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STABILITY OF
CONTACT LINES IN 2D STATIONARY BÉNARD CONVECTION∗

YUNRUI ZHENG†

Abstract. We consider the evolution of contact lines for thermal convection of viscous fluids in
a two-dimensional open-top vessel. The domain is bounded above by a free moving boundary and
otherwise by the solid wall of a vessel. The dynamics of the fluid are governed by the incompressible
Boussinesq approximation under the influence of gravity, and the interface between fluid and air is
under the effect of capillary forces. Here we develop global well posedness theory in the framework of
nonlinear energy methods for the initial data sufficiently close to equilibrium. Moreover, the solutions
decay to equilibrium at an exponential rate. Our methods are mainly based on the elliptic analysis
near corners and a priori estimates of a geometric formulation of the Boussinesq equations.
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1. Introduction

1.1. Formulation of the problem in Eulerian coordinates. We consider a
2–dimensional open-top vessel as a bounded, connected open set V ⊆R2 which consists
of two “almost” disjoint sections, i.e., V=Vtop∪Vbot. The word almost means Vtop∩Vbot

is a set of measure 0 in R2. We assume that the “top” part Vtop consists of a rectangular
channel defined by

Vtop=V ∩R2
+={y∈R2 :−ℓ<y1<ℓ, 0≤y2<L}

for some ℓ, L>0, where R2
+ is the half-plane R2

+={y∈R2 :y2≥0}. Similarly, we write
the “bottom” part as

Vbot=V ∩R2
−=V ∩{y∈R2 :y2≤0}.

In addition, we also assume that the boundary ∂V of V is C2 away from the points
(±ℓ,L). We refer to Figure 1.1 for an example.

Now we consider a viscous incompressible fluid filling the Vbot entirely and Vtop

partially. More precisely, we assume that the fluid occupies the domain Ω(t) with an
upper free surface,

Ω(t)=Vbot∪{y∈R2 :−ℓ<y1<ℓ, 0<y2<ζ(y1,t)},

where the free surface ζ(y1,t) is assumed to be a graph of the function ζ : [−ℓ,ℓ]×R+→R
satisfying 0<ζ(±ℓ,t)≤L for all t∈R+, which means the fluid does not spill out of the
top domain. For simplicity, we write the free surface as Σ(t)={y2= ζ(y1,t)} and the
interface between fluid and solid as Σs(t)=∂Ω(t)\Σ(t). We refer to Figure 1.2 for the
description of the domain.
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Fig. 1.1. A vessel V.
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Fig. 1.2. The domain Ω(t).

For each t≥0, the fluid is described by its velocity, pressure and temperature
(u,P,Θ) :Ω(t)→R2×R×R, the dynamics of which is governed by the Boussinesq ap-
proximation [3] for t>0:

divS(P,u)+u ·∇u=∇P −µ∆u+u ·∇u=gα(Θ−Θ0)ey2 in Ω(t),

divu=0, u ·∇Θ−k∆Θ=0 in Ω(t),

S(P,u)ν=gζν−σH(ζ)ν, ν ·∇Θ+Θ=1 on Σ(t),

(S(P,u)ν−βu) ·τ =0, u ·ν=0, Θ=1 on Σs(t),

∂tζ=u ·ν=u2−u1∂1ζ on Σ(t),

∂tζ(±ℓ,t)=V

(
[[γ]]∓σ ∂1ζ

(1+ |∂1ζ|2)1/2
(±ℓ,t)

)
(1.1)

with the initial data ζ(y1,t=0)= ζ(0), ∂tζ(y1,t=0)=∂tζ(0), and ∂
2
t ζ(y1,t=0)=∂2t ζ(0).

In the above system (1.1), S(p,u) is the viscous stress tensor determined by

S(P,u)=PI−µDu,

where I is the 2×2 identity matrix, µ>0 is the coefficient of viscosity, Du=∇u+∇⊤u is
the symmetric gradient of u for ∇⊤u the transpose of the matrix ∇u, P is the difference
between the full pressure and the hydrostatic pressure. Θ0 is a reference temperature,
which is chosen here to be the temperature on the solid wall, i.e. Θ0=1. ey2

=(0,1).
k>0 is the thermal conduction coefficient. α>0 is the coefficient of cubical expansion.
ν is the outward unit normal. τ is the unit tangent. σ>0 is the coefficient of surface
tension, and

H(ζ)=∂1

(
∂1ζ

(1+ |∂1ζ|2)1/2

)
is twice the mean curvature of the free surface. β>0 is the Navier slip friction coeffi-
cient on the vessel walls. The function V :R→R is the contact point velocity response
function which is a C2 increasing diffeomorphism satisfying V (0)=0. For more discus-
sion about the choice of V , we refer to [8, Section 1.3]. [[γ]] :=γsv−γsf for γsv, γsf ∈R,
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where γsv, γsf are measures of the free-energy per unit length with respect to the solid-
vapor and solid-fluid intersection, respectively. In addition, we assume that the Young
relation [17] holds:

|[[γ]]|
σ

<1, (1.2)

which is necessary for the existence of an equilibrium state. For convenience, we intro-
duce the inverse function W =V −1 and rewrite the final equation in (1.1) as

W (∂tζ(±ℓ,t))= [[γ]]∓σ ∂1ζ

(1+ |∂1ζ|2)1/2
(±ℓ,t). (1.3)

The slip condition of fluids along the solid wall is introduced due to the the incom-
patibility of no-slip condition (u=0), and the kinematics of free boundary (∂tζ=u ·ν) at
contact points. In particular, fluid along the solid wall obeys the Navier-slip condition

u ·ν=0, and (S(P,u)ν−βu) ·τ =0,

which is found in [13].

The system of (1.1) is semi-stationary. The dynamics of viscous thermal convection
is stationary for each time, while the domain Ω(t) is time-dependent and the free surface
is deformable. Here, for simplicity, we neglect the Marangoni effect, that means we still
assume that the coefficient of surface tension σ has no relationship with temperature.

1.2. Known results. The Bénard convection is a classical problem in fluids
and will creates chaos, which has attracted many famous mathematicians, see [5] and
references therein. The free boundary problem of global well-posedness and stability for
Bénard convection was first proved in [9] for 2D domains. The global well-posedness and
stability for Bénard convection with a free surface for 3D domains was proved by [12].
Both of these results employ parabolic regularity theory in a functional framework of [2].
They assume that the surface tension is under the effect of Marangoni, and the domains
are horizontally periodic. Both the results of [9, 12] are inspired by the idea in [2].
In the case without surface tension, [18] proved the local well-posedness for the 3D
horizontally periodic domains using the energy estimates inspired by ideas of [6,7]. All
of these results are considered the Navier-Stokes equations coupled with the evolution
heat equations.

For the framework of contact lines in bounded domains, [19] proved the local well-
posedness for Stokes equations. [8] proved the global well-posedness and stability of
Stokes equations. The series of [19] and [8] is the first complete theory for contact
lines in Stokes equations which allow both dynamic contact points and dynamic contact
angles.

In this paper, we consider the stationary Bénard convection including the dynamic
contact points and contact angles. We first give the elliptic analysis for evolutionary
heat equations near corner points, then construct a priori estimates for Boussinesq
equations. Finally, we establish the linear solutions for steady heat equations evolving
in time, which coupled with the a priori estimates yields our main results. In the
following papers, we will present the full non-stationary Bénard convection.

1.3. Reformulation around equilibrium. A steady-state equilibrium so-
lution to (1.1) corresponds to u=0, P (y,t)=P0(y), ζ(y1,t)= ζ0(y) and Θ=1. These
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satisfy 
∇P0=0 in Ω(0),

P0=gζ0−σH(ζ0) on (−ℓ,ℓ),

σ
∂1ζ0√

1+ |∂1ζ0|2
(±ℓ)=±[[γ]].

(1.4)

It is well known (see, for instance, the discussion in the introduction of [8]) that there
exists a smooth solution ζ0 : [−ℓ,ℓ]→ (0,L).

In order to work in the fixed domain formed by equilibrium, we follow the path
of [19]. Let ζ0∈C∞[−ℓ,ℓ] be the equilibrium surface given by (1.4). We then define the
equilibrium domain Ω⊂R2 by

Ω :=Vb∪{x∈R2|−ℓ<x1<ℓ,0<x2<ζ0(x1)}.

The boundary ∂Ω of the equilibrium Ω is defined by

∂Ω:=Σ⊔Σs,

where

Σ :={x∈R2|−ℓ<x1<ℓ,x2= ζ0(x1)}, Σs=∂Ω\Σ.

Here Σ is the equilibrium free surface. The corner angle ω∈ (0,π) of Ω is the contact
angle formed by the fluid and solid. We will view the function ζ(y1,t) of the free surface
as the perturbation of ζ0(y1):

ζ(y1,t)= ζ0(y1)+η(y1,t). (1.5)

Let ϕ∈C∞(R) be such that ϕ(z)=0 for z≤ 1
4minζ0 and ϕ(z)=z for z≥ 1

2minζ0.
Now we define the mapping Φ :Ω 7→Ω(t) by

Φ(x1,x2,t)=

(
x1,x2+

ϕ(x2)

ζ0(x1)
η̄(x1,x2,t)

)
=(Φ1(x1,x2,t),Φ2(x1,x2,t))=(y1,y2)∈Ω(t)

(1.6)
with η̄ defined by

η̄(x1,x2,t) :=PEη(x1,x2−ζ0(x1),t), (1.7)

where E :Hs(−ℓ,ℓ) 7→Hs(R) is a bounded extension operator for all 0≤s≤3 and P is
the lower Poisson extension given by

Pf(x1,x2)=
∫
R
f̂(ξ)e2π|ξ|x2e2πix1ξdξ.

If η is sufficiently small (in appropriate Sobolev spaces), the mapping Φ is a C1 dif-
feomorphism of Ω onto Ω(t) that maps the components of ∂Ω to the corresponding
components of ∂Ω(t).

We have the Jacobian matrix ∇Φ and the transform matrix A of Φ,

∇Φ=

(
1 0
A J

)
, A=(∇Φ)−⊤=

(
1 −AK
0 K

)
(1.8)
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for

A=
ϕ

ζ0
∂1η̄−

ϕ

ζ20
∂1ζ0η̄, J =1+

ϕ′

ζ0
η̄+

ϕ

ζ0
∂2η̄, K=

1

J
. (1.9)

We define the transformed differential operators as follows:

(∇Af)i :=Aij∂jf, divAX :=Aij∂jXi, ∆Af :=divA∇Af

for appropriate f and X. We write the stress tensor as

SA(P,u)=PI−µDAu,

where I is the 2×2 identity matrix and (DAu)ij =Aik∂kuj+Ajk∂kui is the symmetric
A–gradient. Note that if we extend divA to act on symmetric tensors in the natural
way, then divASA(P,u)=−µ∆Au+∇AP for vector fields satisfying divAu=0.

