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ASYMPTOTIC STABILITY OF NONLINEAR WAVE FOR
AN INFLOW PROBLEM TO THE COMPRESSIBLE
NAVIER-STOKES-KORTEWEG SYSTEM*

YEPING LIT, YUJIE QIANf, AND RONG YIN?

Abstract. In this paper, we are concerned with the inflow problem on the half line (0,400) for
a one-dimensional compressible Navier-Stokes-Korteweg system, which is used to model compressible
viscous fluids with internal capillarity, i.e., the liquid-vapor mixtures with phase interfaces. We first
investigate that the asymptotic profile is a nonlinear wave: the superposition wave of a rarefaction wave
and a boundary layer solution under the proper condition of the far fields and boundary values. The
asymptotic stability on the nonlinear wave is shown under some conditions that the initial data are
a small perturbation of the rarefaction wave and the strength of the stationary wave is small enough.
The proofs are given by an elementary energy method.
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1. Introduction

In this article, we are interested in the following inflow problem on the half space
R™ for one dimensional compressible Navier-Stokes-Korteweg (denoted as NSK in the
sequel) system, which reads in the Eulerian coordinates as:

pe+(pu)z =0,

(p )t+(pu +p(p) = Numm+ﬁppmmxv (1 1)
(p> )(t—O,.’L‘) (PO, ( (p+7u+) aSj_)'i_ooa '
(pyu)(t,2=0)=(p—,u_), ps(t,i=0)=

Here, p,u are unknown functions in ¢ and &, which stand for the density and the ve-
locity, respectively. The time and space variables are t >0 and 2 € R :={Z€R:Z>0}.
The function p(p) is the pressure defined by p(p) =kp”, where k>0 and y>1 are the
gas constants. The positive constants u,x denote, respectively, the viscosity and the
capillary coefficient, and « is also called Weber number. py, p_, pp, uy and u_ are
constants satisfying p+ >0 and u_ >0. And po(Z),uo(Z) are two given functions.

The model (1.1); 5 considered is supposed to govern the motion of compressible
fluids such as liquid-vapor mixtures endowed with a variable internal capillarity, and is
originated from the works by van der Waals [44] and Korteweg [25]. Its modern form is
actually derived by using the second gradient theory (see for instance [11]). Recently,
Heida and Malek [17] also derived the compressible NSK system by the entropy pro-
duction method which does not require to introduce any new or non-standard concepts
such as multipolarity or interstitial working which are used in [11]. We point out that
special cases of the model have also arisen in other contexts, e.g. in the water waves
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theory and more recently in quantum hydrodynamics. Finally, one can see easily that
when k=0, the system (1.1); 2 is reduced to the compressible Navier-Stokes equation.
The mathematical justification from the compressible NSK system to the compress-
ible Navier-Stokes equation with well-prepared initial data was shown in [2]. When
p=r=0, the system (1.1)1 2 is reduced to the classical compressible Euler equation.
Charve and Haspot [5] have shown the existence of global strong solution and vanishing
capillarity-viscosity limit in one dimension for the compressible NSK system.

Recently, there have been a great number of mathematical studies about the com-
pressible NSK system, possibly due to its many applications to compressible fluids
endowed with a variable internal capillarity. About the existence and uniqueness of so-
lutions to the isentropic compressible NSK system, we can refer to [1,9,10,13-16,21, 26)
and some references therein. In what follows, let us focus on the large-time behavior of
solutions to the isentropic compressible NSK system towards the nonlinear wave pattern,
which is related to our interest. More precisely, Chen [3] and Li and Luo [32] discussed
asymptotic stability of the rarefaction waves to Cauchy problem for the one-dimensional
compressible NSK system, respectively. Chen, et al. [4] also showed asymptotic stability
of the rarefaction waves for the one-dimensional compressible NSK system with large
initial data. Li and Zhu [36] further showed asymptotic stability of the rarefaction wave
with vacuum for the one-dimensional compressible NSK system. Chen, He and Zhao [7]
studied nonlinear stability of traveling wave solutions to the Cauchy problem for the
one-dimensional compressible NSK system. Li, Chen and Luo, and Li and Luo showed
stability of the planar rarefaction wave to two- and three-dimensional compressible
NSK system in [31,33], respectively. The stability of stationary solutions of the multi-
dimensional isentropic compressible NSK system was studied by Li [29], and Wang and
Wang [46] in the case with a external force, respectively, under the assumption that
the states at far fields +o0o are equal. Moreover, we also mention that there are some
studies about the large-time behavior and the optimal decay rates of the global classical
solutions and of the global strong solutions for the isentropic compressible NSK system
around the non-vacuum constant states, for example, see [43,45,46] and some references
therein.

Next, for corresponding initial-boundary value problem of the isentropic compress-
ible NSK system, there are some results about the large-time behavior of the solutions.
Tsyganov [42] discussed the global existence and time-asymptotic behavior of weak so-
lutions for an isothermal model with the viscosity coefficient p(p)=1, the capillarity
coefficient x(p) =p~° and large initial data on the interval [0,1]. The global existence
and exponential decay of strong solutions with small initial data to the Korteweg system
in a bounded domain of R™ (n>1) were also obtained by Kotschote in [27]. Chen, Li
and Sheng [8] proved the nonlinear stability of viscous shock wave for an impermeable
wall problem of the compressible NSK system with constant viscosity and capillarity
coefficients and small initial data in the half space. Chen and Li [6] discussed the time-
asymptotic behavior of strong solutions to the initial-boundary value problem of the
compressible NSK system with density-dependent viscosity and capillarity on the half-
line R*, and showed the strong solution converges to the rarefaction wave as t — oo for
the impermeable wall problem under large initial perturbation. Hong [18] and Li and
Zhu [37] showed the existence and stability of stationary solution to an outflow prob-
lem of the compressible NSK system with constant viscosity and capillarity coefficient,
respectively. Li, Tang and Yu [35] further obtained asymptotic stability of rarefaction
wave for the out-flow problem to the one-dimensional compressible NSK system in the
half space. However, to the best of our knowledge, there is little research about the
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stability of nonlinear wave patterns for the inflow problem on the compressible NSK
system, which is the main interest in our paper. Hong [19] and Li and Chen [30] dis-
cussed the existence and stability of stationary solution to an inflow problem of the
compressible NSK system in the half space, respectively. Moreover, Hong [19] also
showed stability of viscous shock wave and the superposition of the stationary wave
and the viscous shock wave in the inflow problem for isentropic NSK system as in [23].
Li, Qian and Yu [34] proved the asymptotic behavior toward rarefaction wave for an
inflow problem of the compressible NSK equation in the half space. In this article, we
are going to the asymptotic behavior toward the nonlinear wave: the superposition of
the stationary wave and the rarefaction wave for an inflow problem of the compressible
NSK system in the half space.

We now turn back to the inflow problem. First, consider the coordinate transfor-
mation

(@,t)
t=t, x:/ pdx — pudt,
(0,0)

to transform (1.1) to the problem in the Lagrangian coordinate as follows

vy —U, =0, x>s_t, t>0,
2
A p(v)g = (%) + R(Z22 4+ 3%, x> s t, >0,

(0,u)[p=s ¢ =(v—,u_), (1.2)
Vg |z=s_t = Vb,
(v,u)(t=0,2) = (vo,uo)(x) = (v4,ut), asz—+o0.

Here

Then we shall consider the inflow problem (1.2) from now on. First, the corresponding
hyperbolic system without viscosity and capillarity is

{”t_uxzo’ (1.3)

Ut +p(v)r =0.

