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GLOBAL SMOOTH SOLUTIONS TO THE TWO-DIMENSIONAL
AXISYMMETRIC ZELDOVICH-VON NEUMANN-DÖRING

COMBUSTION EQUATIONS WITH SWIRL∗

HONGHUA CHEN† , GENG LAI‡ , AND WANCHENG SHENG§

Abstract. This paper studies the two-dimensional (2D) Zeldovich-von Neumann-Döring (ZND)
combustion equations with initial data, which are a combination of an axisymmetric flow in a ring and
vacuum in the remaining domain. Existence of a global-in-time smooth solution to the initial value
problem is obtained by the method of characteristic decomposition, provided that the initial data satisfy
some sufficient conditions. The large-time behavior of the solution is also studied. As a result, at any
time, the ring continues to expand until the gas burns out in infinite time for the system. The solution
describes a phenomenon of the expansion of 2D reacting flows with swirl in vacuum or a phenomenon
of “fire whirl”.
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1. Introduction
The Zeldovich-von Neumann-Döring (ZND) combustion model is an important and

well-studied model to describe the propagation of combustion waves in one-step exother-
mic chemical reaction. This combustion model is formed by the Euler equations of
gas dynamics and a combustion reaction equation for combustible gases. The two-
dimensional (2D) inviscid ZND combustion equations can be written in the form

ρt+(ρu1)x1 +(ρu2)x2 =0,

(ρu1)t+(ρu2
1+p)x1

+(ρu1u2)x2
=0,

(ρu2)t+(ρu1u2)x1
+(ρu2

2+p)x2
=0,

(ρE)t+(ρu1E+u1p)x1
+(ρu2E+u2p)x2

=0,

(ρz)t+(ρu1z)x1 +(ρu2z)x2 =−ϕρz,

(1.1)

where (u1,u2) is the velocity, ρ is the density, p is the pressure, E= 1
2 (u

2
1+u2

2)+ϵ+zb0
is the total energy, ϵ is the internal energy, z is the fraction of unburnt gas in the
mixture, b0 is the binding energy per unit mass of unburnt gas, and ϕ is an ignition
function. For convenience, we assume b0=1. We assume that the ignition function ϕ
has the Arrhenius kinetics mechanism

ϕ=

{
ke−

1
T , T >0,

0, T ≤0,
(1.2)

where T is the temperature and k is a positive constant. We refer the reader to [8,37,41]
for more details about the inviscid ZND combustion model.
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For polytropic gases,

ϵ=
esργ−1

γ−1
, (1.3)

where s is the specific entropy and γ is a positive constant. Then by the fundamental
relation dϵ=Tds−pdτ we have

p=esργ and T = ϵ=
c2

γ(γ−1)
, (1.4)

where c=
√

γesργ−1 represents the speed of sound. The ignition function ϕ can also be
seen as a function of c, i.e., ϕ=ϕ(c). Moreover, we have

lim
c→0

ϕ

cn
=0 and lim

c→0

ϕ′(c)

cn
=0 (1.5)

for any fixed n.
There is a lot of literature on the ZND combustion model. The local and global

existence of solutions to the 1D Cauchy problem for the ZND combustion model for
initial data with small bounded variations were obtained in [11,43] and [3], respectively.
Kuang and Zhao [18] obtained the global existence of weak solutions to a 1D piston
problem for the ZND combustion model. Zumbrun [44, 45] studied the stability of
detonation waves for the ZND combustion model. Costanzino et al. [7] obtained finite
time existence of multi-D unsteady detonation waves for both ZND and CJ combustion
equations. Chen et al. [2,4] constructed global entropy solutions to supersonic reacting
flows past Lipschitz bending walls and supersonic reacting flows around sharp corners
for 2D steady ZND combustion equations. There is also a lot of literature on the Cauchy
problem for a scalar ZND combustion model proposed independently by Fickett [12] and
Majda [36]; see, e.g., [1, 23,29,30,42].

In this paper, we are concerned with axial symmetric flows to the inviscid ZND
combustion Equations (1.1). That is, the flow has the property

ρ(x,θ,t)=ρ(x,t), s(x,θ,t)=s(x,t), z(x,θ,t)=z(x,t),(
u1(x,θ,t)
u2(x,θ,t)

)
=

(
cosθ −sinθ
sinθ cosθ

)(
u(x,t)
v(x,t)

)
(1.6)

for all t>0, θ∈ [0,2π), and x>0, where (x,θ) are the polar coordinates of the (x1,x2)-
plane. With this symmetry, system (1.1) can be reduced to

ρt+(ρu)x+
ρu

x
=0,

(ρu)t+(ρu2+p)x+
ρ(u2−v2)

x
=0,

(ρv)t+(ρuv)x+
2ρuv

x
=0,

(ρE)t+(ρuE+up)x+
ρuE

x
+

up

x
=0,

(ρz)t+(ρuz)x+
ρuz

x
=−ϕρz.

(1.7)

Notice now that u and v in (1.7) represent the radial and pure rotational velocities in
the flow, respectively.
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We consider (1.7) with initial data

(u,v,c,s,z)(x,0)=

{
(u0,v0,c0,s0,z0)(x), a≤x≤ b,

vacuum, otherwise,
(1.8)

where 0<a<b, (u0,v0,c0,s0)(x)∈C1[a,b], c0(a)= c0(b)=0, z0(x)≡1, and

c0(x)>0 and s0(x)>0 for x∈ [a,b].

The problem (1.7, 1.8) describes the expansion of a 2D axisymmetric reacting flow in
vacuum or an interesting phenomena like “fire whirl”. The aim of this paper is to find
some sufficient conditions on the initial data to ensure that the problem (1.7, 1.8) admits
a global-in-time smooth solution.

Fig. 1.1. Initial data in the (x1,x2)-plane.

We define the following constants
δ1 := sup

x∈(a,b)

{
v0

2(x)
c0(x)

}
, N := sup

x∈(a,b)

{
|s0′(x)|
cκ0 (x)

}
, s∗ :=2 sup

x∈(a,b)

s0(x),

c
M
:=2 sup

x∈(a,b)

c0(x), ua :=u0(a), ub :=u0(b), κ := 2
γ−1 .

