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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF THE FULL
EULER SYSTEM WITH DAMPING AND RADIATIVE EFFECTS IN R3*

SHIJIN DENG!, WENJUN WANG!, FENG XIES, AND XIONGFENG YANGY

Abstract. In this paper, we study the global existence and the large-time behavior of solutions to
the Cauchy problem of the full Euler system with damping and radiative effects around some constant
equilibrium states. It is well-known that the solutions may blow up in finite time without the additional
damping and radiative effects, and the global existence of the solutions obtained in this paper shows
that these two effects together prevent the formation of the singularity when the initial perturbation
is small. Combining the Green’s function method and energy estimates, we consider the pointwise
structures of the solutions to obtain a precise description of the system. The construction of the Green’s
function includes three steps: singularity removal, long wave-short wave decomposition and weighted
energy estimate. Finally, we achieve the pointwise estimates of the solutions in the small perturbation
framework by Duhamel’s principle, the pointwise structure of the Green’s function established for the
linearized equations and bounded estimates for higher order derivatives of the solutions together.
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1. Introduction
In this paper, we are concerned with the Cauchy problem for the following full Euler
system with damping and radiative effects in R3:

Orp+div(p) =0,
O (ptd) + div(pu@u)+ VP = —pi,

1.1
0¢(pE) + div(pEt+ Pu) = —divg, (L)
—Vdivg+q+V (6*) =0,
with the initial data
(p,ﬁ,é))(f,()) = (pOaﬂ'OaaO)(f)' (12)

Here, p>0 and @ = (u1,u2,us3) denote the density and velocity respectively, 8 >0 is the
absolute temperature, ¢=(¢1,92,¢q3) is the radiative heat flux, P=P(p,f) denotes the
pressure, E= %|12’ |2 + e is the total energy with e to be the internal energy. The equations
of state and the internal energy for the (polytropic) fluid are given by

P=Rpf, e=C,0, (1.3)

where R >0 is the universal gas constant and C), >0 is the specific heat at constant
volume.
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Before we proceed, it is necessary to give some comments about background of
system (1.1), and review some known results. When the high temperature (more than
10000K) fluid is considered, the radiative effects should be included in the hydrodynamic
equations. The most important effect of radiation process is the transport of energy, and
it is the reason that the radiative flux is added into the energy equation. In addition,
if the friction effect among molecules is also taken into consideration, the momentum
equations should be supplemented with damping terms. These two factors are very
important for the motion of fluid. Each of them has been extensively investigated in
the study of hydrodynamics. However, there are very few results about the combination
of these two effects in the literature. For the case where only radiation is considered,
the system (1.1) without damping effects has been widely studied for the 1-D spatial
variable [4-7,9,10, 16, 18,20, 21, 25]. In these works, the global existence of smooth
solutions, the nonlinear stability of elementary wave patterns, the large-time behavior
of solutions and the hydrodynamic limit processes have been established. However,
there is a center manifold around the equilibria which may lead to nonlinear instability
for the multi-D spatial variable cases. The related mathematical analysis becomes
extremely hard, especially for the global existence of smooth solutions. In other words,
the radiative flux can not produce enough “good” properties to guarantee the global-in-
time existence of smooth solutions, which is different from 1-D case. For the case where
only the damping effect is included, the damping Euler system without radiative effect
is considered in [1,3,17,19,22-24] and references therein. In [1, 3,22, 23], the isentropic
Euler system has been studied and the variation of entropy is not considered in the
motion of fluid. In [17,19,24], the authors considered the full Euler equations with the
damping effect only in the momentum equations and no dissipative mechanism in the
energy equation. A center manifold arises again which may lead to nonlinear instability.
However, different from the purely radiative model, the nonlinear structure of the model
considered in [17,19,24] has a cancellation effect which yields the existence of the global
solution. Here, we consider the non-isentropic Euler equations with the damping effect
in the momentum equations and the radiative effect in the energy equation at the same
time. The damping effect together with the radiative effect gives the nonlinear stability
of the solution for the model (1.1). By the spectrum analysis, it shows that the structure
of the damped system (1.1) is totally different from the model without damping effect.
It is noted that the non-decaying component becomes to decay exponentially in time
after the damping effect is added. Compared with the system without damping effect,
there are even no Calderon-Zygmund operators; there is an extra exponentially decaying
structure in time and this damping effect damps the slowly decaying structure in space.
To show the intrinsic differences, we compare these two models in the linear level. The
two systems, with and without damping effects, have similar behaviors in singularities.
However, the main wave structure of the damped model (1.1) is like the heat kernel,
while that of the model without damping effect is a combination of Navier-Stokes waves
and the heat kernel. In the nonlinear level, the damping effect helps to make the system
stable while the model without damping effect may need other mechanisms to cancel
the instablity caused by the center manifold. If one makes a comparison between the
model (1.1) and the model without the radiative effect in [17,19,24] from the spectrum
analysis, one will find that they have almost the same wave behaviors except that the
latter model contains a center manifold leading to instability. In the nonlinear level, the
model in [17,19,24] has a special structure to ensure the existence of the global smooth
solution, with some components of the solution remain just bounded.

To capture those differences between the model with and without damping effect,
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especially to describe the wave structures of this model, we aim to obtain a pointwise
space-time structure of the solution in this paper. For this purpose, one could adopt
the Green’s function method. There are series of works about the construction of
the Green’s function for equations with dissipative mechanisms; see [8,11-15] and the
references therein.

In this paper, we focus on the small perturbed solution to (1.1)-(1.3) around
the constant state (p*,d*,0*,¢*). Without loss of generality, we choose the constant
state (p*,@*,0*,¢*) = (1,0,1,0) and denote (0,7,0,§)=(p—1,%,0 —1,q). Then the cor-
responding linearized system can be written as follows.

ot +divi = —div(ow),
U +RVo+RVO+1u=—u-Vi— %Vm
O, + L divii+ L = —ii- VO — L Odivii+ LE + 74

C,(o+1)?
—Vdivg+§+4VO=—-40 (62+30+3) VO,

with the initial data:
(0717,@)(570) = (po — 1,ﬁ0,90 — 1)(5) = (Uo,ﬁo,@o)(f).

To construct the Green’s function for (1.4), we follow the construction method
in [2]. The whole construction contains three steps: a separation of the singular-regular
parts by introducing approximated spectra, the long wave-short wave decomposition in
a finite Mach region and the weighted energy estimate outside the Mach region. The
advantage of this construction is a precise structure of the Green’s function and a clear
separation of the singular-regular parts after which the sharp structure of the regular
part could be obtained through the weighted energy method outside the finite Mach
region. Once we have the pointwise structure of the Green’s function, we could combine
Duhamel’s principle and bounded estimates from nonlinear energy estimates to yield a
pointwise estimate for the solution. From this pointwise structure of the solution, it is
quite obvious that the damping effect is very strong which does not only stabilize the
nonlinear problem, but also changes the wave behaviors.