Its characteristic speeds are \;=(—1)!y/—p'(v)(i=1,2), and the sound speed c(v) is
defined by

c(v)=vy/—p'(v)=+/ k’yv*%l.
By the relation of |u| with ¢(v), we can divide (v,u) into three regions:

Qsub = {(u,v) : Ju| < c(v),v>0,u >0},
Lirans = {(u,v) : [u| =¢(v),0>0,u>0},
quper = {(U,'U) : ‘U| > C(U),U >0,u> 0}
We call them the subsonic, transonic, and supersonic regions, respectively. In the phase,

the BL-solution line, the 2-shock curve and the i(i = 1,2)-rarefaction wave curve through
(v_,u_) are defined by

BL(v_,u_)={(v,1) € Qub UT trans : % = Z—‘ =—s_}, (1.4)
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So(v_,u_)={(v,u) ERT xR :u=u_—s(v—v_),v_ <v}, (1.5)

Ri(v_,u_)= {(v,u) Ew| u=u_ _/v )\i(s)ds,u>u} (1.6)

with s=,/ W. Note that BL(v_,u_) always intersects the transonic line I'iyaps,

and let us denote the intersection point by (v.,us).

In [19,30], the authors showed stability of stationary solution, viscous shock wave
and the superposition of the stationary wave and the viscous shock wave in the in-
flow problem for isentropic NSK system. Li, Qian and Yu [34] showed the asymp-
totic behavior toward rarefaction wave for an inflow problem of the compressible NSK
equation when the boundary value and far field state satisfy (v_,u_) € Qguper and
(U4,us) ERa(v—,u_). Here, we are going to the asymptotic behavior toward the non-
linear wave: the superposition of the stationary wave and the rarefaction wave for an
inflow problem of the compressible NSK system in the half space when the boundary
value and far field state satisfy (v—,u_) € Qqub UT'trans and (vy,uy) € BLRo(v_,u_). In
this case, we can find (9,u) € BL(v_,u_) with (7,4)# (v.,us) or (0,0)=(vs,us), and
(v4,u4) ERa(T,u) such that we can show that the solution (v,u) of (1.2) tends toward
the combination of the stationary wave and the 2-rarefaction wave as in [22,39]. More
precisely, we firstly use the stationary solution (Vp,Uy)(x —s_t) which satisfies

—s_V§j-Uj=0,
{ s Ut p(Vo) = () (S 4304’ (L.7)
with the boundary data and the spatial asymptotic conditions
(Vo,U0)(0) = (v, u—), Vo, (0) =us, (1.8)
(Vo,Up)(+00) = (v,1), (1.9)

here ' = diy with y =2 —s_t. We call the solution (V4,Up) the boundary layer solution.
Then we employ the following Euler equations

Vg — Uy :0’
{ut+p(v)x=07 t>0,2€R, (1.10)

with the initial data

(v,a), z <0,

(’U+7U+),l'>0, (111)

(v,u)(t=0,2)= {
to construct a rarefaction wave (vf,u?) (£). From gas dynamic theory in [40], we know

that the problem (1.10)-(1.11) admits a weak entropy solution (v[,uf?)(t,z)(i=1,2)
called the i-rarefaction wave if (vy,uy) € R;(0,a), where

Ri(v,u):{(v,u)Ew

u:u—/v)\i(s)ds,u>u} (1.12)

v

is the i-rarefaction wave curve, and (vﬁ,uﬁ) (t,z) is expressed by:

(17,’(7;), _OOS%S)\Z(@)a

t

(UR uR)(t x)= ()\-l(x) u—//\il(:))\-(s)ds> Xi(0) <Z <\ (vy)
a2 ’ i t/)o B 7 ) M\ =73 =N\Y+)»

A
(V4,u4), Ai(v4) < § <+oo.
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In (1.12), w is a suitable neighborhood of (v,u) in R?. Here we assume (vi,u,)€
Ro(v,4), namely, (v, uf) (£) = (vf,uf) (t,).
With a rarefaction wave (vf,uf)(%£) and a stationary wave (Vo,Up)(z—s_t) in

hand, we are able to define a nonlinear wave (V,U)(¢,x) as follows

(V. U) () = (Vo,Uo) () + (v, u") (t,2) — (0,1), (1.13)

where (v",u")(t,z) is a suitably smoothed function of ( u®) (£) = (vl uf) (¢,z), and

will be stated in Section 2. Moreover, we let 6 =|vy — 0|+ |uJr u| and 0 =|0—v_|+|vp|.
Now the main results are stated as follows.

THEOREM 1.1. Let (v—,u_) € Qsub Ul rans and (vy,uy) € BLRo(v_,u_). Assume
that vo — vl € HE(RT), up—ufy € HY(RY). Then there exists g >0 such that if 0 <e <eg
and &+ |Jvo — v |2+ |Juo — ub |y <eo, then there exists a unique strong solution (v,u) of
(1.2), which satisfies

vV € C(0,00: HY(RY)), u—UeC(0,00); HY(R)),
(v=V)a € L2([0,00); HA(RY)), (u=U), € L2([0,00); H' (RY)).

Moreover, it holds that

lim sup |(v,u)—(V,U)|=0. (1.14)

t=+00s>s ¢t

Here e, (v",u") and (v,uf) are given by (2.12)a, (2.14) and (2.15), respectively.

REMARK 1.1.  For the case (v—,u_) € Qsup UTtyans and (vy,uq) € BLR1Ra(v_,u_),
we can find (01,%1) € BL(v_,u_) (V2,42) € R1(01,%1) and (v4,u+) € R2(U2,u2) such that
we can show that the solution (v,u) of (1.2) tends toward the combination of (Vj,Up),
(vF uft) and (vff,ul) as in [22,39,41].

REMARK 1.2. In this article we only consider the asymptotic behavior of the station-
ary wave for inflow problem to one-dimensional compressible NSK system with small
initial perturbation, in fact, it is interesting and plausible that we can consider the
corresponding results for large perturbation as in [12,20] for the compressible Navier-
Stokes equation. Moreover, here we only consider the inflow problem to one dimensional
compressible NSK system in the half space. However we should mention that the cor-
responding initial boundary value problem such as the out-flow problem and the inflow
problem for the multi-dimensional compressible NSK system is surely more difficult,
thus more interesting. These are expected to be done in the forthcoming papers.

This article is a follow-up study of [19,30,34]. Now we give main ideas and arguments
of the proof for Theorem 1.1. Applying L?-energy method, some time-decay estimates
in LP-norm of the smoothed rarefaction wave and the spatial decay of the stationary
wave as in [24, 39, 41], we prove the asymptotic stability of the nonlinear wave: the
superposition of the stationary wave and the rarefaction wave in the case that the
initial data are a small perturbation of the rarefaction wave and the strength of the
stationary wave is small enough. The key ingredient in the proof of Theorem 1.1 is to
deduce the a-priori estimates. Compared with [39] for the one-dimensional compressible
Navier-Stokes system, the main difficulties are as follows. The first one is the occurrence
of the third order dispersion term. The second is how to control the boundary terms in
order to establish the dissipation of the density. To overcome the first difficulty, we need
more regularities for the density and smooth rarefaction wave, which have been made in
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[3,7,8,30,31,33,37]. We also note that the basic energy is obtained with the help of higher
order estimates. For the second difficulty, we first have ¢(t,0) =1 (¢,0) = ¢, (t,0) =0 from
the boundary data (3.10)5 and (iii) of Lemma 2.2. Next, similar as [41], we can establish
the boundary dissipation of v, (¢,0). Finally, we can obtain the boundary dissipation
of ¢yy(t,0) due to the Korteweg term, which is different from the out-flow problem
in [35,37]. With these boundary values and the boundary dissipations at hand, we can
close the a-priori estimate.