(1.9)

The main result of the paper is stated as follows.

Theorem 1.1. Assume 5/3<γ<3 and N is finite. Assume further that there exists
a constant C ∈ (1,κ) such that the initial data (1.8) satisfy

κ|c0′(x)|+
u0(x)

x
< u0

′(x)< −κ|c0′(x)|+(2C−1)
u0(x)

x
for x∈ [a,b]. (1.10)

Then when δ1 and c
M

are sufficiently small the problem (1.7, 1.8) admits a classical
solution in

Ω=
{
(x,t) |a+uat<x<b+ubt, 0<t<+∞

}
.

Moreover, the solution satisfies ρ∈C(Ω), ρ>0 in Ω, and ρ=0 on Ca
v ∪Cb

v, where Ca
v :=

{(x,t) |x=a+uat,t>0} and Cb
v :={(x,t) |x=a+ubt,t>0} are two vacuum bound-

aries.
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The main difficulty for the global existence is to establish a uniform a priori es-
timate for the C1-norm of the solution. In this paper, we use the method of charac-
teristic decomposition to establish the estimate. This method was first proposed by
Li, Zhang, and Zheng [25] in investigating simple waves of the 2D compressible Euler
equations. Recently, this method was extensively used to establish the global exis-
tence of smooth solutions for quasilinear hyperbolic systems with two variables, see,
e.g., [5, 6, 15, 19, 20, 24–28]. Motivated by recent works of Lai et al. [21, 22], we derive
a group of characteristic decompositions for (1.7); see (2.8), (2.13) and (2.14). These
characteristic decompositions can be seen as a system of ODEs for the derivatives of
the unknown functions. Using these decompositions we establish a uniform a priori
C1-norm estimate for the solution.

In the paper we also obtain that |∇c| is bounded in the domain Ω; see (3.35) in
Remark 3.1. This implies that τpx=0 on the vacuum boundaries, and hence there is
no force to accelerate the vacuum boundaries. So the vacuum boundaries Ca

v and Cb
v

are not physical vacuum boundaries introduced in [33, 34]. Recently, there is a lot of
literature on compressible flows with a physical vacuum boundary. We refer the reader
to [9, 10,14,16,17,27,35,39,40] for this direction.

There are some other related works about global-in-time solutions to gas expansion
in vacuum problem for the compressible Euler equations. Serre [38] established the
global existence of classical solutions for the compressible Euler equations with com-
pactly supported density in multi-dimensions, provided that the initial velocity is close
to a linear field and the initial density is sufficiently small. Subsequently, Grassin [13]
obtained the global existence of smooth solutions in multi-dimensions, provided the ini-
tial velocity forces particles to spread out and the initial density is sufficiently small in
some norm. Li and Zheng [27] obtained the global existence of classical solutions to the
expansion of a wedge of gas in vacuum.

The rest of the paper is organized as follows. In Section 2, we derive the character-
istic decompositions for the system (1.7). The global existence of a classical solution to
the problem (1.7, 1.8) is obtained in Section 3.

2. Characteristic equations for the axisymmetric ZND combustion equa-
tions

2.1. Characteristic equations. For smooth flow, system (1.7) can be changed
into the form 

ρt+(ρu)x+
ρu

x
=0,

ut+uux+
px
ρ
− v2

x
=0,

vt+uvx+
uv

x
=0,

st+usx=
ϕz

T
,

zt+uzx=−ϕz.

(2.1)

The eigenvalues of system (2.1) are

λ+=u+c, λ0=u (triple), λ−=u−c.

The C+, C0, and C− characteristic curves are defined as the integral curves of dx
dt =

λ+,
dx
dt =λ0, and

dx
dt =λ−, respectively. The left eigenvectors corresponding to λ± are
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l±=(c,±ρ,0,
√

es

γ ρ
γ+1
2 ,0). Multiplying (2.1) on the left by l± we get the characteristic

equations

c∂±ρ±ρ∂±u±ργessx=−ρcu

x
± ρv2

x
, (2.2)

where

∂±=∂t+(u±c)∂x. (2.3)

From c2=γesργ−1 we have

∂±ρ=
2c∂±c−γργ−1es∂±s

γ(γ−1)esργ−2
.

From the fourth equation of (2.1) we have

∂±s=
ϕz

T
±csx.

Hence, we get

c∂±ρ=
2ρ∂±c

γ−1
∓ γργes

γ−1
sx−

cρϕz

T (γ−1)
.

Inserting this into (2.2), we get
∂+u=− 2

γ−1
∂+c+

c2

γ(γ−1)
sx+

cϕz

T (γ−1)
− uc

x
+

v2

x
,

∂−u=
2

γ−1
∂−c+

c2

γ(γ−1)
sx−

cϕz

T (γ−1)
+

uc

x
+

v2

x
.

(2.4)

From (2.3) we have

∂x=
∂+−∂−

2c
and ∂t=

(u−c)∂+−(u+c)∂−
2c

. (2.5)

2.2. Characteristic decompositions.

Lemma 2.1. For the system (1.7), we have the commutator relation

∂+∂−−∂−∂+=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x
+

ϕz

T (γ−1)

)
(∂+−∂−), (2.6)

where µ2= γ−1
γ+1 .

Proof. Using (2.4) and ∂x=
∂+−∂−

2c , we have

∂+∂−−∂−∂+=(∂t+λ+∂x)(∂t+λ−∂x)−(∂t+λ−∂x)(∂t+λ+∂x)

=(∂+λ−−∂−λ+)∂x=(∂+u−∂+c−∂−u−∂−c)∂x

=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x
+

ϕz

T (γ−1)

)
(∂+−∂−). (2.7)

We then complete the proof of this lemma.
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Lemma 2.2. For smooth flow, we have
∂0

(sx
cκ

)
=

u

x

sx
cκ

− γϕzsx

c
2γ

γ−1

+
2ϕ′zcx

c
γ+1
γ−1

− 2γ(γ−1)ϕzcx

c
3γ−1
γ−1

+
γ(γ−1)ϕzx

c
2γ

γ−1

,

∂0

(zx
cκ

)
=

u

x

zx
cκ

− γϕzzx

c
2γ

γ−1

− 2ϕ′zcx

c
3−γ
γ−1 γ(γ−1)

− ϕzx
cκ

,

(2.8)

where ∂0=∂t+u∂x and ϕ′= dϕ
dc .

