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ANALYSIS AND COMPUTATION FOR THE SCATTERING
PROBLEM OF ELECTROMAGNETIC WAVES IN CHIRAL MEDIA∗

GANG BAO† AND LEI ZHANG‡

Abstract. This paper considers an obstacle scattering problem in a chiral medium under circularly
polarized oblique plane wave incidence, which can be represented as a combination of a left-circularly
polarized plane wave and a right-circularly polarized one. We apply a reduced model problem with
coupled oblique derivative boundary conditions, describing the cross-coupling effect of electric and
magnetic fields. A novel boundary integral equation is constructed by introducing single-layer poten-
tial operators and the corresponding normal and tangential derivative operators. The corresponding
properties are obtained by splitting techniques to overcome the singularity of integral operators. A nu-
merical method for solving the boundary integral equation is developed, whose convergence is proved.
Numerical results are presented to show the performance of the proposed method.

Keywords. Maxwell’s equations; chiral medium; boundary integral equations; collocation method;
convergence.
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1. Introduction
Chirality has played a critical role in studying optical activity [5], multiferroics [10],

and superfluidity [25]. In recent years, it is also widely concerned in materials science
and chemistry [26, 27]. The response of isotropic media, anisotropic media, and other
nonchiral media to electric and magnetic fields is characterized by permittivity and
permeability. However, chiral media need three fundamental quantities (permittivity,
permeability, and chirality admittance) to control characteristics. The chirality admit-
tance can produce a cross-coupling between the electric field and the magnetic field. Due
to the electromagnetic characteristics of chiral media, the obstacle scattering in chiral
media becomes more attractive, for example, the radiation characteristics for antennas
in a chiral environment [6,7,28]. The cross-coupling effects that such media have on the
polarization properties of the waves are characterized by constitutive relations. Various
physical explanations for these constitutive relations describe the wave propagation in
chiral media, see, e.g., [12, 18,21,22].

Several research methods have been developed including generalized Lorenz-Mie
theories, analytical approximation, and numerical methods that study chiral media’s
electromagnetic scattering based on the electromagnetic field theory. There are some
analytic methods for solving the boundary-value problems of the electromagnetic wave
scattering for a cylinder with a circular (elliptical) section or a sphere, ellipsoid, see,
e.g., [15]. An exact analytic solution is presented to the electromagnetic wave scattering
by a chiral spheroid using the method of separation of variables [13]. The variational
formulations and numerical analysis of the diffraction problem for chiral gratings have
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been studied in [1, 4, 32]. To solve the exterior problem with variational methods, one
needs to use the transmission boundary conditions to replace the radiation condition
at infinity. We refer to [9] and the references cited therein for the recent advances.
The boundary integral equation method is another practical approach for solving the
electromagnetic scattering problems [11, 17, 31]. The authors investigated the solution
for the scattering from a nonhomogeneous object in a chiral medium by using the
boundary integral equation and asymptotic analysis method for the boundary value
problem of Maxwell’s equations [2, 3].

Fresnel interpreted the optical activity of a chiral medium as the different wave
speeds of the left and right circularly polarized waves with different refractive in-
dices [16]. Mathematically, the circular polarization can reduce the complexity of a
Maxwell equation model with proper geometric structures. The left and right circu-
lar polarized waves satisfy Helmholtz equations at different wavenumbers with proper
boundary conditions to describe the cross-coupling effect of electromagnetic fields [6,23].
This paper is concerned with an obliquely incident plane time-harmonic electromagnetic
wave scattering by an infinite cylinder embedded in a three-dimensional chiral medium
using circular polarization. Such polarization significantly reduces the complexity of the
computation for the scattering problem. However, for an obliquely incident electromag-
netic wave, boundary conditions of the scattering problem become more complicated
because of the chirality. We construct a novel boundary integral equation and introduce
a regularized system by splitting techniques in Sobolev spaces.

Throughout this paper, the permittivity ϵ and permeability µ of the chiral media
are assumed to be either positive or negative corresponding to conventional or left-
handed (double negative) media [29,30]. Although the propagation properties of waves
in these media are different, the dispersion relation is satisfied. The crucial point for
our analysis is the constructive decompositions for the singular boundary integral op-
erators in Sobolev spaces. We propose an effective numerical method for the cylinder
scattering problem in a homogeneous isotropic chiral environment. Then we discretize
the boundary integral system using the collocation method. The error estimates and the
convergence are proved. Verification examples with the analytical solution are designed
to demonstrate the feasibility and effectiveness of the proposed method.

The paper is organized as follows. We consider the plane wave propagation and
cylinder scattering in chiral media in Section 2. Then Section 3 presents an operator
form of the boundary integral equations and analyzes the integral operator’s properties.
The numerical method and convergence analysis are obtained in Section 4. Numerical
results are presented to show the performance of the proposed method in Section 5, and
the conclusions follow in Section 6.

2. Wave propagation in a chiral medium
Consider the propagation of electromagnetic wave in a chiral medium in R3\D̄∞,

where D∞ is a linear and isotropic infinite cylinder which is uniform along the x3 axis
with its cross section D (see Figure 2.1). The electromagnetic fields are governed by
the time dependent Maxwell’s equations:

∇×E+ ∂B
∂t

=0, ∇×H− ∂D
∂t

=0, divD=0, divB=0, (2.1)

and the Drude-Born-Fedorov (DBF) constitutive equations

D= ϵ(E+β∇×E), B=µ(H+β∇×H), (2.2)

where E=E(x,t) is the electric field intensity, H=H(x,t) is the mangetic field intensity,
D=D(x,t) is the electric flux density, B=B(x,t) is the magntic flux density. The
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Fig. 2.1. Diagram of the scattering problem with an obliquely incident plane wave.

electric permittivity ϵ and magnetic permeability µ are assumed to be constants. β≥0
is the chirality admittance. Let (E,H) denote the time harmonic electromagnetic wave
which satisfies

(E ,H)=ℜ{(E(x),H(x))e−iωt}, (2.3)

where ω>0 is the angular frequency. Then, combining (2.1), (2.2) and (2.3), we have

(1−k2β2)∇×E=k2βE+iµωH, divE=0, (2.4)

(1−k2β2)∇×H=k2βH− iϵωE, divH=0, (2.5)

where k=ω
√
ϵµ>0. Throughout it is assumed that 0≤kβ<1.

On the lateral surface of the cylinder, we apply Leontovich’s impedance boundary
condition

(ν×E)×ν=λ(ν×H), (2.6)

where ν is the unit outward normal to ∂D, λ=
√
µc/ϵc>0 is the impedance constant

[24], ϵc and µc are the electric permittivity and magnetic permeability of the cylinder.

2.1. Circularly polarized plane wave. We are interested in the scattering
problem under circularly polarized plane wave at oblique incidence [8]. The incident
field is defined as

Ei=[qL exp(iγ̃LpL ·x)+qR exp(iγ̃RpR ·x)]exp(−iαx3), (2.7)

Hi=−i

√
ϵ

µ
[qL exp(iγ̃LpL ·x)−qR exp(iγ̃RpR ·x)]exp(−iαx3), (2.8)

which satisfies the Equations (2.4) and (2.5), see Section A for more details. Here
α=kcosθ is a constant depending on the obliquely incident angle θ between the incident
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direction and the positive x3 axis, γ̃L= k
1−kβ >0, γ̃R= k

1+kβ >0. The vectors pL=

(p1,L,p2,L,0)
⊤ and pR=(p1,R,p2,R,0)

⊤ satisfy

pL ·qL= γ̃−1
L α, pR ·qR= γ̃−1

R α, (2.9)

pL×qL=−iALqL, pR×qR=iARqR, (2.10)

pL ·pL=(1− γ̃−2
L α2), pR ·pR=(1− γ̃−2

R α2), (2.11)

where qL=(q1,L,q2,L,1)
⊤, qR=(q1,R,q2,R,1)

⊤ and

AL=

 1 −iγ̃−1
L α 0

iγ̃−1
L α 1 0
0 0 1

, AR=

 1 iγ̃−1
R α 0

−iγ̃−1
R α 1 0
0 0 1

. (2.12)

Obviously, combining (2.9), (2.10) and (2.11), we have

∇× [qL exp(iγ̃LpL ·x)exp(−iαx3)]= γ̃L[qL exp(iγ̃LpL ·x)exp(−iαx3)], (2.13)

∇× [qR exp(iγ̃RpR ·x)exp(−iαx3)]=−γ̃R[qR exp(iγ̃RpR ·x)exp(−iαx3)], (2.14)

this implies that the field Ei is a combination of left-circularly polarized plane wave
and right-circularly polarized one.