The rest of the article is organized as follows. After stating some notations, in
Section 2, we make some preliminaries. That is, we first recall the existence and prop-
erties of stationary solution. Next, we review a smooth approximation (v"(¢,x),u" (¢,x))
of the rarefaction wave (vif,uf?)(¢,2) by (2.14), and list some basic properties of the
smooth approximate rarefaction wave (v"(t,z),u"(¢t,z)). Finally, we are going to give
the Poincaré-type inequality for later use. Then we reformulate the original problem in
terms of the perturbation variables in Section 3. Section 4 is the key part of this arti-
cle, in which we will establish the a prior: estimates by the elaborate energy estimates.
Finally, we complete the proof of Theorem 1.1 in Section 5.

Notations: Throughout this paper, two positive generic constants are denoted by
C and c. For function space, LP(RT)(1<p<+o0) is the usual Lebesgue space on
QCR=(—00,400) with its norm

fllriey = ([ 1#@Pae)” 1 <p<o0. 1o =suplF(o)].

H'(Q) denotes the I-th order Sobolev Space with its norm

! 1
7= (D210 1) where |-1:= - 2oy
i=0

HL(Q) is a closure of C§°(Q2) with respect to H!(Q)-norm, so that f& H}(S) satisfies
f(092)=0. The domain Q will be often abbreviated without any confusion. Finally,
we denote by C°([0,T]; H*(Q2)) (resp. L%(0,T;H*(f2))) the space of continuous (resp.
square integrable) functions on [0,7] taking values in the space H"((Q).

2. Preliminaries

The aims of this section are to make some preliminaries. That is, we first recall the
existence and properties of stationary solution. Next, we review a smooth approximation
(v"(t,z),u"(t,z)) of the rarefaction wave (vif,uf’)(t,) by (2.14), and list some basic
properties of the smooth approximate rarefaction wave (v"(t,x),u"(t,2)). Finally, we
give the Poincaré-type inequality. Firstly, we consider the stationary problem, and state
the estimates for the solution to this problem, which have been derived in [19,30] and
those estimates will be used to deal with the stationary part (Vo,Up)(y =2 —s_t) in our
time-asymptotic state (V,U). The stationary problem reads as

—-s_V§-U}=0,
N/ IR "2\’ 2.1
fs_U(/)er(V')O)':u(%) +/<c( V‘.:B +5(2“/}:)g ) , 2.1)

with the boundary data and the spatial asymptotic conditions
(Vo,U0)(0) = (v—,u—), Voy(0) = vy, (Vo,Un)(+00) = (v,1). (2.2)

Concerning the solution to (2.1)-(2.2), we have
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LEMMA 2.1 (see [19,30]).  Assume that (u_,v_) € Quup, u— >0, L=2=(=—s_) and
that the boundary value (v_,vp) satisfies

(v_,vp) EMT == {(v1,v2) ER?:|(v1 —V,v2)| <&p } (2.3)

for a certain positive constant eq.

(i) If —s_v"2 >+/k7, then there is no solution to problem (2.1)-(2.2).

(ii) For —s 05 =k , there exists a certain region M® C M™ such that if the bound-
ary value (v_,vy) satisfies the condition

(v_,vp) €M, (2.4)

then there exists a unique smooth solution (Vo,Up)(§=x—s_t) to problem (2.1)-(2.2)
which satisfies

- - gk+1
|a§(%—v,Uo—u)}§OW for k=0,1,2, -, (2.5)
and
(Voe, Uoe) (&) = (a1,a2)2*(y) + O(2* (y)), (2.6)

where a; >0(i=1,2) are constants and z(§) is a smooth function satisfying

N Sk+1
D ) <2 o) <~ k=12,.--. (2.7)
140y 140y (1+dy)k+1

0<

y+1

(iii) For —s_v"2 <+/k~, there exists a certain curve M~ C M™ such that if the bound-
ary data (v_,vp) satisfies the condition

(v vp) €M™, (2.8)

then there exists a unique smooth solution (Vo,Up)({=a—s_t) to problem (2.1)-(2.2)
such that

|0k (Vo —v,U0 —u)| < Cde™ for k=0,1,2,-, (2.9)

where C' and c are positive constants.

Next, we use the same approach as in [38] to construct the smooth approximation
of the rarefaction wave part (v§’,us’) (%) in our time-asymptotic state (V,U). Since the
rarefaction wave (v4,ud’) (%) is not smooth, we need to construct a smooth approxi-
mation (v",u")(t,x) of the rarefaction wave (v, uf)(%). As in [38], we start with the

Riemann problem on R=(—00,+00) for the typical Burgers equation:
wy +ww, =0, (2.10)

with initial data

(2.11)
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where w_ <w,. The weak solution of (2.10)-(2.11) is a rarefaction wave w’(%) con-
necting w_ and w, namely,

w_, r<w_t,
x

)=1 % w_t<z<wit,
Wy, T >wyt.

RT
w(t

From [40], it is well known that when w_ = Ay(7) >0 and w4 = Az (v4) >0, the centered
rarefaction wave (v, ufl) (%) can be defined by

A7 (wP(3)
R, R\T —10, BT\ = 2 k
O (§) = (3 G [ Ao(s5)ds).
It is easy to check that vi¥(¢,x) and uf(t,z) satisfy
Ut*ul'zov
Uy +p(v)m:0
with

(v,u)(0,2) = (v, ull) = { EZ?L) iig

Now we approximate the rarefaction wave wR(%) by the solution w(¢,x) of the following
Cauchy problem:

w +ww, =0,

w(0,2) = w_, x <0, (2.12)
I w,—i—CqQDfOEJCzqe’Zdz,xZO,

where W =w, —w_, C;>01is a constant satisfying C, f0+°° z9¢7*dz =1 with ¢ > 12 being

a positive constant, and € <1 is a positive constant to be determined later. Then the
properties of w(t,z) can be summarised in the following lemma.

LEMMA 2.2 (See [6,24,38]). Let 0<w_ <wy, then the Cauchy problem (2.12) admits
a unique global smooth solution w(t,z) satisfying:

(i) wo <w(t,z) <wy,w, >0, x>0,t>0.
(i) For any p with 1 <p<+o0, there exists a constant Cyp >0 such that for t>0,

(Ol < Cpguin {15, whe-1+),

wea (8)]] 1o < Op7qmin{ﬁ)52_%7 Grel-b+i14l }
[wWara ()] s gcp,qmin{wé*;, B R TeE }
[em—c1 Sprqmin{ﬁ}ﬁ_%, @%53—%+%t—1+g}.

(i) When z <w_t, it holds that

w(t,x) —w_ =wy (t,T) = Wge (t,2) = Wgypa (t,x) =0.

. . R
(iv) tllgloogsﬁlelgyw(t,z)—w (t,z)| =0.
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Now, we should construct the smooth approximate rarefaction wave (v",u")(¢,z) of
(vE ul)(t,x). As in [41], we define (2",%")(t,x) as follows:

A5 H(w(t,z))
(w,ff)(t,x):(A;l(w(t,x)),a—/ Na(s)ds)) (2.13)
here w(z,t) is the solution of (2.12). Then we set
(0" u")(tx) = (0", a") (t2)| o, s (2.14)
which together with (2.12)3 and (2.13) implies
1 A5~ (wo)
vy (z)=A3  (wo), ug(x):ﬂf[ A2(s)ds, (2.15)
here
w (x)_ )\2(’(7)7 x <0,
O A2 (0) + (Aa(v4) = A2(0)Cy [ 2% dz, 20,

It is easy to check from (2.13) and Lemma 2.1 that (v",u")(¢,z) has the following
properties.
LEMMA 2.3.  The smooth approzimation (v",u")(t,x) of (vi,uL) has the following
properties:
(i) uh, >0, |ub]<Ce, Vt>0,z>s_t.
(i) For any p with 1 <p<+o0, there ezists a constant Cp 4>0 such that

1

|54 (8)] o < Cpgmin {3’ =5, 7 (1+0) 3

(wr,u )(t)||Lpgcp,qmm{552—%, 5551—%+%(1+t)—1+%},

xx’ TrT

(Ve ya) ()l o < Cpqmin { 0™, 57273+ E (14471,

| Vs tnse) (Dl o < Cpgmin{det=5, 6773+ (140711 1,
I A .
,), @(vw,uz)(t,x)‘zgs_tzo, ji=1,2,3.