We assume that Φ is a diffeomorphism (actually this will be proved by the local
well-posedness). Then we can transform the problem (1.1) into the equilibrium domain
Ω for t≥0. In the new coordinates, (1.1) becomes the A–Stokes problem

divASA(P,u)+u ·∇Au=−µ∆Au+∇AP +u ·∇Au=−gα(Θ−1)∇AΦ2 in Ω,

divAu=0, u ·∇AΘ−k∆AΘ=0 in Ω,

SA(P,u)N =gζN −σH(ζ)N , k∇AΘ ·N +Θ=1 on Σ,

(SA(P,u)ν−βu) ·τ =0, u ·ν=0, Θ=1 on Σs,

∂tζ=u ·N on Σ,

W (∂tζ(±ℓ,t))= [[γ]]∓σ ∂1ζ√
1+ |ζ|2

(±ℓ,t),

ζ(x1,0)= ζ0(x1)+η0(x1), ∂tζ(x1,0)=∂tη(x1,0), ∂2t ζ(x1,0)=∂
2
t η(x1,0).

(1.10)
Here we have still written N :=−∂1ζe1+e2 for the normal to Σ(t).

Since all terms in (1.10) are in terms of η, (1.10) is connected to the geometry of the
free surface. This geometric structure is essential to control higher-order derivatives.

To this end we define new perturbed unknowns (u,p,θ,η) so that u=0+u, P =
P0+p, Θ=1+θ and ζ= ζ0+η. Then we will reformulate (1.10) in terms of the new
unknowns following the path of [19] to the following perturbative form of the Stokes
equations:

divASA(p,u)+u ·∇Au=−µ∆Au+∇Ap+u ·∇Au=−gαθ∇AΦ2 in Ω,

divAu=0, u ·∇Aθ−k∆Aθ=0 in Ω,

SA(p,u)N =gηN −σ∂1
(

∂1η

(1+ |∂1ζ0|)3/2

)
N −σ∂1(R(∂1ζ0,∂1η))N on Σ,

k∇Aθ ·N =0 on Σ,

(SA(p,u)ν−βu) ·τ =0, u ·ν=0, θ=0 on Σs,

∂tη=u ·N on Σ,

κ∂tη(±ℓ,t)+κŴ (∂tη(±ℓ,t))=∓σ
(

∂1η

(1+ |∂1ζ0|2)3/2
+R(∂1ζ0,∂1η)

)
(±ℓ,t)

(1.11)
with the initial data η(x1,0)=η0(x1), ∂tη(x1,0), and ∂

2
t η(x1,0). Here A and N are still

determined in terms of ζ= ζ0+η. In the following, we write N0 to be the non-unit-
normal for the equilibrium surface Σ, and N =N0−∂1ηe1.
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1.4. Main theorems. In order to state our result, we need to explain our
notation for Sobolev spaces and norms. We take Hk(Ω) and Hk(Σ) for k≥0 to be
the usual Sobolev spaces, and take W k

δ (Ω) and W
k
δ (Σ) for k≥0 and δ∈ (0,1) to be the

weighted Sobolev spaces defined in [19, Section 2]. We write norms ∥∂jt u∥k and ∥∂jt p∥k
in the space Hk(Ω), and ∥∂jt η∥k in the space Hk(Σ).

Now, we define the energy and dissipation used in this paper. The energy is

E(t)=∥u∥2W 2
δ
+∥∂tu∥21+∥p∥2

W̊ 1
δ

+∥∂tp∥2H̊0 +∥θ∥2W 2
δ
+∥∂tθ∥21

+∥η∥2
W

5/2
δ

+∥∂tη∥23/2+
2∑

j=0

∥∂jt η∥2H̊1 , (1.12)

and the dissipation is

D(t)=

1∑
j=0

(
∥∂jt u∥2W 2

δ
+∥∂jt p∥2W̊ 1

δ

+∥∂jt θ∥2W 2
δ
+∥∂jt η∥2W 5/2

δ

)

+

2∑
j=0

(
∥∂jt u∥21+∥∂jt u∥2H0(Σs)

+[∂jt u ·N ]2ℓ

)

+

2∑
j=0

(
∥∂jt p∥20+∥∂jt θ∥21+∥∂jt η∥23/2

)
+∥∂3t η∥21/2, (1.13)

where [f ]2ℓ , H̊
s((−ℓ,ℓ)), and W̊ k

δ (Ω) are defined in [19, Section 2].
Our main result is the global-in-time solutions and decay estimates for (1.1).

Theorem 1.1. Let ω∈ (0,π) be the angle formed by ζ0 at the corners, δω =
max{0,2− π

ω}∈ [0,1) and δ∈ (δω,1). Suppose that the initial data (η0,∂tη(0),∂
2
t η(0))

satisfy the compatibility condition (5.18) and (5.19) such that there exists a universal
small parameter γ0>0, and the initial energy satisfies

E(0)≤γ0. (1.14)

Then there exist a universal constant λ>0 and a solution (u,p,θ,η) of (1.11) global in
time such that

sup
t≥0

[
E(t)+eλt

(
∥u(t)∥21+∥u(t) ·τ∥2L2(Σs)

+[u(t) ·N (t)]2ℓ +∥p(t)∥20+∥θ(t)∥21
)]

+

∫ ∞

0

D(t)dt≤CE(0), (1.15)

where C is a universal constant.

Remark 1.1. Theorem 1.1 implies that for any given Rayleigh number Ra∼O
(

1
µk

)
,

the system (1.11) has a unique solution global in time. This is in contrast with the
non-stationary case in [12] where they assume that the Rayleigh number is sufficiently
small.

1.5. Notation and terminology. Now, we mention some definitions, notation,
and conventions that we will use throughout this paper.

(1) Constants. The symbol C>0 will denote a universal constant that only depends
on the parameters of the problem and Ω, but does not depend on the data, etc. It
is allowed to change from line to line. We will write C=C(z) to indicate that the
constant C depends on z. We will write a≲ b to mean that a≤Cb for a universal
constant C>0.
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(2) Norms. We will write Hk for Hk(Ω) for k≥0, and Hs(Σ) with s∈R for the
usual Sobolev spaces. We will typically write H0=L2, though we will also
use L2([0,T ];Hk) (or L2([0,T ];Hs(Σ))) to denote the space of temporal square–
integrable functions with values in Hk (or Hs(Σ)). Sometimes we will write
∥·∥k instead of ∥·∥Hk(Ω) or ∥·∥Hk(Σ). We also will write ∥·∥L2Hk instead of
∥·∥L2([0,T ];Hk(Ω)) or ∥·∥L2([0,T ];Hk(Σ)). When we do this it will be clear from the
context on which set the norm is evaluated and the argument of the norm.

2. Functional setting and basic estimates

2.1. Functional spaces. Throughout this paper, we use the functional spaces
introduced in [19, Section 2]. But for convenience, we still list them here. In addition,
the proof of almost all estimates in this section might be found in [19, Section 2], so
we omit the details here. For the details of usual Sobolev embedding theory, we refer
to [16].

The proof of following propositions for weighted Sobolev embedding theory, could
be found in [8, Appendix C and D].

Proposition 2.1. Let k∈N and 0<δ<1. Then W k
δ (Ω) ↪→W k,q, for 1≤ q< 2

1+δ . In

particular, W 1
δ (Ω) ↪→Lp(Ω), for 1≤p< 2

δ , and W
1/2
δ (∂Ω) ↪→Lq(∂Ω), for 1≤ q< 2

1+δ .

From the Proposition 2.1, we could deduce the following useful corollary.

Corollary 2.1. Let δω =max{0,2− π
ω}∈ [0,1) and δ∈ (δω,1). Then

W 2
δ (Ω) ↪→Hs(Ω), and W

5/2
δ (∂Ω) ↪→Hs+ 1

2 (∂Ω), when 1<s<min{2, π
ω
}.

Proof. For 1<p< 2
1+δ , we employ Proposition 2.1 to deduce W 2

δ (Ω) ↪→W 2,p(Ω).

Then we choose s=3− 2
p . Clearly, 1<s<min{2, πω}. Then we use the embedding

W 2,p(Ω) ↪→H3− 2
p (Ω) to deduce W 2

δ (Ω) ↪→H3− 2
p (Ω)=Hs(Ω).

The above analysis also implies W 3
δ (Ω) ↪→Hs+1(Ω). For any f ∈W 5/2

δ (∂Ω), there
exists a F ∈W 3

δ (Ω) such that ∥F∥W 3
δ (Ω)≲∥f∥

W
5/2
δ (∂Ω)

. Then F ∈Hs+1(Ω), and f ∈
Hs+ 1

2 (∂Ω) satisfy

∥f∥
Hs+1

2 (∂Ω)
≲∥F∥Hs+1(Ω)≲∥F∥W 3

δ (Ω)≲∥f∥
W

5/2
δ (∂Ω)

.

Proposition 2.2. Let 0<δ<1. Then for each q∈ [0,∞),

∥dδf∥Lq(Ω)≲∥f∥W 1
δ

for all f ∈W 1
δ (Ω).

Proposition 2.3. Let 0<δ<1 and κ∈ (0,1). Suppose that f ∈W 1/2
δ (Σ) and that

g∈H1/2+κ(Σ). Then fg∈W 1/2
δ (Σ) and

∥fg∥
W

1/2
δ

≲∥f∥
W

1/2
δ

∥g∥1/2+κ.

2.2. Weak formulation and basic estimates. Suppose that ζ= ζ0+η and
that A, N are in terms of η. We refer the velocity to v, pressure to q, temperature
to ϑ and surface function to ξ in order to distinguish from (u,p,θ,η). That’s because
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in our analysis, (v,q,ϑ,ξ) represent not only (u,p,θ,η), but also represent the temporal
derivatives of (u,p,θ,η). We assume that (v,q,ϑ,ξ) satisfies

divASA(v,q)−gαϑ∇AΦ2=F
1, divAv=F

2, −k∆Aϑ=F
3 in Ω,

SA(v,q)N =gξN −σ∂1
(

∂1ξ

(1+ |∂1ζ0|2)3/2
+F 4

)
N +F 5 on Σ,

κ∇Aϑ ·N =F 6 on Σ,

(SA(v,q)ν−βv) ·τ =F 7, v ·ν=0,ϑ=0 on Σs,

∂tξ=v ·N +F 8 on Σ,

k∂tξ=∓σ
(

∂1ξ

(1+ |∂1ζ0|2)3/2
+F 4

)
−κF 9 at ±ℓ.

(2.1)

Lemma 2.1. Assume that (v,q,ϑ,ξ) are sufficiently smooth and satisfy (2.1). Suppose
that ϕ∈H1(t), and that ψ∈W(t). Then

k(ϑ,ϕ)H1 =(F 3,ϕ)H0 +

∫ ℓ

−ℓ

F 6ϕ, (2.2)

and

((v,ψ))−(q,divAψ)H0 +(ξ,ψ ·N )1,Σ+[v ·N ,ψ ·N ]ℓ−gα(ϑ∇AΦ2,ψ)H0

=(F 1,ψ)H0 −
∫ ℓ

−ℓ

[σF 4(ψ ·N )+F 5 ·ψ]−
∫
Σs

F 7(ψ ·τ)J− [F 8+F 9,ψ ·N ]ℓ. (2.3)

Proof. The proof is very standard. Multiplying ϕJ on both sides of the third
equation of (2.1), we might integrate over Ω, and integrate by parts to reveal (2.2).
Then (2.3) is derived by the same method, so we omit the details here.

This lemma implies the following evolution of energy formula for (v,q,ϑ,ξ).

