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HYDRODYNAMIC TRAFFIC FLOW MODELS INCLUDING RANDOM
ACCIDENTS: A KINETIC DERIVATION∗
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Abstract. We present a formal kinetic derivation of a second order macroscopic traffic model
from a stochastic particle model. The macroscopic model is given by a system of hyperbolic partial
differential equations (PDEs) with a discontinuous flux function, in which the traffic density and the
headway are the averaged quantities. A numerical study illustrates the performance of the second order
model compared to the particle approach. We also analyse numerically uncertain traffic accidents by
considering statistical measures of the solution to the PDEs.
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1. Introduction
Traffic flow can be modelled at different scales, for example, using ordinary dif-

ferential equations (ODEs), kinetic equations or partial differential equations (PDEs).
ODE-based models describe microscopically the behaviour of individual vehicles. In
this paper, we consider especially the class of Follow-the-Leader (FTL) models [10], in
which the vehicle dynamics are influenced by the distance to the vehicle in front.

The modelling of vehicular traffic can also be based on the statistical representation
of interacting particle systems along the lines of the collisional kinetic theory. In this ap-
proach, vehicles are regarded as indistinguishable particles, whose pairwise interactions
produce speed variations. The indistinguishability assumption allows one to describe
them by means of the statistical distribution of their speed, pretty much like in the
kinetic approach to gas dynamics, introduced by Boltzmann. The pioneer of the kinetic
approach to vehicular traffic was Prigogine [21,22], who in the 1960s proposed to adapt
the classical concepts of the statistical physics of gases to vehicles along a road, so as to
obtain a mathematical representation of traffic which could serve as a link between the
microscopic vehicle-wise and the macroscopic fluid dynamic descriptions. Since then,
several improvements have been proposed, such as the use of Enskog-type rather than
Boltzmann-type kinetic equations to capture the non-locality of vehicle interactions,
see e.g. [17], up to more general Povzner-Boltzmann-type equations, which are able to
explain the genesis of non-local macroscopic traffic models, see e.g. [5]. The kinetic
approach has proved useful also in upscaling microscopically controlled vehicle dynam-
ics to the macroscopic scale, whereby hydrodynamic traffic models have been deduced,
which incorporate consistently the effect of driver-assist or automated vehicles on the
mean flow, see e.g. [4, 7].
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Macroscopic models, which do not focus on individual vehicles but on the traffic
density as an aggregate quantity, take inspiration from fluid dynamics and therefore
are based on hyperbolic conservation laws. They were first introduced by Lighthill,
Whitham and Richards [18, 23] in the 1950s. Since then, first order models have been
extended in several directions. Aw, Rascle and Zhang [1, 27] introduced second order
traffic models where density and speed are considered as the averaged quantities.

In this paper, starting from FTL microscopic dynamics, we adopt an Enskog-type
kinetic approach to obtain a second order macroscopic model in which, besides the
vehicle density, the traffic flow is described by the mean headway among the vehicles.
The resulting hydrodynamic model is original in that the mean headway is treated as a
second aggregate variable independent of the traffic density, whereas in classical traffic
models it is empirically assumed to be proportional to the inverse of the latter. More-
over, thanks to the kinetic approach, the model is obtained as a physical limit of funda-
mental particle dynamics. This introduces a remarkable difference with respect to the
mainstream in the reference literature, where the link between microscopic and macro-
scopic descriptions of traffic is usually established by showing that selected versions of
the former may be used as numerical discretisation of the latter, with convergence in
appropriate particle limits. Furthermore, our model allows for an additional space de-
pendence in the flux function for varying road capacities to model traffic accidents. For
the sake of completeness, we note that hyperbolic partial differential equations with an
additional space dependence in the flux have been studied before, e.g., in [15, 16, 26],
and for a first order traffic model in [12], where a corresponding microscopic model and
its convergence are discussed.

As mentioned above, as an application we use our space-dependent macroscopic
model to describe traffic accidents, which we understand as capacity drops in the flux
function. This idea was developed in [11, 12]. Further approaches to traffic accident
modelling can be found in the literature from various disciplines: for instance, by us-
ing kinetic models [8] or by constructing Bayesian networks [19, 29] and recently also
neural networks [9, 28]. In our case, the physical limit mentioned above, along with
the probabilistic/statistical setting of the kinetic theory, allows us to treat accidents
as capacity drops in random, viz. uncertain, locations along the road, which trans-
lates into a macroscopic model featuring a realistically uncertain flux. For the sake
of completeness, we report that the effect of uncertain quantities on traffic dynamics
has already been taken into account in a number of other papers. Without pretending
to be exhaustive, we mention that in [13] uncertain lateral speeds, orthogonal to the
main traffic stream, are introduced to model the displacement of vehicles across the
lanes of a multi-lane road; in [14] uncertain vehicle interactions are considered, in a
homogeneous Boltzmann-type kinetic modelling framework, to explain the emergence
of equilibrium speed distributions comparable with those shown by rough traffic data;
in [25] a theoretical investigation, still based on concepts and tools of the collisional
kinetic theory, is proposed concerning the ability of autonomous vehicles to mitigate
the impact of uncertain vehicle interactions on the aggregate traffic predictions; finally,
in [2] analytical properties of conservation laws with uncertain and discontinuous flux
functions are discussed.

In more detail, the plan of this work is as follows. In Section 2 we introduce the
underlying microscopic FTL traffic model, which we use in Section 3 to derive stochastic
particle dynamics and therefrom the second order macroscopic limiting model with
density and mean headway, of which we discuss some relevant analytical properties. We
also show that in an appropriate regime of the parameters of the particle dynamics, the
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second order model relaxes towards a first order model, in which the main aggregate
quantity is the traffic density while the mean headway is expressed as a function of
the density derived from the interaction rules among the particles. We complete the
picture by illustrating numerically the results. In Section 4 we extend the multiscale
modelling framework above with the inclusion of random accidents and we undertake a
computational analysis of the performances of the model with accidents using different
numerical simulation strategies to capture the expected values of the traffic density and
mean headway at the various scales. Finally, in Section 5 we draw some conclusions
and briefly sketch possible research developments.

2. Microscopic dynamics with headway
We consider the following Follow-the-Leader (FTL) microscopic model introduced

in [12]

ẋi(t)= c(xi(t))Ṽ

(
L

xi+1(t)−xi(t)

)
, i=1, 2, ... (2.1)

where L>0 is a reference vehicle length, xi(t)∈R the position of the i-th vehicle at time
t and Ṽ a given speed function. Moreover, c= c(x) :R→ [0, 1] is a prescribed function
modulating the actual speed of the vehicles depending on the road capacity in the point
x∈R.

We define the distance between two consecutive vehicles i and i+1, i.e. the headway
of the i-th vehicle, as

si(t) :=xi+1(t)−xi(t),

whence, using (2.1),

ṡi(t)= c(xi+1(t))Ṽ

(
L

si+1(t)

)
−c(xi(t))Ṽ

(
L

si(t)

)
.