1]

(i) (v.00)], o, =

(iv) lim sup ’(UT,uT)(t,x)— (vrf?uf) (%)’:0

t—)+00w287t

Finally, we list some inequalities of the Poincaré type, which are proved in [28] and
will be used in Section 4.

LEMMA 2.4. For any f € H}(RT), and for any A in the set {Vy,Up}, there hold
(i) If —s_ 0% <k, ie., (0,1) # (vy,ux), then

/0 |05 AP If12 < O] £, 117, (2.16)
fork,j=1,2,-...
(ii) If s 7 = kv, i.e., (0,4) = (vs,us), then

/O |05 AP f12 < C3|l £, 117, (2.17)

fOT k,j:1727-..7 except k:]:l
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3. Reformulation of the original problem

Since it is convenient to regard the solution (v,u)(t,x) as the perturbation of the
nonlinear wave (V,U)(t,x), we are going to reformulate the original problem in terms of
the perturbation variables in this section. To begin with, we recall the nonlinear wave
(V,U), which is introduced in Section 1,

(‘/7 U)(t,l‘) = (V(),Uo)(l'— S—t) + (Ur7ur)(t7x) - (’Daﬂ)v (31)
here, (Vo,Up)(x —s_t) is the stationary solution which satisfies for any = >0 that
—s_Vy-U}=0, (52)
AN vy, v 3.2
s U +p(Vo) =p (%) +n( 4 + 2540
with the boundary data and the spatial asymptotic conditions

(beUO)(O) = (v,7u,), be(O) = Up, (%JUO)(+OO)

(v,7). (3.3)

And (v",u")(t,z) is the smoothed rarefaction wave connecting (o,
satisfying

) and (ps,uy), and

{”t‘“wzo’ (3.4)

us+p(v), =0.
Further, we consider the coordinate transformation
t=t, y=x—s_t, (3.5)
by which, we rewrite the initial value problem (1.2) as follows
Vp— S_Vy — Uy =0, .
ut*s—uerp(U)y:“(uT;y)er”<7:;}gyJr%)y’ (3.6)

(U’u)‘t:U = (U07u0)(y) — (v+,u+),
(U7u)‘y:0 =(v_,uy), Uy|y:0 = Up-

Moreover, from (3.2) and (3.4), and using (3.5), we assert that (V,U) satisfies

Vi—s_V,=U, =0, (3.7)
512 .
Ut—S_Uy +p(V)y:/J/(l{/y)y+”f(_%+ 2Vy6 )y_fa

where f is defined by
£ == V) =9 (Vo)) Vo 4 (0 (V) =/ (070~ (22, 4l 51,

Vi 5VE, V., BHV?
_ ( Oyy Oy vy y)y

T oy T ve T ave
Now we define the new unknowns (¢,)(¢,x) by

Then from system (3.6)1,2 and system (3.7), it is easy to check that the perturbated
variable (¢,1)(t,z) satisfies the system in Rt x R* below

{Sats—SDywyOa

pr =5ty +(p(V+e)—p(V))y=pn ([éﬂi - %)U+Ky+f7 (3:9)
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and initial boundary values:

{ (9 |t=0 = (¥0,%0)(y) = (vo — Vo, u0 — Vo),

(©,0)ly=0=(0,0), @yly=0=0. (3.10)

Here

K:N(_‘pyy_vyy 5(Vytey)? | Vi 5Vy2).
(V+¢) 2(V4p)6 V> 2V6

Therefore, we are now in a position to restate our main results in terms of the
perturbed variable (¢,%)(t,y) as follows.

THEOREM 3.1. Suppose that all the assumptions of Theorem 1.1 are met. Then there
exists a unique global solution (p,1)(t,£) to problem (3.9)-(3.10), satisfying

p € C([0,00); Hy (RY)), v € C([0,00); Hy (RT)),
py € L?([0,00); H*(RY)), 4y, € L*([0,00); H' (RT)),

and

lim sup [(,)(t,y)|=0. (3.11)

t—)DOyeR+

To prove this theorem, we shall employ the standard continuation argument based on
a local existence theorem in the following lemma and on a priori estimates stated in
the following proposition. First, the local existence of the solution (y,%) to the initial-
boundary value problem (3.9)-(3.10) is proved by the standard method, for example,
the dual argument and iteration technique. We refer the details to [15,16,27,42].

LEMMA 3.1 (Local existence). Assume that the conditions in Theorem 1.1 hold.
Then there exists a positive constant Ty such that the initial-boundary value problem
(3.9)-(3.10) has a unique solution (p,1)(t,y) that has the following properties:

¢ € C([0,To]; Hg (RT)), ¥ € C([0,Tp]; Hy(RY)),
(pyEL2([0,T0};H2(R+)), ¢yEL2([0,T0];H1(R+)),
t;r€1§§+v(t,y)>0.

Next, we should prove the following a priori estimates in Sobolev spaces, which are
stated in Proposition 3.1.

PROPOSITION 3.1.  Let (¢,%) be a solution to the initial-boundary value problem (5.9)-
(5.10) in a time interval [0,T), which has same regularities as in Theorem 3.1. Then
there exist constants x >0 and C >0 such that if

N(T):= sup {llo@®)ll2+ v} <x (3.12)

te[0,T]

s

and 6 +e+x < 1, then the following estimate holds for any t € (0,7

t

le @3+ @I + / (%y(7,0)* + 0y (7,0)* + gy (D13 + [ (7)II3) dr
0

<C(llgol3+ lltoll3 +5+27). (3.13)
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4. A priori estimates

This section is devoted to the derivation of a priori estimates for the unknown
function (¢,1)(t,y) and their derivatives, we then show that Proposition 3.1 is valid.
Since the decay rates of the non-degenerate stationary solution and the degenerate
stationary solution in the nonlinear wave are different, we will derive a priori estimates
in Subsections 4.1 and 4.2, separately. Moreover, in establishing a priori estimates, we
shall employ a mollifier with respect to time variable ¢ to resolve an insufficiency of
regularity of the solution obtained in Proposition 3.1. As this argument is standard, we
omit the details and proceed with a derivation of those estimates formally. To derive
these a priori estimates, we assume that there exists a solution (¢,%)(¢,y) to problem
(3.9)-(3.10), such that

(p0)(t.9) € C0,T) HER™)) x C(0,T) HE(R™)),
(t y)e%lg] XR‘F(QP—’— V)(tvy) >0

for any T'>0. From (3.12), one can see easily that there exist two positive constants ¢
and C such that

0<ce<v<C for tel0,T], (4.1)

since V' > ¢ >0 for a positive constant c.

4.1. Estimates for the case (0,@) # (v.,ux). In this subsection, we shall obtain
the uniform a priori estimates of the perturbation from the nonlinear wave with the
non-degenerate stationary solution. Namely, we will show (3.13) holds in the case that
(0,1) # (v, uy). First, we are going to establish the first energy estimate for the solution
(p,1)(t,x) to problem (3.6)-(3.10). To this end, we introduce

Vo
2(V,p) =p(V)s0—/V p(n)dn.
Combining this with (4.1) yields
cp® < O(V,p) < Cp?. (42)

Now let us derive the basic energy estimate. First, utilizing (3.9);, we see that

1
(V+s0)5 (V+<p) Ve 2vs]w}y+“[m—ﬁmywy
5 1 1
5 s Pyy Wy — ( o) (2Vy 0y —|—gp§)¢y _ ok [m _ W] Vy21/)y

v +V 5(Vy+¢ |
ywz_ﬁ{[%oyy vy (Vy y)?

