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APPROXIMATE PRIMAL-DUAL FIXED-POINT BASED LANGEVIN
ALGORITHMS FOR NON-SMOOTH CONVEX POTENTIALS∗

ZIRUO CAI† , JINGLAI LI‡ , AND XIAOQUN ZHANG§

Abstract. The Langevin algorithms are frequently used to sample the posterior distributions in
Bayesian inference. In many practical problems, however, the posterior distributions often consist of
non-differentiable components, posing challenges for the standard Langevin algorithms, as they require
to evaluate the gradient of the energy function in each iteration. To this end, a popular remedy is
to utilize the proximity operator, and as a result one needs to solve a proximity subproblem in each
iteration. The conventional practice is to solve the subproblems accurately, which can be exceedingly
expensive, as the subproblem needs to be solved in each iteration. We propose an approximate primal-
dual fixed-point algorithm for solving the subproblem, which only seeks an approximate solution of the
subproblem and therefore reduces the computational cost considerably. We provide theoretical analysis
of the proposed method and also demonstrate its performance with numerical examples.

Keywords. Bayesian inference; Langevin alorithms; non-smooth convex potentials; proximity
operators.
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1. Introduction

The Bayesian inference approach has become increasingly popular as a tool for
solving inverse problems [19, 36], largely due to its ability to quantify the uncertainty
in the results. Simply put the Bayesian approach casts the sought parameter as a
random variable and computes its a posterior probability distribution, conditional on
the data observed. The ability to accurately and efficiently compute the posterior
distribution is crucial for the implementation of the Bayesian framework in real-world
problems. A common practice to compute the posterior distributions is to generate
samples from them, via some sampling schemes, such as the Markov Chain Monte
Carlo (MCMC) methods [18]. To this end, the Langevin algorithm based Monte Carlo
(LMC) methods [15,26,27,34] attract significant attention, mainly due to its ability to
efficiently explore the state space. Loosely speaking, the Langevin algorithm consists of
the following steps: it first constructs a Langevin system with the target distribution
as its invariant measure, numerically solves the resulting Langevin system with random
initial conditions for sufficiently long time, and regards the final states as samples drawn
from the target distribution. In particular the Langevin systems are usually solved
with the Euler-Maruyama discretization, yielding a sampling scheme analogous to the
gradient descent method for optimization. The algorithm can be incorporated into a
MCMC framework by adding a Metropolis-Hastings accept-reject step, resulting in the
so-called Metropolis-adjusted Langevin algorithm (MALA) [14,31–34,37]; as a contrast,
the Langevin algorithms without the Metropolis adjustment are usually referred to
as the unadjusted Langevin algorithms (ULA). We consider both types of Langevin
algorithms in this work.
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The standard Langevin algorithms require the evaluation of the gradient of the en-
ergy function associated to the target distribution in each iteration. In many Bayesian
inverse problems, however, non-differentiable prior distributions are often used – a no-
table example is the Total Variation (TV) prior used in image reconstruction problems.
In such problems the posteriors are also not differentiable, which renders the stan-
dard LMC algorithms infeasible. Considerable efforts have been devoted to developing
Langevin algorithms for non-differentiable distributions [6, 13,21–23,25,29,35]

Among the existing methods, a very popular class of methods borrows ideas from
the non-smooth optimization research, constructing an approximation of the actual
target distribution, and as a result a convex proximity subproblem is solved in each
iteration [13, 23, 25, 29]. This idea has been used in both Metropolis adjusted and the
unadjusted algorithms. The computational cost of these methods is typically much
higher than the standard Langevin algorithms, as they require to solve a proximity
subproblem in each iteration. In this regard, it is of critical importance to improve the
efficiency in solving the subproblem. This work is devoted to addressing the issue and
our approach has the following two main ingredients. First, we adopt the primal-dual
fixed point (PDFP) method developed in [7] for non-smooth convex composite potentials
U(x)=f(x)+g(Bx) to solve the proximity subproblem. Simply speaking, PDFP solves
a non-smooth optimization problem using the primal-dual formulation, and it has been
shown that the method has many desired theoretical and computational properties
in [7, 38]. More importantly, we propose that, it may not be necessary to solve the
subproblem accurately as is usually done in the existing methods; rather an approximate
solution obtained by conducting a small number of optimization iterations may suffice
for the sampling accuracy while reducing the computational cost considerably. We study
the strategy via both theoretical analysis and numerical experiments. Theoretically we
provide analysis of the sampling error due to the finite-step subproblem optimization.
Via numerical experiments, we demonstrate that the approximate PDFP (i.e., that with
a small number of optimization iterations) based Langevin algorithms, especially the
Metropolis-adjusted version, have very competitive performance in terms of sampling
efficiency.

The rest of the paper is organized as follows: Section 2 reviews the standard
Langevin algorithms for smooth distributions. Section 3 considers sampling non-smooth
distributions and introduces the proximal MALA (PMALA) approach in particular. We
present the approximate PDFP based Langevin algorithm in Section 4 and provide its
nonasymptotic error analysis in Section 5. Two numerical examples are provided in Sec-
tion 6 to demonstrate the performance of the proposed methods and finally Section 7
concludes the paper.

2. The standard Langevin algorithms

We start with a brief introduction to the standard Langevin algorithms for differ-
entiable energy functions. Our goal here is to draw samples from a probability density
in the form of

π(θ)∝ exp(−U(θ)), θ∈Rd, (2.1)

where U(θ) is the energy function. Throughout this work we assume that the energy
function U(θ) is convex and lower semi-continuous, which is an essential presumption for
many theoretical studies. Note here that the normalizing constant of π in Equation (2.1)
is usually not available in practice, and as such the sampling methods should not require
its knowledge.
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Assuming U(θ) is differentiable, we can write down the following Langevin system:

dLt=∇ logπ(Lt)dt+
√
2dWt

=−∇U(Lt)dt+
√
2dWt, (2.2)

where Wt is a standard Wiener process. It should be clear that π is the invariant
distribution of process Lt. Apply the Euler-Maruyama discretization to Equation (2.2),
and we obtain the ULA update:

Algorithm 1: ULA

Result: {θn}Nn=1.
LU : Lipschitz constant of ∇U .

Set δ∈ (0,1/LU ], θ0∈Rd.

for n=0 to N−1 do

θn+1=θn−δ∇U (θn)+
√
2δξn, ξn∼N (0,I).

The choice of δ is given by [9] that an upper bound of δ related to the Lipschitz
continuity of ∇U should imply the convergence of ULA, and an upper bound of EU(θn).

To remove the bias of ULA, a popular adjustment is to add a Metropolis step to
this ULA [31–33], resulting in the following procedure:

• Propose a new state by ULA: Yn+1=θn−δ∇U (θn)+
√
2δξn, ξn∼N (0,I).

• Compute acceptance rate: A(Yn+1,θn)=min

(
1,
π(Yn+1)

π(θn)
· p(θn|Yn+1)

p(Yn+1|θn)

)

=min

1,
π(Yn+1)

π(θn)
·
exp

(
− 1

4δ
∥θn−Yn+1−δ∇U(Yn+1)∥22

)
exp

(
− 1

4δ
∥Yn+1−θn−δ∇U(θn)∥22

)
.

• Draw a∼U [0,1].

• If a<A(Yn+1,θn); let θn+1=Yn+1; otherwise, let θn+1=θn.

The theoretical properties of the ULA have been extensively studied. Provided
that one can have access to the accurate gradient ∇U , the nonasymptotic analysis
on convergence and errors is given in [9] for strongly convex U and [12] for convex U .
Moreover, [11] studies the problem in the convex optimization perspective, by separately
considering the gradient descent step and the random walk step in the ULA iteration.
When the accurate evaluations of the gradient ∇U are not available, [10] investigates
the case of using inaccurate gradient when U is strongly convex. Many techniques and
results provided in [9] will be used here in our theoretical analysis.

3. Langevin algorithms for non-smooth distributions

In many real-world applications the energy function U includes some non-
differentiable terms. Obviously the ULA and the MALA algorithms introduced in Sec-
tion 2 can not be used directly in this case. A straightforward solution is to use the
subgradient of U(·) in such problems, but the algorithm becomes significantly inefficient
compared to the case of a smooth distribution as is demonstrated in [29]. In this section
we will discuss a proximal Langevin algorithm framework [13,29] for non-differentiable
energy functions.
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3.1. Definitions and propositions. We first provide some definitions and lem-
mas that are used in the rest of this work, all of which can be found in [1, 3].

Definition 3.1. The proximity operator proxf (x) :Rd→Rd of function f :Rd→R is
defined by

proxf (x) :=arg min
u∈Rd

(
∥u−x∥2

2
+f(u)

)
. (3.1)

Definition 3.2. An operator T :Rd→Rd is firmly nonexpansive if and only if

∥Tx−Ty∥22⩽ ⟨Tx−Ty,x−y⟩ , ∀x,y∈Rd.

Definition 3.3. Let m∈R,m>0. A function f is m-strongly convex if only if

f(y)⩾f(x)+⟨∇f(x),y−x⟩+m

2
∥y−x∥22 , ∀x,y∈Rd. (3.2)

Lemma 3.1. Let m∈R,m>0. If f is m-strongly convex, then

⟨x−y,∇f(x)−∇f(y)⟩⩾m∥x−y∥22, ∀x,y∈Rd. (3.3)

Lemma 3.2. Let m∈R,m>0. Function h(x) is m-strongly convex if and only if

h(x)−m

2
∥x∥22 is convex.

Lemma 3.3. For convex function f :Rd→R, proxf and I−proxf are firmly nonex-
pansive operators.

