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A QUADRATIC SPLINE PROJECTION METHOD FOR COMPUTING
STATIONARY DENSITIES OF RANDOM MAPS∗

AZZAH ALSHEKHI† , JIU DING‡ , AND NOAH RHEE§

Abstract. We propose a quadratic spline projection method that computes stationary densities
of random maps with position-dependent probabilities. Using a key variation inequality for the cor-
responding Markov operator, we prove the norm convergence of the numerical scheme for a family of
random maps consisting of the Lasota-Yorke class of interval maps. The numerical experimental results
show that the new method improves the L1-norm errors and increases the convergence rate greatly,
compared with the previous operator-approximation-based numerical methods for random maps.
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1. Introduction

Random maps occur in many problems of physical sciences to describe the dynam-
ical system that is governed by several transformations of a phase space. The dynamics
of the system is via the iterative process, at each step of which a transformation among
them is chosen with its given probability. Such probabilities, whose sum is equal to one
naturally, may depend on the location of the iterates. In the ergodic theory of random
maps, one is interested in the eventual behavior of the iteration with the probability
allocation, that is, the statistical distribution of the iterates for almost all initial points.

Dynamical systems of individual transformations have been extensively studied in
both deterministic and statistical senses. The study of the deterministic behavior of
the iterates is often related to the concept of chaos that is featured by unpredictability
or sensitive dependence on initial conditions, and the investigation of the statistical
behavior of the chaotic iterates is usually done with the help of the Frobenius-Perron
operator associated with the transformation. A fixed point of the operator, which is
a density function, determines the statistical property of the iterates [12]. In the past
almost half a century since the publication of the Lasota-Yorke paper [13] on interval
maps, various existence results of invariant measures for different classes of one or
multi-dimensional transformations have appeared, and since Li’s pioneering paper [14]
that solved Ulam’s conjecture [15] for the Lasota-Yorke class of interval maps, the
numerical analysis of Frobenius-Perron operators has led to the construction of higher
order computational methods for invariant measures and other related quantities.

On the other hand, the eventual statistical behavior of random maps is deter-
mined by the corresponding Markov operator, which can be expressed in terms of the
Frobenius-Perron operators associated with the participating transformations respec-
tively. The operator is so named since it is a positive operator and maps density
functions to density functions. A density function that is a fixed point of this operator
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is referred to as a stationary density and defines an absolutely continuous probability
measure, which determines the statistical distribution of the iterates from the random
maps for almost all initial points.

There has been increased research on the existence of such absolutely continuous
probability measures of random maps [9]. Designing and analyzing computational meth-
ods for random maps have become a recent research topic because of its importance in
applied areas. One family of the numerical methods is based on the maximum entropy
principle [10], with [3] the first paper for a single deterministic map; see [4] for a survey
of maximum entropy methods for the density function recovery in dynamical systems.

Following the idea of Ulam’s method [15] and Li’s solution to Ulam’s conjecture [14],
another numerical approach is to use finite dimensional operators to approximate the
infinite dimensional Frobenius-Perron operator or more general Markov operator, as a
basis of developing efficient numerical schemes. The direct numerical approach for the
computation of stationary densities is along Li’s direction of employing piecewise poly-
nomials of higher order in the approximation, so that the original fixed point equation
is reduced to a finite system of linear algebraic equations. We refer the reader to the
monograph [7] for a general theory of numerical analysis of Frobenius-Perron operators
and more general Markov operators.

Ulam’s original scheme is to approximate the unknown density function by piece-
wise constant ones. To increase the convergence rate of Ulam’s method, Ding and
Li [5] proposed a piecewise linear numerical method to compute stationary densities of
Frobenius-Perron operators, based on the idea of integral and positivity preserving ap-
proximations of integrable functions. The theoretical study [6] of the resulting Markov
finite approximations indicates that the piecewise linear method has the convergence
rate of O(1/n) under the BV-norm for the Lasota-Yorke class of piecewise monotonic
maps, as compared to the order of O(lnn/n) under the weaker L1-norm for Ulam’s
method.

