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IMPROVED UNIFORM ERROR BOUNDS OF
AN EXPONENTIAL WAVE INTEGRATOR METHOD FOR
THE KLEIN-GORDON-SCHRODINGER EQUATION WITH THE
SMALL COUPLING CONSTANT*

JIYONG LIt

Abstract. Recently, the long-time numerical simulation and error analysis of PDEs with weak
nonlinearity (or small potentials) become an interesting topic. However, the existing results of long-time
error analysis mostly focus on the single equations. In this paper, for the Klein-Gordon-Schrodinger
equation (KGSE) with a small coupling constant ¢ € (0,1], we propose an exponential wave integra-
tor Fourier pseudo-spectral (EWIFP) method by reformulating the KGSE into a coupled nonlinear
Schrodinger system (CNLSS). Through careful and rigorous analysis, we establish improved error
bounds for the numerical solution at O(h™ +e72) in the long-time domain up to O(1/e) where m
is determined by the regularity conditions, h is the mesh size and 7 is the time step, respectively. Com-
pared with the existing results, our analysis shows the long-time errors of numerical solution for the
KGSE. In error analysis, in addition to the classical tools such as energy method and cut-off technique,
we also adopt the regularity compensation oscillation (RCO) technique which has been developed re-
cently to analyze the accumulation of errors carefully. The numerical experiments support our error
estimates and demonstrate the long-term stability of discrete mass and energy. To the best of our
knowledge, there has not been any relevant long-time error analysis for the KGSE and any improved
uniform error bounds for an exponential wave integrator. Our work is novel and provides a reference
for analyzing the improved error bounds of the numerical methods for other coupled equations.
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Schrodinger equation; exponential wave integrator.
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1. Introduction
This paper focuses on the Klein-Gordon-Schrédinger equation (KGSE) as follows

Opu—Autu=c|®?, (x,t)€T?x (0,+00),
i0;®+ AP +eud=0, (x,t)€Tx(0,400), (1.1)
(u,0pu,®)(x,0) = (u®,1°,®%) (x), xe€T?,

which describes a neutron field ® :=®(x,t) € C interacting with a neutral scalar meson
field w:=wu(x,t) €R through the Yukawa interaction [11,20,35,39]. Here, d (d=1,2,3)
represents the dimension of the equation, i =+/—1, € (0,1] denotes the coupling con-
stant, T? is a d-dimensional torus, x € T¢ is the spatial coordinate and ¢ is time. The
KGSE (1.1) is time symmetric and conserves some invariants such as

M(t):||<I>(~,t)|\2::/wI‘?(x,t>l2dxz||<I>(~,0)||2, te[0,+00),
(1.2)
E(t)::/Td B(8tu2+|Vu|2+|u|2)—|—|V<I>|2—Eu|<I>|2 dx=E(0), t€[0,4+00),
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which are called the mass and energy, respectively. Introducing new variables w=cu
and T =e®, we reformulate the KGSE (1.1) with small coupling constant as a KGSE
with O(e) initial data:

Opw—Aw+w=|T?, (x,t)eT?x (0,+00),
i T+ AT +wY =0, (x,t)€T%x(0,+00), (1.3)
(w,dyw,T)(x,0)=e(u’,a°,®°)(x), xeT¢

Similarly, the KGSE (1.3) also has time symmetry and conserves the mass as well as
energy as

M(t):IIT(',t)HQ::/WIT(x,t)\dezllT(',0)||27 t€0,+00),
E(t)::/w B(8tw2+|Vw|2+|w|2)+|VT|2—w|T2 dx=E(0), te0,+00).

Due to the fact that the equations (1.1) and (1.3) are equivalent, next we only develop
the numerical methods and give related analysis for the KGSE (1.1) with small coupling
constant. For the equation (1.3), the formulation of the new methods and corresponding
analysis process are completely similar.

For the case e =1, there have been extensive mathematical and numerical studies
for the KGSE (1.1) in the literature. Mathematically, the authors have considered
the existence and uniqueness of global smooth solution for the KGSE in [19,34]. For
various properties of the equation, we refer to [12,21,24,25,36,37,40,43]. Numerically,
different kinds of methods have been carried out for the KGSE. The methods include the
(pseudo-)spectral method [8,44], the (multi-) symplectic method [27-29], the collocation
method [13,41,45] and the finite difference method [42,46]. Of course, each numerical
method has its own advantages. Recently, uniformly accurate time integrators for the
KGSE in the nonrelativistic limit regime and in the nonrelativistic and massless limit
regime were constructed and analyzed [7,9,10].

Recently, the long-time numerical simulation of PDEs with weak nonlinearity (or
small potentials) has become an interesting topic and got a lot of attention. For
the Klein-Gordon equations (KGE) and Schrédinger/ nonlinear Schrodinger equa-
tions (NLSE), the long-time error analysis has been thoroughly studied in the liter-
ature [2,4-6,14-18,33]. In a recent paper [3], in order to obtain improved uniform
error bounds for time-splitting methods applied to the NLSE with small potential and
weak nonlinearity, the authors proposed a new technique of regularity compensation
oscillation (RCO). Specifically, they controlled the high frequency modes by regularity
and analyzed the low frequency modes by phase cancellation. As a powerful tool, the
RCO technique has been increasingly used for long-time error analysis of other types of
PDEs [2,6] and other kinds of numerical methods.

However, existing results of long-time error analysis mostly focus on the single
equations and improved uniform error bounds are mainly about the splitting methods.
As far as we know, there are few results about improved error bounds for the long-time
dynamics of the coupled systems involving the KGSE (1.1) in the literature. Compared
with the single equations, the difficulty of numerical analysis for the coupled systems
comes from the coupling effect. Another noteworthy fact is that exponential wave
integrator methods have been widely used to solve the highly oscillatory problems.
Recently, for the Klein-Gordon-Dirac equation (KGDE) with weak coupling effect which
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is characterized by the small parameter €€ (0,1], the authors proposed two energy-
preserving exponential wave integrator methods [32]. However, the authors can only
prove that the methods achieve uniform error bounds O(h™ +72) rather than improved
uniform error bounds O(h™ +¢e72) up to the time at O(1/¢). In addition, the methods
are implicit, which means expensive computation cost because the calculation process
often requires iteration.

In this paper, we propose an explicit exponential wave integrator Fourier pseudo-
spectral (EWIFP) method for the KGSE (1.1). We establish the improved uniform
error bounds at O(h™+¢e72) up to the time at O(1/¢). In error analysis, in addition
to classical tools such as energy method and cut-off technique, we also adopt the regu-
larity compensation oscillation (RCO) technique to analyze the accumulation of errors
carefully. However, our proof of the error bounds is different from the papers [2,6] in
which, the authors first derived the error bounds of semi-discretization and then obtain
the error bounds of full discretization by comparing them. In this paper, we will provide
a direct proof of the error bounds without giving the error of semi-discretization. In
addition, for the control of nonlinear terms, we use cut-off technique instead of math-
ematical induction as in the paper [2,6]. The novelty of this paper is also reflected in
that, there are few results of long-term error analysis for the KGSE and improved error
bounds for the EWI method.

We remark here, in our recent manuscript [31], a time-splitting Fourier pseudo-
spectral (TSFP) method has been proved to achieve improved error bounds up to the
time at O(1/¢) for solving the KGSE. However, as the paper [17] says, the EWIFP
method and TSFP method are two completely different numerical methods, namely the
former is based on Duhamel’s principle while the latter uses the idea of time-splitting.
In addition, we adopt different techniques to perform long-time convergence analysis.
In the control of nonlinear terms, the cut-off technique will be used in EWIFP method
and mathematical induction is used in TSFP method.

The next few sections are organized like this. In Section 2, we transform the KGSE
(1.1) into a coupling nonlinear Schrodinger system (CNLSS) and then propose the
EWIFP method for CNLSS. In Section 3, we establish improved error bounds and give
rigorous proof. Section 4 presents the numerical experiments. Finally, we draw a con-
clusion in the last section. Throughout this paper, the notation p < ¢ always represents
|p| <Cq where C >0 is independent of h, 7 and e.