Definition 3.4. Function f has M -Lipschitz continuous gradient if

∥∇f(x)−∇f(y)∥2⩽M∥x−y∥2, ∀x,y∈Rd. (3.4)

Lemma 3.4. If f has M -Lipschitz continuous gradient, then

f(y)⩽f(x)+⟨∇f(x),y−x⟩+M

2
∥y−x∥22 , ∀x,y∈Rd. (3.5)

Moreover, if f is convex, then

M⟨x−y,∇f(x)−∇f(y)⟩⩾∥∇f(x)−∇f(y)∥22, ∀x,y∈Rd. (3.6)

Definition 3.5. The conjugate function of function g is defined by

g∗(v)= sup
y∈dom(g)

(
vT y−g(y)

)
, (3.7)

where v∈V =dom(g∗)={v|g∗(v)<∞}.
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3.2. Proximal Langevin algorithms. To tackle this situation when U is
convex but non-smooth, [29] and [13, 30] respectively replace the original π with two
continuously differentiable distributions which can be arbitrarily close to π. In this work
we follow the Moreau approximation settings in [29], for any ρ>0, define the ρ−Moreau
approximation of π as

πρ(θ)=
1

K ′ sup
u∈Rd

(
π(u)exp

(
−∥u−θ∥2

2ρ

))
. (3.8)

By simple computation,

πρ(θ)=
1

K ′ exp(−Uρ(θ)), (3.9)

where

Uρ(θ)= min
y∈Rd

(
U(y)+

∥y−θ∥22
2ρ

)
=U(proxρU (θ))+

∥proxρU (θ)−θ∥2

2ρ

is the Moreau envelope [24] of U(θ). By [1,8], πρ and Uρ have several useful properties
summarized in Lemma 3.5:

Lemma 3.5.
(1) When ρ→0, πρ(θ)→π(θ) pointwisely and Uρ(θ)→U(θ) pointwisely.

(2) Uρ(θ) is convex and has 1
ρ−Lipschitz continuous gradient.

(3) U(θ) and Uρ(θ) have the same minimizers.

(4) Even though π and U can be non-differentiable, πρ and Uρ are continuously
differentiable and

∇Uρ(θ)=
θ−proxρU (θ)

ρ
. (3.10)

Replace the original π with πρ in Langevin diffusion (2.2) and one obtains the SDE

dLρ
t =∇ logπρ(L

ρ
t )dt+

√
2dWt

=−∇Uρ(L
ρ
t )dt+

√
2dWt. (3.11)

Here the solution Lρ
t →πρ in TV norm as t→+∞ from Lemma 5.8 (see also Lemma 1

in [9]). By Euler-Maruyama discretization and Lemma 3.5 (4) one obtains the proximal
ULA [29]:

θn+1=θn−δ∇Uρ (θn)+
√
2δξn

=θn−δ
θn−proxρU (θn)

ρ
+
√
2δξn, ξn∼N (0,I)

=

(
1− δ

ρ

)
θn+

δ

ρ
proxρU (θn)+

√
2δξn, ξn∼N (0,I). (3.12)

Basically ρ is the parameter of the Moreau approximation and δ is the stepsize of
the Euler-Maruyama discretization, therefore δ should be independent of ρ. For the
stability of the algorithm δ should be within (0,ρ] (Proposition 1 in [9]), and [29] sets
δ=ρ yielding a more concise algorithm:

⇒θn+1=proxδh (θn)+
√
2δξn, ξn∼N (0,I). (3.13)
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Algorithm 2: Proximal ULA

Result: {θn}Nn=1.
Set ρ>0, δ∈ (0,ρ], θ0∈Rd.
for n=0 to N−1 do

θn+1=

(
1− δ

ρ

)
θn+

δ

ρ
proxρU (θn)+

√
2δξn, ξn∼N (0,I)

However, for discretization error analysis one should fix ρ and let δ→0. In this work,
we do not constrain δ to be equal to ρ and in the later section we denote proximal ULA
by Algorithm 2.

So far, proximal ULA (Algorithm 2) has introduced two errors to draw samples from
π: one is the Moreau approximation error from π to πρ, another is the discretization
error from Langevin diffusion (3.11) to Algorithm 2. One can eliminate these errors by
adding a Metropolis-Hastings accept-reject step [31–34] and turns proximal ULA into
proximal Metropolis-Adjusted Langevin Algorithm (MALA) [29]:

Algorithm 3: Proximal MALA

Result: {θn}Nn=1.
Set ρ>0, δ∈ (0,ρ], θ0∈Rd.

for n=0 to N−1 do
if n>0 then

Compute proxρU (θn) according to the previous accept-reject step:

proxρU (θn)=proxρU (θn−1), or proxρU (θn)=proxρU (Yn)

Propose a new state by proximal ULA:

Yn+1=

(
1− δ

ρ

)
θn+

δ

ρ
proxρU (θn)+

√
2δξn, ξn∼N (0,I)

Compute acceptance rate: A(Yn+1,θn)=min

(
1,
π(Yn+1)

π(θn)
· p(θn|Yn+1)

p(Yn+1|θn)

)

=min

1,
π(Yn+1)

π(θn)
·
exp

(
− 1

4δ

∥∥∥θn−(1− δ
ρ

)
Yn+1− δ

ρ proxρU (Yn+1)
∥∥∥2
2

)
exp

(
− 1

4δ

∥∥∥Yn+1−
(
1− δ

ρ

)
θn− δ

ρ proxρU (θn)
∥∥∥2
2

)


Sample a from uniform distribution: a∼U [0,1].

if a<A(Yn+1,θn) then
Accept Yn+1: θn+1=Yn+1

else
Reject Yn+1: θn+1=θn

From above, {θn}Nn=1 in Algorithm 3 is actually a Metropolis-Hastings Markov
chain proposed by proximal ULA. Noted that the information of the Moreau ap-
proximation πρ is included in the proposal step but in the accept-reject step π is
evaluated instead. For efficient computation, in the n-th iteration we need to know
both proxρU (θn) and proxρU (Yn+1), but actually only proxρU (Yn+1) need to be com-
puted since proxρU (θn) can be obtained from the (n−1)-th iteration: If θn=Yn then
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proxρU (θn)=proxρU (Yn), which has been computed in the (n−1)-th iteration. If
θn=θn−1 then proxρU (θn)=proxρU (θn−1). The challenge is, each iteration of the sam-
pling scheme involves solving an optimization problem proxρU (x). In both PMALA [29]
and MYULA [30], the algorithm of [4] is used to solve the subproblem, and in next sec-
tion we will discuss an alternative method for this.

4. The approximate PDFP based Langevin Algorithms

4.1. The primal-dual fixed point algorithm. Before considering drawing
samples from the given distribution π(θ), in this section we introduce the Primal-Dual
Fixed Point (PDFP) algorithm developed in [7] and some of its theoretical results. Here
we assume that the energy function U can be decomposed into two parts

U(x)=f(x)+g(Bx), (4.1)

where

• f is convex and continuously differentiable with a M2−Lipschitz gradient.

• B is a linear operator.

• g is convex and perhaps non-differentiable but having a proximity operator
proxg(x) which is generally easy to compute.

Note here that Equation (4.1) is a very generic form of posterior distributions in Bayesian
inference.

Recall the following convex minimization problem which can be understood as com-
puting a point estimator by maximizing the posterior distribution:

min
x∈Rd

f(x)+g(Bx). (4.2)

Alternatively, Equation (4.2) can be reformulated as a min-max problem

min
x∈Rd

max
v∈V

f(x)+⟨Bx,v⟩−g∗(v). (4.3)

Both problem (4.2) and its min-max reformulation (4.3) have been well studied in the
last decades, e.g., [5, 16]. The PDFP method (detailed in Algorithm 4) is a fixed point
iteration based algorithm to solve the min-max problem (4.3) and consequently it solves
problem (4.2) as well.

Algorithm 4: Primal-Dual Fixed Point method for problem (4.2)

Result: {xk}Kk=1.

Set 0<λ⩽
1

λmax(BBT )
, 0<γ<

2

M2
, x0∈Rd, v0∈V .

for k=0 to K−1 do
yk+1=xk−γ∇f(xk)−γBT vk

vk+1=proxλ
γ g∗

(
λ

γ
Byk+1+vk

)
xk+1=xk−γ∇f(xk)−γBT vk+1

As one can see, Algorithm 4 generates two sequences, the primal variable sequence
{xk}Kk=1 and the dual variable sequence {vk}Kk=1. For the min-max problem (4.3), xk

and vk will converge to the optimal primal point x∗ and the optimal dual point v∗
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respectively. Note that the convergence of PDFP (Algorithm 4) does not require the
strong convexity of U(x), but from Theorem 3.7 in [7] one has the linear convergence
rate when f(x) is strongly convex and ρmin(BBT )>0.

To simplify the notation, in the k-th iteration of Algorithm 4 one denotes T1(vk,xk)
and T2(vk,xk) byvk+1=proxλ

γ g∗

(
λ

γ
B
(
xk−γ∇f(xk)−γBT vk

)
+vk

)
=:T1(vk,xk)

xk+1=xk−γ∇f(xk)−γBTT1(vk,xk) =:T2(vk,xk).

(4.4)

Define the operator T (v,x) by

T (vk,xk) :=(vk+1,xk+1)=(T1(vk,xk),T2(vk,xk)), (4.5)

then one can deduce the fixed point property of PDFP proved in [7]:

Lemma 4.1. (v∗,x∗) is a fixed point of T :

(v∗,x∗)=T (v∗,x∗), (4.6)

which is v∗=proxλ
γ g∗

(
λ

γ
B (x∗−γ∇f(x∗))+(I−λBBT )v∗

)
x∗=x∗−γ∇f(x∗)−γBT v∗.

(4.7)

Different from Theorem 3.7 in [7], here we give another version of the linear conver-
gence lemma of PDFP. This lemma shows that xk→x∗ and vk→v∗ simultaneously,
but the linear convergence rate is for (v,x) with the norm defined by ∥(v,x)∥ γ2

λ

:=√
∥x∥22+

γ2

λ
∥v∥22, which means xk alone does not necessarily converge at a linear rate

to x∗ ignoring vk. For the simplification of notation we define ϕ(x) :=x−γ∇f(x),
M := I−λBBT .