Our main result is as follows:

THEOREM 1.1.  There exist positive constants C, and 0 <e <1 such that if the initial
functions (po,uo,b0) satisfy

|00 000 ()~ .00 <O (15)

then there exists a global unique solution (p,u,0,q) to the Cauchy problem (1.1)-(1.3) in
the following sense

p—1,i,0—1,4€C°(0,00; H*(R?))NC" (0,00; H*(R?)),

and the solution satisfies

for a positive constant C'.
Furthermore, assuming that the initial functions (po,up,00) also satisfy

0% (po — 1,100,600 — 1)(Z)| < Cree™ ¥ for 0<|a| <3, (1.6)
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then for t >0 the solution to the Cauchy problem (1.1)-(1.3) has the following decaying
structure

12|12

e — - A1 0 e ot —(|Z
ai' ((p,u,ﬁ,cf)(x,t)—(1,0,1,0)))gC’e ((1—}—75)(3_|a)/2+6 ( |+t)/C> (17)

for 0<|a| <2 and a positive constant C. Here, we denote the multi-index a = (aq,an,a3)
with |a]= 2?:1 o and 0% = 051092093 .

T2 T3

REMARK 1.1. It is well-known that for equations with dissipative mechanisms, the
derivatives of the solution would decay faster in time than the solution itself. However,
in the estimate (1.7), the derivatives even decay slower. The reason is that since (1.1) is
a quasi-linear system, the representation of the solution or its derivative by Duhamel’s
principle always contains higher order derivatives for which we do not have pointwise
space-time assumptions and could only use the bounded information from energy esti-
mates. It leads to a loss of decaying rates for high order derivatives. The estimate in
(1.7) could be improved if higher order regularity conditions are posed on the initial
data in (1.6).

REMARK 1.2. To guarantee the global existence of the solution, one only needs the
H* regularity requirement for the initial data. Here, the H® requirement in (1.5) is for
the later use of pointwise estimates.

REMARK 1.3. In the construction of the Green’s function and the justification of
pointwise ansatz assumption, we decouple the equation for ¢ and the equations for
p, 4,0 as follows: from the last equation of (1.1), one could obtain an elliptic equation
for divg:
—Adivg+ divg+ A (04) =0
which could be solved directly:
€%

1+(¢J?

divd(7,t) =F 1 sz (00— 1) (3,1) = (5(:3) —Y(;E)) s (0 =1)(@1),  (1.8)

with the 3-D Dirac-delta function §(Z) and the 3-D Yukawa potential Y(Z) Ef%.
One could substitute (1.8) into the fifth equation of (1.1) and after that the first five
equations constitute a decoupled system for p,u,0. After one solves this decoupled
system, one could estimate divg by combining the estimate for # and (1.8). Thus the

estimate for ¢ follows directly from the last equation of (1.1) since one has that
q=Vdivg—V (0*) ==Y (Z) %z V (0*) (Z,t) = = VY (Z) %z (0* — 1) (Z,2). (1.9)

In a certain sense, from the above identity, one can find that both the decay structure
and function space which ¢ belongs to should be the same as the ones for § under the
assumptions of Theorem 1.1.

The rest of the paper is arranged as follows: In Section 2, we introduce the Green’s
function for the linearized system (1.4) and give some useful lemmas for the inverse
Fourier transformation. In Section 3, we obtain the pointwise structure of the Green’s
function in space-time variables through the singularity removal, the long wave-short
wave decomposition and the weighted energy method. In Section 4, we obtain the non-
linear stability of the solution by energy method. It provides the bounds of the high
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order derivatives of the solution. Finally, the pointwise estimate of the solution is ob-
tained by using the solution representation from Duhamel’s principle and the pointwise
structure of the Green’s function.

2. Preliminaries: The Green’s function in Fourier variables

In this section, we introduce the Green’s function for Cauchy problem of the lin-
earized system (1.4) and some lemmas as a preparation for the study of pointwise
structure of the Green’s function in next section.

We denote the solution for the linear part of the system (1.4) to be (V,U,W,Q) and
the linear system is

Vi —|—div(7=0,

U,4+RVV+RVW =-U,
W, + R dwU—i— divQ _ =0,
deQO+Q+4VW:O.

(2.1)

2.1. The Green’s function in Fourier variables. Introduce the Fourier trans-

formation of a function g(Z) € L' (R?) or ¢(¥) € S(R3): F[g](£) E/ e~ % g(Z)d7. Here,
R3

S(R3) is the Schwartz space on R3. For g(¥) € S'(R3), the Fourier transformation F|[g]

is defined by: V¢ € S(R?), <Flg],¢ >=<g,F[¢] >.
Applying Fourier transformation to the first five equations in (2.1), one has that

[V]H—Zf F[ 7]1=0, ~ B
F[U } —I—sz F[ ]—I—RZf-F[W]:—F[U], (2.2)

The last equation of (2.1) yields that —Adiv@+div@+4AW:O and thus
(167 +1) FldinG] = 4¢*F W)

and one could substitute it into the last equation in (2.2) to get:

F[V] 25 F(W]=-F[U], (2.3)

F[G; = AF[G],
{ F[G](£,0) =15, (2.4)
where
0 i 0

A=_ | Ri€T Is  Ri€T
R 7 4E?
0z Cu(1+1€]2)

and I, is the n xn identity matrix.
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The general solution of the ODE system (2.4) could be written as

5
t):Zaje’\jtrj, (2.5)
j=1
where A;,7;(j=1,---,5) are the eigenvalues and the corresponding right eigenvectors of

the matrix A and the coefficients a; are determined by initial function f(£,0) of the
ODE:

(&1,0,2,@3,&4,&5)T = (7’177‘2,7“3,7’4,7’5)_1 f(f,o) (26)
By a straightforward computation, one has
A1=Xo=—1,
and A;(j=3,4,5) are the three roots of the following characteristic equation:
Co (1 1E2) A%+ (Co+ (44 C) E17) A2 +1€2 (44 R(Cu + R) (1+1€]2) ) A+ 4RI =0
(2.7)

Moreover, the corresponding eigenvectors have the following forms.

135
0 0 Zfl/\J
—&2/&1 —&/61 iE\
r = 1 , o= 0 E ' 2% for j=3,4,5. (2.8)
0 1 i€,
0 0 RIE”® (1+1€1) X

Co (141€]2) 25 +4/€]?