Theorem 2.1. Suppose that ζ= ζ0+η and that A, N are determined in terms of η.
Suppose that (v,q,ϑ,ξ) satisfy (2.1). Then∫

Ω

k|∇Aϑ|2J =

∫
Ω

F 3ϑJ+

∫ ℓ

−ℓ

F 6ϑ, (2.4)

and

d

dt

(∫ ℓ

−ℓ

g

2
|ξ|2+ σ

2

|∂1ξ|2

(1+ |∂1ζ0|2)3/2

)
+

∫
Ω

µ

2
|DAv|2J+β

∫
Σs

(v ·τ)2+[v ·N ]2ℓ

=gα

∫
Ω

ϑ∇AΦ2 ·v+
∫
Ω

(F 1 ·v+qF 2)J−
∫
Σs

F 7(v ·τ)J− [F 8+F 9,v ·N ]ℓ

−
∫ ℓ

−ℓ

[
σF 4(v ·N )+F 5 ·v−gξF 8−σ ∂1ξ∂1F

8

(1+ |∂1ζ0|2)3/2

]
. (2.5)

Proof. We choose the test functions ϕ=ϑ, ψ=v in Lemma 2.1 to deduce that

k(ϑ,ϕ)H1 =(F 3,ϕ)H0 +

∫ ℓ

−ℓ

F 6ϕ, (2.6)
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and

((v,v))−(q,divAv)H0 +(ξ,v ·N )1,Σ+[v ·N v]2ℓ −gα(ϑ∇AΦ2,v)H0

=(F 1,v)H0 −
∫ ℓ

−ℓ

[σF 4(v ·N )+F 5 ·v]−
∫
Σs

F 7(v ·τ)J− [F 8+F 9,v ·N ]ℓ. (2.7)

Equation (2.6) is exactly (2.4). Then we compute

(ξ,v ·N )1,Σ=(ξ,∂tξ−F 8)1,Σ

=
d

dt

(∫ ℓ

−ℓ

g

2
|ξ|2+ σ

2

|∂1ξ|2

(1+ |∂1ζ0|2)3/2

)
−
∫ ℓ

−ℓ

gξF 8+σ
∂1ξ∂1F

8

(1+ |∂1ζ0|2)3/2
,

then plug this into (2.7) to deduce (2.5).

3. Elliptic estimates
In order to solve the Equation (1.11), we need some elliptic estimates. The corner-

stone of these elliptic estimates is the part near the corner points.

3.1. Analysis for Poisson equations near the corner points. First, we
introduce the notion of cone. Let (r,ρ) be the polar coordinates for R2.

Kω ={x∈R2 : r>0 and ρ∈ (−π/2,−π/2+ω)}

denotes the cones with open angle ω∈ (0,π). The lower and upper boundaries of Kω

are

Γ−={x∈R2 : r>0 and ρ=−π/2} and Γ+={x∈R2 : r>0 and ρ=−π/2+ω}

respectively.
Now, we consider the A-equation. We first give the proof of ϑ through the Poisson

equations 
−k∆Aϑ=G

3 in Kω,

k∇Aϑ ·(Aν)=G5 on Γ+,

ϑ=0 on Γ−,

(3.1)

where the differential operators ∇A and ∆A are defined in the same way as ∇A and
∆A, SA is defined in the same way as SA and ∇Φ2=(A21,A22). Clearly, when A= I2×2,
(3.1) becomes 

−k∆ϑ=G3 in Kω,

k∇ϑ ·ν=G5 on Γ+,

ϑ=0 on Γ−.

(3.2)

Theorem 3.1. Assume that the forcing terms in (3.1) satisfy G3∈W 0
δ (Kω) and

G5∈W 1/2
δ (Γ+). Suppose that ϑ∈H1(Kω) satisfies∫

Kω

k∇Aϑ ·∇Aϕ=

∫
Kω

G3ϕ+

∫
Γ+

G5ϕ,
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for all ϕ∈{ϕ∈H1(Kω) :ϕ|Γ− =0}. Furthermore, assume that ϑ and all the forcing
terms Gi are supported in K̄ω∩B1(0), where B1(0) is a unit disk centered at 0 with
radius 1. Then ∇2ϑ∈W 0

δ (Kω). Moreover,

∥∇2ϑ∥2W 0
δ (Kω)≲∥G3∥2W 0

δ (Kω)+∥G5∥2
W

1/2
δ (Γ+)

. (3.3)

Proof. The key point for proof is the utilization of [10, Theorem 8.2.1], which
gives the condition in terms of eigenvalue of associated operator pencil (see [10] for
the terminology) for solving the corresponding elliptic systems. The assumptions on A
guarantee that the two Poisson equations in (3.1) and (3.2) generate the same operator
pencil. The eigenvalues of operator pencil for (3.2) could be easily derived (for instance,
refer to [10]) as {nπ

ω :n∈Z\{0}}, which are not contained in

{λ∈C : 0≤ℜλ≤1−δ}.

Thus we could use [10, Theorem 8.2.1], and then argue as [11, Theorem 6.4.6] to derive
that ∇2ϑ∈W 0

δ (Kω) satisfying

∥∇2ϑ∥2W 0
δ
≲∥G3∥2W 0

δ
+∥G5∥2

W
1/2
δ

. (3.4)

From the assumption on ϑ and the Poincáre inequality together with Sobolev embedding
theory in [8, Appendix C], we also have

∥ϑ∥2H1(Kω)≲∥G3∥2W 0
δ
+∥G5∥2

W
1/2
δ

. (3.5)

3.2. A-Poisson equation. Now, we consider the Poisson equation
−k∆ϑ=G3 in Ω,

k∇ϑ ·ν=G6 on Σ,

ϑ=0 on Σs,

(3.6)

where ν is the unit outward normal and unit tangent of ∂Ω.
First, we study the weak solution of (3.6).

Definition 3.1. Assume that G3∈W 0
δ (Ω) and G

6∈W 1/2
δ (Σ) for some 0<δ<1. We

say ϑ∈H1(Ω) is a weak solution of (3.6) if∫
Ω

k∇ϑ ·∇ϕ=
∫
Ω

G3ϕ+

∫
Σ

G6ϕ (3.7)

holds for any ϕ∈ 0H
1(Ω). Clearly, from Proposition 2.1, the integrations on the right-

hand side of (3.7) are well-defined.

Now we sketch the proof of existence and uniqueness of weak solutions of elliptic
Equation (3.6). First, (3.7) allows us to use Riesz representation theorem to obtain the
existence of ϑ such that ∥∇ϑ∥20≲∥G3∥2

W 0
δ
+∥G6∥2

W
1/2
δ

. Then the Poincáre inequality

implies ∥ϑ∥21≲∥G3∥2
W 0

δ
+∥G6∥2

W
1/2
δ

.

The next theorem shows that, regularity of weak solution of the Equation (3.6)
could be improved to second-order.
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Theorem 3.2. Assume that G3∈W 0
δ (Ω) and G

6∈W 1/2
δ (Σ) for some 0<δ<1. Then

there exists a unique ϑ solving (3.6) such that ϑ∈W 2
δ (Ω). Moreover,

∥ϑ∥2W 2
δ (Ω)≲∥G3∥2W 0

δ
+∥G6∥2

W
1/2
δ

. (3.8)

Proof. The idea of this proof is very standard. We divided Ω into three parts.
One is away from the corners. Thus, we might use the standard elliptic theory (for
instance, [1, Theorem 10.5]) to obtain the results. The other two parts are near corners.
Then we might use Theorem 3.1 to derive the conclusion. The proof is in a similar way
as that of [8, Theorem 5.6]. So we omit the details.

Suppose that η and A, N , etc. are given. We consider the equation
−k∆Aϑ=G

3 in Ω,

k∇Aϑ ·N =G6 on Σ,

ϑ=0 on Σs.

(3.9)

Theorem 3.3. Let δ∈ (δω,1). Suppose that ∥η∥
W

5/2
δ

<γ0 where γ0<<1 . Assume

that G3∈W 0
δ (Ω) and G

6∈W 1/2
δ (Σ). Then there exists a unique ϑ∈W 2

δ (Ω) solving (3.9).
Moreover,

∥ϑ∥2W 2
δ
≲∥G3∥2W 0

δ
+∥G6∥2

W
1/2
δ

. (3.10)

Proof. We rewrite (3.9) as the perturbation form:
−k∆ϑ=G3−kdivI−A∇Aϑ−kdiv∇I−Aϑ in Ω,

k∇ϑ ·N0=G
6+k∇I−Aϑ ·N +k∇ϑ ·(N0−N ) on Σ,

ϑ=0 on Σs.

(3.11)

We now employ fixed point theory to solve (3.9). Suppose that θ∈W 2
δ (Ω). Then we

define the operator Tη :W
2
δ (Ω)→W 2

δ (Ω) via θ 7→ϑ=Tηθ, where ϑ and θ satisfy
−k∆ϑ=G3−kdivI−A∇Aθ−kdiv∇I−Aθ in Ω,

k∇ϑ ·N0=G
6+k∇I−Aθ ·N +k∇θ ·(N0−N ) on Σ,

ϑ=0 on Σs.

(3.12)

In order to use Theorem 3.2, we need to estimate the right side of (3.12). We first
choose r, s>1 satisfying 2

q +
1
2 =

s
2 to estimate

∥divI−A∇Aθ∥2W 0
δ
+∥div∇I−Aθ∥2W 0

δ

≲∥I−A∥2Lr∥∇A∥2L2/(2−s)∥dδ∇θ∥2Lr +∥I−A∥2L2/(2−s)∥dδ∇θ∥2L2/(1−s)

+∥I−A∥2L∞(1+∥A∥2L∞)∥θ∥2W 2
δ

≲∥η∥2
W

5/2
δ

∥θ∥2W 2
δ
. (3.13)

Similarly, we use the trace theory to see that

∥∇I−Aθ ·N∥2
W

1/2
δ (Σ)

+∥∇θ ·(N0−N )∥2
W

1/2
δ (Σ)

≲∥∇I−Aθ ·(N0−∂1η̄e1)∥2W 1
δ
+∥∇θ ·∂1η̄e1∥2W 1

δ
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≲
(
∥∇(I−A)∥2L2/(2−s)∥N0−∂1η̄e1∥2L∞ +∥I−A∥2L∞∥∇(N0−∂1η̄e1)∥2L2/(2−s)

)
×∥dδ∇θ∥L2/(s−1) +

(
∥I−A∥2L∞∥N0−∂1η̄e1∥2L∞ +∥∂1η̄∥2L∞

)
∥θ∥2W 2

δ

+∥∂1η̄∥2L2/(2−s)∥dδ∇θ∥L2/(s−1)

≲∥η∥2
W

5/2
δ

∥θ∥2W 2
δ
. (3.14)

We now use Theorem 3.2 to (3.12) to obtain that

∥ϑ1−ϑ2∥2W 2
δ
≲∥η∥2

W
5/2
δ

∥θ1−θ2∥2W 2
δ
, (3.15)

for the mapping Tηθj =ϑj , j=1,2. Then we choose γ0 sufficiently small such that

∥ϑ1−ϑ2|2W 2
δ
≤ 1

4
∥θ1−θ2∥2W 2

δ
, (3.16)

which yields Tη is strictly contractive. Thus, we use Banach’s fixed point theory to
deduce that (3.11) has a unique solution ϑ∈W 2

δ .

Finally, we consider the equation
−k∆Aϑ=G

3 in Ω,

k∇Aϑ ·N +ϑ=G6 on Σ,

ϑ=0 on Σs.