Lemma 4.2. Assume that x∗ and v∗ are the optimal solutions of problem (4.3).
Assume that {xk}k and {vk}k are the two sequences generated by Algorithm 4. Assume
that γ,λ are the parameters in Algorithm 4. If ρmin(BBT )>0 and ∃η1∈ [0,1) such that
∥ϕ(x)−ϕ(y)∥2⩽η1∥x−y∥2, ∀x,y∈Rd, then ∀k∈N,

∥xk−x∗∥22+
γ2

λ
∥vk−v∗∥22⩽ηk

(
∥x0−x∗∥22+

γ2

λ
∥v0−v∗∥22

)
, 0⩽η<1, (4.8)

where η=max
(
η21 ,1−λρmin(BBT )

)
.

Proof. See Appendix A.1.

Remark 4.1. If f is mf -strongly convex, then the condition that ∥ϕ(x)−ϕ(y)∥2⩽
η1∥x−y∥2, η1<1 is easily satisfied:

∥ϕ(x)−ϕ(y)∥22=∥x−y−γ (∇f(x)−∇f(y))∥22
=∥x−y∥22+γ2∥∇f(x)−∇f(y)∥22−2γ ⟨x−y,∇f(x)−∇f(y)⟩

⩽∥x−y∥22−
(

2γ

M2
−γ2

)
∥∇f(x)−∇f(y)∥22 .

(4.9)
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The inequality follows from the fact that f has M2-Lipschitz gradient and Lemma 3.4.

Since 0<γ<
2

M2
, we have

2γ

M2
−γ2>0. From the assumption that f is mf -strongly

convex and Lemma 3.1, we have

mf∥x−y∥22⩽ ⟨x−y,∇f(x)−∇f(y)⟩⩽∥x−y∥2∥∇f(x)−∇f(y)∥2, ∀x,y∈Rd

⇒mf∥x−y∥2⩽∥∇f(x)−∇f(y)∥2, ∀x,y∈Rd.
(4.10)

Then from (4.9),

∥ϕ(x)−ϕ(y)∥22⩽
(
1−m2

f

(
2γ

M2
−γ2

))
∥x−y∥22. (4.11)

Therefore η1=

√
1−m2

f

(
2γ

M2
−γ2

)
and η1∈ [0,1) since mf ⩽M2.

4.2. K-step PDFP-based Langevin Algorithms. This subsection discusses
how to implement the PDFP based ULA and MALA to sample the distribution density
(3.9). The two algorithms are based on Algorithm 2 and Algorithm 3 respectively.
Recall that in Algorithms 2 and 3, an optimization subproblem

proxρU (θn)=arg min
x∈Rd

(
∥x−θn∥2

2ρ
+f(x)+g(Bx)

)
(4.12)

needs to be solved. The object function in Eq. (4.12) changes with respect to different
θn. We then apply the PDFP algorithm to Equation (4.12), yielding the following
iteration: 

yn,k+1=xn,k−γ

(
∇f(xn,k)+

1

ρ
(xn,k−θn)

)
−γBT vn,k

vn,k+1=proxλ
γ g∗

(
λ

γ
Byn,k+1+vn,k

)
xn,k+1=xn,k−γ

(
∇f(xn,k)+

1

ρ
(xn,k−θn)

)
−γBT vn,k+1.

(4.13)

Inserting the PDFP iteration in Eqs. (4.13) into Algorithms 2 and 3, yields Algorithms
5 (ULA-PDFP) and 6 (MALA-PDFP) respectively.

It is natural to ask why we solve Equation (4.12) by PDFP, instead of other algo-
rithms such as FISTA [2] and Chambolle-Pock (CP) [5]. Firstly, FISTA cannot directly
solve Equation (4.2) when B is not an identity matrix and solving Equation (4.12)
by FISTA requires a two-layer subproblem. Secondly, solving Equation (4.12) by CP
requires an additional conjugate-gradient algorithm even for K=1, which is inefficient
when function f includes a non-trivial forward operator. When f is zero and the Moreau
envelope is applied merely on g, this is what actually MYULA [13] is doing and there-
fore CP can solve Equation (4.12) with the conjugate-gradient algorithm analytically
solved. See more details of the experiments between ULA-PDFP and MYULA-CP in
Section 6.

Note here that an important feature of the proposed algorithms are that they only
conduct a fixed number (i.e., K) of PDFP iterations, a key difference from the exist-
ing algorithms that requires to solve the proximal subproblem proxρU (θn) accurately.
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Algorithm 5: ULA-PDFP

Result: {θn}Nn=1.

Set ρ>0, δ∈ (0,ρ], 0<λ⩽
1

λmax(BBT )
, 0<γ<

2

M2+1/ρ
, θ0∈Rd. for n=0 to

N−1 do
Initialization: xn,0=θn, vn,0=0. for k=0 to K−1 do

yn,k+1=xn,k−γ

(
∇f(xn,k)+

1

ρ
(xn,k−θn)

)
−γBT vn,k

vn,k+1=proxλ
γ g∗

(
λ

γ
Byn,k+1+vn,k

)
xn,k+1=xn,k−γ

(
∇f(xn,k)+

1

ρ
(xn,k−θn)

)
−γBT vn,k+1

θn+1=
(
1− δ

ρ

)
θn+

δ
ρxn,K+

√
2δξn, ξn∼N (0,I)

Consequently xn,K is only an approximation of proxρU (θn) and Algorithm 5 is actu-
ally an ULA with inaccurate gradient. The motivation for doing this is to reduce the
computational cost – as one can see each iteration needs to evaluate ∇f(x), and so
the computational cost for computing proxρU (θn) may be exceedingly high, especially
when evaluating ∇f(x) itself is time-consuming. In this case, using a small number of
iterations (i.e. small value of K) may effectively reduce the computational cost. Since
the approximation is used, the resulting sampling error in Algorithm 5 must be analyzed
(note that the approximation does not introduce sampling error in Algorithm 6 thanks
to the Metropolis step).

It should be noted that, in the iteration in Algorithms 5 and 6 we initialize the dual
variable vn,0=0 instead of vn,0=vn−1,K , different from the optimization algorithm.
The reason is that the Langevin algorithms are expected to generate a Markov chain
{θn}, which means that the (n+1)-th state θn+1 only depends on the n-th state θn and
transition probability P (θn+1|θn). Once the dual variable vn,0 is initialized as vn−1,K ,
it actually involves the information in the (n−1)-th state and the transition probability
hence becomes P (θn+1|θn,θn−1), violating the Markov property of sequence {θn}.

Recall that, if proxρU (θn) is accurately evaluated, then from [9,11,12] one directly
has the convergence and the upper bound on the sampling error of Algorithm 2. As has
been mentioned, Algorithm 5 is actually an ULA with inaccurate gradient and so its
convergence property needs to be studied. [10] considers both deterministic and stochas-
tic approximations of the gradient of the log-density and quantifies the impact of the
gradient evaluation inaccuracies. In Algorithm 5 one intuitively has better upper bound
on the sampling error for larger K, but at more computational cost. The detailed error
analysis is presented in Section 5. We also want to mention that, our numerical experi-
ments illustrate that the PDFP based algorithms with small K can produce sufficiently
accurate samples, with more details in Section 6.

5. Convergence results

In this section we present the convergence analysis of ULA with K-step PDFP
(Algorithm 5). Most of our proofs follow from [9]. To start with, we first give a lemma
which specifies the strong convexity of the Moreau envelope of a given strongly convex
function.
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Algorithm 6: MALA-PDFP

Result: {θn}Nn=1.

Set ρ>0, δ∈ (0,ρ], 0<λ⩽
1

λmax(BBT )
, 0<γ<

2

M2+1/ρ
, P0=θ0∈Rd. for

n=0 to N−1 do

Propose a new state: Yn+1=

(
1− δ

ρ

)
θn+

δ

ρ
Pn+

√
2δξn, ξn∼N (0,I)

Initialization: xn,0=Yn+1, vn,0=0 for k=0 to K−1 do

yn,k+1=xn,k−γ

(
∇f(xn,k)+

1

ρ
(xn,k−Yn+1)

)
−γBT vn,k

vn,k+1=proxλ
γ g∗

(
λ

γ
Byn,k+1+vn,k

)
xn,k+1=xn,k−γ

(
∇f(xn,k)+

1

ρ
(xn,k−Yn+1)

)
−γBT vn,k+1

Ptmp=xn,K

Compute acceptance rate: A(Yn+1,θn)=min

(
1,
π(Yn+1)

π(θn)
· p(θn|Yn+1)

p(Yn+1|θn)

)

=min

1,
π(Yn+1)

π(θn)
·
exp

(
− 1

4δ

∥∥∥θn−(1− δ
ρ

)
Yn+1− δ

ρPtmp

∥∥∥2
2

)
exp

(
− 1

4δ

∥∥∥Yn+1−
(
1− δ

ρ

)
θn− δ

ρPn

∥∥∥2
2

)


Sample a from uniform distribution: a∼U [0,1].
if a<A(Yn+1,θn) then

Accept Yn+1: θn+1=Yn+1, Pn+1=Ptmp

else
Reject Yn+1: θn+1=θn, Pn+1=Pn

Lemma 5.1. Let m,ρ∈R,m>0,ρ>0. If function h(x) is m-strongly convex, then the
ρ-Moreau envelope of h(x),

hρ(x)=min
y

(
h(y)+

∥y−x∥22
2ρ

)
, (5.1)

is
m

1+ρm
-strongly convex.

Proof. Define p(x) :=h(x)−m

2
∥x∥22. Then from Lemma 3.2, p(·) is convex. By

the definition,

hρ(x)=min
y

(
h(y)+

∥y−x∥22
2ρ

)

=min
y

(
h(y)−m

2
∥y∥22+

m

2
∥y∥22+

∥y−x∥22
2ρ

)

=min
y

(
h(y)−m

2
∥y∥22+

(1+ρm)

2ρ

∥∥∥∥y− x

1+ρm

∥∥∥∥2
2

+
m

2(1+ρm)
∥x∥22

)
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=min
y

(
p(y)+

(1+ρm)

2ρ

∥∥∥∥y− x

1+ρm

∥∥∥∥2
2

)
+

m

2(1+ρm)
∥x∥22 . (5.2)

Define q(z) :=p

(
z

1+ρm

)
. Then function q(·) is convex.

