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ANALYSIS AND COMPUTATION FOR THE SCATTERING
PROBLEM OF ELECTROMAGNETIC WAVES IN CHIRAL MEDIA*

GANG BAOT AND LEI ZHANGH

Abstract. This paper considers an obstacle scattering problem in a chiral medium under circularly
polarized oblique plane wave incidence, which can be represented as a combination of a left-circularly
polarized plane wave and a right-circularly polarized one. We apply a reduced model problem with
coupled oblique derivative boundary conditions, describing the cross-coupling effect of electric and
magnetic fields. A novel boundary integral equation is constructed by introducing single-layer poten-
tial operators and the corresponding normal and tangential derivative operators. The corresponding
properties are obtained by splitting techniques to overcome the singularity of integral operators. A nu-
merical method for solving the boundary integral equation is developed, whose convergence is proved.
Numerical results are presented to show the performance of the proposed method.

Keywords. Maxwell’s equations; chiral medium; boundary integral equations; collocation method;
convergence.
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1. Introduction

Chirality has played a critical role in studying optical activity [5], multiferroics [10],
and superfluidity [25]. In recent years, it is also widely concerned in materials science
and chemistry [26,27]. The response of isotropic media, anisotropic media, and other
nonchiral media to electric and magnetic fields is characterized by permittivity and
permeability. However, chiral media need three fundamental quantities (permittivity,
permeability, and chirality admittance) to control characteristics. The chirality admit-
tance can produce a cross-coupling between the electric field and the magnetic field. Due
to the electromagnetic characteristics of chiral media, the obstacle scattering in chiral
media becomes more attractive, for example, the radiation characteristics for antennas
in a chiral environment [6,7,28]. The cross-coupling effects that such media have on the
polarization properties of the waves are characterized by constitutive relations. Various
physical explanations for these constitutive relations describe the wave propagation in
chiral media, see, e.g., [12,18,21,22].

Several research methods have been developed including generalized Lorenz-Mie
theories, analytical approximation, and numerical methods that study chiral media’s
electromagnetic scattering based on the electromagnetic field theory. There are some
analytic methods for solving the boundary-value problems of the electromagnetic wave
scattering for a cylinder with a circular (elliptical) section or a sphere, ellipsoid, see,
e.g., [15]. An exact analytic solution is presented to the electromagnetic wave scattering
by a chiral spheroid using the method of separation of variables [13]. The variational
formulations and numerical analysis of the diffraction problem for chiral gratings have
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been studied in [1,4,32]. To solve the exterior problem with variational methods, one
needs to use the transmission boundary conditions to replace the radiation condition
at infinity. We refer to [9] and the references cited therein for the recent advances.
The boundary integral equation method is another practical approach for solving the
electromagnetic scattering problems [11,17,31]. The authors investigated the solution
for the scattering from a nonhomogeneous object in a chiral medium by using the
boundary integral equation and asymptotic analysis method for the boundary value
problem of Maxwell’s equations [2, 3].

Fresnel interpreted the optical activity of a chiral medium as the different wave
speeds of the left and right circularly polarized waves with different refractive in-
dices [16]. Mathematically, the circular polarization can reduce the complexity of a
Maxwell equation model with proper geometric structures. The left and right circu-
lar polarized waves satisfy Helmholtz equations at different wavenumbers with proper
boundary conditions to describe the cross-coupling effect of electromagnetic fields [6,23].
This paper is concerned with an obliquely incident plane time-harmonic electromagnetic
wave scattering by an infinite cylinder embedded in a three-dimensional chiral medium
using circular polarization. Such polarization significantly reduces the complexity of the
computation for the scattering problem. However, for an obliquely incident electromag-
netic wave, boundary conditions of the scattering problem become more complicated
because of the chirality. We construct a novel boundary integral equation and introduce
a regularized system by splitting techniques in Sobolev spaces.

Throughout this paper, the permittivity ¢ and permeability p of the chiral media
are assumed to be either positive or negative corresponding to conventional or left-
handed (double negative) media [29,30]. Although the propagation properties of waves
in these media are different, the dispersion relation is satisfied. The crucial point for
our analysis is the constructive decompositions for the singular boundary integral op-
erators in Sobolev spaces. We propose an effective numerical method for the cylinder
scattering problem in a homogeneous isotropic chiral environment. Then we discretize
the boundary integral system using the collocation method. The error estimates and the
convergence are proved. Verification examples with the analytical solution are designed
to demonstrate the feasibility and effectiveness of the proposed method.

The paper is organized as follows. We consider the plane wave propagation and
cylinder scattering in chiral media in Section 2. Then Section 3 presents an operator
form of the boundary integral equations and analyzes the integral operator’s properties.
The numerical method and convergence analysis are obtained in Section 4. Numerical
results are presented to show the performance of the proposed method in Section 5, and
the conclusions follow in Section 6.

2. Wave propagation in a chiral medium

Consider the propagation of electromagnetic wave in a chiral medium in R3\ D,
where D, is a linear and isotropic infinite cylinder which is uniform along the x3 axis
with its cross section D (see Figure 2.1). The electromagnetic fields are governed by
the time dependent Maxwell’s equations:

oB oD
VxE+—=0, VxH—-—=0, divD=0, divB=0, (2.1)
ot ot
and the Drude-Born-Fedorov (DBF) constitutive equations
D=e(E+VXE), B=pH+pVxH), (2.2)

where £ =E(x,t) is the electric field intensity, H =H(x,t) is the mangetic field intensity,
D=D(z,t) is the electric flux density, B=B(x,t) is the magntic flux density. The
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Fic. 2.1. Diagram of the scattering problem with an obliquely incident plane wave.

electric permittivity € and magnetic permeability p are assumed to be constants. 3>0
is the chirality admittance. Let (E, H) denote the time harmonic electromagnetic wave
which satisfies

(&,H) =R{(E(z),H(x))e "}, (2.3)
where w >0 is the angular frequency. Then, combining (2.1), (2.2) and (2.3), we have
(1-k*V x E=k*BE +ipwH, divE =0, (2.4)
(1-k?B*)V x H=k?BH —iewE, divH =0,

where k=w,/ep>0. Throughout it is assumed that 0 <kB <1.
On the lateral surface of the cylinder, we apply Leontovich’s impedance boundary
condition

(wxE)xv=AvxH), (2.6)

where v is the unit outward normal to D, A=+/pu./€e. >0 is the impedance constant
[24], €. and p. are the electric permittivity and magnetic permeability of the cylinder.

2.1. Circularly polarized plane wave. We are interested in the scattering
problem under circularly polarized plane wave at oblique incidence [8]. The incident
field is defined as

E'= [grexp(iYLprL - x) +qrexp (iYrPr - )] exp (—iaxs), (2.7)

i . € .~ e~ .
H'= —1\/;[qLexp (iyLpr -x) —qrexp (iYrRPR - )] exp (—iaxs), (2.8)

which satisfies the Equations (2.4) and (2.5), see Section A for more details. Here
a=kcosf is a constant depending on the obliquely incident angle 8 between the incident
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direction and the positive z3 axis, ’yL:ﬁ>O, YR =
(p1,L,p2,0,0) " and pr = (p1,r,p2,r,0)" satisfy

1+kﬁ >0. The vectors pr =

pL-qrL=9; " a, Pr-qr=9g (2.9)
prL X qr=—iArqr, PR X qr=1ARqR, (2.10)
pr-pr=01-7;°0%), prpr=(1-75"%, (2.11)

where g1 = (q1,,¢2,.,1) ", ar=(q1,r,q2,r,1) " and

1 —i9;'a0 1 #z'a0
Ar=[#'a 1 0], Ar=|-iAzp'a 1 0]. (2.12)
0 0 1 0 0 1

Obviously, combining (2.9), (2.10) and (2.11), we have

V x [qrexp(iyrpr - @) exp (—iaxs)| =71 gL exp (iYLpr - &) exp (—iaxs)], (2.13)

V x[grexp (i7rpr - @) exp (—iazs)| = —Fr[grexp (1Trpr - T)exp(—iazz)],  (2.14)
this implies that the field E? is a combination of left-circularly polarized plane wave
and right-circularly polarized one.

