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VARIATIONAL APPROACH TO SIMULTANEOUS FUSION AND
DENOISING OF COLOR IMAGES WITH DIFFERENT SPATIAL

RESOLUTION∗

CIRO D’APICE† , PETER I. KOGUT‡ , ROSANNA MANZO§ , AND CLAUDIA PIPINO¶

Abstract. We propose a new variational model in Sobolev-Orlicz spaces with non-standard growth
conditions of the objective functional and discuss its applications to the simultaneous fusion and de-
noising of color images with different spatial resolution. The characteristic feature of the proposed
model is that we deal with a constrained minimization problem that lives in variable Sobolev-Orlicz
spaces where the variable exponent, which is associated with non-standard growth, is unknown a priori
and it depends on a particular function that belongs to the domain of objective functional. In view of
this, we discuss the consistency of the proposed model, give the scheme for its regularization, derive the
corresponding optimality system, and propose an iterative algorithm for practical implementations.
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1. Introduction
The synthesis of several source images of the same scene into a single image that

would contain much more visual information (see, for instance, [6, 8, 38]) is an impor-
tant issue appearing in various fields such as remote sensing, medical diagnosis, defect
inspection, and military surveillance. Since the observed source images are inevitably
corrupted by noise, they can be blurred, and arguably, are geometrically dissimilar. A
very promising approach to image quality enhancement is to fuse several sources, with
different degradations, together to extract as much useful information as possible.

A significant part of the existing fusion methods (the so-called pixel-level methods)
is based on the estimation of the value for each point in the fused image through some
feature selection rule [26]. In particular, several methods have been developed such as
spatial domain fusion methods [37], transform domain fusion methods [33], variational
methods based on fusing the gradient information [44], or their combinations [34]. In
[29], the authors proposed a new variational model by fusing the first- and second-order
gradient information from the source images. However, this approach has originally
been aimed at the fusion of images without visible noise corruptions.

Regarding the fusion methods of the noisy source images, apparently, [39] was one of
the first papers dedicated to this problem. The authors proposed a weighted variational
method based on the total variation (TV) regularization and with some regularization
parameter in the objective functional that trades off the fit to the noisy source images
and the smoothness from TV. So, the TV regularization term was added to the proposed
model to reduce the influence of the noise.
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Another approach has been introduced in [32], where the authors considered
fractional-order derivatives as regularization in the variational model for image fusion
and denoising. Their goal was to obtain a fused image of high quality, preserving sharp
edges while maintaining smoothness in homogeneous regions, even when the source im-
ages are corrupted by noise. To achieve this, the authors of [32] aim to match the
fractional-order gradient of the fused image with a target fractional-order gradient,
using either L2-norm or L1-norm. However, selecting the appropriate target fractional-
order gradient is a challenging task, and the practical implementation of this approach
becomes complicated as a result.

Recent papers [17,19,31] also deserve mention, where the authors address the con-
trast enhancement, multimodal image fusion, and denoising problem using different
techniques, such as a Retinex-based variational model, a Siamese convolutional neural
network, and quaternion-based dictionary learning with saturation-value Total Varia-
tion regularization.

In this paper, we consider a constrained minimization problem with a special objec-
tive functional. The main feature of this functional is the fact that it contains a spatially
variable exponent characterizing the growth conditions of the objective functional and
it can be seen as a replacement for the 1-norm in TV regularization. The idea of using a
spatially varying exponent in a TV-like regularization method for image denoising dates
back as early as 1997 [5] and was put into practice in 2006 [9]. Both papers as well as
some subsequent articles try to tackle variants of the problem

J(u)=D(u)+λ

∫
Ω

|∇u(x)|p(∇u(x))dx−→ inf, (1.1)

where the exponent depends directly on the image, e.g.,

p(∇u)=1+
a2

a2+ |∇Gσ ∗u|2
.

Here, (Gσ ∗v)(x) determines the convolution of function v with the 2-dimensional Gaus-
sian filter kernel Gσ

Gσ(x)=
1(√
2πσ

)2 exp(−|x|2

2σ2

)
, x∈R2, σ>0 is a fixed parameter, (1.2)

(∇Gσ ∗u)(x)=
∫
R2

∇Gσ(x−y)ũ(y)dy, ∀x∈Ω, (1.3)

ũ is zero-extension of u outside Ω, |ξ| stands for the Euclidean norm of ξ∈R2 given by
the rule |ξ|=

√
(ξ,ξ),

It has been demonstrated that this model possesses some favorable properties, par-
ticularly when edge preservation and effective noise suppression are primary goals in
image reconstruction.

Furthermore, this model has been introduced specifically to address the issue of
staircasing [35], which refers to the regularizer’s inclination towards piecewise constant
functions. The appearance of the staircase effect is a notable drawback of the classical
TV model. However, the non-convex model (1.1) did not gain significant attention
for a long period due to its high numerical complexity and the absence of a rigorous
mathematical substantiation of its consistency. Only partial solutions to this problem
have been derived for a smoothed version of the integrand, using a weak notion of
solution (see, for instance, [40]).
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A recently developed alternative variant is the TV-like method [25], which computes
the variable exponent p in an offline step and keeps it as a fixed parameter in the final
optimization problem. This approach allows the exponent to vary based on spatial
location, enabling users to locally select whether to preserve edges or smooth intensity
variations. However, there are only two natural types of imaging problems where this
approach can be applied:

• single-channel imaging where first the exponent is computed from the given
data and then is applied as prior in the subsequent minimization problem;

• dual-channel imaging where the secondary channel provides the exponent map
that is used for regularization of the primary channel.

Thus, this circumstance imposes significant limitations from a practical point of view,
especially in the case of multi-spectral satellite noisy images, where different channels
can differ drastically (for instance, red and infrared channels).

The main purpose of this paper is to describe a robust approach for the simultaneous
fusion and denoising of non-smooth multispectral images defined on grids with different
resolution using for that the energy functional with nonstandard growth. We use the
L1-norm of the noise in the minimization function and a special form of anisotropic
diffusion tensor for the regularization term. By following this approach, we aim to
increase the noise robustness of the proposed model albeit it makes such variational
problem completely non-smooth, non-convex, and, hence, significantly more difficult
from a minimization point of view.

The main characteristic feature of the proposed model is that we consider the energy
functional with nonstandard growth for each spectral channel separately. Moreover, the
edge information for the fusion of two images with different resolution is mainly accu-
mulated in the variable exponents p1(x),p2(x),. ..,pm(x). The second point that should
be emphasized is the fact that we do not predefine the variable exponents pi(x) a priori
using for that the original noisy images, but instead, we associate these characteristics
with each feasible solution.

In summary, the main contributions of our paper can be enumerated as follows:

• The variational statement for the simultaneous fusion and denoising of mul-
tispectral images with different spatial resolution in the form of minimization
problem in Sobolev-Orlicz spaces with non-standard growth conditions of the
objective functional;

• Rigorous substantiation of the well posedness of the variational problem with
non-standard growth functional;

• The proof of existence result in the proposed variational problem;

• The iterative algorithm for numerical implementations;

• Derivation of the first order necessary conditions for the approximating problem;

• Numerical experiments to study the performance of the new approach.

The remainder of the paper is organized as follows: In Section 2 we provide a
formal statement of the fusion and denoising problem and describe its main properties.
Section 3 focuses on the well-posedness of the proposed model and the solvability issues.
In Section 4 we discuss the possible ways for the relaxation of the minimization problem.
Specifically, we introduce a family of minimization problems with fictitious control and
show that each of these problems is solvable and their solutions converge to the solution
of the original problem in an appropriate topology. In Section 5 we introduce an iterative
algorithm for the approximate solution of the fusion problem and discuss its convergence
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properties. The derivation of optimality conditions for the approximating problem and
their rigorous substantiation are provided in Section 7. Since the introduced iterative
algorithm leads to the so-called weak solutions, possible ways for the relaxation of the
main minimization problem are discussed in Section 7. Finally, for illustration, we give
in Section 8 some results of numerical experiments with standard test images.

2. Preliminaries and main contribution
Let Ω⊂R2 be a bounded connected open set with a sufficiently smooth boundary

∂Ω and nonzero Lebesgue measure. In the majority of cases, Ω can be interpreted as a
rectangular domain. Let GH and GL be two sample grids on Ω such that GH = ĜH ∩Ω
and GH = ĜH ∩Ω, where

ĜH =

{
(xi,yj)

∣∣∣x1=xH , xi=x1+∆H,x(i−1), i=1,. ..,Nx,
y1=yH , yj =y1+∆H,y(j−1), j=1,. ..,Ny,

}
,

ĜL=

{
(xi,yj)

∣∣∣x1=xL, xi=x1+∆L,x(i−1), i=1,. ..,Mx,
y1=yL, yj =y1+∆L,y(j−1), j=1,. ..,My,

}
,

with some fixed points (xH ,yH) and (xL,yL). Hereinafter, it is assumed that Nx>>Mx

and Ny >>My.
Let S :GH →Rm and M :GL→Rm, m≥1, be a couple of multispectral images,

containing the same scene albeit they are defined on grids with different resolution.
The principle point is that the image with low resolution M :GL→Rm contains some
extra objects that are invisible or absent in the image S :GH →Rm. It is assumed that:

(i) Each of the given images S :GH →Rm and M :GL→Rm can be corrupted by
some additive Gaussian noise with zero mean.