Let an infinite cylinder be parallel to the x3 axis in a chiral medium, and its cross-
section D with C2 boundary ∂D. Then the scattering problem for a chiral medium is
to find the total field (E,H)=(Ei+Es,Hi+Hs) such that the scattered field

(Es,Hs) :=(es(x1, x2),h
s(x1, x2))exp(−iαx3) (2.15)

satisfies (2.4)-(2.5). Here

es(x1, x2) :=(es1(x1, x2),e
s
2(x1, x2),e

s
3(x1, x2))

⊤, (2.16)

hs(x1, x2) :=(hs1(x1, x2),h
s
2(x1, x2),h

s
3(x1, x2))

⊤. (2.17)

2.2. The reduced model problem. Based on the above form of electromag-
netic waves, we derive the following reduced model problem with oblique derivative
boundary conditions (the detailed derivation is available in Section B):

∆us+γ2Lu
s=0 in R2 \D̄,

∆vs+γ2Rv
s=0 in R2 \D̄,

a1
∂us

∂ν
+a2

∂us

∂τ
+a3u

s+a4v
s=f1 on ∂D,

a5
∂vs

∂ν
+a6

∂vs

∂τ
+a7v

s+a8u
s=f2 on ∂D,

lim
r→∞

√
r
(
∂us

∂r − iγLu
s
)
=0, r= |x|

lim
r→∞

√
r
(
∂vs

∂r − iγRv
s
)
=0, r= |x|,

(2.18)

where

f1=−a1
∂ui

∂ν
−a2

∂ui

∂τ
−a3ui−a4vi, f2=−a5

∂vi

∂ν
−a6

∂vi

∂τ
−a7vi−a8ui, (2.19)

ui :=ui(x1,x2)=exp(iγ̃LpL ·x), vi :=vi(x1,x2)=exp(iγ̃RpR ·x), (2.20)
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and

γ2L=(β1+β2
√
ϵµ)2−α2= γ̃2L−α2, γ2R=(β1−β2

√
ϵµ)2−α2= γ̃2R−α2,

β1=
k2β

1−k2β2
, β2=

ω

1−k2β2
,

a1=−2i(β1+β2
√
ϵµ), a2=2α,

a3=(β2
1 +β

2
2ϵµ−α2)

(
λη+

1

λη

)
+2β1β2

(
λϵ+

µ

λ

)
,

a4=−
[
(β2

1 +β
2
2ϵµ−α2)

(
λη− 1

λη

)
+2β1β2

(
λϵ− µ

λ

)]
,

a5=−2i(β1−β2
√
ϵµ), a6=2α,

a7=−
[
(β2

1 +β
2
2ϵµ−α2)

(
λη+

1

λη

)
−2β1β2

(
λϵ+

µ

λ

)]
,

a8=(β2
1 +β

2
2ϵµ−α2)

(
λη− 1

λη

)
−2β1β2

(
λϵ− µ

λ

)
,

here η=
√
ϵ/µ. As we already know that λ=

√
µc/ϵc. Physically, the material of the

cylinder and the physical properties of the medium are different. Hence, we study the
scattering problem for the case λη ̸=1 in this paper. Mathematically, for the case λη=1,
we have a4=a8=0 implying that the electromagnetic field on the boundary becomes
decoupled.

3. The boundary integral equations
Denote the fundamental solution to the Helmholtz equation in two dimensions by

G(x,y;γσ)=
i
4H

(1)
0 (γσ|x−y|), where σ=L or R and H

(1)
0 is the Hankel function of the

first kind with order zero. For x∈Γ :=∂D, we introduce the following integral operators

(Sσϕ)(x)=2

∫
Γ

G(x,y;γσ)ϕ(y)dsy, (3.1)

(K(∗)
σ ϕ)(x)=2

∫
Γ

∂G(x,y;γσ)

∂ν(x)
ϕ(y)dsy, (3.2)

(Hσϕ)(x)=2

∫
Γ

∂G(x,y;γσ)

∂τ (x)
ϕ(y)dsy. (3.3)

Let the solution of the boundary value problem (2.18) be given by the single-layer
potentials with densities ϕ1,ϕ2:{

us(x)=
∫
Γ
G(x,y;γL)ϕ1(y)dsy, x∈R2 \D̄,

vs(x)=
∫
Γ
G(x,y;γR)ϕ2(y)dsy, x∈R2 \D̄.

(3.4)

Then, from (3.4), using the jump relation of layer potentials and the boundary condition
on Γ, we deduce for x∈Γ that

−ϕ1(x)+(K
(∗)
L ϕ1)(x)+ ã2(HLϕ1)(x)+ ã3(SLϕ1)(x)+ ã4(SRϕ2)(x)= ã1f1(x), (3.5)

−ϕ2(x)+(K
(∗)
R ϕ2)(x)+ ã6(HRϕ2)(x)+ ã7(SRϕ2)(x)+ ã8(SLϕ1)(x)= ã5f2(x), (3.6)

where ã1=
2
a1
, ãj =

aj

a1
,j=2,3,4 and ã5=

2
a5
, ãj =

aj

a5
,j=6,7,8.

We assume that the boundary possesses a regular analytic and 2π-periodic paramet-
ric representation of the form Γ={x(t)=(x1(t),x2(t))

⊤ : 0≤ t<2π} in counterclockwise
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orientation satisfying |x′(t)|2>0 for all t. Multiplying (3.5) and (3.6) by −|x′(t)|, we
obtain the following coupled boundary integral equations

ψ1(t)−
[
(K

(∗)
L ψ1)(t)+ ã2(HLψ1)(t)+ ã3|x′(t)|(SLψ1)(t)

+ ã4|x′(t)|(SRψ2)(t)
]
= ã1f̃1(t), (3.7)

ψ2(t)−
[
(K

(∗)
R ψ2)(t)+ ã6(HRψ2)(t)+ ã7|x′(t)|(SRψ2)(t)

+ ã8|x′(t)|(SLψ1)(t)
]
= ã5f̃2(t), (3.8)

where f̃j(t)=−|x′(t)|fj(x(t)), ψj(t)= |x′(t)|ϕj(x(t)),j=1,2, and

(Sσψ)(t)=

∫ 2π

0

[
i

2
H

(1)
0 (γσ|x(t)−x(ξ)|)

]
ψ(ξ)dξ

:=

∫ 2π

0

Sσ(t,ξ)ψ(ξ)dξ, (3.9)

(K(∗)
σ ψ)(t)=− iγσ

2

∫ 2π

0

n(t) ·(x(t)−x(ξ))
|x(t)−x(ξ)|

H
(1)
1 (γσ|x(t)−x(ξ)|)ψ(ξ)dξ

:=

∫ 2π

0

K(∗)
σ (t,ξ)ψ(ξ)dξ, (3.10)

(Hσψ)(t)=− iγσ
2

∫ 2π

0

n⊥(t) ·(x(t)−x(ξ))
|x(t)−x(ξ)|

H
(1)
1 (γσ|x(t)−x(ξ)|)ψ(ξ)dξ

:=

∫ 2π

0

Hσ(t,ξ)ψ(ξ)dξ, (3.11)

here ν(x(t))= n(t)
|x′(t)| , τ (x(t))=

n⊥(t)
|x′(t)| , n(t)=(x′2(t),−x′1(t))⊤, n⊥(t)=(x′1(t),x

′
2(t))

⊤,

x′(t)=(x′1(t),x
′
2(t))

⊤, |x′(t)|=
√
[x′1(t)]

2+[x′2(t)]
2, x′′(t)=(x′′1(t),x

′′
2(t))

⊤, ψ(ξ)=
ϕ(x(ξ))|x′(ξ)|, and σ=L,R.

From (3.7) and (3.8), we get

ψ−Aψ=b, (3.12)

where ψ=(ψ1,ψ2)
⊤ , b=(ã1f̃1, ã5f̃2)

⊤, and

A=

[
ã2HL 0

0 ã6HR

]
+

[
K

(∗)
L 0

0 K
(∗)
R

]
+

[
ã3|x′|SL ã4|x′|SR

ã8|x′|SL ã7|x′|SR

]
. (3.13)

Note that the kernel Sσ(t,ξ) can be written as

Sσ(t,ξ)=Sσ,1(t,ξ)ln

(
4sin2

t−ξ
2

)
+Sσ,2(t,ξ), t,ξ∈ [0,2π], (3.14)

where

Sσ,1(t,ξ)=

{
− 1

2πJ0(γσ|x(t)−x(ξ)|), if t ̸= ξ,
− 1

2π , if t= ξ,
(3.15)

Sσ,2(t,ξ)=

{
Sσ(t,ξ)−Sσ,1(t,ξ)ln

(
4sin2 t−ξ

2

)
, if t ̸= ξ,

i
2

[
1+ i

π ln
(Euγσ|x′(t)|

2

)2]
, if t= ξ.

(3.16)
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Here Eu=1.78107 is the Euler constant. Hence, Sσψ can be equivalently rewritten as

(Sσψ)(t)=

∫ 2π

0

ln

(
4sin2

t−ξ
2

)
Sσ,1(t,ξ)ψ(ξ)dξ+

∫ 2π

0

Sσ,2(t,ξ)ψ(ξ)dξ,

:= (Sσ,1ψ)(t)+(Sσ,2ψ)(t). (3.17)

Similarly, the kernel K
(∗)
σ (t,ξ) can be written as

K(∗)
σ (t,ξ)=K

(∗)
σ,1(t,ξ)ln

(
4sin2

t−ξ
2

)
+K

(∗)
σ,2(t,ξ), t,ξ∈ [0,2π], (3.18)

where

K
(∗)
σ,1(t,ξ)=

{
γσ

2π [n(t) ·(x(t)−x(ξ))]
J1(γσ|x(t)−x(ξ)|)

|x(t)−x(ξ)| , if t ̸= ξ,
0, if t= ξ,

(3.19)

K
(∗)
σ,2(t,ξ)=

{
K

(∗)
σ (t,ξ)−K(∗)

σ,1(t,ξ)ln
(
4sin2 t−ξ

2

)
, if t ̸= ξ,

n(t)·x′′(t)
2π|x′(t)|2 , if t= ξ.

(3.20)

Hence, K
(∗)
σ ψ can be equivalently rewritten as

(K(∗)
σ ψ)(t)=

∫ 2π

0

ln

(
4sin2

t−ξ
2

)
K

(∗)
σ,1(t,ξ)ψ(ξ)dξ+

∫ 2π

0

K
(∗)
σ,2(t,ξ)ψ(ξ)dξ,

:= (K
(∗)
σ,1ψ)(t)+(K

(∗)
σ,2ψ)(t). (3.21)

Next, we split the kernel Hσ(t,ξ), t,ξ∈ [0,2π] into the following form

Hσ(t,ξ)= Ĥ1(t,ξ)+H̃1(t,ξ)+Hσ,1(t,ξ)ln

(
4sin2

t−ξ
2

)
+H̃σ,2(t,ξ), (3.22)

where

Ĥ1(t,ξ)=
1

2π

(
cot

ξ− t
2

+i

)
, (3.23)

H̃1(t,ξ)=

{{
− 1

π [n
⊥(t) ·(x(t)−x(ξ))] tan ξ−t

2

|x(t)−x(ξ)|2 −
1
2π

}
cot ξ−t

2 , if t ̸= ξ,
0, if t= ξ,

(3.24)

Hσ,1(t,ξ)=

{
γσ

2π [n
⊥(t) ·(x(t)−x(ξ))]J1(γσ|x(t)−x(ξ)|)

|x(t)−x(ξ)| , if t ̸= ξ,
0, if t= ξ,

(3.25)

H̃σ,2(t,ξ)=

{
Hσ(t,ξ)−Ĥ1(t,ξ)−H̃1(t,ξ)−Hσ,1(t,ξ)ln

(
4sin2 t−ξ

2

)
, if t ̸= ξ,

− i
2π , if t= ξ.