From the exchange of variables y=
z

1+ρm
,

hρ(x)=min
z

(
q(z)+

1

2ρ(1+ρm)
∥z−x∥22

)
+

m

2(1+ρm)
∥x∥22

= qρ(1+ρm)(x)+
m

2(1+ρm)
∥x∥22 . (5.3)

hρ(x)−
m

2(1+ρm)
∥x∥22= qρ(1+ρm)(x) is the Moreau envelope of q, hence convex. From

Lemma 3.2, hρ(x) is
m

1+ρm
-strongly convex.

From Lemma 3.5, one can see that when ρ→0, hρ(x)→h(x) pointwisely and this
result is consistent with m

1+ρm →m. When ρ→+∞, hρ(x) tends to a constant function
and m

1+ρm →0. In the later convergence analysis of Algorithm 5 when we require the

strong convexity of Uρ(x), the strong convexity of U(x) is sufficient.
For the study of ULA with inaccurate gradient of log-density, [10] gives an upper

bound of the sampling error when the inaccuracies of the gradients have bounded ex-
pectations and variances, with the assumption that U is strongly convex. Actually the
convergence of PDFP (Algorithm 4) and convergence of ULA with accurate gradients
do not require the strong convexity of U . To prove the boundness of the samples gen-
erated by Algorithm 5, we need the same assumption that U is strongly convex. In this
case, we assume that f is m-strongly convex and therefore Uρ is m

1+ρm -strongly convex
from Lemma 5.1.

Another assumption we make is the boundedness of
∥∥∥proxλ

γ g∗(v)
∥∥∥
2
. This is true

when g is the L1 norm and g∗ is an indicator function of a bounded convex set.
Since the PDFP iteration and the optimal primal and dual solution of problem (4.12)

change with different θn, we simplify the notation by denoting the PDFP iteration of
problem (4.12) in Algorithm 5 as

vn,k+1=Tn,1(vn,k,xn,k), xn,k+1=Tn,2(vn,k,xn,k)

⇒ (vn,k+1,xn,k+1)=Tn(vn,k,vn,k) :=(Tn,1(vn,k,xn,k),Tn,2(vn,k,xn,k)).
(5.4)

From this notation, the iteration (4.13) and Algorithm 5 turns into

xn,0=θn, vn,0=0

vn,K =Tn,1T
K−1
n (vn,0,xn,0)

xn,K =Tn,2T
K−1
n (vn,0,xn,0)

θn+1=θn−
δ

ρ
(θn−xn,K)+

√
2δξn, ξn∼N (0,I).

(5.5)

With a K-step PDFP iteration, Algorithm 5 and (5.5) evaluate the gradient ∇Uρ(θn)

by the approximation
θn−Tn,2T

K−1
n (0,θn)

ρ
, leading to the error

∇Uρ(θn)−
θn−Tn,2T

K−1
n (0,θn)

ρ
=

Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ
. (5.6)
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Since the function
∥x−θn∥2

2ρ
+f(x) is always strongly convex even if f is not strongly

convex, we then give a lemma which quantifies the error of K-step PDFP in Algorithm
5:

Lemma 5.2. Assume that {θn}n is the sequence generated by Algorithm 5. As-
sume that ρ,K,λ,γ are the parameters in Algorithm 5. Let m⩾0, m∈R . Assume
that f is m-strongly convex and ρmin(BBT )>0. If g is a function such that, ∀v∈V ,∥∥∥proxλ

γ g∗(v)
∥∥∥
2
⩽C, then ∀n∈N,

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

⩽ηK
(
∥∇Uρ (θn)∥22+

γ2C2

λρ2

)
, (5.7)

where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (5.8)

Proof. See Appendix A.2.

To obtain the convergence analysis of Algorithm 5, we use the same proof technique as
in [9,11] to first obtain some upper bound of E(Uρ(θn+1)−Uρ(θn)). To be more specific,

we respectively give the bound of E
(
Uρ

(
θn− δ

ρ

(
θn−xn,K

)
+
√
2δξn

)
−Uρ

(
θn− δ

ρ

(
θn−xn,K

)))
and E

(
Uρ(θn− δ

ρ

(
θn−xn,K

)
−Uρ(θn)

)
, which both simply make use of the Lipschitz gradi-

ent of Uρ. Those are explained by Lemma 5.3 and Lemma 5.4.

Lemma 5.3. ∀x∈Rd, if ξ∼N (0,I) is independent of x, then

E
(
Uρ(x+

√
2δξ)−Uρ(x)

)
⩽

δd

ρ
. (5.9)

Proof. From Lemma 3.5 (2), Uρ has 1
ρ -Lipschitz gradient, then by Lemma 3.4,

Uρ(x+
√
2δξ)−Uρ(x)⩽

〈
∇Uρ(x),

√
2δξ
〉
+

1

2ρ

∥∥∥√2δξ
∥∥∥2
2
. (5.10)

From the assumption that ξ∼N (0,I) is independent of x, we have E
〈
∇Uρ(x),

√
2δξ
〉
=

0.

Then

E
(
Uρ(x+

√
2δξ)−Uρ(x)

)
⩽

1

2ρ
E
∥∥∥√2δξ

∥∥∥2
2
=

δd

ρ
. (5.11)

Lemma 5.4. ∀x∈Rd, ∀v∈V ,

Uρ

(
x− δ

ρ

(
x−Tn,2T

K−1
n (v,x)

))
−Uρ (x)⩽−δ

(
1− δ

2ρ

)
∥∇Uρ(x)∥22

+
δ2

2ρ

∥∥∥∥∥Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

∥∥∥∥∥
2

2

+δ

(
1− δ

ρ

)〈
∇Uρ(x),

Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

〉
.

(5.12)
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Proof. From Lemma 3.5 (2), Uρ has 1
ρ -Lipschitz gradient, then by Lemma 3.4,

Uρ

(
x− δ

ρ

(
x−Tn,2T

K−1
n (v,x)

))
−Uρ (x)

⩽−δ

〈
∇Uρ(x),

x−Tn,2T
K−1
n (v,x)

ρ

〉
+

δ2

2ρ

∥∥∥∥x−Tn,2T
K−1
n (v,x)

ρ

∥∥∥∥2
2

=−δ

〈
∇Uρ(x),∇Uρ(x)−

Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

〉

+
δ2

2ρ

∥∥∥∥∥∇Uρ(x)−
Tn,2T

K−1
n (v,x)−proxρU (x)

ρ

∥∥∥∥∥
2

2

=−δ

(
1− δ

2ρ

)
∥∇Uρ(x)∥22+

δ2

2ρ

∥∥∥∥∥Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

∥∥∥∥∥
2

2

+δ

(
1− δ

ρ

)〈
∇Uρ(x),

Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

〉
. (5.13)

From Lemma 5.3 and Lemma 5.4 we can deduce the following lemma showing that
the upper bound of E(Uρ(θn+1)−Uρ(θn)) can be controlled by E∥∇Uρ(θn)∥22.

Lemma 5.5. Assume that {θn}n is the sequence generated by Algorithm 5. Assume
that x∗ is the optimal solution of problem (4.2). Assume that δ,ρ,K,λ,γ are the pa-
rameters in Algorithm 5. Let m⩾0, m∈R . Assume that f is m-strongly convex and

ρmin(BBT )>0. If g is a function such that, ∀v∈V ,
∥∥∥proxλ

γ g∗(v)
∥∥∥
2
⩽C, then ∀n∈N,

E(Uρ (θn+1)−Uρ (θn))⩽−δ

2
(1−ηK)E∥∇Uρ(θn)∥22+

2δdλρ+δγ2C2ηK

2λρ2
, (5.14)

where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (5.15)

Proof. See Appendix A.3.

In the above lemma, whether m=0 or m>0 simply makes a difference in η. If m>0
we can further deduce the boundness of EUρ(θn) and E∥θn−x∗∥22, by the following
theorem:

Theorem 5.1. Under the conditions in Lemma 5.5, if m>0, then ∀n∈N,

E(Uρ (θn)−Uρ (x
∗))⩽

(
1−mρδ(1−ηK)

)nE(Uρ(θ0)−Uρ(x
∗))+

2dλρ+γ2C2ηK

2λρ2mρ(1−ηK)
,

(5.16)
where

mρ=
m

1+ρm
, η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (5.17)

Proof. See Appendix A.4.
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By simple computation we have that η∈ [0,1). Since K is the number of iterations
in subproblems and is independent of η, when K→+∞, we have that ηK →0.

Thus the gradients∇Uρ(θn) are almost accurate and the inequality (5.16) is reduced
to

E(Uρ (θn)−Uρ (x
∗))⩽ (1−mρδ)

nE(Uρ(θ0)−Uρ(x
∗))+

d

ρmρ
, (5.18)

which matches Proposition 1 in [9]. This lemma implies that the upper bound of
EUρ(θn) includes a term not depending on the discretization parameter δ and another
term approaching to zero as n→+∞. Moreover, we can also obtain the upper bound
of E∥θn−x∗∥22 by the mρ-strongly convexity of Uρ and

mρ

2 ∥x−x∗∥22⩽Uρ(x)−Uρ(x
∗).

Both the boundness of EUρ(θn) and E
(
∥θn−x∗∥22

)
essentially require the strong con-

vexity of Uρ.
Theorem 5.1 shows that for any K ∈N, Algorithm 5 will not blow up in the sense

of expectation. The remaining portion of this section will complete the nonasymptotic
error analysis of the sampling. We now present a lemma quantifying the accummulated
gradients of the log-density and the accummulated errors:

Lemma 5.6. Under the conditions in Lemma 5.5, we have

δ
∑N−1

n=0 E∥∇Uρ(θn)∥22⩽
2

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
Nδ
(
2dλρ+γ2C2ηK

)
λρ2(1−ηK)

δ
∑N−1

n=0 E

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

⩽
2ηK

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
NδηK

(
2dλρ+γ2C2

)
λρ2(1−ηK)

δ
∑N−1

n=0 E
∥∥∥∥θn−Tn,2T

K−1
n (0,θn)

ρ

∥∥∥∥2
2

⩽
4(1+ηK)

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
4Nδ

(
dλρ(1+ηK)+γ2C2ηK

)
λρ2(1−ηK)

,

(5.19)
where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (5.20)

Proof. See Appendix A.5.

