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STABILITY FOR THE 2D MICROPOLAR EQUATIONS WITH
PARTIAL DISSIPATION NEAR COUETTE FLOW*

XUETING JINT AND QUANSEN JIU#

Abstract. In this paper, we will apply the Fourier multiplier method to explore the stability for the
2D micropolar equations with partial dissipation near Couette flow. The difficulty will be encountered
due to the facts that one order derivative of the microtation appears on the right term of velocity
equations and that the velocity equations only have vertical dissipation. To overcome the difficulty, we
will make use of a Fourier multiplier to grasp the enhanced dissipation created by the special structure
YOz —1/85 and obtain some new and higher-order estimates of the solution in an elegant way. Also, a

time-dependent elliptic operator A? which commutes with linear part of the equations will be used to
make our proof more clear.
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1. Introduction
The micropolar equations in R? are written as:

U +U-VU+VP—(v+r)AU =25VLW,
divU =0, (1.1)
W +U - VW —yAW +4xW =2kV x U,

where (z,y) €R%,t>0. Here the unknown functions U = (U'(z,y,t),U*(z,y,t)), P=
P(z,y,t) and W =W (z,y,t) represent the velocity, pressure and microtation, respec-
tively. The parameters v >0, x>0 and y>0 are the Newtonian viscosity, the micro-
rotation viscosity and the angular viscosity, respectively.

The micropolar equations were firstly studied in [14] by C.A. Eringen to model mi-
cropolar fluids. Micropolar fluids are fluids with microstructure which belong to a class
of non-Newtonian fluids without symmetric stress tensor (called polar fluids). Further-
more, it describes phenomena such as fluids including particles suspended in a viscous
medium. In fact, when W =0, the equations reduce to the classical incompressible
Navier-Stokes equations. Due to the physical background and mathematical theoretical
value, there has been much attention to well-posedness problem and large-time behav-
ior issue (see [2,3,15] and [17]). Lukaszewicz in [17] explored the regularity result in
three dimensions for both stationary and time-dependent cases. Global well-posedness
and sharp algebraic decay estimates results were given in [11]. Furthermore, the decay
estimates of linear micropolar fluids in three dimensions were investigated in [7]. The
regularity criteria to the weak solutions in three dimensions can be found in [10]. Re-
cently, micropolar equations with partial dissipation were studied in [12,13] and [23]. In
addition, the regularity results in different domains applied to the micropolar equations
were also solved (see [12,13,20] and [23]).

Recently, the stability of shear flows in the Navier-Stokes equations have been stud-
ied in a number of works (see [1-6], [18,19,21] and [22]). From the mathematical point
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of view, we need to choose an appropriate norm ||-||x, and to determine the constant
~ (which can depend on space X) such that

|fllx Sv7 = stability,
| fllx>v" = possible instability,

where f denotes the difference between the solution of the Navier-Stokes equations and
a shear flow, and « is sometimes referred to as the transition threshold.

As mentioned in [8], the stability of Couette flow, which is a type of basic shear
flow, can be solved due to the special structure yax—uag. This structure provides
enhanced dissipation in comparison with the heat operator, which was first investigated
by Hérmander in [16]. More precisely, consider the linear equations

Taking the Fourier transform and changing the variables n:=¢{+kt, one can get that
f(k,g,t) = f/i)(kyg-i-kt)ef”f%eféyk%afl/kiﬁ’

which implies that the dissipation time scale is O(V*%). However, for the heat equations
O:f =vAf, the dissipation time scale is O(v~!). This reflects an enhanced dissipation
due to the special structure yd, —V@i in some sense. Deng-Wu-Zhang [9] constructed
a Fourier multiplier to extract the enhanced dissipation to investigate the stability of
Couette flow for the 2D Boussinesq equations. Moreover, a time-dependent elliptic

2
operator A?= (182 - (3y+t61)2) with ¢>0 and b>0 was used to obtain higher

derivative estimates in a much more concise way.
Inspired by [9], we intend to explore the stability of the Couette flow for the 2D
micropolar equations in this paper. The system we are concerned with reads as

U +U-VU+VP— (v+r)AU =25V,
divU =0, (1.2)
W +U -VW —yAW +4kW =2kV x U,

where V+=(8,,—9;) and (x,y) € T xR with T=[0,27] being a periodic box, which
means that the solution is 27-periodic along with the horizontal variable and defines on
the whole line with respect to the vertical variable.

Denote the vorticity by Q@=V x U, then the system including vorticity equation,
which corresponds to system (1.2),, is written as:

QA+ U -VQ— (v+kr)AQ=—2AW,
divU =0, (1.3)
O W +U-VW —yAW +46W =2kQ.

It is clear that the Couette flow w=(y,0),w=0,p=
whose vorticity is Q=V xu=—-1. Define u=U —(y,0
then system (1.3) turns into

0 is a steady solution to (1.2),
),W=W,p=P and Q=0Q+1,

0+ u-VQ+y0,0— (v+r)AQ=—2kAW,
dive=0, (1.4)
OW 4+ u-VW +y0, W —yAW +4xW =2k — 2k.
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Letting w=2W +1, we have

HQ+u-VQ+y0,Q— (v+ k) AQ = —kAw,
divu=0, (1.5)
Orw~+u- Vw+yd, w —yAw+4rw =4kQ.