Proof. By (2.4) we have

∂0∂xs=(∂0∂x−∂x∂0)s+∂x

(
ϕz

T

)
=−∂xu∂xs+∂x

(
ϕz

T

)
=

(∂+c+∂−c)

(γ−1)c
sx+

u

x
sx−

ϕz

(γ−1)T
sx+∂x

(
ϕz

T

)
. (2.9)

Thus, by ∂0=
∂++∂−

2 we have

∂0

(sx
cκ

)
=

∂0sx
cκ

−c−
γ+1
γ−1

2sx
γ−1

∂0c

= c−κ

(
∂+c+∂−c

(γ−1)c
sx+

u

x
sx−

ϕz

(γ−1)T
sx+∂x

(
ϕz

T

))
−c−

γ+1
γ−1

2sx
γ−1

∂0c

= c−κu

x
sx−c−κ ϕz

(γ−1)T
sx+c−κ∂x

(
ϕz

T

)
=

u

x

sx
cκ

− γϕzsx

c
2γ

γ−1

+
2ϕ′zcx

c
γ+1
γ−1

− 2γ(γ−1)ϕzcx

c
3γ−1
γ−1

+
γ(γ−1)ϕzx

c
2γ

γ−1

. (2.10)

Similarly, we have

∂0∂xz=(∂0∂x−∂x∂0)z−∂x(ϕz)=−∂xu∂xz−∂x(ϕz)

=
∂+c+∂−c

(γ−1)c
zx+

u

x
zx−

γϕzzx
c2

−ϕzx−
2cϕ′zcx
γ(γ−1)

. (2.11)

Thus,

∂0

(zx
cκ

)
= c−κ∂0zx−c−

γ+1
γ−1

(∂+c+∂−c)zx
γ−1

= c−κ

(
∂+c+∂−c

(γ−1)c
zx+

u

x
zx−

γϕzzx
c2

−ϕzx−
2cϕ′zcx
γ(γ−1)

)
−c−

γ+1
γ−1

(∂+c+∂−c)zx
γ−1

=
u

x

zx
cκ

− γϕzzx

c
2γ

γ−1

− 2ϕ′zcx

c
3−γ
γ−1 γ(γ−1)

− ϕzx
cκ

. (2.12)

This completes the proof of the lemma.

Proposition 2.1. We have the characteristic decompositions

c∂−

(
∂+c−

(γ−1)v2

2x
− c2

2γ
sx

)
=

1

2µ2
(∂+c+∂−c)∂+c+(

3

2
∂+c+

1

2
∂−c)

uc

x
+

c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2
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− (γ−1)c2v2

2x2
+

3(γ−1)cuv2

2x2
− c4

2γx
sx−

c3

2γ

u

x
sx−

ϕz

2c

(
(γ−1)2∂+c

+(γ+1)(γ−1)∂−c
)
− c2

2(γ−1)
(∂+c+∂−c)sx+

γ(γ−1)ϕz

4c
(∂+c+∂−c)

− γϕz

4c

(
(γ+1)∂−c+(γ+5)∂+c

)
+

(γ+1)czϕ′

2γ
∂−c+

(γ−1)czϕ′

2γ
∂+c−

(γ2−γ)ϕ2z

2

+
(1−γ)cϕzx

2
+

cϕz

2
sx+

γ2(γ−1)ϕ2z2

2c2
− γ(γ−1)uϕz

x
(2.13)

and

c∂+

(
∂−c+

(γ−1)v2

2x
+

c2

2γ
sx

)
=

1

2µ2
(∂+c+∂−c)∂−c+

(
3

2
∂−c+

1

2
∂+c

)
uc

x
+

c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2

− (γ−1)c2v2

2x2
− 3(γ−1)cuv2

2x2
− c4

2γx
sx+

c3

2γ

u

x
sx−

ϕz

2c

(
(γ−1)2∂−c

+(γ−1)(γ+1)∂+c
)
+

c2

2(γ−1)
(∂+c+∂−c)sx+

γ(γ−1)ϕz

4c
(∂+c+∂−c)

− γϕz

4c

(
(γ+1)∂+c+(γ+5)∂−c

)
+

(γ−1)czϕ′

2γ
∂−c+

(γ+1)czϕ′

2γ
∂+c

− (γ2−γ)zϕ2

2
+

(γ−1)cϕ

2
zx−

cϕz

2
sx+

γ2(γ−1)ϕ2z2

2c2
− γ(γ−1)uϕz

x
. (2.14)

Proof. Using the commutator relation (2.6) for the variable c, we have

∂+∂−c−∂−∂+c=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x
+

ϕz

T (γ−1)

)
(∂+c−∂−c). (2.15)

Using the commutator relation (2.6) for the variable u, we have

∂+∂−u−∂−∂+u=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x
+

ϕz

T (γ−1)

)
(∂+u−∂−u). (2.16)

Inserting (2.4) into (2.16), we get

c∂+∂−c+c∂−∂+c

=
γ+1

2(γ−1)
(∂+c+∂−c)

2+
2cu

x
(∂+c+∂−c)+

c2

x
(∂+c−∂−c)−

(γ+3)cϕz

2T (γ−1)
(∂+c+∂−c)

+
2(γ−1)c2u2

x2
− (γ−1)c2v2

x2
− (γ−1)c

2
∂+

(
c2sx

γ(γ−1)

)
+

(γ−1)c

2
∂−

(
c2sx

γ(γ−1)

)
+

(γ−1)c

2

(
∂+

(
cϕz

T (γ−1)

)
+∂−

(
cϕz

T (γ−1)

))
− (γ−1)

2
∂+

(
v2

x

)
+

(γ−1)

2
∂−

(
v2

x

)
− c4

γx
sx+

(cϕz)2

T 2(γ−1)
− 2c2ϕz

T
· u
x
. (2.17)
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Combining (2.15) and (2.17), we get

c∂−

(
∂+c−

(γ−1)v2

2x
− c2

2γ
sx

)
=

γ+1

2(γ−1)
(∂+c+∂−c)∂+c+(

3

2
∂+c+

1

2
∂−c)

uc

x
− c4

2γx
sx+

c2

2x
(∂+c−∂−c)

