
COMMUN. MATH. SCI. © 2024 International Press

Vol. 22, No. 4, pp. 977–997

SCALAR AUXILIARY VARIABLE APPROACH IN ITERATIVE
MINIMIZATION FORMULATION FOR SADDLE POINT SEARCH∗

SHUTING GU† , CHENXI WANG‡ , AND ZHEN ZHANG§

Abstract. Saddle points have been extensively investigated in the study of activated process
in gradient flow driven by free energy. This paper aims to use the iterative minimization formulation
(IMF) coupled with scalar auxiliary variable (SAV) approach to locate the transition states of activated
processes in the H−1 gradient flow, i.e., index-1 saddle points of the corresponding energy in H−1

metric. In each cycle of the IMF, we introduce the SAV approach to minimize the auxiliary functional.
A general principle of constructing linear, efficient and robust energy stable schemes for this approach
is presented. This new SAV based IMF method improves the efficiency of saddle point search and can
be implemented easily for different free energies. By conducting some numerical experiments for the
Ginzburg-Landau and the Landau-Brazovskii free energies, the efficient performance of the proposed
method is validated.

Keywords. Saddle points; transition states; scalar auxiliary variable; iterative minimization for-
mulation.
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1. Introduction
Stable points and unstable saddle points of free energies have attracted considerable

attention in physics, chemistry, biology and material sciences. Stable points of an energy
functional, which correspond to its local minima, manifest themselves as steady states
of the gradient flow driven by the corresponding energy. Usually, such gradient flow
appears as a time-dependent partial differential equation, which also reflects the actual
physical dynamics. For example, the classical Cahn-Hilliard system is the H−1 gradient
flow driven by the Ginzburg-Landau free energy [2]. As a model for phase separation,
its dynamics and steady states have been extensively studied. However, for some free
energies, the infrequent hopping between neighboring local minima occurs randomly all
the time. Although the occurrences of these events are random, they occur in a fairly
certain way of travelling through the transition states. As bottlenecks on paths of acti-
vated processes, these transition states belong to a class of saddle points with index-1,
which can be defined as the critical points at which the Hessian matrix has one, and
only one, negative eigenvalue [40]. Saddle points have been also extensively investigated
in the study of activated processes [36,42,49,51]. For instance, in computational chem-
istry, search for the transition states of the molecular configurations has been widely
discussed [35,36,50].

In recent years, a large number of numerical methods for searching saddle points
have been presented, among which path-finding methods and surface-walking methods
are the two most popular classes. The former includes the string method [7, 8, 32,
34] and the nudged elastic band method [20, 23]. The key idea of such methods is
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to search the so-called minimum energy path (MEP), whose existence is theoretically
guaranteed. In this case, the index-1 saddle points are the states along the MEP with
locally maximum energies. Surface-walking methods use the unstable direction, e.g.,
the min-mode direction, to evolve a single state on the potential energy surface. And
this class of methods includes the eigenvector following method [6], the quasi-Newton
methods [4,41], the activation-relaxation techniques [3,30], the dimer method [14,18,49],
the solution landscape method [42], the gentlest ascent dynamics (GAD) [9,25,33] and
the iterative minimization formulation (IMF) [12, 13, 15]. Among these methods, the
IMF has the quadratic convergence rate for locating non-degenerate saddle points, which
is quite efficient. Moreover, the IMF decomposes the problem of locating unstable saddle
points into a series of optimization subproblems, which can be solved in many different
ways. Specifically, the IMF contains two-level iterations. The top-level is x(k)→x(k+1),
called “cycle”, where superscript k means the k-th cycle. This cycle consists of a
“rotation step” whose purpose is to find the softest direction v(k+1) given x(k), and a
“translation step” which searches for the best approximation along the softest direction
v(k+1) by minimizing L(y;x(k),v(k+1)). More precisely, we first do a rotation step,
then a translation step; and the translation step can be considered as a second-level
iterative procedure to solve the subproblem given x(k) and v(k+1). When solving this
subproblem with the fixed pair (x(k),v(k+1)), a sequence y0, y1, y2, .. . is produced until
some stopping tolerance is reached, say, at yn. And yn is set as the value of x(k+1).
These two-level iterations proceed recursively until a saddle point is located. It is worth
noting that the rotation step is indeed a classical eigenvector problem for the min-mode,
and thus can be solved by a lot of standard methods, such as the power method [9], the
conjugate gradient method [19,21], the LOR [24] and the Lanczos algorithm [3]. In this
work, we mainly focus on the translation step and investigate the minimization problem
minyL(y;x

(k),v(k+1)).

The flexibilities of the translation step in the IMF immediately provide some op-
portunities to explore existing methods for local minima search. One of these popular
methods is to evolve the gradient flow driven by the functional L(y;x(k),v(k+1)) to ob-
tain the minima. Due to the nature of energy dissipation in the gradient flow system,
the crucial point becomes how to design schemes preserving the energy stability, which
are referred as energy stable schemes. There are a number of different approaches to
construct such schemes. Based on a convex splitting technique, unconditionally energy
stable methods are proposed in [10,11]. The key point is to split the free energy as the
difference of two convex functionals, where the former is treated implicitly and the lat-
ter is treated explicitly. Recently, by generalizing the Lagrange multiplier approach [1],
Yang et al. [46, 52] introduced an auxiliary function for the square root of nonlinear
terms in the free energy and constructed a set of energy stable schemes, named invari-
ant energy quadratization (IEQ) methods. And the IEQ approach has been applied
in many systems [17, 48, 53]. Shen et al. [37–39] proposed the scalar auxiliary vari-
able (SAV) methods by introducing an auxiliary scalar variable instead of a function,
which enjoy the advantages of the IEQ approach but are more efficient and robust.
The SAV approach has attracted a lot of interests [31, 45] and has been generalized to
develop highly efficient and accurate energy stable schemes for various gradient flow
systems [5, 22,47].