Markov finite approximations may not achieve as good error bounds as Galerkin
projection methods in general, because of the structure-preserving restriction of the
former and the least squares property of the latter for square integrable functions. Al-
though Ulam’s method is both a Markov finite approximation method and Galerkin
projection method that projects integrable functions onto the subspace of piecewise
constant functions, higher order Galerkin projection methods fail to be of Markov fi-
nite approximations. Such numerical approaches have been extended to approximate
stationary densities of interval maps and random maps. A piecewise quadratic approx-
imation method was proposed and analyzed for interval maps in [16], and a piecewise
linear method has been proposed for random maps in [11].

Here we develop a numerical analysis for a quadratic spline projection method
applied to computing a stationary density of Markov operators associated with given
random maps with position dependent probabilities. For the convergence proof of the
method, we use the same approach as in [1], which avoids complicated technical esti-
mates of the upper bound constants for the L1-norm and the variation norm.

In the next section we give useful properties of random maps and the corresponding
Markov operators, and Section 3 is devoted to the construction of the quadratic spline
projection method. In Section 4 we prove the convergence theorem for a class of random
maps consisting of the Lasota-Yorke interval maps, after establishing the consistency
and stability results of the approximation sequence. Numerical experiments of this
method will be given in Section 5, and we conclude in Section 6.
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2. The Markov operator for random maps
We recall the definition of random maps. Let S1,. ..,Sk be k Borel measurable

maps from [0,1] into itself, and let p1,. ..,pk be k positive functions whose sum equals
1 identically on [0,1]. We call τ ≡{S1,. ..,Sk;p1,. ..,pk} a random map with position
dependent probabilities. The dynamics of a random map is the iterative process: Given
an initial point x0∈ [0,1], the (n+1)-th iterate is given by

xn+1=Sin(xn), n=0,1,. ..,

where at step n, the map Sin is chosen with probability pin(xn) at xn.
The iteration of random maps from the statistical point of view can be studied via

its corresponding Markov operator, based on the concept of Frobenius-Perron operators
with respect to the individual measurable maps [7, 12]. For any nonsingular Borel
measurable map S : [0,1]→ [0,1], which means that the inverse image S−1(B) of a Borel
measurable subset B of [0,1] is a Borel set and m(S−1(B))=0 whenever m(B)=0
with m denoting the Lebesgue measure, the corresponding Frobenius-Perron operator
PS :L1(0,1)→L1(0,1) is defined by∫

B

PSfdm=

∫
S−1(B)

fdm, ∀Borel measurable setsB⊂ [0,1], (2.1)

where L1(0,1) is the space of all Lebesgue integrable functions on [0,1] with the L1-norm

∥f∥=
∫ 1

0
|f(x)| dx. This operator is well-defined from the Radon-Nikodym theorem by

the non-singularity assumption of S [7,12]. The Frobenius-Perron operator is a Markov
operator, in other words, PS maps nonnegative functions to nonnegative functions and
preserves their L1-norm.

Letting B=[0,x] and taking derivative on the both sides of (2.1) with respect to x,
we can rewrite the above implicit definition of PS explicitly as

PSf(x)=
d

dx

∫
S−1([0,x])

f(t)dt, ∀x∈ [0,1].

A nonnegative function f in L1(0,1) is called a density if ∥f∥=1. If f∗ is a density
and fixed point of PS , then the probability measure µf∗ , defined by µf∗(B)=

∫
B
f∗dm

for all Borel measurable sets B⊂ [0,1], is absolutely continuous with respect to the
Lebesgue measure and is an invariant measure for S in the sense that

µf∗(S−1(B))=µf∗(B) (2.2)

for all Borel measurable sets B⊂ [0,1]. Such a measure gives the statistical distribution
of the sequence of iterates xn+1=S(xn) for almost all initial points x0 with respect to
the invariant measure [7, 12].

