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ON GLOBAL SOLUTIONS TO THE INHOMOGENEOUS,
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH

TEMPERATURE-DEPENDENT COEFFICIENTS∗

BIJUN ZUO†

Abstract. In this paper, we study the initial-boundary value problem for the full inhomogeneous,
incompressible Navier-Stokes equations with temperature-dependent viscosity and heat conductivity
coefficients. The viscosity coefficient may be degenerate in the sense that it may vanish in the region
of absolutely zero temperature. Our main result is to prove the global existence of large weak solutions
to such a system. The proof is based on a three-level approximate scheme, the Galerkin method, De
Giorgi’s method and appropriate compactness arguments.
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1. Introduction and main result
In the present paper, we consider the following three-dimensional inhomogeneous,

incompressible Navier-Stokes equations with heat-conducting effects
∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇P =divS,
∂t(ρθ)+div(ρuθ)+divq=S :∇u,

divu=0.

(1.1)

This system is supplemented with the initial conditions

(ρ,ρu,θ)(0,x)=(ρ0,m0,θ0)(x) inΩ, (1.2)

and the boundary conditions

u(t,x)=0, ∇θ(t,x) ·n(x)=0 on [0,T ]×∂Ω, (1.3)

where Ω⊂R3 is a bounded domain of class C2+ν with ν >0, n(x) is the unit outward
normal vector to the boundary at x∈∂Ω. Here, ρ=ρ(t,x) is the density of the fluid,
u=u(t,x) is the velocity field, θ=θ(t,x) is the temperature, P =P (t,x) is the pressure,
S denotes the viscous stress tensor given by

S=µ(θ)(∇u+∇Tu),

where ∇Tu is the transposition of ∇u and µ(θ)≥0 is the viscosity coefficient which
depends on the temperature and may degenerate in the region of absolutely zero tem-
perature, and q denotes the heat flux of the fluid satisfying Fourier’s law

q=−κ(θ)∇θ,

with κ(θ)>0 being the heat conductivity coefficient depending on the fluid temperature.
Moreover, it is easily seen that our discussion below still holds with more general internal
energy e= cνθ, with cν >0 being the specific heat at constant volume.
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The global existence of solutions to system (1.1)-(1.3) is an open problem, even for
the homogeneous case (i.e. ρ=const.>0) in the class of the weak solutions introduced
by Leray [26]. The main difficulty lies in the dissipative term

S :∇u=
µ(θ)

2

∣∣∇u+∇Tu
∣∣2 .

This term is the only source of a priori estimates on ∇u, and at the same time, only
weakly lower semicontinuous with respect to ∇u. Therefore, the temperature Equation
(1.1)3 has to be replaced by the inequalities

∂t(ρθ)+div(ρuθ)+divq≥S :∇u,

and

∂t

(
1

2
ρ|u|2

)
+div

((
1

2
ρ|u|2+P

)
u

)
−div(Su)+S :∇u≤0.

Notably, this difficulty can be tackled if we consider some non-Newtonian fluids (see
[8,31]) or two-dimensional case (see [9]), where better a priori estimates for ∇u can be
obtained.

Without heat-conducting effects, there has been a lot of literature on the existence
of solutions to the inhomogeneous, incompressible Navier-Stokes equations. When the
viscosity coefficient is a positive constant, Kazhikhov [1,2,23] proved the global existence
of weak solutions and local strong solution in the absence of vacuum. Then, Simon [32]
established global weak solutions with finite energy for the case that the initial data
may contain vacuum. Later, based on some compatibility condition, Choe-Kim [7]
constructed a local strong solution, which was extended to be a global one by Huang-
Wang [20] for two-dimensional case and Kim [24] for three-dimensional case if ∥∇u0∥
is sufficiently small. Recently, Lü-Shi-Zhong [28] removed the compatibility condition
and showed the global existence of strong solutions with large initial data on the whole
space R2. When the viscosity coefficient depends on density, Diperna-Lions [12, 27]
constructed global weak solutions. Then, Desjardins [11] proved the global existence of
weak solutions with higher regularity for two-dimensional case where µ is a small per-
turbation of a positive constant in L∞-norm. Meanwhile, we also mention the existence
of global strong solutions in the absence of the vacuum states (see [18,21,22,34,35]).

When the heat-conducting effects are considered, for the homogeneous case (i.e.
ρ=const.>0), Lions [27] studied (1.1)-(1.3) with constant viscosity and heat conduc-
tivity coefficients, which means that system (1.1)1, (1.1)2 and Equation (1.1)3 are uncou-
pled, therefore, Lions established the existence of global weak solutions by two different
approaches. To be specific, the first approach, called decoupled approach is to solve
first (1.1)1, (1.1)2, then, given a weak solution u of (1.1)1, (1.1)2, in particular, for
a given L1-function S :∇u on the right-hand side of (1.1)3, try to solve (1.1)3. The
second approach is to solve (1.1)1, (1.1)2 and (1.1)3 simultaneously, where however, the
temperature Equation (1.1)3 is replaced by the total energy equation

∂t

(
1

2
|u|2+θ

)
+div

[(
1

2
|u|2+P +θ

)
u

]
+divq=div(Su).

Then, based on the second approach in [27], Feireisl-Málek [15] established a global
weak solution in a periodic domain with the viscosity and heat conductivity coefficients
depending on temperature. Later, Buĺıček-Feireisl-Málek [5] extended [15] to general
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three-dimensional domains with Navier’s slip boundary condition for the velocity. This
result also extended the result of Caffarelli-Kohn-Nirenberg [6], from a purely mechanical
context to a complete thermodynamic setting.

For the compressible Navier-Stokes equations with heat-conducting effects, Feireisl
first introduced the concept of “variational” solutions, and in [13], he proved the global
existence of “variational” solutions in a bounded domain Ω⊂RN , N ≥2 with boundary
of class C2+ν for a certain ν >0, where the constant viscosity coefficients are assumed
to satisfy

µ>0, λ+
2

N
µ≥0.

Then, Feireisl [14] extended the above result to the case that the viscosity coefficients
are functions of temperature satisfying

µ(θ)≥µ>0, λ(θ)+
2

N
µ(θ)≥0,

for some positive constant µ>0. Recently, Wang-Zuo [33] further strengthened the re-
sult [14] and established global weak solutions to the compressible Navier-Stokes equa-
tions with degenerate, or even vanishing shear viscosity coefficient.

The existence of global weak solutions to the inhomogeneous, incompressible Navier-
Stokes with heat-conducting effects (1.1)-(1.3) was first proposed by Lions in his book
[27], Sect. 3.4, where the viscosity and heat conductivity coefficients were assumed to
be functions of density and temperature satisfying µ,κ∈C([0,∞)×R)

inf{µ(t,s)||t|≤R,s∈R}>0, inf{κ(t,s)||t|≤R,s∈R}>0 for all R>0.

Lions pointed out that it was possible to study such a problem by the methods developed
in Chapter 2 and Chapter 3 of his book. However, precise results about this problem
were not given therein. Note that the assumption that the viscosity coefficient was
bounded below from zero played an essential role in the compactness analysis in [27].

In this paper, we aim to study the global existence of weak solutions to the initial-
boundary problem (1.1)-(1.3), with the viscosity and heat conductivity coefficients de-
pending on the temperature. It should be emphasized that the viscosity coefficient is
assumed to be degenerate and may vanish in the region of absolutely zero temperature.
This assumption is based on the observation that zero viscosity occurs when the tem-
perature is very low in superfluids in [4]. The degeneracy of the viscosity coefficient
may lead to the failure of parabolicity of the momentum Equation (1.1)2, which makes
it invalid to apply the Galerkin method to the momentum Equation (1.1)2 to establish
approximate solutions. Another negative effect of this degeneracy is that we are unable
to obtain a priori estimates on ∇u from the energy inequality, which makes compactness
analysis extremely difficult.

To tackle these two difficulties, we add an artificial viscosity term ε∆u (ε>0) in
the momentum equation. Such an artificial viscosity term makes it possible to apply
the Galerkin method to obtain global approximate solutions and plays an important
role in obtaining estimates for the gradient of velocity. At the same time, to eliminate
this artificial viscosity term as ε→0+, we need to obtain uniform estimates on ∇u
independent of ε>0, which is one of the most serious challenges we face.