Recently, based on the IMF and the convex splitting technique, Gu and Zhou [16]
developed a general principle of constructing efficient methods for the computation of
the transition states of energy functionals, which combined the energy stable schemes
with the IMF for the first time. Due to the quadratic convergence rate of the top-level
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iteration (cycle) in the IMF, where only a few cycles are needed to reach the desired
accuracy in practice, one can expect that an efficient method for the translation step
will improve the performance of the whole process. Thus, the benefit of the convex
splitting idea in [16], which allows large time step size in minimizing L, improves the
overall efficiency of locating the transition states in the IMF. However, while this new
method is efficient, it does leave some difficulties to be concerned: (i) The explicit
decomposition of the convex splitting form has to be sought case-by-case for specific
problems and sometimes it is not so easy to design; (ii) the splitting of many energy
functionals leads to nonlinear systems, solving which requires high computational cost
at each time step in each cycle in the IMF.

This paper aims to improve the translation step in the IMF by using the SAV
approach, which has shown its efficiency and robustness for a large class of gradient
flows [39], to solve the gradient flow driven by the objective functional L. Compared
with the convex splitting method [16] for the IMF, the SAV approach is easy to be
applied to general functionals and always leads to linear systems. The newly proposed
method is called the iterative minimization formulation coupled with scalar auxiliary
variable approach (IMF-SAV). Specifically, we apply the IMF to locate the transition
states of an energy functional in H−1 metric. In the translation step of IMF, we employ
the SAV approach to develop first- and second-order schemes to solve the H−1 gradient
flow driven by the auxiliary functional L. Thus, we contribute one more important
example of how to construct highly accurate method by using the energy stable schemes
for saddle point problems within IMF. In theory, we prove that our first- and second-
order schemes preserve the energy decaying property in the discrete sense in each cycle
of IMF.

In the numerical experiments, the energy decaying property and the super-linear
convergence of the IMF-SAV method are numerically validated. In addition, we apply
the IMF-SAV method to numerically locate the transition states for the Ginzburg-
Landau and the Landau-Brazovskii free energies very efficiently and accurately. For
the nucleation of diblock copolymers in the case of Landau-Brazovskii free energy, we
numerically observe that different transition states emerge if we change domain sizes,
which clearly shows the size effect of the region.

The paper is organized as follows. We briefly review the IMF and the SAV approach
in Section 2. In Section 3, we present the IMF-SAV method for the H−1 gradient
flows of some typical energy functionals. In Section 4, we validate the accuracy of
the proposed schemes in one cycle, and demonstrate the excellent performance of the
IMF-SAV method for the saddle point search in the Ginzburg-Landau and the Landau-
Bravoskii free energies. Finally, we make the conclusion.

2. Revisiting IMF and SAV
In this section, we review the IMF framework for solving saddle point problems,

and the SAV approach to construct unconditionally energy stable schemes. In the next
section we will combine these two methods to construct the IMF-SAV method.

2.1. Iterative minimization formulation (IMF). We first review the IMF
in [12]. Suppose M is a function space equipped with a given continuous inner product
⟨·,·⟩ and the corresponding norm ∥·∥. The IMF to search the index-1 saddle points of
an energy functional F (ϕ) is the following iteration:

v(k+1)=argmin
∥v∥=1

〈
v,δ2ϕF (ϕ(k))v

〉
, (2.1)

ϕ(k+1)=argmin
ϕ

L(ϕ;ϕ(k),v(k+1)), (2.2)



980 IMF-SAV FOR SADDLE POINT SEARCH

where δ2ϕF is the second order variational derivative of F (corresponding to the metric
induced by the given inner product ⟨·,·⟩), and the auxiliary objective functional

L(ϕ;ϕ(k),v(k+1))=(1−α)F (ϕ)+αF
(
ϕ−

〈
v(k+1),ϕ−ϕ(k)

〉
v(k+1)

)
−βF

(
ϕ(k)+

〈
v(k+1),ϕ−ϕ(k)

〉
v(k+1)

)
, (2.3)

with two parameters α and β satisfying α+β>1. Two special choices for α and β
are: (i) (α,β)=(2,0), then L(ϕ;ϕ(k),v)=−F (ϕ)+2F (ϕ−

〈
v,ϕ−ϕ(k)

〉
v); (ii) (α,β)=

(0,2), then L(ϕ;ϕ(k),v)=F (ϕ)−2F (ϕ(k)+
〈
v,ϕ−ϕ(k)

〉
v). And the main properties of

L(ϕ;ϕ(k),v) in the case of α+β>1 are summarised as follows.

Theorem 2.1 ([12]). Suppose that ϕ∗ is a (non-degenerate) index-1 saddle point of
the functional F (ϕ), and the auxiliary functional L is defined by (2.3) with α+β>1,
then

(1) ϕ∗ is a local minimizer of L(ϕ;ϕ∗,v).

(2) There exists a neighborhood U of ϕ∗ such that for any ϕ(k)∈U , L(ϕ;ϕ(k),v) is strictly
convex in ϕ∈U and thus has a unique minimum in U .

(3) Define the mapping Φ:ϕ∈U→Φ(ϕ)∈U to be the unique local minimizer of L(·;ϕ,v)
in U for any ϕ∈U . Further assume that U contains no other stationary point of F
except for ϕ∗. Then the mapping Φ has only one fixed point ϕ∗.

(4) The iterative scheme ϕ(k+1)=Φ(ϕ(k)) has the local quadratic convergence rate, i.e.,
there is a positive constant c such that if the initial starting point ϕ(0) is sufficiently
close to ϕ∗, then for sufficiently large k, |ϕ(k+1)−ϕ∗|≤ c|ϕ(k)−ϕ∗|2.

