
COMMUN. MATH. SCI. © 2024 International Press

Vol. 22, No. 6, pp. 1601–1633

EXISTENCE AND LARGE TIME BEHAVIOR FOR A DISSIPATIVE
VARIANT OF THE ROTATIONAL NLS EQUATION∗
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Abstract. We study a dissipative variant of the Gross-Pitaevskii equation with rotation. The
model contains a nonlocal, nonlinear term that forces the conservation of L2-norm of solutions. We are
motivated by several physical experiments and numerical simulations studying the formation of vortices
in Bose-Einstein condensates. We show local and global well-posedness of this model and investigate
the asymptotic behavior of its solutions. In the linear case, the solution asymptotically tends to the
eigenspace associated with the smallest eigenvalue in the decomposition of the initial datum. In the
nonlinear case, we obtain weak convergence to a stationary state. Moreover, for initial energies in a
specific range, we prove strong asymptotic stability of ground state solutions.
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1. Introduction

1.1. Physical background and motivations. Since their first experimental re-
alization [19,30], Bose-Einstein condensates (BECs) have become the object of intensive
research in the scientific community. In particular, the observation and measurement of
its superfluid properties, such as quantized vortices [2,32,33] for instance, stimulated a
considerable amount of interest, leading to investigations of their dynamics [11].

From the theoretical point of view, one of the main features of BECs is that they are
accurately described by the Gross-Pitaevskii (GP) equation [23,35], see [36] for a com-
prehensive physical introduction on the model, its derivation and main properties. The
GP description allows the prediction and simulation of relevant phenomena observed in
experiments [20]. In a rotating frame, the (scaled) GP equation may be written as

i∂tψ=−1

2
∆ψ+V ψ+g|ψ|2ψ−Ω ·Lψ (1.1)

with ψ :R1+d→C being the order parameter describing the condensate. In Equation
(1.1), g∈R denotes the (scaled) Gross-Pitaevskii constant, Ω∈Rd determines the rota-
tion axis, L is the angular momentum operator defined by

L :=−ix∧∇, (1.2)

and V is a (possibly anisotropic) harmonic confining potential [22], given by

V (x)=
1

2

d∑
j=1

ω2
jx

2
j , ωj>0. (1.3)

Throughout this paper, we consider d=2,3, for physical motivations. The case d=2
describes the effective dynamics of a BEC under the influence of a strongly anisotropic
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(cigar-shaped) potential, see [1] where a similar dimensional reduction was rigorously
proved, [9] for some related numerical experiments. In this case, the rotation term
becomes

Ω ·L=−i|Ω|(x1∂2−x2∂1).

Equation (1.1) possesses a Hamiltonian given by the total energy

E[ψ(t)]=

∫
1

2
|∇ψ(t,x)|2+V (x)|ψ(t,x)|2+ g

2
|ψ(t,x)|4−(ψ̄(Ω ·L)ψ)(t,x)dx. (1.4)

Although the GP theory works remarkably well for a broad range of applications, in
some specific regimes thermal and quantum fluctuations cannot be ignored. In order
to accurately describe some specific phenomena (e.g. collective damped oscillations or
finite temperature effects), dissipative terms must be taken into account. Several models
have been proposed to extend the well-established GP description, see [37] for a general
overview. For systems close to thermal equilibrium, the dynamics may be described by

(i−γ)∂tψ=−1

2
∆ψ+V ψ+g|ψ|2ψ−Ω ·Lψ−µψ. (1.5)

In this extended model, the damping coefficient γ>0 is a phenomenological constant
that is introduced to fit experimental data, see [12] and the references therein. Moreover,
Equation (1.5) is also used to numerically investigate particular features of atomic BECs,
such as the formation of vortex lattices [27] or the stabilization of dark solitons [38].
This aspect is actually related to a class of numerical methods [8, 18, 21] developed to
compute ground state solutions to GP-type equations by means of a normalized gradient
flow, see [7] for a general overview and also [3] for the rigorous analysis of the related
parabolic model.