(V+ )

[‘Pyy+vyy 5(Vy+¢y)° Vi
V4o 2(V+9)°

Vs 2‘/6]1/]} V+(p)5¢yy(¢t_37‘ﬂy)

{
5
{

1 1 5 5 1 1
m—W]Vyy%—m@%%+wy)¢y—§[W—W] by
_ ey +Vyy _ 5(Vy+iy)?
B [(g/yﬂo)y;, - 2(‘y/+<p?3 yy 2V6]w} ( 5%%)
BKS_ 2 K 5Kk 1 1
_(2(v+¢)5‘py)y - (2(V+¢)5“0y)t_ 2(V+@)6Uy%+”[(v+<p)5 - W}Vyy%
5K 1 1 2
‘7[@‘%% Yy
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Further, from (3.9) and using above equality, a straightforward but tedious computation
gives

L K 2 _
[gw +‘I)(‘/',<,D)+W@y}t+R1y+R2—R3+R4+R5 (43)
Here
1 U,+v, U,
Ri=—s |50? + ®(V@) | +p(V +0) (Vo= p( 5 = 32 )0
SDnyFVyyﬁ@iaVyJF@y)Q 5Vy2 _ K OKS— 2
e e o M e e
Yy pugply
Ro= y__ Y \% —p(V)=p'(V r, R3=
- r _ _
Ry= V(V+¢)U0ysowy+ip(‘/+s0) p(V) = (V)e]Uoy,
and
% e 11 L R S T e
Bs = 2(V+¢)6Uy‘py+“[(v+ga)5 VJVW% 2 [(V—I—(p)ﬁ Vﬁ}vy%'

LEmMA 4.1. Assume that (o,0)(t,y) is a solution to (3.9)-(3.10), satisfying the
conditions in Proposition 3.1, then the following estimate holds

t
le(®)I13+ e t) 12+ / () 2ol + 11wy 1?) ar
~ 1 t
SC(IIsﬁoHlJrH<Po||2+5+€ﬁ)+0(5+6)/0 oy l2dr (4.4)

for all t€[0,T7.
Proof. Integrating (4.3) with respect to y over (0,00) yields

d 1 , K 9 /°°
S [5ER R0 )+ gt | dy— Ry Rad
il [z an_ [
0 0 0
First, noting (4.1) and using (4.2), we obtain easily
/ Tt o)+l el P oD (46
o L2 MAFTETRRE ’

Due to ¢(t,0)=1(t,0) =, (t,0) =0, it is easy to see
Ri|y=0=0. (4.7)
Moreover, in [41], the authors have showed

Ry > ([l |12 + | (u)) 2 0]|?). (4.8)
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Since

fNO[(?}T—ﬁ)VOy (%— )U +'LL +( 7)U0yy +’UTUOy+’UT’U,;+(UT—E)VOyU()y

F g, + (V7 = 0)Voy Voyy + 05 Voyy + 05, Voy + 0505, + (05) 4 (v))* Voy

oV, + (0 D)V, (49)

we have

| ratv<cl [Tl [ oyt [T vdl] [ oo, vdl
[ appva] vl [ o+ [ 06 0popudy
[0 oyl [0 o)Va, Ul +] [0~y
[T -0 Voas] +C[1 [ Ui+ [ ot

[ Vodal +1 [ @)Vay Uil +1 [ oy Vo]
=:R31+ R3z + Ras.

Now, let us estimate the terms R31,R32 and Rs33 one by one. First, from Lemma 2.3,
we have

T 3 r T r z 1 jard
[l 13 < Cllud, 18 ([, |18, < Cet (14+)" 7 (4.10)
and
[l | < CJlub || ||ul||§ < Cetz (14+) 2. (4.11)

Then it follows from the Holder inequality, the Sobolev inequality, and the Young in-
equality and using (4.10)-(4.11) that

| / o by + / ol pdy
0 0

<Ol (gl + oy llllug )
<c||¢||%||¢y||%(||u;yuu+||v;unu;||)
L 12+ Ol IR 15, + 11 a3
g2+ Cet plld [+ B+ (14 77]

Lyl +Cet [+ (140 ulP - ceb [+ H + (1407

_16
_16

_16

Similarly, we can show

| / or by +] / ool byl + | / Yyl

<Clllze (lvgyyllze + lvyllzeellvg, s +lvgliEs)
1 1 . . . .
<CIelE19yl12 (lvgyyllze +llvg o llogy 2+ llvylls)
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< Sl 12+ ClIE (g N1 s + 10 1w 0 1+ o sl 5
<l P+ Ol [+ B+t 14 +eb 140 7F]
<l +C[F A+~ F +ed 1402+ 14072 )
C[s%(lﬂ)*%

@\»—A
no\»-t

1+t % +e (1+t)’%]

Then we have
Ry < <[|oy [+ CLeB [(148) 56 + (146) 24 (1+8) 75 + (141) " 1] +5 (14+6) "2}
+C{[5%[(1+t)’%+(1+t)’%+(1+t)’%+(1+t)’} e (14t) 0 } (4.12)

We now turn to estimate R3o. First, applying the estimates in Lemmas 2.1 and 2.3,
we arrive at

00 t 00
/0 (’UT _/D)Vz)ydy:/o (UT —’D)‘/oydy-i-/t (,Ur _T})bedy

t t [e%e)
f/ (Vo—7 dy+/ v" —0) Vo, dy
0 Jo t
1

<CeT (144)" 10 In(1+6t)+Co(1+5t)~
<CeT0(144)"54+05(1+1)"!

(v" =2)(Vo—)

and using again the Sobolev inequality, we then obtain

[ 0= ooy
0
<Clo®lli= [ 7= 0)Vaydy
0
<CIOIH @1 [ @~ 0)Vaydy
0
< et (Il (2 + 1+ + 1+~ 8 yp@)?)
+C5 (I O+ 1+~ F +501+07F w(1)]?).
In a similar manner, one can estimate the remaining terms in R3s and conclude that
Ry <C(5+2%) 0y ()2 +C (5(1+0)~H et (144)~#)
+c(g%o(1+t)—% +5(1+t)—%) (2] (4.13)
Similarly, we have

Raz <C([log [l [[Uoyl 1 + [[og |z [[Voyy | 1 + gy [l 2o [[Voy [l 1
HvyllZe [Voyll o< 1 Toy [l + o[l 1 VoylIZ< [ Voyyll ) 10l 2
<C(llvyllzee Uoyllr + 1oy [l oo [Voyyll L1 + lvgy [l 2o [Voy |1

. . 1 1
Hvy | Zoe [IVoyll 2o [ Uoy [l 21 + [0 | e [1Voy 7. [ Voyg ) 190112 12y 112
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< Oyl +C[ 1+~ +Co1+0)7F +CH1+0)~ 7] s, |
<Ol 2+ C3| (14678 + (14673 | fue)|?
+CS{(1+t)*§+(1+t)*§+(1+t)*%}. (4.14)

From the Young inequality and Lemma 2.4, it follows that
o] c S c ~
| Ry G40 | W+ Vot ay < i+ Clll, . (319

Finally, let us deal with the term fooo Rsdy. First, it is easy to find

| mstw=e(1 [T+l [ theanl) (1 [ ependl+] [ @ev,)
0

+C I/O Voyyptbydy| +|/0 Vo ety dy| +C‘|/0 vy Voyetbydy|
=:Rs51+ Rs2+ Rs3 + Rs4.
From Lemmas 2.1 and 2.3, it is easy to obtain
Rs1 <C(5+e) gyl (4.16)
Next, utilizing the Holder inequality, the Young inequality, and Lemma 2.3, we have

Rz <O|[08, |l o=l 140y || + ClloE |2 o4 |
< Sy 2 +C et (14+6) % +e3(1+6) 3 o] % (4.17)

Similar to (4.15), we have
c ~
Re3 < 2ty |I*+Collpy . (4.18)