Particularly, we consider the following partial dissipation system:

D+ u-VQ+y0,Q— (v+k)02Q = —kAw,
divu =0, (1.6)
Oyw~+u-Vw +y0,w —yAw +4rw = 4k,

where the horizontal variable is periodic and vertical variable lies in the whole line, that
is,

(z,y) eTxR. (1.7)
The initial data is imposed as,
(Q,w)(x,t)]1=0 = (2°,0°). (1.8)
In what follows, we define

1

ug(y) == o

/u(achy)e_“”kdx7 keZ,
T

and

1

Uy = —
2 T

u(z,y)dz, uz=u—uo.

It is noted that uo and u» stand for the projection of the function v onto zero
frequency and non-zero frequencies with respect to z, respectively. And it is easy to
prove that ug and u are orthogonal, that is

l[ull 2 = l[uoll L2 + [lusl| L2

In addition, the fractional derivative in the horizontal direction is defined as:

-~

DL f (k, &) = K] F(k,£).

We first consider the partial dissipation system (1.6) with v=xk=+. The main
result is

THEOREM 1.1 (The case v=k="). Given real numbers o> %, —% <a—-p<
0 and —f<a—-06<2.  Assume that || g <ev™ with b>3%, [|w’| <ev” and
D, 30| 1o <ev? with b>1 for arbitrary small positive e. Then, there exists a global
H Y p ) g
small solution (Q,w) to system (1.6)-(1.8) with v=r=r, satisfying

11 1 1
AU g2 VIV, AL 5 S DL B A2, + (- 2NN, <CP

11 1
IA2w[ e 12 +VIIVATW] T2 +qv° 1D Afwl72 12

H(=2) 72 Awi 72 0 + V[ Afw])F5  <Ce2?
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and
2Ab 2 2Ab 2 11 2Ab, 12
[1D2]5 Afw||7ee 2 +v[|V[Dg| JAtw”LfLi + i 1Dz | 3Atw||L2L2
H(=8) 72Dy 3 AJwl7 1z + 0| Dal 3 A7 2 < CEVP.
REMARK 1.1. In [9], the authors considered the Boussinesq system with vertical

dissipations both on velocity and temperature. Here we consider the micropolar system
with vertical dissipation on velocity but full dissipation on microtation. This is mainly
due to the fact that on the right-hand side of the vorticity Equation (1.6), there ap-
pears the term —vAw, which is a “bad” term with higher derivatives in the sense of
the energy estimate. While, to the Boussinesq system, on the right-hand side of the
vorticity equation there appears the term 0,6, which is from buoyancy forcing and can
be controlled by the enhanced dissipation.

Our second result is about the partial dissipation system (1.6) with v =k #+, which
is
THEOREM 1.2 (The case v=r#7v).  Given real numbers a, 8 and 5. When a>2
and v* <'y§ B satisfies vP~2 <v*"% and v°t8 <’yﬁ+%, § satisfies v°~§ <v°~6 and
4
C‘Jrﬁ <Az, Assume that | Q0] go < ev® with b> 2 3, 100l gy <ev? and ||| Dy |3 wO|| o <

ey® with b>1 for arbitrary small positive €. Then there exists a global small solution
(Q,w) to system (1.6)-(1.8), satisfying

1 1 a
AR o + o7 AU+ 01D AU s+ ()AL g < O

]- 1 1
|AT w17 e 1+ VALwIZ 2 + 37* 11 Dal S AT 35 10
+||(_ ) Abw7£||L2L2 +1/HAwaL2L2 <CE2 26

and

4 4 1 1 5
|||Dz|§Awa2LwL2+7||V|Dx\§Ab@U||2L2L2+*7§H|Dx\§/\bwllizm
+(=8) 72Dy 3 Afws 5 2 +vII|Dal 3 A5, <O

More generally, if we denote v=v+k and consider the partial dissipation system
(1.6) with 7#+~, a similar result can be obtained. Our third result is stated as

THEOREM 1.3 (The case v=v+k,v#£7). Given real numbers o,  and 6. When o> %
and % <'y§ B satisfies ¥P~% <% and Do+ <75+é, § satisfies 7°~5 <08 and

a+6 <~z Assume that || Q0] g < ™ with b> 3, w0 g <ey” and 11D |3 w®| o <
ey® with b>1 for arbitrary small positive €. Then there exists a global small solution
(Q,w) to system (1.6)-(1.8), satisfying

AP 12 + DIV AL T2 2 + 275 (1Dl S AR T2z + (= A) "2 AP 72 2 <CET,

1

4
1 . 1

IA2w[ e 12+ VAW T2 2 + 17 1Ds] 3AJw]|72 2

H(=2) 72 Awi 720 + R AJw][32 s <Cey*P
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and
2Ab. 112 2AD (12 [ SAb (12
D23 Afwl e 12 +AIVIDal 3 AfwlF 1z + 73 Do |3 AL wlls 1
1 4 4
(=) 72D, 5 Mgl o + 5| Dal 3 Afw]35 . < Oy