2. Exponential wave integrator Fourier pseudo-spectral method

Here we only consider the one-dimensional problem of the KGSE (1.1). Higher
dimensional problems can be treated similarly. For the one-dimensional problem, we
take 2 = (a,b) and consider the periodic boundary conditions. In this case, the problem
collapses to

Optt — Oggut+u=c|®?,  (x,t) €Qx (0,00),
10tP+ 0y ®+eu® =0, (,t)€Qx(0,00),
(u,0,u, ®,0,P)(a,t) = (u,0,u,®,0,P)(b,t), t€[0,00),
(u,0¢u, ®)(x,0) = (u®,1°,8%)(z), z€Q.

~ o~ —~
N NN

1)
2)
3)
4)

We denote Hj(2)= {ue H*(Q), 0L u(a) =0 u(b),1=0,--,s— 1} with integer s >0 and

define the H® norm as

. 27l
2 2\s(5 (2 _ i et (z—a) -
||u||s—§lezj<1+|m|>|ul|, for u(x)—EIGZjuzem R (25)
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Since we consider the periodic boundary conditions, the above space H,(2) is suitable.

2.1. The equivalent coupled system. Firstly we introduce the operator
which is defined as

zzm&eim(mfa)’ for u(x):Zﬁleml(zﬂl).

lez lez

1

The inverse operator (V)~' can be defined as

Z e(@=a) e [a,b]. 2.7
lez VvV 1""“l ( )

From the definition of norm, we have |[(V)ull,_; =|Jul/,=|[(V)™*

1= 0yu and setting

uH Introducing

s+1°

U=u—i(V) ta, (2.8)

the KGSE (2.1)-(2.4) could be reformulated into the coupled nonlinear Schrédinger
system (CNLSS) as

NV =i(V)U —ie(V) Y%, (x,t)€Qx(0,00),
0P =iAD+ %25(\1/ +U)®, (z,t) €Qx(0,00), (2.9)
(0,0,0,8,0,®)(a,t) = (V,0,¥,D,0,®)(b,t), te[0,00),

(W, ®)(x,0)=(¥°,8%)(z), ¥(x)=u’(x)—i(V) 'i(x), z€Q.

From (2.8), u and its derivative 0,u of the KGSE (2.1)-(2.4) could be expressed by ¥
as

u=ReW=_ (U4T), du=—(V)Im¥=_(V)(¥-T). (2.10)

N | —

2.2. Semi-discretization by using the exponential wave integrator. De-
noting

F(®)=—i(V) o2, G(W7¢):%(W+@)¢7 (2.11)

we can express the CNLSS (2.9) as

KV =i(V)U+ecF(®), (z,t)€Qx(0,00),

2.12
WP =iAP+eG(V, D), (z,t)€Qx(0,00). (2.12)

Let 7>0 be the time step and define the time nodes as t,=n7 for n>0. Using
Duhamel’s principle as in [23,26], we obtain

U(tpir)=€"VU(t,) +£/ VT2 P(®(t, + 2))dz,
0 (2.13)

D(tni1) :eiTACI)(tn)+g/ ATTAG(U (L, +2), (L, +2) ) d.
0
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Denote by (¥ ").= (v &) (z) the approximation of (¥,®)(x,t,). Applying

the trapezoidal formula to the integral terms of (2.13), we get the exponential wave
integrator (EWI) for the CNLSS (2.9) as:

gl — oit(V) glnl 4 %8 (ei‘r<V)F((p[n]) +F((I)[n+1])) ,
2.14
Plntl] — girAglnl ge (eiTAG(\I/[n]’(I)[n]) +G(\Ij[n+1]’<b[n+1])) 7 (2.14)

with W0 =00 =40 — (V)40 and ®[1=&°. From (2.10), we obtain ul™ and @™ for
the KGSE (2.1)-(2.4) as

1 — 1 —
u™ =ReW 72(\11 +v ), W™ =—(V)ImW¥ f2<V><\I/ v ), (2.15)

where (ul™,a™) := (ul*,4[")(z) are the approximations of (u,dyu)(z,t,) (n=0,1,2,---).

PROPOSITION 2.1. The EWI method (2.14) with (2.15) is equivalent to the following
one

ul™ ! =cos(7(V))ul™ + (V) " Lsin(r(V))ul") + %mvrl sin(r(V))| @2,
aln 1 = — (V) sin(r (V) ul™ + cos(r(V))al") + %57 (cos(T<v>)|cI>["] 24|+ |2) ,

(I)[n+1]:eimq>[n]+£m( iTA 0] gl ]+u[n+1]q)[n+1])
2

(2.16)
Proof. Plugging F and G of (2.11) into (2.14), we have
. 1 .
1] — i (V) glnl imm_l (e”<v> @2 4 |plnt1] |2) , (2.17)
: 1
ol = el 4 Zier (e ( i7A (Rew!") (RexI/[”“])qﬂ"“]) . (2.18)
Taking the real part and imaginary part of (2.17), respectively, we obtain
ReW["+1 = Re(e!™ (V) @l — 25 (V)" 'Re (iei<V>T\<I>[”l\2) :
| . | (2.19)
— (V)Im¥"+ — () Im (el 4 Zerim (z (el<v>T|<I>["] 2 4| @+ |2)) .
Using
e =cos(z) +isin(xr), Re(ir)=-Im(z), Im(iz)=Re(z),
we have
Re(e'™(V \II[” ) =cos(7(V))ReW!™ —sin(7(V)) ImW¥™ |
Im(e™ v ) =sin(7(V))Re¥™ 4 cos(7(V)) Imw"
Re (ze "2) = —sin(r (V)| B, (2:20)
ton (7 (/%) |<1>["1|2+|q>l"+11| )) = cos(r(V)) @02 4 @I+ ]2,
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Plugging (2.20) into (2.19), we obtain
ReW " U = cos(7(V))ReW!™ —sin(7(V))Im¥ ™ + %mvrlsm(fm MELRIE
— (V) Im T+ = () (sin(7<v> YReW™ + cos(1(V) )Im\IJ["]) (2.21)
+ %ET (cos(r(v)) @12+ [l +112).

Plugging the relation (2.15) into (2.18) and (2.21), after a simple calculation, we obtain
the method (2.16). d

REMARK 2.1.  In (2.14), we exchange (n+1,7) with (n,—7), and know that the
resulting method is the same as (2.14). So the time semi-discretization method (2.14)
is time symmetric. From the equivalence of (2.14) and (2.16), we obtain that (2.16) is
time symmetric.

REMARK 2.2. In the actual calculation, we can apply the method (2.16) in an explicit
way as

ulntl = COS(T<V>)u["] +(V) ! Sin(7’<v>)’ll[n] + %ET<V>_1 sin(7(V)) |<I>[”] %

pln+1] — (eirAq,[n] N igTeiTAu[n]q)[n]) / <1 _ i”u[nﬂl)
2 2 ’

a1 = — (V) sin(+(V))ul™ +cos(T(V))al"!

(2.22)

1
+ e (cos(r{T) @l 24 ol ).
Here the denominator 1— €7+ is not equal to zero because ul"*l is real. So the
expression (2.22) always makes sense.

REMARK 2.3.  Actually (2.22) (or(2.16)) is exactly the same as the Deuflhard type
exponential integrator when applied to the Duhamel formula for the original variables
u and @ in the KGSE (2.1)-(2.4) directly. Of course, with a similar analysis to [4], we
can get the uniform error bounds at O(72) up to the time at O(1/¢). However, in order
to get the improved error bounds, we need to do a more detailed analysis of the error
accumulation process. It is more convenient to consider (2.14) than to consider (2.22)
(or(2.16)) because of the properties of operators €’{V) and e**2. So in the following we
carry out our error analysis based on (2.14) rather than (2.22) (or(2.16)).

2.3. Full-discretization by the Fourier pseudo-spectral method. For
a positive even integer M, introduce 29,={0,1,---,M} and QM:{—%,W,%—I}.

Choose h=(b—a)/M as the mesh size and denote grid points as z; :=a+ jh for j € QY.
Introduce the two spaces as

Yy, :=span {ei’“ (z—a)

_ T eq
Hi b CL’ S M}v

X :=span{v=(vo, - ,var)| vo=wvpr} €CMTL,

For any v(x) on [a,b] with v(a) =v(b) and vector v € Xy, define Pys: L?(Q) — Yas as the
standard projection operator, Ip;: C(2) — Y and Ips: Xps — Y as the trigonometric
interpolation operators [38], i.e.

(Pyv) (@)=Y B @=)  (Iyw)(z)= Y e =), (2.23)

1eQn 1eQnm
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with the coefficients

M-—1

-~ 1 ’ —ip(z—a ~ 1 —ip(r;—a
vzzb_a/av(x)e wi@=a)qg, U[:MZ'U]‘Q pi(@j—a), (2.24)

respectively, where v; =v(z;) for the functions v(z).