If the vehicles i, i+1 participating in the interaction described by this equation are
meant to be representative of any pair of interacting vehicles, we can drop the indices
i, i+1 and define the generic positions x :=xi(t), x∗ :=xi+1(t) and the pre-interaction
headways s :=si(t), s∗ :=si+1(t). Furthermore, if we assume that the variation of the
headway in consequence of an interaction takes place in a small time interval of size

γ>0 we can approximate ṡi(t)≈ si(t+γ)−si(t)
γ , where we identify s′ :=si(t+γ) as the

post-interaction headway. Finally, we convert the previous ODE into the following
algebraic binary interaction rule

s′=s+γ
(
c(x∗)V (s∗)−c(x)V (s)

)
, (2.2)

where we have denoted V (s) := Ṽ (Ls ).
In addition to the FTL interaction dynamics described by (2.2), we consider also a

spontaneous relaxation of the headway of each vehicle towards an optimal/recommended
headway H, which we assume to be given as a function of the global density ρ of traffic:
H=H(ρ). Hence we couple to (2.2) a second update rule of the headway of the form

s′′=s+a(H(ρ)−s), (2.3)

where a>0 is a relaxation parameter.
On the functions V , H we make the following assumptions:

Assumption 2.1. We assume that the speed V is a non-negative function of the
headway s≥0 with the following characteristics:
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(i) it is differentiable and monotonically increasing:

V ′(s)>0, ∀s∈R+;

(ii) there exists a constant C>0 such that

0≤V (s)≤Cs, ∀s∈R+.

Furthermore, we assume that the optimal/recommended headway H is a non-negative,
differentiable and monotonically decreasing function of the traffic density ρ≥0.

Assumption 2.1(i) is quite natural from the modelling point of view: the larger
the distance between two consecutive vehicles the faster they travel. Analogously, the
assumption on the monotonicity of H has a modelling value, because it implies that the
more congested the traffic the closer the vehicles are forced to stay.

Conversely, Assumption 2.1(ii) is needed in order to guarantee the physical con-
sistency of the binary interaction rule (2.2), in particular the fact that s′≥0 for all
s, s∗≥0. Using Assumption 2.1(ii), we easily check that this condition is satisfied if
γ≤C. Finally, as far as the update rule (2.3) is concerned, we notice that the analo-
gous condition of physical consistency s′′≥0 for all s≥0 is guaranteed if a≤1, thanks
to the non-negativity of H.

3. Enskog-type kinetic description and hydrodynamics
We consider the superposition of the FTL interaction dynamics (2.2) and the Opti-

mal Headway (OH) relaxation dynamics (2.3) and we show that, in the hydrodynamic
limit, two types of macroscopic models can be obtained. If OH dynamics happen at
a much slower rate than FTL dynamics then we get an inhomogeneous second-order
macroscopic model featuring the traffic density and the mean headway as hydrody-
namic parameters. Conversely, OH and FTL dynamics happen at comparable rates
then we get a first order Lighthill-Whitham-Richards type-model featuring only the
traffic density as hydrodynamic parameter.

To obtain these results, we rely on an Enskog-type collisional kinetic description of
the system of interacting particles subject to the rules (2.2), (2.3).

3.1. Slow relaxation regime. We consider a large ensemble of indistinguish-
able vehicles, each of which is identified by the dimensionless position Xt∈R and dimen-
sionless headway St∈R+ at time t>0. Motivated by the rules (2.2), (2.3), we consider
the following discrete-in-time stochastic particle model:{

Xt+∆t=Xt+c(Xt)V (St)∆t,

St+∆t=St+γΘ
(
c(X∗

t )V (S∗
t )−c(Xt)V (St)

)
+Ξa(H(ρ)−St),

(3.1)

where ∆t>0 is a (small) time step. Moreover, Θ,Ξ∈{0, 1} are Bernoulli random vari-
ables describing whether during the time step ∆t a randomly chosen vehicle with mi-
croscopic state (Xt,St): (i) updates (Θ=1) or not (Θ=0) its headway owing to an
FTL interaction with the leading vehicle in X∗

t ; (ii) updates (Ξ=1) or not (Ξ=0) its
headway because of an OH relaxation towards the optimal headway H(ρ). In more
detail, we let

Θ∼Bernoulli(∆t), Ξ∼Bernoulli(ε∆t), (3.2)

thereby assuming that the probability for either updates to happen is proportional to
∆t. The parameter ε>0 is used to differentiate the rate of OH relaxation from that
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of FTL interactions. In particular, here we assume that OH relaxation is much slower
than FTL interactions, i.e.

ε≪1.

Furthermore, we need ∆t≤1 for consistency.
To reach an aggregate statistical description of our particle system we introduce

the kinetic distribution function f =f(x,s,t) :R×R+×(0,+∞)→R+ of the microscopic
state (x,s) of a generic representative vehicle at time t. In essence, f(x,s,t)dxds gives
the probability that a vehicle has a position comprised between x and x+dx and a
headway comprised between s and s+ds at time t. Then, by standard arguments,
see e.g., [20], averaging (3.1) and taking the continuous-time limit ∆t→0+ we obtain
formally that f satisfies the following equation:

∂t

∫ +∞

0

φ(s)f(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

φ(s)V (s)f(x,s,t)ds

)
=
1

2

∫ +∞

0

∫ +∞

0

(φ(s′)−φ(s))f(x,s,t)f(x+η,s∗,t)dsds∗

+ε

∫ +∞

0

(φ(s′′)−φ(s))f(x,s,t)ds, (3.3)

for every choice of φ :R+→R, which here plays the role of a test function, where s′ and
s′′ on the right-hand side are given by (2.2), (2.3), respectively.

Notice that (3.3) is the weak form of a collisional kinetic equation in which we have
assumed that vehicles interact when they are at a distance η>0 from each other (cf. the
first term on the right-hand side). In other words, with respect to the notation used in
the interaction rule (2.2), we have assumed x∗=x+η. Therefore, (3.3) is an Enskog-type
kinetic equation, which, as discussed in [17], is more appropriate than a Boltzmann-type
equation to model vehicular traffic. The main reason is that a non-locality in space of
the interactions is necessary in order to reproduce density waves possibly travelling
backwards in spite of the non-negativity of the microscopic car speeds.

In order to make (3.3) more amenable to further analytical investigations, we assume
that the non-locality η is sufficiently small so that we can approximate

f(x+η,s∗,t)≈f(x,s∗,t)+η∂xf(x,s∗,t). (3.4)

An analogous approximation applies also to the term

c(x∗)= c(x+η)≈ c(x)+c′(x)η, (3.5)

contained in s′, cf. (2.2), whence, assuming φ smooth,

φ(s′)=φ
(
s+γ

(
c(x∗)V (s∗)−c(x)V (s)

))
=φ
(
s̃′+γηc′(x)V (s∗)

)
≈φ(s̃′)+φ′(s̃′)γηc′(x)V (s∗),

where we have set

s̃′ :=s+γc(x)
(
V (s∗)−V (s)

)
. (3.6)
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Plugging these approximations into (3.3) and enforcing the equality we get the following
approximated kinetic equation:

∂t

∫ +∞

0

φ(s)f(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

φ(s)V (s)f(x,s,t)ds

)
=
1

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f(x,s,t)f(x,s∗,t)dsds∗

+
γη

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f(x,s,t)f(x,s∗,t)dsds∗

+
η

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f(x,s,t)∂xf(x,s∗,t)dsds∗

+
γη2

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)f(x,s,t)∂xf(x,s∗,t)dsds∗

+ε

∫ +∞

0

(φ(s′′)−φ(s))f(x,s,t)ds. (3.7)