Assume that {Lρ
t ,t⩾0} is the solution of Langevin diffusion (3.11). For a fixed time

interval [0,l] where l=Nδ, Lemma 5.6 shows an upper bound of δ
∑N−1

n=0 E∥∇Uρ(θn)∥22
when N→+∞. For the sampling error analysis we aim to prove that the solution
Lρ
l →πρ as l→+∞, and then with fixed l the distribution of the N -th sample θN can

be arbitrarily close to Lρ
l as N→+∞ and K→+∞.

For the samples {θn}Nn=0 generated by Algorithm 5, we introduce a continuous
time Markov process {Dt : t⩾0} such that the distributions of (θ0,θ1,. ..,θN ) and
(D0,Dδ,. ..,DNδ) coincide. The process {Dt : t⩾0} is defined as the solution of the
stochastic differential equation

dDt=bt(Dt)dt+
√
2 dWt, t⩾0,D0=θ0, (5.21)

bt(Dt)=

∞∑
n=0

Tn,2T
K−1
n (0,Dnδ)−Dnδ

ρ
1[nδ,(n+1)δ](t), (5.22)

where Tn(v,x) and Tn,2(v,x) are defined by (5.4).
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Theorem 5.2. If the continuous time Markov process {Dt : t⩾0} is defined by (5.21,
5.22), then (θ0,θ1,. ..,θN ) has the same distribution as (D0,Dδ,. ..,DNδ).

Proof. We prove this by induction.

For n∈Z, assume that Dnδ and θn have the same distribution. By (5.21, 5.22) we
have

D(n+1)δ =Dnδ+

∫ (n+1)δ

nδ

bτ (Dτ )dτ+

∫ (n+1)δ

nδ

√
2dWτ

=Dnδ+

∫ (n+1)δ

nδ

∞∑
k=0

Tn,2T
K−1
n (0,Dkδ)−Dkδ

ρ
1[kδ,(k+1)δ](τ)dτ+

√
2δξn

=Dnδ+
δ

ρ

(
Tn,2T

K−1
n (0,Dnδ)−Dnδ

)
+
√
2δξn

=

(
1− δ

ρ

)
Dnδ+

δ

ρ
Tn,2T

K−1
n (0,Dnδ)+

√
2δξn. (5.23)

Compare (5.23) with (5.5) and we can deduce that D(n+1)δ and θn+1 have the same
distribution. By induction we complete the proof.

Now we have a continuous time Markov process {Dt : t⩾0}. To obtain the KL
distance between the distributions of the processes {Lρ : t∈ [0,Nδ]} and {D : t∈ [0,Nδ]}
we use a lemma from [9] based on the Girsanov formula:

Lemma 5.7. If for some B>0 the non-anticipative drift function b :C
(
R+,Rd

)
×

R+→Rd satisfies the inequality ∥b(D,t)∥2⩽B (1+∥D∥∞) for every t∈ [0,Nδ] and ev-

ery D∈ C
(
R+,Rd

)
, then the Kullback-Leibler divergence between Px,Nδ

Lρ and Px,Nδ
D , the

distributions of the processes {Lρ : t∈ [0,Nδ]} and {D : t∈ [0,Nδ]} with the initial value
Lρ
0=D0=x, is given by

KL
(
Px,Nδ
Lρ ∥Px,Nδ

D

)
⩽

1

4

∫ Nδ

0

E
[
∥∇Uρ (Dt)+bt(Dt)∥22

]
dt. (5.24)

Using Lemma 5.7 we can prove the following theorem which gives an upper bound
of the KL divergence:

Theorem 5.3. Let l=Nδ be fixed. Assume that D is defined by (5.21, 5.22). Suppose
that all the conditions of Lemma 5.5 and Lemma 5.7 are satisfied, then

KL
(
Px,l
Lρ∥Px,l

D

)
⩽

2δ2(1+ηK)+3ρ2ηK

3ρ2(1−ηK)
E(Uρ (x)−Uρ (x

∗))

+
ldλρ

(
4δ2(1+ηK)+3δρ(1−ηK)+6ρ2ηK

)
+ lγ2C2ηK(4δ2+3ρ2)

6λρ4(1−ηK)
, (5.25)

where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (5.26)

Proof. See Appendix A.6.

Given fixed ρ, this upper bound of KL
(
Px,l
Lρ∥Px,l

D

)
tends to 0 as δ→0 and K→+∞.

Meanwhile, this upper bound also partly depends on the initial sample D0=θ0=x. Up
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to now, we have no detailed assumption on θ0. If θ0 is drawn from the initial distribution
ν, from Lemma 3.5 and lemma 1 in [9] one can deduce the following lemma:

Lemma 5.8. m∈R,m>0. If U is m-strongly convex and mρ=
m

1+ρm , then for any
initial probability density ν we have

∥∥νPt
Lρ −πρ

∥∥
TV

⩽
1

2
χ2(ν∥πρ)

1/2exp

(
−tmρ

2

)
, ∀t⩾0.

Proof. See lemma 1 in [9].

We can prove the following lemma when the initial distribution ν is a Gaussian
distribution Nd(x

∗,ρId) with mean x∗.

Lemma 5.9. m∈R,m>0. Assume that x∗ is the optimal solution of problem (4.2). If
U is m-strongly convex and mρ=

m
1+ρm , if ν is the density of the Gaussian distribution

Nd(x
∗,ρId), then we have ∫

Rd

ν2(x)

πρ(x)
dx⩽

1

(ρmρ)
d
2

.

Proof. The proof follows the same pattern of lemma 5 in [9].
From (3.9), Lemma 3.5 and Lemma 3.4,

πρ(x)
−1=exp{Uρ(x)}

∫
Rd

exp{−Uρ(x)}dx=exp{Uρ(x)−Uρ(x
∗)}

∫
Rd

exp{−Uρ(x)+Uρ(x
∗)}dx

⩽ exp

{
∇Uρ(x

∗)T(x−x∗)+
1

2ρ
∥x−x∗∥22

}∫
Rd

exp
{
−∇Uρ(x

∗)T(x−x∗)−mρ

2
∥x−x∗∥22

}
dx

=

(
2π

mρ

)d/2

exp

(
1

2ρ
∥x−x∗∥22

)
,

(5.27)

then we have ∫
Rd

ν2(x)

πρ(x)
dx=(2πρ)−d

∫
Rd

exp

{
−1

ρ
∥x−x∗∥22

}
πρ(x)

−1dx

⩽ (2πρ)−d

(
2π

mρ

)d/2∫
Rd

exp

{
−∥x−x∗∥22

2ρ

}
dx

=
1

(ρmρ)
d
2

. (5.28)

In the next theorem we finally give the error analysis of the Total-Variation norm
between the distribution of the N -th sample θn and πρ.

Theorem 5.4. Let l=Nδ. Assume that D is defined by (5.21, 5.22). Suppose that
all the conditions of Lemma 5.5 and Lemma 5.7 are satisfied. Assume that ν is the
Gaussian distribution Nd(x

∗,ρId). If m>0 and mρ=
m

1+ρm , then the TV-norm between

the distribution of the N -th sample θN and the distribution πρ satisfies∥∥νPθN −Pπρ

∥∥
TV

⩽
1

2
exp

(
−
d

4
log(ρmρ)−

lmρ

2

)

+

√
λd

(
2δ2ρ2+4lδ2ρ+3lδρ2

)
+ηK

[
λd

(
2δ2ρ2+3ρ4+4lδ2ρ−3lδρ2+6lρ3

)
+ lγ2C2

(
4δ2+3ρ2

)]
12λρ4(1−ηK)

,

(5.29)
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where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (5.30)

Therefore for any fixed ρ, ∀ϵ>0, ∃l>0,δ∈ (0,ρ] and K ∈N, such that∥∥νPθN −Pπρ

∥∥
TV

<ϵ.

Proof. See Appendix A.7.

This upper bound demonstrates that, in order to make the error small one first needs
a long burn-in time l. While l is large enough and remains fixed, small discretization
step-size δ and more iterations K will lead to a satisfactory error. This also matches
Theorem 2 in [9].

Fig. 5.1: Left: the ground truth. Middle: the blurred and noisy image. Right: the posterior mean.

6. Numerical experiments
To demonstrate the performance of the proposed algorithms, we provide two prac-

tical examples – an image motion deblurring problem and a computerized tomography
(CT) reconstruction problem. We formulate both problems in the Bayesian framework
and therefore sampling their posterior distributions is the primary goal here.
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Choices of K and δ: The stepsize δ should satisfy the upper bound studied in
Section 5. Both δ and the number of iterations K control a tradeoff between asymptotic
accuracy and convergence speed. For ULA-PDFP, using large δ and small K then the
Markov chain will move quickly to its stationary regime, ignoring a larger bias. We
recommend usingK=1, since in later resultsK=1 leads to a satisfactory bias. However
in the situations where a small bias is expected, one should choose a small δ and a large
K, though more computation is required during the burn-in time of the Markov chains.

6.1. Image motion deblurring. In the image motion deblurring problem,
suppose that we use the TV prior, and the resulting posterior distribution

π(θ)∝ exp

(
−∥y−Aθ∥22

2σ2
−λ∥∇θ∥1

)
,

where y(t) is the blurred image, θ(t) is the target image that we want to reconstruct,
σ2 is the observation noise variance (assuming zero-mean Gaussian noise), λ is the
regularization coefficient, and A is a linear motion blur operator in the form of

(Aθ)(t)=

∫
θ(τ)K(t−τ)dτ.