Physical motivations demand this extended model to conserve the total number of
particles, that for Equation (1.5) amounts to require the conservation of the L2-norm.
This is achieved by setting the chemical potential µ to depend on the solution itself as
follows

µ[ψ(t)]=
1

∥ψ(t)∥2L2

(∫
1

2
|∇ψ(t)|2+V |ψ(t)|2+g|ψ(t)|4−(ψ̄(Ω ·L)ψ)(t)dx

)
. (1.6)

This choice is also consistent with the numerical methods developed in [8, 18, 21], see
also [3].

Model (1.5), with µ defined by (1.6), is also exploited to simulate turbulent phe-
nomena in BECs in the presence of a small damping, see for instance [31].

From the mathematical point of view, the chemical potential µ[ψ] may also be
interpreted as a Lagrange multiplier that constrains the solution to live on the manifold

M={u∈L2(Rd) : ∥u∥L2 =∥ψ0∥L2}. (1.7)

The purpose of our work is to develop a rigorous analysis of the following model

(i−γ)∂tψ=−1

2
∆ψ+V ψ+g|ψ|2σψ−Ω ·Lψ−µψ, (1.8)

with µ defined in (1.6) and general power-type nonlinearities satisfying 0<σ< 2
(d−2)+ .
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As it will be outlined in the next subsection, our work focuses on the Cauchy prob-
lem, providing local and global well-posedness, depending on the choice of parameters
appearing in (1.8). Moreover, we investigate the asymptotic behavior of global solu-
tions for large times, showing the convergence towards stationary solutions to (1.8)
(and consequently solitary waves to (1.1) as well). In this respect, our analysis provides
a rigorous background for the numerical experiments developed in [27].

Let us remark that a similar model was already studied in [17], where (1.8) is
considered by setting the chemical potential to be constant, i.e. µ∈R. In this case the
total mass is no longer conserved and in fact it may also asymptotically vanish in some
cases, see Proposition 4.5. in [17]. In general, the non-conservation of the L2-norm
leads to a completely different asymptotic behavior, compare for instance Corollary 6.7.
in [17] with Proposition 5.1 in the present paper.

1.2. Mathematical setting and main results. We are interested in the
following Cauchy problem,{

(i−γ)∂tψ=− 1
2∆ψ+V ψ+g|ψ|2σψ−Ω ·Lψ−µ[ψ]ψ,

ψ(0)=ψ0∈Σ(Rd),
(1.9)

where ψ :R1+d→C is complex-valued, d=2,3, g∈R indicates the strength of the non-
linearity and can either be repulsive g>0 or attractive g<0, the power σ satisfies
0<σ< 2

(d−2)+ , γ>0, V is defined in (1.3) and the angular momentum operator is given

in (1.2). The nonlocal, nonlinear term µ[ψ], which may be interpreted as the chemical
potential associated with the state ψ, is defined by

µ[ψ]=
1

∥ψ∥2L2

(∫
1

2
|∇ψ|2+V |ψ|2+g|ψ|2σ+2− ψ̄(Ω ·L)ψdx

)
(1.10)

and ensures the conservation of total mass, namely all solutions to (1.9) formally satisfy

∥ψ(t)∥L2 =∥ψ0∥L2 .

We denote by Σ(Rd) the natural energy space associated with the Cauchy problem (1.9),
that is defined by

Σ(Rd)=

{
u∈H1(Rd) :

∫
|x|2|u|2dx<∞

}
. (1.11)

Indeed, the total energy associated with (1.9) is given by

E[ψ(t)]=

∫
1

2
|∇ψ(t)|2+V |ψ(t)|2+ g

σ+1
|ψ(t)|2σ+2−(ψ̄(Ω ·L)ψ)(t)dx. (1.12)

We remark that the rotation term is bounded for all finite energy states, as one has∣∣∣∣∫ ūΩ ·Ludx
∣∣∣∣≲∥| · |u∥L2∥∇u∥L2 ≲∥u∥2Σ.