Let an infinite cylinder be parallel to the z3 axis in a chiral medium, and its cross-

section D with C? boundary 0D. Then the scattering problem for a chiral medium is
to find the total field (E, H)= (E'+ E*, H' + H?) such that the scattered field

(E°, H?):=(e°(x1,22), h°(x1, z2))exp (—iaxs) (2.15)
satisfies (2.4)-(2.5). Here

es(xl’xQ) = (6{(1’1,1’2),6‘;(%1,xg),eg(lﬂl,xQ))T, (216)

hs(xl,xg):: (hi(.’ﬂl,1'2)7h;($171'2)7h§(1'17l’Q))T. (217)

2.2. The reduced model problem. Based on the above form of electromag-
netic waves, we derive the following reduced model problem with oblique derivative
boundary conditions (the detailed derivation is available in Section B):

Au® +92u* =0 in R2\D,
Av® +y%05=0 in R2\D,
8u“ ou’®
+as—+asu’®+agv®=f; on 0D,

You or

' v 2.18
? +ag ! +arv®+agu®=fo on 0D, ( )

o T or
i ou® —
TILH;O\/;(O iyLu®) =0, r=|z|
1 S\ — —
Tli}rgo\f( —iygv®) =0, r=|zl,
where
f1:—a18%—aga%—a3ul—a4vz, fgz—a5a—vu—a68—v7_—a7vz—agul, (2.19)

i

ui::ui(ml,xg)zexp(i'?LpL-w), v ::vi(ml,xg):exp(iﬁRpR-a:), (2.20)
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and

= (Bt Pav/ep)? —a® =7f —a®, = (B = Bov/ep) —a® =7 —a?,
k23 w
=R P
a; = —2i(B1 + B2/€pt), az =2a,

az = (B2 + Biep—a?) ()\774-)\177) +2061 2 ()\e-i- %) ,

ag=— {(5%+5§6/~L—0¢2) <)\77— /\ln> +26152 (Aﬁ— i)} )
as = —2i(B1 — Pa/ep), ag =2a,
ar=— {(ﬁ%‘Fﬁ%fﬂ—a?) <>\77+ /\177> —251B2 <A€+i>} )

ag= (87 + Baep— a)<)\n)\1> 25152( 6*%)

here n=+/€/p. As we already know that A=+/p./e.. Physically, the material of the
cylinder and the physical properties of the medium are different. Hence, we study the
scattering problem for the case A\n# 1 in this paper. Mathematically, for the case A\n=1,
we have ay =ag =0 implying that the electromagnetic field on the boundary becomes
decoupled.

3. The boundary integral equations
Denote the fundamental solution to the Helmholtz equation in two dimensions by

G(z,y;70) = iHél)('yg|w—y|), where o =L or R and Hél) is the Hankel function of the
first kind with order zero. For & € I':= 0D, we introduce the following integral operators

=2 [ Glayn)otw)ds,. (31)
(K§0)() =2 [ S ()0, (32
(H,0)(@) =2 [ P20 oy, (3.3)

Let the solution of the boundary value problem (2.18) be given by the single-layer
potentials with densities ¢1,p2:

{ = [ G(@,y;70)¢1(y)dsy, £€R?\D,
fl“ T, Y;VR) P2 (y)dsy, iBGRQ\D.

Then, from (3.4), using the jump relation of layer potentials and the boundary condition
on I', we deduce for x €T that

—61(@) + (K1) (@) + o (Hp b1 ) () + d3(S161) (@) + aa(Spa) () = f1(), (3.5)
— o (@) + (K 60) (@) + a6(Hpo) (@) +dr (Spéo) (x) +as(Spér) (®) = s fo(x), (3.6)

where ;= 2,4;=22,j=2,3,4 and a5 = 2,4, = 22,j =6,7,8.

(3.4)

We assume that the boundary possesses a regular analytic and 27-periodic paramet-
ric representation of the form I' = {x(t) = (z1(t),22(t)) T : 0<t <27} in counterclockwise
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orientation satisfying |2’()|? >0 for all £. Multiplying (3.5) and (3.6) by —|z’(t)|, we
obtain the following coupled boundary integral equations

Y1 (t) — (K1) (8) +ao(Hpaby ) (t) +as|a’ (¢)|(Spar ) (t)

+aqlx’ (t )|(SR¢2)(75) =a1fi(t), (3.7)
Ya(t) — [( P2)(t) +as(Hryo) (t) +az|x’(t)| (Sry2) (1)

+as|a! (£)[(Spr) (1)) =as fa(t), (3.8)

where (1) =1 ()1 (@(0), (1) = &/ (1)]6, (1)) =1,2, and
Sao)0= [ |38 el -2l viene

— /0 U S (1 E(E)de, (3.9)

gD [T @) -2(€)
0= [ R E ) (el — (€ hui)de

= /0 ﬂK§*><t,£>w<£>d§, (3.10)

e [Tl @) —2(©) o
Ho)(0) == 2 —a@]H Oele®) —2(©hy(e)ds

0

- /0 " H, (1,60 (€)de, (3.11)

here v(w(t)) = W)l T(@(t) = B, n(t) = (ah(t), a4 (1) T, n(t) = () T
TOPFREOP, @ ()= (@ (1),25#)T, ()=

' (t) = (24 (1),25(1) T, |2 (t)] =
o(x(8))|='(§)]; and o =L, R.
From (3.7) and (3.8), we get

Y—Ap=bh, (3.12)
where ¢:(¢17¢2)T ) b= (dlflaa/5f2)—r7 and

P () ~ / P 1
axH 0 K 0 as|z’'|St as|x’|S
/S h T ) + ~3| | L~4| Sa]. (3.13)
0 agHg 0 K ag|x'|Sy, ar|z’|Sk
Note that the kernel S, (¢,£) can be written as
21—§
Sy (t,€) = Sy1(t,€)In ( 4sin? > +5,2(t,8), t,£€10,27], (3.14)
where
— L (Vo |z (t) —x , ift#£E,
B B = O DRGNS 1)
T o lftzga
So(t,€) = Soa(t,6)In (4sin® 155),  if t#¢,
Soo(t,€)=< . ! ) 2 3.16
2(t:8) {;[H;ln(E“%;” 2], ift=¢. (3.16)
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Here Eu=1.78107 is the Euler constant. Hence, S, can be equivalently rewritten as