(3.26)

Consequently,

(Hσψ)(t)=

∫ 2π

0

Ĥ1(t,ξ)ψ(ξ)dξ+

∫ 2π

0

H̃1(t,ξ)ψ(ξ)dξ

+

∫ 2π

0

ln

(
4sin2

t−ξ
2

)
Hσ,1(t,ξ)ψ(ξ)dξ+

∫ 2π

0

H̃σ,2(t,ξ)ψ(ξ)dξ,

:= (Ĥ1ψ)(t)+(H̃1ψ)(t)+(Hσ,1ψ)(t)+(H̃σ,2ψ)(t). (3.27)
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3.1. Operator splitting. From (3.13), (3.17), (3.21) and (3.27), we split A
into

A= Ĥ+W+S, (3.28)

where W=W1+W2+W3, S=S1+S2 and

Ĥ=

[
ã2Ĥ1 0

0 ã6Ĥ1

]
, W1=

[
ã2H̃1 0

0 ã6H̃1

]
, (3.29)

W2=

K(∗)
L,1+ ã2HL,1 0

0 K
(∗)
R,1+ ã6HR,1

, (3.30)

W3=

K(∗)
L,2+ ã2H̃L,2 0

0 K
(∗)
R,2+ ã6H̃R,2

,

S1=

[
ã3FSL,1 ã4FSR,1

ã8FSL,1 ã7FSR,1

]
, S2=

[
ã3FSL,2 ã4FSR,2

ã8FSL,2 ã7FSR,2

]
, (3.31)

where

Fψ := |x′|ψ.

For p≥0, let Hp[0,2π] denote the Sobolev space of 2π-periodic functions g :R→C
with the norm

∥g∥2p :=
∞∑

m=−∞
(1+m2)p|ĝm|2<∞, (3.32)

where

ĝm :=
1

2π

∫ 2π

0

g(t)e−imtdt, m=0,±1,±2, ·· · , (3.33)

are the Fourier coefficients of g. Define Sobolev spaces

Hp[0,2π]2=

{
g=(g1,g2)

⊤∣∣ gj(t)∈Hp[0,2π],j=1,2

}
, (3.34)

with the norm

∥g∥p=∥g1∥p+∥g2∥p. (3.35)

Theorem 3.1. For all p≥0, the operator F :Hp[0,2π]→Hp[0,2π] is bounded.

Proof. For ψ∈Hp[0,2π], recalling Fψ=fψ, where f =f(t)= |x′(t)|>0 is analytic,
in particular, f ∈Cl

2π (l≥p≥0). Then, by Corollary 8.8 of [20], Fψ∈Hp[0,2π] and

∥Fψ∥p=∥fψ∥p≤C
(
∥f∥∞+∥|f (l)∥∞

)
∥ψ∥p, 0≤p≤ l, (3.36)

for some constant C depending on p.
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Theorem 3.2. For all p≥0, the operator Ĥ :Hp[0,2π]2→Hp[0,2π]2 is bounded and
has a bounded inverse

Ĥ−1=M1Ĥ, (3.37)

furthermore, the operator I−Ĥ has a bounded inverse as(
I−Ĥ

)−1
=M2(I+Ĥ), (3.38)

where

M1=

− 1
ã2
2

0

0 − 1
ã2
6

, M2=

 1
1+ã2

2
0

0 1
1+ã2

6

. (3.39)

Proof. For ψ∈Hp[0,2π],

(Ĥ1ψ)(t)=

∫ 2π

0

Ĥ1(t,ξ)ψ(ξ)dξ=
1

2π

∫ 2π

0

(
cot

ξ− t
2

+i

)
ψ(ξ)dξ. (3.40)

Note that the singular integral operator Ĥ1 :H
p[0,2π]→Hp[0,2π] is bounded and has

a bounded inverse Ĥ−1
1 =−Ĥ1 for all p≥0, see e.g. [14,20]. It follows from γ2σ>0 (σ=

L,R) that 1+ ã22 ̸=0 and 1+ ã26 ̸=0. Then,

(I− ãjĤ1)

[
1

1+ ã2j
(I+ ãjĤ1)

]
=

1

1+ ã2j

(
I+ ã2jI

)
= I, j=2,6. (3.41)

Thus, from (3.41), we get

(
I−Ĥ

) 1
1+ã2

2
(I+ ã2Ĥ1) 0

0 1
1+ã2

6
(I+ ã6Ĥ1)

=

[
I 0

0 I

]
. (3.42)

Combining (3.42) and the boundedness of operator Ĥ1 :H
p[0,2π]→Hp[0,2π], we

find I−Ĥ has a bounded inverse as (3.38). Similarly, the corresponding inverse operator
for Ĥ is also easily obtained and is given by (3.37).

Theorem 3.3. For all p≥0, the operator W :Hp[0,2π]2→Hp+1[0,2π]2 is bounded.
Furthermore, the operator W :Hp[0,2π]2→Hp[0,2π]2 is compact.

Proof. For σ=L,R, noting that the operators K
(∗)
σ,1 and Hσ,1 have logarithmic

singularities and are given by∫ 2π

0

[
ln

(
4sin2

t−ξ
2

)
K(t,ξ)

]
ψ(ξ)dξ, 0≤ t≤2π, (3.43)

where K(t,ξ)=K
(∗)
σ,1(t,ξ) or Hσ,1(t,ξ) are infinitely differentiable and 2π-periodic with

respect to both variables. Applying Theorem 12.15 and Corollary 12.16 in [20], we

obtain that K
(∗)
σ,1,Hσ,1 :H

p[0,2π]→Hp+1[0,2π] are bounded and consequently are com-

pact from Hp[0,2π]→Hp[0,2π] for all p≥0. Hence, W2 :H
p[0,2π]2→Hp+1[0,2π]2 is

bounded and consequently is compact from Hp[0,2π]2→Hp[0,2π]2.

Since the kernel functions H̃1, K
(∗)
σ,2 and H̃σ,2 are analytic, it follows from Theorem

A.45 in [19] and Theorem 8.13 in [20] that the operators H̃1,K
(∗)
σ,2,H̃σ,2 :H

p[0,2π]→
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Hp+r[0,2π] are bounded for all integers r≥0 and arbitrary p≥0. Then the operators
W1,W3 :H

p[0,2π]2→Hp+r[0,2π]2 are bounded for all integers r≥0 and arbitrary p≥0.
In particular, for all p≥0, the operators W1,W3 :H

p[0,2π]2→Hp+1[0,2π]2 are bounded
and consequently are compact from Hp[0,2π]2→Hp[0,2π]2.

Theorem 3.4. For all p≥0, the operator S :Hp[0,2π]2→Hp+1[0,2π]2 is bounded.
Furthermore, the operator S :Hp[0,2π]2→Hp[0,2π]2 is compact.

Proof. For σ=L,R and p≥0, similar to the proof of Theorem 3.3, we ob-
tain that the operators Sσ,1,Sσ,2 :H

p[0,2π]→Hp+1[0,2π] are bounded, hence, compact
from Hp[0,2π]→Hp[0,2π]. Then, from Theorem 3.1, the operators S1,S2 :H

p[0,2π]2→
Hp+1[0,2π]2 are bounded, and consequently compact from Hp[0,2π]2→Hp[0,2π]2 for
all p≥0.

We rewrite the operator Equation (3.12) in the form

ψ−(Ĥ+W+S)ψ=b. (3.44)

i.e.,

Hψ−Kψ=b, (3.45)

where H=I−Ĥ and K=W+S. Using Theorem 3.2, we have H :Hp[0,2π]2→
Hp[0,2π]2 is a bijective bounded linear operator mapping which has a bounded inverse
(3.38). By Theorem 3.3 and Theorem 3.4 we have

Theorem 3.5. For all p≥0, the operator K :Hp[0,2π]2→Hp+1[0,2π]2 is bounded.
Furthermore, the operator K :Hp[0,2π]2→Hp[0,2π]2 is compact.

This follows immediately from the fact that we can transform the Equation (3.45)
into the equivalent form

ψ−Ãψ=H−1b=M2(I+Ĥ)b, (3.46)

where

Ã=H−1K=M2(K+ĤK). (3.47)

Then, by Theorem 2.21 in [20] and Theorem 3.2, Theorem 3.5 , we have

Theorem 3.6. For all p≥0, the operator Ã :Hp[0,2π]2→Hp+1[0,2π]2 is bounded.
Furthermore, the operator Ã :Hp[0,2π]2→Hp[0,2π]2 is compact.

Obviously, I−Ã is surjective, then, using Theorem 3.4 in [20] and Theorem 3.6, we
obtain the following theorem

Theorem 3.7. The operator I−Ã is injective, and the inverse operator (I−Ã)−1 :
Hp[0,2π]2→Hp[0,2π]2 is bounded and there exists a unique solution to the Equation
(3.46).