The crucial point in obtaining uniform bounds on ∇u independent of ε>0 is to
show that the temperature is bounded away from zero by De Giorgi’s method [10],
which was originally developed by De Giorgi for the regularity of elliptic equations with



438 ON GLOBAL SOLUTIONS TO THE INCOMPRESSIBLE N-S EQUATIONS

discontinuous coefficients, then applied by Baer-Vasseur [3] and Mellet-Vasseur [29] to
give a positive bound from below for the temperature in compressible Navier-Stokes
equations. Those results can be viewed as a priori estimates for the temperature and
motivate us to show that the temperature is uniformly bounded away from zero for the
approximated solutions of the incompressible Navier-Stokes equations. Furthermore,
by the assumptions imposed on µ(θ), we can obtain a lower bound for the viscosity
coefficient, that is, µ(θ)≥µ for some positive constant µ independent of ε>0. Then the

uniform H1-regularity of the velocity field u could be derived by the elementary energy
inequality.

Another difficulty in proving the global solvability of (1.1)-(1.3) lies in dealing with
the temperature concentration, which as in [13,14] can be resolved by the renormaliza-
tion of the temperature Equation (1.1)3. To be specific, multiplying (1.1)3 by h(θ) for
some suitable function h, we obtain

∂t(ρH(θ))+div(ρuH(θ))−△Kh(θ)=h(θ)S :∇u−h′(θ)κ(θ)|∇θ|2,

where

H(θ)=

∫ θ

0

h(z)dz, Kh(θ)=

∫ θ

0

κ(z)h(z)dz.

The idea of renormalization is inspired by DiPerna-Lions [12] where they replaced the
continuity Equation (1.1)1 by

∂tb(ρ)+div(b(ρ)u)+(b′(ρ)ρ−b(ρ))divu=0,

for suitable functions b= b(ρ), and then was used by Feireisl [13] and Lions [27] to
overcome the temperature concentration. However, as mentioned above, due to the
dissipative term S :∇u, we can only obtain an inequality instead of (1.1)3 by passing to
the limit.

The weak solutions to the initial-boundary value problem (1.1)-(1.3) are defined in
the following sense:

Definition 1.1. We call (ρ,u,θ,P ) a weak solution to the initial-boundary value
problem (1.1)-(1.3) if

(i) the density ρ≥0 satisfies

ρ∈L∞((0,T )×Ω)∩C([0,T ];Lp(Ω)), 1≤p<∞,

the velocity u belongs to L2(0,T ;W 1,2
0 (Ω)), and (ρ,u) is a renormalized solution

of the continuity Equation (1.1)1 in the sense of distributions, that is,∫ T

0

∫
Ω

b(ρ)∂tΦ+b(ρ)u ·∇Φ+(b(ρ)−b′(ρ)ρ)divuΦdxdt=0,

holds for any b satisfying

b∈C1[0,∞), b′(ρ)=0 for all ρ large enough,

and any Φ∈C∞
c ((0,T )×Ω);
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(ii) the momentum Equation (1.1)2 and the incompressibility condition (1.1)4 hold in
D′((0,T )×Ω), that is,∫ T

0

∫
Ω

ρu ·∂tΦdxdt+
∫ T

0

∫
Ω

ρu⊗u :∇Φdxdt=

∫ T

0

∫
Ω

S :∇Φdxdt,

holds for any Φ∈C∞
c ((0,T )×Ω) satisfying divΦ=0, where

ρS=ρµ(θ)(∇u+∇Tu),

and for any η∈C∞
c (Ω), it holds that for a.a. t∈ (0,T )∫

Ω

u ·∇ηdx=0.

Moreover, ρu∈C([0,T ];L2
weak(Ω)) satisfies the initial condition (1.2);

(iii) the temperature θ≥0 satisfies

θ∈L2(0,T ;W 1,2(Ω)), ρθ∈L∞(0,T ;L1(Ω)),

and the temperature inequality holds in the sense of distributions, that is,∫ T

0

∫
Ω

ρθ∂tφdxdt+

∫ T

0

∫
Ω

(ρuθ ·∇φ+K(θ)△φ)dxdt

≤−
∫ T

0

∫
Ω

S :∇uφdxdt−
∫
Ω

ρ0θ0φ(0),

for any φ∈C∞
c ([0,T ]×Ω) satisfying

φ≥0, φ(T, ·)=0,∇φ ·n|∂Ω=0,

where

K(θ)=

∫ θ

0

κ(z)dz.

Moreover, θ(t, ·)→θ0 in D′(Ω) as t→0+, that is, for any χ∈C∞
c (Ω), it holds

lim
t→0+

∫
Ω

θ(t,x)χ(x)dx=

∫
Ω

θ0(x)χ(x)dx;

(iv) the energy inequality holds, that is, for a.a. t∈ (0,T ),

E[ρ,u,θ](t)≤E[ρ,u,θ](0),

where

E[ρ,u,θ](t)=

∫
Ω

(
1

2
ρ|u|2+ρθ

)
(t)dx,

and

E[ρ,u,θ](0)=

∫
Ω

(
1

2

|m0|2

ρ0
+ρ0θ0

)
dx.
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Remark 1.1. As mentioned in [15], the reason for introducing the function K(θ)=∫ θ

0
κ(z)dz with ∇K(θ)=κ(θ)∇θ=−q is that we are unable to deduce κ(θ)∇θ is locally

integrable by a priori estimates that we can obtain. However, for weak formulation, we
can write ∫

Ω

∆K(θ)φdxdt=

∫
Ω

K(θ)∆φdxdt,

where the right-hand side makes sense for any function φ∈C2(Ω).

Remark 1.2. As shown later, the bounds on the velocity fail to ensure the convergence
of the term S :∇u in the sense of distributions. Therefore, as in [13, 14], we replaced
the temperature Equation (1.1)3 by the following two inequalities in Definition 1.1

∂t(ρθ)+div(ρuθ)−△K(θ)≥S :∇u,

and

E[ρ,u,θ](t)≤E[ρ,u,θ](0).

Our main result can be stated as follows.

Theorem 1.1. Let Ω⊂R3 be a bounded domain of class C2+ν , with ν >0. Assume
that

(i) the heat conductivity coefficient κ(θ)∈C1([0,∞)) satisfies

κ(1+θ2)≤κ(θ)≤κ(1+θ2), (1.4)

for constants κ>0 and κ>0;

(ii) the viscosity coefficient µ(θ) is globally Lipschitz continuous on [0,∞) and it is a
positive function on [θ̄,∞), satisfying

lim
θ→∞

µ(θ)>0, and µ(θ)≥κθ, for 0≤θ≤ θ̄; (1.5)

(iii) the initial data satisfy 
ρ0∈L∞(Ω), ρ0≥0 onΩ,

θ0∈L1(Ω), θ0≥θ>0 onΩ,

|m0|2

ρ0
∈L1(Ω).

(1.6)

Then, for any given T >0, the initial-boundary value problem (1.1)-(1.3) admits a
global weak solution (ρ,u,θ,P ) in the sense of Definition 1.1.

Remark 1.3. As mentioned in [4], zero viscosity only occurs when the temperature is
very low in superfluids. Otherwise, by the second law of thermodynamics, the viscosity
of all fluids is positive. Thus, our restriction (1.5) is physical. Moreover, the assumptions
imposed on the viscosity coefficient µ(θ) in Theorem 1.1 are definitely not optimal, but
our goal is to highlight the main ideas of the proof without going into unnecessary
technical details.

The proof of Theorem 1.1 will be roughly divided into the following three steps:
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Step 1: For fixed ε, δ>0, we solve the approximate system (2.1)-(2.3) by the
Galerkin method, to be specific, we first solve the problem in a suitable finite dimensional
space Xn, then recover a global solution by passing to the limit as n→∞;

Step 2: For fixed δ>0, letting ε→0+ to eliminate the artificial viscosity in the
momentum Equation (1.1)2. The crucial point is to obtain a below bound for the
temperature by De Giorgi’s method, which is motivated by the work of Mellet-Vasseur
[29]. This implies that the temperature-depending viscosity coefficient is bounded away
from zero by the assumptions in Theorem 1.1. Thus, one can obtain uniform bounds
for the velocity for passing to the limits. Note that the below bound of temperature is
also uniform in δ>0. This means that the uniform bounds are also available for the
limits as δ goes to zero;

Step 3: We are able to recover a globally defined weak solution to the initial-
boundary value problem (1.1)-(1.3) by letting δ→0+.