We can extend the concept of Frobenius-Perron operators with respect to one
map to a Markov operator associated with a random map. For a random map
τ ={S1,. ..,Sk;p1,. ..,pk}, the corresponding operator, which is called the Foias oper-
ator in [12], Pτ :L

1(0,1)→L1(0,1) is defined as

Pτf(x)=

k∑
i=1

PSi
(pif)(x), ∀f ∈L1(0,1). (2.3)

The following shows that the Foias operator is a Markov operator.



522 A QUADRATIC SPLINE PROJECTION METHOD FOR RANDOM MAPS

Lemma 2.1. The Foias operator Pτ is a Markov operator.

Proof. Let f ∈L1(0,1) and f ≥0. Since pi≥0, we have pif ≥0 for every i. So

PSi
(pif)≥0 since PSi

is a positive operator. Thus, Pτf =
∑k

i=1PSi
(pif)≥0. Then,

from the expression (2.3) of Pτ , since PSi
preserves integrals and

∑k
i=1pi=1,

∥Pτf∥=
∫ 1

0

Pτfdm=

∫ 1

0

k∑
i=1

PSi
(pif)dm=

k∑
i=1

∫ 1

0

PSi
(pif)dm

=

k∑
i=1

∫ 1

0

pifdm=

∫ 1

0

(
k∑

i=1

pi

)
fdm=

∫ 1

0

fdm=∥f∥.

Since Pτ is a Markov operator, ∥Pτf∥≤∥f∥ for f ∈L1(0,1) [12]. It follows that

∥Pτ∥=1. (2.4)

Another important property of the Markov operator is that if f is a fixed point of Pτ ,
then its positive and negative parts f+ and f−, defined as

f+(x)≡max{f(x),0}, f−(x)≡max{−f(x),0}, x∈ [0,1],

are also fixed points of Pτ . This property will be used for the convergence analysis of
our numerical method.

A fixed point f∗ of Pτ that is also a density is called a stationary density of Pτ ,
and it defines the absolutely continuous probability measure µf∗(B)=

∫
B
f∗dm, which

is the invariant measure of τ in the sense that

k∑
i=1

∫
S−1
i (B)

pi(x)dµf∗(x)=µf∗(B) (2.5)

for every Borel subset B of [0,1]. As a special case, when k=1 so that the random map
consists of just one single map, the invariance (2.5) is reduced to (2.2).

In particular, if each probability function pi is a constant, then

Pτf(x)=

k∑
i=1

piPSi
f(x),

in other words, the corresponding Markov operator is just a convex combination of the
Frobenius-Perron operators PS1

,. ..,PSk
with the coefficients p1,. ..,pk.

The next section introduces a quadratic spline projection method to approximate
stationary densities for random maps.

3. Quadratic spline projections for stationary densities
In this section, we develop the quadratic spline projection method for approx-

imating a stationary density of a random map. We divide the interval [0,1] into n
equal subintervals Ii=[xi,xi+1], i=0,1,. ..,n−1 with step h=xi+1−xi=

1
n . Let S

2
n[0,1]

be the corresponding (n+2)-dimensional space of continuously differentiable piecewise
quadratic functions on [0,1]. Then its canonical basis is made of the quadratic basic
splines

ϕi(x) = q

(
x−xi

h

)
, i=−2,−1,. ..,n−1, for x∈ [0,1],
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where

q(x) =


1
2x

2, 0≤x<1,
3
4 −
(
x− 3

2

)2
, 1≤x<2,

1
2 (x−3)

2
, 2≤x≤3,

0, x /∈ [0,3].