4. Convergence analysis
In this section, we study the convergence of the discretization of integral Equations

(3.46) by using the collocation method. Denote by Tn the interpolation operator, which
maps 2π-periodic scalar function g∈Hp[0,2π] into a unique trigonometric polynomial

Tng at the equidistant interpolation points ξ
(n)
j = πj

n , j=0,. ..,2n−1. Given the values
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g(ξ
(n)
j ), j=0,. ..,2n−1, then, there exists a unique trigonometric polynomial of the

form

(Tng)(t)=
α0

2
+

n−1∑
l=1

[
αl coslt+βl sinlt

]
+
αn

2
cosnt, 0≤ t≤2π, (4.1)

with the interpolation property (Tng)(ξ
(n)
j )=g(ξ

(n)
j ), j=0,. ..,2n−1. Moreover, the

coefficients are given by

αl=
1

n

2n−1∑
j=0

g(ξ
(n)
j )cos(lξ

(n)
j ), l=0,. ..,n, (4.2)

βl=
1

n

2n−1∑
j=0

g(ξ
(n)
j )sin(lξ

(n)
j ), l=1,. ..,n−1. (4.3)

Let Xn⊂Hp[0,2π] be the space of trigonometric polynomials of degree less than or
equal to n of the form (4.1). Then, Tn :H

p[0,2π]→Xn is a bounded linear operator.
Let X2

n :={g=(g1,g2)
⊤ :g1∈Xn, g2∈Xn} and define the interpolation operator Tn :

Hp[0,2π]2→X2
n by

Tng=(Tng1,Tng2)
⊤, ∀ g=(g1,g2)

⊤∈Hp[0,2π]2. (4.4)

Theorem 4.1 ([20]). For the trigonometric interpolation,

∥Tng−g∥q ≤
C

np−q
∥g∥p, 0≤ q≤p, 1

2
<p, (4.5)

for all g∈Hp[0,2π] and some constant C depending on p and q.

Obviously, by Theorem 4.1, the operators Tn :H
p[0,2π]→Hp[0,2π] are uniformly

bounded. For the integral equations of the second kind (3.46), its projected equation is

ψ(n)−TnÃψ(n)=TnM2(I+Ĥ)b, (4.6)

where ψ(n)=(ψ
(n)
1 ,ψ

(n)
2 )⊤∈X2

n is the approximation of the solution ψ by a trigonomet-
ric polynomial.

Theorem 4.2. For sufficiently large n, the approximate Equation (4.6) is uniquely
solvable and with an error estimate

∥ψ(n)−ψ∥p≤M1∥Tnψ−ψ∥p, p≥0, (4.7)

for some positive constant M1 depending on Ã.

Proof. For the solution ψ∈Hp[0,2π]2 of Equations (3.46), by Theorem 3.6, The-
orem 3.7 and Theorem 4.1, we deduce that

∥TnÃψ−Ãψ∥p≤
C

n
∥Ãψ∥p+1≤

C

n
∥ψ∥p, p≥0, (4.8)

which implies

∥TnÃ−Ã∥p→0 as n→∞, p≥0. (4.9)
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Then, by Theorem 13.10 in [20], the proof is complete.

Next, we deduce that the Lagrange basis for the trigonometric interpolation has the
form

Lj(t)=
1

2n

{
1+2

n−1∑
l=1

cosl(t−ξ(n)j )+cosn(t−ξ(n)j )

}
, (4.10)

for t∈ [0,2π] and j=0,. ..,2n−1. Then, we find an approximation ψ̃(n)∈X2
n of the

solution ψ by

ψ̃(n)=(ψ̃
(n)
1 ,ψ̃

(n)
2 )⊤=

(2n−1∑
j=0

ψ̃
(n)
1 (ξ

(n)
j )Lj(t),

2n−1∑
j=0

ψ̃
(n)
2 (ξ

(n)
j )Lj(t)

)⊤

, (4.11)

which satisfies

ψ̃(n)−TnÃnψ̃
(n)=TnM2(I+Ĥn)b. (4.12)

Here Ãn=M2(Kn+ĤnKn), Ĥn= ĤTn and Kn=Wn+Sn.

For ∀η∈X2
n, Ĥn,Wn,Sn have the following interpolatory quadrature operators of

the form

Ĥnη=

[
ã2Ĥ1Tnη1
ã6Ĥ1Tnη2

]
, (4.13)

Wnη=

[
ã2H̃1nη1
ã6H̃1nη2

]
+

[
(K

(∗)
L,1n+ ã2HL,1n)η1

(K
(∗)
R,1n+ ã6HR,1n)η2

]
+

[
(K

(∗)
L,2n+ ã2H̃L,2n)η1

(K
(∗)
R,2n+ ã6H̃R,2n)η2

]
, (4.14)

Snη=

[
ã3FSL,1nη1+ ã4FSR,1nη2
ã8FSL,1nη1+ ã7FSR,1nη2

]
+

[
ã3FSL,2nη1+ ã4FSR,2nη2
ã8FSL,2nη1+ ã7FSR,2nη2

]
, (4.15)

where

(Ĥ1Tnηk)(t)=

∫ 2π

0

Ĥ1(t,ξ)[Tnηk](ξ)dξ, (4.16)

(H̃1nηk)(t)=

∫ 2π

0

[Tn(H̃1(t,·)ηk)](ξ)dξ, (4.17)

[(K
(∗)
σ,1n+ ãjHσ,1n)ηk](t)

=

∫ 2π

0

ln

(
4sin2

t−ξ
2

){
Tn

[(
K

(∗)
σ,1(t, ·)+ ãjHσ,2(t,·)

)
ηk
]}

(ξ)dξ, j=2,6, (4.18)

[(K
(∗)
σ,2n+ ãjH̃σ,2n)ηk](t)=

∫ 2π

0

{
Tn

[(
K

(∗)
σ,2(t, ·)+ ãjH̃σ,2(t,·)

)
ηk
]}

(ξ)dξ, j=2,6, (4.19)

(FSσ,1nηk)(t)= |x′(t)|
∫ 2π

0

ln

(
4sin2

t−ξ
2

)[
Tn

(
Sσ,1(t,·)ηk

)]
(ξ)dξ, (4.20)

(FSσ,2nηk)(t)= |x′(t)|
∫ 2π

0

[
Tn

(
Sσ,2(t, ·)ηk

)]
(ξ)dξ, (4.21)

with k=1,2, σ=L,R.
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Theorem 4.3. Assume that p≥1. For sufficiently large n, the approximate Equation
(4.12) is uniquely solvable and with an error estimate

∥ψ̃(n)−ψ∥p≤M2

{
∥Tnψ−ψ∥p+∥Tn(Ãn−Ã)ψ∥p+∥Tn(Ĥnb−Ĥb)∥p

}
, (4.22)

for some positive constant M2.

Proof. Using Theorem 3.3 and Theorem 3.4, for all g∈Hp[0,2π]2, setting q=
p−1≥0 in Theorem 12.18 of [20], we have

∥Wng−Wg∥p≤
C

n
∥g∥p, ∥Sng−Sg∥p≤

C

n
∥g∥p, (4.23)

for some constant C depending on p. Then, the operators Wn,Wn−W and Sn,Sn−S
are uniformly bounded from Hp[0,2π]2→Hp[0,2π]2 for p≥1.

Hence, we get Kn,Kn−K are uniformly bounded from Hp[0,2π]2→Hp[0,2π]2 for
p≥1, and satisfy

∥Kng−Kg∥p≤∥Wng−Wg∥+∥Sng−Sg∥p≤
C

n
∥g∥p. (4.24)

It follows from Theorem 3.2 and Theorem 4.1 that

∥(Ĥn−Ĥ)g∥p=∥Ĥ(Tng−g)∥p≤ C̃1∥Tng−g∥p≤ C̃∥g∥p, (4.25)

for some constant C̃ depending on p and Ĥ. Then, Ĥn,Ĥn−Ĥ are uniformly bounded
from Hp[0,2π]→Hp[0,2π] for p> 1

2 .

Therefore, from Ĥnϕ= Ĥϕ for ϕ∈X2
n, (4.24) and (4.25), by Theorem 3.2, Theo-

rem 3.5, Theorem 4.1 and the uniform boundedness of the operator Tn :Hp[0,2π]2→
Hp[0,2π]2, we obtain

∥ĤnKng−ĤKg∥p
≤∥ĤnKng−ĤnKg∥p+∥ĤnKg−ĤKg∥p
≤∥Ĥn(Kn−K)g∥p+∥(Ĥn−Ĥ)(Kg−TnKg)∥p+∥(Ĥn−Ĥ)TnKg∥p
=∥ĤTn(Kn−K)g∥p+∥(Ĥn−Ĥ)(Kg−TnKg)∥p

≤Ĉ1∥(Kn−K)g∥p+ C̃∥Kg−TnKg∥p≤ Ĉ1
C

n
∥g∥p+ C̃

C

n
∥Kg∥p+1

≤Ĉ1
C

n
∥g∥p+ C̃

C

n
∥g∥p=

Ĉ2

n
∥g∥p. (4.26)

Furthermore, from (4.24) and (4.26), we have

∥TnÃng−TnÃg∥p=∥TnM2(Kn+ĤnKn)g−TnM2(K+ĤK)g∥p
≤∥(Kn+ĤnKn)g−(K+ĤK)g∥p

≤∥Kng−Kg∥p+∥ĤnKng−ĤKg∥p≤
Ĉ

n
∥g∥p, (4.27)

for some constant Ĉ depending on p and K,Ĥ. Similarly, for ϕ∈X2
n, we have

∥(TnÃn−TnÃ)ϕ∥p≤
Ĉ

n
∥ϕ∥p. (4.28)

The proof is complete by using Theorem 3.6, Theorem 3.7, the uniform boundedness
of the operators Tn :Hp[0,2π]2→Hp[0,2π]2 and Corollary 13.11 in [20].
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5. Numerical experiments
Since the Equation (3.44) is equivalent to (3.46), we only need to solve the equivalent

full-discrete equation of (3.44), i.e.,

ψ̃(n)−TnAnψ̃
(n)= ψ̃(n)−Tn(Ĥn+Wn+Sn)ψ̃

(n)=Tnb. (5.1)

Let MI−Ã and MI−A denote the coefficient matrix of the full-discrete Equation (4.12)
and (5.1), respectively. By Theorem 4.3, we know that (4.12) is uniquely solvable
which implies that the matrix MI−Ã is invertible. Noting that MI−A=MH−MK=
MHMI−Ã with the aid of MH being invertible, we find that MI−A is invertible. Hence,
(5.1) is uniquely solvable.