Now we substitute the initial data F[G](£,0) =15 into (2.6) and give the explicit
formula of the Green’s function F[G](,t) in Fourier variable:

0 0 0 0 0
2
01-5L —&f _&& g B B
R (CW\3 (1+|€|2)+4|£|2)6>\3t
Fioj=e |0 - 1 gk g o il L
_&& _8& 1_ £ g Cv()‘3*)\4)(/\3*/\5)|€|2(1+|£|2)
R €12
0 0 0 0
(Cv)\4 (1+|f_]2)+4‘£]2) e)\4t /8 (Cv)\5 (1_’_'5_]2)_’_4‘5‘2) e)\5t 6
BN - ra04 — — = 5085
CU(M—As)(M—As)\fI?(1+\§\2) Colrs —2s) (s~ M| (1+18]2)
F[Gp]+F[Gu]. (2.9)

Here, one denotes that for j=3,4,5,
= (mE? RO, []*(1+1€]%)
/BJ—( USHISKIS Bow NCTREE

[ /0 0 0 0 0
& &% &
0175 ~igz i ©
Cp(@t)=F " |e"| 0 —S22 12— 0
G& _b& 1_ &
RN
L \o o0 0 0 0/
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(Cvx\g (1 n \EP) +4|5|2) ot

+F_1 — - . T3P3 1 , (210)
ColXs = M) (s = 25 )IE12 (1-+1€1)
Cv/\ 1+g2 +4£2 Aat
GH(f,t):Fil — ( 4( ‘ |> J | )6 . T404
Colha = As) O =25 )IET2 (1-+1€12)
Cods (1+6]2) +4[]2) et
+F! ( 5( < ) < )6 505 | - (2.11)

 Culhs—As) (s — )22 (1+1212)

REMARK 2.1. 1In (2.9), the Green’s function G(&,t) is decomposed into two parts: the
damping wave Gp(Z,t) and the heat diffusion wave like part G (Z,t).

Roughly speaking, the damping wave Gp(Z,t) decays exponentially fast in both
space and time variables. It seems that it contains a Calderon-Zygmund operator. Due
to the exponentially fast decaying rate in time variable, it does not play an important
role in low frequency. In high frequency, we will use some approximations to separate
this operator from the fast decaying remainders, which will be carried out in next
section.

The decay structure of low frequency part of Gy (#,t) is similar to that of the heat
kernel. It is the reason we name it “heat diffusion wave like part”. We will also show
this property in next section.

2.2. Asymptotic behaviors of spectra. Next, we study the basic properties
of the eigenvalues A;, the roots of characteristic Equation (2.7), as a preparation for the
inverse transformation:

LEMMA 2.1.  The eigenfunctions \;(j =3,4,5) satisfy Re(\;) <0 for EeR3, and there
exist constants ko,k1 >0, such that for |£| > ko,

Re()\j)g—m. (212)

—

Furthermore, when |€] is near 0, the eigenfunctions A3(€),As(€) and \5(€) are an-
alytic with respect to |€|?, and have the following asymptotical expansions:

—

No(€) =1+ 2GR L0 (16]Y),
)\475(5):74+RC’U+R ++/(4+RC, +R?) 716RC’U|§|2+O(|€"|4)'

(2.13)

2C,

When |§_] — 00, the asymptotic behaviors are listed as follows:

—

)‘3(§):_Cv4+R +0 (|a_2) )

— - 2
)\4,5(5):ii\/R(1+%)|§‘_%

i [R(1+ Ci) (CH+2RCS+ R2C2 —8RC2 — 8R2C, +64RC, +16R? ) |§] ' +0 (\5\*2) .

(2.14)
Proof. The property (2.12) could be verified by the Routh-Hurwitz criteria: for the
given polynomial, P(\)=A%+p; A2+ paX+p3, all the roots of the polynomial P(A\)=0
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have negative real parts if and only if p; >0, p3 >0 and pips > ps. Since A;(j=3,4,5)
are the roots of (2.7), one has that

B Cv+(4+cv)|_]2 B |§_’|2 (4+R(CU+R)(1+\€_]2)) B 4R|§"’|4
T oavEy P Co (11 EP) LT A Ey

and for |£] £0, denote P(|¢])=C, (44 Cy R+ R%)+2(C2R+C,R2 +2R2 +2C, +8)|¢|2 +
R(C,R+C?+4R)|¢|* and one has that

b1

p1>07 p3>07

Pip2—pP3=——"""_ 3 > 0.

Thus, the real parts of \;(j=3,4,5) are negative when |5| #0.
The asymptotics (2.13) and (2.14) could be obtained by straightforward computa-
tions and we omit the details. 0

2.3. A useful lemma. Denote
D(;E{ge((:"’|]m(fk)|<6 for k=1,---,n}. (2.15)
The following lemma holds:

LEMMA 2.2 (Lemma 2.1, [2]).  Suppose that a function f€ L'(R"™) and its Fourier

—

transformation F[f](§), E=(&,6, &) is analytic in D,,, and satisfies
Ey

Then the function f(Z) satisfies

‘F[f](f)‘< for [Im(&;)|<vo and j=1,---,n.

/(@) < Byel#/C,

for any positive constant C'>1.

3. Pointwise structure of the Green’s function

In this section, we obtain the pointwise structure of the Green’s function G(Z,t)
defined by (2.4) in space-time variables via inverse Fourier transformation. The whole
construction includes a decomposition of the singular and the regular parts, the cal-
culations of the truncation errors, the direct inverse of the singular part, and a region
separation for estimates of the regular part; and the regular part of the Green’s function
G(&,t) satisfies

THEOREM 3.1 (Pointwise structure of regular part of G(Z,t)). There exists a positive
constant C' such that for 0<|a| <3,

L

« — % [ = € Ct _(1z
|03 (G(xat)_GS(mat)”SC((l_i_t)(W—Fe ( +t)/C>.

In the above theorem, the function G%(Z,t) denotes the singular part of the Green’s
function in the sense that one could take derivatives up to order 3 of the remainder.
The description about G¥§(Z,t) is too tedious and is given by (A.9) in the Appendix.
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The existence of the singularity in G(Z,t) could be captured after an asymptotic
expansion of F[G] for £ goes to infinity: The property (2.14) yields that when |£] — oo,

0 0 0 0 0
7& _&&  _ &i&s
01-f |5|;2 g O
_—t _&ie L2 &&s
F[GD]—G 0 BE 1 HE |~|;2 0
0 ESTS RN 1] 1—-2% ¢
1€]2 €12 €12
0 0 0 0 0
R
o 000 -2
» 0 000 0 1
4 e  TutR 0 000 O +0 <_,> ,
0 000 0 €]
R Cy
T C,+R 000 Cy+R
and
(Cv2+RCv+4R)t
F[Gyl=¢ ~ ov@rm
C, cosC| €|t VT, sinC|E]t . LE C, cosC| €|t

Cy+R VR(C,+R) € Cy+R

_ JVRCysinC|é]t €T 75 _ J/RCysinC|é]t €T 1
VC,+R l€] cosCI¢]t- VC,+R 7| +O GA

ReosC€]t VRsinC| €]t LE RcosC€]t

Cy+R /C\y(Cu+R) I€] Cy+R

with C'= Cﬂ(C’U + R). The above expansions suggest the existence of the Dirac-delta

function and other singular structures in the Green’s function.