3.1.1. Hydrodynamic limit. To pass from the kinetic description (3.7) to the
hydrodynamic regime, we use the parameter ε as a sort of Knudsen number. Specifically,
we scale time and space as

t→ t

ε
, x→ x

ε
, (3.8)

whence ∂t→ε∂t, ∂x→ε∂x, c
′(x)→εc′(x), and consequently we rewrite (3.7) as

∂t

∫ +∞

0

φ(s)fε(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

φ(s)V (s)fε(x,s,t)ds

)
=

1

2ε

∫ +∞

0

∫ +∞

0

(φ(s̃′))−φ(s))fε(x,s,t)fε(x,s∗,t)dsds∗

+
γη

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f
ε(x,s,t)fε(x,s∗,t)dsds∗

+
η

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t)∂xf
ε(x,s∗,t)dsds∗

+
εγη2

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f
ε(x,s,t)∂xf

ε(x,s∗,t)dsds∗

+

∫ +∞

0

(φ(s′′)−φ(s))fε(x,s,t)ds, (3.9)

where fε(x,s,t) :=f(xε ,s,
t
ε ) denotes the distribution function parameterised by ε. Next,

we introduce the following definition.

Definition 3.1. We call collisional invariant of the kinetic Equation (3.9) any
quantity φ :R+→R such that∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t)fε(x,s∗,t)dsds∗=0.

It is not difficult to check that φ(s)=1 and φ(s)=s are collisional invariants in the
sense of Definition 3.1. Plugging these two quantities into (3.9) we obtain therefore, for
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every ε>0,

∂t

∫ +∞

0

fε(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

V (s)fε(x,s,t)ds

)
=0,

∂t

∫ +∞

0

sfε(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

sV (s)fε(x,s,t)ds

)
=
γη

2
c′(x)

∫ +∞

0

∫ +∞

0

V (s∗)f
ε(x,s,t)fε(x,s∗,t)dsds∗

+
γη

2
c(x)

∫ +∞

0

∫ +∞

0

(V (s∗)−V (s))fε(x,s,t)∂xf
ε(x,s∗,t)dsds∗

+
εγη2

2
c′(x)

∫ +∞

0

∫ +∞

0

V (s∗)f
ε(x,s,t)∂xf

ε(x,s∗,t)dsds∗

+a

∫ +∞

0

(H(ρ)−s)fε(x,s,t)ds.

(3.10)

On the other hand, in the hydrodynamic limit ε→0+ Equation (3.9) implies that
the limit distribution f0 satisfies formally∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f0(x,s,t)f0(x,s∗,t)dsds∗=0, (3.11)

for every observable quantity φ. We call a solution f0 to this equation a local
Maxwellian, i.e. an equilibrium distribution of the headway s for fixed x, t.

Assume we are given a local Maxwellian. Then, passing to the hydrodynamic limit
also in (3.10) we discover:

∂t

∫ +∞

0

f0(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

V (s)f0(x,s,t)ds

)
=0,

∂t

∫ +∞

0

sf0(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

sV (s)f0(x,s,t)ds

)
=
γη

2
c′(x)

∫ +∞

0

∫ +∞

0

V (s∗)f
0(x,s,t)f0(x,s∗,t)dsds∗

+
γη

2
c(x)

∫ +∞

0

∫ +∞

0

(V (s∗)−V (s))f0(x,s,t)∂xf
0(x,s∗,t)dsds∗

+a

∫ +∞

0

(H(ρ)−s)f0(x,s,t)ds.

(3.12)

Clearly, any local Maxwellian is defined up to the collisional invariants. This means,
in particular, that f0 is parameterised by:

• the traffic density

ρ(x,t) :=

∫ +∞

0

f0(x,s,t)ds;

• the mean headway

h(x,t) :=
1

ρ(x,t)

∫ +∞

0

sf0(x,s,t)ds.
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Indeed Equation (3.11), which, for φ(s)=1, s is trivially satisfied because of Defini-
tion 3.1, cannot determine univocally the zeroth and first order s-moments of f0. Con-
sequently, if an explicit expression of f0 is available, system (3.12) may provide the
evolution equations for ρ, h, thus the macroscopic counterpart of the particle traffic
model (3.1).

It is not difficult to check, by direct substitution in (3.11), that the monokinetic
distribution

f0(x,s,t)=ρ(x,t)δ(s−h(x,t)), (3.13)

δ(·) being the Dirac distribution, is a local Maxwellian. Uniqueness of (3.13) is hard
to obtain for a completely general speed function V . Nevertheless, it can be recovered,
under additional assumptions on V , in the quasi-invariant regime of the particle dy-
namics (3.1), i.e. a regime reminiscent of the grazing collision regime of the classical
kinetic theory in which every particle interaction produces a little change of microscopic
state but interactions are quite frequent. See [5] for further details.

Using (3.13) in (3.12) we get, after some computations, the second order macro-
scopic model∂tρ+∂x

(
c(x)V (h)ρ

)
=0,

∂t(ρh)+∂x
(
c(x)V (h)ρh

)
=

γ

2
ρ2η∂x

(
c(x)V (h)

)
+aρ(H(ρ)−h),

(3.14)

in the hydrodynamic parameters ρ, h.

3.1.2. Analytical insights into the macroscopic system. Despite the
general derivation of a macroscopic description incorporating both FTL and relaxation
dynamics, here we focus on system (3.14) without relaxation term:∂tρ+∂x

(
c(x)V (h)ρ

)
=0,

∂t(ρh)+∂x
(
c(x)V (h)ρh

)
=

γ

2
ρ2η∂x

(
c(x)V (h)

)
,

(3.15)

with (x,t)∈R× [0,+∞). System (3.15) constitutes the hydrodynamic counterpart of
the original microscopic FTL model (2.1).

We notice that we can write (3.15) in conservative form defining the pressure func-
tion p(ρ)= γ

2 ηρ, i.e.∂tρ+∂x
(
c(x)V (h)ρ

)
=0,

∂t
(
ρ(h+p(ρ))

)
+∂x

(
c(x)V (h)ρ(h+p(ρ))

)
=0.

(3.16)

Now we rewrite system (3.16) as
∂tρ+∂x

(
cV (h)ρ

)
=0,

∂t
(
ρ(h+p(ρ))

)
+∂x

(
cV (h)ρ(h+p(ρ))

)
=0,

∂tc=0.

(3.17)

This is a 3×3 system for V := (ρ, ρ(h+p(ρ)), c)T and we complement it with the initial
datum

ū(x)=(ρ̄,h̄, c̄)(x) s.t. ρ̄(x)>0, h̄(x)>0, c̄(x)>0. (3.18)
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The quasilinear vector form of the system (3.17) is

∂tU+A(U)∂xU=0,

with U := (ρ, h,c)T and

A(U) :=

cV (h) V ′(h)cρ V (h)ρ
0 c

(
V (h)− γ

2 ηρV
′(h)

)
−γ

2 ηρV (h)
0 0 0

 .

The eigenvalues λ1, λ2, λ3, and eigenvectors r1, r2, r3, of this matrix are

λ3= cV (h) with r3=(1, 0, 0),

λ2= c
(
V (h)− γ

2
ηρV ′(h)

)
with r2=

(
1,−γ

2
η, 0
)
,

and

λ1=0 with r1=
(
V (h)ρ,−γ

2
ηV (h)ρ, c

(
ρ
γ

2
ηV ′(h)−V (h)

))
.