2.2. Scalar auxiliary variable (SAV). Hereafter, we use ⟨·,·⟩ to represent the
usual L2 inner product, and δ

δϕ to represent the variational derivative corresponding to

L2 metric. Consider the typical free energy functional

F (ϕ)=
1

2
⟨ϕ,Lϕ⟩+E1(ϕ),

where L is a symmetric nonnegative linear operator (independent of ϕ), and E1(ϕ) is
nonlinear and bounded from below, i.e., E1(ϕ)≥−C0 with C0>0. And the general
form of the corresponding gradient flow driven by F (ϕ) can be written as


∂ϕ

∂t
=Gµ, (2.4a)

µ=
δF (ϕ)

δϕ
=Lϕ+ δE1(ϕ)

δϕ
, (2.4b)

supplemented with suitable boundary conditions. Here, G is a non-positive symmetric
operator, such as G=−I in the L2 gradient flow and G=∆ in the H−1 gradient flow,
which will be introduced in detail in Section 3.1.

Now, we first introduce an SAV

r(t)=
√
E1(ϕ)+C0,
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and the gradient flow (2.4) can be rewritten as

∂ϕ

∂t
=Gµ, (2.5a)

µ=Lϕ+ r√
E1(ϕ)+C0

δE1(ϕ)

δϕ
, (2.5b)

dr

dt
=

1

2
√
E1(ϕ)+C0

〈
δE1

δϕ
,
∂ϕ

∂t

〉
. (2.5c)

It can be verified that the equivalent continuous system (2.5) satisfies the energy dissi-
pation law:

d

dt
F (ϕ)=

d

dt

[1
2
⟨ϕ,Lϕ⟩+r2−C0

]
= ⟨µ,Gµ⟩≤0,

where the last inequality results from the non-positive symmetric operator G. Then the
semi-discrete scheme for the modified system (2.5) is

ϕn+1−ϕn

∆t
=Gµn+1, (2.6a)

µn+1=Lϕn+1+
rn+1√

E1(ϕn)+C0

δE1

δϕ
(ϕn), (2.6b)

rn+1−rn

∆t
=

1

2
√
E1(ϕn)+C0

〈
δE1

δϕ
(ϕn),

ϕn+1−ϕn

∆t

〉
. (2.6c)

The scheme (2.6) is a linear system which can be solved efficiently by decoupling rn+1

from ϕn+1 and µn+1. Furthermore, through straightforward calculations, we can get
that the numerical scheme (2.6) also ensures the discrete energy law with respect to the
modified energy:

F (ϕn+1,rn+1)≤F (ϕn,rn),

where F (η,s)= 1
2 ⟨η,Lη⟩+s

2−C0.

3. The IMF-SAV method
In this section, we first introduce the H−1 gradient flow, and limit our discussion to

the space embedded with H−1 metric. Then we propose efficient and robust methods
to search the saddle point of a given free energy.

3.1. H−1 gradient flow. A gradient flow is usually determined by a driving free
energy and a dissipation mechanism. The gradient flows usually drive the system to its
steady states. While for the same energy functional, we have different forms of gradient
flows in the different metrics, e.g., the Allen-Cahn and Cahn-Hilliard equation. Indeed,
given the Ginzburg-Landau free energy

F (ϕ)=

∫
Ω

(
ε

2
|∇ϕ|2+

(
ϕ2−1

)2
4ε

)
dx,

where ε denotes the interfacial thickness, the corresponding gradient flow in L2 metric
is the classical Allen-Cahn equation,

∂ϕ

∂t
=−δF

δϕ
=−µ, (3.1a)

µ=−ε∆ϕ+ ϕ(ϕ2−1)

ε
. (3.1b)
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If we consider δF
δϕ as the gradient of F , the gradient flow (3.1) can be viewed as a

“normal” steepest descent dynamics. Next, we will consider the H−1 gradient flow. We
first give the inner product and norm in the H−1 metric,

⟨ϕ,ψ⟩H−1 =
〈
(−∆)−1ϕ,ψ

〉
, ∥ϕ∥2H−1 = ⟨ϕ,ϕ⟩H−1 . (3.2)

Then, the first order variational derivative between the H−1 metric and the L2 metric
can be linked as follows:

δF

δϕ

∣∣∣∣
H−1

=−∆
δF

δϕ
. (3.3)

Hence, we have the H−1 gradient flow driven by the Ginzburg-Landau free energy F (ϕ)
as follows 

∂ϕ

∂t
=−δF

δϕ

∣∣∣∣
H−1

=∆
δF

δϕ
=∆µ, (3.4a)

µ=−ε∆ϕ+ ϕ(ϕ2−1)

ε
, (3.4b)

which is known as the Cahn-Hilliard equation. It is obvious that (3.4) has the property
of mass conservation:

∫
Ω
ϕ(x,t)dx≡

∫
Ω
ϕ(x,0)dx, ∀t>0.

In the next subsection, we will discuss the saddle point problems of given free energy
F (ϕ) in H−1 metric.

3.2. IMF in H−1 metric. The IMF in H−1 metric can be written as
v(k+1)= argmin

∥v∥H−1=1

〈
v,H̃(ϕ(k))v

〉
H−1

, (3.5)

ϕ(k+1)= argmin∫
Ω
ϕdx=m

L(ϕ;ϕ(k),v(k+1)), (3.6)

where the Hessian matrix H̃ is the second order variational derivative of F (ϕ) in H−1

metric, m=
∫
Ω
ϕ(x,0)dx is the initial total mass of ϕ, and the auxiliary functional

L(ϕ;ϕ(k),v(k+1))=(1−α)F (ϕ)+αF
(
ϕ−

〈
v(k+1),ϕ−ϕ(k)

〉
H−1

v(k+1)
)

−βF
(
ϕ(k)+

〈
v(k+1),ϕ−ϕ(k)

〉
H−1

v(k+1)
)
, (3.7)

with the inner product ⟨·,·⟩H−1 defined in (3.2). Without loss of generality, we take
α=0, β=2, and for other choices of α, β satisfying α+β>1, similar operations can be
performed. Then

L(ϕ)=F (ϕ)−2F (ϕ̂), (3.8)

with

ϕ̂=ϕ(k)+
〈
v(k+1),ϕ−ϕ(k)