(ii) All spectral channels of the image M =[M1,M2,. ..,Mm] have similar spectral
characteristics to the corresponding channels of the image S=[S1,S2,. ..,Sm],
respectively;

(iii) The images M :GL→Rm and S :GH →Rm are rigidly co-registered. This
means that the image M , after arguably some affine transformation and the
image S after the resampling to the grid with low resolution GL, could be
successfully matched except for the zone where there are new objects.
In practice, the co-registration procedure is usually applied not to the original
images directly, but rather to their spectral energies YM :GL→R and YS :GH →
R, where the last ones should be previously resampled to the grid of the low
resolution GL. Here,

YM (z) :=α1M1(z)+α2M2(z)+ ·· ·+αmMm(z), ∀z=(x,y)∈GL,

YS(z) :=α1S1(z)+α2S2(z)+ ·· ·+αmSm(z), ∀z=(x,y)∈GH

with appropriate weight coefficients αi, i=1,. ..,m.
The main purpose of this paper is to present a robust approach for the simultaneous

denoising and fusion of non-smooth multi-spectral images defined on grids with different
resolution. With that in mind, we use a special form of anisotropic diffusion tensor for
the regularization term and the L1-norms for the fidelity terms. Namely, we deal with
the following family of optimization problems:

Ji(v)=

∫
Ω

|∇v(x)|F(v(x))dx+λ

∫
Ω

|∇v(x)−∇Si(x)|dx

+µ

∫
Ω

|TSv(x)−Si(x)|dx+
1−µ

2
TM

(
[(Gσ ∗v)(·)−Mi(·)]2

)
−→ inf,

(2.1)
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subject to the constraints

v∈W 1,F(v(·))(Ω), 1≤γi,0≤v(x)≤γi,1 a.e. in Ω, (2.2)

where i=1,. ..,m, Si∈L1(Ω) and Mi∈L1(Ω) are a particular spectral channel of

the original noisy images S=[S1,S2,. ..,Sm]
T ∈L1(Ω;Rm) and M =[M1,M2,. ..,Mm]

T ∈
L1(Ω;Rm), respectively, λ>0 and µ∈ (0,1) are the tuning parameters, W 1,F(v(·))(Ω)
stands for the so-called Sobolev-Orlicz space associated with a feasible solution v,
TS ∈L(L1(Ω)) and TM ∈L(L1(Ω),R) are bounded linear operators with unbounded in-
verse,

F(v(x))=1+g (|(∇Gσ ∗v)(x)|) in Ω, (2.3)

and g : [0,∞)→ (0,∞) is a continuous monotone decreasing function such that g(0)=1
and g(t)>0 for all t>0 with lim

t→+∞
g(t)=0.

In particular, if we set p(x) :=1+g (|(∇Gσ ∗v)(x)|), where the edge-stopping func-
tion g(s) is taken in the form of the Cauchy law

g(t)=
1

1+(t/a)2
with an appropriate a>0, (2.4)

it implies that p(x)≈1 in places in Ω where edges or discontinuities are present in
the image v(x), and p(x)≈2 in places where v(x) is smooth or contains homogeneous
features.

We define the parameters γi,0, γi,1, and the operator TM ∈L(L1(Ω),R), as follows:

γi,0= min
(x,y)∈GH

Si(x,y), γi,1= max
(x,y)∈GH

Si(x,y), TM =
∑

(xi,yj)∈SL

δ(xi,yj), (2.5)

where δ(xi,yj) is the Dirac’s delta at the point (xi,yj) of the sample grid GL.

It is worth emphasizing that, in contrast to the quadratic data-fitting term in the
well-known model, introduced by Rudin et al. [36], we take the fidelity terms in L1-
norm just to increase the noise robustness of the model (2.1) albeit it makes such
variational problem completely non-smooth and, hence, significantly more difficult from
a minimization point of view.

Thus, the problem of simultaneous fusion and denoising of multi-spectral images
with different spatial resolution consists in the generation of a new multi-spectral image

I0=
[
I01 ,I

0
2 ,
. . . ,I0m

]t
:GH →Rm, which would be well defined on the entire grid GH , such

that

Ji(I
0
i )= inf

v∈Ξi

Ji(v), ∀i=1,. ..,m, (2.6)

where

Ξi=
{
u∈W 1,F(v(·))(Ω) : 1≤γi,0≤u(x)≤γi,1 a.e. in Ω

}
(2.7)

stands for the set of feasible solutions to the minimization problem (2.1).
So, the main characteristic feature of the model (2.1) is the energy functional with

nonstandard growth where the main information for the simultaneous fusion and denois-
ing of images S and M is accumulated in the variable exponents [F(v1(x)),. ..,F(vm(x))].
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However, in contrast to [1, 9, 10, 28], we do not predefine the variable exponents p(x) a
priori using for that the original noisy images S or/and M , but instead we associate
this characteristic with each feasible solution. As a result, we admit that each feasible
solution to this problem lies in the corresponding individual functional space. Formally

it means that we look for the true image I0=
[
I01 ,I

0
2 ,
. . . ,I0m

]t
such that

I0∈W 1,F(I0
1 (·))(Ω)×W 1,F(I0

2 (·))(Ω)×···×W 1,F(I0
m(·))(Ω).

As follows from the definition of Sobolev-Orlicz space W 1,F(I0
i (·))(Ω), its regular-

ity is completely determined by the exponent F(I0i (·)) which depends on i-th spectral
channel of the true image I0 and, hence, is unknown a priori. Moreover, the exponents{
F(I01 (·)),F(I02 (·)),. ..,F(I0m(·))

}
may significantly differ from channel to channel. In

particular, some pixels, which are the local minimum points in the red channel, become
local maximum points in the near-infrared channel and vice versa. Moreover, the dif-
ferent feasible solutions v ̸=u to the above problem live in different functional spaces:
we have v∈W 1,F(v(·))(Ω) whereas u∈W 1,F(u(·))(Ω). As a consequence, any minimizing
sequence to this problem is a sequence living in the scale of variable spaces. As a re-
sult, notions such as convergence concept, compactness, density, and others should be
specified for the case of variable Sobolev-Orlicz spaces.

Thus, although in the literature there are many approaches to the study of varia-
tional problems in abstract functional spaces, the above mentioned circumstances make
the problem (2.1) rather challenging (see [9, 10] and [7, 12, 13, 20] for recent studies in
this field).

3. Existence result

Our main intention in this section is to show that the constrained minimization
problem (2.1)–(2.2) is consistent and admits at least one solution. Because of the specific
form of the energy functional Ji(v), the structure and main topological properties of
the set of feasible solutions to the minimization problem (2.1)–(2.2) are challenging
issues. So, the study of these issues is the main subject of this section (we can refer
to [5, 7, 9, 14,15] for some specific details that can appear in this case).

We begin with the following key assumptions:

(A1) The true intensities I0i of all spectral channels for the retrieved image I0=[
I01 ,. ..,I

0
m

]t
are subjected to the constraints γi,0≤ I0i (x)≤γi,1 a.e. in Ω, where

the thresholds γi,0 and γi,1 are defined in (2.5).

(A2) There exist a couple of vector-valued functions S̃∈W 1,1(Ω;Rm) and M̃ ∈
C(Ω;Rm) such that the grids GH and GL are the sets of Lebesgue point of

S̃ and M̃ , respectively, and

S̃
∣∣
GH

=S, M̃
∣∣
GL

=M. (3.1)

Remark 3.1. Let us mention that in the case of digital images, the only ac-
cessible information is a sampled and quantized version of I :Ω→Rm, i.e., I(xi,yj),
where {(xi,yj)∈Ω} is a set of discrete points and for each spectral channel k=1,. ..,m,
Ik(xi,yj) belongs in fact to a discrete set of values, 0,1,. ..,255 in most cases. Due to
Shannon’s theory, it is plausible to assume that Ik is recoverable at any point (x,y)∈Ω
from the samples Ik(xi,yj). So, in view of assumption (A2), we may assume that the
images S and M are known in a continuous domain Ω and, therefore, the objective
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functional (2.1) should be interpreted as follows

Ji(v)=

∫
Ω

|∇v(x)|F(v(x))dx+λ

∫
Ω

|∇v(x)−∇S̃i(x)|dx

+µ

∫
Ω

|TSv(x)− S̃i(x)|dx+
1−µ

2
TM

(
|(Gσ ∗v)(·)−M̃i(·)|2

)
.

However, in practice, such reconstruction is not a trivial problem.

We say that a function I0=
[
I01 ,. ..,I

0
m

]t
:Ω→Rm is the result of simultaneous fusion

and denoising of the noise contaminated images S :GH →Rm and M :GL→Rm if for
given regularization parameters λ>0, µ∈ (0,1), and a given linear blur operator TS ∈
L(L1(Ω)), each spectral component I0i is the solution of the corresponding constrained
minimization problem (2.6)–(2.7), i.e., for each i=1,. ..,m,

I0i ∈Ξi and Ji
(
I0i
)
= inf

v∈Ξi

Ji (v) .

Hereinafter, we associate with each spectral channel vi of an arbitrary image v=
[v1,v2,. ..,vm]

t
:Ω→Rm the so-called texture index pi :Ω→R following the rule

pi(x) :=F(vi(x))=1+g (|(∇Gσ ∗vi)(x)|) , ∀x∈Ω, ∀i=1,. ..,m, (3.2)

where g:[0,∞)→ (0,∞) is the edge-stopping function that we take in the form of the
Cauchy law g(t)= 1

1+(t/a)2 .

As follows from representation (3.2) and smoothness of the Gaussian filter kernel
Gσ, we have the following estimates

|(∇Gσ ∗v)(x)|≤
∫
Ω

|∇Gσ(x−y)||v(y)|dy

≤∥Gσ∥C1(Ω−Ω)∥v∥L1(Ω)≤∥Gσ∥C1(Ω−Ω)|Ω|γ1,i, ∀x∈Ω,

F(v(x))=1+
a2

a2+(|(∇Gσ ∗v)(x)|)2

≥1+
a2

a2+∥Gσ∥2C1(Ω−Ω)
∥v∥2L1(Ω)

≥1+δ, ∀x∈Ω,

F(v(x))≤2 in Ω,

where

δ=
a2

a2+∥Gσ∥2C1(Ω−Ω)
|Ω|2 max

1≤i≤m
γ2
1,i

≪1, (3.3)

∥Gσ∥C1(Ω−Ω)= max
z=x−y

x∈Ω,y∈Ω

[
|Gσ(z)|+ |∇Gσ(z)|

] e−1

2πσ2

[
1+

1

σ2
diamΩ

]
. (3.4)

Hence,

α≤F(v(x))≤β in Ω, where α :=1+δ and β :=2.