(3.1)

We shall use the following important fact of the spline functions:

n−1∑
i=−2

ϕi(x)=1, ∀x∈ [0,1]. (3.2)

For any f ∈L1(0,1), we define Qnf ∈S2
n[0,1] to be such that

⟨Qnf,ϕi⟩= ⟨f,ϕi⟩, ∀ i=−2,−1,. ..,n−1, (3.3)

where ⟨g,ϕi⟩=
∫ 1

0
g(x)ϕi(x)dx for g∈L1(0,1). We write Qnf =

∑n−1
j=−2 cjϕj . Then the

coefficients c−2,c−1,. ..,cn−1 can be determined uniquely by the n+2 linear equations

n−1∑
j=−2

⟨ϕi,ϕj⟩cj = ⟨f,ϕi⟩, ∀ i=−2,−1,. ..,n−1. (3.4)

Let Bn=[⟨ϕi,ϕj⟩] for −2≤ i,j≤n−1, c=(c−2,c−1,. ..,cn−1)
T , and b=

(b−2,b−1,. ..,bn−1)
T with each bi= ⟨f,ϕi⟩. Using (3.1), we rewrite the system

(3.4) as

B̂nc= b̂, (3.5)

where

B̂n=
120

h
Bn and b̂=

120

h
b. (3.6)

A simple computation gives

B̂n=



6 13 1
13 60 26 1
1 26 66 26 1
. . .

. . .
. . .

. . .
. . .

1 26 66 26 1
1 26 60 13

1 13 6


∈R(n+2)×(n+2).

Note that B̂n is a symmetric band-matrix with band-width two.
If Qn is restricted to the subspace L2(0,1) of L1(0,1), then Qn :L

2(0,1)→S2
n[0,1]

is the (orthogonal) projection from L2(0,1) onto S2
n[0,1]. So Qng is the least squares

approximation of g under the L2-norm:

∥g−Qng∥2=min


∥∥∥∥∥∥g−

n−1∑
j=−2

ajϕj

∥∥∥∥∥∥
2

:∀aj ∈R

,



524 A QUADRATIC SPLINE PROJECTION METHOD FOR RANDOM MAPS

where g∈L2(0,1) means that ∥g∥22≡
∫ 1

0
|g(x)|2dx is finite.

Note that a stationary density f∗ fulfills the following equation

Pτf−f =0, f ∈L1(0,1),

which will be modified to be valid only on the finite dimensional subspace S2
n[0,1] via

the Galerkin projection principle. Thus, the above equation becomes

⟨Pτfn−fn,ϕi⟩=0, i=−2,−1,. ..,n−1; fn∈S2
n[0,1]. (3.7)

Let fn=
∑n−1

j=−2djϕj . Then the above system can be written as

n−1∑
j=−2

⟨Pτϕj−ϕj ,ϕi⟩dj =0, i=−2,−1,. ..,n−1,

or in the matrix-vector form,

(An−Bn)d=0, (3.8)

where An=[aij ] with aij = ⟨Pτϕj ,ϕi⟩ for −2≤ i,j≤n−1, and d=(d−2,d−1,. ..,dn−1)
T .

We need to prove that there exists a nonzero solution fn=
∑n−1

j=−2djϕj of (3.7) in

S2
n[0,1], and we do so by proving that (3.8) has a nonzero vector d as a solution.

Lemma 3.1. There is a nonzero function fn∈S2
n[0,1] that solves the equation (3.7).

Proof. Since
∑n−1

i=−2ϕi=1 and Pτ is a Markov operator,

n−1∑
i=−2

(aij−bij)=

n−1∑
i=−2

⟨ϕi,Pτϕj−ϕj⟩=

〈
n−1∑
i=−2

ϕi,Pτϕj−ϕj

〉
= ⟨1,Pτϕj−ϕj⟩

= ⟨1,Pτϕj⟩−⟨1,ϕj⟩= ⟨1,ϕj⟩−⟨1,ϕj⟩=0, ∀ j=−2,−1,. ..,n−1.