For the integrals, the following formulations (Lemma 8.23 in [20]) are used

1

2π

∫ 2π

0

{
cot

(
ξ− t
2

)[
Tnψ

]
(ξ)

}
dξ=

2n−1∑
j=0

{
1

2π

∫ 2π

0

cot

(
ξ− t
2

)
Lj(ξ)dξ

}
ψ(ξ

(n)
j )

≈
2n−1∑
j=0

C
(n)
j (t)ψ(ξ

(n)
j ), (5.2)

∫ 2π

0

{
ln

(
4sin2

t−ξ
2

)[
TnK(t,·)ψ

]
(ξ)

}
dξ

=

2n−1∑
j=0

{∫ 2π

0

ln

(
4sin2

t−ξ
2

)
Lj(ξ)dξ

}
K(t,ξ

(n)
j )ψ(ξ

(n)
j )

≈
2n−1∑
j=0

S
(n)
j (t)K(t,ξ

(n)
j )ψ(ξ

(n)
j , (5.3)

and ∫ 2π

0

{[
TnN(t,·)ψ

]
(ξ)

}
dξ≈ π

n

2n−1∑
j=0

N(t,ξ
(n)
j )ψ(ξ

(n)
j ), (5.4)

where K(·, ·),N(·, ·) are analytic functions, and

C
(n)
j (t)=

1

2n

[
1−cosn(ξ

(n)
j − t)

]
cot

(
ξ
(n)
j − t
2

)
, (5.5)

S
(n)
j (t)=−π

n

[
2

n−1∑
m=1

1

m
cosm(t−ξ(n)j )+

1

n
cosn(t−ξ(n)j )

]
. (5.6)

Using (5.2)–(5.4), the fully discrete collocation method for (3.44) leads to the linear
system as follows

ψ
(n)
1,i −

2n−1∑
j=0

D
(n)
i,j,Lψ

(n)
1,j −

2n−1∑
j=0

Q
(n)
i,j,Rψ

(n)
2,j = b1,i, (5.7)

ψ
(n)
2,i −

2n−1∑
j=0

D
(n)
i,j,Rψ

(n)
2,j −

2n−1∑
j=0

Q
(n)
i,j,Lψ

(n)
1,j = b2,i, (5.8)
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where

D
(n)
i,j,L= ã2

[
C

(n)
j (ξ

(n)
i )+S

(n)
j (ξ

(n)
i )HL,1(ξ

(n)
i ,ξ

(n)
j )

+
π

n

(
H̃1(ξ

(n)
i ,ξ

(n)
j )+H̃L,2(ξ

(n)
i ,ξ

(n)
j )+

i

2π

)]
+

[
S
(n)
j (ξ

(n)
i )K

(∗)
L,1(ξ

(n)
i ,ξ

(n)
j )+

π

n
K

(∗)
L,2(ξ

(n)
i ,ξ

(n)
j )

]
+ ã3

[
|x′(ξ

(n)
i )|S(n)

j (ξ
(n)
i )SL,1(ξ

(n)
i ,ξ

(n)
j )+

π

n
|x′(ξ

(n)
i )|SL,2(ξ

(n)
i ,ξ

(n)
j )

]
, (5.9)

Q
(n)
i,j,R= ã4

[
|x′(ξ

(n)
i )|S(n)

j (ξ
(n)
i )SR,1(ξ

(n)
i ,ξ

(n)
j )+

π

n
|x′(ξ

(n)
i )|SR,2(ξ

(n)
i ,ξ

(n)
j )

]
, (5.10)

D
(n)
i,j,R= ã6

[
C

(n)
j (ξ

(n)
i )+S

(n)
j (ξ

(n)
i )HR,1(ξ

(n)
i ,ξ

(n)
j )

+
π

n

(
H̃1(ξ

(n)
i ,ξ

(n)
j )+H̃R,2(ξ

(n)
i ,ξ

(n)
j )+

i

2π

)]
+

[
S
(n)
j (ξ

(n)
i )K

(∗)
R,1(ξ

(n)
i ,ξ

(n)
j )+

π

n
K

(∗)
R,2(ξ

(n)
i ,ξ

(n)
j )

]
+ ã7

[
|x′(ξ

(n)
i )|S(n)

j (ξ
(n)
i )SR,1(ξ

(n)
i ,ξ

(n)
j )+

π

n
|x′(ξ

(n)
i )|SR,2(ξ

(n)
i ,ξ

(n)
j )

]
, (5.11)

Q
(n)
i,j,L= ã8

[
|x′(ξ

(n)
i )|S(n)

j (ξ
(n)
i )SL,1(ξ

(n)
i ,ξ

(n)
j )+

π

n
|x′(ξ

(n)
i )|SL,2(ξ

(n)
i ,ξ

(n)
j )

]
, (5.12)

and

b1,i= ã1f̃1(ξ
(n)
i ), b2,i= ã5f̃2(ξ

(n)
i ). (5.13)

Two numerical examples are presented to show the excellent performance of the
proposed method. The numerical tests are implemented using Matlab on a PC with an
Intel i9-9980H processor. We consider the cylinder scattering problems with different
cross-sections in a chiral environment. Table 5.1 shows the parametric equations of
Apple-shaped and Peanut-shaped boundary curves Γ.

Shaped Parametrization

Apple−shaped x(t)= 0.5(1+0.8cost+0.2sin2t)
1+0.7cost (cost,sint), t∈ [0,2π]

Peanut−shaped x(t)=0.25
√
3cos2 t+1 (cost,sint), t∈ [0,2π]

Table 5.1. The smooth boundary curve Γ of cross-sections D.

Numerical example 1. For the cross-sections D with the smooth boundary
curve Γ in Table 5.1, we construct an exact solution by two incident point sources

ui(x)=
i

4
H

(1)
0 (γL|x−xp|), vi(x)=

i

4
H

(1)
0 (γL|x−xp|), x∈R2 \D̄, (5.14)
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Apple−shaped Peanut−shaped

n
∥us

N−us
∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

∥us
N−us

∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

8 0.0078 0.0078 5.2031e−04 5.2034e−04

16 0.0015 0.0015 5.1380e−06 5.1385e−06

32 1.7858e−05 1.7860e−05 9.4580e−10 9.4566e−10

64 2.5342e−08 2.5344e−08 5.2788e−14 5.2667e−14

128 9.6322e−14 3.2206e−14 2.6587e−14 2.6160e−14

256 1.5843e−14 1.6188e−14 1.2161e−14 1.4096e−14

512 8.5748e−15 7.6641e−15 3.1390e−15 1.0181e−14

1024 3.2045e−15 5.1075e−15 1.2374e−15 7.0294e−15

Table 5.2. The errors norm for the Apple-shaped and Peanut-shaped D with β=1,ω=2π×103.

Apple−shaped Peanut−shaped

n
∥us

N−us
∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

∥us
N−us

∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

8 0.0076 0.0080 4.9905e−04 5.4196e−04

16 0.0015 0.0016 4.9253e−06 5.3570e−06

32 1.7105e−05 1.8609e−05 9.0760e−10 9.8519e−10

64 2.4274e−08 2.6404e−08 5.6482e−13 4.9115e−13

128 4.0593e−13 2.3285e−13 2.8255e−13 2.4533e−13

256 1.7201e−13 1.5010e−13 1.4038e−13 1.2381e−13

512 8.6641e−14 7.4462e−14 6.7410e−14 6.5140e−14

1024 4.2289e−14 3.8398e−14 3.2051e−14 3.4338e−14

Table 5.3. The errors norm for the Apple-shaped and Peanut-shaped D with β=100,ω=2π×104.

Apple−shaped Peanut−shaped

n
∥us

N−us
∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

∥us
N−us

∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

8 0.0059 0.0089 2.8737e−04 7.2872e−04

16 9.6924e−04 0.0021 2.6529e−06 7.3137e−06

32 9.4503e−06 2.4919e−05 6.7341e−10 1.3008e−09

64 1.3508e−08 3.5290e−08 1.0385e−10 2.5774e−11

128 6.2237e−11 1.5811e−11 5.1926e−11 1.2887e−11

256 3.1106e−11 7.9492e−12 2.5963e−11 6.4448e−12

512 1.5553e−11 3.9739e−12 1.2980e−11 3.2265e−12

1024 7.7758e−12 1.9885e−12 6.4890e−12 1.6160e−12

Table 5.4. The errors norm for the Apple-shaped and Peanut-shaped D with β=10,ω=2π×106.
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λ=103 λ=106

n
∥us

N−us
∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

∥us
N−us

∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

64 2.8751e−06 3.3207e−06 8.1322e−07 7.6346e−07

128 7.1960e−07 8.3455e−07 1.7839e−07 1.6028e−07

256 1.8039e−07 2.0945e−07 2.8666e−08 2.3365e−08

512 4.5157e−08 5.2458e−08 4.0874e−09 3.2824e−09

1024 1.1298e−08 1.3125e−08 9.9293e−10 1.0851e−09

Table 5.5. The errors norm for the drop-shaped D with β=1,ω=2π×106.

β=10 β=1

n
∥us

N−us
∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

∥us
N−us

∗∥2

∥us
∗∥2

∥vs
N−vs

∗∥2

∥vs
∗∥2

64 5.9354e−06 5.5674e−06 3.3771e−06 3.3275e−06

128 1.4875e−06 1.4200e−06 8.4119e−07 8.3858e−07

256 3.7008e−07 3.5664e−07 2.1021e−07 2.1079e−07

512 9.2227e−08 8.9305e−08 5.2559e−08 5.2807e−08

1024 2.3044e−08 2.2326e−08 1.3163e−08 1.3192e−08

Table 5.6. The errors norm for the drop-shaped D with λ=10,ω=2π×106.

which located at xp=(0.2,0.1)⊤∈D. Thus, by enforcing the following boundary con-
ditions on Γ:

f1=a1
∂ui

∂ν
+a2

∂ui

∂τ
+a3u

i+a4v
i, f2=a5

∂vi

∂ν
+a6

∂vi

∂τ
+a7v

i+a8u
i, (5.15)

the exact solution (us∗,v
s
∗)=(ui,vi) of (2.18) can be constructed explicitly by (5.14).