Let (¥7,0%) (n>0,j € Q;) be the approximations to (¥, ®)(x;,t,). Then an expo-
nential wave integrator Fourier pseudo-spectral (EWIFP) method for the CNLSS (2.9)
is

(@H)z =P (/‘_I’\n/)l - % (e”ﬂl%l Jrf((I’nH)l) ;

1ET X —
(@), = e~ (@1), + -5 (e—””lzg(\lm,@")l+g(\1m+1,q>n+1)l) , (2.25)
\I/;?H: Z (\I/n+1)le2ijl7r/M’ (I);H-l: Z (q)n+1)l62ijl7r/M’
1€EQm leQn

where (3, =/1+pu} for [ € Qs and

n n n Fn 1 n T\ &HN
f(‘I) )j:‘q)'|27 (\IJ , @ )25(\1]] +\I/j>(1)ja

(2.26)
\I/ Z 2z]l7'r/M (I)O (I)O(.’L‘J) jeQ?V[

e V 1"'/‘l

Let (uf,u}) (n>0,5€0Q9,) be the numerical solution to (u,dyu)(x;,t,). Then from
(2.25) and (2.10), we can obtain u;-”rl and u;?“ for the KGSE (2.1)-(2.4)

1 —T
n+1 n+1 n+1 n+1
u; ——Re\I/j ——§<\Ilj +\1/j ),

— 3 ; — - (2.27)
Wt =— Z By (TmWn+1) 2idln/M :% Z B, ((xpn+1)l — (\I/n+1)l) e2ulm /M.

leEQm LeQm

The EWIFP method (2.25) with (2.27) is equivalent to the following one.

PROPOSITION 2.2. Let (uf,i%,®%) (n>0,5€QY,) be the approzimations to

(u,0pu, @) (x5, tn). Choose (u3,0},®9) = (u®,u°,®°)(x;), then the EWIFP method solving
the KGSE (2.1)-(2.4) is

(ur1), =cos(r)(wn), + B sin(rB1) ("), + S=B;  sin(ri) f(67),

—_~—

(1), == Bisin(7 ) (u™), + cos (1) (i), + 5 (cos(r ) F(@), + F(@7),),
(@), =7 @) e (o7 gglar )+ g ).

n+l _ g1y WZijlm/M o ntl T\ W2ijlm/M
uitt = § : (un+1),e? / ,attt = E : (an+1),e2i / ,

(2.28)

LeQnr LeQns
ntl _ 1\ 2ijlw /M
o7 _E:(@n+)lea / ,

LEQn

where By =/1+pu7 for leQur, f("); =97 and gg(u",®"); =u} P}
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REMARK 2.4. In the actual calculation, we can apply the method (2.28) in an explicit
way as

(un1), = cos(r 1) (um), + B sin(r ) (i), + = 65; tsin(r) f(@7),,
U?HZ Z (“n+1)lezijlW/Ma (Prtlx), =e —irui (qm) +%€e_iml gg(un,®m),,
1€Qm
nt1 % T 2ijlm n 1, T o
‘I)j+1’ — Z (¢n+17*)l62131 /M7 (bj+1:¢.j+1 /(1_2uj+1> , (229)
1€QMm
: : — — T PP
(1), =~ Busin () )y + cos(rB0) (@), + 2 (cos(r) F(@m) + F{@771),),
= 3T (@M (@), = (@52 gg(u™ 8" =}
LeQn

From Remark 2.4 and Proposition 2.2 we know that the EWIFP method (2.25) with
(2.27) is essentially explicit and efficient thanks to the fast Fourier transform (FFT).

3. Error estimates
Next we focus on the improved error bounds of the EWIFP method (2.25)-(2.27)
for solving the KGSE (2.1)-(2.4).

3.1. Main results. For the KGSE (2.1)-(2.4), we assume:

we L ([0,To /el H)' T2 (Q)), O, ® € L™ ([0,To/e]; H)'TH(Q)),

||U||Loo([o,To/s];H;"“(Q)) St

H(I)||L°°([0,T0/e};H£'L+1(Q)) S‘ 1

10ull oo (jo, 70 e+ (02)) S Lo (A)

where m >4. Then the following conclusion is true.

THEOREM 3.1.  Under the assumption (A), for a€(0,1), there exist sufficiently small
constants hg >0 and 0 <19 <1 which are independent of €, when 0 <h<hg and

472(1+79)2  8m%(1+70)2
0<7<2 1
=T ‘”/( TR TR0 )

[u(stn) = Inaw”[|y+ |0l tn) — s ||y
B ta) = Ty @[, SH™ 47 427

we have:
(3.1)

In particular, if u,0u,® are sufficiently smooth, the last term 75" could be ignored
practically for small enough 1o, where the improved uniform error bounds for sufficiently
small T could be

lu(stn) = Ingu™ ||y + [10pul-,tn) = Ingt™ ||, + (- tn) = Iy @ [ly Sh™ +e72.

REMARK 3.1. In Theorem 3.1 and the other results in this paper for the one-
dimensional problem, we prove the error bounds for w(x,t) in H?norm and for
(Opu(x,t),¥(z,t)) in H'-norm due to the fact that H™ is an algebra for m>1/2.
Similarly, for d-dimensional problems (d=2,3), H™ is an algebra for m>d/2 and
the corresponding estimates (3.1) can be obtained for u(z,t) in H™ +'-norm and for
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(Opu(z,t), ¥ (z,t)) in H™ -norm with m* = ¢ 44, § > 0 for the two and three dimensional
cases if given the required regularity condition. The numerical results in Subsection 4.2
will confirm this conclusion.

Next we will prove Theorem 3.1. Note that our proof is different from that in [2,3,6].
In those papers, the authors first derived the error bounds of semi-discretization, and
then obtained the error bounds of full discretization by comparing them. In this process,
the bounds H\IJ[”] Hm . and ||<I>[”] Hm 4q Were required. Here we provide a direct proof
without giving the errors of semi-discretization. In addition, for the control of nonlinear
terms, we use cut-off technique instead of mathematical induction as in the papers
(2,3,6].

3.2. Preliminary estimates. Define two operators
Fi:®—e MV F@E20), G (V,0)—e "G (V0,2 d), teR, (3.2)
where F' and G are given as in (2.11). Then we have the properties for F; and G; [31].

PROPOSITION 3.1.
(i) For s>1/2 and any t€R, we have

IF(®)ll o0 SCIRIZ, NG, @), <CNP], 2],
IF (@)Dl g1 SCN@I Vs 100G (T, 2)(N), <C @I N1,

100Ge(w, ®) ), <C 191, Il -
I (@) (7,0 a1 SC Ol VIl s 10waGe(¥, @) (7,0l <C 0|, IVl
102w G (¥, @) (7,0)[[, <C o]l [V, [100wGe(T,2)(7,0)][,=0,
000G (¥, ®)(y,6)|[,=0.

(ii) For s>1 and any t€R, we have

10 F (@), <CIPIZ, 1 10:Ge(W, @),y SCIT||yy Dl

|0uFU@), <CIOI 5, 10uGe (BB, <CIEl 51215 ",

10:F (@) (I SCN®l gy 1V sq15 10:00Ge(T, )W)l o=y SCNIN gy 17l 5
10:08 G (¥, @) (V) |51 S CNW 541 17l 541

3.3. Proof of Theorem 3.1. From the regularity condition (A), we know that

wer([0,7/e] Hyt2(9)), @€ L= (0,To/el Hy ' (@)). "
I poe 0,7 g2y S L M@l Loo (0,70 segs 41 () S 1
We will prove the following error bounds for the EWIFP (2.25).