It follows that An−Bn is singular. So there is a nonzero vector d=(d−2,d−1,. ..,dn−1)
T

that satisfies (3.8), and hence a nonzero function fn=
∑n−1

j=−2djϕj that solves (3.7).

From the definition of Qn (see (3.3)), since fn∈S2
n[0,1] solves (3.7),

⟨QnPτfn,ϕi⟩= ⟨Pτfn,ϕi⟩= ⟨fn,ϕi⟩, i=−2,−1,. ..,n−1.

Hence, for each n, we have

QnPτfn=fn. (3.9)

Note that the entries aij can be computed by

⟨Pτϕj ,ϕi⟩=
∫ 1

0

Pτϕj(x)ϕi(x) dx=

∫ 1

0

k∑
l=1

PSl
(pl(x)ϕj(x))ϕi(x) dx

=

k∑
l=1

∫ 1

0

PSl
(pl(x)ϕj(x))ϕi(x) dx=

k∑
l=1

∫ 1

0

pl(x)ϕj(x)ϕi(Sl(x)) dx

since
∫ 1

0
PSl

f(x)g(x) dx=
∫ 1

0
f(x)g(Sl(x))dx [12] for bounded measurable functions g.
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The quadratic spline projection algorithm for random maps can be summarized as
follows: For a chosen positive integer n, we find a nonzero vector d satisfying (An−
Bn)d=0 and let fn=

∑n−1
j=−2djϕj . Finally, after normalizing fn so that ∥fn∥=1, the

quadratic spline function fn is taken as an approximation to f∗. The convergence
of {fn} to f∗ when S1,. ..,Sk belong to the Lasota-Yorke class of piecewise C2 and
stretching maps will be proven in the following section.

4. Convergence analysis
To prove the norm convergence of the sequence {fn} to the stationary density

f∗ as n→∞, we need to study the sequence of projection operators {Qn}. We first
establish that the matrix 1-norms of the inverses of B̂n (see (3.6)) are uniformly bounded.
Here the vector 1-norm is ∥v∥≡

∑r
i=1 |vi| for any v∈Rr, and the matrix 1-norm is the

operator norm induced by the vector 1-norm.
We used MATLAB to get the following results (to the accuracy shown) for ∥B̂−1

n ∥:

∥B̂−1
16 ∥=0.534554,

∥B̂−1
32 ∥=0.534552,

∥B̂−1
64 ∥=0.534552,

∥B̂−1
128∥=0.534552.

Hence,

∥B̂−1
n ∥≤0.54 for all n≥16. (4.1)

Before showing the consistency of the sequence {Qn} (by consistency we mean
Lemma 4.1 part (ii)), we observe that ∥ϕ−2∥=∥ϕn−1∥=h/6, ∥ϕ−1∥=∥ϕn−2∥=5h/6,
and ∥ϕi∥=h with i=0,1,. ..,n−3. Now we have the following lemma.

Lemma 4.1. The operator sequence {Qn} satisfies the following properties:

(i) ∥Qn∥≤65 for all n≥16.

(ii) limn→∞∥Qnf−f∥=0 for any f ∈L1(0,1).

Proof. (i) First, using (3.2), we have

∥b∥=
n−1∑
i=−2

|⟨f,ϕi⟩|≤
n−1∑
i=−2

⟨|f |,ϕi⟩=

〈
|f |,

n−1∑
i=−2

ϕi

〉
= ⟨|f |,1⟩=∥f∥. (4.2)

Since by (3.6), Bn=(h/120)B̂n. So (4.1) gives

∥B−1
n ∥= 120

h
∥B̂−1

n ∥≤ 120

h
·0.54≤ 65

h
. (4.3)

It follows from the fact ∥ϕi∥≤h for all i, (3.5), (3.6), (4.2) and (4.3) that

∥Qnf∥=

∥∥∥∥∥
n−1∑
i=−2

ciϕi

∥∥∥∥∥≤
n−1∑
i=−2

|ci|∥ϕi∥≤h

n−1∑
i=−2

|ci|

=h∥c∥≤h∥B̂−1
n ∥∥b̂∥≤h

h

120
∥B−1

n ∥120
h

∥b∥

=h∥B−1
n ∥∥b∥≤h

65

h
∥f∥=65∥f∥.
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(ii) Let f ∈L1(0,1) and ϵ>0 be given. Since C3[0,1] is dense in L1(0,1), there
exists g∈C3[0,1] such that

∥g−f∥≤ ϵ

132
.