〉
H−1

v(k+1). (3.9)

Moreover, the variational derivatives between the H−1 metric and the L2 metric can be
linked as follows:

δF

δϕ

∣∣∣∣
H−1

=−∆
δF

δϕ
, H̃ :=

δ2F

δϕ2

∣∣∣∣
H−1

=−∆
δ2F

δϕ2
. (3.10)
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As mentioned in Section 3.1, ϕ is mass conserved in H−1 metric, i.e.,
∫
Ω
ϕdx=m,

thus the softest direction v(k+1) obtained from the rotation step (3.5) must satisfy∫
Ω
v(k+1)dx=0. In consequence, the eigenvalue problem (3.5) can be rewritten as

H̃(ϕ)ψ=λψ, (3.11a)∫
Ω

ψdx=0, (3.11b)

subject to the homogeneous Neumann or periodic boundary conditions. By the repre-
sentation of the Rayleigh quotient with respect to the H−1 metric, the min-mode solves
the minimization problem

argmin∫
Ω
ψdx=0

R̃(ψ) :=

〈
ψ,H̃ψ

〉
H−1

∥ψ∥2H−1

. (3.12)

When the min-mode is obtained, the subproblem (3.6) can be solved by evolving the
gradient flow in H−1 metric,

∂ϕ

∂t
=∆

δL

δϕ
(ϕ), (3.13)

subject to either periodic boundary conditions or homogeneous Neumann boundary
conditions, where L(ϕ) is defined in (3.8). By solving (3.12) and (3.13) recursively, one
can get the index-1 saddle point of F (ϕ) in H−1 metric. Next, we will show how to
efficiently solve this gradient flow system (3.13).

3.3. SAV approach to minimize auxiliary functional L. In this part, we
present how to use the SAV approach to construct unconditionally energy stable schemes
for (3.13). Suppose that the free energy F (ϕ) can be split as F (ϕ)= 1

2 ⟨ϕ,Lϕ⟩+Fn(ϕ),
where L is a symmetric nonnegative linear operator and Fn(ϕ) is nonlinear. Then,

assume that F (ϕ) and Fn(ϕ) are respectively bounded by [−Ĉ0,Ĉ1] and [−C̃0,C̃1] with

Ĉ0, Ĉ1, C̃0, C̃1>0. Take C0=max{Ĉ0,C̃0} and C1=max{Ĉ1,C̃1}, hence F (ϕ),Fn(ϕ)∈
[−C0,C1]. Now we have the following decomposition of L(ϕ) in (3.8):

L(ϕ)=
1

2
⟨ϕ,Lϕ⟩+Fn(ϕ)−2F (ϕ̂) :=

1

2
⟨ϕ,Lϕ⟩+Ln(ϕ),

where ϕ̂ is defined in (3.9) and Ln(ϕ)=Fn(ϕ)−2F (ϕ̂)∈ [−C0−2C1,2C0+C1].
Next, we set C=C0+2C1, and introduce an SAV:

r(t)=
√
Ln(ϕ)+C.

Then the gradient flow (3.13) can be rewritten as:

∂ϕ

∂t
=∆µ, (3.14a)

µ=Lϕ+ r√
Ln(ϕ)+C

δLn
δϕ

(ϕ), (3.14b)

dr

dt
=

1

2
√
Ln(ϕ)+C

〈
δLn
δϕ

(ϕ),
∂ϕ

∂t

〉
, (3.14c)
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subject to either periodic boundary conditions or homogeneous Neumann boundary con-
ditions. Taking inner product of the equations (3.14a), (3.14b) and (3.14c) with µ,∂tϕ
and 2r respectively and summing up the results, we can obtain the energy dissipation
law:

dL

dt
=

〈
Lϕ, ∂ϕ

∂t

〉
+

〈
2r,

dr

dt

〉
=−∥∇µ∥2− r√

Ln(ϕ)+C

〈
δLn
δϕ

,
∂ϕ

∂t

〉
+

r√
Ln(ϕ)+C

〈
δLn
δϕ

,
∂ϕ

∂t

〉
=−∥∇µ∥2

≤0.

Now, we construct the first-order semi-discrete scheme for the dynamical system
(3.14): 

ϕn+1−ϕn

∆t
=∆µn+1, (3.15a)

µn+1=Lϕn+1+
rn+1√

Ln(ϕn)+C

δLn
δϕ

(ϕn), (3.15b)

rn+1−rn

∆t
=

1

2
√
Ln(ϕn)+C

〈
δLn
δϕ

(ϕn),
ϕn+1−ϕn

∆t

〉
. (3.15c)

Theorem 3.1. The scheme (3.15) is unconditionally energy stable with respect to the
modified energy L(ϕ,r), i.e.,

L(ϕn+1,rn+1)≤L(ϕn,rn),

where L(ϕ,r)= 1
2 ⟨ϕ,Lϕ⟩+r

2−C is the modified energy.

Proof. Taking inner product of (3.15a), (3.15b) and (3.15c) with µn+1, ϕ
n+1−ϕn

∆t
and 2rn+1 respectively and summing up the results, we get

−∥∇µn+1∥2=
〈
Lϕn+1,

ϕn+1−ϕn

∆t

〉
+2rn+1 r

n+1−rn

∆t
. (3.16)

By using (3.16) and the inequality

(a−b)a≥ 1

2

(
|a|2−|b|2

)
,

we have the discrete energy dissipation law:

L(ϕn+1,rn+1)−L(ϕn,rn)= 1

2

〈
ϕn+1,Lϕn+1

〉
− 1

2
⟨ϕn,Lϕn⟩+(rn+1)2−(rn)2

≤
〈
Lϕn+1,ϕn+1−ϕn

〉
+2rn+1(rn+1−rn)

=−∥∇µn+1∥2

≤0.