(3.17)

Theorem 3.4. Let δ∈ (δω,1). Suppose that ∥η∥
W

5/2
δ

<γ0 where γ0 is the same as

Theorem 3.3. Assume that G3∈W 0
δ (Ω) and G6∈W 1/2

δ (Σ). Then there exists a unique
ϑ∈W 2

δ (Ω) solving (3.17). Moreover,

∥ϑ∥2W 2
δ
≲∥G3∥2W 0

δ
+∥G6∥2

W
1/2
δ

. (3.18)

Proof. For simplicity, we define the trace operator R :W 2
δ (Ω)→W 0

δ (Ω)×
W

1/2
δ (Σ)×W 3/2

δ (Σs) via

Rϑ=(0,0,ϑ|Σs
).

Note that R is compact, since the embedding W
3/2
δ (Σ) ↪→W

1/2
δ (Σ) is compact. So the

operator Tη+R is Fredholm, which means the dimensions of kernel and co-kernel of
Tη+R are both finite. However, for ϑ∈ KerTη+R, we multiply the first equation in
(3.17) by ϑJ , and integrate by parts over Ω to see that

k

∫
Ω

|∇Aϑ|2J+
∫
Σ

|ϑ|2=0, (3.19)

which implies ϑ=0. So Tη+R is injective. Then Fredholm alternative tells us that
Tη+R is also surjective. Hence Tη+R is an isomorphism. Thus (3.17) is uniquely
solvable and the estimate (3.18) holds.

4. A priori estimates
Now, we employ the energy formulation in Theorem 2.1 and elliptic estimates to

derive a priori estimates. The key point is that we could be able to estimate the
interacting terms appearing on the right-hand side of (2.4) and (2.5). So, we first need
to confirm the forcing terms F i in (2.4) and (2.5) in the Appendix.
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4.1. Estimates for interaction. Now, we could estimate the interaction terms
on the right-hand side of (2.4) and (2.5). Thanks to [8, Section 6], some of them have
been done. So, we only need to estimate the rest. And we only give the estimates for the
twice temporally differentiated case. The corresponding estimates for once temporally
differentiated problem and the problem without temporal differentiation are similar and
much easier to handle.

In the remaining sections, we write d=dist(·,N), whereN ={(−ℓ,ζ0(−ℓ)),(ℓ,ζ0(ℓ))}
is the set of corner points of ∂Ω. In the subsequent estimates, the following lemma is
useful. The proof is trivial, so we omit it.

Lemma 4.1. Suppose that d=dist(·,N) and that 0<δ<1. Then d−δ ∈Lr(Ω) for
2<r< 2

δ .

Proposition 4.1. ∫
Ω

F 1 ·ψJ ≲∥ψ∥1(
√
E+E)

√
D

for all ψ∈H1(Ω).

Proof. We first use Hölder inequality, Sobolev embedding theory, and trace theory
to estimate∣∣∣∣∫

Ω

2gα∂tθ∇∂tAΦ2 ·ψJ+2gαθ∇∂tA∂tΦ2 ·ψJ
∣∣∣∣

≲
∫
Ω

|∂tθ|(|∂tη̄|+ |∇∂tη̄|)(1+ |∇η̄|)|ψ|+ |θ|(|∂tη̄|+ |∇∂tη̄|)2ψ

≲∥∂tθ∥L3(∥∂tη̄∥L3 +∥∇∂tη̄∥L3)∥ψ∥L3 +∥∂tθ∥L4(∥∂tη̄∥L4 +∥∇∂tη̄∥L4)∥∇η̄∥L4∥ψ∥L4

+∥θ∥L4(∥∂tη̄∥L2 +∥∇∂tη̄∥L2)∥ψ∥L4

≲∥∂tθ∥1∥∂tη∥3/2(1+∥η∥3/2)∥ψ∥1+∥θ∥1∥∂tη∥23/2∥ψ∥1≲∥ψ∥1(
√
E+E)

√
D. (4.1)

We then use Hölder inequality, usual Sobolev embedding theory, Corollary 2.1, and
trace theory to estimate∣∣∣∣∫

Ω

2gα∂tθ∇A∂tΦ2 ·ψJ
∣∣∣∣≲∥A∥L∞∥∂tθ∥L3∥∇∂tη̄∥L3∥ψ∥L3

≲ (1+∥η∥
W

5/2
δ

)∥∂tθ∥1∥∂tη∥3/2∥ψ∥1≲∥ψ∥1(
√
E+E)

√
D. (4.2)

Similarly,∣∣∣∣∫
Ω

gαθ∇∂2
t AΦ2 ·ψJ+gαθ∇A∂

2
tΦ2 ·ψJ

∣∣∣∣
≲
∫
Ω

|θ|[(|∇∂2t η̄|+ |∂2t η̄|)(1+ |∇η̄|+ |η̄|)+ |∇∂tη̄|2+ |∂tη̄|2]ψ

≲∥θ∥1∥∂2t η∥3/2(1+∥η∥3/2)∥ψ∥1+∥θ∥1∥∂tη∥23/2∥ψ∥1≲∥ψ∥1(
√
E+E)

√
D. (4.3)

Then we use the same method to estimate the convection terms in F 1.∣∣∣∣∫
Ω

∂2t ·∇Au ·ψJ+2∂tu ·∇A∂tu ·ψJ+u ·∇A∂tu ·ψJ
∣∣∣∣

≲∥A∥L∞

∫
Ω

(|∂2t u||∇u|+ |∂tu||∇∂tu|+ |u||∇∂2t u|)|ψ|
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≲∥A∥L∞
(
∥∂2t u∥L4∥∇u∥L2 +∥∂tu∥L4∥∇∂tu∥L2 +∥u∥L4∥∇∂2t u∥L2

)
∥ψ∥L4

≲ (1+∥η∥
W

5/2
δ

)(∥∂2t u∥1∥u∥1+∥∂tu∥21)∥ψ∥1≲∥ψ∥1(
√
E+E)

√
D. (4.4)

We now turn to estimate∣∣∣∣∫
Ω

2(∂tu ·∇∂tA)u ·ψJ+2(u ·∇∂tA)∂tu ·ψJ
∣∣∣∣

≲
∫
Ω

(|∂tu||∇u|+ |u||∇∂tu|)(|∂tη̄|+ |∇∂tη̄|)|ψ|

≲∥∂tu∥1∥u∥1∥∂tη∥3/2∥ψ∥1≲∥ψ∥1E
√
D, (4.5)

and finally we estimate∣∣∣∣∫
Ω

(u ·∇∂2
t A)u ·ψJ

∣∣∣∣≲∫
Ω

|u|(|∇∂2t η̄|+ |∂2t η̄|+ |∇∂tη̄|2+ |∂tη̄|2)|∇u||ψ|

≲∥u∥21(∥∂2t η∥3/2+∥∂tη∥23/2)∥ψ∥1≲∥ψ∥1E
√
D. (4.6)

Then combining all the above estimates together with [8, Proposition 6.2] completes the
proof.

Proposition 4.2. ∫
Ω

F 3ϕJ ≲∥ϕ∥1(
√
E+E)

√
D

for all ϕ∈H1.

Proof. We first estimate∣∣∣∣∫
Ω

(2div∂tA∇A∂tθ)ϕJ

∣∣∣∣≲∫
Ω

|∂t∇η̄||∇∂2t θ||ϕ||∇∂tη̄||∇2η̄||∇∂tθ||ϕ|

+

∫
Ω

|∇∂tη̄||∇η̄||∇2∂tθ||ϕ|

:= I+II.

For I, we choose 2<r< 2
δ , and q>1 such that 2

q +
1
r =

1
2 . Then we employ Hölder

inequality, Lemma 4.1, Propositions 2.1, 2.2 for the weighted Sobolev inequality, usual
Sobolev embedding inequality and usual trace theory to deduce that

I≤∥∇∂tη̄∥Lq∥d−δ∥Lr∥dδ∇2∂tθ∥L2∥ϕ∥Lq +∥∇∂tη̄∥Lp∥∇2η̄∥L2∥∇∂tθ∥Lr∥ϕ∥Lp

≲∥∂tη∥3/2∥∂tθ∥W 2
δ
∥ϕ∥1+∥∂tη∥3/2∥η∥3/2∥∂tθ∥W 2

δ
∥ϕ∥1≲∥ϕ∥1(

√
E+E)

√
D.

(4.7)

For II, we choose 2<r< 2
δ , and p>1 such that 3

p +
1
r =

1
2 . Then we employ Hölder

inequality, Lemma 4.1, Sobolev embedding inequality and usual trace theory to deduce
that

II≤∥∇∂tη̄∥Lp∥∇η̄∥Lp∥d−δ∥Lr∥dδ∇2∂tθ∥L2∥ϕ∥Lp

≲∥∂tη∥3/2∥η∥3/2∥∂tθ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D.

(4.8)

Then we could use the same method to estimate the other terms as follows. In the
following three estimates, we choose 2<r< 2

δ , p,q>1 such that 1
p +

1
r =

1
2 and 2

q +
1
r =

1
2 .∣∣∣∣∫

Ω

(divA∇∂tA∂tθ)ϕJ

∣∣∣∣
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≲
∫
Ω

|∇2η̄||∇∂tθ||ϕ|+ |∇∂tη̄||∇2∂tθ||ϕ|

≲∥∇2∂tη̄|∥L2∥∇∂tθ∥Lr∥ϕ∥Lp +∥∇∂tη̄∥Lq∥dδ∥Lr∥dδ∇2∂tθ∥L2∥ϕ∥Lq

≲∥∂tη∥3/2∥θ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D. (4.9)

We now turn to the term∣∣∣∣∫
Ω

(div∂2
t A∇Aθ)ϕJ

∣∣∣∣≲∫
Ω

|∇∂2t η̄||∇2θ||ϕ|+ |∇∂2t η̄||∇2η̄||∇θ|

≲∥∇∂2t η∥Lq∥d−δ∥Lr∥dδ∇2θ∥L2∥ϕ∥Lq +∥∇∂2t η̄∥Lq∥∇2η̄∥L2∥∇θ∥Lr∥ϕ∥Lq

≲∥∂2t θ∥3/2∥θ∥W 2
δ
∥ϕ∥1+∥∂tη∥23/2∥θ∥W 2

δ
∥ϕ∥1≲∥ϕ∥1(

√
E+E)

√
D. (4.10)

With the same tools, we have∣∣∣∣∫
Ω

(divA∇∂2
t Aθ)ϕJ

∣∣∣∣≲∫
Ω

|∇∂2t η̄||∇2θ||ϕ|+ |∇2∂2t η̄|

≲∥∇∂2t η̄∥Lq∥d−δ∥Lr∥dδ∇2θ∥L2∥ϕ∥Lq +∥∇2∂2t η̄|L2∥∇θ∥Lr∥ϕ∥Lp

≲∥∂2t η∥3/2∥θ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D. (4.11)

Now, we choose 2<r< 2
δ , and p,q>1 such that 2

p +
1
r =

1
2 and 3

q +
1
r =

1
2 to estimate∣∣∣∣∫

Ω

(div∂tA∇∂tAθ)

∣∣∣∣≲∫
Ω

|∇∂tη̄|2|∇2θ||ϕ|+ |∇∂tη̄||∇2∂tη̄||∇θ||ϕ|

≲∥∇∂tη̄∥2Lq∥d−δ∥Lr∥dδ∇2θ∥L2∥ϕ∥Lq +∥∇∂tη̄∥Lp∥∇2∂tη̄∥L2∥∇θ∥Lr∥ϕ∥Lp

≲∥∂tη∥23/2∥θ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1E

√
D. (4.12)

Proposition 4.3. ∫ ℓ

−ℓ

F 6ϕ≲∥ϕ∥1(
√
E+E)

√
D

for all ϕ∈H1(Ω).