THEOREM 3.2.  Under the condition (A’), for a€(0,1), there exist sufficiently small
constants hg >0 and 0 <7y <1 which are independent of €, when 0 <h<hgy and

4r2(1 2 872(1 2
0<T§2047T/< 1+ m2(1+7) + m(1+7) ,

2(b—a)? e(b—a)?
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the global errors of the EWIFP (2.25) satisfy

1 tn) =IO, ST2 475" + 0™, [T " |y <1+ My,

3.5
|®(tn) — I ®™ ||, ST 47 +h™, [In®™ ||, <1+ Mg, 0<n<Tye '/, (3:5)

where Mg = ||\IJ||LQO([O’TO/E];H£(Q)) and Mg = ||(P||L°°([O,Tg/s];H117(Q))‘

The key of proving Theorem 3.2 is to show ||7p;®"||; $1. To do this, we adapt the
cut-off technique [1,30]. Firstly we choose p(6) € C§°(R™1) which satisfies

1, 0el0,1],
p(0)=14 €[0,1], 0€1,2], (3.6)
0, 0e(2,+00).
Denote B=1+ Mg and define
P
oo 12 o)

Let (\il?ﬁf)y) (n>0,j€98Y,) be another approximation to (¥,®)(z;,t,). Choose

(19, 0%) = (¥9,89), then the modified EWIFP (MEWIFP) method solving the CNLSS
(2.9) is constructed as

—_—
v

(1), =), - (e”ﬂlf(TBuMén))l+f<TB<7A?5n+l>>l) |

P

3 —itp? (Fn
(‘I’m_l)z:e H(d )l

N ) y . (3.8)
+ (e g U T (I ")), + g (I ¥, T (I 7)), )

$ntl_ S+l o2ijle/M  Fnt+l _ En+1) J2ijlm/M
‘I’j — 2 : (Tntl)e / , @j — E : (dnt1),e / ,
leQn LEQ N

where f and g are defined in (2.26). From the MEWIFP method (3.8), we obtain

v . o 1 . o v
L0 = 0 Serly (e”<V>F(TB(IM<I>”)) +F(TB(IM<I>”+1))) ,
I "+ =i ™A, H" (3.9)
1 ) o o o o
+5erhnr (A G " Ta (I ™) + G (L 0™ T (1 "))

where F' and G are defined in (2.11). Next we are going to start with the error analysis
for MEWIFP method (3.8). Firstly, we introduce the error functions

To/E

T

el = tn) — Mu" el . —=®(- n)— Mun n= .
g \Il(at ) Iy ’ [ (I)<7t ) Iy® ’ 0717 (3 10)

Then we can prove the following result.

THEOREM 3.3.  Under the condition (A’), for a €(0,1), there exist sufficiently small
constants hg >0 and 0 <19 <1 which are independent of e, when 0 <h<hg and

4m2(1 2 (1 2
o<T§2om/< 4 mo)? | 8r (14 70) ) (3.11)

2(b—a)? e(b—a)?
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the global errors of the MEWIFP (3.8) satisfy

H\ll(~,tn)—IM\fl"

§T2+T6n+hm, HI]\/[\i/n
2

<1+ My,
§ 2 (3.12)
H(I)(-,tn)—IM@"

§T2+76"+hm, HIMCTW
1

<1+Mgy, 0<n<Toe /T,
1

where My = W L (0.7, /2] 12 (0) @74 Mo =[P L< (10,73 e]; 113 02))-

In the following, we use ¥(t,,) and ®(¢,,) to refer to U(-,t,) and ®(-,¢,), respectively,
for convenience. For the function T (®) of (3.7), we have the following lemma.

LEMMA 3.1.  The following inequality is true
[T5(®1) = Tp(®2)[l; <Cp|P1— P2y, (3.13)

where Cp =1+ 2maxge(o,2] |0’ (0)]-

Proof. 1f ||®1]|, > 2B and || ®2||, > 2B, we immediately get (3.13). For ||®4||, <2B
and ||®2||; > 2B, we obtain

[T5(®1) = Tp (P2l

b5,

Mooy (Rl [R2l
g (15150 )

)5

<2 Dy — Dy | 3.14
<2 max [0 0)122 - (3.14)

1

Similarly, for ||®||; >2B and ||®s||; <2B, the result also holds. For ||®;|; <2B and
| @2, < 2B, we have

i e (oo 50

55 ()

1

‘I’ [
< N / H i1 1
<||®1 ‘1’21+‘P(9)< B i) D) )
<{1+2 (0 Dy — D], . 3.15
_( +2 max |o'( )I)H 2=l (3.15)
Lemma 3.1 has been proved. ]

LEMMA 3.2.  Under the assumptions (A’), we have

|F@ )~ F(ra(nd)|| <Crlieal,,
3.16
HG@(m,@(tn))G(IM\fw,TBaMé"))ngoa(e$||1+||e$||1), o

where Cp=Cp (2B—|—M¢,) and Cqg=2B+ MyCp with Cg=1+2 m[%>§]|p( )]
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Proof. According to Lemma 3.1 and the properties of Ts(®), we have

F(@(t,) = F(Ta(Ly®")|

= @(tn)@(tn)—mTB(IM&)n)

1

IN
b=

(1) (Z5(0(00)) =T (1) ) | +

‘(TB(q>(tn))TB(IMcin))TB(IMé”)

1)'
(3.17)

The assumption (A’) and Lemma 3.1 in (3.17) give the first result. Similarly, we obtain

1

IN

(To(@(t) = Ta1u®) | (0t + |[Ta (10 d™)

HG(\If(tn)@(tn))—G(IM@"vTB(IM‘i)n))Hl

1 . — .
:§H (U (t,) +\Il(tn))<1>(tn)—(IM\IJ”+IM\I/")TB(IM<I>”) 1

1 »
T H(eg +25) Ta(Ly®")| . (318)

<5 [ (2t +T(0) (To(@(ta)) - To(iad™) || +5

Considering the assumptions (A’) and using Lemma 3.1 in (3.18), we get the second
result. 0

By plugging the solution of (2.9) into (2.14), we introduce local truncation errors
(LTEs) € and £} (1<n<Tpe '/7—1) as

Wltns1) =™ OW(tn) + Ze (o7 F@(t0) + F(®B(tn:1)) ) +£5,

| | (3.19)
D(tn41) :e”A(I)(tn) + %5 (e”AG(\II(tn)»@(tn)) +G (Y (tny1), (¢ n+1))) +&5-
For the LTESs, we have the following result.
LEMMA 3.3.  The local errors of the EWIFP method (2.25) can be written as
v=F(@(tn))+ Ry, =0,1,---
f@zg(qj(tn)Vq)(tn))—'_R{N 7120717"'
where
F(®(t,)) =ee’ V7 </ F.( dz—T(Fg(@(tn))—i—Fr((I)(tn)))),
G(W(t,), Dt ( X £2))dz (3.21)
— 27 (Golw(t). 2(1,)) + G (20 >,<1><tn>>)>,
with the bounds under the assumption (A) for m>4,
IF@EI e, IRY S o

IG(T(tn), 2t )]y Sem, Ry ||1<E 7.
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Proof.  Denote ¥"™(t) =W (t,+1t), ®"(t)=D(t,+1), ¥,,=TV(t,) and D, =D(,).
Applying the Taylor expansion to the first expression of (2.13), we get

0

T 4
\Il(thrl):eiTW)\I/n—i—s/ ei(79)<v>F<ei9A<I>n+s/ ei(es)AG(\Il”(s),(I)"(s))ds> dé
0

:e”<v>\lln+€/ ei(T*G)<V>F(ei0A¢n)d9
0

e /OTG“”WF’ (e*22y) < / ee“"Smamws),@"(s))ds) d9-+¢° By
0
:ew(v)\l,n+€/Te¢(7—9)<v>F(emA¢n) a6
0
—l—az/ofei(f—ewa/ (ewA(I)n) </0 i(0— s)AG( (), oD )ds) 40
e (Eg1+ Eva+ Fus),

where e3Ey; with j=1,2,3 are the remainders of Taylor’s expansion and satisfy
|Ewjll, $73,7=1,2,3. Using the Definition (3.2) yields

U(tpyr)=e™ VW, o™V >/ Fy(®r)do
4267 V) / / Fj(®,)Gs(V,,®,)dsd0+e*(Eg1 + Eya+ Egs).  (3.23)

Applying the Taylor expansion, we obtain

F(®(ty1))=F (e”A‘I)n+€ / Te“ff’)AG(\I/”(e),q»"(o))do)
0

=F (™2, +eF (T2 d,,) / T=OAG(I™(0),™(0)) O+ Ry
0

ZF(eiTAq)n)-FEIF/(eiTA(I)n)/ i(T— G)AG( zB(V iOA(I)n> 46
0

e?(Ry1+ Rya + Ruys), (3.24)

where €2Rq;j with 7=1,2,3 are the remainders of Taylor’s expansion and satisfy
|Rw;ll, <72,j=1,2,3. Using the Definition (3.2), we obtain

F(®(tns1)) =e" (V) F, () + 20" / G (,,®,)d9
+82(R\p1 +R\p2+R\y3). (3.25)
From (3.19), (3.23) and (3.25), we obtain

e =ee’™ Vg +62e ™V rgy +3rgs, (3.26)
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where

ra1 = / CFY ()00~ T (F(®,) 4 Fo(®,).

m_/ / Fj(®,)Gs(T,,, B, )dsde—%F;(@n)/ Go (V,,,®,,)d0, (3.27)
0

rgs=FEg1+ Egs+ Eg3— §(R\I/1 +Ryo+ Rus).