− cϕz

2T (γ−1)
(∂+c−∂−c)−

c2ϕz

T
· u
x
− (γ+3)cϕz

4T (γ−1)
(∂+c+∂−c)+

(γ−1)u2c2

x2

− (γ−1)c2v2

2x2
− c

4

(
∂+

(
c2sx
γ

)
+∂−

(
c2sx
γ

))
− (γ−1)c

4

(
∂+

(
v2

x

)
+∂−

(
v2

x

))
+

(cϕz)2

2T 2(γ−1)
+

c

4

(
∂+

(
cϕz

T

)
+∂−

(
cϕz

T

))
. (2.18)

By a direct computation and recalling (2.9), we have

∂+(
v2

x
)+∂−(

v2

x
)=

2v

x
(∂+v+∂−v)−

2uv2

x2
=−6uv2

x2
(2.19)

and

∂+

(
c2sx
γ

)
+∂−

(
c2sx
γ

)
=

2c

γ
(∂+c+∂−c)sx+

2c2

γ
∂0sx

=
2c

γ
(∂+c+∂−c)sx+

2c2

γ

(
(∂+c+∂−c)sx

c(γ−1)
+

u

x
sx−

ϕz

(γ−1)T
sx+∂x

(
ϕz

T

))
=

2c

γ−1
(∂+c+∂−c)sx−2ϕzsx+

2c2usx
γx

+2(γ−1)ϕzx

+

(
2ϕ′z

γ
− 2(γ−1)ϕz

c2

)
(∂+c−∂−c). (2.20)

A direct computation yields

∂+

(
cϕz

T

)
+∂−

(
cϕz

T

)
=
γ(γ−1)ϕz

c2
(∂+c+∂−c)+c

(
∂+

(
ϕz

T

)
+∂−

(
ϕz

T

))
=
γ(γ−1)ϕz

c2
(∂+c+∂−c)+c

(
2ϕ∂0z

T
+

(
2zϕ′c

Tγ(γ−1)
− 2γ(γ−1)ϕz

c3

)
(∂+c+∂−c)

)
=− 2γ(γ−1)ϕ2z

c
+

(
2zϕ′− γ(γ−1)ϕz

c2

)
(∂+c+∂−c). (2.21)

Inserting (2.19), (2.20) and (2.21) into (2.18) we get the Equation (2.13). The Equation
(2.14) can be proved similarly. This completes the proof of the proposition.

From (2.13) and (2.14) we have

∂−

(∂+c
c

− (γ−1)v2

2cx
− c

2γ
sx

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂+c
c

+
(3
2

∂+c

c
+

1

2

∂−c

c

)u
x
+

c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
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− (γ−1)v2

2x2
+

3(γ−1)uv2

2cx2
+

(γ−1)v2

2cx

∂−c

c
− ∂+c∂−c

c2
− c2

2γx
sx−

c

2γ

u

x
sx+

csx
2γ

∂−c

c

− (γ−1)ϕ

2c
zx−

c

2(γ−1)

(∂+c
c

+
∂−c

c

)
sx+

ϕz

2c
sx+

γ2ϕ2z2(γ−1)

2c4
− γ(γ−1)ϕz

c2
· u
x

− γϕz

4c2

(
(γ+1)

∂−c

c
+(γ+5)

∂+c

c

)
+

(γ+1)ϕ′z

2γ

∂−c

c
+

(γ−1)ϕ′z

2γ

∂+c

c
− γ(γ−1)ϕ2z

2c2

− ϕz

2c2

(
(γ2−1)

∂−c

c
+(γ−1)2

∂+c

c

)
+

γ(γ−1)ϕz

4c2

(∂+c
c

+
∂−c

c

)
(2.22)

and

∂+

(∂−c
c

+
(γ−1)v2

2cx
+

c

2γ
sx

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂−c
c

+
(3
2

∂−c

c
+

1

2

∂+c

c

)u
x
+

c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2

− (γ−1)v2

2x2
− 3(γ−1)uv2

2cx2
− (γ−1)v2

2cx

∂+c

c
− ∂+c∂−c

c2
− c2

2γx
sx+

c

2γ

u

x
sx−

csx
2γ

∂+c

c

+
(γ−1)ϕ

2c
zx+

c

2(γ−1)

(∂+c
c

+
∂−c

c

)
sx−

ϕz

2c
sx+

γ2ϕ2z2(γ−1)

2c4
− γ(γ−1)ϕz

c2
· u
x

− γϕz

4c2

(
(γ+1)

∂+c

c
+(γ+5)

∂−c

c

)
+

(γ+1)ϕ′z

2γ

∂+c

c
+

(γ−1)ϕ′z

2γ

∂−c

c
− γ(γ−1)ϕ2z

2c2

− ϕz

2c2

(
(γ2−1)

∂+c

c
+(γ−1)2

∂−c

c

)
+

γ(γ−1)ϕz

4c2

(∂+c
c

+
∂−c

c

)
. (2.23)

We define 
R+=

∂+c

c
− (γ−1)v2

2cx
− csx

2γ
+

κ(γ−1)u

x
,

R−=
∂−c

c
+

(γ−1)v2

2cx
+

csx
2γ

+
κ(γ−1)u

x
.