We use three commonly used tested images: Peppers, Cameraman and Barbara (left
column in Figure 5.1). In all three experiments, we choose σ=0.01 and operator A
formed by the kernel K of size 10×10. The dimensionality of the unknown images
and the associated regularization parameter λ values are given in Table 6.1. We use
synthetic data (Middle column in Figure 5.1) generated from the ground truth images
(left column in Figure 5.1). The posterior mean is used as an estimator of the original
image. In this experiment we draw 10000 samples from the posterior π(θ). We use the
following quantitative measures to assess the performance of the sampling methods. To
compare the estimation error we compute the peak signal-to-noise ratio (PSNR) of the
posterior sample mean, which is used as an estimator of the true image. For sampling
efficiency comparison we respectively calculate the effective sample size (ESS) [20] and
the expected square jumping distance (ESJD) [28] of the samples.

pepper cameraman barbara
dimensionality 256×256 256×256 512×512

λ 0.13 0.12 0.08

Table 6.1: Dimensionality and λ values.

We first examine the unadjusted algorithms, and we restate that, without the
Metropolis step, the samples obtained by this type of methods are subject to bias.
Apart from the proposed PDFP based algorithm, we also implement Moreau-Yosida
unadjusted Langevin algorithm (MYULA) in [13]. Note that in MYULA, it is pro-
posed to accurately solve the subproblem by Chambolle2004 [4], and to have a more
comprehensive comparison, we also implement a slightly modified version of MYULA –
replacing Chambolle2004 with a K-step Chambolle-Pock [5].

We summarize the results in Table 6.2, and note that for ULA-PDFP and MYULA-
CP we tested three cases K=1,5, and K=100. In particular in the K=100 case the
subproblem is considered to be precisely solved, and in fact our numerical experiments
suggest that most of the subproblems can meet the stopping criteria ∥xn,k+1−xn,k∥<



674 APPROXIMATE PRIMAL-DUAL FIXED-POINT BASED LANGEVIN ALGORITHMS

ρ=0.01 peppers cameraman barbara
K PSNR ESJD time PSNR ESJD time PSNR ESJD time

ULA-PDFP 1 26.48 1311 55s 24.13 1311 59s 23.20 5243 246s
ULA-PDFP 5 26.50 1311 191s 24.18 1311 195s 23.20 5243 842s
ULA-PDFP 100 26.42 1311 242s 24.18 1311 267s 23.22 5243 1047s
MYULA-CP 1 26.44 1311 64s 24.17 1310 66s 23.18 5239 287s
MYULA-CP 5 26.49 1310 146s 24.11 1309 137s 23.21 5237 656s
MYULA-CP 100 26.46 1310 1097s 24.16 1310 980s 23.21 5238 4133s
MYULA 100 26.43 1310 551s 24.17 1310 525s 23.22 5238 2421s

Table 6.2: Comparison of the unadjusted Langevin algorithms.

K PSNR ESJD ESS parameters time
pepper
MALA(subgradient) 25.58 3.9 4.03 δ= 8e-5 93s
PMALA-CP 1 26.05 19.4 4.09 ρ= δ= 3e-4 103s
PMALA-CP 5 26.68 439.0 4.78 ρ= δ= 7e-3 239s
PMALA-CP 100 26.70 427.7 4.75 ρ= δ= 7e-3 1218s
PMALA 100 26.69 420.9 4.76 ρ= δ= 7e-3 581s
MALA-PDFP 1 26.61 441.0 4.81 ρ= δ= 7e-3 108s
MALA-PDFP 5 26.66 439.8 4.78 ρ= δ= 7e-3 257s
MALA-PDFP 100 26.70 437.6 4.76 ρ= δ= 7e-3 295s
cameraman
MALA(subgradient) 23.65 3.4 3.97 δ= 6e-5 89s
PMALA-CP 1 24.31 18.2 4.05 ρ= δ= 4e-4 107s
PMALA-CP 5 24.46 384.6 4.68 ρ= δ= 6e-3 179s
PMALA-CP 100 24.51 390.9 4.70 ρ= δ= 6e-3 877s
PMALA 100 24.54 383.3 4.65 ρ= δ= 6e-3 442s
MALA-PDFP 1 24.51 370.7 4.62 ρ= δ= 6e-3 91s
MALA-PDFP 5 24.57 384.1 4.67 ρ= δ= 6e-3 230s
MALA-PDFP 100 24.58 375.1 4.66 ρ= δ= 6e-3 234s
barbara
MALA(subgradient) 22.09 11.3 3.99 δ= 5e-5 338s
PMALA-CP 1 23.11 47.4 3.96 ρ= δ= 2e-4 403s
PMALA-CP 5 23.28 1073.8 4.30 ρ= δ= 5e-3 790s
PMALA-CP 100 23.23 993.1 4.29 ρ= δ= 5e-3 3827s
PMALA 100 23.29 947.2 4.27 ρ= δ= 5e-3 1793s
MALA-PDFP 1 23.30 934.7 4.24 ρ= δ= 5e-3 387s
MALA-PDFP 5 23.24 1033.2 4.30 ρ= δ= 5e-3 978s
MALA-PDFP 100 23.28 973.4 4.28 ρ= δ= 5e-3 865s

Table 6.3: Comparison of the Metropolis-adjusted Langevin algorithms.

10−5 in less than 30 steps. For MYULA, the subproblem is solved accurately using
Chambolle2004 [4]. From the table we observe that the PSNR and ESJD of the sample
means calculated by all the methods are approximately the same, suggesting that all
the methods can produce similar sampling results. Quite interestingly, the results show
that PDFP and CP with K=1 can produce results of the same PSNR and ESJD as
solving the subproblem accurately. On the other hand, as has been discussed, smaller
K leads to less computational burden, which is supported by the time cost shown in
the table. Also ULA-PDFP with K=1 seems to be the most efficient one in terms of
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Fig. 6.1: PSNR of the samples (ULA-PDFP) in the burn-in period.

Fig. 6.2: Left: Original image (unknown). Mid: Observation (512×90). Right: Reconstructed image
(posterior mean).

time cost. In summary, the results suggest that while all the algorithms yield similar
sampling performance, those that do not seek to solve the subproblem accurately are
significantly more computationally efficient.

Next we test the algorithms with the additional Metropolis (accept-reject) step in-
cluded. More precisely we implement the following algorithms: MALA with subgradi-
ent, the PMALA method in [29], a variant of PMALA with Chambolle2004 replaced by
K-step Chambolle-Pock, and the proposed PDFP based algorithm denoted as MALA-
PDFP. The results of all the methods are compared in Table 6.3, and we reinstate that
thanks to the Metropolis step, the samples are asymptotically unbiased. For the sta-
bility of PMALA and MALA-PDFP, step size δ should be no larger than parameter ρ.
Following [29] we fix δ=ρ and their values (that are shown in Table 6.3) are chosen
such that the acceptance rates of all the algorithms are around 50% [31, 33] for fair
comparison. First we have found that MALA with subgradient clearly has the worst
performance among all the methods, a finding agreeing with [29]. Moreover, in both
MALA-PDFP and PMALA-CP, we can see that the results of K=5 are rather close to
those of K=100 and PMALA where in both cases the subproblem is solved accurately.
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Notably in Table 6.3 the run time of MALA-PDFP for K=100 is similar or less than
that for K=5, this is because in these experiments ρ is much smaller than Table 6.2
and the stopping criteria ∥xn,k+1−xn,k∥<10−5 is met even if k<5. More interestingly,
however, PMALA-CP with K=1 yields substantially worse results (in terms of ESS and
ESJD) than the algorithms that solve the subprobem accurately, while MALA-PDFP
with K=1 produces results that are comparable to those. While this is an interesting
indicator that the 1-step MALA-PDFP may be an effective and efficient sampling al-
gorithm, further investigation and more comprehensive tests of the method are needed.

PSNR K time
ULA-PDFP 29.22 1 72s
ULA-PDFP 29.26 5 275s
ULA-PDFP 29.26 100 1513s
MYULA-CP 29.25 1 80s
MYULA-CP 29.26 5 166s
MYULA-CP 29.24 100 720s
MYULA 29.26 100 1615s

Table 6.4: Comparison of the unadjusted Langevin algorithms.

PSNR ESJD ESS mean parameters K time
PMALA-CP 28.30 5.6e-4 4.03 ρ= δ= 1.0e-8 1 98s
PMALA-CP 28.51 5.8e-3 4.87 ρ= δ= 1.0e-7 5 197s
PMALA-CP 28.89 4.6e-2 8.44 ρ= δ= 8.0e-7 100 579s
PMALA 28.91 4.8e-2 8.63 ρ= δ= 8.0e-7 100 305s
MALA-PDFP 28.86 4.9e-2 8.75 ρ= δ= 8.0e-7 1 120s
MALA-PDFP 28.85 4.8e-2 8.67 ρ= δ= 8.0e-7 5 326s
MALA-PDFP 28.86 4.8e-2 8.66 ρ= δ= 8.0e-7 100 352s

Table 6.5: Comparison of the Metropolis-adjusted Langevin algorithms.

6.2. Computed tomography reconstruction of medical image. In this
section we consider the computed tomography (CT) reconstruction problem with the
posterior distribution

π(θ)∝ exp

(
−∥y−Aθ∥22

2σ2
−λ∥∇θ∥1

)
,

where θ∈R256×256 is the unknown XCAT phantom image and y∈R512×90 is the projec-
tion observed. The range of y is about [0,5.0]512×90. The observation noise is assumed
to be additive white Gaussian noise with standard variance σ=0.5 and λ is taken to
be 50. The operator A is the Radon transform which can be efficiently computed by a
parallelizable algorithm in [17] using fan-beam geometry, but still very time-consuming
that less calls of A will significantly reduce the time cost. In this experiment the number
of detectors is 512 and that of the viewers is 90 defining a highly ill-posed problem.

Before the Markov chain reaches its stable regime, the burn-in time takes less than
2000 samples. Smaller stepsize δ leads to longer burn-in period as shown in Figure 6.1.