While the total mass is conserved along the flow of (1.9), the total energy is non-
increasing and formally satisfies the following identity

E[ψ(t)]+2γ

∫ t

0

∫
|∂tψ(s)|2dxds=E[ψ0]. (1.13)
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The two main goals of this work are to provide (local and global) well-posedness results
for the Cauchy problem (1.9) and to study the large-time behavior of its global solutions.

The Hamiltonian Equation (1.1) was already thoroughly studied, see [4, 24, 25] for
local and global well-posedness and the analysis of blow-up solutions. In [17] model (1.8)
with µ∈R was considered. For this dissipative dynamics, it is possible to exploit the
parabolic regularization effect, entailed by the linear semi-group. In this way, in [17] the
authors prove global well-posedness under some assumptions on the nonlinearity and
provide a characterization of the global attractor.

On the other hand, model (1.9) has the peculiarity that the chemical potential is
determined by a functional of the solution itself, involving its gradient. This actually en-
tails further mathematical difficulties, especially when studying the local well-posedness
problem. Indeed, the classical contraction argument as developed in [28], for instance,
cannot be straightforwardly adapted to (1.9), due to a delicate interplay between the
power-type nonlinearity and the nonlocal term. In particular, the fact that the nonlinear
operator ψ 7→ |ψ|2σψ is not locally Lipschitz from Σ to itself when 0<σ< 1

2 , prevents
us from using the standard fixed point argument in this case. We refer to Section 3 for
a more detailed discussion on this issue.

Theorem 1.1. Let 1
2 ≤σ<

2
(d−2)+ , or let g=0. Then for any ψ0∈Σ(Rd) there exist

a maximal existence time Tmax>0 and a unique local solution ψ∈C([0,Tmax),Σ(Rd))
to Equation (1.9). Moreover, either Tmax=∞, or Tmax<∞ and we have

lim
t→Tmax

∥ψ(t)∥Σ=∞.

Let us notice that this result covers the physically relevant case σ=1. On the other
hand, for the mathematical sake of providing a more complete picture, we are also going
to prove a well-posedness result in the range 0<σ< 1

2 . In order to do this, we develop

an alternative argument that constructs a sequence of approximating solutions {ψ(k)}.
More precisely, we set up an iterative scheme where the chemical potential is given
by the previous step, µ(k)=µ[ψ(k−1)]. In this way, the existence of the approximating
solutions at each step is provided by the classical contraction principle.

Second, we prove that the approximating sequence satisfies uniform bounds which
allow us to show its compactness and convergence towards a solution of (1.9). The
drawback is that, in order to infer these uniform bounds, we require the rotation speed
to satisfy |Ω|< ω√

2
, where ω is defined by

ω=min
j
ωj>0. (1.14)

Under this assumption, we are able to prove the following theorem.

Theorem 1.2. Let 0≤σ< 2
(d−2)+ and |Ω|< ω√

2
. Then for any ψ0∈Σ(Rd) there exist

a maximal existence time Tmax>0 and a unique local solution ψ∈C([0,Tmax),Σ(Rd))
to Equation (1.9). Moreover, either Tmax=∞, or Tmax<∞ and we have

lim
t→Tmax

∥ψ(t)∥Σ=∞.

A similar strategy using an iterative scheme has been used also in the context of
nonlocal heat equations, see [3, 13].

Let us remark that Theorems 1.1 and 1.2 apply to a wider range of nonlinearities
with respect to the result in [17], where the authors assume 0<σ< d

2(d−2)+ .
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Let us now address the problem of global well-posedness. By recalling the definition
(1.14), we see that the quadratic part of the energy defined in (1.12) is positive definite
if and only if |Ω|<ω. In particular, for |Ω|<ω and for any u∈Σ we have∫

1

2
|∇u|2+V |u|2− ū(Ω ·Lu)dx≥ c

∫
|∇u|2+ |x|2|u|2dx,

for some c>0. The case |Ω|>ω could lead to instabilities in the dynamics, see for
instance [6], where this issue is studied for the Hamiltonian evolution (1.1).