3.1. Approximated spectra and singularity removal. In this subsection,

we aim to remove the singularity at the beginning and make a preparation for the
treatment of the remaining regular part as a whole. First, one introduces the following

approximated spectra:

A &) = as,—2 az _4 a; _g a;,:s _ J(E _
5()=as0+ R (1+\5| )? = (1+1€12)* + (1+1E2)* (1+1E2)°”

\* = _ R(Cy+R) .| & a_y a:3 a*:5 aij Ji:l
i) ¢, et 1+[€]2 +(1+\£\2)2+(1+\£\2)3+(1+\£\2)4+(1+\5\2)5

* *
a_g a_g le

+a0+ 1+|£|2 )2 + (1-‘1—‘5‘2)3 + (1+‘g‘2)4 - (1+‘g‘2)5;

—4
(
_ R(C +R) a,l a’ g a’ g a’ . Jr
=—y/ Lilé) (14 et et e T et T e
(©) 1 |< HER T (1+1E2)” T (1HiER)” T (1H1E2)t T (1+1E]2) )

a74 a’_g a’g le

a_s _
+aop+ 1+|£~|2 (1+‘5‘2)2 + (1+‘5‘2)3 + (1+‘5‘2)4 (1+‘5‘2)53
(3.1)
with constants a3 _;(7=0,2,4,6,8) and a* ;(j=3,4,---,8) given by
az _y=az—2+as 4,
a3 _g=as —2+2a3 4+as g, (3.2)

a3 _g=as —2+3a3_4+3a3 _¢+as s,



798 DAMPING EULER SYSTEM WITH RADIATIVE EFFECTS

ats=a_1+a_s,
a*s=a_1+2a_3+a_s,

a*_7 =a-1 +3a_3 +3CL_5 +a_v,
a*y=a_o+a_u,
a*g=a_2+2a_4+a_g,
a*g=a_s+3a_4+3a_¢+a_g.

Here, a3 _;(j=0,2,4,6,8) and a_;(j=0,1,2,---,8) are constants in the expansions of
Aj (E) in the Appendix A.1. The constants J§, Jj; and Ji, are chosen to be positive
and large enough to ensure that for j,k=3,4,5 and j#k,

—

sup Re(A;(€)) <—wo <0, (3.4)
feDl/z
and
inf  [X3(€) — Np(€)] > 0. (3.5)
5€D1/2

These conditions (3.4)-(3.5) can be satisfied by choosing suitable constants since

. <0 a=——c§+C”R+4R<O
T, 4R T 20, (Cu+R)

The approximated spectrum A} defined by (3.1) with constants chosen above is up
to degree 10 approximation of A3z and similarly A5(A%) is up to degree 9 approximation

of As(Xs) for |€] = o0, i.e.

= — — —

sup [£]"0(A3(E) —As(€)) <o, sup [E]°(N]5(€) — Aas(E)) < oo, (3.6)

§€D1/2 €€D1/2

where Dy /5 is defined in (2.15) with §=1/2.

Furthermore, define the singular support functions G}, and Gj; as follows:

0 0 0
GpH(@t)=F 1 |e [0 L—p)ETE0 —”?ffsfigi‘f‘_iﬁ‘i\?i rifi|
0 0 0
Gy, (%,t)
_pot | p@ (G (1) i )f g (E)(Co: (LH1EF) el )f i 5*}
O3 —A5) (N —A3) (1+1€]2) "'aP4 W (AE=X5) (A5 =A%) (1+1€]2) 575 1
(3.7)
with
€12
€1y,
L e . i RC, |€12(14]€)?
R )

RIEZ (1+1€17)Ar
Co (1+1€]12) A +4]€]2
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=

and the polynomial p(€), a high order approximation of |€]~2 for |£] — co:

5

€)= (1+1E2) " =182 +0(&'2) for | —oo.

j=1
The singular support functions (3.7) and the degree 10(9) approximation (3.6) result in
the following lemma:
LEMMA 3.1.  The remainder of the Green’s functions Gp,Gu and singular support
functions G%,G% satisfy that for £ €R3,
IF(CH] - FGpll=0(1)(1+[E) ", [F[Cy]-FlGull=01)(1+[E) " (38)

The conclusion (3.8) follows directly after one substitutes the degree 10(9) approx-
imation into the Definition (3.7) of the singular support functions. Lemma 3.1 results
in that

(G +Gh—=Gp—=Gu) (1) Lo sy =O(1),

which reveals that G7,+G7; contains all the singular structures of Gp +Gg. It leads
to a further study of the singular part G}, +G7%;. For more details about the singular
structure, refer to Subsection A.2 in the Appendix and we only list the result here:

LEMMA 3.2. There exists a positive constant C such that
G5 (&t)+ G (,t) - G5(&,t)| < Ce”(FHD/C,
with G5(Z,t) given by (A.9).
3.2. Estimates of regular part: proof of Theorem 3.1. Now, one denotes
G =Gp+GYy, Gr=G-G~, (3.9)

and Lemma 3.1 suggests that G should be regular enough. We derive the equations
satisfied by Gg as a preparation for the study of the detailed estimates.
The function Gp satisfies the following system:

(3.10)

(05 —A)Gr=— (0I5 — A) (G +G}) =EL(,1),
Gr(Z,0)=Eq(2)

where A is defined in (2.4) and the Fourier transformations of the truncation errors
E (Z,t) and Eqo(Z) satisfy

0 i€ 0 . 0
FE =~ (1-p(@)e?) (0 0 0]ty PO i€ | et
0ifEn)  Co(LHIER) =D -2) \ 0
== 0
+ _’p(g)P()%) ng ﬁZeAZt
G (141€12) Qs =25 =2 \ 0
2 0
+ _’p(f)P(/\5) ZET B;e)\}jt7 (311)
Co (1182) 5 =25 (5= 29 \ 0
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and
100 0 0 0 eyt 00
FEs]=|0L0)—0L—p&)E0 | —p@)| 0 &0 |, (312)
001 0 0 0 0 0 e’
with

PO3)=C, (14 12) (4) "+ (Cot (44 C)IE) (1)
+ 1812 (4+ R(Co+ R) (14+18%) ) A +4RIET*, j=3,4,5,

i ARJ€]°
Co(1+ 2NN

_ 40, R?|€]° (14 |E]*)?
(Colt+18P)N+41€12) (Cul1+ 12N +417) (Co(1+182)N5 +41E12)

Substituting the Definition (3.1) of approximated spectra A (k=3,4,5) in (3.11)
and (3.12), one has the following lemma:

LEMMA 3.3.  The Fourier transformations F[E1](€,t) and F[Es](E) of truncation error
functions are analytic in Dy5, and there exists a positive constant C such that the
following estimates

Cet/¢
(1+1€)°°

C

‘F[El](g’t)‘ < (1+é)°

[FIE ()| <

hold true for 56 Dy /.

This lemma, together with Lemma 2.2, yields the following estimates for truncation
€erTors:

LEMMA 3.4. There exists Cy >0, such that

|E.(Z,t)| < Coe—(lf\+t)/co7 B ()] < Coe_"?"/cﬂ,

. 3
/ elTV/Co |92 Ry (2,8)|° dZ < Coe ™t/ for |a| <9— 3 (3.13)
]RS

/ el®V/Co | 9S8y (2))* dE < Cy for |a|<9—g. (3.14)
Ra

From Lemma 3.4, one finds that truncation errors are regular enough and also decay
exponentially fast in space-time variables. It allows us to apply weighted energy method
later for the pointwise structure of the regular part Ggr outside the cone.