Lastly, we present a result on system (1.5) with v =k =+, which contains full dissi-
pation. Our final result is stated as

THEOREM 1.4.  Given real numbers o> 2 and —% <a—B<0. Assume that ||Q°]| z» <
ev®, ||w| g <ev® with b>1 for arbitrary small positive . Then, there exists a global
small solution (Q,w) to system (1.5), (1.7) and (1.8), satisfying

1 3 1 _1
AP E e 12 +VIVAIRU Tz 2+ 708 I1Da AR o +(1(—A) 7 2AI QL] 32 < CEV,

1. 1
IA2w][ e 12 +VIIVAGw] 22 + 0 1D |3 Afw|72 2

H(=8) "2 Afw T2z +vIAII72 0 < CEVP.

REMARK 1.2. In Theorem 1.4, there is a horizontal dissipation in vorticity equation,
thus we can directly estimate the term

v[(AF07,w, MALQ) | < v 0z Afw|l 21|05 AL 2.

Thanks to the dissipation terms “||VAQ|;2” and “||VA?w| 2", Theorem 1.2 can be
proved in a much more direct way.

REMARK 1.3. In Theorems 1.1-1.4, whether the numbers «, and § are transition
thresholds is still an interesting question.

We will mainly present details of proof of Theorem 1.1, and give a sketch of proof
of Theorem 1.2. The proof of Theorem 1.3 is completely similar as that of Theorem 1.2
and we will omit it. Moreover, since the proof of Theorem 1.4 is direct (see Remark
1.2), we omit it as well. Now we explain the main ingredients of the proof of Theorem
1.1. First, since we only have vertical dissipation on velocity in (1.2) and hence also on
the vorticity in (1.6), there will appear difficulties when we estimate higher derivatives
of nonlinear terms such as u-Vw and v- V€ in (1.6). To overcome these difficulties, we
construct a Fourier multiplier denoted by M (k,&) which makes it available to obtain
the horizontal %—order enhanced dissipation due to the special structure yd, —V(“)i as
in [9]. Moreover, to make full use of the horizontal %—order enhanced dissipation, we
decompose our estimates into horizontal zeroth mode and non-zeroth modes, employ
commutator estimates to shift derivatives and divide the frequency space into different
subdomains to facilitate cancellations and derivative distribution. Second, the term
—vAw is involved on the right-hand side of (1.6),. Therefore, when making ||AYQ| 1z,
we will encounter the following estimate

VI(ALD2,w, MAYQ) | S| Dy |8 Afw]| 2 [[| D |5 AL 12,

where M =M(k,§) is a Fourier multiplier (See Section 2 for more details). To close
the estimates, we need to make an estimate of ||| Dg|% Abw| .2 in our approach, which
together with the horizontal %—order enhanced dissipation deduces the desired estimates

of ||| Dy Abw)| 2.
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The paper is organized as follows. In Section 2, we introduce the Fourier multiplier

which is mainly used to extract the horizontal %—order enhanced dissipation. In Section

3, we will present details of proof of Theorem 1.1, and give a sketch of proof of Theorem
1.2.

2. The Fourier multiplier M(k,¢) and the elliptic operator AY

As mentioned in introduction, Deng-Wu-Zhang [9] constructed a Fourier multiplier
M(k,€) and a time-dependent elliptic operator A? to investigate the stability of Couette
flow for the 2D Boussinesq equations. In this section, we will briefly introduce them.
Before that, we present some notations.

Given f,g two smooth functions, we define the L?— inner product as

(f,9)12= fgdzdy,
TxR

where g is the conjugate function of g. Then

2 2 _ 2 . N 2
IIfHLz—/TxR\fI dxdy—;/Rfk(yn dy—;4|fk<s>| d,

where
) =5 [ Fape e fu(e) = [ fwevay.

We also denote f(k,&)= fr(£) = = [oup flzy)e ke te) dady.
Now we introduce the Fourier multiplier briefly as follows. Choosing a real-valued,
non-decreasing function ¢ € C*°(R),

qs(t):{l’ te(—o0,~2],

0, te€[2,00),

and ¢/ =1 on [-1,1].
Define Fourier multiplier M(k,&) = M (k,&) + Mo (k,&) + 1, where M7 and My sat-
isty:

M (k&) = (3| k| =3 sgn(k)€),k #0,
My (k&)= %(arcmn% + g),k;ﬁo,
Ml(()?g) :MQ(Oaf) =0.

It holds that M is self-adjoint and bounded with 1 < M <z +2.
Noting that y0, is a non-self-adjoint operator and d,, is self-adjoint, one can obtain
(see [9])

2Re((y0y — 10y ) QM) 12 = ([M,yy] +2uME*)Q, Q) 12
:Z/(ka§M+2yM§2)\§(k,§)|2dg.
k R

Using the expression of M defined above, we get

(KOM -+ 2 MEDDR, O > (067 + bl + oI

k2+€2
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which yields that
/R(kag/\/l+2w\/l§2)\§(k,§)|2d£
>u[ Vgl + 3 I1Da 30 + (-2) 3003 (21)

Thus, the horizontal %—enhanced dissipation appears on the right-hand side of (2.1),
which is iy% 1|D2| % Q||7.. Same structure can be found in the angular velocity equation.