For the term rg1, we get

1 (7 1 T
lret]lq:= —5/ O(1 —0)0pp Fp(P,,)d0 §§H<I>n||§/ O(t—0)do < 3. (3.28)
0 2 0
Denoting
we get
2
Ireally < / Fi ()G (0, @,)500 ~ T FL(@,)G: (W, ,)
2
F’((I) )G (0, @)~ L (@ / Go (V,,,0,)d0
2

B1 0.5 dsde—Bl(T T)

+ H—FT’(<I>n) Bg(e)da—TBz(T)
2 2 9

<3 3 < -3
<7 e <||aeBl||2+||a Billy) +7* max 05 Byl, S7°. (3.30)

So we obtain the first results of (3.20), (3.21) and (3.22). Similarly, we get

) T 0
@(tn+1):e”A<I>n+8/ = 6>AG< \Iln—i-a/ 0=V R (" (s))ds,
0 0

9 .
20, +e/ ez(g_S)AG(\II"(s),@n(s))ds>d6‘
0
:e¢TA®n+€/ ei(T—G)AG(eiG(V>\Iln’ei9Aq>n) a0
0
T . . . 9 .
+82/ T%,.a (ele<v>\lln7el0A®n> (/ e1(075)<V>F(<I>"(5))ds> dé
0 0
T 0
+E2/ i(T— G)Aa G( V>\I/ el@A(P ) (/ el<073)AG(\IIH(S),@”(S))C{S) d9+€3Eq>1
0 0

:ez'TA(I)nJFE/ Rl G)AG( i0(V) \I/n,e“m@n) 46
0

T . . . 9 . .

+E2/ ez(Tfe)Aa‘uG (619<v>\Pn,610A®n> (/ 61(975)<V>F(615A<bn) dS) do
0 0

+E2/ ei(q—fe)AavG(ei0<V)\I,n7ei0A(I)n) (/ i(6— s)AG( is(V) \I,meisAq)n) ds) a0
0 0

3
+¢e°(Es1+ Fo2+ Eo3+ Esa),
(3.31)
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where 1 =e"V)W, v=e2d,, e?Ey; with j=1,2,3,4 are the remainders of Taylor s
expansion and satisfy || Ee;|, $7°,5=1,2,3,4. From the Definition (3.2) and (3.31), w
obtain

B(tyy1)=€T2D, +ee™ [ Go(V,,P,)dd
0

+¢e? ”A/ / dyGo(U,,,®,)Fy(P,)dsdd

+e2ei™A / / 06Go (W, ®,)G(T,,, P, )dsdd
0 0
+63(E@1+E¢2+E¢>3+Eq>4). (3.32)

Applying the Taylor expansion, we obtain

G(\I/(tn+1)7q)(tn+1))

G( Vg, +5/ =0V B (dm(0)) 8,
0

AP, te / ei(Te)AG(\IJ”(H),Q"(G))d0>
0

—G( M)y, o™, )—1—58 G( )y, e )/T =0 F (07 (9))do
0

+savG(e”<V>mpn,e”Aq>n) / T=OAG (T (9), 87 (0)) A0+ 2 Rey
0

=G (e, 72D, ) 0,6 (70, 000 )/T T F (e92p,,) d
0

1 ed, G( iT(V) fon,e”A@n)/o ei(r= 9>AG< Vg, 00, )da

+e*(Ra1 + Roa + Raz + Raa), (3.33)

where ¢ R¢J with j=1,2,3,4 are the remainders of Taylor’s expansion and satisfy
R, S7%,7=1,2,3,4. From the Definition (3.2) and (3.33), we have

G(¥(tnt1), P(tnt1))

—G( )y, 0™ )Jrse”Aaq,GT(\I!n,(I)n)/ Fy(®,)do
0

geiTA[)@GT(\IJmcI)n)/ Go(V,,,®,)d0+c*(Rp1 + Roz + Roz + Ras). (3.34)
0

From (3.19), (3.32) and (3.34), we have

T gy +e% P rgps 43104, (3.35)

ERi=ec’™Prgy e
where

7“<I>1=/ Co(W@)A0 T (Gol(Wr, B) + G (W, B,),

7'<I>2—/ / aq,Gg \I/n,‘P ) ( )dsdG—f&yG (\I/ny(b / FG )de
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T 0 T
T<I>3:/ / aﬁDGG(\Ijn;(I)n)Gs(\I]na(I)n)dee*gaQGT (\IJTH(I)TL)/ G‘9 (\Ij"’(pn)da’
o Jo 0
T
134 =FEp1 + FEpz+ Fez+ Egps — 5 (Rg1+ Roz+ Ros+ Raa). (3.36)

For each term of (3.35), similar to (3.28) and (3.30), we obtain the estimates
lre;ll, S7°, 7=1,2,3,4. (3.37)
Combining (3.35), (3.36) and (3.37), we get the second results of (3.20), (3.21) and
(3.22). So we can see that the lemma holds. d
Proof of Theorem 3.3. For n=0, (3.12) is obvious due to that

<h™,

m—+2 ~

e, =2 12090 <cnm o))
| 130 9| <le§]],+ 12(O) 1 < CH™ [ (O) ]y + M <14+ M,
. (3.38)

<h™,

e, = @) = 10:8%|| <CH™ [ @(O) 41 S

| 168° | < lesll, + 19O, < CH™ [9(0)], 1 + M <14 Ma,

when 0<h <h; for sufficiently small value h; >0. Subtracting (3.9) from (3.19), we
have the following error equation

) X T
eyt =TV A Wy, gt =T e+ WG 65, n:o,l,m,—‘;/il, (3.39)

where Wy and Wg are given by
1 A y
Wi =Zer <e”<V> [F(@(t0)) = T (T (1 8") |
+ [F@0) - P (T 18] ),
: (3.40)
W =ger {e”A (G(\I/(tn),<1>(tn)) —IMG(IM\fJ",TB(IMi)")))
Gt Bl )) ~ G 07 T (1)
For the convenience of further analysis, we express the formula (3.40) as
n 1 i (Vypn n n 1 iTAYIN n
W\pzifT (e Wy +W\112)7 We = 5T (eTEWg + W), (3.41)
where

Wiy =F(®(tn)) — I F (T (Ind™)),

Wio=F(®(tnt1)) — I F(Tp(I ")),

Wiy =G(¥(ty), ®(tn)) — I G(Ing U™ T (10, ")),

Wao =GV (tn11), ®(tnt1)) — In G 0" T (1 @™ H)).

(3.42)

v
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From (3.41), we obtain

1
er(IWailly +1Wall,). (3:43)

n 1 n n
Wglla §§57(||W\Iz1||2+||W\112||2)a W ||1<2

n
For Wg,, we have

Wil < | v F(@(80)) = Tar F(Ta (1 6"))| || +CH™ | F(@(t0) ],

) (3.44)
<C|| F@(ta)) ~ F(To(1s®") | +CH™ [ F@ ()1
Under the assumption (A’), from (3.44) and Lemma 3.2, we have
Weillo Slleglly +h™. (3.45)
Similarly, we have
IWgally Sllet I, +7m IWa L Slledlly + el +Am, (3.16)
(Wl S leg™ ||, +[lea™ ||+
Plugging (3.45) and (3.46) into (3.43), we have
W5l Ser (Iely+ 5 ,) +2mh™, o
IWall, Ser (leglly +[legt ||, +lledll +lleg™ ||,) +erh™.
According to the error equation (3.39), we get
6$+1 ol (n+1)1(V 6 +Zez(n k)T W\IJ"’E\I/)
(3.48)
eg-l‘ z(n+1)7’A 0 +Ze1(n k)TA (Wk +§ )
k=0
From (3.20), (3.22), (3.38), (3.47) and (3.48), we have
n+1 no
leg™ |, Sh™ +er®+er ) les]l, +||>_e TV F@ ()]
k=0 =0 2
n+1 n )
les™ [l shm+er®+er > (lleblly +llebll,) + ] e P3G (W(t), @(t))
k=0 k=0
(3.49)