3.2.1. Long wave-short wave decomposition and wave structure in a finite
Mach region. First, we study the regular part G defined by (3.9) in a finite Mach
region. Introduce the classical long wave-short wave decomposition

F(@ )= FH(0)+ [5(@.0),
F(fH=A () .
Fl/%)=(1-a(4))Fip),
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with the parameter ¢y < 1, where

A(r)=H(1—r|)= {(1)’ 0<irl<t,
, || >1.

Long wave component in a finite Mach region. Although it seems that
F[Gp] contains a Calderon-Zygmund operator which slows down the decaying rate in Z
variable, the exponentially fast decaying rate in ¢ variable here makes a compensation
and allows us to ignore this effect. Since F[Gp](&,t) is bounded for || < 1 and due to
the spectrum gap stated in Lemma 2.1, there exists a positive constant C' such that

|GH(z,t)| <Ce €. (3.15)

The long wave component of Gy behaves like the heat kernel: A straightforward
computation after substituting (2.13) into (2.11) yields that when || — 0, one has that

100 .
F[Gyu]=|000]+0(é). (3.16)
001

Moreover, when |¢] is small, F[Gp] is analytic with respect to € from Lemma 2.1. The
estimate (3.16) together with Lemma 2.1 and contour integral yields the wave structure
of the long wave component of the function Gy (Z,t):

LEMMA 3.5. For || <Cit with Cy being any positive constant, there exists a positive
constant C' such that the long wave component G5 (Z,t) satisfies

1|2

’3;@%(5,16” <C@ +t)f(3+|a\)/26* ot ,

— o — o [e% [e% —
Here, a=(a1,a2,a3), 05 =051052093 and |a| = o1+ oo +as.

The proof is similar to Appendix A in [2] and we omit the details.

The estimate (3.15) and Lemma 3.5 give us the long wave structure of the Green’s
function G. On the other aspect, the long wave component G** of the singular support
function G* decays very fast due to the spectrum gap (3.4); meanwhile (3.5) ensures
that there is no pole in F[G*]. These two facts give that

G (z,t)| <Ce™/°, (3.17)

for a positive constant C. Finally, one has the long wave structure of Gg. For any
positive constant C, when |Z| < C1t, there exists a positive constant C' such that

=12

|Z]

|02GE(Z,t)| =02 (GF - G*F) (z,t)| <C <(1 +1)~BFleD/2e="er +e—<lf+f>/0) . (3.18)

Short wave component. The regularity stated in Lemma 3.1 combined with the
spectrum gap stated in Lemma 2.1 and (3.4)-(3.5) leads to the following estimates for
the short wave component of Gr. For 0 < |a| <6, one has that

ogG5.0|=| [ e (1= AEl/e0)) 18] (FIG ]+ FIGu] - FIGH] - FIG3:) af

<Ce ¥, (3.19)
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3.2.2. Weighted energy method outside a finite Mach region. Outside

the finite Mach region, one applies the weighted energy method to obtain the exponen-
tially fast decaying structure of Ggr. Denote

000
VE=(10000)Gg, UF=[050|Gr, WE=(00001)Gp,
000

0
El=(100)E;, Ei=[0
0

oSt o

0
0|E;, E{=(001)E,;.
0

Define QR by the equation —VdiijR + QR +4VWHE=0. Then the functions
(VEUE WE QFR) satisfy:

VE+divUR=E!,

UR+RVVE+ RYWER L UR=E2,

Wi+ & divT R+ 203" — 3, (3.20)
~Vdiv@" + @ + 4V =0,

(V07 WH)T(7,0) =Ea(7),

and one has the following estimates for the solution (VR,U'R,WR):

LEMMA 3.6.  For any positive constant C, when |Z|>Ct and 0<|a| <5, there exist
positive constants Coy and Cy such that the solution (VI ,UR WZE) of (3.20) satisfies

|02V E| +

00|+ |03 W | < Cye~(91+0/ o,
Proof.  One chooses the weighted function W (Z,t) as follows:
W (Z,t) = ellFl-at)/M

with the constant a to be determined later and M > 1, and then

—

L w (3.21)

a
W,=——W, VW= .
M M|Z|

Integrate the inner product of W(RVR,Ij' B C,WHE) and the first five equations in
(3.20) with respect to # in R? to yield that

0= / (RWVR (VtRerivﬁR—E}>+WﬁR~ ((7§+RVVR+RVWR+I73—E‘{)
R3

. AR
+C,WWFE (WtR IELI L —E§>> > di
C. C,
/ W (R(VE) +0R.0%+C, (WF)*) d
R3

+—/ W(R(VR)Q—i—(jRﬁR—&—Cv(WR)2)d33’+/ W (Wh)*di
R3 R3
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R

— 7 [ W(VEwR) TR Zdit | W divGdz
R3

|Z] R?

- / w (VRE{ R B2 +WR1E§) dz. (3.22)
RS

Here, the term WWRdinRdf could be estimated by using the final equation in
R3
(3.20):
= 1 - 1 -~ ~ -
WIWEdivGRdi=— — [ WWwh L. GRaz— - / W (VdinG" - GR) - G"dz
R3 M R3 |.Z“ 4 R3

1 €T = 1 “p\2 o o
=—— | WWEZ.Q"dz 7/W divQF R.OR)dz
37 Jp, WV Qi+ g [ W (00Q") +Q"-Q" )iz
o X o
— | W (diwQ®) = -Q%dz.
YA s (divd )|:z| @ d7

Substitute it into (3.22) and choose a >0 to obtain

d
dt Jus

a 2 =p o 2\ .
+ 517 RBW(R(VR) +OR. 040, (WH)?) dz

12 |gel? 312\ 5=
gc/ W<|]E1| - [E2] -+ g2 )dx.
R3

W (R(VR) +0R-0%+C, (WH)) dz

It, together with Lemma 3.4, results in that there exists a positive constant C, > 0 such
that

/Raw (VR +TR-GR 4 (WR)* ) dz < Cemt/.
Similarly, one could obtain the high order estimates:
/}st ((agVR)2+agﬁR-agﬁR+ (8§WR)2> dZ < C,et/C for 0<|a| <.
By Sobolev inequality, it follows that there exist Cy,C; >0 such that for 0 <|a| <5,

sup  ellTl—at)/2M (|6§VR| 4
(&,t)eR3 xR+

00" +|02WH|) < Coe ™/,

and thus when |Z| > 2at and 0 < |a| <5,

03V +

0T+ |03 W | < Cye~(1H0/ o,

d
Finally, we conclude the pointwise structure of the Green’s function in space and
time variables from (3.9), Lemma 3.2, (3.18), (3.19) and Lemma 3.6.

4. Nonlinear stability: proof of the main Theorem
The solution of the nonlinear equations could be represented by the Green’s function
G(&,t) and Duhamel’s principle:
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g oo
u | (@)= [ G(@-yt)| do |(H)dy
e R? 0,
" —div(ot)
N - - R(O-0) - -
+ G(Z—y,t—s) —-Vi—=—-5-Vo (7,s)dijds. (4.1)
3 e o Wl odivgd
0k —4-VO — C%@dwu—i— ot 7&(04?1)

Since the system (1.4) is quasi-linear, the representation (4.1) contains derivatives and
one needs to obtain a priori estimates for the highest order derivatives from energy
method before we investigate the wave structure by (4.1) and the pointwise estimate of
the Green’s function.