The following results play a crucial role in the sequel (for the proof, we refer to [15]).
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Lemma 3.1. Let {vk}k∈N⊂L∞(Ω) be a sequence of measurable non-negative functions
such that γi,0≤vk(x)≤γi,1 a.e. in Ω and vk(x)→v(x) weakly-∗ in L∞(Ω) for some
v∈L∞(Ω), and each element of this sequence is extended by zero outside of Ω. Let
{pk=1+g (|(∇Gσ ∗vk)|)}k∈N be the corresponding sequence of texture indices. Then

pk(·)→p(·)=1+g (|(∇Gσ ∗v)(·)|) uniformly in Ω as k→∞,

α :=1+δ≤pk(x)≤β :=2, ∀x∈Ω, ∀k∈N. (3.5)

Proposition 3.1. Let {pk=1+g (|(∇Gσ ∗vk)|)}k∈N be a sequence of texture indices
such that

pk(·)→p(·)=1+g (|(∇Gσ ∗v)(·)|) uniformly in Ω as k→∞

and conditions (3.5) hold true. If a bounded sequence
{
fk ∈Lpk(·)(Ω)

}
k∈N converges

weakly in L1+δ(Ω) to f , then f ∈Lp(·)(Ω), fk⇀f in variable Lpk(·)(Ω), and

liminf
k→∞

∫
Ω

|fk(x)|pk(x)dx≥
∫
Ω

|f(x)|p(x)dx. (3.6)

Following, in some technical aspects, recent studies [12, 13, 15, 20], we can give the
following existence result.

Theorem 3.1. For each i=1,. ..,m and given µ∈ (0,1), λ>0, S∈L1(Ω;Rm), M :
GL→Rm, and TS ∈L(L1(Ω)), the minimization problem (2.6)–(2.7) admits at least one
solution I0i ∈Ξi.

Proof. Since Ξi ̸=∅ and 0≤Ji(v)<+∞ for all v∈Ξi, it follows that there exists
a non-negative value ζ≥0 such that ζ= inf

v∈Ξi

Ji(v). Let {vk}k∈N⊂Ξi be a minimizing

sequence to the problem (2.6)–(2.7), i.e.

vk ∈Ξi, ∀k∈N, and lim
k→∞

Ji (vk)= ζ.

So, without loss of generality, we can suppose that Ji (vk)≤ ζ+1 for all k∈N.
Utilizing the fact that vk ∈Ξi, ∀k∈N and, therefore, vk(x)≤γ1,i for almost all x∈Ω,

we see that

∥vk∥L1(Ω)≤γ1,i|Ω|, ∀k∈N.

Then setting pk(x)=1+g (|(∇Gσ ∗vk)(x)|) in Ω and arguing as in Lemma 3.1, it can
be shown that pk ∈C0,1(Ω) and

α :=1+δ≤pk(x)≤β :=2, ∀x∈Ω, ∀k∈N, (3.7)

where δ is defined by the rule (3.3). From this, we deduce that∫
Ω

|vk(x)|αdx≤
∫
Ω

γα
1,idx≤γα

1,i|Ω|, ∀k∈N,∫
Ω

|∇vk(x)|pk(x)dx≤ ζ+1, ∀k∈N, (3.8)

with α=1+δ.
Taking this fact into account, we infer from (3.8), (3.7), and (2.2) that

∥vk∥W 1,α(Ω) =

(∫
Ω

[
|vk(x)|α+ |∇vk(x)|α

]
dx

)1/α
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≤ (1+ |Ω|)1/α
(∫

Ω

[
|vk(x)|pk(x)+ |∇vk(x)|pk(x)

]
dx+2

)1/α

by (3.8)

≤ (1+ |Ω|)1/α
(
γ2
1,i|Ω|+ζ+3

)1/α
uniformly with respect to k∈N. Therefore, there exists a subsequence of {vk}k∈N, still
denoted by the same index, and a function I0i ∈W 1,α(Ω) such that

vk→ I0i strongly in Lq(Ω) for all q∈ [1,α∗),

vk⇀I0i weakly in W 1,α(Ω) as k→∞, (3.9)

where, by Sobolev embedding theorem, α∗= 2α
2−α = 2+2δ

1−δ >2+δ.
Moreover, passing to a subsequence if necessary, we have (see Proposition 3.1 and

Lemma 3.1):

vk(x)→ I0i (x) a.e. in Ω (3.10)

vk⇀I0i weakly in Lpk(·)(Ω),

∇vk⇀∇I0i weakly in Lpk(·)(Ω;RN ),

pk(·)→p0i (·)=1+g
(∣∣(∇Gσ ∗I0i

)
(·)
∣∣) uniformly in Ω as k→∞,

where I0i ∈W 1,p0(·)(Ω).
Since γ0,i≤vk(x)≤γ1,i a.a. in Ω for all k∈N, it follows from (3.10) that the limit

function I0i is also subjected to the same restriction. Thus, I0i is a feasible solution to
the minimization problem (2.6)–(2.7).

Let us show that I0i is a minimizer of this problem. With that in mind, we note
that due to the obvious inequality

|TS (vk(x))− S̃i(x)|≤
(
∥TS∥L(L1(Ω))γ1,i+ |S̃i(x)|

)
,

we have: the sequence
{
TS (vk(x))− S̃i(x)

}
k∈N

is bounded in L1(Ω), equi-integrable in

Ω, and because of (3.10), it strongly converges in L1(Ω) to TS

(
I0i
)
− S̃i. Hence,

liminf
k→∞

∫
Ω

|TS (vk(x))− S̃i(x)|dx=
∫
Ω

∣∣TS

(
I0i (x)

)
− S̃i(x)

∣∣dx. (3.11)

In view of the piecewise convergence (3.10), we have a similar relation for the last
term in (2.1)

liminf
k→∞

TM

(
|(Gσ ∗vk)(·)−M̃i(·)|2

)
=TM

(
|
(
Gσ ∗I0i

)
(·)−M̃i(·)|2

)
. (3.12)

It remains to notice that due to the properties (3.8), (3.9), the sequence{
|∇vk|∈Lpk(·)(Ω)

}
k∈N is bounded and weakly convergent to |∇I0i | in Lα(Ω). Hence,

by Proposition 3.1, the following lower semicontinuous properties

liminf
k→∞

∫
Ω

|∇vk(x)|pk(x)dx≥
∫
Ω

|∇I0i (x)|p
0
i (x)dx, (3.13)

liminf
k→∞

∫
Ω

|∇vk(x)−∇S̃i(x)|dx≥
∫
Ω

|∇I0i (x)−∇S̃i(x)|dx (3.14)
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hold.
As a result, utilizing relations (3.11)–(3.14), we finally obtain

ζ= inf
v∈Ξi

Ji(v)= lim
k→∞

Ji (vk)= liminf
k→∞

Ji(vk)≥Ji(I
0
i ).

Thus, I0i is a minimizer to the problem (2.6)–(2.7), whereas its uniqueness remains
an open question.

4. On relaxation of the minimization problem (2.6)–(2.7)
It is clear that because of the specific choice of the exponent

F(v(x))=1+g (|(∇Gσ ∗v)(x)|) in Ω,

constrained minimization problem (2.6)–(2.7) is not trivial in its practical implementa-
tion. Moreover, in this case, the objective functional Ji(v) is not convex. Even if we
represent the minimization problem (2.6)–(2.7) in the form

Find (I0i ,p
0
i )∈Λi such that Fi

(
I0i ,p

0
i

)
= inf

(v,p)∈Λi

Fi (v,p) , (4.1)

where

Fi(v,p)=

∫
Ω

|∇v(x)|p(x)dx+λ

∫
Ω

|∇v(x)−∇S̃i(x)|dx

+µ

∫
Ω

|TSv(x)− S̃i(x)|dx+
1−µ

2
TM

(
|(Gσ ∗v)(·)−M̃i(·)|2

)
, (4.2)

Λi=

{
(u,p)∈W 1,F(v(·))(Ω)×C0,1(Ω)

∣∣∣∣∣ 1≤γi,0≤u(x)≤γi,1 a.e. in Ω

p(x)=1+g (|(∇Gσ ∗u)(x)|) in Ω

}
(4.3)

the main difficulty in its study comes from the state constraints

p(x)=1+g (|(∇Gσ ∗v)(x)|) (4.4)

with the non-convex right-hand side. This motivates us to pass to some relaxation
scheme of variational problem (4.1)–(4.3). It will be shown in the sequel that using this
approach, the non-convexity can be negligible in practice and that reliable solutions can
be computed using a variety of different optimization algorithms.

As the main step of this procedure, we propose to consider the function p(·) :=
F(v(·)) as a fictitious control subjected to some special constraints and interpret the
fulfillment of equality F(v(x))=1+g (|(∇Gσ ∗v)(x)|) with some accuracy in Ω. To do
so, we notice that if v∈Ξi is a feasible solution to the problem (2.6)–(2.7) then F(v(·))
is subjected to the two-side inequality (3.7) with δ∈ (0,1) given by (3.3). Keeping this
in mind and following in some aspects the standard penalty method [41, Chapter 2] (see
also [21–24,27]), we consider the following family of approximating problems:

Minimize Ji,ε(v,p)=

∫
Ω

|∇v(x)|p(x)dx+λ

∫
Ω

|∇v(x)−∇S̃i(x)|dx

+µ

∫
Ω

|TSv(x)− S̃i(x)|dx+
1−µ

2
TM

(
|(Gσ ∗v)(·)−M̃i(·)|2

)
+
1

ε

∫
Ω

|p(x)−1−g (|(∇Gσ ∗v)(x)|)|2dx (4.5)
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subject to the constraints (v,p)∈Ξi,ε, where

Ξi,ε=

{
(v,p)

∣∣∣∣ v∈W 1,α(Ω), p∈Sad, Ji,ε(v,p)<+∞,

0≤γi,0≤v(x)≤γi,1 a.e. in Ω,

}
(4.6)

Sad=

{
h∈C(Ω)

∣∣∣∣ |h(x)−h(y)|≤C|x−y|, ∀x,y∈Ω,

1<α≤h(·)≤β in Ω.

}
(4.7)

Here, α=1+δ, δ>0 is given by (3.3), β=2, and

C :=
2∥Gσ∥C1(Ω−Ω)γ

2
1,i|Ω|CG

a2
(4.8)

with a positive constant CG coming from the inequality∫
Ω

|∇Gσ(x−z)−∇Gσ(y−z)|dz≤CG|x−y|, ∀x,y∈Ω.

To justify the choice (4.8) for the constant C, we make use of the following obser-
vation. If we assume for a moment that p(x)=1+g (|(∇Gσ ∗v)|) for some v∈Ξi, then
the following chain of estimates holds true

|p(x)−p(y)|≤a2
∣∣∣∣ |(∇Gσ ∗v)(x)|2−|(∇Gσ ∗v)(y)|2

(a2+ |(∇Gσ ∗v)(x)|2)(a2+ |(∇Gσ ∗v)(y)|2)

∣∣∣∣
≤

2∥Gσ∥C1(Ω−Ω)∥v∥L1(Ω)

a2

∣∣∣∣|(∇Gσ ∗v)(x)|−|(∇Gσ ∗v)(y)|
∣∣∣∣

≤
2∥Gσ∥C1(Ω−Ω)γ

2
1 |Ω|

a2

∫
Ω

|∇Gσ(x−z)−∇Gσ(y−z)|dz,

∀x,y∈Ω with γ1=∥v∥L∞(Ω)≤γi,1.