Proof. We choose q,p,r such that 1<q< 2
1+δ ,

2
p +

1
q =1 and 3

r +
1
q =1. First, we

employ the weighted Sobolev inequality in Proposition 2.1, usual Sobolev embedding
theory and trace theory, Hölder inequality to estimate∣∣∣∣∣

∫ ℓ

−ℓ

(∇∂tA∂tθ ·N )ϕ

∣∣∣∣∣≲∥∂tA∥Lp(Σ)∥∇∂tθ∥Lq(Σ)∥N∥L∞∥ϕ∥Lp(Σ)

≲∥∂tη̄∥H3/2(Σ)∥∂tθ∥W 3/2
δ (Σ)

∥ϕ∥H1/2(Σ)

≲∥∂tη∥3/2∥∂tθ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D. (4.13)

The same tools allow us to estimate∣∣∣∣∣
∫ ℓ

−ℓ

(∇∂2
t Aθ ·N )ϕ

∣∣∣∣∣≲∥∂2tA∥Lp(Σ)∥∇θ∥Lq(Σ)∥N∥L∞∥ϕ∥Lp(Σ)

≲∥∂2t η∥3/2∥θ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D. (4.14)
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Then it is much easier to estimate∣∣∣∣∣
∫ ℓ

−ℓ

(∇∂tAθ ·∂tN )ϕ

∣∣∣∣∣≲∥∂tA∥Lr(Σ)∥∇θ∥Lq(Σ)∥∂tN∥Lr(Σ)∥ϕ∥Lr(Σ)

≲∥∂tη∥23/2∥θ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1E

√
D. (4.15)

In the following, we have∣∣∣∣∣
∫ ℓ

−ℓ

(∇A∂tθ ·∂tN )ϕ

∣∣∣∣∣≲∥A∥L∞∥∇∂tθ∥Lq(Σ)∥∂t∂1η∥Lp(Σ)∥ϕ∥Lp(Σ)

≲∥∂tη∥3/2∥∂tθ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D. (4.16)

The term of two time derivatives on the normal direction is estimated by∣∣∣∣∣
∫ ℓ

−ℓ

(∇Aθ ·∂2tN )ϕ

∣∣∣∣∣≲∥A∥L∞∥∇∂2t θ∥Lp(Σ)∥∂1η∥Lq(Σ)∥ϕ∥Lp(Σ)

≲∥∂2t η∥3/2∥θ∥W 2
δ
∥ϕ∥1≲∥ϕ∥1

√
E
√
D. (4.17)

4.2. Estimates for elliptic terms. We now estimate for the right-hand side
of the elliptic estimate in Theorem 3.3. We only give the estimates for the time differ-
entiated case. The case without temporal differentiation, may be handled in the same
way and is much easier.

Proposition 4.4.

∥F 1∥2W 0
δ
≲ (E+E2)D.

Proof. First, we use Hölder inequality and the usual Sobolev inequality to derive
that

∥gαθ∇∂tAΦ2∥2W 0
δ
+∥gαθ∇A∂tΦ2∥2W 0

δ

≲∥gα∇∂tAΦ2∥2L2 +∥gαθ∇A∂tΦ2∥2L2

≲∥θ∥2L4∥∂tA∥2L4∥∇Φ2∥2L∞ +∥A∥2L∞∥θ∥2L4∥∇∂tΦ2∥2L4

≲∥θ∥21∥∂tη∥23/2≲ED.

Then we choose q,p such that 2<q< 2
δ and 2

p +
1
q =

1
2 . The Hölder inequality, Proposi-

tion 2.1 and Corollary 2.1 for weighted Sobolev inequality and usual Sobolev inequality
and trace theory reveal that

∥∂tu ·∇Au∥2W 0
δ
+∥u ·∇A∂tu∥2W 0

δ
+∥u ·∇∂tAu∥2W 0

δ

≲∥A∥2L∞∥∂tu∥2L∞∥∇u∥2L2 +∥A∥2L∞∥u∥2L∞∥∇∂tu∥2L2 +∥u∥2Lp∥∂tA∥2Lp∥∇u∥2Lq

≲∥∂tu∥2s∥u∥21+∥u∥2s∥∂tu∥21+∥u∥21∥∂tη∥23/2∥u∥
2
W 2

δ

≲∥∂tu∥2W 2
δ
∥u∥21+∥u∥2W 2

δ
∥∂tu∥21+∥u∥21∥∂tη∥23/2∥u∥

2
W 2

δ
≲ (E+E2)D.

Then combining the estimates in [8, Proposition 7.1], we have the conclusion.

Proposition 4.5.

∥F 3∥2W 2
δ
≲ (E+E2)D.
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Proof. First, for 1<s<min{2, πω}, we choose p such that 2
p +

2−s
2 = 1

2 . Then
we employ Hölder inequality, Proposition 2.1 and Corollary 2.1 for weighted Sobolev
inequality and usual Sobolev inequality and trace theory to deduce that

∥div∂tA∇Aθ∥2W 0
δ
≲∥dδ∇2θ∥2L2∥A∥2L∞∥∂tA∥2L∞ +∥∂tA∥2Lp∥∇A∥2

L
2

2−s
∥∇θ∥2Lp

≲∥∂tη∥2s+1/2∥θ∥
2
W 2

δ
+∥∂tη∥23/2∥η∥

2
s+1/2∥θ∥

2
W 2

δ
≲ (E+E2)D.

Similarly,

∥divA∇∂tAθ∥2W 0
δ
≲∥A∥2L∞(∥∂tA∥2L∞∥dδ∇2θ∥2L2 +∥∇∂tA∥2

L
2

2−s
∥dδ∇θ∥

L
2

s−1
)

≲∥∂tη∥2s+1/2∥θ∥
2
W 2

δ
≲ED.

Then we choose q,r such that 2<q< 2
δ and 2

r +
1
q =

1
2 . The Hölder inequality, Proposi-

tion 2.1 and Corollary 2.1 for weighted Sobolev inequality and usual Sobolev inequality
and trace theory reveal that

∥∂tu ·∇Aθ∥2W 0
δ
+∥u ·∇A∂tθ∥2W 0

δ
+∥u ·∇∂tAθ∥2W 0

δ

≲∥∂tu∥2W 2
δ
∥θ∥21+∥u∥2W 2

δ
∥∂tθ∥21+∥u∥21∥∂tη∥23/2∥θ∥

2
W 2

δ
≲ (E+E2)D.

Proposition 4.6.

∥F 6∥2
W

1/2
δ

≲ (E+E2)D.

Proof. For 1<s<min{2, πω}, we employ Proposition 2.3, Corollary 2.1 and trace
theory to derive that

∥∇∂tAθ ·N∥2
W

1/2
δ (Σ)

≲∥∇θ∥2
W

1/2
δ (Σ)

∥∂tA∥s− 1
2
∥N∥s− 1

2

≲∥θ∥2W 2
δ (Ω)∥∂tη∥

2

W
5/2
δ

(1+∥η∥2
W

5/2
δ

)≲D(E2+E).

Similarly,

∥∇Aθ ·∂tN∥2
W

1/2
δ (Σ)

≲∥∇θ∥2
W

1/2
δ (Σ)

∥A∥s− 1
2
∥∂1∂tη∥s− 1

2

≲∥θ∥2W 2
δ (Ω)∥η∥

2

W
5/2
δ

(1+∥∂tη∥2W 5/2
δ

)≲D(E2+E).

Finally, we present the following theorem.

Theorem 4.1. Let ω∈ (0,π) be the angle generated by ζ0 at the corners, δω ∈
max{0,2− π

ω} and δ∈ (δω,1). Suppose that ∥η∥
W

5/2
δ

<γ0, where γ0 is given as Theo-

rem 3.3. Then we have

1∑
j=0

∥∂jt u∥2W 2
δ
+∥∂jt p∥2W̊ 1

δ

+∥∂jt θ∥2W 2
δ
+∥∂jt η∥2W 5/2

δ

≲Dq+D(E2+E), (4.18)

where, the lower order of dissipation is Dq=
∑2

j=0

(
∥∂jt u∥21+∥∂jt u∥2H0(Σs)

+[∂jt u ·
N ]2ℓ

)
+
∑2

j=0

(
∥∂jt p∥20+∥∂jt θ∥21+∥∂jt η∥23/2

)
+∥∂3t η∥21/2. This theorem is based on Propo-

sitions 4.4–4.6, and is proved in a similar way as in [8]. So we omit the details here.
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4.3. A priori estimates. Now we present a priori estimates, which are the
most important part in this section. First, we will develop a decay estimate for some
lower-order terms. Then we will present a higher-order bound for energy and dissipation.

Theorem 4.2. There exists a universal constant γ0>0 such that if

sup
0≤t≤T

E(t)+
∫ T

0

D(t)dt≤γ0,

then there exists a universal constant λ>0 such that

sup
0≤t≤T

eλt
(
Eq(t)+∥u(t)∥21+∥u(t) ·τ∥2L2(Σs)

+[u(t) ·N (t)]2ℓ +∥p(t)∥20+∥θ(t)∥21
)
≲Eq(0).

(4.19)
Then we present a higher-order bound for energy and dissipation.

Theorem 4.3. For δ being the same as in Theorem 3.3, there exists a γ0 such that if

sup
0≤t≤T

E(t)+
∫ T

0

D(t)dt≤γ0,

then

sup
0≤t≤T

E(t)+
∫ T

0

D(t)dt≲E(0). (4.20)

Theorems 4.2 and 4.3 are proved in the similar way as in [8], based on Propositions
4.1– 4.6 and Theorem 4.1. So we omit the details here.

5. Linear problem

5.1. Construction of initial data. Before we study the well-posedness of (1.11),

we first consider the initial data and the initial energy E(0). Suppose that η0∈W 5/2
δ (Σ),

∂tη(0)∈H3/2(Σ), ∂2t η(0)∈H1(Σ), and that

E0(η) :=∥η0∥2W 5/2
δ (Σ)

+∥∂tη(0)∥2H3/2(Σ)+

2∑
j=0

∥∂jt η(0)∥2H1(Σ)≤γ0

where γ0>0 is small enough to satisfy the conditions in Theorem 3.3. We now construct
the initial data u(t=0)=u0, p(t=0)=p0 and θ(t=0)=θ0. When t=0, we consider the
elliptic equation

divA(0)SA(0)(p0,u0)−gαθ0∇A(0)Φ2(0)=−u0∇A(0)u0 in Ω,

divA(0)u0=0 in Ω,

−kdivA(0)∇A(0)θ0=−u0∇A(0)θ0 in Ω,

u0 ·N (0)=∂tη(0), µDA(0)u0N (0) ·T (0)=0 on Σ,

u0 ·ν=0, µDA(0)u0ν ·τ−βu0 ·τ =0 on Σs,

k∇A(0)θ0 ·N (0)=0 on Σ,

θ0=0 on Σs.