Finally, similar to (4.14), one gets

Rss < Cllug ||z Voy |z llellly ]l < Cllog 7 0 1I* + Cll Voy 17 [y 1
= 1 _u
<Oy |I>+Ces (1+4) 7% ||| (4.19)

Therefore, combining (4.5), (4.6)-(4.8), (4.12)-(4.18) and (4.19), and integrating the
resultant inequality with respect to ¢, then implies (4.4) provided that C(S,CE% < i.
This completes the proof of Lemma 4.1. ]

LEMMA 4.2. Assume that (o,0)(t,y) is a solution to (3.9)-(5.10), satisfying the
conditions in Proposition 3.1, then the following estimate holds

oIl + / (62 +¢2,) dr <C(llpoll2 + [nbol2 + 5+ ) (4.20)

for all t€[0,T7.
Proof. Rewriting Equation (3.9), as

(725 -0), 55 —v), 7 Vo),
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1 1
"V —p' (MY, ———\V,U,
= T WP VO VWVt s — 5] Yl
1 1
(5~ 7 )V Ko (4.21)
Multiplying (4.21) by Uﬂp, we obtain
2
HPy Yoy s — S— _ Viy +¢yy
(2(V+<p)2 V+@) {V+<pwy (V+<p)2<py V+gaW “[(V+<p)5
_@_5(%+@y)2 %} Py }_p(VJF‘P)(pQ o2
V5 2(V4p)6  2V6] V4l Ve 7Y (V4p)s 9
1, 1 .
W 1 1 W 1 1
—p/(V)}VySDyJFm[m—W}VyUy%—m(m—v)Uyy@y

K 1 1
A L E 77[77 :|‘/17 1
+(V+90)7( y+Py)Pyeyy Vrol(Vtep V5 yyPyy

i 1 1 K 9
TR 2
+(V+50)2 {(V-HO) VQ:| Vg (Vy+0y)py + 2(V+30)7(%0y+ Vypy)Pyy
5K 2 5K 1 1 )
2(V+e)® (y + 2V (Vi Foy)y + 2(V+p) [(V+¢)6 V6] v Pyy
K 1 1 ) 0
+2(V+<p)2 [(V+¢)6 - W}Vy (VyJFSOy)‘Py*ij(P- (4.22)

Here we used

Py —_K{[M Vg 5(Vytey)® 5‘@2} oy }

Ve (V4 V5 2(V4)s " 2V6] VS,
+(Vf¢)6w§y*(vf 7 (Vs +<py)<pysoyy+v+¢[(vj@)5—%}Vyy%y
- (Vfw)2 [(Vigoﬁ _%}Vyy(vﬁwy)wy— ﬁ(wiﬂ‘/y@y)@yy
+2(V5%W(%2’+2Vy‘pyw”+%)% Q(Siw){(vjcp)@‘ | V2w
+2(V5JI:¢)2 {(Vig,)e - %}Vf(‘/yﬂpy)soy-

Integrating (4.22) with respect to y over RT and taking into account the boundary
condition (3.10)3, we have

d %0 ne by /Oop'(V—Ho) ) /°° K

— _ dy — PV T¥) d q

dt/o (2(V+%0)2 V-HO) Y o V4o pydyt v (Vto )690yy Yy
= d P d _ o d

/0 V—i—gpw y o (U'r_’_(p)gvywwy y o (UT+S0)2 y’d}@y y

oo 1 - 1 o PP
+/0 vagpywydy‘f'/o vr_'_(p[p (11 —H,O) —p (11 )]Uy<pydy

oo
K H K
<), [ g e i)
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> oK r 2 K r
+ [2 7(Uy+90y) Pyy T 7(Uy+80y)90y90yy
o 2 ) ( )

V"t (M V)
K T T oK T 3
+4(11’” i <,0)77 (vy + @y)vyyipy - 72(“ FRAE (vy + ©y) oyldy, (4.23)

which together with (4.1) yields

d oo
&/0 (s@i—wy)dw/ (P2 +¢2,) dy<0/ w2dy+CZHz, (4.24)
=1

where

H1=|/ v;wwydylﬂ/ u;wwydylﬂ/ vgwydlerl/ Uy, PPy dy|
0 0 0 0
o0 o0 o0
+|/ v;ywyydylﬂ/ v;u;wydylﬂ/ Vy Uy PPy Ay
0
+I/ wydylﬂ/ )% ooy dyl,
H2:|/ Voywwydy\ﬂ/ UwasoydyHl/ VowcpydyHl/ Uoyyppy dy|
0 0 0 0
+|/ VOyyWydy\H/ VOyUOyWydlerl/ Voy Voyy ey dy|
0 0 0
+|/ VoiwydyHl/ Vi, ey dyl,
0 0
H3=|/ UQUwaydyH\/ uZVwaydlerl/ vy Voyy oy dy|
0 0 0
[ee) o0
+|/ vgyVwawydy\+\/ 0y Voyppyy dy|
+I/ bewydylﬂ/ oy Vi dyl,
H4:|/ vgsayzbydyH\/ U;‘Py@yydy|+|/ v;ysﬁidylﬂ/ Vy Py Pyy dy|
0 0 0 0
+ / (o7)22dy| +| / Voyeytbydy| +| / Voyy@yydyl +] / Voyy @2 dy|
0 0 0 0

+|/ VOy‘Py‘Pyy‘H/ V02y@l2/dy|’
0 0

and
H5=|/0 ysoydy|+|/ Vou i’ dyl. H6—|/ Sy dy] H7—|/ foydyl.

Now let us estimate the terms on the right-hand side of (4.24). First, using Lemma
2.2, the Holder inequality and the Young inequality, we have

Hy < Clllog [l e 1911140y |+ Nl | oo 11y | + oy | oo + vy [[ oo lluy | oo + gy [l 2o
Hvyllzee + vyl llvgy o) lellloy + (logy iz +log Iz ) lelleyyll]

1 T T T T
<Clyl*+ g Uleyl* + leyy 1)+ CUlwglEa + Il 12117 + CClog 1z + gl 2o
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Fllogllz e llug 7 + gy 17 + oyl 2 + ”U;”QL‘X’ [ogy 12 +llogy 1<)l ]l
1
<Oy l?+ 5 Ueul* +lleys I )+Ces (1+1) 7% ]
FCes(141)78 +e5(141)"5 +e2(14+6)" 2|0 (4.25)

Next, utilizing the Young inequality and Lemma 2.4, one gets
1 o0 (o] (o)
M <Oy P+ e+ lenP)+0( [ Viwtans [ vgwrane [ ietay
[ee] oo (oo} oo
2 2 2 2 2772 2 21,2 2
+ / Vo dy+ / V(ﬁmzdy)
0 0
1 -
SCllwa2+g(llsoyIIQJr||s0yy||2)+05(\|%||2+||s0y||2)~ (4.26)
Using the Young and the Hoélder inequality, and Lemmsa 2.1 and 2.4, we have
m<o([ @ [ @ [ et [ ),
[t ro [T detar [TVietars [TVt [T ety
0

<CE+e) eyl +llewy1*)- (4.27)

Similarly, we can obtain
Hy <C(0+e)(lly I+ 19y ]> +lleyy 1) (4.28)

Moreover, using the Cauchy inequality, the Sobolev inequality and the assumption
(3.12), we get

Hs < Cllogllp=lloyllelleyl* + ClIVoy | o=yl o< oy 7 < C0x +ex) Iy ]I, (4.29)

and

Hg < Cllgylles oy lI* + gy 1) < Cxlley I + gy [1)- (4.30)

Finally, recalling (4.9), we have
o0
+ / Peuyl] +C]] / (Voo ysoydm + / oy Uoypucl]
+|/ UyVOnyOydy‘ Jr‘/ UnyOySﬁydm Jr|/ VOyUOySDydy‘
+|/ UZVOQyVOyyWydyq +C [|/ ("~ @)V0y<)0ydy| + |/ (0"~ @)UOyy@ydm
0 0 0
H [0 =WV lngudsl +] [0V
0 0

oo
+ [0 =0V Yooy (431)
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Utilizing the Cauchy inequality, the Young inequality and Lemma 2.3, we have

R 1 1 _u
[ el llol+ Ceb 1),
0
Moreover, using the Cauchy inequality, the Young inequality, Lemma 2.1 and Lemma
2.3, one gets
I/0 (Vo —0)vyydy| < Cllogllp=[IVo = 9]l | < CllvglIE +C Vo o[y 12
< Obllgy |+ Ces (1+1) 5.