4.1. A priori estimate from energy method. We pose the following a priori

assumption:

N(T)= sup {\|(J,ﬂ,@)(~7t)||Hl(R3)}§5o, 0< o< 1,1>4. (4.2)
o<t<T

It, combined with Sobolev inequality, yields that

92 (0,,0) (f,t)‘ < Cép. (4.3)

sup =

7 3
0<|a]2l—20<t<T, T€R

Estimate A. Integrate the inner product of (Ro,,C,©) and the first five equations
of (1.4) over R3 to yield:

O:/ (Rooy+ Rodivii+ Rodiv(oi)
R3

+ -+ Ri-Vo+Ri-VO+@-i+d-(i- Vi) + Ri- (S:{) Vo
dive
+C,00, + ROdivi+ 21
c+1

+C,01-VO + RO divii— O - ﬁ) dz

:11/ (R02+ﬂ~ﬁ+C’U®2)df+/ (ﬁ.m@dmj)dm/ N, (7,t)dZ,  (4.4)
2dt Jps R3 R3

with

O—o0o
N, = LN | o o o -
1=Rodiv(o@)+4- (4- Vi) + R (0+1>VU

+C,0i- VO + RO divil — O - il — O —— divg.
o+1
To treat the term OdivgdZ in (4.4), one uses the last equation of (1.4):
R3
0:/ 7 (—=Vdivg+q+4VO+40 (0° +30 +3) VO) dZ
R3
:/ ((divcj’)2 +§-G+47-VO+47-0 (0°+30+3) V@) dz. (4.5)
R3

The nonlinear term | Nj(&,t)dZ could be estimated as follows:
R3
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N, (Z,t)dZ
R3

<Cdy < Vo-Vodi+ | VO-VOdT

R3 R3

R3

3
+ / -7+ Vu; - Vu;di+ / 7-qdz |. (4.6)
]RIS N RS
Jj=1

1
Combining (4.4)+1(4.5) and (4.6), one has that

1d 2 RN 2 — 1 - 5 o o . 2
el : - A7 - .
230 s (Ro*+a-i+C,0 )dx+8/R3( 0 U+ q- g+ (divg) )dm
3
<Céy / Vo-Vodi+ / VO -VOdi+) / Vu;-Vu,di | . (4.7)
R3 R3 — R3

Estimate B. Differentiate (1.4) with respect to zx(k=1,2,3) and integrate its
inner product with (Ro, i, ,C,0y,) over R? and consider the sum with respect to k
to result in:

3
:Z/ (RO, 0t + ROy, dividy, + Ro,, div(oid),,

k=1

—

+ Uy, Uyt + Ry, - Vog, + Ry, -VOy, +iy, Uy,
R e . O—0o

+ iy, - (U- Vi), + Ry, - (( ] > Va)

+Cy04, 04, +RO,, diviy, —&—@zkdwqu +C,0,, (

(Z-VO
o L o’dwq
+RO,, (@dwu)mk -0y, (uu)wk + elk

1d SN .
_§$ s (RVUVU+;uzkuwk +va®v®> dz

/ <Zuzk Uy, +VO- deq> dZ+ | Ny(Z1)dz, (4.8)
R3 R3

k=1

with

3 3
67
No=RVo - Vdiv(0@)+ Y i, - (i Vil + Y Ril, - << 0_+‘1’) vg>
k=1 Tk

k=1

. g I g PR
+CyOy, (0-VO), + RO, (0divi), — Oy, (U-i), —Ou, (UHdzvq> N
Similar to (4.5) and (4.6), one has the following estimates:
oz/ T+ (~Vdivd,, + 3, +4V0,, +4(0(07+30+3)VO) | ) di
R3 '

:/Rs ((div(jﬂﬁkﬁ +(Tﬂ?k (ZDA +4(ka : V@l’k —"—4(7% ’ (@(62 +39+3)V®) xk> df’ (4'9)
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and

Na(Z,t)di

]RS
1d RoVo-Vo ~O-0_ .  C(024+20—0)
2.dt R3< o+1 I;(%rlu”'u” (O+1)2 ve-ve
3
<Cé /VU-Vadﬁ?—i—Z/ Vuj~Vujdf—|—/ VO-vedi
R3 ; R3 R3
+ / (divd)* dE + / wmy-wwwz). (4.10)
R3 R3

The estimates (4.8), (4.9) and (4.10) result in

1 d R 3 U+1 . . C (0_+1)
5% - (OHVUVU_F;(MUJCkuxk_F((‘)HV@ VO |dzr

3

1
+Z / > (A, i, + e, - Gy, + Vdivg- Vdivg | di
8 Jrs \ =

gcao< Vo -Vodi+ / (divg)® dZ + / q‘-@df). (4.11)
R3 R3

R3

Here, we use the last equation in (1.4) and a priori Assumption (4.2) to obtain:

VO.VOdi q- cfdf) . (4.12)

< C’( Vdivg- Vdivcj’da‘f—l—/
R3

R3
It, together with (4.7) yields

%fR‘S (RU +u-u+C, @2+G—HVU Vo +Zk 10+1 ﬁzk+co(i;_)§ vO. V@)

1
4= / 8G-i+q- G+ (divq")2+2(4ﬂwk.a’wk+q‘zk.(jwk)+Vdivq‘.vdiv(j' dz
8 Jas ]

<Céy | Vo-VodZ, (4.13)
R3

and thus

/ <02 +a@-1+6*+Vo- VU—}—Zuu Uy, +VO- ve)( t)di
3 k=1

+C g fio (@ T4 G-+ (di0@) + Sy (@ -+ o - Gy) + VivG Vdivg) (7,)dads

3
gc/ <a2+ﬁ.ﬁ+@2+va.va+2ﬁxk ~ﬂzk+V®'V@> (%,0)d
Rii

k=1

t
+ Oy / / (Vo Vo) (i, s)dzds. (4.14)
0 JR3
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Estimate C. Differentiate the first and the fifth equations of (1.4) with respect
to ¢t and the second to the fourth equations with respect to Z to yield that:

ot — RAG — RAO + 0y = —div(0@) — div(o@); + div (@ - V@) + div (Rg@;p va) 7
Oy R Aa——A@+ a-divg;
— (- V@)t rom (@dwu)t (;—f)t + (C:El:fl))t +div(@- Vi) +div (R(U@J:lg) VU) .
(4.15)
Integrate the inner product of (Ro,C,0;) and (4.15) over (0,t) x R? to result in:

t

1
5/ (Ro? +C,0;+ R*Vo-Vo+R*VO-VO+R*Vo-V0O) (&,5)dz

// (Rat dwqt) +Cj;:'§t)>(f,$)dfd8
R3

:/ N;(#,s)dZds
o Jre

s=0

0—0)

t
E/ / Roy (—div(aﬂf) —div(ow): +div(d- Vi) + div (R(Vo>) (Z,8)dZds
0 JR3 o+1

t Ly
+// G)t(—Cv(ﬁV@)t—R(@divﬁ)t+(ﬁ-ﬁ)t+<waq>
0 R3 O'+1 t

+Cydiv(@- V) + Cydiv (R(@j:lg)vg) ) (%,5)d@ds
g

¢
f/ / ;- (0(6°+30+3)V0), (&,s)dEds. (4.16)
0 JR3
Here, we use the last equation of (1.4) to obtain:

Odivgidi=— | VO, -qdx
RS RS

1
=7/3 ((dm@ﬁ%@-@)dﬂ/ 3+ (0(0*+30+3)VO),dF
R

4 -

The nonlinear estimate is similar to (4.10):

¢
/ N3(Z,s)dZds
o JR3

gcao/ (67 +074+Vo-Vo+VO -VO+Vo-VO) (&,t)dF
R3

+C<So/ (07 +6;+V0o-Vo+VO-VO+Vo-VO)(Z,0)dZE
R3

+C60// (vo— VJ—i—Zumk iy, +VO-VO+i-1
R3

k=1
+(divd)? + @ - @ + (divg,)? )(f,s)da?ds. (4.17)

Here, we use the Equations (1.4) and a priori Assumption (4.2) to obtain

¢
// o2(Z,s)dEds
o Jrs

Ut;ﬁh@tSCéOa

t
<C / / (va-va+ (divﬁ)2> (7, 5)dTds,
]RES
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¢
/ O%(F,s)dids
0 Jr3

<C ((dz’vcj’)2+(divﬁ)2>(f,s)dfds
R3

¢
+050/ / (VO-VO+1i-4)(Z,s)dZds.
0 Jr3
Combining (4.16) and (4.17), one has that:
t
/ (07 +©7+Vo-Vo+VO-VO) (f,t)derC/ / (07 + (divg,)* + G, - @) (Z,5)dids
R? o Jr3

<C [ (6f+07+Vo-Vo+VO-VO)(Z,0)dz
R3

t 3
+C50// <VU-VU+Zﬂzk~ﬁzk+V®~V@+ﬁ-ﬁ+(div(f)2 (%,s)dids.  (4.18)
0 JR3

k=1

Next, integrate the product of o and the first equation of (4.15) to result in
1

t t
R
f/ o?(%,8)dE —I—// (—U?+VU-VU) (%,s)dzds
2 RS s=0 0 ]R3 2

t ¢ 3
<5 [ [ vo-vey@sazis+ca [ [ (va.vﬂz%.%)(578)65%.
0 JR3 0o JR3

o (4.19)

Now, choosing 0<dy < d; <1 and considering (4.14)+(4.18)+d1(4.19) combined with
(4.12), one has that

3
/<02+G-U+@2—&-of—i—@?—i—Va-Va—i—Zﬁwk-ﬁxk—i—V@-V@)(it)df
R3 k=1

t
+c// (@43 7407 +V0- Vo +d -G+ (divg) + (ding,)?
0 JR3
3

Y (il + Gy @y ) + Viv g wmy) (Z,s)dZds
k=1

3
gc/ <02+ﬁ-ﬁ+ O+ Vo Vot iy, i, +ve.ve> (#,0)di. (4.20)
R3 k=1

Thus, we finish the estimate for the solution in H' norm.

High order estimates. The estimates for high order derivatives could be obtained
similarly. Here, we state the conclusion and omit the details:

168 sy 1Ol sy + 1€ s
t
+C [ (190 oy + 17Dl + VO sy )

<C (10,0 gy + 10Ol sy + 100 s ) - (4.21)
Thus, we verify the a priori Assumption (4.2).

REMARK 4.1. The local existence can be done by using the standard iteration
arguments and fixed point theorem. Then, by the standard continuity argument, the
global existence theory and the bounded estimate for the solution in H®(R®) norm in
Theorem 1.1 follows from (4.21) and (1.9).
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4.2. Pointwise structure. We go back to the solution representation (4.1).
When the initial data (og, %, ©0)(Z) satisfy the initial condition (1.6), from Theorem
3.1, one has that when 0<|a| <2, there exist constants C; >0 and C > 1 such that

o)
oF | G(@—y,t) | to | (¥)dy]
R3 CH
oo oo
< 35%(6—@5)(5—1771?) iy | (§)dy|+ SGs(f g,t)05 | to | (¥)dy’
R 6 R 0
\8\2
& L -(F+n/C
<Cje <(1+t)(3+a|)/2+6 ) (4.22)

Based on the linear estimate (4.22), one poses the following ansatz assumption: For
0<]al<2,

=2
1z

C

(1+)G-laD/2

Q
1Q
@ =19

(Z,t) §2C16< +e—(|fl+f>/0> . (4.23)

REMARK 4.2. The ansatz Assumption (4.23) is quite different from the linear estimates
(4.22) and seems unusual. In the linear level, the derivatives gain extra decaying rates
in time while in nonlinear level the derivatives decay even slower than the solution
itself. The reason is as follows: according to the solution representation (4.1), in the
justification of the ansatz Assumption (4.23) for derivatives, the third and the fourth
order derivatives are involved; however, they are not included in the Assumption (4.23)
and one could only use bounded estimates from energy method for them. Therefore,
the lack of pointwise space-time structures of the third and the fourth order derivatives
in (4.23) results in the loss of decaying rate for the first and the second order derivatives
n (4.23). One could improve the initial regularity to compensate this kind of loss.

The ansatz Assumption (4.23) yields that

—div(oi)
N(#,t)= —@-Vi— 1857y (Z,t)
—i-VO - £ Odivi+ LE+ 7S
2|f,|2
_ 2f € —2(|&|+t)/C
=0(1)e ((1+t)5/2+€ ,
—div(ow)
0:N(Z,t) =0z —i-Vi—- 200y, (Z,1)
—-VO — @dwu+ rom g CU?;TU
_2\:‘\2
e~ ~Ct -
_ oM ~2(|+4)/C | |
O(1)e ((1—|—t)2 +e

Here, the estimate for divg could be obtained from (1.8) and (4.23):

z|2

divg=0(1)e <(1€+153/2 +e—(:6+t)/c> .
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Thus, for 0 <e< 1, one has that

G(Z—y,t—s)N(¥,s)dZds
R3

(G—-G%)(Z—g,t—s)N(7,s)dZds| +

Gs(Z—y,t—s)N(y,s)dZds
R3

212
2|72 |Z]

]RS
e C(t b) e Cs e Cs
~dgjid Rl —
//R (11t—5)32 (11s)52" S+/O € 112"

| Z] 2
<Cé <(1€+:/+e <x+t>/c> <<CI€< o 6<f|+t>/c>,

It, together with (4.22) verifies the ansatz Assumption (4.23) for |a|=
The justification of (4.23) for |a|=1 and |«|=2 is similar to the one for |a|=0.
One uses the following nonlinear estimates:

g g g g
D2N(Z,t)=0(1) a | @[\ a | (@) +|0z| @ | (@0)]]02] @ | (%)
S e e S
|z
_ 2 e ¢t T|+t)/C
=0(1)e (w —(I17]+t)/ )
g g
IZN(Z,t)=0(1) i a
0 0
2
g g g
+1oz | a | @02 @ | (@t)|+|02] @ | (1)
0 S e

Here, for the third and the fourth order derivatives, we use the bounded estimates from
energy method. It is also the reason for the loss of decaying rates for the first and the
second order derivatives in (4.23).