2 . 2
O A () ER Ty s oS
0 0
= (So19) (1) + (So20) (£). (3.17)
Similarly, the kernel K((,*)(t,ﬁ) can be written as
K9 (1,6) =K (1,6)n (4sin2 t‘f) + K (L,8), t,¢€[0,2n], (3.18)
where
K@@QZ{;mmxuwa@mhﬁﬁz&“%iﬁ#g (3.19)
o 0, if t=¢,
K&t £,6)In (4sin®58),  if t£¢,
(t §)= { n(t)z N (f)) i (:€)In (45 55) ) fﬁ (3:20)
7%':” OF > if t=¢.
Hence, Kg*)z/) can be equivalently rewritten as
2 _ 2
(K9WXU=/ m(%m”25)Kﬂ@@m@M£f/ K (HEv(€)ds,
0 0
= (KJ)() + (K30) (). (3.21)
Next, we split the kernel H,(t,§), t,€ € [0,27] into the following form
Hot) = Fi (1) + F(0.6)+ Hra () (450 T ) 4 o) (322
where
Hi(t,&)= 21<cot§;+1) (3.23)
()~ ()] o — e ot S5 1A g0
if t=¢,
0 ift=¢
{H —Hi(t,6) = Hi(1.6) = Hoa () In (dsin 55), it 2, (3.26)
2¢ ift=¢.
Consequently,

thw=AwE@OMO%+AWE@OMO%

2m .y t—£ 2m
[ (10 8 Hoau@ass [ Analt s
= (FL ) (1) + (F1 ) (1) + (Hlo19) (1) + (Ho29) (1), (3.27)
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3.1. Operator splitting. From (3.13), (3.17), (3.21) and (3.27), we split A
into

A=H+WHS, (3.28)

where W=W;+W,+ W3, S=851+S8> and

. JaxH; 0 aH; 0
_ o= , (3.29)
0 C~L6H1 0 dGHl
KU +asHp 0
Wy = o , (3.30)
0 Ky +acHz 1
KU +asHr 0 ]
Ws= ORI
i 0 KR,Q —|—a6HR,2_

a3FSr 1 a4sFSg
agFSr 1 arFSgr;1

asFSr 2 a4sFSk 2
asFSr 2 arFSp o

Sy = =

, (3.31)

Y

where

Fop:=|z'|1).

For p>0, let H?[0,27] denote the Sobolev space of 2r-periodic functions g:R—C
with the norm

lglz:= > (1+m?*)|gm|* <o, (3.32)
where
1 27 .
G 1= — g(t)e ™de, m=0,+1,42,--, (3.33)
271' 0

are the Fourier coefficients of g. Define Sobolev spaces
H?[0,27)% = {g = (91,92)T‘ g;(t) € HP[0,27],j = 1,2}, (3.34)

with the norm

lglly = llgullp+ llg2l,- (3.35)
THEOREM 3.1. For all p>0, the operator F: HP[0,27] — HP?[0,27] is bounded.

Proof.  For ¢ € HP[0,27], recalling Fi) = f), where f= f(t) =|x’(¢t)| >0 is analytic,
in particular, f€C%_(I>p>0). Then, by Corollary 8.8 of [20], Fi» € H?[0,27] and

IFL)p =1 £¥lp <C(1flloo+ If P lloo) 1], 0<p<L, (3.36)

for some constant C' depending on p. ]
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THEOREM 3.2.  For all p>0, the operator 7:[:Hp[0,277}2—>Hp[0727r]2 is bounded and
has a bounded inverse

H = MH, (3.37)

furthermore, the operator T—H has a bounded inverse as

-1

(Z-H) =Ms(T+H), (3.38)
where
-1 0 L0
2
Mi=| ® L M= | (3.39)
[ 0 L
ag 1+a2

Proof.  For ¢ € HP|0,27],

B = [ ineouea=g [ (ot u@d G

0

Note that the smgular integral operator H, : H?[0,27] — H?[0,27] is bounded and has
a bounded inverse H; ' = —H; for all p>0, see e.g. [14,20]. Tt follows from 72 >0 (o=
L,R) that 1+a3#0 and 1+a2#0. Then,

1

- 1 Jage . )
Thus, from (3.41), we get
L (I+a.H,) 0 I
R a2 211 0
(z-#)| """ =] (3.42)
0 ﬁ(l‘f'aGHl) 01

Combining (3.42) and the boundedness of operator H, : H?[0,27] — H?[0,27], we
find 7 —H has a bounded inverse as (3.38). Similarly, the corresponding inverse operator
for H is also easily obtained and is given by (3.37). ]

THEOREM 3.3.  For all p>0, the operator W: HP[0,27])? — HPT1[0,27]? is bounded.
Furthermore, the operator W: HP[0,2x]? — HP[0,27]? is compact.

Proof.  For o=L,R, noting that the operators K((,*% and H,; have logarithmic
singularities and are given by

/:ﬂ [m (48111275_25)1((&5)]1/)(5)(16, 0<t<2m, (3.43)

where K (t,£)= K(*)(t &) or Hy1(t,€) are infinitely differentiable and 27-periodic Wlth
respect to both variables. Applying Theorem 12.15 and Corollary 12.16 in [20], w
obtain that KE, i7H071 : HP[0,27] — HP*1[0,27] are bounded and consequently are com-
pact from HP[O 2rr] — HP[0,27] for all p>0. Hence, Wy : HP[0,27]> — HPT1[0,27]2
bounded and consequently is compact from H?[0,27]? — HP[0,27]%.

Since the kernel functions Hy, K. ((7*2) and ﬁmg are analytic, it follows from Theorem

A.45 in [19] and Theorem 8.13 in [20] that the operators Ijll,Kf,;H,,g :HP[0,27] —
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HP*7[0,27] are bounded for all integers r >0 and arbitrary p>0. Then the operators
Wi, Ws: HP[0,27]2 — HP*"[0,27]? are bounded for all integers r >0 and arbitrary p > 0.
In particular, for all p>0, the operators Wy, Ws: HP[0,27]? — HP*1[0,27]? are bounded
and consequently are compact from HP[0,27]? — HP[0,27]%. 0

THEOREM 3.4.  For all p>0, the operator S: HP[0,27]2 — HPT1(0,27]? is bounded.
Furthermore, the operator S: HP[0,27]> — HP[0,27]? is compact.

Proof. For o=L,R and p>0, similar to the proof of Theorem 3.3, we ob-
tain that the operators S, 1,S4,2: HP[0,27] — HPT1[0,27] are bounded, hence, compact
from HP[0,2n] — HP[0,27]. Then, from Theorem 3.1, the operators Sy,Ss: HP[0,27]? —
HPT10,27]2 are bounded, and consequently compact from HP[0,27]? — HP[0,27]? for
all p>0. 0

We rewrite the operator Equation (3.12) in the form
Y—(H+W+S)p=b. (3.44)
ie.,
Hp—Kp=Db, (3.45)

where H=Z—H and K=W+S. Using Theorem 3.2, we have H:HP”[0,27]? —
HP[0,27]? is a bijective bounded linear operator mapping which has a bounded inverse
(3.38). By Theorem 3.3 and Theorem 3.4 we have

THEOREM 3.5.  For all p>0, the operator K : HP[0,2x]? — HPT1[0,27])? is bounded.
Furthermore, the operator K : HP[0,2r]> — HP[0,27)? is compact.

This follows immediately from the fact that we can transform the Equation (3.45)
into the equivalent form

—Ap=H'b=My(Z+H)b, (3.46)
where
A=H1K=My(K+HK). (3.47)

Then, by Theorem 2.21 in [20] and Theorem 3.2, Theorem 3.5 , we have

THEOREM 3.6.  For all p>0, the operator A:H?[0,27]2 — HPT1[0,27)2 is bounded.
Furthermore, the operator A: HP[0,27]> — HP[0,27]? is compact.