Next, we introduce the time-dependent elliptic operator AL = (1—92 — (8, +t0,)?)?
for t>0 and b>0, of which the symbol is AL(k,&) = (1+k2+ (€ +tk)2)2. The operator
A holds a few advantages and properties when obtaining the derivative estimates, which
are collected as follows.

LEMMA 2.1 ([9]). For any two smooth functions f and g, it holds that
(1) For any beR, A? commutes with Oy +y0,, in the following sense,

A (O +y0a) f = (0 +y0a)ALF.

Proof. We prove the equality in the form of Fourier transform

F( (@0t
7 (@40 A1) + A+ 0,)1 )
0,0 RN K. )T + 7 (AL @r 00,01
=bAP2(K, &) (E+kt) -k —k-DAYT2(k, &) (€ + kt) +}‘(A§(8t +0,) f)

—F(A0c+90.1 ).
This implies the ordinary equality we want. 0
(2) For any b>0,
1AL (f9)llzz < [1Fll=1AZgl L2 + gl Lo 1AL £l 2

Moreover, for b>1, we have

1F @)z <CIfB)llzr < CIUATF B2z,
and consequently,
1A (f9)llz2 < CUIALfll 2 ]1A7 gl 2.
(3) For any non-negative s and b>1, there holds
I1Dz* Ay (f9)llzz < CUIIDo * AL fll2lIAY gl 2 + 11Dz |*AYgll 2 | AL f ] ).

REMARK 2.1.  According to (1) of Lemma 2.1, applying A? on both sides of the
Equations (1.6) will not destroy the structure of the linear parts. Moreover, according
to (2) and (3) of Lemma 2.1, A} shares similar properties as the standard fractional
Laplacian operators.
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3. Proof of main results

In this section, we will present details of proof of Theorem 1.1 and give a sketch of
proof of Theorem 1.2. Since the proof of Theorem 1.3 is completely similar as that of
Theorem 1.2 and the proof of Theorem 1.4 is much more direct (see Remark 1.2), we

omit them here.
In what follows, we denote D= (D,,D,)=+(9,,9,).

3.1. Proof of Theorem 1.1.
Proof.  Since the operator A? is commutable with 0; +%0,, we apply A? on both
sides of (1.6) to get that

{ BN+ AL (u- V) +yd, AL — 2092A00 = —v A} Aw, 3.1)

O Ao w+ Ab (u- Vw) +y0, Abw — v AN w + 4vAbw = 4vA2Q.

Taking L? inner product of (3.1), with MALQ and applying the property of multi-
plier, we get

%HA’ZQ\@ +v|V, AL 7 +iv% 11D 5 AP 32 + 1 (—A) "2 A 32
= —20Re(A’Aw, MAYQ) +2Re (AL (u- V), MALQ). (3.2)
Define
V(AP Aw, MALQ) + (AL (u- V), MALQ) := T} + L.

Similarly, taking L? inner product of (3.1), with MAbw and applying the property of
multiplier, we get

%IIA‘ZwHQB +u|VAwl[Fe + ivé 11D |3 Abew][3 2
H(=2) 72 Afw[f2 +v]| Afwl7:
=8vRe(AYQ, MAYw) 4 2Re (Al (u- Vw), MALw). (3.3)
Define
4 (A2, MAYw) + (AL (u- Vw), MAYw) := T34 1.

Moreover, taking L? inner product of (3.1), with M|D,| %Afw and applying the property
of multiplier, we get

CIDul Al 4 1Dl Al 2+ 4 1D A
HI(=2) 72 [ D |5 Afwal| 2 +v]|| Do Afw]| 72
=8vRe(AYQ, M|D, |5 ALw) +2Re (AL (u- Vw), M|Dy|3 Abw). (3.4)
Similarly, define
AV (A2, M| D, |5 Aow) + (Al (u- Vw), M| D, |3 Abw) := I5 + .

In what follows, define M?=+/MA?.
We deal with terms I,I3 and I5 firstly. Divide the term I; into two parts, that is

I = (MLO2w, MEQ) + v (M Ow, M)
i=I11+ .
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Then, we get
|11 < wll| D | ¥ Awl| 2 | Da] £ A 2
and
|[Liz| Sv||[VAYw]| 12| Vy AL 2.
Combining the estimates on I17 and I;2, we obtain
0| < vlID2|E Al 21 Do |3 AP g2 + ]| VAl 2 [V, AP 2.
By Holder inequality, we get estimates of I3 and I directly,
|| < 40| Da] £ AR 21| Do | Al 2,
[I5| < v Da| 3 A7Q 12|V | D | Afro] 2.