(2.24)

Then by (2.22) and (2.23) we have{
∂+R−=a11R

2
−+a12R+R−+a13R−+a14R++a15,

∂−R+=a21R
2
++a22R+R−+a23R++a24R−+a25,

(2.25)

where

a14=

(
γ−3

2
κ+

1

2
−
(
2κ− 1

2

)
c

u
− (γ+1)v2

4cu
+

xcsx
4γu

− γ2+γ−1

2u

xϕz

c2
+

(γ+1)xϕ′z

2γu

)
u

x
,

(2.26)

a24=

(
γ−3

2
κ+

1

2
+

(
2κ− 1

2

)
c

u
+

(γ+1)v2

4cu
− xcsx

4γu
− γ2+γ−1

2u

xϕz

c2
+

(γ+1)xϕ′z

2γu

)
u

x
,

(2.27)

a15=

(
2κ2−3κ+1−2κ(1−κ)

c

u
+(γκ−2)

v2

cu
+

x2ϕzx
2cu2

+
xϕ′z

2γu2

v2

c
− κxϕ′z

u

+xϕz
c2

(
γ2

2u2
xϕz
c2

− γxϕ
2u2 + 1

2u2
v2

c
+ γ(γ+1)κ

u
− xcsx

2γu2 − γ
u
+ γκ

u
c
u

)
+ xϕ′z·xcsx

2γ2(γ−1)u2

)
(γ−1)u2

x2 , (2.28)
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and

a25=

(
2κ2−3κ+1+2κ(1−κ)

c

u
−(γκ−2)

v2

cu
− x2ϕzx

2cu2
− xϕ′z

2γu2

v2

c
− κxϕ′z

u

+
xϕz

c2

(
γ(γ+1)κ

u
− 1

2u2

v2

c
− γxϕ

2u2
+

γ2

2u2

xϕz

c2
+

xcsx
2γu2

− γ

u
− γκ

u

c

u

)
− xϕ′z ·xcsx
2γ2(γ−1)u2

)
(γ−1)u2

x2
. (2.29)

We define 
R̂+=

∂+c

c
− (γ−1)v2

2cx
− c

2γ
sx+

2(γ−1)u

(γ+1)x
,

R̂−=
∂−c

c
+

(γ−1)v2

2cx
+

c

2γ
sx+

2(γ−1)u

(γ+1)x
.

(2.30)

Then by (2.22) and (2.23), we have{
∂+R̂−= â11R̂

2
−+ â12R̂+R̂−+ â13R̂−+ â14R̂++ â15,

∂−R̂+= â21R̂
2
++ â22R̂+R̂−+ â23R̂++ â24R̂−+ â25,

(2.31)

where

â14=

(
3γ−5

2(γ+1)
− 7−γ

2(γ+1)

c

u
− (γ+1)v2

4cu
+

xcsx
4γu

− γ2+γ−1

2u

xϕz

c2
+

(γ+1)xϕ′z

2γu

)
u

x
, (2.32)

â24=

(
3γ−5

2(γ+1)
+

7−γ

2(γ+1)

c

u
+

(γ+1)v2

4cu
− xcsx

4γu
− γ2+γ−1

2u

xϕz

c2
+

(γ+1)xϕ′z

2γu

)
u

x
, (2.33)

â15=

(
(γ−3)(γ−1)

(γ+1)2
− 4(γ−1)

(γ+1)2
c

u
− 2

γ+1

v2

cu
+

xϕ′z ·xcsx
2γ2(γ−1)u2

+
x2ϕzx
2cu2

+
xϕ′z

2γu2

v2

c

+ xϕz
c2

(
γ2

2u2
xϕz
c2

− γxϕ
2u2 + 1

2u2
v2

c
+ 2γ

u
− xcsx

2γu2 − γ
u
+ 2γ

(γ+1)u
c
u

)
− 2xϕ′z

(γ+1)u

)
(γ−1)u2

x2 , (2.34)

and

â25=

(
(γ−3)(γ−1)

(γ+1)2
+

4(γ−1)

(γ+1)2
c

u
+

2

γ+1

v2

cu
− xϕ′z ·xcsx

2γ2(γ−1)u2
− x2ϕzx

2cu2
− xϕ′z

2γu2

v2

c

+
xϕz

c2

(
γ2

2u2

xϕz

c2
− γxϕ

2u2
− 1

2u2

v2

c
+

2γ

u
+

xcsx
2γu2

− γ

u
− 2γ

(γ+1)u

c

u

)
− 2xϕ′z

(γ+1)u

)
(γ−1)u2

x2
. (2.35)

Lemma 2.3. Assume 5
3 <γ<3. Then there exist small positive constants δ1,·· · ,δ6

and c
M

such that the following inequalities hold

(P1)
3γ−5

γ+1
− 7−γ

γ+1

cM
ua

− (γ+1)δ1
2ua

− δ2
2γua

− (γ2+γ−1)δ3
ua

− (γ+1)δ4
γua

>0,

(P2)
(γ−3)(γ−1)

(γ+1)2
+

δ6
2u2

a

+
δ1 ·δ4
2γu2

a

+
δ2 ·δ4

2γ2(γ−1)u2
a

+δ3

(
γ2δ3
2u2

a

+
δ2

2γu2
a

+
δ1
2u2

a

+
2γc

M

(γ+1)u2
a

+
γ

ua

)
<0,
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(P3)
3γ−5

2(γ+1)
− δ2

4γua
− (γ2+γ−1)δ3

2ua
>0,

(P4)
(γ−3)(γ−1)

(γ+1)2
+

4(γ−1)

(γ+1)2
c
M

ua
+

2

γ+1

δ1
ua

+
δ6
2u2

a

+
δ2 ·δ4

2γ2(γ−1)u2
a

+δ3

(
γ2δ3
2u2

a

+
γ

ua
+

δ2
2γu2

a

)
<0,

(P5)
γ+1

2
κ2− 5

2
κ+1− 3κc

M

2ua
− 2δ1

ua
− κδ2

4γua
− γδ3

ua
− κ(γ−1)δ4

2γua
− γδ5

2u2
a

− δ6
2u2

a

− δ1 ·δ3
2u2

a

− δ1 ·δ4
2γu2

a

− δ2 ·δ3
2γu2

a

− δ2 ·δ4
2γ2(γ−1)u2

a

− κγδ3cM
u2
a

>0,

(P6) 2κ2−3κ+1− (2κ2+2κ)c
M

ua
− (κγ−2)δ1

ua
− γδ3

ua
− κδ4

ua
− γδ5

2u2
a

− δ6
2u2

a

− δ1 ·δ3
2u2

a

− δ1 ·δ4
2γu2

a

− δ2 ·δ3
2γu2

a

− κγδ3cM
u2
a

− δ2 ·δ4
2γ2(γ−1)u2

a

>0.

In view of 5
3 <γ<3 and (P1)−(P4), we have

Lemma 2.4. If 0<c<c
M
, u>ua,

v2

c <δ1, |xcsx|<δ2,
xϕ
c2 <δ3, xϕ

′<δ4, and
x2ϕ
c <δ6,

then â14>0, â24>0, â15<0, â25<0.

