1.11) for g1 =pg(n), p1 > ¢1. Moreover, we obtain the fifth lifespan estimate
in (1.11) when p; <pg(n), g1 >2p1 —1 and the fourth lifespan estimate in (1 11) when
p1=pg(n)= Z—ﬂ, q1>2p1 — 1, which is equivalent to py =pg(n), g1 >1+4+—=5 1 Precise
illustrations of the fourth to eighth lifespan estimates in (1.11) in blow-up region are
presented in [29]. The proof of Theorem 1.4 is finished. d

4. Proof of Theorem 1.5
Proof. Similar to the derivation in (3.2) and (3.6), we acquire

T /
(/ / ([ve[P + o] )n7 2 dds)
0 R
T '
SCT—2+(n—1)(qz—1)/ / |u\Q2n;q2dxds (4.1)
o JRr»

and

T ’
(C(uo,ul))qzsqu"_%”g/o /Rn]z;}z|u|qzdxds. (4.2)
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Similar to the derivation in (3.3) and (3.7), we derive
T iy
([ [l dudsyr
0o Jrn
T ’
<21 / / o9 2% dards (4.3)
0 n
and
n—1 T 24
(EC’(vo,vl))plTnprlS/ / 0,307 |ve|P* dads. (4.4)
O n

Combining (4.1) and (4.3), it holds that

T 24} n_1_2(<11+1)
[ [ el s oyt dwds < o7 =5, (4.5)
O n
In a similar way, we acquire
T / 2(ap+1)
/ / |u| 2032 deds < CT" T (4.6)
0o Jrn

Inserting (4.6) into (4.2) yields

a192+292+1  n—1 )71
2

T(g) < Cg_( a2(q192—1)

Applying (4.4) and (4.5) leads to

2192+2q1+1 n_ly-1
p)

T(S) < Cgf( p1(a1a2—1)

Hence, we conclude the first lifespan estimate in (1.12).

In the case Los(n, p1,q1, go) = BR2AEL 0ol — (> @ttt nol and p =g,
employing (4.1) and (4.4) yields
T o
/ / [u| by ny? dxds > P12 (4.7)
0 Jre
with a =251 — p%'
Similar to the derivation in (3.11), taking into account (4.1), we have
T oot
(/ / |u| %2y, 2 dzds)Pr 42
O n
T ol
< (log M)®2(1=1) / / | b % dds. (4.8)
0 n

Applying (2.17)-(2.19) with w(z,s) =|u|®b,(x,s), (4.7), (4.8) and Lemma 2.4 gives rise
to

T(e) <exp(Ce™P (P1Q2—1))_

Hence, we verify the second lifespan estimate in (1.12).



390 THE WEAKLY COUPLED SYSTEM OF SEMILINEAR WAVE EQUATIONS

In the case T'cs(n,p1,q1,92) = % — "?*1 =0> % — %17 combining
(4.2) with (4.3), we acquire
T o
/0 / [v| T banyg? dods > Cer®2, (4.9)
where a = "T_l — q%'
Similar to the derivation in (2.22), employing (4.3) yields
T oot
(/ / [v| T banys drds)ir e
0 n
T el
< (10gM)q1(q2_1)/ / 0| by, dds. (4.10)
O n

Utilizing (2.17)-(2.19) with w(z,s) =|v|?ba(z,s), (4.9), (4.10) and Lemma 2.4 yields

T(e) < eXp(C’g—th(qlqz—l))_

In the case I'cs(n,p1,q1,q2) = 7(21‘1(2?3; f{)l -2l =0= 7@%@%51 — 254 and p1 =q,
taking advantage of (4.7)-(4.10), we deduce the third lifespan estimate in (1.12). The
proof of Theorem 1.5 is finished. O

5. Proof of Theorem 1.6
Proof.  Similar to the derivation in (2.3) and (2.6), it holds that

T /7
eC(ug,uq pQT"_%pQS mn P202P2 10 ds 5.1
M
0 R™
and
T ’
([ ol oy dodsy
0 R™
T ’/
<o~ inez—1) / / | [P20°22 dasdls. (5.2)
O n

Similar to the derivation in (4.3) and (4.4), we derive

T ’
[l daasye
0 n

T /
SCT‘2+(n—1)(q1—1)/ / |v\Q1n§p2d:vds (5.3)
0o Jrr
and
n—1 T 20’
(eC(vg,vy))PrT" 2 1 §/ 0072 vy [P davds. (5.4)
0o Jre

Making use of (5.2) and (5.3) gives rise to

2q1+1

T /
[ oot asas <o (55)
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and
’ +po+1
/ / lug| P02 dads < CT" ainoT (5.6)
Utilizing (5.4) and (5.5) leads to

2 tl  n—1y-1
3

T(e)< Ce™ Gitan D
It is deduced from (5.1) and (5.6) that

q1pP2+p2+1l n—-1\-1

T(g)SC’s*(W* 5

As a consequence, we arrive at the first lifespan estimate in (1.13).

2 1 -1 1 —1
In the case FCG(” pl,Q1,p2) 1)1(;217(:1)—% 0> % nT and P1=41,

according to (5.2) and (5.4), we conclude

T
/ / |ut [P2b, nT 2da:ds>5p1p2 (5.7)
O n

n—1__ L

2 p1’
Similar to the derivation in (4.8), taking into account (5.2) yields

/ [t dodsyr

T
S(logM)pz(pl_l)/ / |ut|p2ba77M2d:rds (5.8)
0 JRn

Thanks to (2.17)-(2.19) with w(x,s)=|ut|P2bs(z,s), (5.7), (5.8) and Lemma 2.4, we
achieve

with a=

T(e) <exp(Ce™ P (p1p2—1))_

Hence, we verify the second lifespan estimate in (1.13).
In the case 'ca(n, p1,q1,p2) = ;’2‘(1;:'7% nl—0> % —2=1 An applica-
tion of (5.1) and (5.3) shows

T ’
/ / |v|® ban?\%dxds >(CetiP? (5.9)
O n

with a =23 — L.
D2

Similar to the derivation in (2.16), utilizing (5.3), we arrive at

//|v|’“bnp2dxds)q1p2

< (log M)©(P>=1) / / 0] %bg1y2P2 dads. (5.10)
O n

Exploiting (2.17)-(2.19) with w(x,s)=|v|"b,(x,s), (5.9), (5.10) and Lemma 2.4 leads
to

T(e) < exp(Cs_pZ(qlpz_l)).

Thus, we conclude the third lifespan estimate in (1.13).
In the case Tog(n,p1,q1,p2) = jriptartyy — "5+ =0= Bty — nod and pr=qi,

taking advantage of (5.7)-(5.10) leads to the fourth lifespan estimate in (1.13). The
proof of Theorem 1.6 is finished. ]
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