Since the eigenvalues are real and A(U) is diagonalisable, system (3.14) is hyperbolic.
Furthermore, under the Assumptions V ′(h)>0, V (h)>0 and V (h)> γ

2 ηρV
′(h), it re-

sults λ1<λ2<λ3, then the system is strictly hyperbolic. No characteristic speed is
greater than the flow speed. Hence (3.15) complies with the Aw-Rascle consistency
condition. The first characteristic field and the third characteristic field are linearly de-
generate: ∇λ1 ·r1=0,∇λ3 ·r3=0, thus the associated waves are contact discontinuities.
Conversely, the second characteristic field is genuinely nonlinear: ∇λ2 ·r2 ̸=0, hence the
associated waves are either shocks or rarefactions, if the velocity function is such that
V ′(h)− ρ

2V
′′(h) ̸=0. It is worth noticing that, choosing V (h) := h

1+h we get ∇λ2 ·r2<0.
In this setting, in order to prove the global existence of entropy solutions, we can ap-
ply [3, Theorem 7.1] under a quite restrictive assumption on the total variation of the
initial datum.

Theorem 3.1. Let us consider the set Ω such that for every (ρ,h,c)∈Ω the following
conditions are verified:

• V (h), c and V ′(h) are strictly greater than zero;

• V (h)− γ
2 ηρV

′(h) ̸=0;

• V ′(h)− ρ
2V

′′(h) ̸=0.
For every compact K⊂Ω there exists a constant δ>0 with the following property. For
every initial condition ū with

TV(ū)≤ δ, lim
x→−∞

ū(x)∈K, (3.19)

the Cauchy problem (3.17)-(3.18) has a weak entropy solution u(t,x)=(ρ,h,c)(t,x), de-
fined for all t≥0. If a convex entropy η̃ is given, then the Cauchy problem (3.17)-(3.18)
admits an η̃−admissible solution.

In order to give more analytical insights, let us consider the Riemann problem for
our system (3.17), with initial data

ū(0,x) :=

{
(ρ−,h−,c−), x<0,

(ρ+,h+,c+), x>0,
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assuming ρ±, h±, c±>0. By r1,r2,r3 the rarefaction curves through (ρ−,h−,c−) are
obtained solving the following Cauchy problems. From r1 we get

ρ̇=V (h)ρ,

ḣ=−γ
2 ηV (h)ρ,

ċ= c
(
ργ
2 ηV

′(h)−V (h)
)
.

This yields to 
ρ̇=V (h)ρ,

ḣ=−γ
2 ηρ̇,

ċ= c
(
ργ
2 ηV

′(h)−V (h)
)
,

then, we end up with the implicit curve

R1 :σ1→
(
ρ−e

∫ σ1
0 V (h(σ1))dσ1 ,h−− γ

2
η(ρ(σ1)−ρ−),c−e

∫ σ1
0 (−V (h(σ1))+

γ
2 ηρV

′(h(σ1)))dσ1

)
.

From r2 we write 
dh
dρ =−γ

2 η,

h(ρ−)=h−,

ċ=0.

This yields the curve

R2 :σ2→ (σ2+ρ−,h−− γ

2
ησ2,c

−),

that can be rewritten as

R2=
{
(ρ,h,c) : h−h−=−γ

2
η
(
ρ−ρ−

)
, c= c−

}
.

From r3 we have 
ρ̇=1,

ḣ=0,

ċ=0.

This yields the curve

R3 :σ3→ (σ3+ρ−,h−,c−).

The shock curves S1,S2 and S3 through (ρ−,h−,c−) are derived from the Rankine-
Hugoniot conditions

λ(ρ−−ρ)= c−V (h−)ρ−−cV (h)ρ,

λ
(
ρ−(h−+p(ρ−))−ρ(h+p(ρ))

)
= c−ρ−V (h−)

(
h−+p(ρ−)

)
−cρV (h)(h+p(ρ)),

λ(c−−c)=0.

We can observe by a straightforward computation that S1 coincides with the rarefaction
curve R1 , S2 coincides with the rarefaction curve R2 and S3 coincides with R3, with
the characteristic fields associated to r1 and r3 being linearly degenerate.
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Remark 3.1. It is interesting to notice that system (3.17) reduces to the following
2×2 system when c is constant:∂tρ+c∂x

(
V (h)ρ

)
=0,

∂t
(
ρ(h+p(ρ))

)
+c∂x

(
V (h)ρ(h+p(ρ))

)
=0.

This system of conservation laws belongs to the Temple class, see [6, 24], and deserves
more analytical attention, for this reason a deeper study will be done in a future work.

3.2. Fast relaxation regime. We now analyse the case in which the FTL and
the relaxation dynamics take place at the same rate. This means that, in place of (3.2),
we consider

Θ,Ξ∼Bernoulli(∆t),

which produces the following weak form of the Enskog-type kinetic equation:

∂t

∫ +∞

0

φ(s)f(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

φ(s)V (s)f(x,s,t)ds

)
=
1

2

∫ +∞

0

∫ +∞

0

(φ(s′)−φ(s))f(x,s,t)f(x+η,s∗,t)dsds∗

+

∫ +∞

0

(φ(s′′)−φ(s))f(x,s,t)ds. (3.20)

in place of (3.3). The difference with respect to the latter is that the two terms at the
right-hand side are now of the same order of magnitude. Repeating the approxima-
tions (3.4), (3.5) under the assumption of small η yields

∂t

∫ +∞

0

φ(s)f(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

φ(s)V (s)f(x,s,t)ds

)
=
1

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f(x,s,t)f(x,s∗,t)dsds∗

+
γη

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f(x,s,t)f(x,s∗,t)dsds∗

+
η

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f(x,s,t)∂xf(x,s∗,t)dsds∗

+
γη2

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)f(x,s,t)∂xf(x,s∗,t)dsds∗

+

∫ +∞

0

(φ(s′′)−φ(s))f(x,s,t)ds, (3.21)

in place of (3.7), s̃′ being again given by (3.6).

3.2.1. Hydrodynamic limit. Under the scaling (3.8), the kinetic Equa-
tion (3.21) in the scaled distribution function fε becomes:

∂t

∫ +∞

0

φ(s)fε(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

φ(s)V (s)fε(x,s,t)ds

)
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=
1

2ε

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t)fε(x,s∗,t)dsds∗

+
γη

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f
ε(x,s,t)fε(x,s∗,t)dsds∗

+
η

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t)∂xf
ε(x,s∗,t)dsds∗

+
εγη2

2
c′(x)

∫ +∞

0

∫ +∞

0

φ′(s̃′)fε(x,s,t)∂xf
ε(x,s∗,t)dsds∗

+
1

ε

∫ +∞

0

(φ(s′′)−φ(s))fε(x,s,t)ds. (3.22)

At this point, we introduce the following new definition of collisional invariants,
which, for (3.22) replaces Definition 3.1:

Definition 3.2. We call collisional invariant of the kinetic Equation (3.22) any
quantity φ :R+→R such that

1

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t)fε(x,s∗,t)dsds∗

+

∫ +∞

0

(φ(s′′)−φ(s))fε(x,s,t)ds=0.