3. Global smooth solution to the initial value problem

3.1. A priori C1 estimate. We now consider (1.7) with initial data

(u,v,c,s,z)(x,0)=(u0,v0,c0,s0,z0)(x), a+δ≤x≤ b−δ, (3.1)

where δ>0 may be arbitrarily small.
The existence and uniqueness of a local C1 solution to the problem (1.7) with (3.1)

are known by the method of characteristics (cf. [32]). That is to say there exists a small
T >0 such that the problem admits a classical solution (u,v,c,s,z) in a domain Ω(δ,T )
closed by {t=0}, {t=T }, a C+ characteristic curve issuing from (a+δ,0) (see Cδ

+ in
Figure 3.1), and a C− characteristic curve issuing from (b−δ,0) (see Cδ

− in Figure 3.1).
The characteristic curves Cδ

± can be represented by x=xδ
±(t) which satisfy

dxδ
±(t)

dt
=(u±c)(xδ

±(t),t), t>0,

xδ
+(0)=a+δ, xδ

−(0)= b−δ.

(3.2)

Fig. 3.1. Characteristic curves
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In order to extend the local solution to a whole domain of determinacy, one needs
to establish an a priori C1 estimate for the solution.

Lemma 3.1. Assume that the Cauchy problem (1.7), (3.1) admits a classical solution
in Ω(δ,T ) for some T >0. Then the solution satisfies

− (γ−1)δ1
2a

− δ2
2γa

− 2ub

a
<

∂±c

c
<0,

∣∣∣∣sxcκ
∣∣∣∣< (N+1)x

a
,

∣∣∣∣zxcκ
∣∣∣∣< x

a
,

R̂±<0, R±>0, 0<s<s∗, 0<c<c
M

and ua<u<ub. (3.3)

Proof. We shall prove this lemma by the method of continuity. The proof proceeds
in two steps.

Step 1. We first prove that the inequalities in (3.3) hold on {(x,t) | t=0,a<x<b}.
From c2=γesργ−1 we have

ρt=
2cct−γesργ−1st
γ(γ−1)esργ−2

, ρx=
2ccx−γesργ−1sx
γ(γ−1)esργ−2

.

Inserting this into the first equation of (1.7) and using the fourth equation of (1.7), we
get

ct=−ucx−
(γ−1)cux

2
− (γ−1)cu

2x
+

γ(γ−1)ϕz

2c
. (3.4)

Hence, we have

∂±c= ct+(u±c)cx=±ccx−
(γ−1)cux

2
− (γ−1)cu

2x
+

γ(γ−1)ϕz

2c
. (3.5)

Consequently, by Assumption (1.10) and (1.5) we have that when c
M

is sufficiently
small,

−2ub

a
<

(
∂±c

c

)
(x,0)=±c0

′(x)− (γ−1)u0
′(x)

2
− (γ−1)u0(x)

2x

+
γ(γ−1)ϕ(c0(x))

2c02(x)
<0 for a<x<b. (3.6)

By (3.5) we get

R̂+(x,0)= c0
′(x)− (γ−1)u0

′(x)

2
+

(
2

γ+1
− 1

2

)
(γ−1)u0(x)

x

− (γ−1)v0
2(x)

2c0(x)x
− c0(x)s0

′(x)

2γ
+

γ(γ−1)ϕ(c0(x))

2c02(x)
(3.7)

and

R̂−(x,0)=−c0
′(x)− (γ−1)u0

′(x)

2
+

(γ−1)v0
2(x)

2c0(x)x
+

c0(x)s0
′(x)

2γ

+
γ(γ−1)ϕ(c0(x))

2c02(x)
. (3.8)

Then, by Assumption (1.10) and (1.5) we know that when δ1 and c
M

are sufficiently
small,

R̂±(x,0)<0 for a<x<b. (3.9)
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Similarly, by (3.5) we have

R±(x,0)=±c0
′(x)− (γ−1)u0

′(x)

2
+

(
κ− 1

2

)
(γ−1)u0(x)

x
∓ (γ−1)v0

2(x)

2c0(x)x

∓ c0(x)s0
′(x)

2γ
+

γ(γ−1)ϕ(c0(x))

2c02(x)
. (3.10)

Thus, by Assumption (1.10) and (1.5) we know that when δ1 and c
M

are sufficiently
small,

R±(x,0)>0 for a<x<b. (3.11)

The other inequalities in (3.3) are obviously true on {(x,t) | t=0,a<x<b}.
Step 2. Let P := (xp,tp) be an arbitrary point in the domain. The backward C+ and
C− characteristic curves issuing from P intersect the x-axis at some points P+ and P−,
respectively. The backward stream line C0 issuing from P intersects the x-axis at some

point P0. Let ΩP be a closed triangle domain closed by P̂+P , P̂−P , and P+P− (see
Figure 3.2). We are going to prove that if the inequalities in (3.3) hold for all points in
ΩP \{P}, then they also hold at P .

a+δ
+ 0 −

P

P

P  P P

Ω
xo b-δ

C
+

−

C
+

C

C
−

t

δ
δ

Fig. 3.2. Domain Ωp

Since R̂±<0 in ΩP \{P}, we have

∂0c

c
<−2(γ−1)

γ+1

u

x
=−2(γ−1)

γ+1
∂0 lnx in ΩP \{P}.

Integrating it along P̂0P from P0 to P , we get

c(P )<c(P0)

(
x

P

x
P0

)− 2(γ−1)
γ+1

. (3.12)

In addition, in view of u>0 in ΩP \{P}, one has x
P
>x

P0
and hence c(P )<c(P0)<c

M
.