S. GU, C. WANG, AND Z. ZHANG 985

It is worth noting that the scheme (3.15) is easy to implement. Indeed, we can
eliminate µn+1 and rn+1 from (3.15) to obtain

ϕn+1−ϕn

∆t
=∆

[
Lϕn+1+

δLn

δϕ (ϕn)√
Ln(ϕn)+C

(
rn+

〈
δLn

δϕ (ϕn)

2
√
Ln(ϕn)+C

,
(
ϕn+1−ϕn

)〉)]
.

(3.17)
Denote

bn=
1√

Ln(ϕn)+C

δLn
δϕ

(ϕn),

then Equation (3.17) can be rewritten as

(I−∆t∆L)ϕn+1−∆t

2
∆bn

〈
bn,ϕn+1

〉
=ϕn+∆trn∆bn−∆t

2
⟨bn,ϕn⟩∆bn := cn. (3.18)

Multiplying (3.18) with (I−∆t∆L)−1 :=A−1 and taking inner product with bn, we have

〈
bn,ϕn+1

〉
+

∆t

2
αn
〈
bn,ϕn+1

〉
=
〈
bn,A−1cn

〉
,

where αn=−
〈
bn,A−1∆bn

〉
. Hence,

〈
bn,ϕn+1

〉
=

〈
bn,A−1cn

〉
1+∆tαn/2

. (3.19)

To summarize, the scheme (3.15) can be implemented as follows:

(1) Compute bn and cn.

(2) Compute
〈
bn,ϕn+1

〉
from (3.19).

(3) Compute ϕn+1 from (3.18).

Remark 3.1. We assume that the IMF always has solution for the free energy F (ϕ)
at least locally. This implies that the auxiliary objective functional L(ϕ) is bounded
from below. As a result, the boundedness of the functionals F (ϕ) and Fn(ϕ) holds at
least locally.

The unconditionally energy stable schemes can remove constraints on the time step
size in the sense of stability. Nonetheless, the larger the step sizes, the larger the
numerical errors. In order to use the time step as large as possible while maintaining
the required accuracy, highly accurate energy stable schemes are needed. To be more
specific, the second-order backward differentiation formula (BDF) scheme for the system
(3.14) is proposed as follows:

3ϕn+1−4ϕn+ϕn−1

2∆t
=∆µn+1, (3.20a)

µn+1=Lϕn+1+
rn+1√

Ln(ϕ∗)+C

δLn
δϕ

(ϕ∗), (3.20b)

3rn+1−4rn+rn−1

2∆t
=

1

2
√
Ln(ϕ∗)+C

〈
δLn
δϕ

(ϕ∗),
3ϕn+1−4ϕn+ϕn−1

2∆t

〉
, (3.20c)

where ϕ∗=2ϕn−ϕn−1.
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Similar to the first-order scheme, we have the following theorem.

Theorem 3.2. The scheme (3.20) is unconditionally energy stable in the sense that

L̃
[
(ϕn+1,rn+1),(ϕn,rn)

]
≤ L̃

[
(ϕn,rn),(ϕn−1,rn−1)

]
,

where the modified discrete energy L̃ is defined as

L̃
[
(ϕn+1,rn+1),(ϕn,rn)

]
:=

1

4

[〈
ϕn+1,Lϕn+1

〉
+
〈
2ϕn+1−ϕn,L(2ϕn+1−ϕn)

〉]
+

1

2

[
(rn+1)2+(2rn+1−rn)2

]
.

Proof. By taking inner products of 2∆tµn+1, 3ϕn+1−4ϕn+ϕn−1 and 2∆trn+1

with (3.20a), (3.20b) and (3.20c) respectively, and using the identity:

2
〈
ak+1,3ak+1−4ak+ak−1

〉
=
∣∣ak+1

∣∣2+ ∣∣2ak+1−ak
∣∣2+ ∣∣ak+1−2ak+ak−1

∣∣2
−
∣∣ak∣∣2− ∣∣2ak−ak−1

∣∣2 ,
one obtains immediately the desired result.

Moreover, this scheme can be implemented quite efficiently following the similar
process in the first-order case.

Remark 3.2. In this paper, we only prove that the modified energies decrease
monotonically in the discrete sense. However, many related works show that the SAV
methods also succeed in reducing the original energies, at least numerically [38, 39]. In
Section 4.1 we numerically show that both the modified energy and the original energy
decay in time in one cycle in the IMF.

Remark 3.3. The second-order BDF scheme (3.20) can be replaced by the Crank-
Nicolson scheme with a similar accuracy and stability result, which is proposed as
follows: 

ϕn+1−ϕn

∆t
=∆µn+

1
2 , (3.21a)

µn+
1
2 =L1

2
(ϕn+1+ϕn)+

rn+1+rn

2
√
Ln(ϕ̄∗)+C

δLn
δϕ

(ϕ̄∗), (3.21b)

rn+1−rn

∆t
=

1

2
√
Ln(ϕ̄∗)+C

〈
δLn
δϕ

(ϕ̄∗),
ϕn+1−ϕn

∆t

〉
, (3.21c)

where ϕ̄∗=(3ϕn−ϕn−1)/2.

4. Numerical examples
In this section, we present several numerical examples to validate the efficiency of the

IMF-SAV method, including the one-dimensional Ginzburg-Landau free energy and the
two-dimensional and three-dimensional Landau-Brazovskii free energies in four different
domains. For the first example, the accuracy of the proposed schemes is checked in one
cycle in the IMF. Moreover, all the examples are restricted to the H−1 metric. And
periodic boundary conditions are considered for all the examples. We use the finite
difference method for spatial discretization. The second-order BDF scheme (3.20) is
used for temporal discretization and the time step size ∆t is fixed at 0.1, except in the
accuracy and efficiency test examples. Due to the periodic boundary conditions, we can
apply fast Poisson solver to the fully discrete scheme for simplicity.
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4.1. Ginzburg-Landau free energy. In this part, we study the transition states
of the Ginzburg-Landau free energy F (ϕ) on [0,1],

F (ϕ)=

∫ 1

0

[κ2
2
(
∂ϕ

∂x
)2+

(ϕ2−1)2

4

]
dx, (4.1)

where ϕ(x) is an order parameter such as the concentration of one of the components
in a binary alloy and κ>0. These saddle points correspond to the “spike-like” station-
ary solutions, or “canonical nuclei” discussed in [2]. Here, we consider the space-time
Gaussian white noise which drives the system bouncing between two local minimum.