It is immediate to check that φ(s)=1 is again a collisional invariant whereas φ(s)=s
is not. Therefore, plugging φ(s)=1 into (3.22) we are left, for every ε>0, with the
equation

∂t

∫ +∞

0

fε(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

V (s)fε(x,s,t)ds

)
=0,

which, passing to the hydrodynamic limit ε→0+, yields formally

∂t

∫ +∞

0

f0(x,s,t)ds+∂x

(
c(x)

∫ +∞

0

V (s)f0(x,s,t)ds

)
=0, (3.23)

f0 being a local Maxwellian which satisfies

1

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f0(x,s,t)f0(x,s∗,t)dsds∗

+

∫ +∞

0

(φ(s′′)−φ(s))f0(x,s,t)ds=0,

for every observable quantity φ :R+→R. For φ(s)=s this relationship gives

ρ(H(ρ)−h)=0,

ρ, h being the density and the mean of f0. Next, by direct substitution we discover
that the monokinetic distribution

f0(x,s,t)=ρ(x,t)δ
(
s−H(ρ(x,t))

)
,

parameterised by ρ (i.e., the macroscopic parameter associated with the only collisional
invariant) is a local Maxwellian. Again, uniqueness of such a local Maxwellian is hard
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to obtain for a generic speed function V but can be guaranteed at least in the quasi-
invariant regime under additional assumptions on V , cf. [5].

Inserting the f0 above into (3.23) we finally get the first order macroscopic model

∂tρ+∂x
(
c(x)ρV (H(ρ))

)
=0, (3.24)

in the hydrodynamic parameter ρ. Notice that with H(ρ)=1/ρ this becomes the equa-
tion considered in [12].

3.3. Numerical simulations.

3.3.1. Discretisations. Consider an equispaced spatial grid (x̃i)i=1,...,Ñ with
step size ∆x>0 and a temporal grid (tj)j=1,...,M and step size ∆t>0. The particle
model (3.1) can directly be solved using a sufficiently small step size of ∆t≤min{1, 1ε}.
The microscopic model (2.1) is solved using the explicit Euler scheme, i.e.

xj+1
i =xj

i +∆tc(xj
i )Ṽ

(
L

xj
i+1−xj

i

,

)
,

with stepsize ∆t≤ 1
∥c∥∞∥Ṽ ∥∞

and xj
i denotes the position of the i-th vehicle at time tj .

The velocity function is set to Ṽ (x)=1−x.

We apply the Lax-Friedrichs scheme to investigate the numerical behaviour of the
proposed macroscopic models (3.14) and (3.24). Even though the scheme has diffusive
properties it rebuilds the main properties of the model, especially for small stepsizes.
For the second order macroscopic model (3.14) we define zji =ρjih

j
i and use a splitting

approach for the second equation. First, the advection step is performed, then the
diffusion part is taken into account.

ρj+1
i =

ρ
j
i−1+ρ

j
i+1

2
− ∆t

2∆x

(
c(xi+1)V (hj

i+1)ρ
j
i+1−c(xi−1)V (hj

i−1)ρ
j
i−1

)
,

z̃j+1
i =

ρ
j
i−1h

j
i−1+ρ

j
i+1h

j
i+1

2
− ∆t

2∆x

(
c(xi+1)V (hj

i+1)ρ
j
i+1h

j
i+1−c(xi−1)V (hj

i−1)ρ
j
i−1h

j
i−1

)
,

zj+1
i = z̃ji +∆t

(
γ
2
(ρji )

2η
c(xi+1)V (h

j
i+1)−c(xi)V (h

j
i )

∆x
+aρji (H(ρji )−hj

i )

)
,

hj+1
i =

z
j+1
i

ρ
j+1
i

.

The discretization of the first order model (3.24) is similarly given by

ρj+1
i =

ρji−1+ρji+1

2
− ∆t

2∆x

(
c(xi+1)V (hj

i+1)ρ
j
i+1−c(xi−1)V (hj

i−1)ρ
j
i−1

)
.

For stability of the numerical scheme the CFL-condition is ensured for both the first
and second order model

∆t

∆x
∥c∥∞∥V ∥∞≤1.

3.3.2. Particle-macro and micro-macro comparison. We consider a road
given by the interval [−4,4] with periodic boundary conditions and set the initial con-
ditions

ρ0(x) :=

{
0.15 x<0

0.1 x≥0,
h0(x) :=

{
0.8 x<0

0.95 x≥0.
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Let δ>0, then we set

croad(x)=


1 x∈ [−4,−2−δ)∪ [2+δ,4]

0.6 x∈ [−2+δ,2−δ]

− 0.2
δ x+0.8− 0.4

δ x∈ [−2−δ,−2+δ]
0.2
δ x+0.8− 0.4

δ x∈ [2−δ,2+δ].

In the following we set δ= 1
10 . The road capacity is reduced on the area of [−2,2] which,

for example, may be caused by an accident. For the microscopic simulation croad needs
to be sufficiently smooth. Therefore, we add a linear interpolation in a δ-range around
the discontinuities. In the numerical tests we consider the following functions

V (h) :=
h

h+1
and H(ρ) :=

1

1+ρ
. (3.25)

We consider a time horizon of T =10. We set ∆x=10−2, ε=10−3, ∆t=ε and 106

particles in the particle simulation and ∆x=2 ·10−4,∆t=2 ·10−4, γ=0.5, η=10−2 in
the macroscopic simulations to reduce the diffusion of the Lax-Friedrichs-scheme. In
the microscopic model we consider N =104 vehicles and a vehicle length of L= 1

N . The
initial vehicle positions are arranged such that the local densities correspond to ρ0. To
visualize the effects of the relaxation parameter a of the second order macroscopic model
(3.14) we show simulations for a=0 (Figure 3.1) and a=1 (Figure 3.2). Only in the
particle and the second order macroscopic model, the headway is a state variable in
the system. To be able also to compare headways from the microscopic and first order
macroscopic model, in these models we compute the headways artificially according to
H(ρ) defined in (3.25).
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Fig. 3.1: Comparison of density and headway between the particle model and the second order macro-
scopic model (left) and the microscopic model together with first and second order macroscopic model
(right) without relaxation (a=0).

In the left half of Figure 3.1 we observe a good match of the particle model and
the second order macroscopic model for both, the density and the headway. On the
right half for the comparison of the microscopic model and the first and second order
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Fig. 3.2: Comparison of density and headway between the particle model and the second order macro-
scopic model (left) and the microscopic model together with first and second order macroscopic model
(right) with relaxation parameter a=1.

macroscopic model, the microscopic and the first order macroscopic model show the
same behaviour on both scales. In the density, the second order model is still close, but
shows significant deviations in, for example, the increase around x=−0.5 which has been
captured by the particle simulation but not the microscopic or first order macroscopic
model. The difference is driven by the different evolution of the headway in the second
order model. Comparing Figures 3.1 and 3.2 we observe that increasing the relaxation
parameter a pushes the particle model and second order macroscopic model closer to
microscopic model and first order macroscopic model, respectively. For both the second
order macroscopic model and the particle model, the peak in the density around x=−0.5
is reduced. A similar behaviour is observable in the headway illustration. Compared to
a=0, in Figure 3.2 the headways of the second order macroscopic model and especially
the particle model very strongly tend to the ones from the microscopic model.