Then taking into account the smoothness of the function ∇Gσ(·), we deduce: there
exists a positive constant CG>0 independent of k such that

|p(x)−p(y)|≤
2∥Gσ∥C1(Ω−Ω)γ

2
1,i|Ω|CG

a2
|x−y|, ∀x,y∈Ω.

Hereinafter, we assume that the parameter ε varies within a strictly decreasing
sequence of positive real numbers which converges to 0. So, when we write ε>0, we
consider only the elements of this sequence.

Definition 4.1. We say that a pair (v,p) is quasi-feasible to minimization problem
(4.1)–(4.3) if (v,p)∈Ξi,ε for some ε>0 small enough. We also say that (u0

i,ε,p
0
i,ε)∈

W 1,p0
ε(·)(Ω)×C0,1(Ω) is a quasi-optimal solution to the problem (4.1)–(4.3) if

(u0
i,ε,p

0
i,ε)∈Ξi,ε and Ji,ε(u

0
i,ε,p

0
i,ε)= inf

(v,p)∈Ξi,ε

Ji,ε(v,p).

Remark 4.1. It is clear that condition p∈Sad together with the fact that Sad is
a compact subset in C(Ω) implies: every cluster point of a sequence {pk}k∈N⊂Sad

with respect to the uniform topology is a regular exponent, i.e. it is an exponent
satisfying the log-Hölder continuity condition [43]. In this case, the set C∞

0 (R2) is
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dense in W 1,p(·)(Ω) [11] and this fact plays a crucial role in the study of minimization
problem (4.5).

The principle point in the statement of the approximated problem (4.5) is the fact
that we pass from the state constrained optimization problem (4.1) with the variable
exponent p(x)=F(v(x)) strongly depending on the function of interest v to its approxi-
mation where we eliminate the equality constraint p(x)=F(v(x)) for the state v(x) and
the exponent p(x) and allow such pairs to run freely in their respective sets of feasibility.

We begin with the following existence result.

Theorem 4.1. For each i=1,. ..,M , every positive value ε>0, and given µ>0,
λ>0, S̃i,M̃i∈L1(Ω), and TS ∈L(L1(Ω)), the minimization problem (4.5) has at least
one solution.

Proof. Since the set Ξi,ε is nonempty, we can assert the existence of a minimizing
sequence {(uk,pk)}k∈N⊂Ξi,ε. Then arguing as in the proof of Theorem 3.1, we deduce

the boundedness of the sequence {uk}k∈N in W 1,pk(·)(Ω) and, hence, the existence of
a subsequence, still denoted in the same way, such that uk⇀u0

ε in W 1,α(Ω) and in
variable W 1,pk(·)(Ω). As for the sequence {pk}k∈N, we see that

{pk(·)}⊂S=

{
h∈C0,1(Ω)

∣∣∣∣ |h(x)−h(y)|≤C|x−y|, ∀x,y,∈Ω,

1<α≤h(·)≤β in Ω,

}

and maxx∈Ω|pk(x)|≤β. Since each element of the sequence {pk}k∈N has the same modu-
lus of continuity, it follows that this sequence is uniformly bounded and equi-continuous.
Hence, by Arzelà–Ascoli theorem the sequence {pk}k∈N is relatively compact with re-

spect to the norm topology of C(Ω). Since the set S is closed with respect to the
uniform convergence, it follows that

pk(·)→p0ε(·) uniformly in Ω as k→∞ and, therefore, p0ε ∈Sad.

Thus, we can suppose that for a given minimizing sequence there exists a subse-
quence of {(uk,pk)}k∈N in W 1,pk(·)(Ω)×C0,1(Ω), still denoted in the same way, and a

pair
(
u0
ε,p

0
ε

)
such that pk→p0ε in C(Ω), uk⇀u0

ε in W 1,α(Ω) and in variable W 1,pk(·)(Ω).
Then, by the Sobolev embedding theorem, we deduce that uk→u0

ε strongly in Lq(Ω) for
all q∈ [1, 2α

2−α ), and, therefore, we can suppose that uk(x)→u0
ε(x) almost everywhere in

Ω as k→∞. As a result, we have

γ0,i≤u0
ε(x)≤γ1,i and α≤p0ε(x)≤β a.a. in Ω,

lim
k→∞

∫
Ω

|TS(uk(x))− S̃i(x)|dx=
∫
Ω

|Ti(u
0
ε(x))− S̃i(x)|dx,

lim
k→∞

TM

(
|(Gσ ∗uk)(·)−M̃i(·)|2

)
=TM

(
|
(
Gσ ∗u0

ε

)
(·)−M̃i(·)|2

)
,

liminf
k→∞

∫
Ω

|∇uk(x)|pk(x)dx
by (3.6)

≥
∫
Ω

|∇u0
ε(x)|p

0
ε(x)dx.

Thus,
(
u0
ε,p

0
ε

)
∈Ξi,ε. It remains to notice that∣∣pk−1−g (|(∇Gσ ∗uk)(x)|)

∣∣2→ ∣∣p0ε−1−g
(∣∣(∇Gσ ∗u0

ε

)
(x)
∣∣)∣∣2 in C(Ω),
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and the Lebesgue dominated convergence theorem implies

lim
k→∞

∫
Ω

∣∣pk−1−g (|(∇Gσ ∗uk)(x)|)
∣∣2dx=∫

Ω

∣∣p0ε−1−g
(∣∣(∇Gσ ∗u0

ε

)
(x)
∣∣)∣∣2dx.

Utilizing the above mentioned properties, we finally obtain

Ji,ε(u
0
ε,p

0
ε)≤ liminf

k→∞
Ji,ε(uk,pk)= inf

(v,p)∈Ξi

Ji,ε(v,p).

Thus,
(
u0
ε,p

0
ε

)
∈Ξi,ε is an optimal pair to the problem (4.5).

Taking this existence result into account, we pass to the study of approximation
properties of the problems (4.5). Namely, we establish the convergence of minima of
(4.5) to minima of (4.1)–(4.3) as ε tends to zero. In other words, we show that some
optimal solutions to (4.1)–(4.3) can be approximated by the quasi-optimal solutions of
this problem.

Theorem 4.2. Let
{
(u0

ε,p
0
ε)∈Ξi,ε

}
ε>0

be a sequence of minimizers to the problem

(4.5). Then there exists a subsequence of
{
(u0

ε,p
0
ε)
}
ε>0

, still denoted by the same index
ε, such that

p0ε→p0 in C(Ω) as ε→0, (4.9)

u0
ε⇀u0 in W 1,α(Ω) as ε→0, (4.10)

u0
ε⇀u0 in W 1,p0

ε(·)(Ω), u0∈W 1,p0(·)(Ω), (4.11)

p0(x)=1+g
(∣∣(∇Gσ ∗u0

)
(x)
∣∣) in Ω, (4.12)

Ji(u
0)= inf

v∈Ξi

Ji(v)= lim
ε→0

inf
(u,p)∈Ξi,ε

Ji,ε(v,p)= lim
ε→0

Ji,ε(u
0
ε,p

0
ε), (4.13)

and u0∈Ξi.

Proof. Let u∗∈Ξi be an arbitrary feasible solution to the original problem (2.6)–
(2.7). We set p∗=F(u∗(·)) in Ω. Then u∗∈W 1,α(Ω), p∗∈Sad, Ji,ε(u

∗,p∗)=Ji(u
∗)<

+∞, and, as a consequence, (u∗,p∗)∈Ξi,ε for each ε>0.
Since Ji,ε(u

0
ε,p

0
ε)≤Ji,ε(u

∗,p∗)=Ji(u
∗)=:C∗, it follows from (4.5) that

sup
ε>0

∫
Ω

|∇u0
ε(x)|p

0
ε(x)dx≤C∗, (4.14)∫

Ω

∣∣p0ε(x)−1−g
(∣∣(∇Gσ ∗u0

ε

)
(x)
∣∣)∣∣2dx≤εC∗, ∀ε>0. (4.15)

Since
{
p0ε ∈C0,1(Ω)

}
is a bounded sequence in C(Ω) with the same modulus of con-

tinuity, it follows, by Arzelà–Ascoli theorem, that this sequence is relatively compact
with respect to the norm topology of C(Ω). Without loss of generality, we can suppose
that there exists a function p0∈C(Ω) such that assertion (4.9) is valid. Moreover, as
follows from definition of the set Sad, the limit function p0 is subjected to the pointwise
constraints

α :=1+δ≤p0(x)≤β :=2, ∀x∈Ω. (4.16)

Arguing similarly, we can infer from (4.14) and the two-side inequality

0≤γ0,i≤u0
ε(x)≤γ1,i a.a. in Ω, ∀ε>0 (4.17)
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that the sequence
{
u0
ε

}
is relatively compact with respect to the weak topology of

W 1,α(Ω). Indeed, taking into account (4.17) and observing that

sup
ε>0

∫
Ω

|u0
ε(x)|p

0
ε(x)dx

by (4.17)

≤ +∞,

we see that u0
ε ∈W 1,p0

ε(·)(Ω) for all ε>0 and the sequence
{
u0
ε

}
is bounded in variable

space W 1,p0
ε(·)(Ω). Hence, this sequence is bounded in W 1,α(Ω). Therefore, in view

of completeness of W 1,α(Ω), there exists a function u0∈W 1,α(Ω) such that, up to a
subsequence, property (4.10) holds true. As a result, Proposition 3.1 and Sobolev
embedding theorem lead us to the conclusion:

u0
ε⇀u0 in W 1,p0

ε(·)(Ω), u0∈W 1,p0(·)(Ω),

u0
ε→u0 strongly in Lq(Ω) for all q∈ [1,α∗), (4.18)

where α∗= 2α
2−α . So, we can suppose that u0

ε(x)→u0(x) a.e. in Ω. Then passing to

the limit in (4.17) as ε→0, we see that the limit function u0 is also subjected to the
point-wise constraints

0≤γ0,i≤u0(x)≤γ1,i a.a. in Ω. (4.19)

Moreover, utilizing the estimate (4.15) and properties (4.9)–(4.10), we get

lim
ε→0

∫
Ω

∣∣p0ε(x)−1−g
(∣∣(∇Gσ ∗u0

ε

)
(x)
∣∣)∣∣2dx

=

∫
Ω

∣∣p0(x)−1−g
(∣∣(∇Gσ ∗u0

)
(x)
∣∣)∣∣2dx=0.