The first and the second order variational derivatives of F (ϕ) in L2 metric can be
calculated as

δF

δϕ
(ϕ)=−κ2∂2xϕ+ϕ3−ϕ,

δ2F

δϕ2
(ϕ)=−κ2∂2x+3ϕ2−1 :=H.

Then, the IMF in H−1 metric can be read as
v(k+1)= argmin

∥v∥H−1=1

〈
v,H̃(ϕ(k))v

〉
H−1

, (4.2)

ϕ(k+1)= argmin∫ 1
0
ϕ(x)dx=m

L(ϕ;ϕ(k),v(k+1)), (4.3)

where H̃=−∂2xH, m is the initial total mass of ϕ and L(ϕ)=F (ϕ)−2F (ϕ̂) with

ϕ̂= ϕ(k)+
〈
v(k+1),ϕ−ϕ(k)

〉
H−1

v(k+1)

= ϕ(k)+
〈
w(k+1),ϕ−ϕ(k)

〉
v(k+1), (4.4)

where w(k+1)=(−∂2x)−1v(k+1) is the unique solution satisfying the equation

−∂2xw(k+1)=v(k+1) and
∫ 1

0
w(k+1)dx=0.

The first subproblem (4.2) is the eigenvalue problem which can be solved by (3.12),
and the Rayleigh quotient here is

R̃(ψ)=
⟨ψ,Hψ⟩L2

∥ψ∥2H−1

=

∫ 1

0
κ2|∂xψ|2+(3ϕ2−1)ψ2dx∫ 1

0
ψ(∂2x)

−1ψdx
.

After the min-mode is obtained, the minimization problem (4.3) is solved by evolving
the following gradient flow

∂ϕ

∂t
=∂2x

δL(ϕ)

δϕ
=∂2x

[
−κ2∂2xϕ+ϕ3−ϕ−2v

〈
w,−κ2∂2xϕ̂+ ϕ̂3− ϕ̂

〉]
, (4.5)

where v=v(k+1) refers to the min-mode of (4.2), and w=w(k+1). Note that the flow

(4.5) conserves the initial mass
∫ 1

0
ϕ(x,0)dx, hence the constraint in (4.3) holds automat-

ically. This result immediately implies that the IMF mapping ϕ(k)→ϕ(k+1) conserves
the mass in each cycle k. Furthermore, any stationary solution is still stationary if an
arbitrary constant is added.



988 IMF-SAV FOR SADDLE POINT SEARCH

To apply the schemes (3.15) or (3.20) to (4.5), we specify the operator L and the
energy Ln as

L=−κ2∂2x, Ln=

∫ 1

0

(ϕ2−1)2

4
−κ2(∂ϕ̂

∂x
)2− (ϕ̂2−1)2

2
dx.

Then, we have
δLn(ϕ)

δϕ
=ϕ3−ϕ−2v

〈
w,−κ2∂2

xϕ̂+ ϕ̂3− ϕ̂
〉
.

In the numerical test, we take κ=0.04 and the initial mass m=0.6. We first vali-
date the accuracy of the proposed schemes to solve the gradient flow (4.5) in one cycle
in the IMF. The spatial resolution is fixed to be ∆x=10−5. The numerical solutions
are obtained by applying the schemes (3.15) and (3.20) with different time step sizes
∆t=1.6×10−3, 8×10−4, 4×10−4, 2×10−4, 10−4 at time t=0.01. The l2 norm er-
ror e(∆t) is computed by comparing with reference solution obtained by the scheme
(3.20) with ∆t=10−5 and the convergence order is calculated through the formula
log[e(∆t)/e(∆t/2)]. As shown in Table 4.1, the schemes (3.15) and (3.20) achieve the
first order and second order accuracy in time, respectively. Here, we remark that the
above order of convergence is the rate at which numerical solution of the numerical
scheme converges to an exact solution of the gradient flow, rather than the rate of
convergence to the minima of L or the saddle point of the problem.

Scheme ∆t=1.6E-3 ∆t=8E-4 ∆t=4E-4 ∆t=2E-4 ∆t=1E-4

1st-order
Error 1.57E-2 8.35E-3 4.29E-3 2.16E-3 1.07E-3
Order - 0.91 0.96 0.99 1.01

2nd-order
Error 5.13E-4 1.39E-4 3.58E-5 8.89E-6 2.18E-6
Order - 1.88 1.96 2.01 2.03

Table 4.1: Temporal errors and orders of convergence for ϕ at t=0.01 with fixed ∆x=10−5 and
different temporal step sizes ∆t in one cycle in the IMF. The l2 norm error e(∆t) is computed by
comparing with the reference solution obtained by the second-order scheme with ∆t=10−5. The order
is calculated through the formula log[e(∆t)/e(∆t/2)].

Furthermore, we validate the energy stability in one cycle by taking ∆x=0.01 and
∆t=10−4. Figures 4.1a and 4.1b show that both the modified and original energies
decay monotonically in time for both the first-order and second-order schemes.

Next, we test the performance of the IMF-SAV to locate the index-1 saddle point.
In this case, we take the mesh grid size ∆x=0.01. Figure 4.1c shows that the saddle
point of F (ϕ) in H−1 metric obtained by the IMF-SAV method is exactly the same as
the result obtained by the string method in [51]. Besides, the quadratic convergence
rate can also be observed when using the IMF-SAV, see Figure 4.1d. Here, the errors
are measured by the force ∥∆δϕF∥H−1 in each cycle k, where δϕ means δ

δϕ .