4. Kinetic and macroscopic descriptions including random accidents
In this section, we go back to the particle model (3.1) without relaxation (Ξ≡0)

and we include random accidents understood as a reduction of the road capacity in
uncertain locations. In more detail, we consider:{

Xt+∆t=Xt+c(Xt;Y )V (St)∆t,

St+∆t=St+γΘ
(
c(X∗

t ;Y )V (S∗
t )−c(Xt;Y )V (St)

)
,

(4.1)

where Y ∈R+ is a bounded random variable parameterising the road capacity function
c, such that [−Y, Y ] is the uncertain interval within which an accident taking place at
x=0 affects the traffic flow by reducing the road capacity, see Figure 4.1. Thus, 2Y is
the uncertain size of the accident.

Remark 4.1. Contrary to (3.1), here we disregard the relaxation term in the par-
ticle model (4.1) because for this application we do not intend to compare first and
second order macroscopic dynamics. Therefore, we stick to the original motivating FTL
model (2.1).
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Y−Y

1

x

c(x;Y )

0

Fig. 4.1: Prototypical road capacity function parameterised by the random extent of an accident.
Outside the uncertain stretch [−Y, Y ] we have c=1, whereas within the uncertain stretch [−Y, Y ] we
have c<1.

4.1. Enskog-type kinetic description and its hydrodynamic limit. The
(weak) Enskog-type description of the particle dynamics (4.1) is formally analogous
to (3.3) up to dropping the second integral at the right-hand side:

∂t

∫ +∞

0

φ(s)f(x,s,t;Y )ds+∂x

∫ +∞

0

φ(s)c(x;Y )V (s)f(x,s,t;Y )ds

=
1

2

∫ +∞

0

∫ +∞

0

(φ(s′)−φ(s))f(x,s,t;Y )f(x+η,s∗,t;Y )dsds∗. (4.2)

However, now also the interaction rule (2.2) is parameterised by the random variable Y ,
which plays indeed the role of a random parameter in the whole equation. Therefore,
in (4.2) it results

s′=s+γ
(
c(x∗;Y )V (s∗)−c(x;Y )V (s)

)
.

On the whole, the solution f to (4.2) depends on Y as a parameter, thus we write
f =f(·,·,·;Y ).

If the non-locality η of the interactions is sufficiently small, we may approxi-
mate (4.2) by (cf. (3.7)):

∂t

∫ +∞

0

φ(s)f(x,s,t;Y )ds+∂x

(
c(x;Y )

∫ +∞

0

φ(s)V (s)f(x,s,t;Y )ds

)
=
1

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f(x,s,t;Y )f(x,s∗,t;Y )dsds∗

+
γη

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f(x,s,t;Y )f(x,s∗,t;Y )dsds∗

+
η

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f(x,s,t;Y )∂xf(x,s∗,t;Y )dsds∗

+
γη2

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

φ′(s̃′)f(x,s,t)∂xf(x,s∗,t;Y )dsds∗,
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where

s̃′ :=s+γc(x;Y )
(
V (s∗)−V (s)

)
.

Under the scaling (3.8) this yields

∂t

∫ +∞

0

φ(s)fε(x,s,t;Y )ds+∂x

(
c(x;Y )

∫ +∞

0

φ(s)V (s)fε(x,s,t;Y )ds

)
=

1

2ε

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t;Y )fε(x,s∗,t;Y )dsds∗

+
γη

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

φ′(s̃′)V (s∗)f
ε(x,s,t;Y )fε(x,s∗,t;Y )dsds∗

+
η

2

∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))fε(x,s,t;Y )∂xf
ε(x,s∗,t;Y )dsds∗

+
εγη2

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

φ′(s̃′)fε(x,s,t)∂xf
ε(x,s∗,t;Y )dsds∗.

Based on Definition 3.1, that we may reapply in this case, we see that φ(s)=1, s
are collisional invariants for this kinetic equation. Using them we get, for every ε>0,
the system of equations

∂t

∫ +∞

0

fε(x,s,t;Y )ds+∂x

(
c(x;Y )

∫ +∞

0

V (s)fε(x,s,t;Y )ds

)
=0,

∂t

∫ +∞

0

sfε(x,s,t;Y )ds+∂x

(
c(x;Y )

∫ +∞

0

sV (s)fε(x,s,t;Y )ds

)
=
γη

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

V (s∗)f
ε(x,s,t;Y )fε(x,s∗,t;Y )dsds∗

+
γη

2
c(x;Y )

∫ +∞

0

∫ +∞

0

(V (s∗)−V (s))fε(x,s,t;Y )∂xf
ε(x,s∗,t;Y )dsds∗

+
εγη2

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

V (s∗)f
ε(x,s,t;Y )∂xf

ε(x,s∗,t;Y )dsds∗,

which, in the hydrodynamic limit ε→0+, converges formally to

∂t

∫ +∞

0

f0(x,s,t;Y )ds+∂x

(
c(x;Y )

∫ +∞

0

V (s)f0(x,s,t;Y )ds

)
=0,

∂t

∫ +∞

0

sf0(x,s,t;Y )ds+∂x

(
c(x;Y )

∫ +∞

0

sV (s)f0(x,s,t;Y )ds

)
=
γη

2
∂xc(x;Y )

∫ +∞

0

∫ +∞

0

V (s∗)f
0(x,s,t;Y )f0(x,s∗,t;Y )dsds∗

+
γη

2
c(x;Y )

∫ +∞

0

∫ +∞

0

(V (s∗)−V (s))f0(x,s,t;Y )∂xf
0(x,s∗,t;Y )dsds∗,

(4.3)

f0 being the local Maxwellian, which satisfies∫ +∞

0

∫ +∞

0

(φ(s̃′)−φ(s))f0(x,s,t;Y )f0(x,s∗,t;Y )dsds∗=0,
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for every observable φ.
Similarly to Section 3.1, the monokinetic distribution

f0(x,s,t;Y )=ρ(x,t;Y )δ(s−h(x,t;Y )),

turns out to be a local Maxwellian, whose uniqueness can be established e.g., in the
quasi-invariant regime along the lines of the theory developed in [4]. Notice that the
uncertainty brought by the random variable Y naturally translates on the hydrodynamic
parameters ρ, h associated with the two collisional invariants above. With such an
f0, (4.3) specialises as∂tρ+∂x

(
c(x;Y )V (h)ρ

)
=0,

∂t(ρh)+∂x
(
c(x;Y )V (h)ρh

)
=

γ

2
ρ2η∂x

(
c(x;Y )V (h)

)
,

(4.4)

which, as a matter of fact, coincides with the second order macroscopic model without
relaxation (3.15) but, in this case, with an uncertain solution (ρ, h) due to the uncertain
extent of the accident parameterising the road capacity function c.

In the classical spirit of uncertainty quantification, the family of uncertain solutions
{(ρ, h)}Y to (4.4) can be post-processed to average the uncertainty out to a deterministic
macroscopic description. This can be done by computing the expectations of ρ, h with
respect to the law of Y . In more detail, assume that the latter is expressed by a
probability distribution g=g(y), then the following mean density and headway can be
defined:

EY [ρ(x,t;Y )] :=

∫
R
ρ(x,t;y)g(y)dy, EY [h(x,t;Y )] :=

∫
R
h(x,t;y)g(y)dy. (4.5)

Notice that both EY [ρ(x,t;Y )], EY [h(x,t;Y )] are functions of x, t but they are not, in
general, a solution to either (4.4) or any other specific macroscopic model.