Obviously, Z — A is surjective, then, using Theorem 3.4 in [20] and Theorem 3.6, we
obtain the following theorem

THEOREM 3.7.  The operator T— A is injective, and the inverse operator (I—A)_lz
HP[0,27)? — HP[0,27]? is bounded and there exists a unique solution to the Equation
4. Convergence analysis
In this section, we study the convergence of the discretization of integral Equations
(3.46) by using the collocation method. Denote by T, the interpolation operator, which
maps 27-periodic scalar function g€ H?[0,27] into a unique trigonometric polynomial
T,g at the equidistant interpolation points §]<n) = %j, j=0,...,2n—1. Given the values
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g(§§")), 7=0,...,2n—1, then, there exists a unique trigonometric polynomial of the
form

n—1
(Tng)(t):%-kz [y coslt + Bysinlt] +%cosnt, 0<t<2m, (4.1)
=1

with the interpolation property (Tng)(gj(.")):g(gj(.")), j=0,...,2n—1. Moreover, the
coefficients are given by

2n—1

]‘ n n
ap=— Z g({J( ))cos(lgj(- )), 1=0,...,n, (4.2)

3

Bi=— 3 g(&)sin(g™), I=1,...n—1. (4:3)
§=0

Let X,, C HP[0,27] be the space of trigonometric polynomials of degree less than or
equal to n of the form (4.1). Then, T, : H?[0,27] — X,, is a bounded linear operator.
Let X2:={g=1(g91,92)":91€ X, 92€ X,,} and define the interpolation operator 7, :
H?[0,27]?> — X2 by

Tng=(Tng1,Tng2)", ¥ g=(g1,92)" € H?[0,2)%. (4.4)

THEOREM 4.1 ([20]). For the trigonometric interpolation,

C 1
ITag=gle< —— Nl 0<a<p, 5<p. (4.5)

for all g€ HP[0,27] and some constant C' depending on p and q.

Obviously, by Theorem 4.1, the operators T, : H?[0,27] — H?[0,27] are uniformly
bounded. For the integral equations of the second kind (3.46), its projected equation is

™) — T Ap™ =T, Mo (T+H)b, (4.6)

where (™) = (1/J§n), gn))‘r € X2 is the approximation of the solution 1 by a trigonomet-
ric polynomial.

THEOREM 4.2.  For sufficiently large n, the approzimate Equation (4.6) is uniquely
solvable and with an error estimate

™ ||, < M| Totp—9llp,  p>0, (4.7)

for some positive constant My depending on A.

Proof. For the solution 1 € HP[0,27]? of Equations (3.46), by Theorem 3.6, The-
orem 3.7 and Theorem 4.1, we deduce that

- - C, - C
[T A% = Apllp < A llp1 < —llbllp, 20, (4.8)
which implies

| 77 A~ All, =0 as n— o0, p>0. (4.9)
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Then, by Theorem 13.10 in [20], the proof is complete. |

Next, we deduce that the Lagrange basis for the trigonometric interpolation has the
form

L;(t)= 1{1+QZCOSl(t—£§n))—l—COSTL(t—fj(-n))}, (4.10)

for t€[0,2n] and j=0,....2n—1. Then, we find an approximation (™ € X2 of the
solution 1 by

2n—1 2n—1
P = (™ G5 T (Zwl (€M)L Z% (€M)L )) : (4.11)

which satisfies
P — T, A p™ =T, Mo(Z+H, )b (4.12)

Here A, =My (Kp+HnKn), Ho =HT,, and K, =W, +S,,.
For Vne X2, Hp, Wy, S, have the following interpolatory quadrature operators of
the form

- 5121:11Tn771]
Hym=|_"5 s 4.13
K LGH1Tn772 (4.13)
W n= |:d2EII7zn1:|+ (K(Li)1n+a2HL,1n)771 + (K2)2n+d21‘_‘:IL7271)771 (4 14)
a6H1n7]2 (Kg)ln-i-dgHR’ln)??z (Kg)2n+deHR,2n)n2 ’
Sum= as¥FSp 1nm +asFSk 1072 n asFSyp 201 +asFSg 2012 (4.15)
" asF Sy 1nm +a7rFSR 1nm2 asFSr onm +a7rFSRronm2|’ '
where
R 27
(H1Tomr ) (t) = Hy(4,€)[Tone] (€)dE, (4.16)
0
27
(Frn)O)= [ T, m e (4.17)

(K, +aHo ) me) (1)

:/O ln(4sm t){T (K& (t,) +a;Hy o (1)) me] HE)AE,  j=2,6, (4.18)

o,

2

(K, +aHeon)nl ()= | {Tu[(KS)(t) +a3Hoa(t,))me] H(E)dE, =26, (4.19)
27
(FSo1nmk)(t) =2/ (t |/ In <4sm 5) [Tn (Sg,l(tg)nk)} (&)dg, (4.20)

271'
(FSU 2nnk |/ n ) )} (E)dg, (421)

with k=1,2, c=L,R.
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THEOREM 4.3.  Assume that p>1. For sufficiently large n, the approxzimate Equation
(4.12) is uniquely solvable and with an error estimate

15 = 4pll, < Mo { | Tutp = llp + | T (An = D)l + | T (Hab =)}, (4.22)
for some positive constant Ms.

Proof.  Using Theorem 3.3 and Theorem 3.4, for all g€ H?[0,27]?, setting ¢ =
p—12>0 in Theorem 12.18 of [20], we have

C C
”an_Wnggg”ng» HSng_Sg”pSgHng? (4.23)

for some constant C' depending on p. Then, the operators W, ,W,, — W and S,,,S, —S
are uniformly bounded from H?[0,27]? — H?[0,27]* for p> 1.

Hence, we get K,,,K, —K are uniformly bounded from HP[0,27]|? — HP[0,27]? for
p>1, and satisfy

C
1Kng =Kglly < [Wag = Wgl +[Sug —Sgllp < —llgly- (4.24)
It follows from Theorem 3.2 and Theorem 4.1 that
|(Ho—H)gllp =1 H(Tog —9)ll, <Cil| Tag —gll, < Cligllp, (4.25)

for some constant C' depending on p and H. Then, H,,,H,—H are uniformly bounded
from H?[0,27] — H?[0,27] for p> 3.