Taking the observation points {x(πjñ )}2ñ−1
j=0 on the circle ∂B={x∈R2 : |x|=3}, where

ñ=16. The electric permittivity and magnetic permeability of a vacuum are denoted as
ϵ0 and µ0, respectively, the other parameters are chosen as ϵ=2ϵ0,µ=2µ0,λ=103,θ= π

3 .
Tables 5.2 and 5.3 show the numerical errors between the numerical solution and the
corresponding exact solution with L2(∂B) norm for the apple-shaped D and peanut-
shaped D when β=1,ω=2π×103 and β=100,ω=2π×104, respectively. Furthermore,
in experiment 1, for the high-frequency ω=2π×106 case, we show the numerical results
in Table 5.4. The numerical results also show that permittivity, permeability, chirality,
and angular frequency affect the convergence rate. We can get highly accurate results
by increasing the number of interpolation points.

Numerical example 2. Similar to the setting in Example 1, such as incident
wave and the right-hand side, we test the accuracy of the numerical method for non-
smooth cross-section boundary Γ={x(t)=(sin t

2 −
1
2 ,−

1
2 sint), t∈ [0,2π]}. Taking the

observation points {x(πjñ )}2ñ−1
j=0 on the circle ∂B={x∈R2 : |x|=3}, where ñ=16, the

parameters are chosen as ϵ=2ϵ0,µ=2µ0,ω=2π×106,θ= π
3 ,xp=(0.4,0.2)⊤. Table 5.5

shows the numerical errors between the numerical solution and the corresponding exact
solution with L2(∂B) norm for the Drop-shaped D with λ=103 and λ=106. We note
that the numerical and exact solutions coincide with the nonsmooth cross-sections with
suitable interpolation points. Furthermore, in experiment 2, for β=10 and β=1, we
also show the numerical results in Table 5.6.
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Apple−shaped Peanut−shaped

n
∥us

N−us
N∗∥2

∥us
N∗∥2

∥vs
N−vs

N∗∥2

∥vs
N∗∥2

∥us
N−us

N∗∥2

∥us
N∗∥2

∥vs
N−vs

N∗∥2

∥vs
N∗∥2

16 2.5000e−03 2.5200e−02 5.4522e−06 2.6799e−05

32 3.9919e−05 1.7465e−04 1.1475e−09 4.6792e−09

64 5.4827e−08 2.4404e−07 3.8710e−10 2.9269e−10

128 2.8971e−10 2.4595e−10 1.8730e−10 1.4161e−10

256 1.3524e−10 1.1487e−10 8.7406e−11 6.6048e−11

512 5.7963e−11 4.9255e−11 3.7456e−11 2.8250e−11

1024 1.9326e−11 1.6439e−11 1.2483e−11 9.3735e−12

Table 5.7. The errors norm for the Apple-shaped and Peanut-shaped D with β=10,ω=2π×106.

Numerical example 3. For the scattering problem of the plane wave incidence
which is given by (A.15) with (A.11) and (A.12), we calculate the values of compressional
and shear scattered fields usN∗ ,vsN∗ on ∂B={x∈R2 : |x|=3} with ñ=16, N∗=2048.
The electric permittivity and magnetic permeability of a vacuum are denoted as ϵ0
and µ0, respectively, the other parameters are chosen as ϵ=2ϵ0,µ=2µ0,λ=103,θ= π

3 .
Tables 5.7 shows the numerical errors between the numerical solution and usN∗ ,vsN∗ with
L2(∂B) norm for the apple-shaped D and peanut-shaped D when β=10,ω=2π×106.
We can also get highly accurate results by increasing the number of interpolation points
with the plane wave incidence.

6. Concluding remarks
We have presented an effective algorithm for a cylinder scattering problem with

obliquely incident electromagnetic waves in a chiral environment. For general cross-
sectional cylinder geometric structures, both the left-circularly polarization and right-
circularly polarization are employed to reduce the computational complexity for the
boundary value problem of Maxwell’s equations in chiral media. A novel integral equa-
tion method is developed for solving the scattering problem. The convergence of the
method has been established. An interesting future direction is to develop a fast com-
putational method for solving the related inverse obstacle scattering problem.

Appendix A. The electromagnetic plane wave. The time-harmonic electro-
magnetic plane wave

Ẽi=(ẽi1, ẽ
i
2, ẽ

i
3)

⊤=[qL exp(iγ̃Lp̃L ·x)+qR exp(iγ̃Rp̃R ·x)], (A.1)

H̃i=(h̃i1,h̃
i
2,h̃

i
3)

⊤=−i

√
ϵ

µ
[qL exp(iγ̃Lp̃L ·x)−qR exp(iγ̃Rp̃R ·x)], (A.2)

is a combination of left-circularly polarized plane wave and right-circularly polarized
one, which satisfies the isotropic DBF equations in R3 [3]. Here

γ̃L=
k

1−kβ
=β1+β2

√
ϵµ>0, γ̃R=

k

1+kβ
=−(β1−β2

√
ϵµ)>0, (A.3)

the constants β1 and β2 are given by

β1=k
2(1−k2β2)−1β≥0, β2=ω(1−k2β2)−1>0. (A.4)
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The complex vectors

qL=(q1,L,q2,L,q3,L)
⊤, p̃L=(p1,L,p2,L,p3,L)

⊤, (A.5)

qR=(q1,R,q2,R,q3,L)
⊤, p̃R=(p1,R,p2,R,,p3,R)

⊤, (A.6)

satisfy

p̃L ·qL=0, p̃R ·qR=0, p̃L×qL=−iqL, p̃R×qR=iqR. (A.7)

Let p3,L=−γ̃−1
L α and α=kcosθ, where θ∈ [π3 ,

π
2 )∪(π2 ,

2π
3 ] is the obliquely incident

angle between the incident direction and the negative x3 axis. Considering now the case
of p̃L · p̃L=1, that is, p21,L+p

2
2,L=1−(−γ̃−1

L α)2>0, it follows from p̃L×qL=−iqL that i γ̃−1
L α p2,L

−γ̃−1
L α i −p1,L

−p2,L p1,L i

 q1,L
q2,L
q3,L

 := ÃL

 q1,L
q2,L
q3,L

=0 (A.8)

has nonzero solutions. For an example, choose

p̃L=(
√

2(1− γ̃−2
L α2),i

√
1− γ̃−2

L α2,−γ̃−1
L α

)⊤
then

qL=

(
−1+

√
2γ̃−1

L α√
1− γ̃−2

L α2

,
−i

√
2+iγ̃−1

L α√
1− γ̃−2

L α2

,1

)⊤

(A.9)

is a nonzero solution of (A.8). Similarly, let p3,R=−γ̃−1
R α, assume that p21,R+p22,R=

1−(−γ̃−1
R α)2>0, we can also obtain that i −γ̃−1

R α −p2,R
γ̃−1
R α i p1,R
p2,R −p1,R i

 q1,R
q2,R
q3,R

 := ÃR

 q1,R
q2,R
q3,R

=0 (A.10)

has nonzero solutions. Moreover, without loss of generalities, taking q3,L= q3,R=1.
When considering the plane wave incidence in numerical experiments, we choose

real pL and pR in (2.20) as

pL=(

√
3

2

√
1− γ̃−2

L α2,
1

2

√
1− γ̃−2

L α2,0
)⊤
, (A.11)

pR=(
1

2

√
1− γ̃−2

R α2,

√
3

2

√
1− γ̃−2

R α2,0
)⊤
. (A.12)

The incident fields ẽi3,h̃
i
3 can been expressed as

ẽi3=(ui(x1,x2)+v
i(x1,x2))exp(−iαx3), (A.13)

h̃i3=−i

√
ϵ

µ
(ui(x1,x2)−vi(x1,x2))exp(−iαx3). (A.14)

It follows from (A.1), (A.2) (A.13) and (A.14) that

ui :=ui(x1,x2)=exp(iγ̃LpL ·x), vi :=vi(x1,x2)=exp(iγ̃RpR ·x), (A.15)
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where pL=(p1,L,p2,L,0) and pR=(p1,R,p2,R,0).

From (A.15), the incident fields ui and vi satisfy the equations:

∆ui+γ2Lu
i=0, ∆vi+γ2Rv

i=0, (A.16)

where γ2L := γ̃2L−α2>0 and γ2R := γ̃2R−α2>0 for θ∈ [π3 ,
π
2 )∪(π2 ,

2π
3 ].

Appendix B. The reduced problem. For time-harmonic electromagnetic waves
of the form

E := (ẽ1(x1, x2), ẽ2(x1, x2), ẽ3(x1, x2))
⊤exp(−iαx3), (B.1)

H := (h̃1(x1, x2),h̃2(x1, x2),h̃3(x1, x2))
⊤exp(−iαx3), (B.2)

we deduce that ∂x3 ẽl=−iαẽl, ∂x3 h̃l=−iαh̃l (l=1,2,3).