Now we would like to give some comments on Theorem 1.1 by comparing it with
the relevant result [33] for the compressible Navier-Stokes equations. Roughly speaking,
there are two major differences between the inhomogeneous, incompressible case and
compressible case, that is,

(1) the pressure. The pressure is an independent variable in terms of the density and
the velocity for the incompressible case, which can be tackled by choosing suit-
able divergence-free test functions in Definition 1.1. For the compressible case, the
pressure is a function of the density and the main source of integrability of the
density;

(2) the continuity equation. For the incompressible case, the continuity equation can
be rewritten as the transport form

∂tρ+u ·∇ρ=0,

which can be solved based on Lions’ result [27]. However, this method is invalid for
the compressible case.

Therefore, the approximate system and compactness arguments established in the
present paper are different from that in [33].

The rest of the paper is organized as follows. In Section 2, we construct a suitable
approximate system (2.1)-(2.3) and obtain the global solvability by the Galerkin method.
In Section 3, we perform the limit ε→0+ to eliminate the artificial viscosity. In Section
4, we let δ→0+ to finish the proof of Theorem 1.1.

2. The construction of approximate solutions
First, we construct the following approximate system

∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇P −divS−ε∆u=0,

∂t((δ+ρ)θ)+div(ρuθ)−△K(θ)+δθ3=(1−δ)S :∇u,

divu=0,

(2.1)

where both ε and δ are positive parameters, supplemented with the initial condition

(ρ,ρu,θ)(0)=(ρ0,δ,m0,δ,θ0,δ) inΩ, (2.2)

and the boundary condition

u=0, ∇θ ·n=0 on ∂Ω. (2.3)



442 ON GLOBAL SOLUTIONS TO THE INCOMPRESSIBLE N-S EQUATIONS

Note that the construction of the above approximate system is motivated but dif-
ferent from [13,14,16,17]. Moreover, the regularized initial data are required to satisfy
the following conditions:

ρ0,δ ∈C2+ν(Ω̄), 0<δ≤ρ0,δ(x)≤ ρ̄;
ρ0,δ →ρ0 inL

2(Ω), |{x∈Ω |ρ0,δ(x)<ρ0(x)}|→0, as δ→0;

θ0,δ ∈C2+ν(Ω̄), ∇θ0,δ ·n|∂Ω=0, 0<θ≤θ0,δ;
θ0,δ →θ0 inL

2(Ω), as δ→0;

m0,δ =

{
m0, if ρ0,δ ≥ρ0,
0, if ρ0,δ<ρ0,

(2.4)

where ρ̄ and θ are independent of δ>0. In particular, the regularized initial value of
the total energy

Eδ(0)=

∫
Ω

(
1

2

|m0,δ|2

ρ0,δ
+(δ+ρ0,δ)θ0,δ

)
dx (2.5)

is bounded by a constant independent of δ>0.

Remark 2.1. In Equations (2.1)2 and (2.1)3, the quantities ε and δ are small positive
parameters. Roughly speaking, the extra term ε△u represents the artificial viscosity
which ensures the parabolic property of the momentum Equation (2.1)2. The quantity
δθ3 is introduced to improve the integrability of the temperature. The other terms
related to the parameter δ>0 are introduced to avoid technicalities in the temperature
estimates.

We give our result about the global solvability of the approximate problem (2.1)-
(2.3) in the following proposition.

Proposition 2.1. For any fixed ε, δ>0, under the hypotheses of Theorem 1.1 and
the assumptions imposed on the initial data (2.4), the approximate system (2.1)-(2.3)
admits a global weak solution (ρ,u,θ,P ) satisfying the following properties:

(i) the density ρ≥0 satisfies

ρ∈L∞((0,T )×Ω)∩C([0,T ];Lp(Ω)), 1≤p<∞,

the velocity u belongs to the space L2(0,T ;W 1,2
0 (Ω)), and (ρ,u) is a renormalized

solution of the continuity Equation (2.1)1 in the sense of distributions;

(ii) the modified momentum Equation (2.1)2 and the incompressibility condition (2.1)4
hold in D′((0,T )×Ω). Moreover, ρu∈C([0,T ];L2

weak(Ω)) satisfies the initial con-
dition (2.2);

(iii) the temperature θ≥0 satisfies

θ∈L2(0,T ;W 1,2(Ω))∩L3((0,T )×Ω), ρθ∈L∞(0,T ;L1(Ω)),

and the renormalized temperature inequality holds in the sense of distributions,
that is,∫ T

0

∫
Ω

(δ+ρ)H(θ)∂tφdxdt+

∫ T

0

∫
Ω

(
ρH(θ)u ·∇φ+Kh(θ)△φ−δθ3h(θ)φ

)
dxdt

≤
∫ T

0

∫
Ω

(
(δ−1)S :∇uh(θ)+h′(θ)κ(θ)|∇θ|2

)
φdxdt−

∫
Ω

(δ+ρ0,δ)H(θ0,δ)φ(0)dx

(2.6)
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for any φ∈C∞
c ([0,T ]×Ω) satisfying

φ≥0, φ(T, ·)=0,∇φ ·n|∂Ω=0,

where H(θ)=
∫ θ

0
h(z)dz and Kh(θ)=

∫ θ

0
κ(z)h(z)dz, with the non-increasing h∈

C2([0,∞)) satisfying

0<h(0)<∞, lim
z→∞

h(z)=0, (2.7)

and

h′′(z)h(z)≥2(h′(z))2 for all z≥0; (2.8)

(iv) the energy inequality∫
Ω

(
1

2
ρ|u|2+(δ+ρ)θ

)
(t)dx+

∫ t

0

∫
Ω

δS :∇u+ε|∇u|2+δθ3dxds

≤
∫
Ω

1

2

|m0|2

ρ0,δ
+(δ+ρ0,δ)θ0,δdx (2.9)

holds for a.a. t∈ [0,T ].

Remark 2.2. As proved in [13] for the constant viscosity coefficient case, the hy-
potheses (2.7)-(2.8) are imposed to ensure the convex and weakly lower semi-continuous
property of the function

(θ,∇u) 7→h(θ)S :∇u, (2.10)

which is still valid for the temperature-depending viscosity coefficient case (cf. [19]).

2.1. Global solvability of the approximate system in a finite dimensional
space. Let {ηn} be a family of divergence-free linearly independent smooth vector
functions that vanish on the boundary ∂Ω. Consider a sequence of finite dimensional
spaces

Xn=span{η1,η2,...,ηn}, n=1,2, · · ·. (2.11)

The global solvability of the approximate problem (2.1)-(2.3) in the finite dimensional
space Xn can be achieved by the following four steps:

Step 1: Given u=un∈C([0,T ];Xn), the approximate continuity Equation (2.1)1
can be seen as a transport equation of ρ, which can be solved directly by the character-
istics method. We denote the solution by ρn :=ρ[un] and give the details in Proposition
2.2.

Step 2: Given u=un and ρ=ρn, the approximate temperature Equation (2.1)3 can
be seen as a quasi-linear parabolic equation of θ, which can be solved by applying the
parabolic theory [25]. See details in Proposition 2.3. Denote the solutions by θn :=θ[un].

Step 3: Substituting ρ=ρn and θ=θn into the following integral equation∫
Ω

(ρun)(t) ·ηdx−
∫
Ω

m0,δ ·ηdx=
∫ t

0

∫
Ω

(ρun⊗un−Sn−ε∇un) :∇ηdxds, (2.12)

for any η∈Xn, with

Sn=µ(θ)(∇un+∇Tun),
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we can obtain a local solution un∈C([0,Tn];Xn) with Tn≤T by the standard fixed-
point theorem. See details in Proposition 2.4.

Step 4: By virtue of some uniform (in time) estimates, we can extend Tn to T to
obtain a global existence result.

Remark 2.3. Note that the integral Equation (2.12) can be seen as a projection of
the momentum Equation (2.1)2 onto the finite dimensional space Xn in the sense of
distributions.

Following the steps presented above, for fixed velocity field u=un∈C([0,T ];Xn),
we first study the solvability of the approximate continuity Equation (2.1)1.

Proposition 2.2. Let u=un be a given vector function belonging to C([0,T ];Xn).
Assume that the initial data ρ0,δ satisfy the hypotheses in (2.4).

Then there exists a mapping ρn=ρ[un]:

ρn : C([0,T ];Xn)→C([0,T ];C2(Ω̄))

having the following properties:

• the initial value problem (2.1)1, (2.2) possesses a unique classical solution ρn;

• 0<δ≤ρ[un]≤ρ for all t∈ [0,T ];

• continuity of the mapping:

∥ρn1 −ρn2∥C([0,T ];C2(Ω̄))≤CT∥un1 −un2∥C([0,T ];Xn). (2.13)

Proof. Taking u=un, we can rewrite the continuity Equation (2.1)1 as the fol-
lowing transport equation

∂tρ+un ·∇ρ=0.