Let {0=z0,z1,z2,. ..,zn,zn+1=1} be such that zi=
xi−1+xi

2 for i=1,. ..,n. Let sn∈
S2
n[0,1] be defined by

sn(zi)=g(zi), i=0,1,. ..,n.

Then by [8]

max
x∈[0,1]

|g(x)−sn(x)| ≤
1

24n3
max
x∈[0,1]

∣∣∣g′′′
(x)
∣∣∣ .

Note that, since sn,g, and Qng∈L2(0,1), using Hölder’s inequality and the fact that
Qng is the least squares approximation to g from S2

n[0,1] we get,

∥Qng−g∥≤∥Qng−g∥2 ≤ ∥sn−g∥2

≤ max
x∈[0,1]

|g(x)−sn(x)| ≤
1

24n3
max
x∈[0,1]

|g
′′′
(x)|.

So if n is big enough, then ∥Qng−g∥ < ϵ
2 . Thus, if n is big enough, we have

∥Qnf−f∥≤∥Qnf−Qng∥+∥Qng−g∥+∥g−f∥
≤∥Qn∥∥f−g∥+∥Qng−g∥+∥g−f∥
=(∥Qn∥+1)∥f−g∥+∥Qng−g∥
≤66∥f−g∥+∥Qng−g∥

<
66ϵ

132
+

ϵ

2
= ϵ.

The following lemma was proven in Lemma 4.4 of [16].

Lemma 4.2. For any f ∈L1(0,1),

1∨
0

Qnf ≤
n−1∑
i=−1

|ci−ci−1|,

where Qnf =
∑n−1

j=−2 cjϕj.

Our next goal is to find another upper bound of
∨1

0Qnf by finding an upper bound

of
∑n−1

i=−1 |ci−ci−1| in terms of
∨1

0f . It was shown in [16] that B̃nc̃= b̃, where

B̃n=



17 22 1
18 65 26 1
1 26 66 26 1
. . .

. . .
. . .

. . .
. . .

1 26 66 26 1
1 26 65 18

1 22 17


∈R(n+1)×(n+1),
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b̃=



b̂−1−5b̂−2

b̂0− b̂−1− b̂−2

b̂1− b̂0
...

b̂n−3− b̂n−4

b̂n−1+ b̂n−2− b̂n−3

5b̂n−1− b̂n−2


and c̃=(c−1−c−2,c0−c−1,. ..,cn−1−cn−2)

T ∈Rn+1. Thus, c̃= B̃−1
n b̃ implies that

n−1∑
i=−1

|ci−ci−1|=∥c̃∥≤∥B̃−1
n ∥∥b̃∥.

MATLAB again gives the following results (to the accuracy shown):

∥B̃−1
16 ∥=0.159835,

∥B̃−1
32 ∥=0.159834,

∥B̃−1
64 ∥=0.159834,

∥B̃−1
128∥=0.159834.

Hence ∥B̃−1
n ∥≤0.16 for all n≥16, from which for n≥16,

n−1∑
i=−1

|ci−ci−1|≤0.16∥b̃∥. (4.4)

The following inequality was shown in [16]. That is, for any function f ∈L1(0,1) of
bounded variation,

∥b̃∥≤356

1∨
0

f. (4.5)

Hence, using Lemma 4.2, (4.4), and (4.5), we have

1∨
0

Qnf ≤
n−1∑
i=−1

|ci−ci−1|≤0.16∥b̃∥

≤0.16 ·356
1∨
0

f ≤57

1∨
0

f.