From Maxwell’s Equations (2.4) and (2.5), we have

∂x2
ẽ3+iαẽ2=β1ẽ1+iµβ2h̃1, (B.3)

iαẽ1+∂x1
ẽ3=−β1ẽ2− iµβ2h̃2, (B.4)

∂x1
ẽ2−∂x2

ẽ1=β1ẽ3+iµβ2h̃3, (B.5)

∂x2
h̃3+iαh̃2=β1h̃1− iϵβ2ẽ1, (B.6)

iαh̃1+∂x1
h̃3=−β1h̃2+iϵβ2ẽ2, (B.7)

∂x1
h̃2−∂x2

h̃1=β1h̃3− iϵβ2ẽ3. (B.8)

Using iϵβ2× (B.3)+iα× (B.7) and iα× (B.3)+iµβ2× (B.7), we get

(α2−ϵµβ2
2)h̃1=iϵβ2(∂x2 ẽ3−β1ẽ1)+iα(∂x1 h̃3+β1h̃2), (B.9)

(α2−ϵµβ2
2)ẽ2=iµβ2(∂x1 h̃3+β1h̃2)+iα(∂x2 ẽ3−β1ẽ1). (B.10)

From iϵβ2× (B.4) −iα× (B.6) and iα× (B.4)−iµβ2× (B.6), we have

(α2−ϵµβ2
2)h̃2=−iϵβ2(∂x1

ẽ3+β1ẽ2)+iα(∂x2
h̃3−β1h̃1), (B.11)

(α2−ϵµβ2
2)ẽ1=−iµβ2(∂x2

h̃3−β1h̃1)+iα(∂x1
ẽ3+β1ẽ2). (B.12)

Then, from (B.10) and (B.12), we obtain

(α2−ϵµβ2
2)∂x1 ẽ2=iµβ2(∂

2
x1
h̃3+β1∂x1 h̃2)+iα(∂2x2,x1

ẽ3−β1∂x1 ẽ1), (B.13)

(α2−ϵµβ2
2)∂x2

ẽ1=−iµβ2(∂
2
x2
h̃3−β1∂x2

h̃1)+iα(∂2x1,x2
ẽ3+β1∂x2

ẽ2). (B.14)

Combining (B.5) and (B.13)−(B.14), we derive

(∂2x1
h̃3+∂

2
x2
h̃3)+β1(∂x1 h̃2−∂x2 h̃1)−

αβ1
µβ2

(∂x1
ẽ1+∂x2

ẽ2)

=− i
α2β1
µβ2

ẽ3+iϵβ1β2ẽ3+(α2−ϵµβ2
2)h̃3. (B.15)
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Thus, from (B.8), (B.15) and divE=0, we have

(∂2x1
h̃3+∂

2
x2
h̃3)+(β2

1 +ϵµβ
2
2 −α2)h̃3− i2ϵβ1β2ẽ3

=[(∂2x1
h3+∂

2
x2
h3)+(β2

1 +ϵµβ
2
2 −α2)h3− i2ϵβ1β2e3]exp(−iαx3)=0. (B.16)

By (B.9) and (B.11), we derive

(α2−ϵµβ2
2)∂x2

h̃1=iϵβ2(∂
2
x2
ẽ3−β1∂x2

ẽ1)+iα(∂2x1,x2
h̃3+β1∂x2

h̃2), (B.17)

(α2−ϵµβ2
2)∂x1 h̃2=−iϵβ2(∂

2
x1
ẽ3+β1∂x1 ẽ2)+iα(∂2x2,x1

h̃3−β1∂x1 h̃1). (B.18)

Combining (B.8) and (B.17)−(B.18), we arrive at

(∂2x1
ẽ3+∂

2
x2
ẽ3)+β1(∂x1

ẽ2−∂x2
ẽ1)+

αβ1
ϵβ2

(∂x1
h̃1+∂x2

h̃2)

=i
α2β1
ϵβ2

h̃3− iµβ1β2h̃3+(α2−ϵµβ2
2)ẽ3. (B.19)

From (B.5) and (B.19) and divH=0, we have

(∂2x1
ẽ3+∂

2
x2
ẽ3)+(β2

1 +ϵµβ
2
2 −α2)ẽ3+i2µβ1β2h̃3

=[(∂2x1
e3+∂

2
x2
e3)+(β2

1 +ϵµβ
2
2 −α2)e3+i2µβ1β2h3]exp(−iαx3)=0. (B.20)

By (B.16) and (B.20), we get

(∂2x1
e3+∂

2
x2
e3)+(β2

1 +ϵµβ
2
2 −α2)e3+i2µβ1β2h3=0, (B.21)

(∂2x1
h3+∂

2
x2
h3)+(β2

1 +ϵµβ
2
2 −α2)h3− i2ϵβ1β2e3=0. (B.22)

We next derive the boundary conditions. It is convenient to introduce the following
notations:

et= x̂1ẽ1+ x̂2ẽ2, ht= x̂1h̃1+ x̂2h̃2, ∇= x̂1∂x1 + x̂2∂x2 , (B.23)

where x̂1=(1,0,0), x̂2=(0,1,0) and x̂3=(0,0,1). Let ν=(ν1,ν2,0)
⊤ and τ =

(−ν2,ν1,0)⊤ denote the unit outward normal vector and tangential vector of Γ respec-
tively.

Then, from |ν|= |τ |=1 and (2.6), we have ν2ẽ3
−ν1ẽ3

ν1ẽ2−ν2ẽ1

×

 ν1
ν2
0

=λ

 ν2h̃3
−ν1h̃3

ν1h̃2−ν2h̃1

 . (B.24)

Hence

−τ ·et=−(−ν2,ν1,0)⊤ ·(ẽ1, ẽ2,0)⊤=ν2ẽ1−ν1ẽ2=λh̃3, (B.25)

ẽ3=λ(ν1h̃2−ν2h̃1)=λ(−ν2,ν1,0)⊤ ·(h̃1,h̃2,0)⊤=λτ ·ht. (B.26)

Combining (B.25), (B.10) and (B.12), we obtain

−λh̃3=
1

(α2−ϵµβ2
2)

{
iµβ2(∇h̃3 ·ν)+iµβ1β2τ ·ht+iατ ·∇ẽ3− iαβ1(et ·ν)

}
. (B.27)
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Combining (B.26), (B.9) and (B.11), we obtain

1

λ
ẽ3=

1

(α2−ϵµβ2
2)

{
− iϵβ2(∇ẽ3 ·ν)− iϵβ1β2τ ·et+iατ ·∇h̃3− iαβ1(ht ·ν)

}
. (B.28)

Similarly

ν ·et=(ν1,ν2,0)
⊤ ·(ẽ1, ẽ2,0)⊤=ν1ẽ1+ν2ẽ2

=
−1

(α2−ϵµβ2
2)

{
iµβ2(∇h̃3 ·τ )− iµβ1β2ν ·ht− iαν ·∇ẽ3− iαβ1(et ·τ )

}
, (B.29)

ν ·ht=(ν1,ν2,0)
⊤ ·(h̃1,h̃2,0)⊤=ν1h̃1+ν2h̃2

=
1

(α2−ϵµβ2
2)

{
iϵβ2(∇ẽ3 ·τ )− iϵβ1β2ν ·et+iαν ·∇h̃3+iαβ1(ht ·τ )

}
. (B.30)

Therefore, we can rewrite (B.27), (B.28), (B.29) and (B.30) as, respectively,

(α2−ϵµβ2
2)τ ·et=iµβ2(∇h̃3 ·ν)+iµβ1β2(τ ·ht)+iα(τ ·∇ẽ3)− iαβ1(et ·ν), (B.31)

(α2−ϵµβ2
2)τ ·ht=−iϵβ2(∇ẽ3 ·ν)− iϵβ1β2(τ ·et)+iα(τ ·∇h̃3)− iαβ1(ht ·ν), (B.32)

(α2−ϵµβ2
2)ν ·et=−iµβ2(∇h̃3 ·τ )+iµβ1β2(ν ·ht)+iα(ν ·∇ẽ3)+iαβ1(et ·τ ), (B.33)

(α2−ϵµβ2
2)ν ·ht=iϵβ2(∇ẽ3 ·τ )− iϵβ1β2(ν ·et)+iα(ν ·∇h̃3)+iαβ1(ht ·τ ). (B.34)

From (α2−ϵµβ2
2)×(B.33)+iµβ1β2×(B.34) and (α2−ϵµβ2

2)×(B.32)−iαβ1×(B.34),
we get

[(α2−ϵµβ2
2)

2−ϵµβ2
1β

2
2 ]ν ·et

=iαβ1(α
2−ϵµβ2

2)(et ·τ )−αµβ2
1β2(ht ·τ )− iµβ2(α

2−ϵµβ2
2)(∇h̃3 ·τ )

+iα(α2−ϵµβ2
2)(ν ·∇ẽ3)−ϵµβ1β2

2(∇ẽ3 ·τ )−αµβ1β2(ν ·∇h̃3), (B.35)

[(α2−ϵµβ2
2)

2−α2β2
1 ]τ ·ht

=− iϵβ1β2(α
2−ϵµβ2

2)(τ ·et)−αϵβ2
1β2(ν ·et)+iα(α2−ϵµβ2

2)(τ ·∇h̃3)
− iϵβ2(α

2−ϵµβ2
2)(∇ẽ3 ·ν)+αϵβ1β2(∇ẽ3 ·τ )+α2β1(ν ·∇h̃3). (B.36)

From iϵβ1β2×(B.31)+(B.36) and −iαβ1×(B.35)+[(α2−ϵµβ2
2)

2−ϵµβ2
1β

2
2 ]×(B.31),

we have

i2ϵβ1β2(α
2−ϵµβ2

2)τ ·et
=− [(α2−ϵµβ2

2)
2−α2β2

1 +ϵµβ
2
1β

2
2 ]τ ·ht+β1(α

2−ϵµβ2
2)(ν ·∇h̃3)

+iα(α2−ϵµβ2
2)(τ ·∇h̃3)− iϵβ2(α

2−ϵµβ2
2)(∇ẽ3 ·ν), (B.37)

[(α2−ϵµβ2
2)

2−ϵµβ2
1β

2
2 −α2β2

1 ](α
2−ϵµβ2

2)τ ·et
=iµβ1β2[α

2β2
1 +((α2−ϵµβ2

2)
2−ϵµβ2

1β
2
2)](ht ·τ )

+iα(α2−ϵµβ2
2)

2(∇ẽ3 ·τ )
+iµβ2[α

2β2
1 +((α2−ϵµβ2

2)
2−ϵµβ2

1β
2
2)](∇h̃3 ·ν)

+α2β1(α
2−ϵµβ2

2)(ν ·∇ẽ3)−αµβ1β2(α2−ϵµβ2
2)(∇h̃3 ·τ ). (B.38)
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From [(α2−ϵµβ2
2)