By characteristics method, we have

ρ(t,x)=ρ0,δ(x−unt), (2.14)

which, combined with the assumptions imposed on the initial data ρ0,δ in (2.4), yields
the properties in Proposition 2.2.

For the temperature Equation (2.1)3, similarly as in [13, 16], we have the following
proposition.

Proposition 2.3. Let u=un be a given vector function belonging to C([0,T ];Xn)
and ρ=ρn be the unique solution in Proposition 2.2. Suppose that the initial data θ0,δ
satisfy the hypotheses in (2.4).

Then there exists a mapping θn=θ[un] having the following properties:

• the initial-boundary value problem (2.1)3, (2.2) and (2.3) admits a unique strong
solution θn=θ[un];

• the solution θn has the following regularity properties:

∇θn∈L2((0,T )×Ω), ∂tθn∈L2((0,T )×Ω);

• continuity of the mapping:

∥θn1
−θn2

∥L2(0,T ;H1(Ω))≤C
√
T∥un1

−un2
∥C([0,T ];Xn). (2.15)
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Based on Proposition 2.2 and Proposition 2.3, we can follow the same idea as in [13]-
[16] to obtain the local existence as follows.

Proposition 2.4. For fixed ε,δ>0, assume that the initial data satisfy (2.4) and Xn

is defined by (2.11). Denote un(0) :=u0,δ,n and suppose ρ0,δu0,δ,n=m0,δ for any n.
Then the approximate problem (2.1)-(2.3) admits a local solution (ρn,un,θn) on a

short time interval [0,Tn] with Tn≤T satisfying Proposition 2.2 and Proposition 2.3.

Now, in order to show Tn=T for any n, it is enough to obtain uniform (in time)
bounds on the norm ∥un(t)∥Xn

for t∈ [0,Tn] independent of Tn, which is often obtained
by energy estimates.

First, by (2.12), we obtain that the velocity un is continuously differentiable, which
implies that the following integral identity holds on (0,Tn) for any η∈Xn∫

Ω

∂t(ρnun) ·ηdx=
∫
Ω

(ρnun⊗un−Sn−ε∇un) :∇ηdx. (2.16)

Taking η=un in (2.16), we obtain

d

dt

∫
Ω

1

2
ρn|un|2dx+

∫
Ω

1

2
µ(θn)

(
∇un+∇Tun

)2
dx+ε

∫
Ω

|∇un|2dx=0. (2.17)

Integrating (2.17) over (0,τ) for any τ ∈ [0,Tn], we have

1

2

∫
Ω

(ρn|un|2)(τ)dx+
∫ τ

0

∫
Ω

1

2
µ(θn)

(
∇un+∇Tun

)2
dxds+ε

∫ τ

0

∫
Ω

|∇un|2dxds

=
1

2

∫
Ω

m0,δ ·un(0)dx,

where the term on the right-hand side can be controlled by∫
Ω

m0,δ ·un(0)dx=

∫
Ω

m0,δ ·u0,δ,ndx

≤1

2

∫
Ω

(
|m0,δ|2

ρ0,δ
+ρ0,δ|u0,δ,n|2

)
dx=

1

2

∫
Ω

(
|m0,δ|2

ρ0,δ
+m0,δ ·u0,δ,n

)
dx.

Thus, we deduce that for any τ ∈ [0,Tn]

1

2

∫
Ω

(ρn|un|2)(τ)dx+
∫ τ

0

∫
Ω

1

2
µ(θn)

(
∇un+∇Tun

)2
dxds+ε

∫ τ

0

∫
Ω

|∇un|2dxds

≤1

2

∫
Ω

|m0,δ|2

ρ0,δ
dx. (2.18)

This implies

∥√ρnun∥L∞(0,Tn;L2(Ω))≤C,

where C is independent of n and Tn.
Since ρn is bounded from below by a positive constant, we deduce

∥un∥L∞(0,Tn;L2(Ω))≤C. (2.19)

By virtue of the fact that all norms are equivalent on Xn, we have

∥un∥L∞(0,Tn;Xn)≤C, (2.20)

with C independent of n and Tn, which allows to extend the local existence result on
Tn to the global existence on T by repeating the fixed-point argument above after finite
steps.
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2.2. Passing to the limit for n→∞. The goal of this subsection is to pass limit
to the approximate solutions (ρn,un,θn) to recover a weak solution to the approximate
system (2.1)-(2.3) as n→∞, for any fixed ε, δ>0. For convenience, in the rest of this
subsection, we denote C a generic positive constant which is independent of n. In fact,
we have the following uniform bounds.

Proposition 2.5. For fixed ε, δ>0, under the hypotheses of Proposition 2.1, we have

∥ρn∥L∞((0,T )×Ω)≤C, (2.21a)

∥un∥L2(0,T ;W 1,2
0 (Ω))≤C, (2.21b)

∥θn∥L2(0,T ;W 1,2(Ω))≤C, (2.21c)

∥θn∥L3((0,T )×Ω)≤C, (2.21d)

∥√ρnun∥L∞(0,T ;L2(Ω))≤C, (2.21e)

∥ρnθn∥L∞(0,T ;L1(Ω))≤C. (2.21f)

Proof. First, replacing Tn by T in the energy inequality (2.18) and thanks to
Poincaré’s inequality, we have (2.21b) and (2.21e). Moreover, as proved in [27], by the
divergence-free property of un, we have for all 0≤α≤β<∞

meas{x∈Ω |α≤ρn(t,x)≤β} is independent of t≥0,

which, combined with 0<δ≤ρ0,δ(x)≤ ρ̄ implies (2.21a).
Then, integrating the Equation (2.1)3 over (0,τ)×Ω for any τ ∈ [0,T ] and adding

to (2.18), we obtain the following total energy inequality∫
Ω

(
1
2ρn|un|2+(δ+ρn)θn

)
(τ)dx+ε

∫ τ

0

∫
Ω
|∇un|2dxds+δ

∫ τ

0

∫
Ω

(
θ3n+Sn :∇un

)
dxds

≤
∫
Ω

(
1

2

|m0,δ|2

ρ0,δ
+(δ+ρ0,δ)θ0,δ

)
dx, (2.22)

which implies (2.21d) and (2.21f).
Next, multiplying (2.1)3 by h(θn), we have

∂t((δ+ρn)H(θn))+div(ρnunH(θn))−△Kh(θn)+κ(θn)h
′(θn)|∇θn|2+δθ3nh(θn)

=(1−δ)Sn :∇unh(θn), (2.23)

where H(θ)=
∫ θ

0
h(z)dz and Kh(θ)=

∫ θ

0
κ(z)h(z)dz, with h meeting (2.7) and (2.8). In-

tegrating (2.23) over (0,τ)×Ω for any τ ∈ [0,T ], one obtains∫
Ω

((δ+ρn)H(θn))(τ)dx+

∫ τ

0

∫
Ω

(
κ(θn)h

′(θn)|∇θn|2+δθ3nh(θn)
)
dxds

=(1−δ)
∫ τ

0

∫
Ω

Sn :∇unh(θn)dxds+

∫
Ω

(δ+ρ0,δ)H(θ0,δ)dx. (2.24)

Choosing h(θn)=
1

1+θn
in (2.24), we obtain∫ τ

0

∫
Ω

κ(θn)

(1+θn)2
|∇θn|2dxds=

∫
Ω

((δ+ρn)H(θn))(τ)dx−
∫
Ω

(δ+ρ0,δ)H(θ0,δ)dx

+δ

∫ τ

0

∫
Ω

θ3n
1+θn

dxds−(1−δ)
∫ τ

0

∫
Ω

Sn :∇un

1+θn
dxds,

(2.25)
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where by the growth restriction imposed on κ(θ) (1.4), the term on the left-hand side
can be controlled by

0<C

∫ τ

0

∫
Ω

|∇θn|2dxds≤
∫ τ

0

∫
Ω

κ(θn)

(1+θn)2
|∇θn|2dxds,

hence (2.21c) holds.

2.2.1. Strong convergence of the approximate densities. In this subsec-
tion, we recall a strong convergence result for the densities ρn.

Lemma 2.1 ([12,27]). Assume that the sequence (ρn,un) solves Equations (2.1)1 and
(2.1)4 in the sense of distributions, and satisfies the estimates (2.21a) and (2.21b).