Hence, p0(x)=1+g
(∣∣(∇Gσ ∗u0

)
(x)
∣∣) in Ω. Thus, u0∈W 1,F(u0(·))(Ω). Combining this

fact with (4.19), we see that the limit function u0 is a feasible solution to the minimiza-
tion problem (2.6)–(2.7).

Let us show that this function is optimal to the problem (2.6)–(2.7). Since

lim
ε→0

∫
Ω

|TS(u
0
ε(x))− S̃i(x)|dx

by (4.18)
=

∫
Ω

|TS(u
0(x))− S̃i(x)|dx,

lim
ε→0

TM

(
|
(
Gσ ∗u0

ε

)
(·)−M̃i(·)|2

)
by (4.18)

= TM

(
|
(
Gσ ∗u0

)
(·)−M̃i(·)|2

)
,

it follows from Proposition 3.1 that

liminf
ε→0

Ji,ε(u
0
ε,p

0
ε)≥Ji(u

0). (4.20)

Then, assuming the converse—namely, there is a function û∈Ξi such that Ji(û)<Ji(u
0),

we get:

(û, p̂)∈Ξi,ε ∀ε>0 with p̂ :=F(û(·)),
Ji(û)≡Ji,ε(û, p̂)≥ inf

(v,p)∈Ξi,ε

Ji,ε(v,p)=Ji,ε(u
0
ε,p

0
ε).

Hence,

Ji(û)≥ limsup
ε→0

Ji,ε(u
0
ε,p

0
ε)≥ liminf

ε→0
Ji,ε(u

0
ε,p

0
ε)

by (4.20)

≥ Ji(u
0), (4.21)
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and we come into contradiction with the initial assumptions. Thus, u0 is a solution of
the original problem (2.6)–(2.7). In order to establish the equality (4.13), it is enough,
instead of (û, p̂), to take (u0,p0) in (4.21).

Since Theorem 4.2 does not answer whether the entire set of solutions to the problem
(2.6)–(2.7) can be attained in such a way, the following result sheds some light on this
matter.

Corollary 4.1. Let u0∈Ξi be a minimizer to optimization problem (2.6)–(2.7) such
that there is a closed neighborhood U(u0) of u0 in the norm topology of Lα(Ω) satisfying

Ji(u
0)<Ji(v) ∀v∈Ξi∩U(u0). (4.22)

Then there exists a sequence of local minima
{
(u0

ε,p
0
ε)
}
ε>0

of problems (4.5) such that

(u0
ε,p

0
ε)→ (u0,F(u0(·))) in the sense of Theorem 4.2.

Proof. By the strict local optimality of u0, we have that it is the unique solution
of the problem

min
v∈Ξi,v∈U(u0)

Ji(v). (4.23)

For every ε>0 let us consider the following optimization problems

min
(v,p)∈Ξi,ε,v∈U(u0)

Ji,ε(v,p). (4.24)

Since the set
{
(v,p)∈Ξi,ε,v∈U(u0)

}
is nonempty, it follows that the problem (4.24) has

at least one solution (u0
ε,p

0
ε) for every ε>0. Now, arguing as in the proof of Theorem 4.2,

we deduce that (u0
ε,p

0
ε)→ (ũ0, p̃0) in the sense of convergences (4.9)–(4.13), and ũ0 is a

solution of (4.23). Since u0 is the unique solution of (4.23), we infer that u0= ũ0 and,
therefore, (u0

ε,p
0
ε)→ (u0,F(u0(·))) in the sense of Theorem 4.2. This implies the existence

of ε0>0 such that u0
ε belongs to the interior of U(u0) for every ε≤ε0. Consequently,

(u0
ε,p

0
ε) is a local minimum of (4.5) for every ε≤ε0. This concludes the proof.

5. Proximal alternating minimization algorithm and its modification
In this section, we discuss an algorithm that will attempt to numerically compute

the solutions to the state constrained minimization problem (4.1)–(4.3). As follows from
Theorem 4.2, some optimal solutions to (4.1)–(4.3) can be obtained as cluster points of
the quasi-optimal solutions to this problem. From a practical point of view, it means
that we can focus on the mathematical model of approximating problem (4.5)–(4.6),
with ε>0 small enough, which models the solution that we are after. For a concise
presentation, we cast problem (4.5)–(4.6) in the form

(v∗,p∗)∈ Argmin
(v,p)∈Ξi,ε

Ji,ε(v,p). (5.1)

Since the objective functional Ji,ε(v,p) is neither convex in the joint variables (v,p)
nor bi-convex (i.e., convex in each of the variables v and p), an abstract algorithm for
finding solution of (5.1) is the proximal alternating minimization algorithm [2]. Given
the initial pair (v0,p0)∈Λi⊂Ξi,ε, where

v0(x)=M̃i(x) and p0(x)=1+g (|(∇Gσ ∗v0)(x)|) in Ω (5.2)
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and the step sizes τuk ,τ
q
k >0, the next iterations can be computed by the update scheme

(vk,pk)−→ (vk+1,pk)−→ (vk+1,pk+1), (5.3)

vk+1∈ Argmin
u∈W1,α(Ω)

γi,0≤u(x)≤γi,1

{
1

2τuk
∥u−vk∥2L2(Ω)+Ji,ε(u,pk)

}
, (5.4)

pk+1∈Argmin
q∈Sad

{
1

2τ qk
∥q−pk∥2L2(Ω)+Ji,ε(vk+1,q)

}
. (5.5)

It is well known that under reasonably mild conditions on the regularity of Ji,ε (which
are obviously satisfied in our case, see [2] for the details), the proximal alternating
minimization algorithm monotonously decreases the objective functional and its iterates
converge to a critical point of Ji,ε. However, as it was mentioned in [2], very few
general results ensure that the sequence {(vk,pk)}k∈N converges to a global minimizer
of (4.1)–(4.3), even for strictly convex functions. Meanwhile, exploiting the fact that
minimization problem (5.5) with ε small enough admits a unique minimizer pk+1 at
each step of iteration, we see that

pk+1(x)=1+g (|(∇Gσ ∗vk+1)(x)|) in Ω. (5.6)

It means that due to the equality (5.6), we can alleviate this approach. Indeed, in view
of the representation (5.6), we can specify the above mentioned iteration procedure as
follows

(vk,pk)−→ (vk+1,pk+1), (5.7)

vk+1∈ Argmin
u∈W1,α(Ω)

γi,0≤u(x)≤γi,1

{
1

2τuk
∥u−vk∥2L2(Ω)+Ji,ε(u,pk)

}
, (5.8)

pk+1(x)=1+g (|(∇Gσ ∗vk+1)(x)|) in Ω, (5.9)

provided the parameter ε>0 is chosen small enough. However, as follows from the
structure of the penalized objective functional Ji,ε, we still deal with a non-convex
optimization problem in (5.8).

In view of this, the main idea we are going to push forward in this section is to
represent the iteration procedure (5.7)–(5.9) as follows

(vk,pk)−→ (vk+1,pk+1), (5.10)

vk+1∈ Argmin
u∈Bi,pk(·)

{
1

2τuk
∥u−vk∥2L2(Ω)+Fi(u,pk)

}
, (5.11)

pk+1(x)=1+g (|(∇Gσ ∗vk+1)(x)|) in Ω, (5.12)

where the cost functional Fi is defined in (4.2) and

Bi,p(·)=
{
v∈W 1,p(·)(Ω) : 1≤γi,0≤v(x)≤γi,1 a.e. in Ω

}
.

The main benefit of this modification is to pass to convex optimization problems at
each step of iteration. Then arguing as in the proof of Theorem 3.1 and using convexity
arguments, it can be shown that, for each pk(·)∈Sad, there exists a unique element

vk+1∈Bi,pk(·) such that vk+1= Argmin
u∈Bi,pk(·)

{
1

2τu
k
∥u−vk∥2L2(Ω)+Fi(u,pk)

}
. This fact re-

flects the principal difference between optimization problems (5.11) and (4.1), where
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the problem (5.11) can be viewed as a minimization of the growth energy functional
(4.2) with the frozen exponent pk(x). Thus, the sequence {vk}k∈N can be defined in
a unique way. Moreover, the iteration procedure (5.7)–(5.9) possesses the following
property.

Proposition 5.1. For any sequence of stepsizes {τuk }k∈N, {τ
q
k}k∈N such that τuk ,τ

q
k ∈

(r−,+∞) for all k∈N with some positive r−, the numerical sequence {Fi(vk,pk)}k∈N
does not increase and the estimates

Fi(vk+1,pk+1)+
1

2τ qk
∥pk+1−pk∥2L2(Ω)+

1

2τuk
∥vk+1−vk∥2L2(Ω)≤Fi(vk,pk), ∀k∈N,

(5.13)
∞∑
k=1

[
∥vk−vk−1∥2L2(Ω)+∥pk−pk−1∥2L2(Ω)

]
<+∞ (5.14)

hold.

Proof. To begin with, we notice that the equality (5.12) can be rewritten in an
equivalent form as follows

pk+1∈Argmin
q∈Sad

{
1

2τ qk
∥q−pk∥2L2(Ω)+Fi(vk+1,q)

}
(5.15)

provided the stepsize τ qk is greater than a fixed positive parameter which can be chosen
arbitrarily large. In this case the algorithm (5.7)–(5.9) is very close to a coordinate
descent method. Then

Fi(vk+1,pk)+
1

2τuk
∥vk+1−vk∥2L2(Ω)

by (5.11)

≤ Fi(vk,pk),

Fi(vk+1,pk+1)+
1

2τ qk
∥pk+1−pk∥2L2(Ω)

by (5.15)

≤ Fi(vk+1,pk).