Here we will use the RCO technique [3] for the last terms of (3.49). From the CNLSS
(2.9), we find that

WV —i(VY)U =cF(P)=0(e), 0P—iADP=eG(T,D)=0(e).
Thus, we introduce the twisted variables
Pp=e""VT =D, >0, (3.50)
which satisfy the equations

Op=ee M VI PP ), 9,p=ce PG (M V), e R ). (3.51)
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Under the assumption (A’), the solution of (3.51) satisfies

191l oo (0,70 /2] 2 (02)) T 18N oo 0,10 e+ (02)) S 1y (3.52)
1O e 0,0 s 117 +2 ) H 196 B M| e 0,73 e g+ ) S
As shown in [3], the RCO technique requires the following steps.
Step 1: Let 79€(0,1) and choose Mg=2[1/19] € Z* ([-] is the ceiling function)
with 1/79 < My/2<1+1/79. From the assumption (A’) and the properties of operators
V) (V)= and €2, we have

”PMOf(eitkAPMO¢(tk)) — F ("2 g(ty,))

<ertyt,
2

HPMog (%) Pasg (1), Pagy (t1) ) =G (T (ta) o2 6 (1) ) H <erry”.
1

(3.53)
Adding the two inequalities in (3.49) together and combining above estimates, we obtain

n+1

e+l S 4 -rer ver S (bl + ek ) +181 + 1751,
k=0
(3.54)
where
Jr = Ze—i(k-i-l)r(V)PMO]: (eitkAPMoqs(tk)) ,
jq? _ Zefi(kJrl)-rAPMog (e“k<V>PM01/J(tk),e“’“APMOqé(tk)) .
k=0

Step 2: Analyze the low Fourier mode terms 7§ and J3. For F(®) and G(¥,®),
we have
2

F(Q)=—i(V)"'2®, G(U,®)=> G9(¥,2), (3.56)
q=1
with
G(l)(\I/,rb):%\IJ(I), G<2)(x1/,<1>)=%m>. (3.57)

For t€R and q=1,2, defining G\? (¥, d) =e~*A G (V)T 2 ) and

GO(U(t,), B(t,)) =ce'™ < / ’ G (W (t,),D(t,))dz
0

- %T(Gg@ (T (), (1)) +G$‘”(\I’(tn)7<1>(tn))>> o (358)

recalling (3.2) and (3.21), we have

2 n
T§ =3 Tdq Tig=y e E 2 Prs, GO (o7 Pagy (). o Pasy (1))
q=1 k=0

(3.59)
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Since the estimates on Jg ; and Jg , are similar, we only give the bounds of Jy,Jg 1 (0 <
n<Toe t/7—1). For l €Qyy,, we define IZMO associated to [ as

Mo ={(l1,lo)|li +lo=1, 11,l2€ Qs } (3.60)

In view of Py to(te)= 3 i(tx)e(*=9) the following expansion holds
USIV

e—i(k+1)T<V>PM0 (eiT<V>Fz (eitkAPMo (b(tk)))

== > é”ﬁzl,lxz)ewﬂmk

1€Q (11712)61—;‘10

(3.61)
e—i(k+1)‘rAPM ( zTAG(l ( ity ( >PM01/)(tk))7eitkAPM0¢(tk))>
i in (z—a
= Z Z iHﬁlth (2)e & )’
1€Qnq (1y,15) ez}
where the coefficients Hlk,ll,h (z) and 7:[&11712 (z) are functions of z €R defined as
k —i(ty+z)d Y 7
Hip, 1,(2)=e (teF2)000002 oy (1), (te), (3.62)

Ly 1 (2) = e 0 Oy (84)dy (),
with

Oty =1/ L+ p2 + 47— pi s Oty 1y = 13 — NARNTH —pp, 1E€Q,. (3.63)

Thus, we have

Z Z Z Aﬁlhlzeimm_a)’

k OIGQMO (1, lg)EZMO

| (3.64)
(23
T 5D D S I
k:OlEQMo (ll,l2)€Il
where
-
k k z i : o k
A”l’lz:/ Hl7l17l2(z)d27§(,Hl,h,lz(o)+Hl,l1,l2(7—)):Tl,l17l2e ity l,11,126l7l1,l2’
| (3.65)

B

Ak o Nk T (K "k N —itrdy o Nk

AT, 0, —/ His,,(2)dz =5 (Hl,zl,zz (0)+Hiz, 1, (7)> =Ty 0,0 O
0

. . k k N .
with the coefficients Ciyte Thinlas Cpy and 77, 1, given by

I
A iy1e =00 ()b, (te), &0, 0y =01, (Er) P, (tr),

T —iz T —iT
rl,11,12:/0 e 5l»l11l2dz—§(1+e Sntz) =0 (73(810,05)7) s (3.66)

.

. i3 T a3 N

Tl,ll,lgz/ e ’Z6l=l1,12dz_§(1+e 1T5L,l1»12)20(73(61111’12)2),
0
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If 51,5171220 or 51,1171220, we obtain 71,0, =0 or T\’l,lth:O. Next we only need to
consider the case d;, 1, 70 and d;, 1, 0. For [ € Qg and (I1,15) EIIMD, we get

maX{|5l,ll,lz 15100,14 0, \} S\ L+ 134 2+ 20, 2

4m2(1479)2  87%(1+471)?
<1+ 2( 02) + 2( 02)'
1§ (b—a) 15(b—a)

We conclude that for given 0 < a <1 when

412(14-70)2 872 (1+70)>
0<r<2 1 , 3.67
= O‘”/( T2 T 202 (3.67)
there holds
T T, -
max { 210012, 591, ) S (3.68)
Denoting
n ) n ) R
Sii s :Ze_nk&l’h”v St 0 :Ze_mél’“’lzv n=0,1,--, (3.69)
k=0 k=0
we then obtain from (3.68) that
C
St < — < ,
RECE |$in(701,1,,15/2)] |70, 10
(3.70)
m 1 c 2am
|Sl,l1,12‘§ B S < — , C== .
|$in(7001,,15/2)] 7011, .0, sin(a)
Using summation by parts in (3.65) results in
n n—1
ZAﬁllylz =Tl [Z Slk,h,lg (Cég,lhlz _CiZ}lz)+Sl7,lllyl2chl,lQ‘| )
k=0 k=0
n 1 (3.71)
ZAﬁllJz =Tl ZSlthlz (6511,& _éiZ}l2)+Sﬁll7lzézl1,lz‘| ’
k=0 k=0
with
=, = <¢_>zl (tr) —¢_>ll(tk+1)> Py (t) + b, (tres1) (512 (te) — i, (tk+1)> ; 3.72)
3.72
el 1, = el = (Vi (00) =, (b)) dua (80 0, (i) (i (80) = B (b))
From (3.66), (3.70), (3.71) and (3.72), we get
n n—1 R R
> AL [ ST ] D (|¢l1(tk)—¢zl(tk+1)ll¢12(tk)|
k=0 k=0
1600, ()l s (8) = Dt ()] ) 721601, 1100, ()] 1 )],
(3.73)
n n—1
> Ay 1| 5700 Y (1 (00 = s (b 16 ()
k=0 k=0

+ [, (tes 1) ||, (81:) — D1, (tk+l)|) +7'2|5l,11712||l@l1 (tn)| b1y (ta).
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For 1 €Qyy, and (I1,l2) eIlMO, the following inequalities are true
10001 | SV (g + g )2+ 0, + iy, S (U ) (L),
100,01,02 1 < Gty + ) /1 i, 44y S (L 4, ) (L4 4, )

Based on (3.64), (3.73) and (3.74), noticing 8; =+/1+ 7, we have

2

Hj\g”g =¢” Z (1+Ul2) Z ZAﬁlhlz

L€, (11,12)ez}Mo k=0

(3.74)

55274{712 > (L+ud) S 16 () = b (el (8) T (14 422)
j=1

k=01, (llylz)GIlMO

V]

n—1 2
+nz Z (1+pi) Z |61, (ts1) ||y (tr) — Pry (trs) 1_[1 1+M
s

k:OlEQMo (ll,lz)GZlMO

2

+ 3 A | D 10 )iy (b H1+Mz } (3.75)