We summarize the above result in the following lemma, which shows the stability
of the sequence {Qn}.

Lemma 4.3. Let f ∈L1(0,1) be of bounded variation. Then for all n≥16,

1∨
0

Qnf ≤57

1∨
0

f.

We are ready to prove the convergence of the quadratic spline projection method
for a family of random maps consisting of the interval maps that satisfy the condition of
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the Lasota-Yorke theorem in [13]. Such a condition leads to a key variation inequality
from the analysis of [11], which guarantees the existence of a stationary density of Pτ .
We show that the Lasota-Yorke type of inequality is also sufficient for the convergence
analysis of the numerical method.

Let τ ={S1,. ..,Sk;p1,. ..,pk} be a random map such that each map Si is piecewise
C2. We assume that each probability function pi is continuously differentiable on [0,1].
For f ∈L1(0,1) of bounded variation, by the Lasota-York inequality [13],

1∨
0

PSi
f ≤αi

1∨
0

f+βi∥f∥ i=1,. ..,k,

where αi=2/ inf |Si| and βi is a positive constant independent of the choice of f . Then,
by a rigorous mathematical analysis in [11], there is the following variation inequality
for the Markov operator Pτ :

1∨
0

Pτf ≤α

1∨
0

f+C∥f∥, (4.6)

where α=max1≤i≤kαi, C=αkK+
∑k

i=1βi∥pi∥∞, and K is a constant such that
|p′i(x)|≤K for all x∈ [0,1] and i=1,. ..,k.

As usual for the sake of the convergence argument, we assume that f∗ is a unique
stationary density of Pτ in the following theorem.

Theorem 4.1. Suppose Pτ satisfies (4.6) with α<1/57. Then for the sequence {fn},
where each fn is a solution of (3.7) with ∥fn∥=1,

lim
n→∞

∥fn−f∗∥=0.

Proof. Since fn=QnPτfn by (3.9), Lemma 4.3 and (4.6) imply that

1∨
0

fn=

1∨
0

QnPτfn≤57

1∨
0

Pτfn

≤57

(
α

1∨
0

fn+C∥fn∥

)
=57α

1∨
0

fn+57C

Since 57α<1,

1∨
0

fn≤
57C

1−57α
, n≥16.

Therefore Helly’s lemma assures the existence of a subsequence, for example, {fnk
}

of {fn}, that converges to some g∈L1(0,1). Clearly ∥g∥=1 (recall that ∥fn∥≡1) and
∥QnPτ∥≤∥Qn∥∥Pτ∥≤65 by Lemma 4.1 (i) for all n≥16 and by (2.4). Hence, if nk≥16,

∥g−Pτg∥≤∥g−fnk
∥+∥fnk

−Qnk
Pτfnk

∥
+∥Qnk

Pτfnk
−Qnk

Pτg∥+∥Qnk
Pτg−Pτg∥

≤∥g−fnk
∥+65∥fnk

−g∥+∥Qnk
Pτg−Pτg∥

=66∥g−fnk
∥+∥Qnk

Pτg−Pτg∥,



A. ALSHEKHI, J. DING, AND N. RHEE 529

which implies that Pτg=g by Lemma 4.1 (ii) after taking the limit k→∞. Since
Pτg

+=g+ and Pτg
−=g− by a property of Pτ mentioned in Section 2, and f∗ is the

unique stationary density of Pτ , we must have g=f∗ or g=−f∗. Without loss of
generality we may assume that g=f∗. This proves the theorem since every convergent
subsequence of {fn} converges to f∗.