Theorem 1.3. Let 0≤σ< 1
2 with |Ω|< ω√

2
, or 1

2 ≤σ<
2

(d−2)+ with |Ω|<ω. If g<0,

we further assume that σ< 2
d . Then for any ψ0∈Σ(Rd) there exists a unique global

solution ψ∈C([0,∞),Σ(Rd)) to the Cauchy problem (1.9).

We now investigate the large-time behavior of global solutions. As remarked above,
the same question was already addressed in [17] for model (1.8) in the case when µ
is constant. In this case, the energy dissipation is not sign-definite. Furthermore, no
information can be inferred in general about the asymptotic behavior of the total mass.
This leads the authors of [17] to define the global attractor as the set of all initial data
that yield a global solution for all t∈R, i.e. both forward and backward in time.

In model (1.9), the fact that µ=µ[ψ] is given by formula (1.10), changes substan-
tially the asymptotic behavior of solutions. The energy balance (1.13) heuristically
implies that the asymptotic states are given by stationary solutions, whose L2-norm is
determined by the initial datum. This property will be rigorously proved in Proposition
5.1 below.

Let us start by discussing Equation (1.9) when g=0. We will refer to this setting
as the linear case, even though µ[ψ] ̸=0, because it may be seen as the linear evolution
constrained on the manifold defined in (1.7).

In this case, we determine the asymptotic behavior in terms of the decomposition
of the initial datum with respect to the eigenspaces of the linear operator

HΩ=−1

2
∆+V −Ω ·L. (1.15)

More precisely, let σ(HΩ)={λn}n≥0 denote the spectrum of HΩ and let Wn be the
eigenspace associated with λn, namely

Wn={u∈L2(Rd) :HΩu=λnu}.

Then, if n∗≥0 is such that λn∗ is the smallest eigenvalue in the decomposition of ψ0,

λn∗ =inf {λn : ∃φ∈Wn : (φ,ψ0) ̸=0} , (1.16)

we can prove the following result.

Theorem 1.4. Let g=0, ψ0∈Σ(Rd) and ψ∈C([0,∞),Σ(Rd)) be the corresponding
solution. Then

lim
t→∞

µ[ψ(t)]=λn∗ ,

where λn∗ is defined in (1.16) and

lim
t→∞

inf
u∈Wn∗

∥ψ(t)−u∥Σ=0.
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In particular, if λn∗ is a simple eigenvalue, then there exists an eigenfunction ψn∗ ∈
Wn∗ , with ∥ψn∗∥L2 =∥ψ0∥L2 such that

lim
t→∞

∥ψ(t)−ψn∗∥Σ=0.

This is for example the case for the smallest eigenvalue λ0 in the spectrum of HΩ. Thus,
any initial condition having a non-zero component in Wλ0

evolves into a solution that
asymptotically converges to the least energy state, with a given L2-norm.

In general, the linear dynamics leaves invariant the eigenspaces Wn associated with
the operator HΩ. On the contrary, the power-type nonlinearity destroys this property,
so that for g ̸=0 there are no linear invariant subspaces anymore.

In the nonlinear case, we expect that stationary solutions play the same role as
eigenfunctions of HΩ when g=0. We recall that a stationary solution to (1.9) satisfies
the following equation

0=−1

2
∆Q+V Q+g|Q|2σQ−Ω ·LQ−µ[Q]Q. (1.17)

It is well known that, under the same assumptions of Theorem 1.3, there are infinitely
many solutions to (1.17). Among stationary solutions, a particular role is played by
minimizers of the energy with fixed total mass,

τ = inf
u∈Σ

{E[u] : ∥u∥L2 =m}. (1.18)

Under the assumptions of Theorem 1.3, a minimizer to problem (1.18) always exists
[6, 39]. In what follows we will refer to them as ground states and denote it by Qgs.