Next, from the mean-value theorem, and using the Cauchy inequality, the Young in-
equality, Lemma 2.1 and Lemma 2.3, we can obtain

[ 07— oVoundnl <€ [ [ojuVoues dy <l + Cllavin Pl P
0 0
< Odllgy |2 +Ces (1+1) 5.
In the same way, we can deal with the remaining terms on the right-hand side of (4.31).

Then we have

1 ~ 5 1 11 1 3
S§||¢y||2+05llwyll2+c’€3( )73+ Ces(141)" % +Ce3(14+1)"2
+Ce? (141) 73 +Ces (1+41)" % (4.32)

Hence, combining (4.24), (4.25)-(4.27) and (4.28), then integrating the resultant
inequality with respect to t and using (4.4), we can obtain (4.20) provided that Ce,d
and y are small enough. This completes the proof of Lemma 4.2. ]

With Lemmas 4.1 and 4.2 in hand, we can show the following fundamental energy
estimate.

COROLLARY 4.1.  Assume that (p,1)(t,y) is a solution to (3.9)- (3.10), satisfying the
conditions in Proposition 3.1, then it holds that

le ()12 + 12+ fy [loy () + 11y (D] dr <C (lleoll3 + ol +5+75 ) (4.33)

for any t€1[0,T].

LEMMA 4.3. Assume that (p,)(t,y) is a solution to (3.9)-(5.10), satisfying the
conditions in Proposition 3.1, then the following estimate holds

t
”wy(t)”Q‘i'”‘Pyy(t)”Q"’/o (HwyyHQ+¢y(770)2+90yy(7a0)2) dr
<O(Ioll? +llol3+5-+<7) (4.34)
for all t€[0,T7.

Proof. Multiplying (3.9)2 by —t)y,, one has

KS_
( w + (V+g0)5s0yy) (wtwy *w +(V+ )5901/7;1/’@/?; Wspzy)y
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1 1
+L¢§y:_“(7_*)ljyywyy ( M (uwu+Uy@y+‘way)1/’yy

Ve Ve V V+p)?
1 1

Th {m - W] VyUythyy +0' (V + ) oythyy + [0/ (V +0) =0 (V)] Vythyy

oK 9 1 1 oK
,W(UyﬁLﬁ}y)@nyrﬂ[mfﬁ}vyyyi/}yyfmvyycpyd)yy

1 1 5k

—106 | ———5— o5 | Vo Vwwy — 77 o (Ve v,

H[(V+g0)6 VG] Vo Pyy (V—H,O)G( yPyy + Vi oy + 0y yy )y

15k 9 2 3 1 3

Here we used

1
—betbyy ==ty )y + (593) -

and

K
V _|_ BE @yywyy) ” - W@yy¢yyy

V—HO 580yy1/’yy) - (m‘pi?’)t

_ 5
(), e Ui

K
:( VJHP 5501/1/1/’1/7;) _m@yy@wy—s*‘f’yyy)
Hawrer

V+o)

with the help of tyy —S_Yyyy —Vyyy =0. Moreover, from ¢, —s_@yy —1y, =0 and
©1,(0) =0, it is easy to see

Yyy(0) = —5-00yy (0). (4.36)

Then integrating the equality (4.35) with respect to y over RT and taking into account
the boundary condition (3.10)2 and (4.36), and (4.1), we get

d
G @R S0P S0P [

S0(11+I2+I3+I4+I5+[6+I7+18)- (4.37)

Here
=1 [l
Iz=I/Ooowywy%ydy\+|/Ooowys0§ydy|+I/Ooowiwyydyl+|/Ooo<pys0yywyydy|,
=l " ety dyl +| / " Dy oty dy| +| / " oyl +| / ety dyl
+ [ oy dy|+ / " W) ety dyl,
L= / " Voyptyydyl +| / " Uogypthyy dyl +| / " Vow#tudy]

+|/ VOyUOy‘PwyydyH"/ VOy%yy‘P"/)yydy|+|/ V03y907/)yydy|a
0 0 0
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=1 [ oiUosevndyl+| [ uVouevndsl+] [ ojVosuet du
+ [T o Vot dul+] [ @ Vorerdul+ 1 [0 ev dal,
o= [ oiestndul+] [ uevndul ] [T opebanl vl [ el
+|/Ooovgy¢y¢yydy|+|/OOO(U;)2<Py¢yydy|+|/ooo Voy@y¢yydy|+|/ooo Uoy 0y ¥y dy|
+ [ Vougidnl 1 [ Voupwint ] [ Vouseinadul+] [ Vit
+|/OOOUZV0yS"y¢yydy‘»
and
. . -
Bl [ e+ [ Vol k=1 [ oy

Now let us estimate the terms on the right-hand side of (4.24). First, from the Cauchy
inequality and the Young inequality, it is easy to obtain

1
Ilégllwyy||2+0||90yll2- (4.38)
Next, from the Holder inequality, the Sobolev inequality and Young inequality, we have

I <C(llgyllzee [9ylleyy | + 1yl ey I® + eyl ey llvyy |+ loyllze oy vyl
<OXly 1 + 1y 1+ loyy 1 + 1y 1) (4.39)

Moreover, on one hand, similar to (4.25) and (4.26), we have
Is< [y lIP+Cles (148) 7% +e5 (1+8) 5 +e2(1+1) 72 +e2(1+1) 77 0|%, (4.40)
and
1 -
i< glltbyy|I” + Collpy . (4.41)

On the other hand, similar to (4.27) and (4.28), we obtain

Is chllwyyHZ“‘CS”‘Py”Za (4.42)
and
Is <CG+e) (loyll® +lloyylI® + 1wy 1) (4.43)
Finally, similar to (4.29) and (4.32), we have
Iz <COx+ex) (leyl® + ey ) (4.44)
and

1 N
Is < g lubyy |* +CBll gy |* + Ce 3 (144) 78 + et (144) 7% 4Ot (144) 7 .25)
_23 '

6 .

+Ce?(1+41)"% +Ces (141)
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Hence, inserting (4.38)-(4.42) into (4.37), then integrating the resultant inequality
with respect to ¢ and using (4.33), we can obtain (4.34). This completes the proof of
Lemma 4.3. ]

Finally, we are going to establish the dissipation for ¢y, .

LEMMA 4.4. Let (p,1)(t,y) be a solution to (3.9)-(3.10), satisfying the conditions in
Proposition 3.1, then it holds that

t
/0 leyyy (NIPAT < C(llpoll3 + ¥0llT +8+£70) (4.46)

for an arbitrary t €[0,T].
Proof. We first recall that

Pty = S—Pyy —hyy =0, (4.47)
and
Pryy = 5—Pyyy — Yyyy =0, (4.48)
further, we have
(Y1 = 5-y)Pyyy = (VrPyy)y — (VyPyy)t + (Yythyy)y — wzy, (4.49)

"/}yy@yyy ((pty (pyy)(Pyyy
‘ J T ‘ J £ !