Then we have

ρn→ρ inC([0,T ];Lp(Ω)) (2.26)

for any 1≤p<∞. Moreover, ρ satisfies

meas{x∈Ω |α≤ρ(t,x)≤β} is independent of t≥0,

for all 0≤α≤β<∞.

2.2.2. Limit in the approximate continuity equation. By (2.21b), we
assume

un⇀uweakly inL2(0,T ;W 1,2
0 (Ω)), (2.27)

at least for a suitable subsequence.
Therefore, in order to prove that {ρ,u} solves the continuity Equation (2.1)1 in the

sense of distributions, it suffices to show

ρnun→ρu inD′((0,T )×Ω),

which can be achieved by (2.26) and (2.27).

2.2.3. Strong convergence of the approximate temperatures. Before
proving the strong convergence of the approximate temperature θn, we need the follow-
ing variant of the Aubin-Lions lemma, which plays an essential role in our proof.

Lemma 2.2 ([13]). Let {vn}∞n=1 be a sequence of functions such that

vn is bounded inL
2(0,T ;Lq(Ω))∩L∞(0,T ;L1(Ω)), with q>6/5,

furthermore, assume that

∂tvn≥ ln inD′((0,T )×Ω),

where

ln is bounded inL
1(0,T ;W−m,r(Ω))

for a certain m≥1, r>1.
Then {vn}∞n=1 contains a subsequence such that

vn→v inL2(0,T ;H−1(Ω)).
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Now we apply Lemma 2.2 to (2.1)3 with vn=(δ+ρn)θn. By estimates (2.21a),
(2.21c) and (2.21f), we have

(δ+ρn)θn is bounded inL
2((0,T )×Ω)∩L∞(0,T ;L1(Ω)),

and

∂t((δ+ρn)θn)= ln inD′((0,T )×Ω),

where

ln=−div(ρnunθn)+△K(θn)−δθ3n+(1−δ)Sn :∇un.

Owing to estimates (2.21a)-(2.21d) and the compact imbedding of L1(Ω) intoW−1,s(Ω),
with s∈ (1, 43 ), we have

ln is bounded inL
1(0,T ;W−3,r(Ω)), r>1.

Therefore, we obtain

(δ+ρn)θn→ (δ+ρ)θ inL2(0,T ;H−1(Ω)).

Thanks to (2.21c), this yields

(δ+ρn)θ
2
n→ (δ+ρ)θ2 inD′((0,T )×Ω),

which, combined with (2.26), implies∫ T

0

∫
Ω

(δ+ρ)θ2ndxdt

=

∫ T

0

∫
Ω

[(δ+ρ)−(δ+ρn)]θ
2
ndxdt+

∫ T

0

∫
Ω

(δ+ρn)θ
2
ndxdt

→
∫ T

0

∫
Ω

(δ+ρ)θ2dxdt.

Thus, we have

θn→θ inL2((0,T )×Ω). (2.28)

2.2.4. Limit in the approximate momentum equation. In order to take
the limit n→∞ in the approximate momentum Equation (2.12), it suffices to deal with
the nonlinear terms.

First, similarly as in the previous subsection, applying Lemma 2.2 to (2.12) with
vn=ρnun, we have

ρnun→ρu inL2([0,T ];H−1(Ω)),

which, combined with (2.27), gives

ρnun⊗un→ρu⊗u inD′((0,T )×Ω).

Then, for the nonlinear term µ(θn)(∇un+∇Tun), by (2.28) and the Lipschitz con-
tinuity of µ(θ), we have

µ(θn)→µ(θ) inL2((0,T )×Ω),

which, with help of (2.27) yields

µ(θn)(∇un+∇Tun)→µ(θ)(∇u+∇Tu) inD′((0,T )×Ω).
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2.2.5. Limit in the renormalized temperature equation. First, by (2.28)
and the properties of h(θ) in Proposition 2.1, we have

H(θn)→H(θ) inL2((0,T )×Ω), (2.29)

which, combined with (2.26), yields

(δ+ρn)H(θn)→ (δ+ρ)H(θ) inL2(0,T ;Lm(Ω)),

for any 1≤m<2. Moreover, by (2.26), (2.27) and (2.29), we have

ρnH(θn)un⇀ρH(θ)uweakly inL1((0,T )×Ω). (2.30)

Then, thanks to Proposition 2.1 in [13], we are able to deal with the terms Kh(θn)
and δθ3nh(θn). To be specific, by the property

lim
z→∞

h(z)=0,

we have

lim
z→∞

Kh(z)

K(z)
=0.

By (2.21d) and the growth restriction imposed on κ(θ) (1.4), we have

sup
n≥1

∫
Ω

K(θn)dy<∞,

thus, Proposition 2.1 in [13] yields

Kh(θn)⇀Kh(θ) weakly inL
1((0,T )×Ω). (2.31)

Similarly, for the term δθ3nh(θn), owing to

lim
z→∞

z3h(z)

z3
=0,

and

sup
n≥1

∫
Ω

θ3ndy<∞,

we have

δθ3nh(θn)⇀δθ3h(θ) weakly inL1((0,T )×Ω). (2.32)

Next, owing to 0<κ≤κ(θ) and the non-increasing property of h, we have

−
∫ T

0

∫
Ω

κ(θ)h′(θ)|∇θ|2φdxdt≤−liminf
n→∞

∫ T

0

∫
Ω

κ(θn)h
′(θn)|∇θn|2φdxdt, (2.33)

for any non-negative function φ∈C∞
c ((0,T )×Ω).

Finally, it is crucial to have the following lemma to deal with the term Sn :∇unh(θn).
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Lemma 2.3 ([19]). Let g(θ) be a bounded, continuous and non-negative function
from [0,∞) to R. Suppose that θn and un are two sequences of functions defined on Ω
satisfying

θn→θ a.e. inΩ,

and

un⇀uweakly inW 1,2(Ω).

Then ∫
Ω

g(θ)h(θ)|∇u|2dx≤ liminf
n→∞

∫
Ω

g(θn)h(θn)|∇un|2dx,

where the function h(θ) satisfies (2.7) and (2.8). In particular,∫
Ω

S :∇uh(θ)φdx≤ liminf
n→∞

∫
Ω

Sn :∇unh(θn)φdx, (2.34)

for any non-negative function φ∈C∞
c ((0,T )×Ω).

With this lemma at hand, combining (2.29)-(2.34), we can obtain (2.6) by letting
n→∞ in (2.23). We are also able to deduce the energy inequality (2.9) in Proposition
2.1 by letting n→∞ in (2.22).

3. Limit passage for ε tends to zero
In this section, we use (ρε,uε,θϵ) to denote the weak solutions constructed in Propo-

sition 2.1. The main task is to pass limits to (ρε,uε,θε) as ε→0+. Note that, for any
fixed ε>0,

√
ε∇un is bounded in L2((0,T )×Ω), which is crucial to show the compact-

ness of weak solutions as n goes to infinity. However, this estimate is not uniform on ε.
This will lead to the loss of compactness of weak solutions. Our alternative way is to
show that the temperature-depending viscosity coefficient is bounded below from zero,
which can provide the uniform bound of ∇uε in L2((0,T )×Ω). With such a bound, we
are able to obtain the exact same compactness as in Section 2. Thus, to pass to the
limits as ε→0+, we mainly need to prove the temperature is bounded below from zero.
Therefore, this section will be devoted to obtain a positive bound from below for the
temperature, which is uniform in terms of ε>0 and δ>0.

3.1. A positive bound from below for the temperature. We first give our
result about the positive bound for the temperature θε.

Proposition 3.1. Let (ρε,uε,θε) be a weak solution to the approximate system (2.1)-
(2.3) in the sense of Proposition 2.1. Assume that the initial temperature satisfies the
assumptions in (2.4), that is,

θε(0)=θ0,δ ≥θ>0.

Then there exists a constant θ̃ >0 such that

θε(t,x)≥ θ̃ >0 (3.1)

for all t∈ [0,T ] and almost all x∈Ω.

Remark 3.1. We emphasize here that the constant θ̃ does not depend on the param-
eters ε>0 and δ>0, which is essential in the limit passage later.
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To prove Proposition 3.1, we need the following important lemmas.

Lemma 3.1 ([30]). Let Uk be a sequence satisfying

(i) 0≤U0≤C;
(ii) for some constants A≥1, 1<β1<β2 and C>0,

0≤Uk≤C
Ak

K
(Uβ1

k−1+U
β2

k−1).

Then there exists some K0 such that for every K>K0, the sequence Uk converges to 0
when k goes to infinity.