By computing the Euler-Lagrange equations and by exploiting Pohozaev’s identity,
it is straightforward to show that any ground state satisfies (1.17). Moreover, we are
going to call excited states all stationary solutions, whose total energy is strictly larger
than the ground state energy. Given m>0, the set of all stationary solutions with total
mass m, is denoted by

Sm={Q∈Σ(Rd) : ∥Q∥L2 =m,u solves (1.17)}. (1.19)

In general, the monotonicity of the total energy, inferred from (1.13), implies that

lim
t→∞

E[ψ(t)]=E∞≥ τ >−∞, (1.20)

where τ is defined in (1.18). Furthermore, from the energy dissipation in (1.13), we also
expect that the asymptotic states for (1.9) are determined by stationary solutions.

Theorem 1.5. Under the conditions stated in Theorem 1.3, let ψ0∈Σ(Rd) be such that
∥ψ0∥L2 =m and let ψ∈C([0,∞),Σ(Rd)) be the corresponding solution to (1.9). Then
there exists a sequence {tn}⊂R+, tn→∞ as n→∞ and a stationary state Q∈Sm such
that

lim
n→∞

∥ψ(tn)−Q∥Σ=0,

and

E∞=E[Q],

where E∞ is defined in (1.20).
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Let us remark that, while it is always possible to show that E∞=E[Q], for some
Q∈Sm, in general we are not able to characterize the stationary solution that determines
the asymptotic behavior of the dynamics. In fact, it is not always true that E∞= τ ,
as all stationary states are solutions to (1.8). On the other hand, the monotonicity of
the total energy suggests that all excited states are unstable under the dynamics. If the
initial energy is strictly smaller than the energy of any excited state, then we expect
the solution to converge towards the ground state. These arguments lead to exploit the
following conjecture.

Conjecture 1.6 (Fundamental gap conjecture). There exists δ>0 such that for
any Q∈Sm, either Q=eiϕQgs for some ϕ∈R, or E[Q]≥E[Qgs]+δ. The fundamental
gap conjecture is largely studied in the mathematical literature, due to its relevance.
There are several numerical works and formal expansions confirming this conjecture,
see for instance [10,14] and references therein, although a theoretical proof seems to be
still missing. Under the hypothesis that this conjecture is true, we are able to improve
our convergence result in two directions. First, we show that, up to phase shifts, the
dynamics asymptotically converges to the ground state. Second, no extraction of a
sequence of times is needed. This is achieved by adapting the convexity argument
introduced by Cazenave and Lions [16].

Theorem 1.7. Assume that Conjecture 1.6 is true. Under the conditions stated in
Theorem 1.3, let ψ0∈Σ(Rd) be such that E[ψ0]<E[Qgs]+δ and ψ∈C([0,∞),Σ(Rd))
be the corresponding solution to (1.9). Then there exists ϕ∈ [0,2π) such that

lim
t→∞

∥ψ(t)−eiϕQgs∥Σ=0.

The theorem above states that solutions starting from an initial condition that is
sufficiently close to the ground state eventually converge to it; consequently the ground
state is asymptotically stable, up to a phase shift.

We recall that the orbital stability of the ground state for the non-dissipative ro-
tational GP Equation (1.1) was proved in [6]. For qualitative properties of the ground
state such as symmetry breaking, we refer the reader to [26, 39, 40]. An alternative ap-
proach to study solitary waves and their stability for Equation (1.1) with super-quadratic
trapping potentials was recently investigated in [34].

This work is organized as follows: in Section 2, we will present our notations and
some preliminary results. Section 3 is dedicated to proving the local and global well-
posedness results stated in Theorems 1.1, 1.2 and 1.3. In Section 4 we will study the
asymptotic behavior of the linear case g=0. Finally, in Section 5, we prove our result
on the asymptotic behavior in the nonlinear case.

2. Preliminaries
In this section, we introduce our notations and recall some mathematical tools. For

two positive quantities A and B we use the notation

A≲B

with the meaning that there exists a constant c>0, not depending on A and B, unless
specifically declared, such that

A≤ cB.

We will use the following notation

1

(d−2)+
=

{
∞ for d=2,
1

d−2 for d=3.
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Given u,v∈L2(Rd), the L2-scalar product is defined as

(u,v)=Re

∫
uv̄dx.