Hence, an elementary induction

Fi(vk+1,pk+1)+
1

2τ qk
∥pk+1−pk∥2L2(Ω)+

1

2τuk
∥vk+1−vk∥2L2(Ω)

≤Fi(vk+1,pk)+
1

2τuk
∥vk+1−vk∥2L2(Ω)≤Fi(vk,pk), ∀k∈N

ensures that estimate (5.13) is valid.
As for estimate (5.14), it is enough to observe that Fi(v,p)≥0 for all feasible pairs

(v,p). Hence, (5.14) immediately follows from (5.13). As a consequence, we have,

lim
k→∞

∥vk−vk−1∥L2(Ω)= lim
k→∞

∥pk−pk−1∥L2(Ω)=0. (5.16)

We say that a function ûi is a weak solution to the original problem (2.6)–(2.7) if

ûi=Argmin
v∈Bp̂i

Fi(v,p̂i(·)), ûi∈Bi,p̂i(·),

p̂i(x)=1+g (|(∇Gσ ∗ ûi)(x)|) , ∀x∈Ω.
(5.17)

Remark 5.1. The relation between a weak solution and a solution to the prob-
lem (2.6)–(2.7) is rather intricate. Since the uniqueness of solutions to (2.6)–(2.7) is a
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questionable option, it follows that, in principle, these definitions can describe the dif-
ferent functions in Ξi. As immediately follows from (5.17), a weak solution is a merely
feasible one to the original problem. However, if the problem (4.1) admits a unique
solution (u0

i ,p
0
i )∈Λi, then (5.17) implies that the function u0

i can be considered as a
weak solution.

Before proceeding further, we note that, for given i=1,. ..,m, the sequence of ex-
ponents {pk}k∈N is compact with respect to the strong topology of C(Ω). Our next
goal is to establish the existence of a weak solution to the original problem (2.6)–(2.7)
and show that it can be attained by the iterative algorithm (5.10)–(5.12). To do so, we
begin with some technical results.

Lemma 5.1. For each i=1,. ..,m and given µ∈ (0,1), λ>0, S̃∈L1(Ω;Rm), M̃ :GL→
Rm, and TS ∈L(L1(Ω)), the sequence of minimizers

{
vk ∈W 1,pk(·)(Ω)

}
k∈N of (5.11) is

compact with respect to the weak topology of W 1,α(Ω).

Proof. Let us show that the sequence of minimizers {vk}k∈N of (5.11) is bounded
in the following sense

limsup
k→∞

∫
Ω

|vk(x)|pk(x)dx<+∞.

Let û∈C1(Ω) be an arbitrary function such that γ0,i≤ û(x)≤γ1,i in Ω. Since

Fi(vk,pk)≤Fi(û,pk)+
1

2τuk−1

∥û−vk−1∥2L2(Ω), ∀k=1,2,. .. (5.18)

and∫
Ω

|∇û(x)|pk(x)dx≤
∫
Ω

(
1+∥û∥C1(Ω)

)pk(x)

dx≤|Ω|
(
1+∥û∥C1(Ω)

)2
,∫

Ω

|∇û(x)−∇S̃i(x)|dx≤
∫
Ω

[
∥û∥C1(Ω)+ |∇S̃i(x)|

]
dx≤|Ω|∥û∥C1(Ω)+∥S̃i∥W 1,1(Ω),∫

Ω

|TS û(x)− S̃i(x)|dx≤
∫
Ω

[
∥TS∥L(L1(Ω))γ1,i+ |S̃i(x)|

]
dx

≤|Ω|∥TS∥L(L1(Ω))γ1,i+∥S̃i∥L1(Ω),

TM

(
|(Gσ ∗ û(·))−M̃i(·)|2

)
≤
(
∥Gσ ∗ û∥C(Ω)+∥M̃i∥C(Ω)

)2
≤

(
1(√
2πσ

)2 ∥û∥C(Ω)+∥M̃i∥C(Ω)

)2

,

∥û−vk−1∥2L2(Ω)≤4γ2
1,i|Ω|,

it follows that

sup
k∈N

Fi(vk,pk)≤ sup
k∈N

[
Fi(û,pk)+

1

2τuk−1

∥û−vk−1∥2L2(Ω)

]
≤ Ĉ

with some appropriate constant Ĉ >0.
From this and definition of the set Bi,pk(·), we deduce∫

Ω

|vk(x)|αdx≤γα
1,i|Ω|, ∀k∈N, (5.19)
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Ω

|∇vk(x)|pk(x)dx≤ Ĉ, ∀k∈N. (5.20)

Since (see [11,16,42] for the details)

∥f∥αLp(·)(Ω)−1≤
∫
Ω

|f(x)|p(x)dx≤∥f∥β
Lp(·)(Ω)

+1, ∀f ∈Lp(·)(Ω), (5.21)

it follows that the sequence {vk}k∈N is bounded in W 1,α(Ω). So, its weak compactness
is a direct consequence of the reflexivity of W 1,α(Ω).

We notice that boundedness of the sequence {vk}k∈N in W 1,α(Ω) and compactness

of the embedding W 1,α(Ω) ↪→Lq(Ω) for q∈
[
1, 2α

2−α

)
imply the existence of an element

u∗∈W 1,α(Ω) such that, up to a subsequence,

vk(x)→u∗(x) a.e. in Ω, (5.22)

vk→u∗ in Lq(Ω), and ∇vk⇀∇u∗ in Lα(Ω;R2). (5.23)

Then using (5.22) and passing to the limit in two-side inequality γ0,i≤vk(x)≤γ1,i, we
obtain

γ0,i≤u∗(x)≤γ1,i for a.a. x∈Ω. (5.24)

Utilizing this fact together with the pointwise convergence (5.22), by the Lebesgue
dominated convergence theorem, we have

lim
k→∞

pk(x)= lim
k→∞

F(vk(x))=1+
a2

a2+
(
lim
k→∞

∣∣(∇Gσ ∗vk)(x)
∣∣)2

=1+
a2

a2+
(∣∣(∇Gσ ∗ lim

k→∞
vk

)
(x)
∣∣)2 =F(u∗(x)), ∀x∈Ω. (5.25)

Since, by Arzelà–Ascoli theorem, the set
{
pk=1+g

(∣∣(∇Gσ ∗vk)(x)
∣∣)}

k∈N is compact

with respect to the norm topology of C(Ω), it follows from (5.25) (see also the proof of
Lemma 3.1) that

pk→p∗=F(u∗(x)) strongly in C(Ω) as k→∞, and p∗∈Sad. (5.26)

Then properties (5.22)–(5.26) and Proposition 3.1 imply:

u∗∈Bi,p∗(·)=
{
u∈W 1,p∗(·)(Ω) : 1≤γi,0≤u(x)≤γi,1 a.e. in Ω

}
. (5.27)

Thus, the iterative procedure (5.7)–(5.9) has a cluster point (u∗,p∗)∈Bi,p∗(·)×Sad with
respect to the convergence (5.22)–(5.23), (5.26).

We are now in a position to state the main result of this section.

Theorem 5.1. Let µ∈ (0,1), λ>0, S̃∈L1(Ω;Rm), M̃ :GL→Rm, and TS ∈L(L1(Ω))
be given data. Let {τuk }k∈N be a monotonically increasing sequence of positive stepsizes
such that τuk →∞ as k→∞. Then, for each i=1,. ..,m, the sequence {(vk,pk)}k∈N,
coming from the iteration procedure (5.7)–(5.9), possesses the following asymptotic prop-
erties:

vk(x)→ ũi(x) a.e. in Ω, (5.28)
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vk→ ũi in Lq(Ω), ∀q∈
[
1,

2α

2−α

)
,∇vk⇀∇ũi in Lα(Ω;R2), (5.29)

pk→ p̃i=F(ũi) strongly in C(Ω) as k→∞, (5.30)

where ũi is a weak solution to the problem (2.6)–(2.7), that is,

ũi∈Bi,p̃i(·), ũi= Argmin
v∈Bi,p̃i(·)

Fi(v,p̃i),

and, in addition, the following variational property holds true

Fi(vk,pk)≥Fi(vk+1,pk+1), ∀k∈N, (5.31)

lim
k→∞

Fi(vk,pk(·))= lim
k→∞

[
inf

v∈Bi,pk(·)
Fi(v,pk)

]
= inf

v∈Bi,p̃i(·)
Fi(v,p̃i(·))=Ji(ũi). (5.32)

Proof. As immediately follows from Lemma 5.1, the sequence {(vk,pk)}k∈N is
compact with respect to the convergence (5.28)–(5.30). Let (ũi, p̃i) be its cluster point.
In order to show that the function ũi is a weak solution to the problem (2.6)–(2.7), we
assume the converse — namely, there is another function z∈Bi,p̃i(·) such that

Fi(z,p̃i)= inf
v∈Bi,p̃i(·)

Fi(v,p̃i)<Fi(ũi, p̃i)≡Ji(ũi). (5.33)

Using the procedure of the standard direct smoothing, we set

uε(x)=
1

ε2

∫
R2

K

(
x−s

ε

)
z̃(s)ds,

where ε>0 is a small parameter, K is a positive compactly supported smooth function
with properties

K ∈C∞
0 (R2),

∫
R2

K(x)dx=1, and K(x)=K(−x),

and z̃ is zero extension of z outside of Ω.

Since z∈W 1,p̃(·)(Ω) and p̃(x)≥α=1+δ in Ω, it follows that z∈W 1,α(Ω). Then

uε∈C∞
0 (R2) for each ε>0,

uε→z in Lα(Ω), ∇uε→∇z in Lα(Ω;R2) (5.34)

by the classical properties of smoothing operators. From this, we deduce that

uε(x)→z(x) a.e. in Ω. (5.35)

Moreover, taking into account the estimates

uε(x)=

∫
R2

K (y) z̃(x−εy)dy≤γ1,i

∫
R2

K (y) dy=γ1,i,

uε(x)≥
∫
y∈ε−1(x−Ω)

K (y) z̃(x−εy)dy≥γ0,i

∫
y∈ε−1(x−Ω)

K (y) dy≥γ0,i,

we see that each element uε is subjected to the pointwise constraints

γ0,i≤uε(x)≤γ1,i a.e. in Ω, ∀ε>0.
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Since, for each ε>0, uε∈W 1,pk(·)(Ω) for all k∈N, it follows that uε∈Bi,pk(·), i.e., each
element of the sequence {uε}ε>0 is a feasible solution to all approximating problems

inf
v∈Bi,pk(·)

{
1

2τuk
∥v−vk∥2L2(Ω)+Fi(v,pk)

}
, k∈N. (5.36)

Hence,

Fi(vk+1,pk)+
1

2τuk
∥vk+1−vk∥2L2(Ω)

by (5.11)

≤ Fi(uε,pk)+
1

2τuk
∥uε−vk∥2L2(Ω),

Fi(vk+1,pk+1)+
1

2τ qk
∥pk+1−pk∥2L2(Ω)

by (5.15)

≤ Fi(vk+1,pk)

for all ε>0 and k=0,1,. ... From this, we deduce that

Fi(vk+1,pk+1)≤Fi(uε,pk)+
1

2τuk
∥uε−vk∥2L2(Ω), ∀ε>0, ∀k=0,1,. .. (5.37)

Further, we notice that

liminf
k→∞

Fi(vk,pk)≥Fi(ũi, p̃i) (5.38)

by Proposition 3.1 and Fatou’s lemma. Since

|∇uε(x)|pk(x)→|∇uε(x)|p̃i(x) uniformly in Ω as k→∞,

it follows from the Lebesgue dominated convergence theorem that the objective func-
tional Fi(uε,·) is continuous with respect to the norm convergence in C(Ω), i.e.

lim
k→∞

Fi(uε,pk)=Fi(uε, p̃i), ∀ε>0. (5.39)

As a result, passing to the limit in (5.37) and utilizing properties (5.38)–(5.39), we
obtain

lim
k→∞

1

2τuk
∥uε−vk∥2L2(Ω)=

1

2 lim
k→∞

τuk
∥uε− ũi∥2L2(Ω)=0.