Therefore, from H,¢p=He¢ for @€ X2, (4.24) and (4.25), by Theorem 3.2, Theo-
rem 3.5, Theorem 4.1 and the uniform boundedness of the operator 7, : H?[0,27]? —
HP[0,27]?%, we obtain

7Kg —HKgll,
<|HnKng—HaKgllp+ | HaKg—HKgll,
< Hn (Ko = K)gllp + | (H — H) (Kg — ToKg) |lp + | (H — H) T Kgl
= HTo (Ko = K)gllp+ || (Hn—H) (Kg — T Kg) |l

. ~ 5 C ~C
<Ci[(Kn = K)gllp+ClIKg = TaKglly < Cr-ligllp +ClIKglp+1

. C ~-C Cy
< = el =2 . 4.2
<Cillgly+Cllglly=—~lgll» (4.26)
Furthermore, from (4.24) and (4.26), we have

| TnAng — TaAglly = | Ta M2 (K +HuKn)g — TaMa(K+HK)gll,
< (Kn+HaKn)g — (K+HK)gll,

~ - c
SH/Cng—’Cng+||'HnICng—7'UCg||p§gHng, (4.27)
for some constant C' depending on p and IC,’;':L Similarly, for ¢ € X2, we have
. . C
1(TnAn =T A) @l < Il (4.28)

The proof is complete by using Theorem 3.6, Theorem 3.7, the uniform boundedness
of the operators T,,: H?[0,27]? — H?[0,27]? and Corollary 13.11 in [20]. O
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5. Numerical experiments
Since the Equation (3.44) is equivalent to (3.46), we only need to solve the equivalent
full-discrete equation of (3.44), i.e

) — T A ™ =) — T (o + W +80) ™ =Tb. (5.1)

Let M;_ ; and Mz_ 4 denote the coefficient matrix of the full-discrete Equation (4.12)
and (5.1), respectively. By Theorem 4.3, we know that (4.12) is uniquely solvable
which implies that the matrix M;_ ; is invertible. Noting that Mz 4 =My —Mg =
My, M _ ; with the aid of My, being invertible, we find that Mz_ 4 is invertible. Hence,
(5.1) is uniquely solvable.

For the integrals, the following formulations (Lemma 8.23 in [20]) are used

e Lo

2n—1
Z i (™), (5.2)
27 t g
/0 {ln (4sm 2) [T, K(t, )] (5)}d§
2n—1 2 _
> { / i (452 58 25 €0 0ol
2n_ 1
~ Z S () K (1,65 (e, (5.3)
and
2 . 2n—1
/0 {[an»-)w] <£)}d§~n > N wE™), (5.4)
j=0
where K (-,-),N(-,-) are analytic functions, and
(n)
o (t) = % [1—cosn(¢)™ —t)] cot (gj 5 t>, (5.5)
n—1
S (t) :-% {2 3 ;cosm(t—gj."micosn(t—gj(”))]. (5.6)

m=1

Using (5.2)—(5.4), the fully discrete collocation method for (3.44) leads to the linear
system as follows

2n—1 2n—1

%) - Z 7J, Z Q(Z?ng?j) =b1,, (5.7)
7=0
2n—1 2n—1

Z D wza Z QEZ)L%Z) =bay, (5.8)
i=o0
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where

D" =a | O () + 8 (€ H 1 (607,68

2 (e 6+ Auale )+ 5 )|

#SPEMRELE ) + TR 6]

+a3[w< PIEAGE >L,1<§§”>,e§-”>>+Z|w'<£§”>>|SL,2<55”>,5§”>>], (5.9)

Q<,jR—a4[|a:< IS (€ (€ €) + T (€ a1 5"“)} (5.10)

D) =i [Oﬁ’” (&) + 576 Hra (67,65
T e (N 7 o) )y, 1
+n<H1(€i &)+ HR (6 € )+27T>}
[ n n * n ™ * n n
+SERELE. 6+ TREMED 67

+ay [w( OIS €M) Sra (€ ) + o (67 SR (€™ € >}, (5.11)

Q" =as |a:’<s§")>|s§”><g£")> TGREI \ (GRS <s§"’,5§")>] (5.12)
and

bi=afi(€™),  boi=asfa(e™). (5.13)

Two numerical examples are presented to show the excellent performance of the
proposed method. The numerical tests are implemented using Matlab on a PC with an
Intel 19-9980H processor. We consider the cylinder scattering problems with different
cross-sections in a chiral environment. Table 5.1 shows the parametric equations of
Apple-shaped and Peanut-shaped boundary curves T'.

Shaped Parametrization

w(t) _ 0.5(1+0.8cost+0.2sin2t)

Apple—shaped TT0 Toost (cost,sint), te€[0,27]

Peanut — shaped x(t) =0.25v/3cos?t +1 (cost,sint), t€]0,27]

TABLE 5.1. The smooth boundary curve I' of cross-sections D.

Numerical example 1. For the cross-sections D with the smooth boundary
curve I' in Table 5.1, we construct an exact solution by two incident point sources

u'(@) =gy Ol —apl), (@)= 1By (ule—ap)),  xeR*\D,  (5.14)

4
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Apple —shaped

Peanut —shaped

DT IE [or vl IDF ST IE o —vls
A [CAE A [o]

8 0.0078 0.0078 5.203le—04  5.2034e—04
16 0.0015 0.0015 5.1380e—06  5.1385¢—06
32 1.7858¢—05  1.7860¢ —05 9.4580e—10  9.4566¢— 10
64 2.5342¢—08  2.5344e—08  5.2788e—14  5.2667c—14
128 9.6322¢—14  3.2206e—14  2.6587e—14  2.6160c—14
256 1.5843c—14  1.6188¢—14 1.2161¢ — 14 1.4096¢ — 14
512 8.5748¢—15  7.664le—15 3.1390¢ — 15 1.0181e — 14

1024 3.2045e—15  5.1075e—15 1.2374e — 15 7.0294e— 15

TABLE 5.2. The errors norm for the Apple-shaped and Peanut-shaped D with f=1,w =27 x 103.

Apple —shaped

Peanut —shaped

DT IE [or vl DT IE o vl
A [CAE TR [ol

8 0.0076 0.0080 4.9905¢—04  5.4196e— 04
16 0.0015 0.0016 4.9253¢—06  5.3570¢— 06
32 1.7105¢—05  1.8609¢ —05 9.0760e—10  9.8519¢—10
64 2.4274e—08  2.6404e—08  5.6482e—13  4.9115¢—13
128 4.0593¢—13  2.3285¢—13  2.8255e—13  2.4533e—13
256 1.720le—13  1.5010e—13 1.4038¢ — 13 1.2381e — 13
512 8.664le—14  7.4462¢—14  6.7410e—14  6.5140e— 14
1024 4.2280e—14  3.8398¢—14  3.205le—14  3.4338¢—14

TABLE 5.3. The errors norm for the Apple-shaped and Peanut-shaped D with 8=100,w =27 x 10%.

Apple —shaped

Peanut —shaped

Tun —uiT2

vk —vil=

Tun —uiT2

[vx —vil:

A [CAE TR o]

8 0.0059 0.0089 2.8737e—04  7.2872¢—04
16 9.6924¢ — 04 0.0021 2.6529¢—06  7.3137e—06
32 9.4503¢—06  2.4919¢ —05 6.7341e — 10 1.3008¢ — 09
64 1.3508¢—08  3.5200¢ —08 1.0385¢—10  2.577de—11
128 6.2237e—11  1.58lle—11 5.1926¢ — 11 1.2887e — 11
256 3.1106e—11  7.9492¢—12 2.5963¢ — 11 6.4448¢ — 12
512 1.5553¢—11  3.9739¢ —12 1.2080e — 11 3.2265¢ — 12
1024 T.7758e—12 1988512 6.4890¢ — 12 1.6160e — 12

TABLE 5.4. The errors norm for the Apple-shaped and Peanut-shaped D with §=10,w =27 x 105.
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A=10° A=10°
. [T [T [T [T,
64  2.8751e—06 3.3207e—06 8.1322e—07 7.6346e—07
128 7.1960e—07 8.3455¢—07 1.7839¢—07  1.6028¢—07
256 1.8039¢—07  2.0945e—07  2.8666e—08 2.3365¢— 08
512 4.5157e—08 5.2458¢—08 4.0874e—09  3.2824e—09
1024 1.1298¢—08 1.3125¢—08  9.9293¢—10 1.085le—09