We define the set

Σ2(Rd)={u∈Σ(Rd) : ∥(−∆+ |x|2)u∥L2 <∞}⊂H2(Rd),

where Σ(Rd) is defined in (1.11). By abuse of notation, we write xu for the function
x→xu(x). We recall some basic facts about the space Σ(Rd), see for example, [29], for
more details.

Proposition 2.1. The Hilbert space Σ(Rd) is compactly embedded in Lp(Rd) for any

p∈
[
2, 2d

(d−2)+

)
. Moreover, the norm

∥u∥2Σ=∥∇u∥2L2 +∥xu∥2L2

is equivalent to the norm induced by the scalar product

⟨u,v⟩Σ=(u,v)+(∇u,∇v)+(xu,xv).

Proof. For any R>0, we have that∫
|x|≥R

|u(x)|2dx≤R−2∥xu∥2L2 .

On the other hand, we also know that H1(BR) compactly embeds into L2(BR), where
BR≡{x∈Rd : |x|<R}. Consequently, we may conclude that the embedding Σ(Rd) ↪→
L2(Rd) is compact. The embedding H1(Rd) ↪→Lp(Rd) for p∈

[
2, 2d

(d−2)+

)
, implies that

Σ(Rd) ↪→Lp(Rd). Choosing any q>p, such that q< 2d
(d−2)+ and interpolating between

L2(Rd) and Lq(Rd) implies that the embedding Σ(Rd) ↪→Lp(Rd) is compact.

Proposition 2.2. The Hilbert space Σ2(Rd) is compactly embedded in Σ(Rd).

Proof. Let u∈Σ2(Rd) and notice that the condition

∥(−∆+ |x|2)u∥2L2 <∞,

is equivalent to

∥∆u∥L2 +∥|x|2u∥L2 +
∥∥|x||∇u|∥∥

L2 <∞.

Thus we define the norm of Σ2(Rd) as

∥u∥Σ2 =
(
∥∆u∥2L2 +∥|x|2u∥2L2 +

∥∥|x||∇u|∥∥2
L2

) 1
2

. (2.1)

Consequently, adapting the proof of Proposition 2.1, one can prove that the embedding
Σ2(Rd) ↪→Σ(Rd) is compact.

Standard compactness arguments then yield the following existence result for
ground states of (1.12), see [39].
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Proposition 2.3. Let |Ω|<ω, g≥0 and σ< 2
(d−2)+ or g<0 and σ< 2

d . For any

m>0, there exists Qm∈Σ(Rd) solving the following variational problem:

τm=inf{E[u] : u∈Σ, ∥u∥L2 =m}.

Moreover, if v∈Σ(Rd) satisfies E[v]= τm and ∥v∥L2 =m then there exists φ∈ [0,2π)
such that

v=eiφQm.

For Ω=0, there exists a unique real-valued and strictly positive minimizer, which
is usually called the ground state. Observe that when Ω ̸=0, all the minimizers are
complex-valued for the presence of the rotational operator L. Consequently, we refer to
all the minimizers of the problem above as ground states. In general, the properties of
stationary states, such as radial symmetry breaking can be found in [39,40].

2.1. Properties of the semigroup. We begin with the presentation of the
smoothing estimates of the linear Hamiltonian operator

HΩ=−1

2
∆+V −Ω ·L,

where V is defined in (1.3). We denote by

UΩ(t)=e
− i+γ

1+γ2 tHΩ (2.2)

the semi-group associated with HΩ on L2(Rd), so that, given u0∈Σ(Rd), the function
UΩ(t)u0 solves the linear problem{

∂tu=− i+γ
1+γ2HΩu, in (0,∞)×Rd,

u(0)=u0.
(2.3)

We will use the following commutator estimates.

Proposition 2.4. We have the following properties:

[∇,HΩ]=∇V +i∇∧Ω, [x,HΩ]=∇− iΩ∧x. (2.4)

Proof. We compute explicitly the commutator [∇,HΩ] as

[∇,HΩ]=−1

2
[∇,∆]+[∇,V ]+i [∇,Ω ·(x∧∇)]

=∇V +i [∇,x ·(∇∧Ω)]

=∇V +i∇∧Ω,

where we used the property a ·(b∧c)=det(a,b,c)=(a∧b) ·c for three dimensional vectors
a,b,c. Similar calculations yield

[x,HΩ]=∇− iΩ∧x.