In the following, we focus on the terms I, I, and Ig. The term I, can be written
as

Iy =(M}(u' 8,w), Mw) + (M} (u* Oy w), Mw)
=(M?(uhOpw), Myw) + (M} (uL0pw), Miw) + (M} (u* 0y w), Myw)
=11+ Lao+ Iy3.

By Biot-Savart law, we have
u=(u',u?)  =VH(-A)1Q=(9,(-A)'Q, 0. (—A) Q)" (3.5)
Due to Plancherel’s theorem, we have
DA ul [z <IATQ£] L2 < ARz (0<a<1i=1,2).
Note that
(M (ugDaw2), Miwo) =0
and
(uddp Mlw o, Mbw_) =0.
Then, we write I4; as
Ly = (M (ugdwy) —ugde Myws, Mjwy)
=3 [ MUk 0.0) ik k. —n) MET (1)
k
—ub(0,m)M{ (k= m)ikiT (k. € —n) M (k. €)ded
— 3 [ (M09~ g ) o)
k

wz (k& —n) Mpwz (k,§)dEdn. (3.6)
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By the mean value formula,

1
Mk, ) — MY (k,& — )| < / MU (k€ — smynds|.

Moreover, it holds that

|0 M (k)| < (V3 K| 5 + — LAk,

||
Then, by Young’s inequality, for b> 1, estimate I4; as
1

bty b b o
S+ i) [ k(A0 + Al ) ) aloun)

k

a1] S

(ke n)%w(kf)dédn’

<

SO+ [ (M0 +AKEm) )Tot0

k

5 0 ) MET (. e
1 1
Sv3 | AP0 22 || D2 |3 AZwl[ 2 + [ A Qol| L2 [ A w |7 2
1
SIALQ 22 || D2 |5 Afw] 2.
For the term I45, by Lemma 2.1, for b> 1, we have
|Lao| S| Aul ]| 2| A0z w]| 2| Aw]| 2
_1
SI(=2) 72 A2 L2 | VAL w]| 2| Afw]| 2.
For the term I3, we observe that
u?=—0,(-A)"10= fam(fajy)*ls)# :ui.
Using Lemma 2.1, for b> 1, we get

| Lus| S [|1A} (u?0yw)|| 2| AYw]| e
SIATUZ | 22|V Afwl| 2 || Afwl]| 2
_1
SI(=2) 72 A Q| 2| VAYw] 2 | Afw]| 2.

Combining estimates of 141, I42 and I3 above, I, is estimated as follows:

1 _1 5
Ll SIAYQ 2l Do |5 Ayl Za + [[(=2) 72 Ay 2l Do |5 Afw]| 2| A7 w]| 2

HI(=A) 72 ALQ |22 [ VAfw] 2 [|Afwl] 2.

For the term I, integrating by parts and decomposing u' :ucl)—l—u;é yield that

=(APu! 9w, M| D, |5 Abw) + (A2u2d,w, M| D, |5 Abw)
=AY (uD,w), M| D, |F Abw) + (AY (uk0yw), M| D, | 5 Abw)
+ (A (w20,w), M| Dy |5 Abw)
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=(| D, |5 A (ugdpw), M| Dy |5 Abw) + (| Dy |5 AL (uL0pw), M| D |5 Abw)
+{| Do |"AY (20, w), M| Dy | F Abw)
:=1Ig1 + Is2 + Ig3.

For the term Ig1, note that
(1Dl M (ugBw), | D] 3 Mwo) =0
and
<ué§x\Dm|%MfU}¢,|Dx|%M?w¢> =0.
Denote A.(k,&) =|D,|3 Mb(k,€). Then we have
Ior =(A} (updrwz) —ugdp Afwyz, Afw)

=3 [ Nk 0.0k b~ )N (1)
k

— ub(0,m) N (k& — )ik (k& —m) NPy (k. €)dEdy
=2 / (Ai’(k,@—Ai’(k,f—n))kn—lsmo,n)
kA2

@2 (k€ — ) Ny iz (K, €)décl. (38)

By the mean value formula,

1
|Ai’<k,£>—Ai’<k75—m|<\ [ ot —snnas

It holds that
BN (K, €) S (VB K| + K| )AL (K, €).

Then we can estimate the term Ig; as

il SRR [ (b0 + Ak~ ) Fat00)
k

5
SIALQ 22 || D2 |5 Afw]|7 .

Using same argument to term Igo, by Lemma 2.1, for b> 1, we get
1 1
IIszli(lllelsA?ULlleIAi’awaLHIIA?UieL2||DxIBAfawwllL2>llA?’LUIIL2
<||ALQ| 2 |||Da| 3 AL V|D,|3Ab
SIAZQ| L2 ([ D |3 Ajwl| L2 (| V] Da |5 Afw|[ L2

At last, due to
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By Lemma 2.1, for b> 1, we obtain
5
[ o3| SI| DAY (u?yw)]| 2 [[| D |5 Afwl 2

s(|Dx|Ai’ui||L2||vyAi’w||Lz|A£w||m

HIARlV, s Al A ) 11D S Al
SIAPQI L2 | VI Do Afwl| 2 | Dz Afuo] e
Combining estimates on Ig1, Igo and Ig3 above, we obtain
o AT 22 [1Da] A3 4 1072 121V | D | ¥ Al 2 | D | ¥ A 2.
Due to the fact that there is only vertical dissipation and horizontal %-order en-
hanced dissipation in the vorticity equation, the nonlinear term I5 seems to be the most

difficult one to be dealt with.
By the decomposition of function, we have

u=ug+uz=V=>(—A)"(Qo+Qy). (3.9)
Combining (3.5) with (3.9), we write I as

L =(M{((uo+uz)- V), M{Q)
=(M?(uf0:Q),MbQ) + <Mf(u;8x9),/\/li’§2>
+ (M7 (uZ0,9), MiQ)
i=1Io1 + Ioo + Io3.