(5.1)
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First, we consider the linear equation

divA(0)SA(0)(p
(0)
0 ,u

(0)
0 )−gαθ(0)0 ∇A(0)Φ2(0)=0 in Ω,

divA(0)u
(0)
0 =0 in Ω,

−kdivA(0)∇A(0)θ
(0)
0 =0 in Ω,

u
(0)
0 ·N (0)=∂tη(0), µDA(0)u

(0)
0 N (0) ·T (0)=0, k∇A(0)θ

(0)
0 ·N (0)=0 on Σ,

u
(0)
0 ·ν=0, µDA(0)u

(0)
0 ν ·τ−βu(0)0 ·τ =0, θ

(0)
0 =0 on Σs.

(5.2)
We employ Theorem 3.3 for Equation (5.2) to deduce that there exists a unique

(u
(0)
0 ,p

(0)
0 ,θ

(0)
0 )∈W 2

δ ×W̊ 1
δ ×W 2

δ , and

∥u(0)0 ∥2W 2
δ
+∥p(0)0 ∥2

W̊ 1
δ

+∥θ(0)0 ∥2W 2
δ
≲∥∂tη(0)∥2W 3/2

δ

≲∥∂tη(0)∥23/2. (5.3)

Actually, θ
(0)
0 =0. For simplicity, we rewrite the linear Equation (5.2) as

L(u
(0)
0 ,p

(0)
0 ,θ

(0)
0 )=(0,0,0,∂tη(0),0,0,0,0,0),

with the linear operator L :S→N defined as

L(u,p,θ)=(divA(0)SA(0)(p,u)−gαθ∇A(0)Φ2(0), divA(0)u, −k∆A(0)θ,

u ·N (0), µDA(0)uN (0) ·T (0), u ·ν, µDA(0)uν ·τ−βu ·τ,
k∇A(0)θ ·N (0), θ|Σs

),

where the space

S=W 2
δ (Ω)×W̊ 1

δ (Ω)×W 2
δ (Ω)

and

N=W 0
δ (Ω)×W 1

δ (Ω)×W 0
δ (Ω)×W

3/2
δ (Σ)×W 1/2

δ (Σ)×W 3/2
δ (Σs)×W 1/2

δ (Σs)

×W 1/2
δ (Σ)×W 3/2

δ (Σs).

Then we define the nonlinear operator N :S→N as

N(u,p,θ)=(u ·∇A(0)u,0,u ·∇A(0)θ,0,0,0,0,0,0).

Then nonlinear Equation (5.1) might be rewritten as

L(u0,p0,θ0)+N(u0,p0,θ0)=(0,0,0,∂tη(0),0,0,0,0,0)=L(u
(0)
0 ,p

(0)
0 ,θ

(0)
0 ).

From the solvable equation of (5.2), L has a bounded inverse L−1. Thus

(u0,p0,θ0)=(u
(0)
0 ,p

(0)
0 ,θ

(0)
0 )−L−1N(u0,p0,θ0).

Since N(0,0,0)=0 and ∥N(u,p,θ)−N(v,q,ϑ)∥≲ (∥u∥W 2
δ
+∥v∥W 2

δ
+∥θ∥W 2

δ
)(∥u−

v∥W 2
δ
+∥θ−ϑ∥W 2

δ
), we then could use a standard argument (for instance, see [15, Propo-

sition 1.38]) to deduce the existence and uniqueness of (u0,p0,θ0)∈W 2
δ ×W̊ 1

δ ×W 2
δ , and

∥u0∥2W 2
δ
+∥p0∥2W̊ 1

δ

+∥θ0∥2W 2
δ
≲∥∂tη(0)∥2W 3/2

δ

≲∥∂tη(0)∥23/2. (5.4)



766 CONTACT LINES IN 2D BÉNARD CONVECTION

Clearly, from the embedding W 2
δ (Ω) ↪→H1(Ω) and the boundary condition, u0∈V(0).

Then we construct ∂tu(0) and ∂tp(0). In order to preserve the divergence-free
condition, we construct Dtu(0) instead of ∂tu(0), where Dtu is defined via

Dtu=∂tu−(∂t(K∇Φ))(K∇Φ)u. (5.5)

The advantage of Dt is that it preserves the divA free condition. Now we temporally
differentiate the Equation (1.11), then take t=0,

divA(0)SA(0)(∂tp(0),Dtu(0))−gα∂tθ(0)∇A(0)Φ2(0)+(Dtu(0)) ·∇A(0)u0

+u0 ·∇A(0)(Dtu(0))= F̃ (0) in Ω,

divA(0)Dtu(0)=0 in Ω,

−k∆A(0)∂tθ(0)+(Dtu(0)) ·∇A(0)θ0+u0 ·∇A(0)∂tθ(0)= F̃
3(0) in Ω,

SA(0)(∂tp(0),Dtu(0))N (0)=g∂tη(0)N (0)−σ∂1
(

∂1∂tη(0)

(1+ |∂1ζ0|)3/2

)
N (0)

+∂tF
4(0)N (0)+ F̃ 4(0) on Σ,

(SA(0)(∂tp(0),Dtu(0))ν−βDtu(0)) ·τ = F̃ 5, Dtu(0) ·ν=0, ∂tθ(0)=0 on Σs,

Dtu(0) ·N (0)=∂2t η(0), k∇A(0)∂tθ(0) ·N (0)= F̃ 6 on Σ,

κ∂2t η(±ℓ,0)+κ∂tŴ (∂tη(±ℓ))(0)=∓σ
(

∂1∂tη(0)

(1+ |ζ0|2)3/2
+∂tF

3(0)

)
(±ℓ),

(5.6)
where

F̃ 1(0)=−div∂tA(0)SA(0)(p0,u0)+µdivA(0)D∂tA(0)u0+µdivA(0)DA(0)(R(0)u0)

−gαθ0(∇∂tA(0)Φ2(0)+∇A(0)∂tΦ2(0))−(R(0)u0) ·∇A(0)u0−u0 ·∇∂tA(0)u0,

F̃ 3(0)=kdiv∂tA(0)∇A(0)θ0+kdivA(0)∇∂tA(0)θ0−(R(0)u0) ·∇A(0)θ0−u0 ·∇∂tA(0)θ0

∂tF
4(0)=∂zR(∂1ζ0,∂1η0)∂1∂tη(0),

F̃ 4(0)=µDA(0)(R(0)u0)N (0)+µD∂tA(0)u0N (0)

+

[
gη0−σ∂1

(
∂1η0

(+|∂1ζ0|2)3/2
+R(∂1ζ0,∂1η0)

)]
∂tN (0),

F̃ 5(0)=µDA(0)(R(0)u0)ν ·τ+µD∂tA(0)u0ν ·τ+βR(0)u0 ·τ,

F̃ 6(0)=−k∇∂tA(0)θ0 ·N (0)−k∇A(0)θ0 ·∂tN (0).

Then the pressureless weak formulation could be rewritten, by utilizing the last
equation of (5.6), as

B[(Dtu(0),∂tθ(0)),(w,ϕ)]=L[(w,ϕ)], (5.7)

where w∈V(0) and ϕ∈H1(0), and

B[(Dtu(0),∂tθ(0)),(w,ϕ)]

:=((Dtu(0),w))+(Dtu(0) ·N (0),w ·N (0))1,Σ+k

∫
Ω

∇A(0)∂tθ
(0)(0) ·∇A(0)ϕJ(0)

+

∫
Ω

[−gα∂tθ(0)∇A(0)Φ2(0)+(Dtu(0)) ·∇A(0)u0+u0 ·∇A(0)(Dtu(0))] ·wJ(0)
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+

∫
Ω

[(Dtu(0)) ·∇A(0)θ0+u0 ·∇A(0)∂tθ(0)]ϕJ(0), (5.8)

and

L[(w,ϕ)] :=(∂2t η(0),w ·N (0))1,Σ−(∂tη(0),w ·N (0))1,Σ−k
∫ ℓ

−ℓ

∇A(0)θ0 ·∂tN (0)ϕ

−
∫ ℓ

−ℓ

[
gη0−σ∂1

(
∂1η0

(+|∂1ζ0|2)3/2
+R(∂1ζ0,∂1η0)

)]
∂tN (0) ·w

−
∫ ℓ

−ℓ

∂zR(∂1ζ0,∂1η0)∂1∂tη(0)∂1(w ·N (0))−
∫
Σs

β(R(0)u0 ·τ)(w ·τ)J(0)

−
∫
Ω

(
div∂tA(0)SA(0)(p0,u0) ·w+

µ

2
D∂tA(0)u0 :DA(0)w

+
µ

2
DA(0)(R(0)u0) :DA(0)w

)
J(0)+k

∫
Ω

div∂tA(0)∇A(0)θ0ϕ

− [∂2t η(0),w ·N (0)]ℓ− [∂tŴ (∂tη)(0),w ·N (0)]ℓJ(0). (5.9)

If we denote (Dtu(0),∂tθ(0)) be a new unknown, and (w,ϕ) be a new test function, then
B[·, ·] : (V(0)×H1(0))×(V(0)×H1(0))→R is a bilinear mapping satisfying

B[(v,ϑ),(w,ϕ)]≲ (∥v∥W +∥ϑ∥H1)(∥w∥W +∥ϕ∥H1),

and L[·] :V(0)×H1(0)→R is a bounded linear functional on V(0)×H1(0). Now we show
the bilinear form B[·, ·] is coercive. We utilize Hölder inequality and Sobolev inequalities
to deduce that

k

∫
Ω

∇A(0)∂tθ(0) ·∇A(0)∂tθ(0)J(0)

+

∫
Ω

[(Dtu(0)) ·∇A(0)θ0+u0 ·∇A(0)∂tθ(0)]∂tθ(0)J(0)

≳∥∂tθ(0)∥2H1 −∥Dtu(0)∥L4∥∇θ0∥L2∥∂tθ(0)∥L4 +∥u0∥L4∥∇∂tθ(0)∥L2∥∂tθ(0)∥L4

≳∥∂tθ(0)∥2H1 −∥Dtu(0)∥1∥θ0∥W 2
δ
∥∂tθ0∥1−∥u0∥W 2

δ
∥∂tθ(0)∥21. (5.10)

Then Cauchy-Schwarz inequality, (5.4) and smallness of γ0 imply

k
∫
Ω
∇A(0)∂tθ(0) ·∇A(0)∂tθ(0)J(0)+

∫
Ω
[(Dtu(0)) ·∇A(0)θ0+u0 ·∇A(0)∂tθ(0)]∂tθ(0)J(0)

≳∥∂tθ(0)∥2H1 −∥∂tη(0)∥23/2∥Dtu(0)∥21. (5.11)

Similarly,

((Dtu(0),Dtu(0)))+(Dtu(0) ·N (0),Dtu(0) ·N (0))1,Σ

+

∫
Ω

[−gα∂tθ(0)∇A(0)Φ2(0)+(Dtu(0)) ·∇A(0)u0+u0 ·∇A(0)(Dtu(0))] ·Dtu(0)J(0)

≳∥Dtu(0)∥2W −∥∂tθ(0)∥21. (5.12)

Then we plug (5.11) into (5.12) to deduce that

B[(Dtu(0),∂tθ(0)),(Dtu(0),∂tθ(0))]≳∥Dtu(0)∥2W . (5.13)
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Similarly, plugging (5.12) into (5.11) reveals

B[(Dtu(0),∂tθ(0)),(Dtu(0),∂tθ(0))]≳∥∂tθ(0)∥2H1 . (5.14)

Combining (5.13) and (5.14) imply

B[(Dtu(0),∂tθ(0)),(Dtu(0),∂tθ(0))]≳∥Dtu(0)∥2W +∥∂tθ(0)∥2H1 . (5.15)

Thus the bilinear form B[·,·] is coercive. Then Lax-Millgram theorem guarantees that
there exists a unique pair (Dtu(0),∂tθ(0))∈V(0)×H1(0), such that

∥Dtu(0)∥21+∥∂tθ(0)∥21≲∥η0∥2W 5/2
δ

+∥∂tη(0)∥23/2+∥∂2t η(0)∥21. (5.16)

Now from [8, Theorem 4.6], we may recover ∂tp(0)∈ H̊0(Ω) such that

∥∂tp(0)∥20≲∥η0∥2W 5/2
δ

+∥∂tη(0)∥23/2+∥∂2t η(0)∥21. (5.17)

In the construction of initial data above, η0, ∂tη(0), and ∂
2
t η(0) need to satisfy some

compatibility conditions. At the corner points x1=±ℓ,

κ∂tη(0)+κŴ (∂tη(0))=∓σ
(

∂1η0
(1+ |∂1ζ0|2)3/2

+R(∂1ζ0,∂1η0)

)
(5.18)

and

κ∂2t η(0)+κŴ
′(∂tη(0))∂

2
t η(0)=∓σ

(
∂1∂tη(0)

(1+ |∂1ζ0|2)3/2
+∂zR(∂1ζ0,∂1η0)∂1∂tη(0)

)
.