Therefore,

Fi(ũi, p̃i)≤Fi(uε, p̃i)=

∫
Ω

|∇uε(x)|p̃i(x)dx+λ

∫
Ω

|∇uε(x)−∇S̃i(x)|dx

+µ

∫
Ω

|TSuε(x)− S̃i(x)|dx+
1−µ

2
TM

(
|(Gσ ∗uε)(·)−M̃i(·)|2

)
, ∀ε>0.

(5.40)

Taking into account the pointwise convergence (see (5.35) and property (5.34))

|∇uε(x)|p̃i(x)→|∇z(x)|p̃i(x), a.e. in Ω,

|TSuε(x)− S̃i(x)|→ |TSz(x)− S̃i(x)|, a.e. in Ω,∫
Ω

|∇uε(x)−∇S̃i(x)|dx→
∫
Ω

|∇z(x)−∇S̃i(x)|dx,
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(Gσ ∗uε)(x)−M̃i(x)→ (Gσ ∗z)(x)−M̃i(x), in Ω

as ε→0, and the fact that, for ε small enough,

|∇uε|p̃i(·)≤ (1+ |∇z|)p̃i(·)∈L1(Ω),∣∣∣TSuε(·)− S̃i(·)
∣∣∣≤[∥TS∥(1+ |z(·)|)+ |S̃i(·)|

]
∈L1(Ω),

we can pass to the limit in (5.40) as ε→0 by the Lebesgue dominated convergence
theorem. This yields

Fi(ũi, p̃i(·))≤ lim
ε→0

Fi(uε, p̃i(·))=Fi(z,p̃i(·)).

Combining this inequality with (5.40) and (5.33), we finally get

Fi(z,p̃i)= inf
v∈Bi,p̃i(·)

Fi(v,p̃i)<Fi(ũi, p̃i)≤Fi(z,p̃i),

that leads us into conflict with the initial assumption. Thus,

Ji(ũi)=Fi(ũi, p̃i(·))= inf
v∈Bi,p̃i(·)

Fi(v,p̃i(·)) (5.41)

and, therefore, ũi is a weak solution to the original problem (2.6)–(2.7). As for the
variational property (5.32) and property (5.31), they immediately follow from (5.41),
(5.39), and Proposition 5.1.

6. Optimality conditions
To characterize the solution u0,p(·)∈Bi,p(·) of the approximating optimization prob-

lem
〈
infv∈Bi,p(·)Fi(v,p(·))

〉
, we check whether the objective functional Ji(v,p)

Fi(v,p)=

∫
Ω

|∇v(x)|p(x)dx+λ

∫
Ω

|∇v(x)−∇S̃i(x)|dx

+µ

∫
Ω

|TSv(x)− S̃i(x)|dx+
1−µ

2
TM

(
|(Gσ ∗v)(·)−M̃i(·)|2

)
(6.1)

is Gâteaux differentiable with respect to v. Namely, let us show that

lim
t→0

Fi(u
0,p(·)+ tv,p)−Fi(u

0,p(·),p)

t
=

∫
Ω

p(x)
(
|∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x),∇v(x)

)
dx

+λ

∫
Ω

(
∇u0,p(·)(x)−∇S̃i(x),∇v

)
|∇u0,p(·)(x)−∇S̃i(x)|

dx+µ

∫
Ω

TS

(
u0,p(·))

|TS

(
u0,p(·)

)
− S̃i|

TS(v)dx

+(1−µ)TM

([(
Gσ ∗u0,p(·)

)
−M̃i

]
Gσ ∗v

)
, ∀v∈W 1,p(·)(Ω). (6.2)

To this end, we note that

|∇u0,p(·)(x)+ t∇v(x)|p(x)−|∇u0,p(·)(x)|p(x)

p(x)t
→
(
|∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x),∇v(x)

)
as t→0 almost everywhere in Ω. Indeed, by convexity,

|ξ|p−|η|p≤2p
(
|ξ|p−1+ |η|p−1

)
|ξ−η|,
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it follows that∣∣∣ 1

p(x)t

(
|∇u0,p(·)(x)+ t∇v(x)|p(x)−|∇u0,p(·)(x)|p(x)

)∣∣∣
≤2
(
∥∇u0,p(·)(x)+ t∇v(x)∥p(x)−1+∥∇u0,p(·)(x)∥p(x)−1

)
∥∇v(x)∥

≤const
(
|∇u0,p(·)(x)|p(x)−1+ |∇v(x)|p(x)−1

)
|∇v(x)|. (6.3)

Taking into account that∫
Ω

|∇u0,p(·)(x)|p(x)−1|∇v(x)|dx≤2∥|∇u0,p(·)(x)|p(x)−1∥Lp′(·)(Ω)∥|∇v(x)|∥Lp(·)(Ω)

≤2∥|∇u0,p(·)(x)|p(x)−1∥Lp′(·)(Ω,R2)∥∇v(x)∥Lp(·)(Ω,R2),

and
∫
Ω
|∇v(x)|p(x)dx

by (5.21)

≤ ∥∇v∥2
Lp(·)(Ω,R2)

+1, we see that the right-hand side of in-

equality (6.3) is an L1(Ω)-function. Therefore,∫
Ω

|∇u0,p(·)(x)+ t∇v(x)|p(x)−|∇u0,p(·)(x)|p(x)

t
dx

→
∫
Ω

p(x)
(
|∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x),∇v(x)

)
dx as t→0

by the Lebesgue dominated convergence theorem.

Utilizing similar arguments to the rest of the terms in (6.1), we deduce that the
representation (6.2) for the Gâteaux differential of Fi(·,p(·)) at the point u0,p(·)∈Bi,p(·)
is valid.

Thus, in order to derive some optimality conditions for the minimizing element
vk+1∈Bi,pk(·) to the problem (5.36), we note that Bi,pk(·) is a nonempty convex subset

of W 1,pk(·)(Ω) and the objective functional{
1

2τuk
∥·−vk∥2L2(Ω)+Fi(·,pk)

}
:Bi,pk(·)→R

is strictly convex. Hence, the well known classical result (see [30, Theorem 1.1.3]) and
representation (6.2) lead us to the following conclusion.

Theorem 6.1. Let pk(·)∈S be an exponent given by the iterative rule (5.12). Let
i∈{1,. ..,m} be the number of a fixed spectral channels. Then the unique minimizer
vk+1∈Bi,pk(·) to the approximating problem (5.36) is characterized by∫

Ω

(
pk(x)|∇vk+1(x)|pk(x)−2∇vk+1(x),∇v(x)−∇vk+1(x)

)
dx

+λ

∫
Ω

(
∇vk+1(x)−∇S̃i(x),∇v−∇vk+1(x)

)
|∇vk+1(x)−∇S̃i(x)|

dx

+µ

∫
Ω

TS (vk+1)

|TS (vk+1)− S̃i|
TS(v−vk+1)dx

+(1−µ)TM

([
(Gσ ∗vk+1)−M̃i

]
Gσ ∗(v−vk+1)

)
+

1

τuk
(vk+1−vk,v−vk+1)L2(Ω)≥0, ∀v∈Bi,pk(·). (6.4)
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7. Numerical scheme and settings
To illustrate the proposed algorithm for the simultaneous fusion and denoising of

color images with different spatial resolution, we conduct the numerical simulations set-
ting TS = Id for each spectral channel i=R,G,B and extend the set of feasible solutions
Bi,pk(·) to the form Bi,pk(·)=W 1,pk(·)(Ω). In other words, we have dropped the two-side
constraints γi,0≤u(x)≤γi,1 from the sets Bi,pk(·), and instead we control the fulfillment
of this two-side constraints at each step of the numerical approximations. We also use
the L1-norm for the fidelity terms. As a result, it allows us to rewrite the variational
problem (6.4) in the form of the following boundary value problem

−div
(
pk|∇vk+1|pk(·)−2∇vk+1

)
=λdiv

(
∇vk+1−∇S̃i

|∇vk+1−∇S̃i|

)
−µT ∗

S

(
TS (vk+1)

|TS (vk+1)− S̃i|

)
−(1−µ)

∑
(xi,yj)∈SL

δ(xi,yj)

[
(Gσ ∗vk+1)−M̃i

]
− 1

τuk
(vk+1−vk) , in Ω, (7.1)

∂vk+1

∂n
=0 on ∂Ω (7.2)

with pk(·) defined in (5.12), and k=1,2,. ...