By (3.9) and Lemma 2.1, for b>1, we bound the term I3 directly as follows

| Los| = (A (0, (A)7102,.8,9), MALQ))|
SIAY (02 (—A) 71020, Q)| 12 [ AL | 2
SI(=A) T2 AL | 12|V ALQ 12]| AV 2.

Then the term I>; can be written as
Iy = <Mi’(u(1)azQ¢),MfQ>,
Due to the equality
(M} (ugD292), M{0) =0
and
(ugOe MY, ML) =0.
I>1 can be rewritten as

Iy = (M ()02 0) — 0 M Qs MOz ).
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By Plancherel’s theorem,

=% / M, €0 (0,m)ik 2 (k, € — ) MU (h, )

k=0
wT%(o M b(k,ﬁ*n)ik@(kvﬁ*n)M?@(k,ﬁ)dﬁdn
:*Z/ ) — M (k, & —1))kn ™ Q0(0,7)
k#£0

Oz (k€ =) ML, (K, €)dEdn.

Then, by the mean value formula, it holds that

1
| ocriig—smmas|.
0

MG (R, &) = M (k, € =) <
Using (3.7), we have

MY = ME§ =) Sl + 1 (AL + AL )

Then, by Young’s inequality, for b> 1, we have

il S 4 ) [ (b0 + A0~ ) a0

k

0 (b €~ ) MPS (k. €)ddn
SSwHHE D [ (At + kg ) ) o)

k

Qs (I, & =) M (I, €)dedry
SvS AP0l 2211 Da |5 APQIZ + A2 Q0] 2 4702272
SIALQ| L2 (11D ]5 AP 72
Now we deal with the term I55. Notice that
divux =0,
and
(uy - VMEQMEQ) =0.
We rewrite I5 as
g =(M}(ul0,Q) —ue - VMIQ,MLQ)
=(M (uX0,Q) — uk 0, MQMIQ) — (uZ 0, M), M)

Af(o,n>+Af<k,f—n>).

1541

(3.10)

=(M{(uL0,Q) —uk 0, MIQ ML) + (M) (uh0,9) — ul 8, MEQ, MJQ0)

— (WL, MEQ, M)
=K +Ky+Ks.
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For the term K5, by Plancherel’s theorem and Young’s inequality, we have

|Ko| =

S [ MO UL @i (-DE (16 ~n) MEE(0.6)
1#£0

—uL (1) MY (L& — )i (—D)0p (—1,€ — ) MR (0,€)dEdny

-3 [ (M09~ Mi-te-n) )ic-Dan

10

@(—z,g—n)m(o,f)dﬁdn’

<Z/< Y1)+ ME(=1,E—7 )) ll'l"'QQl( n)

140

Q2 (1, =) MEQ(0,)déd
SIALQ 22| D] 5 AXQ 2.

For the term K3, we have

| K| Sllul| o [V MYQ 2 MR 2
_1
SI(=A) T2 AP |22V APQ 2 [ ASQ 2.

For the term K;, we apply same method as I51, which is

’=) /R MOk € ()i — ) (= L€ =) M (,6)

— L (1) MO (k — 1, — )ik — ) (k—1,€ — ) MEQ (k,€)dédn
k—I1
__;/Rz (M?(k’g)_M?(k—l,f—WO (l2+n)77§2¢(1 n)

Qe (k= 1,6 — ) MYz (I, €)dEdn. (3.11)

Computing of operator M? yields that

M (k) S (k ']fJ)Ab(k@ k>0,

e MY (k,€) S (w5 k|73 + - IAL(k,E).

L

According to the estimate of 9y M?, we divide the different range of k and (k—1) as
follows. Define

Dy ={k>0,k—1>0}, Dy={k<0,k—1<0},
Ds={k>0,k—1<0}, Dy={k<0,k—1>0}.