We recall the dispersive estimates of this semi-group.

Proposition 2.5 (Lemma 2.3 in [17]). There exists a t∗>0 such that, for all 1≤ q≤
p≤∞ and t∈ [0,t∗),

∥UΩ(t)f∥Lp ≲ t
d
2 (

1
p−

1
q )∥f∥Lq , (2.5)
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and

∥∇UΩ(t)f∥Lp +∥xUΩ(t)f∥Lp ≲ t
d
2 (

1
p−

1
q )−

1
2 ∥f∥Lq . (2.6)

The proof is based on the Mehler formula [15] and a change of variables introduced
in [4] which transforms the linear operator HΩ into a different linear operator without
rotation but with a time-dependent harmonic potential, see [17, Lemma 2.3] for more
details.
We notice the following property of the semigroup.

Proposition 2.6. Let u0∈Σ(Rd) and let UΩ(t)u0∈C
(
[0,∞),Σ(Rd)

)
be the corre-

sponding solution to (2.3). Then for any t∈ (0,∞) we have

∥∥UΩ(t)u0
∥∥2
L2 =

∥∥u0∥∥2L2 −
2γ

1+γ2

∫ t

0

(
HΩ(UΩ(τ)u0),UΩ(τ)u0

)
dτ. (2.7)

Moreover there exists C>0 such that∥∥UΩ(t)u0
∥∥2
L2 ≥

∥∥u0∥∥2L2 −Ct∥u0∥2L∞([0,t],Σ). (2.8)

Proof. We rewrite system (2.3) as{
(i−γ)∂tu=HΩu,

u(0)=u0∈Σ(Rd).
(2.9)

By taking the scalar product of (2.9) with u, we get

(i∂tu,u)−
γ

2

d

dt
∥u(t)∥2L2 =

(
HΩu,u

)
. (2.10)

Moreover, by taking the scalar product of (2.9) with iu we also have that

1

2

d

dt
∥u(t)∥2L2 −γ(∂tu,iu)=(HΩu,iu)=0,

that is

(i∂tu,u)=− 1

2γ

d

dt
∥u(t)∥2L2 . (2.11)

Plugging (2.11) inside (2.10) leads to obtain that

d

dt
∥u(t)∥2L2 =− 2γ

1+γ2
(
HΩu,u

)
.

Equation (2.7) follows from this equality after integration in time. Furthermore, (2.8)
follows from (2.7) after employing the commutator estimates (2.4) and the dispersive
estimate (2.5).

We proceed with the following definition.

Definition 2.1. A pair (q,r) is called admissible if q≥2, (q,r,d) ̸=(2,∞,2), and

2

q
=d

(
1

2
− 1

r

)
. (2.12)
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Having the dispersive estimates (2.5) and (2.6), it is possible to adapt the standard
arguments to prove Strichartz-type estimates for the linear propagator UΩ(t), see for
instance Proposition 2.12 in [5] where similar Strichartz-type estimates are proven in
the case without potential and rotation.

Proposition 2.7. Let (q,r) and (s,p) be two Strichartz admissible pairs and let T >0.
Then we have

∥UΩ(t)φ∥Lq([0,T ],Lr)≲∥φ∥L2 .

Moreover, if

F (φ)=

∫ t

0

UΩ(t−τ)φ(τ,x)dτ,

then we also have that

∥F (φ)∥Lq([0,T ],Lr)≲∥φ∥Ls′ ([0,T ],Lp′ )

and

∥∇F (φ)∥Lq([0,T ],Lr)+∥xF (φ)∥Lq([0,T ],Lr)≲∥∇φ∥Ls′ ([0,T ],Lp′ )+∥xφ∥Ls′ ([0,T ],Lp′ ).