Lemma 3.2 ([13]). Let ρ be a non-negative function such that

0<M1≤
∫
Ω

ϱdx,

∫
Ω

ϱγdx≤M2, with γ>
6

5
.

Then there exists a positive constant C depending only on M1, M2 such that

∥v∥H1(Ω)≤C
(
∥∇v∥L2(Ω)+

∫
Ω

ϱ|v|dx
)
.

Our proof is in the spirit of the work of Mellet-Vasseur [29], where they first used
De Giorgi’s method to give a positive bound from below for the temperature.

Proof. (Proof of Proposition 3.1.) Taking

H(θ)=−
∫ θ

0

h(z)dz

with h(z)= 1
z+ω1{z+ω≤C} for some constant ω>0, we have

H(θε)=

{
−ln(θε+ω)+lnω, if θε+ω≤C,
−lnC+lnω, if θε+ω>C.

Thanks to (2.6), the weak solution (ρε,uε,θε) satisfies the following temperature in-
equality in the sense of distributions

∂t((δ+ρε)H(θε))+div(ρεuεH(θε))−△Kh(θε)−h′(θε)κ(θε)|∇θε|2

≤δθ3εh(θε)−(1−δ)Sε :∇uεh(θε), (3.2)

with H(θ)=−
∫ θ

0
h(z)dz and Kh(θ)=−

∫ θ

0
κ(z)h(z)dz.

Then, letting ϕ(θε)=H(θε)+lnC− lnω=
[
ln
(

C
θε+ω

)]
+

and integrating (3.2) over

(s,t)×Ω for any 0≤s≤ t≤T , we deduce∫
Ω

((δ+ρε)ϕ(θε))(t)dx−2(1−δ)
∫ t

s

∫
Ω

µ(θε)|D(uε)|2ϕ′(θε)dxdτ

+

∫ t

s

∫
Ω

ϕ′′(θε)κ(θε)|∇θε|2dxdτ

≤
∫
Ω

((δ+ρε)ϕ(θε))(s)dx−δ
∫ t

s

∫
Ω

θ3εϕ
′(θε)dxdτ, (3.3)
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where D(u)= 1
2

(
∇u+∇Tu

)
. Now, introducing a sequence of real numbers

Ck=e
−M [1−2−k] for all positive integers k, (3.4)

where M is a positive number to be chosen later. We define ϕk,ω as

ϕk,ω(θε)=

[
ln

(
Ck

θε+ω

)]
+

, (3.5)

then

ϕ′k,ω(θε)=− 1

θε+ω
1{θε+ω≤Ck}, (3.6)

ϕ′′k,ω(θε)≥
1

(θε+ω)2
1{θε+ω≤Ck}. (3.7)

Next define Uk,ω by

Uk,ω := supTk≤t≤T

(∫
Ω
(δ+ρε)ϕk,ω(θε)dx

)
+2(1−δ)

∫ T

Tk

∫
Ω

µ(θε)
θε+ω1{θε+ω≤Ck}|D(uε)|2dxdt

+

∫ T

Tk

∫
Ω

κ(θε)

(θε+ω)2
1{θε+ω≤Ck}|∇θε|

2dxdt, (3.8)

where {Tk} is a sequence of non-negative numbers. Note that Uk,ω depends on ε, δ and
ω, that is, Uk,ω =Uk,ε,δ,ω, and for convenience, we still write it as Uk,ω.

Assuming Tk=0 for all k∈N, from (3.3) and (3.8), we claim that

Uk,ω ≤
∫
Ω

(δ+ρ0,δ)ϕk,ω(θ0,δ)dx+δ

∫ T

Tk−1

∫
Ω

θ3ε
θε+ω

1{θε+ω≤Ck}dxdt. (3.9)

In fact, taking 0≤Tk−1≤s≤Tk≤ t≤T in (3.3) and using (3.6)-(3.7), one gets∫
Ω

((δ+ρε)ϕk,ω(θε))(t)dx+2(1−δ)
∫ t

Tk

∫
Ω

µ(θε)

θε+ω
1{θε+ω≤Ck}|D(uε)|2dxdτ

+

∫ t

Tk

∫
Ω

κ(θε)

(θε+ω)2
1{θε+ω≤Ck}|∇θε|

2dxdτ

≤
∫
Ω

((δ+ρε)ϕk,ω(θε))(s)dx+δ

∫ T

Tk−1

∫
Ω

θ3ε
θε+ω

1{θε+ω≤Ck}dxdτ. (3.10)

Taking the supremum over t∈ [Tk,T ] on both sides of (3.10), one deduces that

Uk,ω ≤
∫
Ω

((δ+ρε)ϕk,ω(θε))(s)dx+δ

∫ T

Tk−1

∫
Ω

θ3ε
θε+ω

1{θε+ω≤Ck}dxdt. (3.11)

If Tk=0 for all k∈N , then s=0 in (3.11), thus we get (3.9).
Next, we prove that the second term on the right-hand side of (3.9) can be controlled

by Uγ
k−1,ω for some γ >1. More precisely, we claim that

δ

∫ T

Tk−1

∫
Ω

θ3ε
θε+ω

1{θε+ω≤Ck}dxdt≤C
2kα

Mα
Uγ
k−1,ω, (3.12)

for some γ >1, where the constant C is independent of ε,δ>0.
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Indeed, if θε+ω≤Ck, we have

θ3ε
θε+ω

≤1, for anyω>0, (3.13)

by taking M large enough such that Ck is small enough, and

ϕk−1,ω(θε)=

[
ln

(
Ck−1

θε+ω

)]
+

≥ ln
Ck−1

Ck
,

which implies

1{θε+ω≤Ck}≤
[
ln
Ck−1

Ck

]−α

ϕk−1,ω(θε)
α, for anyα>0. (3.14)

Taking (3.13) and (3.14) into account, we deduce

δ

∫ T

Tk−1

∫
Ω

θ3ε
θε+ω

1{θε+ω≤Ck}dxdt

≤δ1−β

[
ln
Ck−1

Ck

]−α∫ T

Tk−1

∫
Ω

(δ+ρε)
βϕk−1,ω(θε)

αdxdt

≤Cδ1−β

[
ln
Ck−1

Ck

]−α

T 1/p′
|Ω|1/q

′
∥(δ+ρε)βϕk−1,ω(θε)

α∥Lp(Tk−1,T ;Lq(Ω)), (3.15)

where 1
p +

1
p′ =1 and 1

q +
1
q′ =1. For the last term in (3.15), we have

∥(δ+ρε)βϕk−1,ω(θε)
α∥Lp(Tk−1,T ;Lq(Ω))

=∥((δ+ρε)ϕk−1,ω(θε))
β/α

ϕk−1,ω(θε)
1−β/α∥αLpα(Tk−1,T ;Lqα(Ω))

≤∥((δ+ρε)ϕk−1,ω(θε))
β/α∥αL∞(Tk−1,T ;Lα/β(Ω))

∥ϕk−1,ω(θε)
1−β/α∥α

L
2

1−β/α (Tk−1,T ;L
6

1−β/α (Ω))

=∥(δ+ρε)ϕk−1,ω(θε)∥βL∞(Tk−1,T ;L1(Ω))∥ϕk−1,ω(θε)∥α−β
L2(Tk−1,T ;L6(Ω))

≤∥(δ+ρε)ϕk−1,ω(θε)∥βL∞(Tk−1,T ;L1(Ω))(
∥ρεϕk−1,ω(θε)∥L∞(Tk−1,T ;L1(Ω))+∥∇ϕk−1,ω(θε)∥L2((Tk−1,T )×Ω)

)α−β

≤CUβ
k−1,ω

(
Uk−1,ω+U

1/2
k−1,ω

)α−β

≤C
(
Uα
k−1,ω+U

α+β
2

k−1,ω

)
, (3.16)

where we used Lemma 3.2 in the third inequality from below, the growth restriction
imposed on κ(θ) (1.4) in the second inequality from below, and the coefficients p, q, α
and β satisfy

1

pα
=

1−β/α
2

,
1

qα
=
β

α
+

1−β/α
6

.

Substituting (3.16) into (3.15), we have

δ

∫ T

Tk−1

∫
Ω

θ3ε
θε+ω

1{θε+ω≤Ck}dxdt≤Cδ
1−β

[
ln
Ck−1

Ck

]−α(
Uα
k−1,ω+U

α+β
2

k−1,ω

)
. (3.17)
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Then, by (3.4), we have [
ln
Ck−1

Ck

]−α

=
2kα

Mα
. (3.18)

Meanwhile, we can choose β<1, α>1 such that

γ :=min

(
α+β

2
,α

)
>1, (3.19)

and

δ1−β ≤1. (3.20)

Combining (3.17)-(3.20) together, we obtain (3.12).