Actually, we have

c<c
M

(
x

a

)− 2(γ−1)
γ+1

in ΩP . (3.13)

From R±>0 in ΩP \{P}, we have

∂0c

c
>−κ(γ−1)u

x
in ΩP \{P}.
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Integrating it along P̂0P from P0 to P , we have

c(P )>c(P0)

(
x

P

x
P0

)−κ(γ−1)

>0. (3.14)

From the third equation of (2.1) we have

∂0 ln|v|=−∂0 lnx. (3.15)

Integrating it along P̂0P from P0 to P , we get

|v(P )|=
x

P0

x
P

|v(P0)|. (3.16)

Combining (3.14) and (3.16) and x
P
>x

P0
, κ= 2

γ−1 , we get(
v2

c

)
(P )<

(
v2

c

)
(P0)

(
x

P0

x
P

)κ(γ−1)−2

≤ δ1. (3.17)

In view of (2.4), we have

∂−u=
2

γ−1
cR̂−− γϕz

c
<0, ∂+u=− 2

γ−1
cR̂++(

2

γ+1
− 1

2
)
2uc

x
+

γϕz

c
>0 (3.18)

in ΩP \{P}. Thus, by integration we have

ua<u(P+)<u(P )<u(P−)<ub.

In view of (1.5), (3.13), (2.5), and the assumption that the inequalities in (3.3) hold
for all points in ΩP \{P}, we know that there exist sufficiently small constants ε, ε1, ε2
depending only on c. When c

M
is sufficiently small, such that∣∣∣∣ ϕc2
∣∣∣∣<ε,

∣∣∣∣ ϕc6
∣∣∣∣<ε1,

∣∣∣∣ϕ′

c4

∣∣∣∣<ε2.

Then, we get∣∣∣∣− γϕz

c2
sx

c
2

γ−1

+
2ϕ′z

c

cx

c
2

γ−1

− 2γ(γ−1)ϕz

c3
cx

c
2

γ−1

+
γ(γ−1)ϕ

c2
zx

c
2

γ−1

∣∣∣∣
<

∣∣∣∣γ(γ−1)ϕ

c2
zx

c
2

γ−1

∣∣∣∣+ ∣∣∣∣γϕzc2
sx

c
2

γ−1

∣∣∣∣+ ∣∣∣∣2ϕ′z

c

cx

c
2

γ−1

∣∣∣∣+ ∣∣∣∣2γ(γ−1)ϕz

c3
cx

c
2

γ−1

∣∣∣∣
<γ(γ−1)ε

x

a
+γε(N+1)

x

a
+2ε2c

3γ−5
γ−1

M

2u

x
+2γ(γ−1)ε1c

3γ−5
γ−1

M

2u

x

<γ(γ−1)ε
b

a
+γε(N+1)

b

a
+4ε2c

3γ−5
γ−1

M

u

x
+4γ(γ−1)ε1c

3γ−5
γ−1

M

u

x
<

u

x
. (3.19)

Similarly, we have ∣∣∣∣− γϕzzx

c
2γ

γ−1

− 2ϕ′zcx

c
3−γ
γ−1 γ(γ−1)

− ϕzx

c
2

γ−1

∣∣∣∣< u

x

in ΩP \{P}. Thus, integrating (2.8) from P0 to P one gets(
|sx|
c

2
γ−1

)
(P )≤

xp

x
p0

(∫ x
P

x
P0

x
P0

x2
dx+

(
|sx|
c

2
γ−1

)
(P0)

)
<

(N+1)x
P

a
(3.20)
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and (
|zx|
c

2
γ−1

)
(P )≤

x
p

xp0

∫ x
P

x
P0

x
P0

x2
dx<

x
P

a
. (3.21)

Using (3.20) and x
p
>x

p0
we know that when c

M
is small,

|xcsx| =
∣∣∣∣xc γ+1

γ−1 sx

c
2

γ−1

∣∣∣∣<(|xcsx|(p0)+bc
γ+1
γ−1
M

)(
xp

xp0

)2−2

<δ2 at P. (3.22)

From (1.5) and (3.12) we know that when c
M

is small, there hold

xϕ

c2
<δ3, xϕ′<δ4,

x2ϕ2

c2
<δ5 and

x2ϕ

c
<δ6 at P. (3.23)

In what follows, we are going to prove R̂±<0 and R±>0 at P .

Suppose R̂−=0 and R̂+≤0 at P . Then by the assumption that the inequalities in

(3.3) hold in ΩP \{P}, we have ∂+R̂−≥0 at P . While, by the first equation of (2.31),
(P1) and (P2) we have

∂+R̂−= â14︸︷︷︸
>0

R̂+︸︷︷︸
≤0

+ â15︸︷︷︸
<0

< 0 at P. (3.24)

This leads to a contradiction. We then get R̂−(P )<0. Similarly, we have R̂+(P )<0.
Suppose R−=0 and R+≥0 at P . Then by the assumption we have ∂+R−≤0 at

P . While, by the first equation of (2.25), (P5) and (P6) we have that at the point P ,

∂+R−>
a14κ(γ−1)u

x
+a15>

{
γ+1

2
κ2− 5

2
κ+1

− 3κc
M

2ua
− 2δ1

ua
− κδ2

4γua
− γδ3

ua
− κ(γ−1)δ4

2γua
− γδ5

2u2
a

− δ6
2u2

a

− δ1 ·δ3
2u2

a

− δ1 ·δ4
2γu2

a

−δ2 ·δ3
2γu2

a

− δ2 ·δ4
2γ2(γ−1)u2

a

− κγδ3cM
u2
a

}
(γ−1)u2

x2
>0 if a14<0,

∂+R−>a15>
{
2κ2−3κ+1

− (2κ2+2κ)c
M

ua
− (κγ−2)δ1

ua
− γδ3

ua
− κδ4

ua
− γδ5

2u2
a

− δ6
2u2

a

− δ1 ·δ3
2u2

a

− δ1 ·δ4
2γu2

a

−δ2 ·δ3
2γu2

a

− δ2 ·δ4
2γ2(γ−1)u2

a

− κγδ3cM
u2
a

}
(γ−1)u2

x2
>0 if a14≥0.

This leads to a contradiction. We then get R−(P )>0. Similarly, we have R+(P )>0.

Using R̂±(P )<0, R±(P )>0, (3.17), and (3.22) we have − (γ−1)δ1
2a − δ2

2γa −
2ub

a <
∂±c
c <0 at P . We then prove that if the inequalities in (3.3) hold for all points in

ΩP \{P}, then they also hold at P . Therefore, by an argument of continuity we know
that the classical solution of the Cauchy problem satisfies (3.3).