1€, (t1,12)€T}10

and

[Teali=e" > a+u)| S0 DAl

leQ (ll,lg>eIlM° k=0

n—1 2
55274{n2 Z (14 ui) E |1, () — D1y (tg1) || by (£ H 1+“l
j=1

k=01€, (llylz)EIlMO
2
n—1 . N R 2
+nd 0 Y () S 1 )l (b)) — by (b )| T [ (14 118))
k=01€Q, (1) ezMo j=1
2
N R 2
FY aed | X Wl o [[a4e) } (3.76)
L€ (11,12)ez]Mo J=1
For the last terms of (3.75) and (3.76), we use the auxiliary functions
(@)=Y (L) |du(ta) ™ =0, (@)= (L i) i) 1),
lez . | 1€z (3.77)
ng(x) =D (1+u7)|du(ta)le™ "=,
ez

From the assumption (A’) and (3.77), we get

Iy (@)l SNoEn) gy s<m,
Ins @), SNéta)llarar ns@), SNot)4er s<m—1,
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which means that 7, (z) € H™ () and ng(x),ng(x) € H™'(Q). Expanding

2
)= > W)l (b H L pf, Yt =a),

leZli+12=1

2
Z Z ‘qsll H(blz H 1+M ““(I_a)7

leZli+1x=I

leads to the following results

2

S| Y o ta)lldn ) T+ 4E)

IGQJ\/IO (ll l2)€IJVIO Jj=1

< ||ng@me @) < 13 @)|[3 Ine (@)1 < llé(ta)l3,

2
2

YooU+u) | D Wua)lldn ) [ +ui)

lEQMO (l1,l2)€IlN[O Jj=1
2 2 2 2 2
<liny @)ng (@)I15 < lIny (@)1 76 (@) < [ E) 15 16E)]5-

Similarly, we could estimate each term in (3.75) and (3.76) as

n—1
17g 115 Se*r* (nz 6(tk) — &t 3 16t 115
k=0

n—1

+n Y o(tra) 3 160t) — e(trn) 5+ o) 3 ¢(tn)||§> Sert,
k=0
(3.78)

n—1
|78 ||} se*rt <nz [ (tk) = () lI5 () 15
k=0

n—1
+nd) ||w<tk+1>||§||¢<tk>—¢<tk+1>||§+||¢<tn>||§||¢<tn>|;‘;) <errt,

k=0

In the same process, we have the estimates ng,ZH? <274, Substituting the estimates
for 73, Jg 1, T4 5 into (3.54), we have

n+1
e [l + lles ], Sh™ +7" +er*+er > (lewll, +llesll,)- (3.79)
k=0

Defining £" = ||ei ||, + [|eg ||, as the energy and then using discrete Gronwall lemma, we
conclude that for sufficiently small value 71 >0, when 0 <7y <7y,

len |, +[lea* ||, SH™ 47 +er?, n=0,--,Toe™ 7 -1, (3.80)

where we need to note that 7 is constrained by 7 in the condition (3.11) of the theorem.
Then, it is easy to check that there exist sufficiently small values ho >0 and 75 >0, when
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0<h<hsy and 0< 19 <79, the following result holds

| 82| <€ [+ 10 )l SA™ + 78+ 7%+ My <1+ Mo,

~

(3.81)

~

HIM‘i’"HHl <[leg™ ||, + 1)l SA™ +78" +e7° + Mo < 1+ M.

The choice of hg =min{h1,hs} and 7o =min{7, 72} completes the proof of Theorem 3.3.

Proof of Theorem 3.2. From (3.7), we know that for such 7y and hg, the modified
EWIFP method (3.8) collapses exactly to the EWIFP method (2.25), which implies that
Theorem 3.2 is ture.

Proof of Theorem 3.1. From (3.5) and (2.27), we have

[u(-stn) = Ingu ||y = [Re (U (-, tn) = Tng ©™) |, SA™ +78" 4277,
(s tn) = Tngi™ | = (V) Tm(W () = e ) (3.82)
< Im (W (- tn) = Ing ™) ||, SA™ 473" +e7°.

Combining (3.80) and (3.82), we obtain Theorem 3.1.

REMARK 3.2. From the analysis of this paper and existing literature, we know that
the 74,4, and 7, 1, in (3.66) are critical and necessary. Specifically, the r;;, ;, and
71,11, need to satisfy the conditions as

T 0, =0 (73(51,11,12)k) s T, =0 (Ts(gl,ll,lz)k) , k>1, (3.83)

in order to obtain the improved uniform error bounds.

REMARK 3.3. Actually the proposed scheme is the Deuflhard-type exponential inte-
grator in time, which is exactly the same as the scheme obtained from the second-order
time splitting method by choosing an appropriate splitting. Similarly, we can get the
Gautschi-type exponential integrator for the CNLSS (2.9) as

gt — i (V) glnl | %6@1(i<v>r) (F(<I>[”]) +F(<I>[”+1])) ,
‘ (3.84)
Plnt1) — gitAglnl 4 %wl(im) (G(\I;[n],q)[n]) +G(\I,[n+1]7q)[n+1])> :

where ¢1(z) = fol e(1=9)2d¢. However, the same improved error estimate (3.1) is no longer
valid for the method (3.84) applied to the KGSE (2.1)-(2.4) because the conditions
(3.83) no longer hold. More generally, for the various other variations or extensions of
the Gautschi-type exponential integrator, improved error bounds also often no longer
hold. In addition, the method (3.84) can not be applied in an explicit way as (2.22) in
the actual calculation.

4. Numerical experiment
This section presents the numerical results of the EWIFP method (2.25)-(2.27) to
show our improved error bounds.

4.1. The long-time dynamics in 1D. 1In 1D, we take Top=1, (a,b)=(0,27)
and

(@00 = (5o Treer o)

2+cos?(z)’ 1+4cos?(z)’ 1+sin’(x)
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For the characterization of errors, we define
e tn)llo = llultn) = Inau"ly + 1 0pu(stn) = g™ ||y +[|R( tn) = Ins @™l -

Table 4.1 shows the difference in the temporal errors for different 7 and & with h=m/25.
Here, in order to show that the time error magnitude of the method is O(e72), we adopt
lle(-,tn)|l, /€ and just show that its magnitude is O(72) in time. Table 4.2 shows the
difference in the spatial error for different h and & with 7=10"%.

lle(-,1/e)][2/e T0=0.1  70/2 T0/22 70/2° 70/2% 70/2°
co=1 6.50E—3 1.60E—3 3.8TE—4 9.65E—5 2.41E—5 6.02E—6

order — 2.03 2.04 2.01 2.00 2.00
€0/2 7.23E—3 1.70E—3 4.19E—4 1.04dE—4 2.61E—5 6.51E—6
order — 2.09 2.02 2.00 2.00 2.00
£0/2° 5.51E—3 1.24E—3 2.98E—4 7.42E—5 1.85E—5 4.63E—6
order — 2.15 2.06 2.00 2.00 2.00
g0/23 6.60E—3 1.40E—3 3.29E—4 8.19E—5 2.056E—5 5.11E—6
order - 2.23 2.09 2.00 2.00 2.00
g0/2% 7.85E—3 1.68E—3 4.00E—4 1.01E—4 2.52E—5 6.30E—6
order — 2.22 2.06 2.00 2.00 2.00
£0/2° 5.43E—3 1.33E—3 2.99E—4 746E—5 1.86E—5 4.65E—6
order — 2.03 2.15 2.01 2.00 2.00

TABLE 4.1. Temporal errors of EWIFP with different T and €.

||€(',1/€)||2 h0=7T/2 h0/2 ho/22 h0/23 h0/24
gg=1 276E—1 3.24E—-2 3.07E—3 7.44E—-6 2.44E—11
£0/2 2.61E—1 4.72E—-2 3.41E—-3 6.11E—6 2.88E—11
£0/2? 1.49E—-1 4.97E—-2 3.69E—-3 7.85E—6 3.18E—11
£0/23 1.62E—-1 2.14E-2 2.68E—3 1.71IE—6 6.27TE—11
g0/2*  8.91E—2 4.25E—2 8.30E—4 3.37TE—6 8.60E—11
g£0/2° 141E—1 2.79E—-2 1.70E—3 5.21E—6 1.35E—10

TABLE 4.2. Spatial errors of EWIFP for different h and .