5. Numerical results
In this section we present some numerical experiment results on the performance

of the quadratic spline projection method (denoted as D2 in the tables) and compare
them with the linear spline projection method (denoted as D1 in the tables) for two
examples of tested random maps, which involve the interval maps

S1(x)=

{
2x

1−x2 0≤x≤
√
2−1

1−x2

2x

√
2−1≤x≤1

,

S2(x)=1−
√

|2x−1|,

S3(x)=

{
2x
1−x 0≤x≤ 1

3
1−x
2x

1
3 ≤x≤1.

For the comparison of the errors we used

en≡∥fn−f∗∥=
∫ 1

0

|fn(x)−f∗(x)|dx.

where n=2k for k=2,3,. ..,10.

Example 1. Let τ1={S1,S2;p1,p2}, where

p1(x)=
4

4+π(1−x)(1+x2)
,

p2(x)=
π(1−x)(1+x2)

4+π(1−x)(1+x2)
.

The stationary density of Pτ1 [2] is given by

f∗
τ1(x)=

2

3

[
4

π(1+x2)
+1−x

]
.

Example 2. Let τ2={S1,S2,S3;p1,p2,p3}, where

p1(x)=
2(1+x)2

2(1+x)2+π(1−x4)(1+x)+π(1+x2)
,

p2(x)=
π(1−x4)(1+x)

2(1+x)2+π(1−x4)(1+x)+π(1+x2)
,

p3(x)=
π(1+x2)

2(1+x)2+π(1−x4)(1+x)+π(1+x2)
.

The stationary density of Pτ2 [2] is given by

f∗
τ2(x)=

2

3

[
2

π(1+x2)
+1−x+

1

(1+x)2

]
.
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n D1 D2
4 1.67×10−3 2.79×10−4

8 3.81×10−4 3.08×10−5

16 9.54×10−5 3.43×10−6

32 2.35×10−5 4.31×10−7

64 6.17×10−6 4.68×10−8

128 1.48×10−6 5.83×10−9

256 3.67×10−7 7.80×10−10

Table 5.1. L1−norm errors comparison for Example 1.

n D1 D2
4 1.99×10−3 1.79×10−4

8 5.09×10−4 2.58×10−5

16 1.28×10−4 3.48×10−6

32 3.13×10−5 4.46×10−7

64 7.88×10−6 5.74×10−8

128 1.97×10−6 7.21×10−9

256 4.91×10−7 9.22×10−10

Table 5.2. L1−norm errors comparison for Example 2.

D1 D2
e4/e8 4.38 9.64
e8/e16 3.99 8.98
e16/e32 4.06 7.96
e32/e64 3.81 9.21
e64/e128 4.17 8.03
e128/e256 4.03 7.47

Table 5.3. Ratios comparison for Example 1.

D1 D2
e4/e8 3.91 6.94
e8/e16 3.98 7.41
e16/e32 4.09 7.80
e32/e64 3.97 7.77
e64/e128 4.00 7.96
e128/e256 4.01 7.82

Table 5.4. Ratios comparison for Example 2.

The numerical results in Table 5.1 and Table 5.2 represent the errors for Example 1
and Example 2, respectively. These two tables show that the quadratic spline projection
method for random maps has a faster convergence rate than the linear spline projection
method for the random maps for all n-values. Table 5.3 and Table 5.4 show the ratios
of e4/e8,. ..,e128/e256 for Example 1 and Example 2, respectively. We observe that the
convergence order for the quadratic spline projection method is three compared to order
two for the linear spline method.
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6. Conclusions
We have proposed a quadratic spline projection method for computing stationary

densities for random maps with position-dependent probabilities and proved its L1-norm
convergence for random maps composed of the Lasota-Yorke class of interval maps, using
the standard variation inequality technique. This improves the convergence order of the
previous linear spline projection method for random maps in the literature. A future
research will be toward a theoretical convergence rate analysis for the method, which
can confirm the observed convergence order from the numerical experiments.

Declarations. The authors did not receive support from any organization for the
submitted work.
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