2−ϵµβ2
1β

2
2 −α2β2

1 ]×(B.37)−i2ϵβ1β2×(B.38), we have{
[(α2−ϵµβ2

2)
2−α2β2

1 −ϵµβ2
1β

2
2 ][(α

2−ϵµβ2
2)

2−α2β2
1 +ϵµβ

2
1β

2
2 ]

−2ϵµβ2
1β

2
2 [(α

2−ϵµβ2
2)

2+α2β2
1 −ϵµβ2

1β
2
2 ]
}
τ ·ht

=
{
β1(α

2−ϵµβ2
2)[(α

2−ϵµβ2
2)

2−ϵµβ2
1β

2
2 −α2β2

1 ]

+2ϵµβ1β
2
2 [(α

2−ϵµβ2
2)

2+α2β2
1 −ϵµβ2

1β
2
2 ]
}
(ν ·∇h̃3)

+
{
iα(α2−ϵµβ2

2)[(α
2−ϵµβ2

2)
2−ϵµβ2

1β
2
2 −α2β2

1 ]

+i2αϵµβ2
1β

2
2(α

2−ϵµβ2
2)
}
(τ ·∇h̃3)

−
{
iϵβ2(α

2−ϵµβ2
2)[(α

2−ϵµβ2
2)

2−ϵµβ2
1β

2
2 −α2β2

1 ]

+i2α2ϵβ2
1β2(α

2−ϵµβ2
2)
}
(∇ẽ3 ·ν)+i2αϵβ1β2(α

2−ϵµβ2
2)

2(∇ẽ3 ·τ ). (B.39)

With the help of −ϵ(α2−ϵµβ2
2)×(B.31), iϵµβ1β2×(B.32) and iαϵβ1×(B.33), we get

−ϵ(α2−ϵµβ2
2)

2τ ·et=−iϵµβ2(α
2−ϵµβ2

2)(∇h̃3 ·ν)− iϵµβ1β2(α
2−ϵµβ2

2)(τ ·ht)

− iαϵ(α2−ϵµβ2
2)(τ ·∇ẽ3)+iαϵβ1(α

2−ϵµβ2
2)(et ·ν), (B.40)

−ϵ2µβ2
1β

2
2(τ ·et)=−iϵµβ1β2(α

2−ϵµβ2
2)τ ·ht+ϵ

2µβ1β
2
2(∇ẽ3 ·ν)

−αϵµβ1β2(τ ·∇h̃3)+αϵµβ2
1β2(ht ·ν), (B.41)

α2ϵβ2
1(et ·τ )=−iαϵβ1(α

2−ϵµβ2
2)ν ·et+αϵµβ1β2(∇h̃3 ·τ )

−αϵµβ2
1β2(ν ·ht)−α2ϵβ1(ν ·∇ẽ3), (B.42)

hence, by (B.40)+(B.41)+(B.42) that

(β2
1 +ϵµβ

2
2 −α2)τ ·et

=− iµβ2(∇h̃3 ·ν)− i2µβ1β2(τ ·ht)− iα(τ ·∇ẽ3)−β1(ν ·∇ẽ3). (B.43)

With the help of −iϵµβ1β2×(B.31), −µ(α2−ϵµβ2
2)×(B.32) and iαµβ1×(B.34), we

get

−ϵµ2β2
1β

2
2(τ ·ht)= iϵµβ1β2(α

2−ϵµβ2
2)τ ·et+ϵµ2β1β

2
2(∇h̃3 ·ν)

+αϵµβ1β2(τ ·∇ẽ3)−αϵµβ2
1β2(et ·ν), (B.44)

−µ(α2−ϵµβ2
2)

2τ ·ht=iϵµβ2(α
2−ϵµβ2

2)(∇ẽ3 ·ν)+iϵµβ1β2(α
2−ϵµβ2

2)(τ ·et)
− iαµ(α2−ϵµβ2

2)(τ ·∇h̃3)+iαµβ1(α
2−ϵµβ2

2)(ht ·ν), (B.45)

α2µβ2
1(ht ·τ )=−iαµβ1(α

2−ϵµβ2
2)ν ·ht−αϵµβ1β2(∇ẽ3 ·τ )

+αϵµβ2
1β2(ν ·et)−α2µβ1(ν ·∇h̃3), (B.46)

hence, by (B.44)+(B.45)+(B.46)

(β2
1 +ϵµβ

2
2 −α2)(τ ·ht)

=i2ϵβ1β2τ ·et−β1(ν ·∇h̃3)+iϵβ2(∇ẽ3 ·ν)− iα(τ ·∇h̃3). (B.47)

Combining (B.25) and (B.43), we derive

iα
∂ẽ3
∂τ

+β1
∂ẽ3
∂ν

+iµβ2
∂h̃3
∂ν

=(β2
1 +ϵµβ

2
2 −α2)(λh̃3)− i2µβ1β2

(
ẽ3
λ

)
. (B.48)
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Combining (B.26) and (B.47), we derive

iϵβ2
∂ẽ3
∂ν

−β1
∂h̃3
∂ν

− iα
∂h̃3
∂τ

=i2ϵβ1β2(λh̃3)+(β2
1 +ϵµβ

2
2 −α2)

(
ẽ3
λ

)
. (B.49)

Then, from (B.48), (B.49) and ẽ3=e3 exp(−iαx3) and h̃3=h3exp(−iαx3), we ob-
tain the impedance boundary conditions

β1
∂e3
∂ν

+iα
∂e3
∂τ

+iµβ2
∂h3
∂ν

=λ(β2
1 +ϵµβ

2
2 −α2)h3−

i2µβ1β2
λ

e3 onΓ, (B.50)

−β1
∂h3
∂ν

− iα
∂h3
∂τ

+iϵβ2
∂e3
∂ν

=i2ϵλβ1β2h3+
(β2

1 +ϵµβ
2
2 −α2)

λ
e3 onΓ. (B.51)

We introduce the Beltrami decomposition

e3=u+v, h3=−i

√
ϵ

µ
(u−v), (B.52)

where the total field (u,v) consists of the incident field (ui,vi) and the scattered field
(us,vs), i.e., (u,v)=(ui+us,vi+vs). Then, from (B.21) and (B.22), we have

∆(u+v)+(β2
1 +β

2
2ϵµ−α2)(u+v)+2β1β2

√
ϵµ(u−v)=0, (B.53)

∆(u−v)+(β2
1 +β

2
2ϵµ−α2)(u−v)+2β1β2

√
ϵµ(u+v)=0. (B.54)

With the help of (B.53)+(B.54) and (B.53)−(B.54), we find

∆u+γ2Lu=0 inR2 \D̄, (B.55)

∆v+γ2Rv=0 inR2 \D̄, (B.56)

where γ2L=(β1+β2
√
ϵµ)2−α2 and γ2R=(β1−β2

√
ϵµ)2−α2. Furthermore, from (B.50)

and (B.51), we obtain

β1
∂(u+v)

∂ν
+iα

∂(u+v)

∂τ
+iβ2µ

(
− i

√
ϵ

µ

)
∂(u−v)
∂ν

=λ(β2
1 +β

2
2ϵµ−α2)

(
− i

√
ϵ

µ

)
(u−v)− i2β1β2µ

λ
(u+v) on Γ, (B.57)

−β1
(
− i

√
ϵ

µ

)
∂(u−v)
∂ν

− iα

(
− i

√
ϵ

µ

)
∂(u−v)
∂τ

+iβ2ϵ
∂(u+v)

∂ν

=i2β1β2ϵλ

(
− i

√
ϵ

µ

)
(u−v)+ (β2

1 +β
2
2ϵµ−α2)

λ
(u+v) on Γ. (B.58)

By i×(B.57) and
√

µ
ϵ×(B.58), we find

iβ1
∂(u+v)

∂ν
+iβ2

√
ϵµ
∂(u−v)
∂ν

−α∂(u+v)
∂τ

=λ(β2
1 +β

2
2ϵµ−α2)

√
ϵ

µ
(u−v)+ 2β1β2µ

λ
(u+v) on Γ, (B.59)

iβ1
∂(u−v)
∂ν

+iβ2
√
ϵµ
∂(u+v)

∂ν
−α∂(u−v)

∂τ
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=2β1β2ϵλ(u−v)+
(β2

1 +β
2
2ϵµ−α2)

λ

√
µ

ϵ
(u+v) on Γ. (B.60)

From (B.59)+(B.60) and (B.59)−(B.60), we derive

−2i(β1+β2
√
ϵµ)

∂u

∂ν
+2α

∂u

∂τ

+

[
(β2

1 +β
2
2ϵµ−α2)

(
λ

√
ϵ

µ
+

1

λ

√
µ

ϵ

)
+2β1β2

(
λϵ+

µ

λ

)]
u

−
[
(β2

1 +β
2
2ϵµ−α2)

(
λ

√
ϵ

µ
− 1

λ

√
µ

ϵ

)
+2β1β2

(
λϵ− µ

λ

)]
v=0 on Γ (B.61)

and

−2i(β1−β2
√
ϵµ)

∂v

∂ν
+2α

∂v

∂τ

−
[
(β2

1 +β
2
2ϵµ−α2)

(
λ

√
ϵ

µ
+

1

λ

√
µ

ϵ

)
−2β1β2

(
λϵ+

µ

λ

)]
v

+

[
(β2

1 +β
2
2ϵµ−α2)

(
λ

√
ϵ

µ
− 1

λ

√
µ

ϵ

)
−2β1β2

(
λϵ− µ

λ

)]
u=0 on Γ. (B.62)

Therefore, the scalar functions u and v satisfy the following boundary conditions:

a1
∂u

∂ν
+a2

∂u

∂τ
+a3u+a4v=0 onΓ, (B.63)

a5
∂v

∂ν
+a6

∂v

∂τ
+a7v+a8u=0 onΓ. (B.64)
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[3] H. Ammari, M. Laouadi, and J.C. Nédélec, Low frequency behavior of solutions to electromagnetic
scattering problems in chiral media, SIAM J. Appl. Math., 58:1022–1042, 1998. 1, A
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