Since, in practical implementations, it is reasonable to define the solution of the
problem (7.1)–(7.2) using a “gradient descent” strategy, we can start with some initial
image u∗

k+1 and pass to the following initial-boundary value problem for a quasi-linear
parabolic equation with Neumann boundary conditions

∂vk+1

∂t
=div

(
pk|∇vk+1|pk(·)−2∇vk+1

)
+λdiv

(
∇vk+1−∇S̃i

|∇vk+1−∇S̃i|

)

−µT ∗
S

(
TS (vk+1)

|TS (vk+1)− S̃i|

)
−(1−µ)

∑
(xi,yj)∈SL

δ(xi,yj)

[
(Gσ ∗vk+1)−M̃i

]
− 1

τuk
(vk+1−vk), in (0,T )×Ω, (7.3)

∂vk+1

∂n
=0 on (0,T )×∂Ω, (7.4)

vk+1(0,·)=u∗
k+1(·), k=0,1,. .., v0(0,·)= S̃i(·), in Ω. (7.5)

There are numerous approaches to solving quasi-linear partial differential equations
(see the references [3, 18] for various techniques). Since we are dealing with pixels in
image processing, finite difference approaches and an explicit scheme of the forward
Euler method are arguably the best options. Let ∆t be a time step size. Then setting

t=n∆t, n=0,1,2,. .., x= l (1≤ l≤Nx), y= j (1≤ j≤Ny),

where (x,y) stands for image pixel and Nx×Ny is the original image size at the grid
GH , we define the following discrete notations

∆x
±v

n
lj =±

(
vnl±1,j−vnlj

)
, ∆y

±v
n
lj =±

(
vnl,j±1−vnlj

)
,

m(a,b)=minmod(a,b)=
sgna+sgnb

2
min(|a|, |b|),
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where vnl,j denotes the approximation of vk+1(n∆t,l,j). Then the numerical approxima-
tion of the principal components of the boundary value problem (7.3)–(7.5) takes the
form (

∂vk+1

∂t

)n

l,j

≈
vn+1
l,j −vnl,j

∆t
,(

div
(
pk|∇vk+1|pk(·)−2∇vk+1

))n
l,j

≈∆x
−
(
Pn
l,j

)
+∆y

−
(
Qn

l,j

)
,

Pn
l,j =

pnl,j(√
ε2+

(
∆x

+v
n
l,j

)2
+
(
m
(
∆y

+v
n
l,j ,∆

y
−v

n
l,j

))2)2−pn
l,j

∆x
+v

n
l,j ,

Qn
l,j =

pnl,j(√
ε2+

(
∆y

+v
n
l,j

)2
+
(
m
(
∆x

+v
n
l,j ,∆

x
−v

n
l,j

))2)2−pn
l,j

∆y
+v

n
l,j ,

(
div

∇vk+1−∇S̃i

|∇vk+1−∇S̃i|

)n

l,j

≈∆x
−
(
Rn

l,j

)
+∆y

−
(
Wn

l,j

)
,

Rn
l,j =

∆x
+v

n
l,j−∆x

+(S̃i)
n
l,j√

ε2+
(
∆x

+v
n
l,j−∆x

+(S̃i)nl,j

)2
+A2

1

,

Wn
l,j =

∆y
+v

n
l,j−∆y

+(S̃i)
n
l,j√

ε2+
(
∆y

+v
n
l,j−∆y

+(S̃i)nl,j

)2
+B2

1

,

A1=m
(
∆y

+v
n
l,j−∆y

+(S̃i)
n
l,j ,∆

y
−v

n
l,j−∆y

−(S̃i)
n
l,j

)
,

B1=m
(
∆x

+v
n
l,j−∆x

+(S̃i)
n
l,j ,∆

x
−v

n
l,j−∆x

−(S̃i)
n
l,j

)
,

where

pnl,j =1+
a2

a2+[(|(∇Gσ ∗vk)(x)|)2]nl,j
,

(|(∇Gσ ∗vk)(x)|)nl,j =
5∑

k1=−5

5∑
k2=−5

Gσ(k1,k2)v
n
l−k1,j−k2

.

As a result, utilizing the formulas given above and associating each step k=1,2,. ..
of the iterative procedure (5.10)–(5.12) with the corresponding time step n∆t in the
numerical approximation of the parabolic problem (7.3)–(7.5), we arrive at the following
numerical scheme associated with the initial boundary problem (7.3)–(7.5):

vn+1
l,j =vnl,j+∆x

−
[
Pn
l,j

]
∆t+∆y

−
[
Qn

l,j

]
∆t+λ∆x

−
[
Rn

l,j

]
∆t+λ∆y

−
[
Wn

l,j

]
∆t

+µ
vnl,j√

ε2+
(
vnl,j

)2
+
(
(S̃)nl,j

)2 +(1−µ)

{[
vnl,j−M̃l,j

]
if (l,j)∈SL,

0 otherwise

}
(7.6)

∀l=1,. ..,Nx, ∀j=1,. ..,Ny, ∀n=0,1,. ..
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with the initial conditions

v0l,j =
(
S̃i

)
l,j
, ∀l=1,. ..,Nx, ∀j=1,. ..,Ny (7.7)

and boundary conditions

vn0,j =vn1,j , vnNx,j =vnNx−1,j , vnl,0=vnl,1, vnl,Ny
=vnl,Ny−1, (7.8)

∀l=1,. ..,Nx, ∀j=1,. ..,Ny.

To conclude this section, we note that the step size ∆t should be small enough
to guarantee the stability of the numerical scheme (7.6)–(7.8). As for the stopping
condition

vn+1
l,j ≈vnl,j for all l and j

it can be formalized as follows

max
1≤l≤Nx

max
1≤j≤Ny

∣∣∣vn+1
l,j −vnl,j

∣∣∣≤ε.

8. Numerical results
For numerical simulations in this section, we set: σ=0.5, ε=0.001, τuk =100∗k,

λ=0.01, µ=0.1. As for the noise estimator a>0, we use the choice of Black et al. [4] ,
i.e.

a=
1.4826√

2
MAD(∇S̃i),

where MAD denotes the median absolute deviation of the corresponding spectral chan-
nel Si :GH →R of original image S :GH →Rm that can be computed as

MAD(∇S̃i)=median
[∣∣∣∇S̃i−median

(∣∣∣∇S̃i

∣∣∣)∣∣∣]
and median

(∣∣∣∇S̃i

∣∣∣) represents the median over the band Si :GH →R to the gradient

amplitude. To guarantee the stability of the proposed algorithm, we make use of the
following condition

2

[
1

ε
+λ

]
∆t<1,

where ε comes from the approximation formulae for Pn
l,j and Qn

l,j , and we set ε=0.001.

To illustrate the proposed approach we have used three images SI :GI
H →R3 (Dog),

SII :GII
H →R1 (Barbara), and SIII :GIII

H →R3 (Christmas Tree) with the resolutions
in pixels GI

H =342×458, GII
H =512×512, and GIII

H =1200×800, respectively. Each of
these images has been previously corrupted by the additive zero-mean Gaussian white
noise with variance 0.01 (see Figures 8.1–8.3).

As for the images of the same scenes with low resolution and with some extra objects,
we have considered two collections. The first one is defined on the grids GI

L=114×
152, GII

L =170×170, and GIII
L =400×266, respectively, and the second one has the

resolution GI
L=68×91, GII

L =102×102, and GIII
L =240×160, respectively (see Figures

8.4–8.5).
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Fig. 8.1. Noisy image SI :GI
H →R3 (Dog) defined on the grid GI

H =342×458.

Fig. 8.2. Noisy image SII :GII
H →R1 (Barbara) defined on the grid GII

H =512×512.

Then following the proximal alternating minimization algorithm described in Sec-
tion 5, we realize the fusion procedure of given images with a simultaneous denoising
procedure. Obtained results are depicted in Figures 8.6–8.8.

It is worth emphasizing that the proposed algorithm is rather sensitive to the choice
of parameter µ (see Figure 8.9 for illustration). As for the running time of processing,
it takes for the Matlab realization about 30, 95, and 280 sec for the images depicted in
Figures 8.6–8.8, respectively.
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Fig. 8.3. Noisy image SIII :GIII
H →R3 (Christmas Tree) defined on the grid GIII

H =1200×800.

Fig. 8.4. Images with extra objects and which are defined on the grids with low resolution (GI
L=

114×152, GII
L =170×170, and GIII

L =400×266), respectively.
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Fig. 8.5. Images with extra objects and which are defined on the grids with low resolution (GI
L=

68×91, GII
L =102×102, and GIII

L =240×160), respectively.

Fig. 8.6. Result of Simultaneous Fusion and Denoising of SI :GI
H →R3 with MI : (114×152)→R3

(left) and SI :GI
H →R3 with MI : (68×91)→R3 (right).

Fig. 8.7. Result of Simultaneous Fusion and Denoising of SII :GII
H →R3 with MII : (170×170)→

R3 (up) and SII :GII
H →R3 with MII : (102×102)→R3 (bottom).
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Fig. 8.8. Result of Simultaneous Fusion and Denoising of SIII :GIII
H →R3 with MIII : (400×

266)→R3 (left) and SIII :GIII
H →R3 with MIII : (240×160)→R3 (right).

The next portion of numerical simulations shows that the proposed technique can be
successfully applied to the well-known spatial increasing resolution problem of MODIS-
like multi-spectral satellite images via their fusion with the Lansat-like imagery at higher
resolution. As input data, we have used a MODIS (the Moderate Resolution Imaging
Spectroradiometer) image of some regions with a resolution 350m/pixel (see Figure
8.10). This region represents a typical agricultural area with medium-sized fields of
various shapes.

We also have the image of the same territory with resolution 25m/pixel that was
delivered from Landsat satellite at a higher resolution. Figure 8.11 shows the RGB
spectral channels of this image.

Figure 8.12 displays the result of image fusion corresponding to the data given by
Figures 8.10 and 8.11.

To validate the obtained result for satellite images, we have provided the following
calculations.

• Closednees of the means ρ2= |MeanI−MeanL|=0;

• Closedness of the variances ρ3=100 |VarI−VarL|
VarL ≈6%;

• ERGAS metric

ERGAS=100
h

l

√√√√1

3

3∑
k=1

(
RMSE(k)

µ0(k)

)2

=2.24,
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Fig. 8.9. Data Fusion of SIII :GIII
H →R3 with MIII : (400×266)→R3 with a semi-transparency

effect (µ=0.8 left) and µ=0.4 (right).

Fig. 8.10. The MODIS image with resolution 350m/pixel.

where h/l is the ratio between the size of the high spatial resolution image pixel
and the size of the pixel in the MODIS-like image.

It is worth noticing that in view of the suggestions of Prof. L. Wald if the ERGAS value
is less than 3, the spectral quality of an image is satisfactory.
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Fig. 8.11. The Landsat image with resolution 25m/pixel.

Fig. 8.12. The retrieved image at high resolution 25m/pixel as a result of simultaneous fusion
and denoising of the MODIS and Landsat images.
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