TABLE 5.5. The errors norm for the drop-shaped D with B=1,w =27 x 106,

737

65=10 B=1
n ok T D ETHE Lok T [T
64 5.9354e—06  5.5674e—06 3.377le—06 3.3275e—06
128 1.4875e—06  1.4200e—06 8.4119¢—07 8.3858¢—07
256 3.7008e—07  3.5664e—07 2.1021e—07  2.1079e—07
512 9.2227e—08  8.9305e—08  5.2559¢—08  5.2807¢—08
1024  2.3044e—08  2.2326e—08 1.3163e—08 1.3192e¢—08

TABLE 5.6. The errors norm for the drop-shaped D with A\=10,w =27 x 106.

which located at @,=(0.2,0.1)T € D. Thus, by enforcing the following boundary con-
ditions on I':
ou’ ou’ i . o' o'
hi=a1—— o +as or +azu’+aqv’, fo=as——— By +ag—o— o7

the exact solution (u$,v$)=(u’,v%) of (2.18) can be constructed explicitly by (5.14).
Takmg the observation points {x(Zl) 23 ! on the circle B = {x € R?: |x| =3}, where

=16. The electric permittivity and magnetlc permeability of a vacuum are denoted as
€0 and jug, respectively, the other parameters are chosen as € = 2eq, pt = 2410, A= 103,60 = 5
Tables 5.2 and 5.3 show the numerical errors between the numerical solution and the
corresponding exact solution with L?(0B) norm for the apple-shaped D and peanut-
shaped D when f=1,w=27 x 10% and 8 =100,w =27 x 10%, respectively. Furthermore,
in experiment 1, for the high-frequency w =27 x 10% case, we show the numerical results
in Table 5.4. The numerical results also show that permittivity, permeability, chirality,
and angular frequency affect the convergence rate. We can get highly accurate results
by increasing the number of interpolation points.

+a7v' +agu’, (5.15)

Numerical example 2. Similar to the setting in Example 1, such as incident
wave and the right-hand side, we test the accuracy of the numerical method for non-
smooth cross-section boundary I'= {o(t)=(sint — 1, —1isint), t€[0,2n]}. Taking the
observation points {x(%) 3”01 on the circle 0B = {:I:GR2 |x| =3}, where =16, the
parameters are chosen as € =2eq, 1t =20,w =27 x 106, = %,xp=(0.4,0. 2)". Table 5.5
shows the numerical errors between the numerical solutlon and the corresponding exact
solution with L?(9B) norm for the Drop-shaped D with A=103 and A=10°. We note
that the numerical and exact solutions coincide with the nonsmooth cross-sections with
suitable interpolation points. Furthermore, in experiment 2, for =10 and f=1, we
also show the numerical results in Table 5.6
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Apple —shaped

Peanut —shaped

n

Tuly —ui«T2

Toxy —vi« T2

Tuly —ui <12

Tox =Rl

[l ll2 o= ll2 [l ll2 llv3s M2
16 2.5000e —03 2.5200e — 02 5.4522e — 06 2.6799e —05
32 3.9919¢ - 05 1.7465e — 04 1.1475e—09 4.6792e —09
64 5.4827e —08 2.4404e - 07 3.8710e —10 2.9269e — 10
128 2.8971e—10 2.4595e—-10 1.8730e—10 1.4161e—10
256 1.3524e—10 1.1487e—10 8.7406e —11 6.6048e — 11
512 5.7963e —11 4.9255e—11 3.7456e — 11 2.8250e—11
1024 1.9326e —11 1.6439e —11 1.2483e—11 9.3735e¢—12

TABLE 5.7. The errors norm for the Apple-shaped and Peanut-shaped D with §=10,w =27 x 106,

Numerical example 3. For the scattering problem of the plane wave incidence
which is given by (A.15) with (A.11) and (A.12), we calculate the values of compressional
and shear scattered fields uy.,v3. on 0B={z€R?:|x|=3} with n=16, N*=2048.
The electric permittivity and magnetic permeability of a vacuum are denoted as ¢
and g, respectively, the other parameters are chosen as €= 2eq, pt =249, A= 103,60 = 3
Tables 5.7 shows the numerical errors between the numerical solution and u3;.,v3;« with
L?(0B) norm for the apple-shaped D and peanut-shaped D when 8=10,w =2 x 10°.
We can also get highly accurate results by increasing the number of interpolation points
with the plane wave incidence.

6. Concluding remarks

We have presented an effective algorithm for a cylinder scattering problem with
obliquely incident electromagnetic waves in a chiral environment. For general cross-
sectional cylinder geometric structures, both the left-circularly polarization and right-
circularly polarization are employed to reduce the computational complexity for the
boundary value problem of Maxwell’s equations in chiral media. A novel integral equa-
tion method is developed for solving the scattering problem. The convergence of the
method has been established. An interesting future direction is to develop a fast com-
putational method for solving the related inverse obstacle scattering problem.

Appendix A. The electromagnetic plane wave. The time-harmonic electro-
magnetic plane wave

E'=(&,é4,6)" =[qrexp(iyrpr - =) +qrexp(iYrPr-T)), (A.1)

P TETIEY . [e o -
A= (i, ;,hgﬁ=—1\/;[qLexp<wLpL-m)—qRexmepR-w)L (A.2)

is a combination of left-circularly polarized plane wave and right-circularly polarized
one, which satisfies the isotropic DBF equations in R? [3]. Here

- k - k
’VL—m—ﬁ1+»32\/a>07 ’YR—M——(51—52\/@)>07 (A.3)
the constants 8, and By are given by
B=k*(1-K*B*)"'3>0, Bo=w(1—E*B*)"1 >0. (A.4)
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The complex vectors

ar=(q1,0,92,0,93,.) s Pr=P1,0.P2,0,P3,0) (A.5)
adr=(q1,r:@2,R:03,0) + Pr=(P1,R:P2.R::P3,R) (A.6)

satisfy
Pr-qr=0, Pr-qr=0, PrXqr=-iqr, PrXxgqr=iqg. (A7)

T 27

Let ps3, . =—7f Lo and a = kcosf, where 6 € [5,5)U(5, 5] is the obliquely incident
angle between the incident direction and the negative x3 axis. Considering now the case
of pr-pr =1, that is, piL —|—p§,L =1- (—’?Zla)2 >0, it follows from Py, X q;, = —iqy, that

i gpta par QL (oL
-File i -pir @, | =ArL| ¢, | =0 (A.8)
—p2,r P11 i q3,L q3,L

has nonzero solutions. For an example, choose

- - . o o T
pL:(\/2(1—7L2a2)71\/1—7L2a27—7L1a)

then

<1+ﬂa;1a —iv2+i7; ' 1) T
qL = ’ ’
Vi-di%e2  \/1-5;%2

is a nonzero solution of (A.8). Similarly, let ps g =—7 @, assume that PiRtD3R=

(A.9)

1—(=45'a)?>0, we can also obtain that

i —Az'a —par qL,R (@R
Jpla i D1,R @.r | =Ar| @2,r | =0 (A.10)
P2,R —DP1,R 1 q3,R q3,R

has nonzero solutions. Moreover, without loss of generalities, taking gs.r =q3.r =1.
When considering the plane wave incidence in numerical experiments, we choose
real pr, and ppr in (2.20) as

pr=( \f\/l A;2a2, 1\/1 A 22, 0) (A.11)
\/1 Vrla ,\f\/1 3n2a2,0)" (A.12)