Thus, we verify the ansatz Assumption (4.23) and finish the proof of Theorem 1.1.
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Appendix. In the appendix, we list details of tedious computations omitted
during the construction of the Green’s function in Section 3.

A.1. High order expansion of spectra. The following expansions of spectra
for |£] — 0o could be obtained after a direct computation:

=

As(€) =azo+as —o|€] 72 +az,_al€] 7 +as, 6] O +as _s|€| 2+ O(I€] ),

- [rR@C,+R) - L L L .
7@ =/ O (1 a2 sl sl el )

+ (a0 +a-2ldl 2+ a_aldl* +aol€ = +a-s|é] %) +O(E ),

, R(Cy,+R) . - . L . .
R L T R e A R

+ (ao+a—2|a72+a—4|§ﬂ\*4+a—6|§ﬂ|76+a—s\€ﬁ|78) +O0(I€]79).

A.2. Singular support functions. Now we turn to study the structure
of the singular support function G*. Substitute the explicit representations (3.1) of
approximated spectra into e*!(k=3,4,5) to yield

*
a3, —2 23,—4

+ a3 _¢ a3 _g IG5
et —eas. 0t 1IHIER 7T (141€12)°

e T ana Tt reeys

_ at ,+1(as_ 2 o
R R A LG A T S WY

1+ ¢[? <1+|g|2)2

R(CytR) i ¢ (1 @3 ols alq Ii
ilé] ( +1+\€\2+(1+\£|2)2+(1+\€\2)3+(1+|5|2)4+(1+\€\2)5

:6a3,0t +t€a310t

At

5

a_o a*y alg ~s I
t+ st —=8 =8 4 12___¢
L0t THIERE TN (1 E2)2 7T (14182)3 T (14182)T T (141€12)°

RCo+R) 1 E|t+aot

—=e Cy 1+

R(C,+R).
v 1+I£\
* 2 [/R(Cy+R) &
R(CU+R)i‘E|t.a_3+%(a,1) Ryt )y

c (1+162)°

+05(E1),

and

R(CU+R) als aly aly Ii )
t( 1+ + +—=Tg+ L]
Mt —e ilé] ( 1+\s\2 (1+1£12)2 (1+m2)3 (1+1812)* T (141€12)°
a_o a* CL*—G a*_s Jikz
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* 1 2
R(C’UJrR)Z_‘at‘ als—3(a-1)
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R(Cy,+R) -1 &
MG | e

Cy

14t—2=2 4y
1+€[2

ai4 + % (a—2)2t

(1)

(1+\§|2)2

03(E.t).

Here, the functions O; (g,t)(j =1,2,3) are analytic in EG D, /; and satisfy

5 €a3,0t/2 N
0,(E0|=0()——  for{eDy.
(1+1€2)
One goes on to expand the coefficients and the matrices r} 5} in (3.7):
. s s _R(4+Cua3,o) 0 R
p(@) (Coxs (1+1817) +4id?) | [T ot 3
— ——r3f3 = 0 0 0
Co (A =A1) (A5 = 3) (1+1€1%) @ o R
T Cye? " (@+Cyaz0)c?
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1 R(4+C a3 0) Froas 0(4+C ag o) i €T & nd
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1+ &2 e Cye? e % +0ms(8t), (A-2)
5,1 a3,0 : & 5,5
cy’ — Tz i€ Cy
~ - = Lo L
p(@) (Coni (1+167) +4id?) 2 2
— — 1y Bl = O 0 0
o (AZ—/\;)(AZ—)\g)(1+ 2) 0
2C1,c2 2C c2
1,1 4+Cyaz0 - ey ”il€] 1,3
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1 R(4+Cyas,0) 2 Ri|€] T4 | 222474 Rasy . c2:34|€].i€T
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1+[¢] 15
Rc4 Ragz o f"‘ c4 z|§| 15 C3 3
Cy 26‘1,c2 (1+|§‘ ) 4
R(4+Cyaz 0—Cyrpag) | 5 ilE] .2 R(as,0+a ]
- BetOunoCuodyg Ay Rlaere)yg
1 22 141848T i€ i|E].i€T o
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(A.3)
and
~ - o R0 B
p() (Coxs (14+161°) +4i¢2)
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R(4+Cy —Cy O R(a3,0+a o
MO Oy 4lig - Hlmarelyg
1 .Rﬂ_ﬂr 02211|515T-'€ Ril&iET o
T i e 16146 +0us (1)
R?(a3,0+a0) . 5 Ri|€]-i€ R2(4-Cyaz 0+Cuvao) .\ =
- 2C, c3 74‘£| 2C,c Q(Cv)2c3 ‘ ‘

(A.4)

—

where the functions O (€)(k=3,4,5) are analytic in 56 D, /; and satisfy

:O(l)% for 56 D1/27
(1+1€])

R
= 1+— .
c R<+CU>

The expansion (A.1), together with (A.2) and the definition of p(§) in Lemma 3.1,
yields that

‘OMk(g)

and

0 0 0 oy
FIGY|=et _ & ag,ot 0 0 0
(Cpl=eT |01 e O e ) )
0 0 0 e R (R L
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(A.5)

with the entries of matrix Cys3 being first order polynomial of ¢, and coefficients de-
pending only on as ,as,—2,a¢ and a_;. Moreover, Ofg(g, t) is analytic in Ee D, /2, and
satisfies
= o—t/C
’0f3(£,t)‘ =0(1)——
(1+1€])

Thus, (A.5), together with Lemma 2.2, results in that

for EG D1/2.
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< Qe (FH0/C, (A.6)

for a positive constant C. Here, one denotes 9z = (9y,,04,,05,) and 0% = (9y,, 0z, ,005) T
and Y(&) stands for the 3-dimensional Yukawa potential with unit mass (i.e. Y=(1+
A)~1o(@)):

1
1+ ]2

e_‘f‘

(A7)

TR

Similarly, one has that
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where O f4(5, t) is analytic and also satisfies

in 56 D, /3, and then
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— Ch4e™0zC(Z,t) %5 0zY (Z) %z Y(Z) — Chys5e™ ' 0xS(Z,t) 5 0z Y (Z) xz Y (F) ’
<CeFI/C (A.8)

Here, one denotes

{C(jt):coscﬂt, C(z,t)=F! {Coscmt] )
) — sinc|g|t an N —1 | sinc|é]t

The entries of matrices (C?M,4 and (ngs (j=1,2,3,4) are also first order polynomial of ¢
and with coefficients depending only on as,a3,—2,a0 and a_;.

The estimates (A.6) and (A.8) conclude the singular structure in the Green’s func-
tion G: Denote
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and one has Lemma 3.2.
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