We are now ready to complete the proof of Proposition 3.1. By assumption θ0,δ ≥
θ>0, choosing M large enough such that e−M/2<θ, we have for any ω>0

ϕk,ω(θ0,δ)=

[
ln

(
e−M [1−2−k]

θ0,δ+ω

)]
+

=0. (3.21)

Substituting (3.12) and (3.21) into (3.9), we obtain

Uk,ω ≤C 2kα

Mα
Uγ
k−1,ω with γ>1. (3.22)

Thanks to Lemma 3.1, for M large enough (independently on ε, δ and ω), we have

lim
k→∞

Uk,ω =0, (3.23)

which, combined with the definition of Uk,ω (3.8) yields∫ T

0

∫
Ω

κ(θε)

∣∣∣∣∣∇
[
ln

e−M

θε+ω

]
+

∣∣∣∣∣
2

dxdt=0, (3.24)

and ∫
Ω

(δ+ρε)

[
ln

e−M

θε+ω

]
+

dx=0. (3.25)

By (1.4) and (3.24), we obtain[
ln

e−M

θε+ω

]
+

is constant inΩ for all t∈ [0,T ], (3.26)

and with help of (3.25), this implies[
ln

e−M

θε+ω

]
+

=0.

This yields

θε+ω≥e−M

for any ω>0, which completes our proof.
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3.2. Estimates independent of ε>0. By virtue of Proposition 3.1 and the
assumptions imposed on µ(θ) in Theorem 1.1, we can obtain a positive constant µ
independent of ε,δ>0 such that

µ(θε)≥µ>0. (3.27)

This, combined with the energy inequality (2.9), yields

∇uε is bounded inL
2((0,T )×Ω) (3.28)

by a positive constant independent of ε>0. Thanks to Poincaré’s inequality, we have

∥uε∥L2(0,T ;W 1,2
0 (Ω))≤C, (3.29)

where C is independent of ε>0. Thus, we are able to get the following uniform bounds
for (ρε,uε,θε) as in Section 2.

Proposition 3.2. For fixed δ>0, under the hypotheses of Theorem 1.1 and Proposi-
tion 2.1, we have

∥ρε∥L∞((0,T )×Ω)≤C, (3.30a)

∥uε∥L2(0,T ;W 1,2
0 (Ω))≤C, (3.30b)

∥θε∥L2(0,T ;W 1,2(Ω))≤C, (3.30c)

∥θε∥L3((0,T )×Ω)≤C, (3.30d)

∥√ρεuε∥L∞(0,T ;L2(Ω))≤C, (3.30e)

∥ρεθε∥L∞(0,T ;L1(Ω))≤C, (3.30f)

where all constants C are independent of ε>0.

Thanks to (3.30a)-(3.30f), we are able to derive the same compactness structure for
(ρε,uε,θε) as (ρn,un,θn). Thus, we can show the following proposition by passing to
the limits as ε→0+.

Proposition 3.3. For fixed δ>0, under the hypotheses of Theorem 1.1 and Proposi-
tion 2.1, the initial-boundary value problem (1.1)-(1.3) with the parameter δ>0 admits
an approximate solution (ρ,u,θ,P ), which is also the limit of the weak solution to (2.1)-
(2.3) when ε→0+, satisfying

(i) the density ρ≥0 satisfies

ρ∈L∞((0,T )×Ω)∩C([0,T ];Lp(Ω)), 1≤p<∞,

the velocity u belongs to the space L2(0,T ;W 1,2
0 (Ω)), and (ρ,u) is a renormalized

solution of the continuity Equation (1.1)1 in the sense of distributions;

(ii) the momentum Equation (1.1)2 and the incompressibility condition (1.1)4 hold in
D′((0,T )×Ω). Moreover, ρu∈C([0,T ];L2

weak(Ω)) satisfies the initial condition
(2.2);

(iii) the temperature θ≥0 satisfies

θ∈L2(0,T ;W 1,2(Ω))∩L3((0,T )×Ω), ρθ∈L∞(0,T ;L1(Ω)),

and the renormalized temperature inequality holds in the sense of distributions,
that is,∫ T

0

∫
Ω

(δ+ρ)H(θ)∂tφdxdt+

∫ T

0

∫
Ω

(
ρH(θ)u ·∇φ+Kh(θ)△φ−δθ3h(θ)φ

)
dxdt
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≤
∫ T

0

∫
Ω

(
(δ−1)S :∇uh(θ)+h′(θ)κ(θ)|∇θ|2

)
φdxdt−

∫
Ω

(δ+ρ0,δ)H(θ0,δ)φ(0)dx, (3.31)

for any φ∈C∞
c ([0,T ]×Ω) satisfying

φ≥0, φ(T, ·)=0,∇φ ·n|∂Ω=0,

where H(θ)=
∫ θ

0
h(z)dz and Kh(θ)=

∫ θ

0
κ(z)h(z)dz, with non-increasing h∈

C2([0,∞)) satisfying (2.7) and (2.8);

(iv) the energy inequality holds, that is, for a.a. t∈ (0,T ),∫
Ω

(
1

2
ρ|u|2+(δ+ρ)θ

)
(t)dx+δ

∫ t

0

∫
Ω

S :∇u+θ3dxds

≤
∫
Ω

1

2

|m0,δ|2

ρ0,δ
+(δ+ρ0,δ)θ0,δdx. (3.32)

4. Limit passage for δ tends to zero
The final step is to recover a weak solution to the initial-boundary value problem

(1.1)-(1.3) by passing to the limit as δ→0+. In this section, we denote by (ρδ,uδ,θδ)
the weak solutions constructed in Proposition 3.3. Note that the positive below bound
of the temperature in Proposition 3.1 does not depend on δ>0 , so we have

µ(θδ)≥µ>0 (4.1)

for some positive constant µ independent of δ>0 in this whole section.

4.1. Estimates independent of δ>0. Observe that estimates for ρδ are similar
as in the previous sections, and estimates for uδ can be deduced after some calculations,
thus our main task in this section is to deal with terms related to θδ. For convenience,
in the rest of this section, we denote C a generic positive constant independent of δ>0.

First, by (2.5) and the energy inequality (3.32), we have the following estimates

∥√ρδuδ∥L∞(0,T ;L2(Ω))≤C, (4.2a)

∥(δ+ρδ)θδ∥L∞(0,T ;L1(Ω))≤C, (4.2b)

δ

∫ T

0

∫
Ω

Sδ :∇uδdxdt≤C, (4.2c)

δ

∫ T

0

∫
Ω

θ3δdxdt≤C. (4.2d)

Then, taking φ(t,x)=ψ(t) satisfying 0≤ψ≤1, ψ∈C∞
c (0,T ) and h(θ)= 1

(1+θ)l
with

0<l<1 in (3.31), we have∫ T

0

∫
Ω

(
1−δ

(1+θδ)l
Sδ :∇uδ+ l

κ(θδ)

(1+θδ)l+1
|∇θδ|2

)
ψdxdt

≤δ
∫ T

0

∫
Ω

θ3δ
(1+θδ)l

ψdxdt−
∫ T

0

∫
Ω

(δ+ρδ)H(θδ)∂tψdxdt, (4.3)

with H(θ)=
∫ θ

0
1

(1+z)l
dz, which, combined with estimates (4.2b)-(4.2d) implies∫ T

0

∫
Ω

(
Sδ :∇uδ

(1+θδ)l
+ l

κ(θδ)

(1+θδ)l+1
|∇θδ|2

)
ψdxdt≤C (4.4)
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for some constant C independent of δ>0. Letting l→0 in (4.4), we obtain∫ T

0

∫
Ω

Sδ :∇uδdxdt≤C. (4.5)

This, with help of (4.1) and Poincaré’s inequality, yields

∥uδ∥L2(0,T ;W 1,2
0 (Ω))≤C. (4.6)

In addition, for fixed 0<l<1, by virtue of (4.4) and the growth restriction imposed on
κ(θ) (1.4), we obtain

∥∇θ
3−l
2

δ ∥L2((0,T )×Ω)≤C(l), (4.7)

together with

∥∇θδ∥L2((0,T )×Ω)≤C(l), (4.8)

with the constant C(l) depending on l∈ (0,1). Thanks to Lemma 3.2, estimates (4.2b)
and (4.8) yield

∥θδ∥L2(0,T ;W 1,2(Ω))≤C(l). (4.9)

Bootstraping (4.7) and (4.9), we deduce

∥θ
3−l
2

δ ∥L2(0,T ;W 1,2(Ω))≤C(l). (4.10)

Combining (4.2b) with (4.10) and thanks to the interpolation inequality, we deduce for
a certain p>1 and a small positive number ω

θ3δ is bounded inL
p ({ρδ(t,x)≥ω>0}) (4.11)

by a positive constant independent of δ>0.
Putting all estimates independent of δ>0 together, we have the following result.