The incident fields 5,74 can been expressed as

éé = (ui(:cl,mg) +Ui(x17§c2))exp(—ial'3)7 (A13)

hé:—i\/j(ui(xl,xg)—vi(xl,xg))exp(—iaajg). (A.14)
It follows from (A.1), (A.2) (A.13) and (A.14) that

i

ui::ui(xl,xg):exp(i’prL-a:), v ::vi(xl,:vg):exp(i'?Rpr), (A.15)
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where pr, = (p1,1,p2,1,0) and pr = (p1,r,p2,r,0).
From (A.15), the incident fields u® and v* satisfy the equations:

Au' +7Fu' =0, Av' 50" =0, (A.16)
where 77 1=} —a?>0 and 7% :=7%—a?>0 for 6 €[3,2)U (3, %]

Appendix B. The reduced problem. For time-harmonic electromagnetic waves
of the form

(é1(x1,x2),E2(x1,x2),E5(21, $2>)T€Xp(—ial‘3), (B.1)

FE:.=
H :=(hi(x1,22),ha(x1,22),hs(x1, xg))TeXp(—iaxg), (B.2)

we deduce that 0,,€; =—iaé, 8zsﬁl =—ialy (1=1,2,3).

From Maxwell’s Equations (2.4) and (2.5), we have

Oy, €5 +i0és = 161 +ipfBahy, (B.3)
18] + Oy, 63 = — 169 — ipf2ha, (B.4)
Dy, 62 — Dy €1 = P13 +ipfahs, (B.5)
Dy hiz +iahy = By —i€faéy, (B.6)
iahy 4 0y, hs = —B1ho +i€Baés, (B.7)
O, hy — 8y, by = Brhs —i€faés. (B.8)
Using iefzx (B.3)+iax (B.7) and iax (B.3)+iuf2x (B.7), we get
(0 — €415 by =i€B3(Da, 83 — Br1) +icU( Dy s + Br Do), (B.9)
(o — €uf3)é2 =P (0, ha + Brha) +ic (D, &3 — B161). (B.10)
From iefax (B.4) —iax (B.6) and iax (B.4)—ipf2x (B.6), we have
(o — €uB3)ha = —iefa(0y, €3+ B182) +ic(Duy ha — Biha), (B.11)
(0® — eu3)é1 = —1pBa(On, hs — Brhy) +ia (O, €3+ B162). (B.12)
Then, from (B.10) and (B.12), we obtain
(0 — €p133) 0, &2 =113 (02 b3 + 10y, o) +ia(02, , 3 — B10s,€1), (B.13)
(0 — €1133) D, €1 = —ip1B32 (02, ha — P10, 1) +i(02, €3+ 104, E2). (B.14)

Combining (B.5) and (B.13)—(B.14), we derive

(02, hs+ 92, h3) + B1 (9, ha — Dy h1) — L&(amlél +0,,62)
B2
a251 ~ . ~ 2 2\ T
5 €3 +ief1P2€3+ (o —eufs)hs. (B.15)
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Thus, from (B.8), (B.15) and divE =0, we have
(02, ha+02,h3) + (B +epBs — o) hs — 121 5283
=[(82, b3+ 07, h3) + (8] + epfB5 — & ) hg — 12¢f31 Baes] exp (—iaws) = 0. (B.16)
By (B.9) and (B.11), we derive
(02 — €433) 0y b1 =1€B2(02, €5 — P10, 1) +ic(02, 4, b3+ B10s, ha), (B.17)
(02 = €433) 0y, ho = —i€Ba(02 €3+ P10, é2) +ic(0Z, , b — B10s, ha). (B.18)

Combining (B.8) and (B.17)—(B.18), we arrive at

(0,83 +07,85) + B1(0r, 62 — Dy 1) + %ﬂl (Oy 11 + 0y o)
2

.04251

=i
€02
From (B.5) and (B.19) and divH =0, we have

hs—ippBy Bohs + (o — 3 )és. (B.19)

(02,85 +07,8) + (57 + epifl — o®)es + 121 Bohs
=[(02 es+02 e3) + (BT +eufs — a®)es +i2uB1 Bohs]exp (—iaxs) =0. (B.20)

By (B.16) and (B.20), we get
(02 €3+ 02 e3) + (B +eups — a?)es +i2up1 fohs =0, (B.21)
(07, ha+02,h3) + (B7 +epBs — a®)hg —i2¢f1 faes =0. (B.22)

We next derive the boundary conditions. It is convenient to introduce the following
notations:

ey =a161+Toes, hy :ft1B1+i32B2, V:ilaml-i-:ftzamy (B23)

where &1 =(1,0,0), #2=(0,1,0) and #3=(0,0,1). Let v=(v1,15,0)7 and 7=
(—v9,11,0) T denote the unit outward normal vector and tangential vector of T' respec-
tively.

Then, from |v|=|7|=1 and (2.6), we have

Vgég %1 Z/QiLig
—1 53 X 1] =A —1 hg . (B24)
V1€ — €1 0 vihy —vohy
Hence
—T- €= —(—Vg,Vl,O)T . (él,éQ,O)T = Vzél —Vlég :)\iL3, (B25)
ég = )\(Vlilz — Z/Qill) = )\(—1/2,1/1,0)-'— . (iL17iL2,O)T = )\T . ht. (B26)

Combining (B.25), (B.10) and (B.12), we obtain

—A\hg = {iuBa(Vhs-v) +ipup1fot -hy+iaT -Véz —iabi(es-v)}.  (B.27)

o
(0% —epf33)
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Combining (B.26), (B.9) and (B.11), we obtain

1
(0% —€pf33) {

Similarly

3= —ieBQ(Vég~1/)—166162T~et+ia7'~v}~13—iaﬁl(ht-u)}. (B28)

1
A
V-ey— (Vl,VQ,O)T . (61762,0)T :I/lél +l/2é2
—1 : = . . S
= m{lﬂ,@z(th 'T) —IMB1B2V' ht —10{V~V€3 —104,81 (et 'T)}, (B29)
v-hy=(v1,2,0) " - (h1,h2,0) T =vih1 +1ohy

= m{ieﬁg(v% -T) —1i€f1 Bov - ex +iow - Vhg +iafy (hy T)} (B.30)
3

Therefore, we can rewrite (B.27), (B.28), (B.29) and (B.30) as, respectively,

(a® —eup3)T s =ipBa(Vhs - v) +ipfifa(T - hy) +ia(T Vés) —iafi(es-v),  (B.31)
(0 —euf3) T hy = —i€B2(Ves-v) —ief1 fo(T - €1) +ia(T - Vhs) —iafi (hs-v),  (B.32)
(02 —euB3)v-ey=—ipBa(Vhs 1) +ipBifo(v-hy) +ia(v - Vés) +iaBi(es ), (B.33)
(0 —epuf2)v-hy =ieBy(Vés-T) —ief1fa(v-€p) +ia(v-Vhs) +iafy(he-7).  (B.34)