And we know that the time symmetric methods tend to show good properties in
terms of structure-preservation. Because our method is time symmetric, next we will
show the long-term stability of the discrete mass and energy of the EWIFP method.
We take h=7/2 and 7=0.1 and the long enough time interval [0,1000]. The errors
of discrete mass and energy are shown in Figure 4.1. Here, the expressions of discrete
mass and discrete energy are

M—1
Mt =[@"|=h )y |27, n>0,
§=0

1 , M-—1
B = (1 Do o ) + 1220 = eh 3 i, n0,
§=0
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F1G. 4.1. Long-term mass stability (left) and energy stability (right) for EWIFP.

respectively, where (D u™); is given as

(Dyu™); = Z im({ﬁ)leiuz(z]‘—a) — Z /L'Ml(/l/;ﬁ)IGQijlﬂ/M’

1€EQMm 1€Qm

From Tables 4.1-4.2 and Figure 4.1, we can draw the following observations up to the
long-time at O(1/¢): (i) The temporal errors of the method behave like O(e72) (see Table
4.1). This means that the method has improved error bounds in time. (ii) In space,
the errors of the method are at O(h™) for any e € (0,1] (see Table 4.2). In other words,
the method is uniformly accurate in space and has spectral order precision. (iii) The
method exhibits good long-term stability of the discrete mass and energy because it is
time symmetric. (iv) The improved error bounds of the method are always true without
any CFL-type condition constraint. In summary, the results of numerical experiments
support our error estimates and theoretical analysis.

REMARK 4.1. In the numerical results, the errors of the mass and energy look
dependent on the small parameter e. More numerical results not listed here show that
for a very long time much larger than O(1/e), the the errors of the mass and energy
behave O(e) in time for given 7 and h. For explaining this phenomenon in detail,
we may need to make use of some other tools such as modulated Fourier expansion
(MFE) [22,23]. The specific analysis is very tedious and we will not discuss it in detail
due to the limitation of space because the main task of this paper is to study the
improved error bounds.

REMARK 4.2. Generally speaking, if one combines the use of time splitting or
Deuflhard-type exponential integrator in time and finite difference discretization in
space, improved error bounds still hold in time. However, the spatial accuracy tends
to worsen. For example, if approximating the Laplacian operator A by second-order
central difference operator §2 as

1

and then considering the Deuflhard-type exponential integrator for the resulting space
semi-discrete system, we obtain the improved error bounds O(e " th?+¢e72). The de-
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tailed proof process is similar and omitted. Tables 4.3-4.4 show the temporal errors and
spatial errors, respectively, which support our conclusion. Here we denote the scheme
consisting of exponential wave integrator in time and finite difference discretization in
space as EWIFD.

lle(-,1/e)][2/e T0=0.1  70/2 T0/22 T0/23 10/2% T0/2°
co=1 6.83E—3 1.55E—3 3.75E—4 9.35E—5 2.34E—5 5.83E—6

order — 2.14 2.04 2.00 2.00 2.00
€0/2 7.60E—3 1.68E—3 4.08E—4 1.02E—4 2.54E—-5 6.35E—6
order — 2.19 2.04 2.00 2.00 2.00
£0/2? 5.8TE—3 1.49E—-3 3.45E—4 8.57TE—5 2.14E—-5 5.34E—-6
order — 1.98 2.11 2.01 2.00 2.00
£0/23 6.94E—3 1.60E—3 3.68E—4 9.16E—5 2.29E—-5 5.72E—6
order — 2.12 2.12 2.00 2.00 2.00
g0/2% 6.53E—3 1.41E—3 3.40E—4 8.46E—5 2.11E—5 5.28E—6
order — 2.21 2.05 2.00 2.00 2.00
£0/2° 5.19E-3 1.31E—-3 297TE—-4 7.39E—-5 1.84E—5 4.61E—6
order — 1.99 2.14 2.01 2.00 2.00

TABLE 4.3. Temporal errors of EWIFD with different T and €.

le(\1/e)l2 ho=m/2"  ho/2 — ho/2>  ho/2°  ho/2?
co—1 B3.48E—3 8.73E—4 2.18E—4 5.46E—5 1.36E—5

order — 2.00 2.00 2.00 2.00
go/4 1.40E—2 3.56E—3 891E—4 2.23E—4 5.57TE—5
order — 1.98 2.00 2.00 2.00
co/42 5.00E—2 1.39E—2 3.53E—3 8.84E—4 2.21E—4
order — 1.85 1.97 2.00 2.00
g0/43 1.43E—1 4.99E—2 1.38E—-2 3.52E—3 8.82E—4
order — 1.52 1.85 1.97 2.00
go/4% 3.78E—1 1.43E—1 4.99E—2 1.38E—2 3.52E—3
order — 1.40 1.52 1.85 1.97

TABLE 4.4. Spatial errors of EWIFD for different h and .

4.2. The long-time dynamics in 2D. Here we take Q= (0,27) x (0,27), To=1
and

—_

1
1+4cos?(z) +cos?(y)’

0 _ -0 _
u (x’y)—2+COS2($ +COS2(y), u («I,y)

— —

(I)O(x,y):

1+sin?(z) +sin’(y)

~
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Table 4.5 and Table 4.6 show the temporal and spatial errors of EWIFP, respectively.

H@(',l/é‘)”g/e’:‘ T():O.l 7'0/2 70/22 7'0/23 7'0/24 7'0/25
eo=1 5.22E—-3 1.10E—3 2.60E—4 6.47TE—5 1.61E—5 4.03E—6

order — 2.25 2.08 2.01 2.00 2.00
€0/2 5.09E-3 1.19E—-3 2.69E—4 6.70E—5 1.67TE—5 4.18E—6
order — 2.10 2.14 2.00 2.00 2.00
£0/2% 5.38E-39.91E—-4 2.30E—-4 5.73E—5 1.43E—5 3.58E—6
order — 2.44 2.10 2.01 2.00 2.00
g0/23 4.92E—-39.26E—4 2.00E—-4 4.98E—-5 1.24E—-5 3.10E—6
order — 2.41 2.21 2.01 2.00 2.00
g0/2% 5.43E—3 1.08E—3 2.58E—4 6.42E—-5 1.60E —5 4.00E — 6
order — 2.33 2.06 2.00 2.00 2.00
£0/2° 4.16E—3 8.90E—4 2.04E—4 5.08E—5 1.27TE—5 3.17TE—6
order — 2.23 2.12 2.01 2.00 2.00

TABLE 4.5. Long-time temporal errors of EWIFP for different 7 and € in 2D.

||6(',1/5)||2 h0:7T/2 h0/2 h0/22 h0/23 h0/24
eo=1 342E—-1347TE—-2222E-34.41E-6 3.17TE—-11
€0/2 284E—-1394E-22.27E-3 3.43E—-6 4.75E—11
£0/2° 2.80E—14.89E—2 2.53E -3 4.73E—6 4.55E—11
£0/2%  242E—14.17TE—22.02E—3 9.24E—7 8.29E—11
g0/2*  1.60E—1 4.68E—2 8.29E—4 1.64E—6 8.57TE—11
50/25 1.90E—-13.17TE—-2 1.39E—-3 2.57TE—-6 1.27TE—10

TABLE 4.6. Long-time spatial errors of EWIFP for different h and ¢ in 2D.

The long-term mass-stability and energy-stability of EWIFP in 2D are shown in
Figure 4.2. From Tables 4.5-4.6 and Figure 4.2, we can be sure that our theoretical

The mass stability of EWIFP The energy stability of EWIFP
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|
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Fic. 4.2. The errors of mass (left) and energy (right) for EWIFP in 2D.

results apply to two-dimensional problems as well.
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5. Conclusions and discussions

We applied an EWIFP method to the KGSE with ¢ € (0,1] and analyzed its long-
time errors up to the long time at O(1/¢). The method was proved to have time
symmetry and is efficient thanks to the FFT. By rigorous error analysis, we established
improved uniform error bounds of the method at O(h™ +&e72) up to the time at O(1/¢).
Compared with the existing results, our work focuses on the long-time numerical error
analysis for the KGSE. In error analysis, in addition to classical tools such as the energy
method and cut-off technique, we also adopted the regularity compensation oscillation
(RCO) technique which has been developed recently to analyze the accumulation of
errors carefully. The numerical experiments were presented to support our long-time
error estimates and demonstrate the long-term stability of discrete mass and energy.

Acknowledgments. The authors are grateful to the anonymous reviewers for their
valuable suggestions, which helped to improve this paper significantly.
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