Proposition 4.1. Under the hypotheses of Theorem 1.1 and Proposition 2.1, we have

∥ρδ∥L∞((0,T )×Ω)≤C, (4.12a)

∥uδ∥L2(0,T ;W 1,2
0 (Ω))≤C, (4.12b)

∥θ
3−l
2

δ ∥L2(0,T ;W 1,2(Ω))≤C(l), with l∈ (0,1], (4.12c)

∥θ3δ∥Lp({ρδ(t,x)≥ω>0})≤C, for some p>1. (4.12d)

By virtue of (4.12a) and (4.12b), we can obtain the same compactness result for
(ρδ,uδ) as (ρn,un). Thus, in the rest of this section, we focus our attention on the
compactness of θδ.

4.2. Strong convergence of the approximate temperatures. Similarly as
the process in obtaining the strong convergence of θn, the main difficulty is to prove

(δ+ρδ)θδ →ρθ inL2(0,T ;H−1(Ω)), as δ→0. (4.13)

In order to obtain (4.13), by virtue of Lemma 2.2 and estimates (4.12a)-(4.12d), it
suffices to prove that

θδ is bounded inL
3 ({ρδ(x,t)<ω}) (4.14)
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by a positive constant independent of δ>0, with ω being a sufficiently small positive
number.

As in [13,14], for each t∈ (0,T ), one can solve the Neumann problem
△ηδ(t)=B(ρδ(t))−

1

|Ω|

∫
Ω

B(ρδ(t))dx inΩ,

∇ηδ ·n=0 on ∂Ω,∫
Ω

ηδ(t)dx=0,

with B∈C∞(R) non-increasing and satisfying

B(z)=

{
0, if z≤ω,
−1, if z≥2ω.

Now the estimate (4.14) can be achieved by taking

φ(t,x)=ψ(t)(η(t,x)−η), with η= inf
t∈[0,T ],x∈Ω

η(t,x),

where ψ∈C∞
c (0,T )

0≤ψ≤1, ψ is non-decreasing on (0,a] and non-increasing on [a,T ),

as a test function in (3.31). Since this process is similar to that in [13,14], we omit the
details here.

Combining (4.12c) and (4.13), we have

θδ →θ inL2({ρ>0}). (4.15)

Taking (4.15) into account, we can perform the limit δ→0+ as in Section 2. For con-
venience, we only give the details of the limit passage in the renormalized temperature
inequality.

4.3. Limit in the renormalized temperature inequality. First, for fixed
h, passing to the limit δ→0+ in the same way as in Section 2 for the renormalized
temperature inequality (3.31), we obtain∫ T

0

∫
Ω

(
ρH(θ̄)∂tφ+ρuH(θ̄) ·∇φ+Kh(θ)△φ

)
dxdt

≤−
∫ T

0

∫
Ω

h(θ̄)S :∇uφdxdt−
∫
Ω

ρ0H(θ0)φ(0)dx, (4.16)

where

ρKh(θ)=ρKh(θ̄),

and

ρS=ρµ(θ̄)(∇u+∇Tu).

Next, taking

h(θ)=
1

(1+θ)l
, 0<l<1
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in (4.16), letting l→0 and using the monotone convergence theorem, we have∫ T

0

∫
Ω

(
ρθ̄∂tφ+ρuθ̄ ·∇φ+K(θ)△φ

)
dxdt≤−

∫ T

0

∫
Ω

S :∇uφdxdt−
∫
Ω

ρ0θ0φ(0)dx,

where

ρK(θ)=ρK(θ̄),

and

ρS=ρµ(θ̄)(∇u+∇Tu).

Finally, denote

θ=K−1
(
K(θ)

)
.

We observe the new function θ satisfies

ρθ̄=ρθ a.e. in (0,T )×Ω.

Therefore, we have∫ T

0

∫
Ω

(ρθ∂tφ+ρuθ ·∇φ+K(θ)△φ)dxdt≤−
∫ T

0

∫
Ω

S :∇uφdxdt−
∫
Ω

ρ0θ0φ(0)dx,

with

ρS=ρµ(θ)(∇u+∇Tu),

which is exactly the temperature inequality in Definition 1.1.

Acknowledgments. The author would like to thank Professor Yi Wang and
Professor Cheng Yu for the valuable comments and the helpful suggestions on the
manuscript. This work was supported by the National Natural Science Foundation
of China (Grant No. 12101154), and by the Natural Science Foundation of Heilongjiang
Province (Grant No. LH2022A005).

REFERENCES

[1] S. Antontsev and A. Kazhikhov, Mathematical questions of the dynamics of nonhomogeneous fluids,
Lecture notes, Novosibirsk State University, Novosibirsk, 121, 1973. 1

[2] S.N. Antontsev, A.V. Kazhiktov, and V.N. Monakhov, Boundary Value Problems in Mechanics of
Nonhomogeneous Fluids, North-Holland Publishing Co., 18, 1989. 1

[3] E. Baer and A. Vasseur, A bound from below on the temperature for the Navier-Stokes-Fourier
system, SIAM J. Math. Anal., 45:2046–2063, 2013. 1

[4] R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics, Wiley-Interscience, New York-
London-Sydney, 1975. 1, 1.3
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[31] J. Necas and T. Roub́ıček, Buoyancy-driven viscous flow with L1-data, Nonlinear Anal., 46:737–
755, 2001. 1

[32] J. Simon, Non-homogeneous viscous incompressible fluids: existence of velocity, density, and
pressure, SIAM J. Math. Anal., 21:1093–1117, 1990. 1

[33] G. Wang and B. Zuo, Global existence of weak solutions to the compressible Navier-Stokes equa-
tions with temperature-depending viscosity coefficients, SIAM J. Math. Anal., 54:3724–3756,
2022. 1, 1, 1

[34] H. Yu and P. Zhang, Global strong solutions to the incompressible Navier-Stokes equations with
density-dependent viscosity, J. Math. Anal. Appl., 444:690–699, 2016. 1

[35] J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-
dependent viscosity coefficient, J. Differ. Equ., 259:1722–1742, 2015. 1

https://link.springer.com/article/10.1007/PL00000952
https://link.springer.com/article/10.1007/s10958-005-0378-6
https://www.mathnet.ru/eng/mat/v4/i6/p23
https://link.springer.com/article/10.1007/s002050050025
https://link.springer.com/article/10.1007/BF01393835
https://academic.oup.com/book/5591?login=true
https://academic.oup.com/book/5591?login=true
http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=2510&year=2004&volume=53
https://doi.org/10.1155/DENM/2006/90616
https://link.springer.com/book/10.1007/978-3-319-63781-5
https://link.springer.com/article/10.1007/PL00000976
https://link.springer.com/article/10.1007/s11401-009-0027-3
https://link.springer.com/article/10.1007/s00220-008-0497-2
https://doi.org/10.1016/j.jde.2012.08.029
https://doi.org/10.1137/120894865
https://www.sciencedirect.com/science/article/pii/S0022039615001382
https://mathscinet.ams.org/mathscinet/article?mr=430562
https://mathscinet.ams.org/mathscinet/article?mr=430562
https://doi.org/10.1137/S0036141004442197
https://bookstore.ams.org/mmono-23
https://link.springer.com/article/10.1007/BF02547354
https://link.springer.com/article/10.1007/BF02547354
https://doi.org/10.1080/00107514.2013.869264
https://iopscience.iop.org/article/10.1088/1361-6544/aab31f
https://link.springer.com/article/10.1007/s00605-008-0021-y
https://doi.org/10.1016/j.jmaa.2009.01.073
https://doi.org/10.1016/S0362-546X(01)00676-9
https://doi.org/10.1016/S0362-546X(01)00676-9
https://doi.org/10.1137/0521061
https://epubs.siam.org/doi/10.1137/21M1405915
https://epubs.siam.org/doi/10.1137/21M1405915
https://doi.org/10.1016/j.jmaa.2016.06.066
https://ui.adsabs.harvard.edu/link_gateway/2015JDE...259.1722Z/doi:10.1016/j.jde.2015.03.011