4.2. Microscopic and macroscopic numerical simulations. We consider
the microscopic model from (2.1) in which the capacity function c additionally depends
on the accident size random variable Y introduced in Section 4

ẋi(t;Y )= c(xi(t;Y );Y )Ṽ

(
L

xi+1(t;Y )−xi(t;Y )

)
, i=1,2,... (4.6)

where

c(x;Y )=1−0.4 ·1[−Y,Y ](x). (4.7)

The accident size Y is set to Y =2Z+1, where Z is a Beta distributed random variable
with parameters α,β>0 taking values on [0,1], i.e., the probability density function of
Z for x∈ [0,1] is given by

φY (x,α,β)=
Γ(α+β)

Γ(α)+Γ(β)
xα−1(1−x)β−1.

Note that choosing α=β=1 results in the special case of a uniform distribution on the
interval [1,3] for Y . This construction corresponds to an accident centered at x=0 with
size 2Y . In this chapter we are interested in the evolution of the local densities

ρ
(N)
i (t;Y )=

L

x
(N)
i+1(t;Y )−x

(N)
i (t;Y )

, i=1, ... , N−1, (4.8)
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dependent on the realization of the random variable Y . Especially, we consider the
piecewise constant function

ρ(N)(x,t)=ρ
(N)
i (t), x∈ [xi(t), xi+1(t)) (4.9)

which will be used to compare the evolution of the macroscopic densities. Parameters
are chosen as in Section 3.3.1.

In a second step, we consider the second order macroscopic model from (4.4) and
set the accident capacity function as in (4.7). We are interested in the quantities
EY [ρ(x,T ;Y )] and EY [ρ

(N)(x,T ;Y )], where ρ(x,T ;Y ),ρ(N)(x,T ;Y ) are random vari-
ables of the densities depending on the realization of Y .

A Monte Carlo simulation of 2 ·103 samples is used to approximate the expectation
of the densities at each point of the spatial grid. We choose the same parameters for
the microscopic and macroscopic model as in Section 3.3, except for the temporal and
spatial step sizes of the Lax-Friedrichs-scheme we set ∆x=∆t=10−3 to reduce the
computational effort.

Density second order macroscopic model
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Fig. 4.2: Mean, median and 90 percent confi-
dence interval of the density evolution of the sec-
ond order macroscopic model (4.4) at T =10 for
uniformly distributed Y .

Density microscopic model
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Fig. 4.3: Mean, median and 90 percent confi-
dence interval of the density evolution of the mi-
croscopic model (4.6) at T =10 for uniformly dis-
tributed Y .

Headway second order macroscopic model
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Fig. 4.4: Mean, median and 90 percent confi-
dence interval of the headway evolution of the sec-
ond order macroscopic model (4.4) at T =10 for
uniformly distributed Y .

Headway microscopic model
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Fig. 4.5: Mean, median and 90 percent confi-
dence interval of the headway evolution of the mi-
croscopic model (4.6) at T =10 for uniformly dis-
tributed Y .
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To describe the perturbed systems, we consider not only the mean realization of
the densities, but confidence intervals in the Figures 4.2 and 4.3 in the special case
of the uniform distribution (α=β=1). The upper dashed lines show the level of the
five percent highest densities in the Monte Carlo run, whereas the lower dashed lines
represent the five percent lowest densities in the simulation. The green curve shows
again the mean realization, whereas the red curve shows the median representing the
50 percent highest densities.

We observe that there are areas in which densities and headways vary in a small
range and are almost deterministic. But there are also road sections in which the
densities show a large variance, as can be seen in Figure 4.2 for the macroscopic model in
the range of x∈ [−1,0]. Due to the density increases that have already been observed in
Figure 3.1 high densities are attained frequently. This is not the case in the microscopic
simulation in Figure 4.3. It is also striking that the headways in Figure 4.4 of the second
order macroscopic model are very stable with regard to the changed accident sizes.

Density second order macroscopic model
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Fig. 4.6: Mean, median and 90 percent confi-
dence interval of the density evolution of the sec-
ond order macroscopic model (4.4) at T =10 for
shifted and scaled beta distributed Y .

Density microscopic model
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Fig. 4.7: Mean, median and 90 percent confi-
dence interval of the density evolution of the mi-
croscopic model (4.6) at T =10 for shifted and
scaled beta distributed Y .

Headway second order macroscopic model
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Fig. 4.8: Mean, median and 90 percent confi-
dence interval of the headway evolution of the sec-
ond order macroscopic model (4.4) at T =10 for
shifted and scaled beta distributed Y .

Headway microscopic model
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Fig. 4.9: Mean, median and 90 percent confi-
dence interval of the headway evolution of the mi-
croscopic model (4.6) at T =10 for shifted and
scaled beta distributed Y .

To shortly illustrate the behaviour for a different distribution of Y =2Z+1, we
set α=5,β=2 for Z corresponding to a right-skewed Beta distribution of the accident
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size on the interval [1,3]. The results for the densities of the second order macroscopic
model (4.4) and the microscopic model (4.6) are presented in Figures 4.6-4.9. In com-
parison to the uniform distribution, we mainly observe two effects: on the one hand,
the increase of the densities is slightly shifted to the left due to the right-skewed dis-
tribution of the accident size that makes larger accidents more likely. On the other
hand, the 90 percent confidence intervals of the density and headway are thinner due
to the probability density function decaying to zero as we reach the boundary values of
Y . But the overall shape of the quantities is very similar to the results for the uniform
distribution.

Apart from the Monte Carlo simulations, we approximate the expectations of the
densities in both models using a polynomial chaos expansion. Note that we are not
particularly interested in providing a deep analysis on the polynomial chaos expansion
itself but exploit this approach as an alternative way of approximating the expected
value of the densities.

From now on we stick to the case of Y being uniformly distributed in [1,3]. The
Legendre polynomials form an orthonormal basis for a uniformly distributed random
variable on [−1,1]. For our purpose a simple transformation by an additive shift trans-
forms Y to the interval [1,3]. Then orthonormality means∫ 3

1

1

2
ϕi(y)ϕj(y)dy= δi,j ,

where ϕk denotes the k-th Legendre polynomial. We consider the polynomial chaos
expansion for the second order macroscopic model in conservative form (3.16), where

z(x,t)=ρ(x,t)
(
h(x,t)+

γ

2
ηρ(x,t)

)
. (4.10)

Then, the system is described in the solution subspace span{ϕk}Kk=0 ,K ∈N by(
ρK(x,t;Y )
zK(x,t;Y )

)
=

K∑
k=0

(
ρ̂k(x,t)ϕk(Y )
ẑk(x,t)ϕk(Y )

)
,

where at the initial time ρ̂k(x,0) and ẑk(x,0) are the modes of the expansion and can
be determined as follows:

ρ̂k(x,0)=

∫ 3

1

1

2
ρ(x,0,y)ϕk(y)dy, ẑk(x,0)=

∫ 3

1

1

2
z(x,0,y)ϕk(y)dy. (4.11)

The propagation of the modes up to order K can be described by the system

0=∂t


ρ̂0(x,t)
ẑ0(x,t)

...
ρ̂K(x,t)
ẑK(x,t)