This completes the proof of the lemma.

As in (3.14), we know that the solution to the problem (1.7) with (3.1) satisfies

c>cδb
2x−2, (3.25)
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where cδ := min
x∈[a+δ,b−δ]

c0(x). Moreover, according to (3.2) we know that x<b−δ+ubt.

Combining this with (3.25) we know that the solution satisfies

c>cδb
2(b−δ+ubt)

−2. (3.26)

Combining (2.5), (3.3), (3.17), and (3.26) we obtain an a priori C0 estimate for (u,v,c)
and gradient estimates for c, z and s. The gradient estimate for u can be obtained by
(2.4). In order to estimate |∇v|, we use the commutator relation

∂0∂xv−∂x∂0v=−∂xu∂xv.

Inserting the third equation of (2.1) into this, we have

∂0(∂xv)+
(u
x
+∂xu

)
∂xv=

uv

x2
− v∂xu

x
. (3.27)

The gradient estimate for v can be obtained by (3.27) and the third equation of (2.1).
We then establish an a priori C1 estimate for the solution. Thus, the existence of global
classical solution can be obtained by the classical extension method (cf. Li [31]). We
then get the following global existence.

Lemma 3.2. The initial value problem (1.7) with (3.1) admits a global classical
solution in a domain Ω(δ) bounded by {(x,t) |a+δ≤x≤ b−δ,t=0}, Cδ

+ and Cδ
− (see

Figure 1.1). Moreover, the solution satisfies (3.3) and (3.26).

Lemma 3.3. By Lemmas 3.1 and 3.2, we obtain that the solution satisfies ρ∈C(Ω).

Proof. In what follows, we are going to prove that for any fixed T >0,

∥xδ
+(t)−(a+uat)∥0;[0,T ]→0 and ∥xδ

−(t)−(b+ubt)∥0;[0,T ]→0 as δ→0. (3.28)

Firstly, by ∂−c<0 and ∂−u<0 we have

c<c0(b−δ) and u<u0(b−δ) on Cδ
−. (3.29)

By a direct computation, we have

c2sx=s∂−c−∂−(cs)+
cϕz

T
.

Hence, we get

∂−u=
2

γ−1
∂−c−

∂−(cs)

γ(γ−1)
+

s∂−c

γ(γ−1)
−(γ−1)

ϕz

c
+

uc

x
+

v2

x
. (3.30)

As in (3.12) we know that the solution satisfies

c<c
M

(
x

a

)− 2(γ−1)
γ+1

. (3.31)

Combining this with (1.5) we know that when δ>0 is small,

ϕ

c
<

(u−c)c

x2
on Cδ

−. (3.32)
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Thus, by integrating (3.30) along Cδ
− we get

u>u0(b−δ)− 2

γ−1

(
1+s∗+

1

b−δ

)
c0(b−δ) on Cδ

−. (3.33)

Combining (3.29) and (3.33), one gets

∥(u−c)−ub∥0;Cδ
−
→0 as δ→0. (3.34)

Thus, for any fixed T >0, we obtain ∥xδ
−(t)−(b+ubt)∥0;[0,T ]→0 as δ→0. Similarly, we

have ∥xδ
+(t)−(a+uat)∥0;[0,T ]→0 as δ→0.

Consequently, we obtain a solution in Ω. The property that ρ>0 in Ω and ρ=0 on
Ca

v ∪Cb
v is obvious. This completes the proof of Theorem 1.1.

Corollary 3.1. ∥z(·,t)∥
0,R →0, as t→+∞.

Proof. From the last equation of (2.1), we get

z=exp

(
−
∫ t

0

ϕ(c)dt

)
=exp

(
−k

∫ t

0

e−
γ(γ−1)

c2 dt

)
.

Like the proof of the Theorem 1.1, we have

c(P0)

(
a

b

)2

<c(P0)

(
x

P

x
P0

)−2

<c.

A direct computation yields

exp

(
−γ(γ−1)

c2

)
> exp

(
−γ(γ−1)

c2(P0)

)(
a

b

)−4

.

Then, we have ∫ t

0

ϕ(c) dt>

∫ t

0

kexp

(
−γ(γ−1)

c2(P0)

)(a
b

)−4

dt.

Thus, we get

∫ t

0

ϕ(c) dt→+∞ for t→+∞, i.e., exp

(
−
∫ t

0

ϕ(c)dt

)
→0, as t→+∞.

Remark 3.1. From Lemma 3.1, the solution of the initial value problem (1.7) with
(1.8) satisfies

|∇c|< (γ−1)δ1
2a

+
δ2
2γa

+
2ub

a
in Ω. (3.35)

4. Summary
With axial symmetry, we have obtained that the problem (1.7) with (1.8) admits

a classical solution in the domain Ω. We propose to construct a global-in-time smooth
reacting flow solution expanding in vacuum. The solution describes a phenomenon of
the expansion of 2D reacting flows with swirl in vacuum or a phenomenon of “fire whirl”.
As a result, we get for any t, that the ring continues to expand until the gas burns out
in infinite time for the system (1.1).
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[38] D. Serre, Solutions classiques globales des équations d’Euler pour un fluide parfait compressible,

Ann. l’Inst. Fourier, 47:139–153, 1997. 1
[39] S. Shkoller and T.C. Sideris, Global existence of near-affine solutions to the compressible Euler

equations, Arch. Ration. Mech. Anal., 234:115–180, 2019. 1
[40] T.C. Sideris, Global existence and asymptotic behavior of affine motion of 3D ideal fluids sur-

rounded by vacuum, Arch. Ration. Mech. Anal., 255:141–176, 2017. 1
[41] F.A. Williams, Combustion Theory, Benjamin/Cumings, Menlo Park, 1985. 1
[42] L.A. Ying and Z.H. Teng, Riemann problem for a reacting and convection hyperbolic system, J.

Approx. Theory Appl., 1:95–122, 1984. 1
[43] L.A. Ying and C.H. Wang, The discontinuous initial value problem of a reacting gas flow system,

Trans. Amer. Math. Soc., 266:361–387, 1981. 1
[44] K. Zumbrun, High-frequency asymptotics and one-dimensional stability of Zel’dovich-von
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