At last, we compare the performance of the IMF-SAV to that of the IMF coupled
with standard gradient descent method (IMF-GD) or classical semi-implicit scheme
(IMF-SI), which demonstrates improvements by using the SAV within IMF in terms of
numerical stability and efficiency. Moreover, the time steps ∆t of these methods are the
same across each set of tests. The classical semi-implicit scheme can be constructed as
follows,

ϕn+1−ϕn

∆t
=−κ2∂4

xϕ
n+1+∂2

x (ϕ
n)3−∂2

xϕ
n+2

〈
v,−κ2∂2

xϕ̂
n+(ϕ̂n)3− ϕ̂n

〉
v,

where v=v(k+1) refers to the min-mode of (4.2).
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(a) 1st-order scheme
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(b) 2nd-order scheme
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Fig. 4.1: Ginzburg-Landau free energy: (a)-(b) Evolution of original energies (red lines) and modified
energies (blue lines) obtained from first-order scheme and second-order scheme in the first cycle of
the IMF; (c) initial state (dashed line), transition state obtained by the IMF-SAV (red solid line),
reference solution obtained by the string method (green dotted line); (d) the validation of the quadratic
convergence rate of the IMF-SAV by plotting the decay of errors, measured by the force ∥∆δϕF∥H−1

in each cycle k.

We first examine their performance for the subproblem argminϕL(ϕ;ϕ
(k),v(k+1))

in the IMF, where only the inner iteration runs in a fixed cycle. Without loss of gen-
erality, we test the first cycle, i.e., ϕ(0)→ϕ(1) in the IMF. The number of iterations
required to achieve the error tolerances 10−4 and 10−6 for the three methods is com-
puted, and the errors are measured by the force ∥δϕL∥H−1 . Table 4.2 shows that the
IMF-SAV obviously has much better stability than the others (“∞” in this table means
the computational solution diverges). As a result, the larger time step size can be used,
which indicates greater efficiency in a single cycle. Then, we will compare the overall
efficiency in locating the transition state. In this case, we fix the number of iterations
in each cycle and count the number of outer cycles required to attain the prescribed
tolerance ∥δϕF∥H−1 ≤10−8. We can conclude from Table 4.3: If the large step size
is adopted, the total number of iterations of the IMF-SAV is much less than that of
the other approaches, where the total number is equal to the number of cycles multi-
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The number of iterations
∆t ∥∆δϕL∥H−1 ≤10−4 ∥∆δϕL∥H−1 ≤10−6

IMF-GD IMF-SI IMF-SAV IMF-GD IMF-SI IMF-SAV
1E-4 5276 5118 5162 6067 5911 6011
1E-3 ∞ 966 986 ∞ 1298 1263
1E-2 ∞ ∞ 269 ∞ ∞ 350
1E-1 ∞ ∞ 206 ∞ ∞ 256

Table 4.2: Comparisons of gradient descent method, semi-implicit scheme and SAV for the subprob-
lem argminϕL(ϕ;ϕ

(0),v(1)) in the IMF. The integers represent the number of iterations to attain the

tolerances ∥∆δϕL∥H−1 ≤10−4 or 10−6 using different step sizes ∆t.

The number of cycles
∆t iter#=50 iter#=100

IMF-GD IMF-SI IMF-SAV IMF-GD IMF-SI IMF-SAV
1E-4 101 96 98 61 56 59
1E-3 ∞ 33 32 ∞ 17 18
1E-2 ∞ ∞ 12 ∞ ∞ 8
1E-1 ∞ ∞ 11 ∞ ∞ 7

Table 4.3: Comparison of the number of outer cycles required for IMF-GD, IMF-SI and IMF-SAV
to achieve the tolerance ∥∆δϕF∥H−1 ≤10−8. The number of inner iterations is fixed for different
temporal step sizes ∆t.

plied by the “iter#” specified in the corresponding columns. This means that the total
computational cost of the IMF-SAV can be low and therefore efficient.

4.2. Landau-Brazovskii free energy. In this section, we study the nucleation
problem for diblock copolymers between the lamellar and the cylinder phases with a
Landau-Brazovskii energy functional for the Cahn-Hilliard dynamics [26, 28, 29, 43, 44].
The Landau-Brazovskii free energy F (ϕ) is described as follows

F (ϕ)=

∫
Ω

ξ2

2
[(∆+1)ϕ(x)]2+Φ(ϕ) dx, (4.6)

where Φ(ϕ)= τ
2ϕ

2− γ
3!ϕ

3+ 1
4!ϕ

4, and the parameters are chosen as τ =−0.15, ξ=1.0
and γ=0.25. With these parameters, the lamellar and the cylinder phases are two
equilibrium phases, while the cylinder phase is more stable due to the lower energy. In
the following, we focus on the nucleation event from the lamellar phase to the cylinder
phase. Here, the first and the second order variational derivatives become

δF

δϕ
(ϕ)= ξ2(∆+1)2ϕ+Φ′(ϕ),

δ2F

δϕ2
(ϕ)= ξ2(∆+1)2+Φ′′(ϕ) :=H,

where Φ′(ϕ)= τϕ− γ
2ϕ

2+ 1
3!ϕ

3, and Φ′′(ϕ)= τ−γϕ+ 1
2ϕ

2. The corresponding gradient
flow becomes

∂ϕ

∂t
=∆

[
ξ2(∆+1)2ϕ+Φ′(ϕ)−2v

〈
w,ξ2(∆+1)2ϕ̂+Φ′(ϕ̂)

〉]
,
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where v=v(k+1), w=w(k+1)=(−∆)−1v(k+1) and ϕ̂ is defined in (4.4). For the scheme
(3.20), the operator L and the energy Ln are specified as

L= ξ2(∆+1)2, Ln=

∫
Ω

Φ(ϕ)+
ξ2

2
[(∆+1)ϕ̂]2+Φ(ϕ̂) dx.

Then, we have

δLn(ϕ)

δϕ
=Φ′(ϕ)−2v

〈
w,ξ2(∆+1)2ϕ̂+Φ′(ϕ̂)

〉
L2
.