+∂x



∫ 3

1
c(x)V

(∑K
k=0 ẑk(x,t)ϕk(y)∑K
k=0

ρ̂k(x,t)ϕk(y)
− γ

2
η
∑K

k=0 ρ̂k(x,t)ϕk(y)
)
(
∑K

k=0 ρ̂k(x,t)ϕk(y))ϕ0(y)
1
2
dy∫ 3

1
c(x)V

(∑K
k=0 ẑk(x,t)ϕk(y)∑K
k=0

ρ̂k(x,t)ϕk(y)
− γ

2
η
∑K

k=0 ρ̂k(x,t)ϕk(y)
)
(
∑K

k=0 ẑk(x,t)ϕk(y))ϕ0(y)
1
2
dy

...∫ 3

1
c(x)V

(∑K
k=0 ẑk(x,t)ϕk(y)∑K
k=0

ρ̂k(x,t)ϕk(y)
− γ

2
η
∑K

k=0 ρ̂k(x,t)ϕk(y)
)
(
∑K

k=0 ρ̂k(x,t)ϕk(y))ϕK(y) 1
2
dy∫ 3

1
c(x)V

(∑K
k=0 ẑk(x,t)ϕk(y)∑K
k=0

ρ̂k(x,t)ϕk(y)
− γ

2
η
∑K

k=0 ρ̂k(x,t)ϕk(y)
)
(
∑K

k=0 ẑk(x,t)ϕk(y))ϕK(y) 1
2
dy


.

(4.12)
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Similarly, we can set up the system for the expansion in the case of the microscopic
model (4.6) by

x
(N)
i (t,Y )=

K∑
k=0

x̂
(N)
i,k (t)Φk(Y ),

where the modes for k=0,. ..,K at the initial time t=0 are given by

x̂
(N)
i,k (0)=

∫ 3

1

1

2
x
(N)
i (0)Φk(y)dy. (4.13)

Then, the evolution of the microscopic system is for r=0.. .,K given by∫ 3

1

1

2

K∑
k=0

˙̂x
(N)
i,k (t)Φk(y)Φr(y)dy

=

∫ 3

1

1

2
c

(
K∑

k=0

x̂
(N)
i,k (t)Φk(y)

)
Ṽ

 L∑K
k=0

(
x̂
(N)
i+1,k(t)− x̂

(N)
i,k (t)

)
Φk(y)

Φr(y)dy, (4.14)

which can by orthogonality of the basis functions for r=0.. .,K be rewritten to

˙̂x
(N)
i,r (t)

=

∫ 3

1

1

2
c

(
K∑

k=0

x̂
(N)
i,k (t)Φk(y)

)
Ṽ

 L∑K
k=0

(
x̂
(N)
i+1,k(t)− x̂

(N)
i,k (t)

)
Φk(y)

Φr(y)dy. (4.15)

The vehicle positions can be transformed to the microscopic local density function
by the Equations (4.8) and (4.9).

As we aim to approximate the expectation of the densities, we focus on the modes
for K=0 which exactly describe the expectation of the stochastic system. The integrals
in (4.11)-(4.15) can be approximated using Gauss-Legendre quadrature. The weights
for the corresponding quadrature rule and a root zk are given by (staying on the roots
inside [−1,1])

wk=
1

(1−z2k) ·(L′
n(zk))

2
,

where L′
n is the derivative of the n-th Legendre polynomial. The expectation of the

macroscopic density at a position x and time t is given by

EY [ρ(x,T ;Y )]= ρ̂0(x,T ).

Similarly, an approximation of the expected headway is given by

EY [h(x,T ;Y )]= ĥ0(x,T ),

where ĥ0 is recovered from ẑ0 by (4.10). One can proceed exactly in the same way for
the microscopic model and approximate

EY [ρ
(N)(x,T ;Y )]= ρ̂

(N)
0 (x,T ),
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Fig. 4.10: Approximation of the expected densi-
ties in the second order macroscopic model (4.4)
using polynomial chaos expansion.
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Fig. 4.11: Approximation of the expected densi-
ties in the microscopic model (4.6) using polyno-
mial chaos expansion.
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Fig. 4.12: Approximation of the expected head-
ways in the second order macroscopic model (4.4)
using polynomial chaos expansion.
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Fig. 4.13: Approximation of the expected head-
ways in the microscopic model (4.6) using polyno-
mial chaos expansion.
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868 HYDRODYNAMIC TRAFFIC MODELS INCLUDING RANDOM ACCIDENTS

where ρ̂
(N)
0 (x,T ) is the piecewise constant density function resulting from the vehicle

position modes x̂
(N)
i,0 (T ) using (4.8) and (4.9). The expectation of the headway in the

microscopic model is obtained when plugging the density into the optimal headway
function from (3.25).

In the Figures 4.10 to 4.13 we show the approximations for the expectations using
n=1,5,9 roots of the Legendre polynomials and compare it with the expectation of the
Monte Carlo simulations with 2 ·103 realizations. For n=1 the approximation coincides
with the one choosing the accident size Y to E[Y ]=2 and is not very accurate on both
levels. Overall for n=5 the approximation shows a good performance but has still some
inaccuracies in some areas, as for example in the macroscopic density around x=−0.5.
For n=9 the approximation using the polynomial chaos expansion shows no discernible
differences for both the macroscopic and microscopic expected density.

A convergence analysis of the expectation approximated using n=1,. ..,9 nodes in
the polynomial chaos approach towards the result from the Monte Carlo simulation in
a framework with logarithmic values on the axis is presented in the Figures 4.14 and
4.15. On the microscopic scale we recognize a linear relationship with approximate
convergence rates of slightly larger than 2, whereas the correlation on the macroscopic
scale is not perfectly linear but still strictly decreasing with an approximate convergence
rate of 2. These results underline the approximation behaviour in the Figures 4.2-4.5.

5. Conclusions

In this paper, we have considered classical Follow-the-Leader traffic dynamics with
space-dependent speed, which, upon reformulation as interaction dynamics of a sys-
tem of stochastic particles, we have described at the mesoscopic scale by means of an
Enskog-type collisional kinetic equation. Since Follow-the-Leader dynamics are based
on the reciprocal distance of the vehicles, in our kinetic representation we have used
the headway, along with the position, as microscopic state of the vehicles in place of the
more usual speed. This has allowed us to obtain formally, in the hydrodynamic limit,
macroscopic conservation laws based on the density and the mean headway of traffic,
which constitute original models with respect to those consolidated in the reference
literature. In particular, our investigations have shown that, in the limit, one may for-
mally get either a first or a second order macroscopic model with space-dependent flux
depending on a certain relaxation parameter of the headway. Analytical investigations
have proved that our new second order model complies with the Aw-Rascle consistency
condition and admits weak entropy solutions at least for initial data with small total
variation.

We have used these traffic models to describe the impact of accidents on the traf-
fic flow. Our derivation from principles of statistical mechanics has made it possible
to include, in particular, accidents taking place in random, viz. uncertain, positions
along the road. In the hydrodynamic limit, this has yielded a new version of the former
second order macroscopic model with uncertain flux. Numerical investigations on un-
certain accident sizes have illustrated, on one hand, that expected traffic densities can
be computed efficiently using a polynomial chaos expansion and, on the other hand,
that some road sections may be much more affected by accidents, hence may face a
much larger variety of traffic scenarios, than others.

Future work may consider generalised space-dependent traffic accident models on
road networks with ad-hoc numerical simulation techniques.
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