From (a? —euf3)x(B.33)+ipB1P2x (B.34) and (a? —euB3)x(B.32)—iaf x (B.34),
we get
[(0® —eppB3)” —euBi B3lv - e
=iapi(a® —euf3)(er- 1) — apfifa(he-7) —ipfa(a® —eu3)(Vhy-7)
tia(a? - ufd)(v-Ves) — eupr B3(Ves 1) —apbiBa(v-Vhs),  (B35)
[(0® —enfB3)? —a?BY)T - hy
=—ief1f2(a? —euBl)(T-er) — el Ba(v-ep) +ia(a® — eufB2)(T-Vhs)
—ieBa(a® —euB2)(Vés-v) +aef Bo(Veés-T) +a?Bi(v-Vhs). (B.36)
From i€f1 2% (B.31)+(B.36) and —iaB1 x(B.35)+[(a? —euB3)? —euBip3)x (B.31),
we have
i2¢f31 B2 (a® —epB3) T - 4
=—[(0® = enf3)* — a®BY + euBi BEIm - hu+ B (0 — eufB3) (v - Vhs)
+io(a® —euf2) (T Vhs) —iefa(a® —euf2)(Veés-v), (B.37)

[(a® —epfB3)? —eufi B —a?B)(a® —epf33)T-er
=iuf1 820?57 + (0 —ep3)? — e 83)) (he - 7)
+ia(a? —euB2)*(Vés- 1)
+iuBa[0® 87 + (o —euB3) —euBiB3)] (Vhs - v)
+a’Bi(a® —euf3) (v - Vés) — B fo(a” — enf53) (Vhs - 7). (B.38)
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From [(a? —euB2)? —euB2 85 — a? B3] x (B.37)—i2¢31 B2 x (B.38), we have

{l(0® —epf3)? —a® B — eup A3)[(a® —enp3)? — BT + epfii 53]
—2epfiF3[(0” — epf3)® +a? B —epif3]} - he
={B1(a® —epf3)[(a® —enp3)” —enpif; —a®bi

+2ep51 3 [(0® — epp3) + 0”5 — epBE B3]} (v - Vha)

+{ia(a® —eup)[(a® —epf3)” —eupifs —a?pi
+i2aepfi (0 —epfi3) } (- Vhs)

—{iefa(a® —euf3)[(o® —epf3)? — euii B3 —a?Bi]
+i20%€B2Ba(a® — euﬂ%)}(Vég V) +i2aefB B (o —euB3)?(Ves-1).  (B.39)

With the help of —e(a? —euB3)x (B.31), ieuB1 82 x (B.32) and iaef; x (B.33), we get

—e(a2 - e,uﬁg)Q’r -ey = —iepfs (a2 — e/iﬁ%)(ViLg ) —ieuB Po (a2 - e,uB%)(T -hy)
—iae(a® —epfs)(T-Ves) +iaef (o —euBi)(es-v),  (B.40)

—EupiB3 (T er) =—iepuB1Ba(a” — epB3) T hy+ € b1 85 (Vés-v)

—aéuﬁlﬁg(T-Vilg) +aeuﬂfﬁg(ht~u), (B.41)
0426512(et T) =—laefy (042 - euﬁ%)v -e¢+ 046/116152(VB3 -T)
—aepBifa(v-he) —a’eBi(v-Veés), (B.42)

hence, by (B.40)+(B.41)+(B.42) that
(B +enfs —a®)T e
=—ipfBa(Vhs-v) —i20B1 B (T - hy) —icl(T-Vés) — f1(v- Vés). (B.43)

With the help of —ieuB182x(B.31), —u(a? —euBs)x(B.32) and iauB x (B.34), we
get

—ep? B 05 (7 he) =iepfi fa(a® — epf3)T - ey + e’ 5155 (Vhs -v)

+ ceptp1 Bo (T Vés) — aep3 Ba(er - v), (B.44)
—p(® —eup)*T-hy=iepfa(a® —epuf3)(Veés - v) +iepf fa(a” — eufs) (- ex)

—iap(a® —euf2)(T-Vhs) +iauf (0 —euBs)(hs-v), (B.45)

& pfi(hg-1) = —iapb(a® —epf2)v - hy — aepBy Bo(Veés - T)
+aeuBiBo(v-er) —a?ub(v-Vhs), (B.46)

hence, by (B.44)+(B.45)+(B.46)
(B +eups —a®)(1- hy)
2126ﬂ1627' ‘€t —ﬁl (V . Vilg) —|—i6ﬂ2 (Vég, . I/) —ia(T . Vilg) (B47)
Combining (B.25) and (B.43), we derive

. 0@ dés . . Oh _ é
1a6;’+6185+1u5285(ﬂf+e,u622a2)()\h3)12u51ﬂ2<;>. (B.48)
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Combining (B.26) and (B.47), we derive

8h3 Ohs

—ia—— =121 Ba(Ah3) + (ﬁ%+euﬂ%—a2)(é3). (B.49)

663
1662 Yov or A

Then, from (B.48), (B.49) and é3 = esexp (—iaxs) and hs =hsexp (—ioxs), we ob-
tain the impedance boundary conditions

863 863

5199 1309 iy TS NG e~y — ey onr (B50)
-5 8h 'a%—k 652 —i2e>\5152h3+We3 onl. (B.51)

We introduce the Beltrami decomposition
es=u-+v, hg=—i < (u—v), (B.52)

where the total field (u,v) consists of the incident field (u’,v?) and the scattered field
(u®,v°), ie., (u,v) = (u'+u®,v'+0v°). Then, from (B.21) and (B.22), we have

A+ o)+ (82 + Bepi— o) (u-+v) + 26, o el — ) =0, (B.53)
Au—v)+ (B3 + Biep—a?) (u—1v) +2B1 Ba/ep(u+v) =0. (B.54)

With the help of (B.53)+(B.54) and (B.53)—(B.54), we find
Au+~3u=0 inR?\D, (B.55)
Av+~iv=0 inR*\D, (B.56)

where 7 = (81 + B2/ei)? —a? and 7% = (81 — B2./eit)? — a?. Furthermore, from (B.50)
and (B.51), we obtain

5, 2ute) | Out) +i,6’2u<—i\/§> (u—v)

ov or ov
=A(Bi+ B3epn—a?) (—i ;) (u—v)— iZﬁl)\ﬁz'u (u+v) on T, (B.57)
()
:i2ﬁlﬂge>\<—i\/5> (u—v)—}—ww—kv) onT. (B.58)

By ix(B.57) and \fx .58), we find

8, a(ngrv) lﬂzfa(lé;v) 70[8(1(;11})
ZA(ﬁfﬂLBSGu—aQ)\/j (U—U)—F@(u—kv) onT, (B.59)
i ) g, ) Oy
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=201 BoeA(u—v)+ W;M_Oﬂ)\/g (u+v) onT. (B.60)
From (B.59)+(B.60) and (B.59)—(B.60), we derive
—2i(B +ﬁ2\ﬁ)g*:j+2 u

ATy Y
[(ﬁﬁrﬁzeu o2 (\f—\f)wﬁm( )}U—O onl  (B61)

ov

and

i - ﬁgr)‘lw

ot ) s
+[(ﬁﬁﬁéeu—az)(A\/i—A\/g)—2/3152 ()\e—’l;\ﬂuzo onl.  (B.62)

Therefore, the scalar functions u and v satisfy the following boundary conditions:

8 ou

3 +a26 +asu+asv=0 onl, (B.63)

8 Ov

8 +a66 +azv+agu=0 onl. (B.64)
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