Next, we will discuss the results in two-dimensional and three-dimensional cases,
respectively.
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(a) Lamellar phase
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(b) Cylindrical phase
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Fig. 4.2: Small domain Ω=[0, 16π√
3
]× [0,8π]: (a)–(b) two stable stationary states of the Landau-

Brazovskii free energy in H−1 metric; (c) the transition state obtained by the IMF-SAV; (d) decay of
the error ∥∆δϕF∥H−1 measured by the H−1 norm of the force in each cycle k.

4.2.1. 2D domain. The two dimensional saddle point problem is numerically
solved in three cases with different domain sizes.

Small Domain. We first study the transition state on a small domain Ω=[0, 16π√
3
]×

[0,8π] with Nx=Ny=60. Figures 4.2a and 4.2b are the two stable stationary states of
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(a) Lamellar phase
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(b) Cylindrical phase

0 10 20 30 40 50

x

0

10

20

30

40

50

y

-1

-0.5

0

0.5

1

1.5

(c) Transition state

1 2 3 4 5
10-8

10-6

10-4

10-2

100

(d) Convergence rate

Fig. 4.3: Medium domain Ω=[0, 32π√
3
]× [0,16π]: (a)–(b) two stable stationary states of the Landau-

Brazovskii free energy; (c) the transition state obtained by the IMF-SAV; (d) decay of the error
∥∆δϕF∥H−1 measured by the H−1 norm of the force in each cycle k.

the lamellar phase and the cylindrical phase, respectively. The saddle point obtained
by the IMF-SAV is shown in Figure 4.2c, and is consistent with the result obtained
by the string method in [26]. The quadratic convergence rate can be obtained for the
IMF-SAV, which is shown in Figure 4.2d.

Medium Domain. Then we choose the computational domain to be [0, 32π√
3
]×

[0,16π], and the mesh size to be 240×240. The lamellar phase, the cylinder phase, and
the saddle point are shown in Figures 4.3a, 4.3b and 4.3c, respectively. Figure 4.3d
shows the quadratic convergence rate of the IMF-SAV.

Large Domain. For the last two-dimensional case, we consider a larger domain
Ω=[0, 64π√

3
]× [0,32π] with mesh size 960×960. Figures 4.4a and 4.4b show the two

steady states just like the first two examples. The transition state obtained by the IMF-
SAV is shown in Figure 4.4c. In this case, we can see the complete nucleation structure
for diblock copolymers, while the nucleation in the small and medium domains are parts
of it. The results here are consistent with that in [26]. The quadratic convergence rate
of the IMF-SAV can also be obtained, see Figure 4.4d.
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(a) Lamellar phase
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(b) Cylindrical phase
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Fig. 4.4: Large domain Ω=[0, 64π√
3
]× [0,32π]: (a)–(b) two steady states of the Landau-Brazovskii free

energy; (c) the transition state obtained by the IMF-SAV; (d) decay of the error ∥∆δϕF∥H−1 measured
by the H−1 norm of the force in each cycle k.

These three two-dimensional examples of the transition states between the lamellar
phase and the cylindrical phase show the key features of critical nucleus states in different
computational sizes. As the domain size increases, we find that the nucleation occurs
significantly in the center of the domain. And the region of significant nucleation seems
to have a fixed physical size no matter how large the computational domain is.

4.2.2. 3D domain. Now, we study the transition states of the Landau-
Brazovskii free energy on a three-dimensional domain Ω=[0, 16π√

3
]× [0,8π]× [0,π], with

Nx=Ny=60 and Nz=8. The index-1 saddle point is obtained by the IMF-SAV in
Figure 4.5c. From the result, we can see that the transition state here is the analogy
of the two-dimensional one being extended in the z-direction, and its projection onto
the xy plane corresponds to the two-dimensional transition state in Figure 4.2c. More-
over, Figure 4.5d shows that the IMF-SAV also has the quadratic convergence rate in
three-dimensional case. As the free energy landscape is much more complicated in three
spatial dimensions, there may be many other transition states that are not captured in
our numerical results.
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Fig. 4.5: 3D domain Ω=[0, 16π√
3
]× [0,8π]× [0,π]: (a)–(b) two steady states of the Landau-Brazovskii

free energy; (c) the transition state obtained by the IMF-SAV; (d) decay of the error ∥∆δϕF∥H−1

measured by the H−1 norm of the force in each cycle k.

5. Conclusion

In this paper, we proposed the IMF-SAV method to locate the transition state of
some free energies in the activated process by leveraging both strengths of the IMF
and the SAV approach. For a given free energy, we showed how to use the IMF-SAV
method to search the index-1 saddle point in H−1 metric. It is proved that the schemes
for minimizing the auxiliary functional L in the IMF are unconditionally energy stable
in each cycle, which means the large time step size is allowed. Besides, the IMF-
SAV method is easy to apply to general functionals. In the numerical experiments, by
testing the examples of the Ginzburg-Landau and the Landau-Brazovskii free energies,
we demonstrated that the IMF-SAV method can improve the efficiency and robustness of
the transition-state calculation, since SAV only requires solving linear systems and IMF
offers quadratic convergence rate at the top-level iteration. Moreover, our numerical
results clearly showed the size effect on the transition states for the Landau-Brazovskii
free energy.

In this work, we only propose an improvement in the numerical solution of transla-
tion step in the IMF. It can be more efficient if we can also improve the numerical solver
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for rotation step by exploiting sophisticated eigenfunction solver with faster convergence
rate in the H−1 metric space. Moreover, the saddle point problems in some other met-
ric spaces are also interesting, e.g., Wasserstein metric space and Hessian transport
metric space [27]. These will be our future concern. For the three-dimensional Landau-
Brazovskii model, we only considered a relatively small domain to demonstrate the
computational efficiency. With a larger domain, one may expect to see richer physics.
This is also left for our future study.
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