(5.19)

5.2. Linear problem for Poisson system. Suppose that η is given and that
A, J , N , etc. are determined in terms of η. Before turning to an analysis of the linear
problem, we define various quantities in terms of η:

D(η) :=

1∑
j=0

∥∂jt η∥2L2W
5/2
δ

+

2∑
j=0

∥∂jt η∥2L2H3/2 +∥∂3t η∥2L2W
1/2
δ

+

3∑
j=1

∥[∂jt η]ℓ∥2L2([0,T ]),

E(η) :=∥η∥2
L∞W

5/2
δ

+∥∂tη∥2L∞H3/2 +

2∑
j=0

∥∂jt η∥2L∞H1 , K(η) :=D(η)+E(η),

E0=E0(η) :=∥η0∥2W 5/2
δ

+∥∂tη(0)∥2H3/2 +

2∑
j=0

∥∂jt η(0)∥2H1 . (5.20)

Throughout this section, we always assume that K(η)≤γ0 and γ0>0 is sufficiently
small.

For the purpose of constructing solutions to the nonlinear system, we need to con-
sider the following modified linear problem

−k∆Aθ=F
3 in Ω,

k∇Aθ ·N +θ=F 6 on Σ,

θ=0 on Σs.

(5.21)

To analyze (5.21), we need to consider two notions of solution: weak and strong.
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Definition 5.1. Suppose that F 3+F 6∈ (H1
T )

∗. θ is called a weak solution of (5.21),
provided that θ∈L2([0,T ];0H

1(Ω)) and satisfies

k

∫ T

0

(∇Aθ,∇Aϕ)H0 =

∫ T

0

(F 3,ϕ)H0 +

∫ T

0

∫ ℓ

−ℓ

(F 6−θ)ϕ (5.22)

for each ϕ∈H1
T .

In the following, we will see that weak solutions will arise as a byproduct of the
construction of strong solutions to (5.21). Hence, we now ignore the existence of weak
solutions and record a uniqueness result based on some integral equalities and bounds
satisfied by weak solutions.

Proposition 5.1. Weak solutions to (5.21) are unique.

Proof. If θ1 and θ2 are both weak solutions to (5.21), then θ=θ1−θ2 is a weak
solution of (5.21) with F 3=F 6=0. Using the test function θχ[0,t]∈H1

T , where χ[0,t] is
a temporal indicator function, we have that∫ t

0

∥θ∥2H1 +

∫ t

0

∥θ∥2H0(Σ)=0, (5.23)

which implies θ=0.

We now give our definition of strong solutions.

Definition 5.2. Suppose that the forcing functions satisfy

F 3∈L2([0,T ];W
3/2
δ (Ω)), F 6∈L2([0,T ];W

1/2
δ (Σ)),

∂t(F
3+F 6)∈L2([0,T ];(H1)∗).

(5.24)

If there exists a θ satisfying (5.21) in the strong sense of

θ∈L2([0,T ];W 2
δ (Ω)), ∂jt θ∈L2([0,T ];0H

1(Ω)), (5.25)

for j=0,1, we call it a strong solution.

The proof of the following lemma is in the similar way as in [14].

Lemma 5.1. Suppose that the right-hand side of the following are finite. Then
θ∈C0([0,T ];0H

1(Ω)) and u∈C0([0,T ];0H
1(Ω)), satisfying

∥θ∥2L∞H1 ≲∥θ0∥2W 2
δ
+∥θ∥2L2H1 +∥∂tθ∥2L2H1 .

Now we state our main theorem for the strong solutions.

Theorem 5.1. Suppose that the forcing terms F 3 and F 6 satisfy the condition (5.24),
that the initial data are the same as in Section 5.1. Suppose that K(η)≤γ0 is smaller
than γ0 in Theorem 3.3. Then there exists a unique strong solution θ solving (5.21)
such that θ satisfies (5.25). The solution obeys the estimate

1∑
j=0

∥∂jt θ∥2L2H1 +∥θ∥L∞H1 +∥θ∥2L2W 2
δ

≲E0+∥(F 3+F 6)(0)∥2(H1)∗ +E(η)
(
∥F 3∥2L2W 0

δ
+∥F 6∥2

L2W
1/2
δ

)
+(1+E(η))(∥∂t(F 3+F 6)∥2(H1

T )∗). (5.26)
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Moreover, ∂tθ satisfies
−k∆A∂tθ=∂tF

3+G3 in Ω,

k∇A∂tθ ·N +∂tθ=∂tF
6+G6 on Σ,

∂tθ=0 on Σs,

(5.27)

in the weak sense of (5.22), where G3 is defined by

G3=kdiv∂tA(−R∇Aθ+∇∂tAθ), (5.28)

and G6 by

G6=−k∇∂tAθ ·N −k∇Aθ ·∂tN . (5.29)

More precisely, (5.27) holds in the weak sense of∫
Ω

∇A∂tθ ·∇AϕJ =

∫
Ω

[∂tF
3+F 3∂tJK]ϕJ+

∫
Σ

(∂tF
6−∂jt θ)ϕ

−
∫
Ω

[∇∂tAθ ·∇Aϕ+∇Aθ ·∇∂tAϕ+∇Aθ ·∇∂tAϕ∂tJK]J. (5.30)

Proof. We only need to prove the results concerning the temperature θ. Then due
to the proof of [19, Theorem 4.13], we may make some refinement to obtain our results
for u here. Since the equations for θ are a Poisson system, we expect to use the elliptic
analysis to obtain the existence and uniqueness of θ for a.e. t∈ [0,T ]. Nevertheless
for solving the equations for u, we are necessarily to gain the control of one temporal
regularity for θ. That is the reason why we still use the Galerkin method.

In order to utilize the Galerkin method (for instance, see [4]), we must first construct
a countable basis of H2(Ω)∩H1(t) for each t∈ [0,T ]. For each t∈ [0,T ], the space
H2(Ω)∩H1(t) is separable, so the existence of a countable basis is not an issue.

Since H2(Ω)∩0H
1(Ω) is separable, it possess a countable basis {wj}∞j=1. Note that

this basis is not time–dependent. Since H2(Ω)∩H1(t) is time-dependent, we define
ϕj(t)=K(t)wj . Then it is easy to show that {ϕj(t)}∞j=1 is a countable basis of H2(Ω)∩
H1(t) for each t∈ [0,T ]. Moreover, we could express ∂tϕ

j(t) in terms of ϕj(t) as

∂tϕ
j(t)=∂tK(t)wj =∂tK(t)J(t)K(t)wj =∂tK(t)J(t)ϕj(t).

For any integer m≥1, we define the finite dimensional space

H1
m=span{ϕ1(t),ϕ2(t),. ..,ϕm(t)}⊆H2(Ω)∩H1(t). (5.31)

Then we define an approximate solution

θm(t) :=dmj (t)ϕj(t), with dmj : [0,T ]→R for j=1,. ..,m, (5.32)

where as usual we use the Einstein convention of summation of the repeated index j.
We want to choose the coefficients dmj ∈C0([0,T ]), so that

(∇Aθ
m,∇Aϕ)H0 =(F 3,ϕ)H0 +

∫
Σ

F 6ϕ (5.33)

for each ϕ∈H1
m(t). Then we plug (5.32) into (5.33) to deduce the equation for dmj ,

dmj
[
(∇Aϕ

j ,∇Aϕ
k)H0 +(ϕj ,ϕk)H0(Σ)

]
=(F 3,ϕk)H0 +

∫
Σ

F 6ϕk. (5.34)
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From the definition of H1, the matrix with entry (∇Aϕ
j ,∇Aϕ

k)H0 +(ϕj ,ϕk)H0(Σ) is
invertible. Since the coefficients of linear system (5.33) are in C0([0,T ]), and the forcing
terms are in C0([0,T ]), we find that dmj ∈C0([0,T ]). Then from the assumptions for

the forcing terms, we could temporally differentiate (5.33) to find that dmj ∈C0,1([0,T ])
actually.

By our construction, θm∈H1
m. Then we take the test function ϕ=θm in (5.33) to

derive that

∥θm∥2H1 +∥θm∥H0(Σ)=

∫
Ω

F 3θmJ+

∫
Σ

F 6ϕ. (5.35)

Then we choose p,q,r such that 1<q< 2
1+δ with 0<δ<1 and 1

p +
1
q =1, 2<r< 2

δ and

r′= 2r
r−2 . Then we employ Hölder inequality, Lemma 4.1, Proposition 2.1, Sobolev

inequality and usual trace theory to deduce that

∥θm∥2H1 ≲∥F 3∥W 0
δ
∥d−δ∥Lr∥θm∥Lr′ +∥F 6∥Lq∥θm∥Lp

≲∥F 3∥W 0
δ
∥θm∥1+∥F 6∥

W
1/2
δ

∥θm∥1. (5.36)

Then together with Cauchy inequality we have

∥θm∥21≲∥F 3∥2W 0
δ
+∥F 6∥2

W
1/2
δ

. (5.37)

Then integrating from 0 to T , we have that

∥θm∥2L2H1 ≲∥F 3∥2L2W 0
δ
+∥F 6∥2

L2W
1/2
δ

. (5.38)

Suppose that ϕ=amj ϕ
j with amj ∈C0,1([0,T ]). It is easy to verify that ∂tϕ∈H1

m.
We take this ϕ in (5.33), then temporally differentiate (5.33), and then subtract (5.33)
with the test function ϕ replaced by ∂tϕ. This eliminates the terms for ∂tϕ and leaves
us the equality

(∇A∂tθ
m,∇Aϕ)H0 =

∫
Ω

[∂tF
3+F 3∂tJK]ϕJ+

∫
Σ

∂tF
6ϕ−

∫
Ω

∇∂tAθ
m ·∇AϕJ

−
∫
Ω

∇Aθ
m ·∇∂tAϕJ−

∫
Ω

∇Aθ
m ·∇Aϕ∂tJKJ. (5.39)

Then, we choose the test function ϕ=∂tθ
m and utilize the Hölder inequality to find

that

∥∂tθm(t)∥2H1 ≲∥∂tA∥L∞∥θm∥1∥∂tθm∥1+∥∂tJ∥L∞∥θm∥1∥∂tθm∥1
+∥∂t(F 3+F 6)∥(H1)∗∥∂tθm∥1+∥∂tJ∥1∥F 3∥W 0

δ
∥∂tθm∥1

≲∥∂tη∥W 5/2
δ

∥θm∥1∥∂tθm∥1+∥∂t(F 3+F 6)∥(H1)∗∥∂tθm∥1

+∥∂tη∥3/2∥F 3∥W 0
δ
∥∂tθm∥1. (5.40)

Then after an integration from 0 to T , Cauchy inequality, Lemma 5.1 and the smallness
of γ0 imply

∥∂tθ
m∥2L2H1 ≲∥∂tη∥L2W

5/2
δ

∥θm∥2L∞H1 +∥∂tη∥2L∞H3/2 +∥F 3∥2L2W0
δ
+∥∂t(F

3+F 6)∥2L2(H1)∗

≲E0+(1+K(η))(∥F 3∥2L2W0
δ
+∥F 6∥2

L2W
1/2
δ

)+(1+K(η))∥∂t(F
3+F 6)∥2L2(H1)∗ .