In region D;, we apply the mean value formula in dimension two to obtain

1
|M?(k,£)fM?(kfl,§—n)\s‘/o M (k— sl,& — sn)lds

1
+ ’/ e MY (k — sl,€ — sm)nds
0
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1 1
< el U e ] U sn\lll) gl
N/o ((ksz)é+ kh—sl | (k—sl)? ¢k —s & —smds

_(__vinl Il + 11 (\§|+I£fn|)ll|) (Ab,H _ Abl)
N<mln(k_l7k)é+m1n(k_l7k)+ k(k_l) X t( ag 77)+ t(an) )

where s€(0,1), divide Dy into Dy; and Dj5 to compare k,k—1 as
Dllz{k>0,l>0}, D12:{k>0,l<0}.
Then, it follows from (3.11),

- > [ (Mo -si-re-n) G

(k,l)eDy
975( —1,&— n)MbQ¢(k £)dedn

Y e Y e Y

(k,l)eD2 (k,l)eD3 (k,1)eEDy4
k—Dn —~
Z / Mg(k’—laf_??) (2 )2 Q#(lﬂi)
I#+n
(k,l)eD1,

Qi (= 1,§ =) MY (I, §)dEdy

T D S Y

(}{),l)EDlg (kJ)EDQ (k7l)€D3 (k,l)€D4
=S1+ o+ I3+ Ji+ J5. (3.12)

Putting the estimates of MY into the term J;, we get

Vs l —n|)|!
PEDS / ( \77| '”kfl'“';',f_ﬁ”")(A?%—lf—m
(k,1)€D11
+Ai’<l,n>> x M@(lm)@(kl,fn)M?@(k,f)dfdn‘
1 2 §l+1€— 77|>< b
< vi(k—1)5 +1+ Al(k—1,¢—
x I R e S [ A

A1) ) T 00T (1€~ ) MET () ded.
By Young’s inequality and Lemma 2.1, for b> 1, we get
1 1
[Tl SIATQ 22 [ Do 5 AP T2 + AL QI 2l (—A) 72 AL Q2|22 |V AP 2.
For the term Js, it holds that

vi |77| Ll (el 1€ =nDl

(k1) ED12
Im|(

+A?<z,n>) B D 0 1) (0~ 16— ) MIE (e

| Ja| S
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vi(k—1) k
> (PO g ) (At te-n)
(k},l)EDlQ

S

+A?(l,n)>@(l,n)@(l€l7€n)M?@(k,§)d€dn’~

When k£>1 and [ <0, exists

—1
— <min{(k—1)3 k3 +(k—0)5]1|%,2(k - 1) |15},

3
% <2min{(k— 1) |13, (k—DE[1]}).

Combining inequalities above with Young’s inequality, for b> %, we get

S [ (vhe-ne el ig—al) (At te -+ 2w

(k,1)€D12

EEIpS

+((k—o%|Z|§Ai’<k—z,§—n>+<k—wi|Z|%A‘;<z,n>)@<z,n>

x Qo (k= 1,6 — ) ML (k, €)dédn

1 1
SIAYQ 22 1Dz 5 AP Z + [ ALQ| 22 [[| D | AL |22 |V AR 2.

The term J3 has same estimates with the terms J; and Js.
Next, we observe that it always holds |k —1I| <|l| in the domains D3 and D4. There-
fore, J4 and J5 also have same estimates.

S [ (st rematen) WD

(k,l)eD3

|Ja] S

T (.6 ) MEE (. e
SIALQ 211D |5 A2
Combining all estimates of terms J; — J5, we get
K1 | SIASQ 2 || Do |3 AP 2 + AP 2] (—A) 72 AP | 2|V, APQ £
+{| AR 2 || D |3 AR 2|V, AP o
Collecting estimates of Ky,Ks, K3, for b>1, we obtain
1 1
| Lo SIAYQ| 22 (|| D |3 AL 72 + AT L2 | Vy AZQ L2 [ (= A) 2 A7 Q| 2
1
+ (AP 2|V AL Q 22 || D2 |3 A2 2
Combining the estimates of terms Io1,l20 and Is3, we get
1 1
Lo SIAQ 22 || Do |3 AR 2 + | A2 22 |V ALQ 2| (—A) 72 Af Q| 2
+ (AP L2 IV AL 2 || Do |5 AP 2
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Putting all estimates of terms I1 — I into (3.2), (3.3) and (3.4), respectively, then
integrating with respect to time, we get

11 1
HA?QH%?CL?C "‘VHvyAi)QHing vt |||Dx|3A?Q||%fLZ

HII(-A) AP35
§2||A890||2Lg +CIV|||Dz|%AngLfL§ |||Dx|%AgQHL$L§
+C1v|[ VAW 212 [ Vy AP 22 + Col APl e 2 1| D2 |5 AP 3
+ Ol | Y| o 12 |V y AP 2 12 1| Do |5 AP 212
+Col| AP Lo 2 Vo APQ 212 | (—A) 2 AP | 212, (3.13)

R N OOV L NETX
+(=2) 72 Afws| 722+l ATw] 72 0
<2 A§w® 132 + Crvll|Dal 5 APQ| 212 || Dl 5 Abw]| 212
+ Col| AP e 2 || D3 A 1320
+Col|Afwl| e 2 [ VASw] 22 [|(—A) "2 AP 212 (3.14)
and
1D |3 Afw]3 2 + VIV Da 5 Abw] 2 ﬁu%n\DﬁA?wn%m
H(=A) 72 Dy |5 Afws |3 s + V]| D5 Afw] 32,0
<2[[[Da| ¥ Afuw|132 + Crv||| Dy 3 ARl 212 IV | Do |3 Abw]| 212
+Col| A2 oo 12 [V Do | E Abw]| 2 12 [[| Do | § Abw]| 22