ZIRUO CAI, JINGLAI LI, AND XIAOQUN ZHANG 677

After the burn-in time, we draw 10000 samples from the posterior π with the same set
of unadjusted algorithms in the first example, and show the results in Table 6.4. In all
the algorithms we use ρ=10−5. The results in these examples are largely consistent
with those reported in the first example: all the methods produce similar results in
terms of PSNR while those with small K are more computationally efficient. Next we
test the Metropolis-adjusted algorithms – again by drawing 10,000 samples from the
posterior, and the results are shown in Table 6.5. Once again the parameter values are
chosen so that the acceptance probability is around 50% [31,33]. We observe that in this
example the 1-step MALA-PDFP has similar performance as the algorithms that solve
the subproblem accurately, while 1-step PMALA-CP is clearly less efficient in terms of
both ESS and ESJD, supporting our results in the first example.

7. Conclusion
Langevin algorithms are important tools for sampling posterior distributions in

Bayesian inference. Since the gradient information is typically needed in the Langevin
algorithms, it is particularly challenging to apply them to non-smooth distributions. In
this work we consider the class of methods where one solves a proximity subproblem
in each iteration. In particular we propose to solve the proximity subproblem with the
PDFP algorithm, and more importantly the method only seeks to find an approximate
solution of the subproblem by conducting a (small) fixed number of PDFP iterations.
We provide error analysis of the approximate PDFP based algorithms. Our numer-
ical experiments also suggest that the 1-step PDFP based algorithms, especially the
Metropolis-adjusted version, yields a good performance, in terms of sampling efficiency
and computation time.

Appendix. Proofs.

A.1. Lemma 4.2.
Proof. From the fixed point property by Lemma 4.1 we knowv∗=proxλ

γ g∗

(
λ

γ
B (x∗−γ∇f(x∗))+(I−λBBT )v∗

)
=proxλ

γ g∗

(
λ

γ
Bϕ(x∗)+Mv∗

)
x∗=x∗−γ∇f(x∗)−γBT v∗.

(A.1)
Let xk,xk+1,vk,vk+1 be the variables in Algorithm 4, then

∥vk+1−v∗∥22=
∥∥∥∥proxλ

γ g∗

(
λ

γ
Bϕ(xk)+Mvk

)
−proxλ

γ g∗

(
λ

γ
Bϕ(x∗)+Mv∗

)∥∥∥∥2
2

⩽

〈
proxλ

γ g∗

(
λ

γ
Bϕ(xk)+Mvk

)
−proxλ

γ g∗

(
λ

γ
Bϕ(x∗)+Mv∗

)
,

λ

γ
Bϕ(xk)+Mvk−

λ

γ
Bϕ(x∗)−Mv∗

〉
=
λ

γ
⟨vk+1−v∗,B (ϕ(xk)−ϕ(x∗))⟩+⟨vk+1−v∗,M (vk−v∗)⟩. (A.2)

The inequality follows from the firm nonexpansiveness of proxλ
γ g∗(·) (Definition 3.2).

By the definition of xk+1 in Algorithm 4,

∥xk+1−x∗∥22=
∥∥ϕ(xk)−ϕ(x∗)−γBT (vk+1−v∗)

∥∥2
2

=∥ϕ(xk)−ϕ(x∗)∥22−2γ
〈
ϕ(xk)−ϕ(x∗),BT (vk+1−v∗)

〉
+

γ2

λ2

∥∥λBT (vk+1−v∗)
∥∥2
2
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=∥ϕ(xk)−ϕ(x∗)∥22−2γ
〈
ϕ(xk)−ϕ(x∗),BT (vk+1−v∗)

〉
+

γ2

λ
∥vk+1−v∗∥22

− γ2

λ
∥vk+1−v∗∥2M . (A.3)

Here the last equality follows from the definition M = I−λBBT and ∥z∥M :=
√
⟨z,Mz⟩.

Combine (A.2) with (A.3),

∥xk+1−x∗∥22+
γ2

λ
∥vk+1−v∗∥22

=∥ϕ(xk)−ϕ(x∗)∥22−2γ
〈
ϕ(xk)−ϕ(x∗),BT (vk+1−v∗)

〉
+

2γ2

λ
∥vk+1−v∗∥22

− γ2

λ
∥vk+1−v∗∥2M

⩽∥ϕ(xk)−ϕ(x∗)∥22+
2γ2

λ
⟨vk+1−v∗,M (vk−v∗)⟩− γ2

λ
∥vk+1−v∗∥2M

−2γ
〈
ϕ(xk)−ϕ(x∗),BT (vk+1−v∗)

〉
+2γ ⟨vk+1−v∗,B (ϕ(xk)−ϕ(x∗))⟩

=∥ϕ(xk)−ϕ(x∗)∥22+
2γ2

λ
⟨vk+1−v∗,M (vk−v∗)⟩− γ2

λ
∥vk+1−v∗∥2M

=∥ϕ(xk)−ϕ(x∗)∥22+
γ2

λ
∥vk−v∗∥2M − γ2

λ
∥vk+1−vk∥2M

⩽η21 ∥xk−x∗∥22+
γ2

λ
∥vk−v∗∥2M

⩽η21 ∥xk−x∗∥22+
γ2

λ
(1−λρmin(BBT ))∥vk−v∗∥22 . (A.4)

The first inequality uses (A.2). The second inequality follows from the condi-
tion that ∥ϕ(x)−ϕ(y)∥2⩽η1∥x−y∥2, ∀x,y∈Rd. The last inequality uses the fact
that 0<λ⩽ 1

ρmax(BBT )
and 0⪯M ⪯ (1−λρmin(BBT ))I. From the definition η :=

max
(
η21 ,1−λρmin(BBT )

)
, obviously 0⩽η<1 since η21 <1 and 0⩽1−λρmin(BBT )<1.

Then from (A.4),

∥xk+1−x∗∥22+
γ2

λ
∥vk+1−v∗∥22⩽η

(
∥xk−x∗∥22+

γ2

λ
∥vk−v∗∥22

)
⇒∥xk−x∗∥22+

γ2

λ
∥vk−v∗∥22⩽ηk

(
∥x0−x∗∥22+

γ2

λ
∥v0−v∗∥22

)
.

(A.5)

A.2. Lemma 5.2.
Proof. Denote the optimal primal and dual solutions of the problem (4.12) by x∗

n

and v∗n, exactly x∗
n=proxρU (θn). Since

∥x−θn∥2

2ρ
+f(x) is

(
m+

1

ρ

)
-strongly convex

with a

(
M2+

1

ρ

)
-Lipschitz gradient, by Lemma 4.2 we have

∥xn,k−x∗
n∥

2
2+

γ2

λ
∥vn,k−v∗n∥

2
2⩽ηk

(
∥xn,0−x∗

n∥
2
2+

γ2

λ
∥vn,0−v∗n∥

2
2

)
, (A.6)

where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
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⩾max

(
1−
(

1+ρm

1+ρM2

)2

,1−λρmin(BBT )

)
. (A.7)

Therefore we get∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

∥∥2
2
=
∥∥xn,K−proxρU (θn)

∥∥2
2

⩽ηK
(∥∥xn,0−proxρU (θn)

∥∥2
2
+

γ2

λ
∥vn,0−v∗n∥

2
2

)
=ηK

(∥∥θn−proxρU (θn)
∥∥2
2
+

γ2

λ
∥v∗n∥

2
2

)
⩽ηK

(∥∥θn−proxρU (θn)
∥∥2
2
+

γ2C2

λ

)
. (A.8)

The second inequality follows from the fixed point lemma 4.1 applied on problem (4.12)
that

v∗n=proxλ
γ g∗

(
λ

γ
B

(
x∗
n−γ

(
∇f(x∗

n)+
1

ρ
(x∗

n−θn)

)
−γBT v∗n

)
+v∗n

)
. (A.9)

Then from Lemma 3.5 (4),∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

⩽ηK

(∥∥∥∥θn−proxρU (θn)

ρ

∥∥∥∥2
2

+
γ2C2

λρ2

)

=ηK
(
∥∇Uρ (θn)∥22+

γ2C2

λρ2

)
. (A.10)

A.3. Lemma 5.5.
Proof. From Lemma 5.4, we have

Uρ

(
x− δ

ρ

(
x−Tn,2T

K−1
n (v,x)

))
−Uρ (x)⩽−δ

(
1− δ

2ρ

)
∥∇Uρ(x)∥22

+
δ2

2ρ

∥∥∥∥∥Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

∥∥∥∥∥
2

2

+δ

(
1− δ

ρ

)〈
∇Uρ(x),

Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

〉

⩽− δ

2
∥∇Uρ (x)∥22+

δ

2

∥∥∥∥∥Tn,2T
K−1
n (v,x)−proxρU (x)

ρ

∥∥∥∥∥
2

2

. (A.11)

The second inequality follows from Cauchy-Schwarz inequality since δ∈ (0,ρ].

By (5.5), (A.11) and Lemma 5.3,

E(Uρ (θn+1)−Uρ (θn))=E
(
Uρ

(
θn−

δ

ρ

(
θn−Tn,2T

K−1
n (0,θn)

)
+
√
2δξn

)
−Uρ (θn)

)

⩽
δd

ρ
− δ

2
E∥∇Uρ (θn)∥22+

δ

2
E

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

. (A.12)

From Lemma 5.2 and (A.12),

E(Uρ (θn+1)−Uρ (θn))⩽
δd

ρ
− δ

2
(1−ηK)E∥∇Uρ(θn)∥22+

δγ2C2ηK

2λρ2

=−δ

2
(1−ηK)E∥∇Uρ(θn)∥22+

2δdλρ+δγ2C2ηK

2λρ2
,

(A.13)
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where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (A.14)

A.4. Theorem 5.1.
Proof. From Lemma 3.5 (3), Uρ and U have the same minimizer x∗. Therefore

∇Uρ(x
∗)=0.