(5.41)
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From the energy estimates for θm and ∂tθ
m, we know that the sequences {θm} and

{∂tθm} are uniformly bounded in L2
0H

1. Then up to an extraction of a subsequence,
we have that

θm⇀θ weakly in L2
0H

1, ∂tθ
m⇀∂tθ weakly in L2

0H
1.

By lower semicontinuity, the energy estimates imply that

∥θ∥2L2H1 +∥∂tθ∥2L2H1

is bounded. Then we pass to the limit for (5.35) with almost t∈ [0,T ],

k(∇Aθ,∇Aϕ)H0 =

∫
Ω

F 3ϕJ+

∫
Σ

F 6ϕ, (5.42)

which means θ is the weak solution for the elliptic equation

−k∆Aθ=F
3 in Ω, k∇Aθ ·N +θ=F 6 on Σ, θ=0 on Σs. (5.43)

The elliptic estimates arguments similar to those in Theorem 3.3 imply that the elliptic
Equation (5.43) admits a unique strong solution with

∥θ(t)∥2W 2
δ
≲∥F 3(t)∥2W 0

δ
+∥F 6(t)∥2

W
1/2
δ

. (5.44)

After integration from 0 to T ,

∥θ∥2L2W 2
δ
≲∥F 3∥2L2W 0

δ
+∥F 6∥2

L2W
1/2
δ

. (5.45)

Then we pass to the limit for (5.39) with almost t∈ [0,T ],

(∇A∂tθ,∇Aϕ)H0 +(∂tθ,ϕ)H0(Σ)=

∫
Ω

[∂tF
3+F 3∂tJK]ϕJ+

∫
Σ

∂tF
6ϕ−

∫
Ω

∇∂tAθ ·∇AϕJ

−
∫
Ω

∇Aθ ·∇∂tAϕJ−
∫
Ω

∇Aθ ·∇Aϕ∂tJKJ. (5.46)

Then an integration by parts reveals that

−
∫
Ω

∇∂tAθ ·∇AϕJ−
∫
Ω

∇Aθ ·∇∂tAϕJ−
∫
Ω

∇Aθ ·∇Aϕ∂tJKJ

=−
∫
Ω

∇∂tAθ ·∇AϕJ−
∫
Ω

∇Aθ ·R⊤∇AϕJ

=−
∫
Ω

(∇∂tAθ+R∇Aθ) ·∇AϕJ

=(divA(∇∂tAθ+R∇Aθ),ϕ)−⟨∇∂tAθ ·N +∇Aθ ·∂tN ,ϕ⟩−1/2 . (5.47)

This completes the proof for θ.

In order to state our higher regularity results for the problem (5.21), we must be able
to define the forcing terms and initial data for the problem that results from temporally
differentiating (5.21) one time. First, we define some mappings. Given F 4, v, q, ξ̃, we
define the vector fields G1, G3 in Ω, G5, G6 on Σ and G7 on Σs by

G3(ϑ)=divA(−R∇Aϑ+∇∂tAϑ),

G6(ϑ)=−∇Aϑ ·∂tN −∇∂tAϑ ·N ,
(5.48)
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These mappings allow us to define the forcing terms as follows. We write F 3,0=F 3 and
F 6,0=F 6. Then we write

F 3,1 :=∂tF
3+G3(θ), F 6,1 :=∂tF

6+G6(θ). (5.49)

When F i are sufficiently regular for the following to make sense, we define the vectors

F 3,2 :=G3(∂tθ)+∂tF
3,1, F 6,2 :=G6(∂tθ)+∂tF

6,1. (5.50)

In the following theorem, we present the higher order regularity of Equation (5.21),
which is a direct corollary of Theorem 5.1.

Theorem 5.2. Suppose that K(η)≤α is sufficiently small, and that ∂jtF
i, i=3,6, j=

1,2, satisfy the assumptions in (5.24). Let θ0∈W 2
δ (Ω) and ∂tθ(0)∈H1(Ω) be determined

in terms of η0, ∂tη(0) and ∂2t η(0) as in Section 5.1. Then there exists T0>0 such that
for 0<T ≤T0, then there exists a unique strong solution θ to (5.21) on [0,T0] such that
∂jt θ satisfies 

−k∆A∂
j
t θ=F

3,j in Ω,

k∇A∂
j
t θ ·N +∂jt θ=F

6,j on Σ,

∂jt θ=0 on Σs,

(5.51)

in the strong sense with initial data ∂jt θ(0) for j=0,1 and in the weak sense for j=2.
Moreover, the solution satisfies the estimate

K(θ)≲E0(1+∥F 3(0)∥2W 0
δ
+∥F 6(0)∥2

W
1/2
δ

+∥∂t(F 3+F 6)(0)∥2(H1)∗)

+(1+K(η))

1∑
j=0

(
∥∂jtF 3∥2L2W 0

δ
+∥∂jtF 6∥2

L2W
1/2
δ

+(1+E(η))∥∂2t (F 3+F 6)∥2(H1)∗T
, (5.52)

where K(θ)=∥θ∥2
L∞W 2

δ
+∥∂tθ∥2L∞H1 +∥θ∥2

L2W 2
δ
+
∑2

j=0∥∂
j
t θ∥2L2H1 .

6. The full nonlinear equation
We finally turn to our main result for solutions global and decaying in time. The

local well posedness for (1.10) is proved in the similar way as in [19] based on linear
theory in Theorem 5.2. So we omit the details. We directly sketch the proof of our
main results.

Proof. (Proof of Theorem 1.1.) We set

T ∗ := sup

{
T >0 : For each choice of the initial data (η0,∂tη(0),∂

2
t η(0)) satisfying the

compatibility condition (5.18) and (5.19) such that there exists a universal small

parameter γ0>0, and the initial energy satisfies E(0)≤γ0. There exists a unique

solution on [0,T ] satisfying

sup
0≤t≤T

[
E(t)+eλt

(
∥u(t)∥21+∥u(t) ·τ∥2L2(Σs)

+[u(t) ·N (t)]2ℓ +∥p(t)∥20+∥θ(t)∥21
)]

+

∫ T

0

D(t)dt≤E(0)
}
. (6.1)
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Then with the local existence theory, the set on the right side of (6.1) is nonempty.
Then a standard continuity argument coupling Theorem 4.2 and Theorem 4.3 implies
T ∗=+∞. This completes the proof.
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Appendix. Forcing terms. The forcing terms F i in (2.1) are in terms of the
temporal differentiation for velocity, pressure, temperature and surface functions. In
particular,

(1) When (v,q,ϑ,ξ)=(u,p,θ,η),

F 1=−u ·∇Au, F
2=0, F 3=−u ·∇Aθ, F

4=R(∂1ζ0,∂1η),

F 5=F 6=F 7=F 8=0, F 9=κŴ (∂tη).

(2) When (v,q,ϑ,ξ)=(∂tu,∂tp,∂tθ,∂tη),

F 1=−div∂tASA(u,p)+µdivAD∂tAu+gαθ∇∂tAΦ2+gαθ∇A∂tΦ2

−∂tu ·∇Au−u ·∇∂tAu−u ·∇A∂tu,

F 2=−div∂tAu,

F 3=div∂tA∇Aθ+divA∇∂tAθ−∂tu ·∇Aθ−u ·∇∂tAθ−u ·∇A∂tθ,

F 4=∂t[R(∂1ζ0,∂1η)],

F 5=gη∂tN −σ∂1
(

∂1η

(1+ |∂1ζ0|2)3/2
−R(∂1ζ0,∂1η)

)
∂tN +µD∂tAuN −SA(p,u)∂tN ,

F 6=−∇∂tAθ ·N −∇Aθ ·∂tN , F 7=−µD∂tAuν ·τ,

F 8=u ·∂tN , F 9= Ŵ ′(∂tη)∂
2
t η.

(3) When (v,q,ϑ,ξ)=(∂2t u,∂
2
t p,∂tθ,∂

2
t η),

F 1=−2div∂tASA(∂tu,∂tp)+2µdivAD∂tA∂tu+2gα∂tθ∇∂tAΦ2+2gα∂tθ∇A∂tΦ2

−div∂2
t ASA(u,p)+2µdiv∂tAD∂tAu+µdivAD∂2

t Au+gαθ∇∂2
t AΦ2

+2gαθ∇∂tA∂tΦ2+gαθ∇A∂
2
tΦ2−∂2t u ·∇Au−2∂tu ·∇∂tAu−2∂tu ·∇A∂tu

−u ·∇∂2
t Au−2u ·∇∂tA∂tu−u ·∇A∂

2
t u,

F 2=−div∂2
t Au−2div∂tA∂tu,

F 3=2div∂tA∇A∂tθ+2divA∇∂tA∂tθ+2div∂tA∇∂tAθ+div∂2
t A∇Aθ+divA∇∂2

t Aθ,

F 4=∂2t [R(∂1ζ0,∂1η)],

F 5=2µD∂tA∂tuN +µD∂2
t AuN +µD∂tAu∂tN

+2

[
g∂tη−σ∂1

(
∂1∂tη

(1+ |∂1ζ0|2)3/2
+∂t[R(∂1ζ0,∂1η)]

)
−SA(∂tp,∂tu)

]
∂tN
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+2

[
gη−σ∂1

(
∂η

(1+ |∂1ζ0|2)3/2
+R(∂1ζ0,∂1η)

)
−SA(p,u)

]
∂2tN ,

F 6=−2∇∂tA∂tθ ·N −2∇A∂tθ ·∂tN −∇∂2
t
Aθ ·N −2∇∂tAθ ·∂tN −∇Aθ∂

2
tN ,

F 7=2µD∂tA∂tuν ·τ+µD∂2
t Auν ·τ,

F 8=2∂tu ·∂tN +u ·∂2t ∂tN , F 9= Ŵ ′(∂tη)∂
3
t η+Ŵ ′′(∂tη)(∂

2
t η)

2.

A key feature for all of the F 8 terms is that they vanish at the point x1=±ℓ, since both
u1 and ∂tu1 vanish at x1=±ℓ. We usually use this feature throughout the paper.
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