(Vi¢¢ty¢yy ({lj’s_;go) 9022/1/)11_ (ﬁ@iy)

_M(Uy—ﬂﬁy)@gy (V—|— )2 (V +©y)oyytyy.  (4.50)

Then multiply (3.9)2 by ¢y, and use (4.49)—(4.50) to obtain
K 2
[Wsoyy ¢y¢yy} [ (V-HO)SDy‘Pyy‘f' (V+SD) SDyy V+ Pty Pyy -prtﬂyy]y

K
—pl(V‘HP)(P;y + m@iyy :7/1574 - [p/(V—HD) -p (V)}Vy%oyyy —|—p"(V—|—<p)(Vy

1 1 1 1

+30y)90y90yy+.“(v+(p V)Uyy‘Pyyy (V+ 0)? 5 UypyPyyy — [(V+<p)2 V2:| yUyPyyy
1 1 1
+fyyy _K[(V—l—go) Vs]vynyDyyy"'lO’f[(V_’_ o6 - W] VyVyyoyyy
10k 15k
+W(Vy‘ﬂyy+Vyy‘Py+‘Py‘Pyy)S"yyy (V+ o) (3Vy90y +3Vy ‘Py"‘@y)‘Pyyy
1 1 3

_15/§[W — W] Vy Pyyy-

Integrating the above equality with respect to y over RT and taking into account the
boundary condition (3.10)2 and (4.36), and (4.1), we get

d o0

S oo oo
T (02, — hypyy) dy — sayy(t 0)? / o2, dy+ / 02, dy
0 0 0

i~ (4.51)
C(/ wjydy+wy(t,o)2+J1 +Jo+Js+Ja+Js+ Js+ J7).
0
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Here
J1:|/0 ‘Py‘/’yy‘/’yyydm‘f"/o ‘/’Z‘Pyyydy|+|/0 ‘P;‘pyyydyL
J2:|/0 U;S@@yyydy""‘/o u2y¢@yyydy|+|/0 U;yyﬂo@yyydy|+|/0 v;“;@@yyydy|
oo oo 3
+ e+ [ v dul,
o0 oo oo
J3:|/ VOy‘P‘Pyyydy‘Jr‘/ UOyy‘P‘Pyyydy|+|/ Voyyy eyyy Y|
0 0 0
+|/ VoyUoyppyyy dyH—\/ VOy%yy€0<Pyyydy|+|/ V(?y@@yyy dyl,
0 0 0
J4:|/ ”ZUOy@@yyydy‘+|/ ug%y<ﬁ<ﬂyyydy|+|/ U;VOnyO‘Pyyydm
0 0 0
+|/ U;yVOySOSDyyydy"H/ (U;)Q%y@¢yyydy|+|/ U;%Qy@‘»@yyydwa
0 0 0
J5:|/O U;S@y<ﬂyyydy|+|/0 u;¢y¢yyydy|+|/0 v;‘PyyWyyydy|+|/0 U;yﬂoy@yyydy‘
+|/O (U;)289y90yyydy|+|/0 VOySOy“Pyyydy|+|/0 UOy‘Py‘Pyyydy|+|/O VoyPyy Pyyy Ayl
oo o0 9 o0
Jr|/ V()yy‘Py‘Pyyydy|+|/ %y@y¢yyydy|+|/ v;VUySDy<Pyyydy|7
0 0 0
and
oo oo o0
2 2
J6:|/0 U;Sﬁy@yyydy|+|/0 Voy oy yyy Ayl J7:|/O feyyydyl.

Now let us deal with the terms on the right-hand side of (4.24). First, similar to
(4.38), we have

J1 <Ox(lleyl* +lleyyl® + loyyylI*. (4.52)
Next, similar to (4.25)-(4.28), one gets

Jo < Hlyyy|2+Cles (148)7% +e3(141)"5 +e3(14+)"7 +e2 (1+1)3|g|%, (4.53)

1 ~
J3§§||‘Pyyy||2+05”¢y”27 (4.54)
J4§C€||S0yyy“2+cg||50y”2, (4.55)

and

Js <CG+¢) (leylI? + lleyy 1>+ logyyll?) - (4.56)

Finally, similar to (4.29) and (4.32), we have

Jo <COx+ex) (lleyll” +lleyyy ) (4.57)

and

(1+t)~3

N|=

1 e 1 1 1
Jr < gl oul* + Colliy >+ Ces (14-6) "% +Cet (14) 7% +Ce

—23
6.

+Ce? (1+41)"% +Ces (141) (4.58)
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Therefore, inserting (4.52)-(4.55) into (4.51) yields
i o0
<Ol (DI +Cory (.07 +Cc+2) (Il P + ).

further, integrating the above inequality with respect to ¢, and using (4.33) and (4.34),
we obtain (4.46). This completes the proof. O

(‘pgz/y - wy@yy)dy'i'@yy(tao)z + ||80yy(t)||2 + ||50yuy(t)||2

Proof. (Proof of Proposition 3.1 for (v,u)# (v«,us).) Summing up the esti-
mates (4.33), (4.34) and (4.46), we immediately have (3.13). ad

4.2. Estimates for the case (9,u)= (v, ux). In this subsection, we will obtain
the uniform a priori estimates for the perturbation from the nonlinear wave with the
degenerate stationary solution. Namely, we show (3.13) for the case (0,4) = (v«,u«). In
the following, we only need to show (4.4) in this case, the estimates (4.20), (4.33), (4.34)
and (4.46) can be obtained same as those in the Subsection 4.1.

Indeed, we rewrite R4 as

Ra=[p(V +0) = (V) = (V)olUoy = 7y 5 Uowsothy = Ras Rz (4:59)
Since
oV +0)—p(v) o Ve =22 o),

from Lemma 2.1, we have

o0 (o] /! V o0 o0 /! V
/ R41dy=/ azZQ(y)z#ﬁder/ 0(¢3)U0ydy+/ O(zg(y))¥<ﬁ2dy
0 0 0 0
<CE+x) eyl (4.60)

Similar to (4.15), one gets

oo c ~
| Rty <o, 1P+ Bl I (161)
0

Therefore, putting (4.6)-(4.8), (4.12)-(4.14), (4.60), (4.61), (4.16)-(4.18) and (4.19) into
(4.5), and integrating the resultant inequality with respect to ¢, then also implies (4.4)
provided that §,e and x are small enough.

Proof. (Proof of Proposition 3.1 for (7,4)=(v.,us).) Summing up the esti-
mates (4.33), (4.34) and (4.46), we immediately have (3.13). |

5. The proof of Theorem 1.1

This section is concerned with the proof of our main theorem. To prove Theorem 1.1,
we employ the standard continuation argument based on a local existence theorem and
the a priori estimates. Therefore, to complete the proof of Theorem 1.1, we need only
to investigate the large-time behavior of the solution (v,u)(¢,z) to the initial boundary
value problem (1.2) as time tends to infinity.

Proof. (The completion of the proof of Theorem 1.1.) Based upon the energy
estimates derived in the previous sections, we will complete the proof of Theorem 1.1.
To this end, we first prove that

sup |[(v—=V,u—=U)(t,z)|—0, (5.1)

r>s_t
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namely,
sup |(p,9)(t,y)| =0, (5.2)
yERT
as t— oo.
This is obvious supposing that we have proved the following assertion
im0 ) ()]0, (53

As a matter of fact, if it is true, we infer from the Sobolev inequality that
[(@,3)]lLe =0, as t —+o0. (5.4)

Hence, it remains to show (5.3). To this end, from the relations (4.23) and (4.37),
and Corollary 4.1, Lemmas 4.3 and 4.4, one can show that

[ (loul 1,12 ae <o (55)

and that
(oo} d 9 oo d 9
— dt 0, — ‘dt 0. 5.6
| henPlae <o, [ |G le|ar<+ (56)

Then (5.3) follows from inequalities (5.5)-(5.6). Consequently, from (5.1), we prove
(1.14) and complete the proof of Theorem 1.1. d
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