Let mρ=
m

1+ρm
. Since Uρ is mρ-strongly convex by Lemma 5.1, it is well known [3]

that,

∥∇Uρ(x)∥22⩾2mρ (Uρ(x)−Uρ(x
∗)), ∀x∈Rd. (A.15)

Together with Lemma 5.5, ∀n∈N,

E(Uρ (θn+1)−Uρ (x
∗))⩽

(
1−mρδ(1−ηK)

)
E(Uρ(θn)−Uρ(x

∗))+
2δdλρ+δγ2C2ηK

2λρ2

⇒E(Uρ (θn)−Uρ (x
∗))

⩽
(
1−mρδ(1−ηK)

)nE(Uρ(θ0)−Uρ(x
∗))+

2δdλρ+δγ2C2ηK

2λρ2
1−(1−mρδ(1−ηK))n

1−(1−mρδ(1−ηK))

⩽
(
1−mρδ(1−ηK)

)nE(Uρ(θ0)−Uρ(x
∗))+

2dλρ+γ2C2ηK

2λρ2mρ(1−ηK)
. (A.16)

A.5. Lemma 5.6.
Proof. From Lemma 5.5,

δ

2
(1−ηK)E∥∇Uρ(θn)∥22⩽E(Uρ (θn)−Uρ (θn+1))+

2δdλρ+δγ2C2ηK

2λρ2
, n∈N. (A.17)

Summing the inequalities for n=0,1,. ..,N−1, we have

δ

2
(1−ηK)

N−1∑
n=0

E∥∇Uρ(θn)∥22⩽E(Uρ (θ0)−Uρ (θN ))+
Nδ
(
2dλρ+γ2C2ηK

)
2λρ2

⩽E(Uρ (θ0)−Uρ (x
∗))+

Nδ
(
2dλρ+γ2C2ηK

)
2λρ2

⇒ δ

N−1∑
n=0

E∥∇Uρ(θn)∥22⩽
2

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
Nδ
(
2dλρ+γ2C2ηK

)
λρ2(1−ηK)

.

(A.18)

Then from Lemma 5.2,

δ

N−1∑
n=0

E

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

⩽ηKδ

N−1∑
n=0

E∥∇Uρ(θn)∥22+
Nδγ2C2ηK

λρ2

⩽
2ηK

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
NδηK

(
2dλρ+γ2C2ηK

)
λρ2(1−ηK)

+
Nδγ2C2ηK

λρ2
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=
2ηK

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
NδηK

(
2dλρ+γ2C2

)
λρ2(1−ηK)

. (A.19)

Using Cauchy-Schwarz inequality,

δ
∑N−1

n=0 E
∥∥∥∥θn−Tn,2T

K−1
n (0,θn)

ρ

∥∥∥∥2
2

= δ
∑N−1

n=0 E

∥∥∥∥∥∇Uρ(θn)−
Tn,2T

K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

⩽2δ

N−1∑
n=0

E∥∇Uρ(θn)∥22+2δ

N−1∑
n=0

E

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

⩽
4(1+ηK)

1−ηK
E(Uρ (θ0)−Uρ (x

∗))+
4Nδ

(
dλρ(1+ηK)+γ2C2ηK

)
λρ2(1−ηK)

. (A.20)

A.6. Theorem 5.3.
Proof. According to Lemma 5.7,

KL
(
Px,l
Lρ∥Px,l

D

)
⩽

1

4

N−1∑
n=0

∫ (n+1)δ

nδ

E
∥∥∥∥∇Uρ (Dt)+

Tn,2T
K−1
n (0,Dnδ)−Dnδ

ρ

∥∥∥∥2

2

dt

=
1

4

N−1∑
n=0

∫ (n+1)δ

nδ

E
∥∥∥∥∇Uρ (Dt)−∇Uρ(Dnδ)+∇Uρ(Dnδ)+

Tn,2T
K−1
n (0,Dnδ)−Dnδ

ρ

∥∥∥∥2

2

dt

⩽
1

2

N−1∑
n=0

∫ (n+1)δ

nδ

E

[
∥∇Uρ (Dt)−∇Uρ(Dnδ)∥22+

∥∥∥∥∇Uρ(Dnδ)+
Tn,2T

K−1
n (0,Dnδ)−Dnδ

ρ

∥∥∥∥2

2

]
dt

=
1

2

N−1∑
n=0

∫ (n+1)δ

nδ

E

[
∥∇Uρ (Dt)−∇Uρ(Dnδ)∥22+

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

]
dt.

(A.21)

The last inequality follows from Cauchy-Schwarz inequality.

From Lemma 3.5 (2), Uρ has 1
ρ -Lipschitz gradient:

∥∇Uρ(Dt)−∇Uρ(Dnδ)∥2⩽
1

ρ
∥Dt−Dnδ∥2 . (A.22)

Then

1

2

N−1∑
n=0

∫ (n+1)δ

nδ

E∥∇Uρ (Dt)−∇Uρ(Dnδ)∥22dt⩽
1

2ρ2

N−1∑
n=0

∫ (n+1)δ

nδ

E∥Dt−Dnδ∥22dt.

(A.23)

From the definition of Dt, for t∈ [nδ,(n+1)δ],

Dt−Dnδ =

∫ t

nδ

bτ (Dτ )dτ+

∫ t

nδ

√
2dWτ

=
Tn,2T

K−1
n (0,Dnδ)−Dnδ

ρ

∫ t

nδ

1[nδ,(n+1)δ](τ)dτ+
√
2(Wt−Wnδ)

=
Tn,2T

K−1
n (0,Dnδ)−Dnδ

ρ
(t−nδ)+

√
2(Wt−Wnδ). (A.24)
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Then

1

2ρ2

N−1∑
n=0

∫ (n+1)δ

nδ

E∥Dt−Dnδ∥22dt

=
1

2ρ2

N−1∑
n=0

∫ (n+1)δ

nδ

E

(∥∥∥∥Tn,2T
K−1
n (0,Dnδ)−Dnδ

ρ
(t−nδ)

∥∥∥∥2
2

+
∥∥∥√2(Wt−Wnδ)

∥∥∥2
2

)
dt

=
1

2ρ2

N−1∑
n=0

(
δ3

3
E
∥∥∥∥Tn,2T

K−1
n (0,Dnδ)−Dnδ

ρ

∥∥∥∥2
2

+δ2d

)

=
δ3

6ρ2

N−1∑
n=0

E
∥∥∥∥Tn,2T

K−1
n (0,θn)−θn

ρ

∥∥∥∥2
2

+
δld

2ρ2
. (A.25)

Combine (A.21) with (A.23, A.25), we have

KL
(
Px,l
Lρ∥Px,l

D

)
⩽

δ3

6ρ2

N−1∑
n=0

E
∥∥∥∥Tn,2T

K−1
n (0,θn)−θn

ρ

∥∥∥∥2

2

+
δld

2ρ2

+
1

2

N−1∑
n=0

∫ (n+1)δ

nδ

E

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

dt

=
δ3

6ρ2

N−1∑
n=0

E
∥∥∥∥Tn,2T

K−1
n (0,θn)−θn

ρ

∥∥∥∥2

2

+
δld

2ρ2
+

δ

2

N−1∑
n=0

E

∥∥∥∥∥Tn,2T
K−1
n (0,θn)−proxρU (θn)

ρ

∥∥∥∥∥
2

2

.

(A.26)

Combined with Lemma 5.6, we obtain the inequality

KL
(
Px,l
Lρ∥Px,l

D

)
⩽

2δ2(1+ηK)+3ρ2ηK

3ρ2(1−ηK)
E(Uρ (x)−Uρ (x

∗))

+
ldλρ

(
4δ2(1+ηK)+3δρ(1−ηK)+6ρ2ηK

)
+ lγ2C2ηK(4δ2+3ρ2)

6λρ4(1−ηK)
. (A.27)

A.7. Theorem 5.4.
Proof. From triangular inequality we have∥∥νPθN −Pπρ

∥∥
TV

=
∥∥νPNδ

D −Pπρ

∥∥
TV

⩽
∥∥νPl

Lρ −Pπρ

∥∥
TV

+
∥∥νPl

D−νPl
Lρ

∥∥
TV

. (A.28)

From Lemma 5.8 and Lemma 5.9,∥∥νPl
Lρ −Pπρ

∥∥
TV

⩽
1

2
χ2(ν∥πρ)

1/2exp

(
−lmρ

2

)
⩽

1

2
exp

(
−d

4
log(ρmρ)−

lmρ

2

)
. (A.29)

By Pinsker inequality,∥∥νPl
D−νPl

Lρ

∥∥
TV

⩽
∥∥νPl

D−νPl
Lρ

∥∥
TV

⩽

√
1

2
KL
(
νPl

Lρ∥νPl
D

)
. (A.30)

By Lemma 5.3 and Lemma 3.4,

KL
(
νPl

Lρ∥νPl
D

)
⩽

2δ2(1+ηK)+3ρ2ηK

3ρ2(1−ηK)

d

2
+

ldλρ
(
4δ2(1+ηK)+3δρ(1−ηK)+6ρ2ηK

)
+ lγ2C2ηK(4δ2+3ρ2)

6λρ4(1−ηK)

=
λd

(
2δ2ρ2+4lδ2ρ+3lδρ2

)
+ηK

[
λd

(
2δ2ρ2+3ρ4+4lδ2ρ−3lδρ2+6lρ3

)
+ lγ2C2

(
4δ2+3ρ2

)]
6λρ4(1−ηK)

.

(A.31)
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From (A.28, A.29, A.30) and above,∥∥νPθN −Pπρ

∥∥
TV

⩽
1

2
exp

(
−d

4
log(ρmρ)−

lmρ

2

)
+√

λd
(
2δ2ρ2+4lδ2ρ+3lδρ2

)
+ηK

[
λd

(
2δ2ρ2+3ρ4+4lδ2ρ−3lδρ2+6lρ3

)
+ lγ2C2

(
4δ2+3ρ2

)]
12λρ4(1−ηK)

,

(A.32)

where

η=max

(
1−
(
m+

1

ρ

)2
(

2γ

M2+
1
ρ

−γ2

)
,1−λρmin(BBT )

)
. (A.33)
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