+Col| AR oo 12 1| D3 AL ][5 (3.15)

It follows from the standard bootstrap procedure to get a global small solution.
More precisely, assume that [|Q°]] ;p <ev® with b> 3, [|w° || o <ev” and | D] 3 w®| o <
ev® with b>1. The solution (w,w) of system (1.6)-(1.8) satisfies that

1 1 1
||A§Q||%§;°Lg+V||vyA?QH%§Lg+ZV3|||D:c|3A§Q||i§L?T
+(=2) T2 A7z 0 <CEV, (3.16)
1 1 1
||A§w”%§°L§+V||VA?wH2L%L§+ZV3|||D£|3A?w‘|%fL§
H(=8) 7 A w1 + Y ATw] g, <OV (3.17)
and
44y 44y L s 5b
11D |S A7 ez + 21 VIDa ]S AQwl|Zz o + 0% [ Dal EA7w ] 35 1

+ (=) 2Dy | A wsl|7 2 2 + VIl Dal 3 AJw][3 5 < OV, (3.18)
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Based on the assumptions above, we get the estimates from inequality (3.13), (3.14)
and (3.15) that

11 1 _1
||A?Q||2L;>°Lg+V||VyA§Q||2L§Lg+1V3H|Dw\3A?Q||2Lng+||(_A) QA?Q75”2L2L§
SC162(VQQ+VVQ_%V6_é—‘,—Vyo‘_%yﬂ_%)
—I—C’263(Vau2(“_é) FUO T3S —&—uo‘ua_%yo‘), (3.19)
11 1
NG e 12 +IIVALw][ Tz 1 + V31| Dal 5 A7z
_1
(=) A2 + A2
<2012 (VP +1/1/a’é1/'8*%) +Cge3(1/°‘1/2(6’é) +Vﬂyﬁ*%yo‘) (3.20)
and
2Ab 12 2Ab, 12 [ 2 AL, (2
I1Da|* Aywl[Lge 2 +¥[VIDs* Agwlizs o + v I1Dal® Apwlzs
_1 4 4
=) Dl g2 + 01Dl A2
SQCleQ(VQ‘S—i—yya_éy‘s_%)—i—C’ge?’(yo‘ué_%y‘s_%+1/°‘y2(5—é)). (3.21)

Thus, to use the standard bootstrap method, we choose

2

1 < < —
601_0, 6_6402,

and we have that, when a>2, —2<a—3<0, and —% <a—4§< 2, the constant C in
(3.16), (3.17) and (3.18) can be replaced by &, which implies that there exists the global
small solution. The proof of Theorem 1.1 is complete. ]

3.2. Proof of Theorem 1.2.
Proof. Due to similar dissipation term, we have similar estimates with respect to
terms I} — I in the proof of Theorem 1.1. Assume that the solution (Q,w) satisfies that

1 1 1
AP 4V, ALY+ 0D AP

+11(=2) 2 AP0 75 < O™, (3.22)

1 1 1
IAP03 e 2 IV AL+ 77 11Dl 3 A3
_1
D) F A w2 + VAW 2 < O (3.23)
and
40,112 4412 11 Sab. 12
|HD1|3Atw||L§°L§+’Y||V|Da:|3AthL$L§+ZY3|||Dw|3AthL$L§
_1 4 4
(=)D A |2 DL $ A2 0 <O, (3.24)
Then we can obtain that

1 1 1 1
b b 5 3 Ab —5Ab
IO 2 + VI VAL Tz 12 + 772 D23 AL Tz 1 +1(=2) 72 AL
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SC162(V2a + VVQ_%’}/J_% —|—1/1/O‘_%fyﬁ_%)

+02€3(VQV2(Q_%) T T —|—V°‘VO‘_%V°‘)7 (3.25)

1. 1
IA2w][ e 12+ VAGw]| T2 2 + 772 1Ds] A7z 2

1
HI(=A) T2 AJw [Tz o+ Afw]|7s 1

<2012 (7Y + v 5P 8) 4 Cod (V020 8) 44 P03 0) (3.26)

and

4 4 11 5
1D |3 AfwlF e 12 +IIV Dl 3 AZw]72 2 177 1D 13 Afw|72 2
+ (= A) 72D Afwl |32z + 2| Dal 3 AJw]F2 0
320152(725+1/1/°"%’y5*%) Jr6‘263(1/0")/5*%*y‘s*é +Va72(5’%)). (3.27)

To use the bootstrap method, we choose «, 5 and « such that

2 o 2
O{Z ga v S’YS,
75_% Sya_%7 VO‘J’_% S'YBJF%
and
767é Syafg’ VaJr% S,Y(H»%’
and take
2
16C; <C, e<——
L=" - 6402’

Then the constant C in (3.22), (3.23) and (3.24) can be replaced by <, which implies
that there exists the global small solution. The proof of Theorem 1.2 is finished. 0
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