2.2. Spectral properties of the linear Hamiltonian. For Ω=0, the Hamil-
tonian defined in (1.15) is the anisotropic quantum mechanical oscillator

H0=
1

2

−∆+

d∑
j=1

ω2
jx

2
j

.
The spectral properties of this operator are well-known, see for example [41].

Proposition 2.8. H0 is essentially self-adjoint on C∞
0 (Rd)⊂L2(Rd) with compact

resolvent. If for all j, ωj =ω, then the spectrum σ(H0)={λ0,n} is given by

λ0,n=ω

(
d

2
+n−1

)
,

and the eigenvalue λ0,n is (
d+n−2
n−1

)
-fold degenerate.

In particular, the smallest eigenvalue is given by λ0,1=
ωd
2 >0. Notice that the

associated eigenfunctions form a complete orthonormal basis of L2(Rd).
In the case Ω ̸=0, we have the following [17].

Proposition 2.9. Consider ω> |Ω|. Then HΩ is essentially self-adjoint on C∞
0 (Rd)⊂

L2(Rd), with compact resolvent and discrete spectrum. Moreover, if for any j, ωj =ω,
then the spectrum of HΩ is given by σ(HΩ)={λΩ,n}n∈N where

{λΩ,n}n∈N={λ0,k+mΩ, −k+1≤m≤k−1, for k∈N}.

In particular, when |Ω|<ω, we still have that the smallest eigenvalue is λΩ,1=
ωd
2 >

0. Consequently, ground state’s energy remains the same with rotation.
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3. Existence of solutions
In this section, we study local and global well-posedness properties of Equation

(1.9).
As already discussed in the introduction, we will present two different strategies to study
local solutions. The standard fixed point argument for evolutionary problems such as
(1.9), see for instance [28], consists in finding a complete metric space and a nonlinear
contraction whose unique fixed point provides us with the solution.
The nonlinear map is usually associated with the integral formulation of the equation,
which in our case reads

ψ(t)=UΩ(t)ψ0−
i+γ

1+γ2

∫ t

0

UΩ(t−s)
(
g|ψ|2σψ−µ[ψ]ψ

)
(s)ds.

The presence of the nonlocal term µ[ψ] prevents us to follow the approach in [28] and
defining the metric space endowed with the weaker distance based on mixed space-
time Lebesgue norms. In particular, the distance must also control the gradient of the
difference between the two functions. On the other hand, defining a distance based on
Sobolev spaces requires the nonlinear term to be locally Lipschitz in those spaces, for
instance from H1 into itself. This implies that we can exploit the standard fixed point
argument only when 1

2 ≥σ. This strategy will be discussed in Subsection 3.1.
To cover also the case 0<σ< 1

2 , we developed a different argument, based on an

iterative procedure. We construct a sequence of approximating solutions {ψ(k)}, where
at each step the chemical potential is determined by the previous iterate. More precisely,
for any k≥1, we study the following Cauchy problem{

(i−γ)∂tψ(k)=− 1
2∆ψ

(k)+V ψ(k)+g|ψ(k)|2σψ(k)−Ω ·Lψ(k)−µ[ψ(k−1)]ψ(k),

ψ(k)(0)=ψ0∈Σ(Rd).

This allows us to exploit the standard fixed point argument at each step, with no
restriction on σ. To find a solution to the original equation, we will prove uniform bounds
on {ψ(k)} and pass to the limit. Inferring these priori estimates on the L2([0,T ),Σ2(Rd))-
norm of the approximating profiles requires to assume that |Ω|< ω√

2
. This strategy will

be discussed in Subsection 3.2.

3.1. Local well-posedness for σ≥ 1
2 . In this subsection, we present our first

proof for the local well-posedness result, which is based on a fixed point argument and
requires to suppose that σ≥ 1

2 . We will now prove Theorem 1.1.

Proof. (Proof of Theorem 1.1.) We will show the proof for g ̸=0, the other case
being a straightforward adaptation. Fix M,N,T >0, to be chosen later, and let

r=2σ+2, q=
4σ+4

dσ
. (3.1)

Notice that the pair (q,r) satisfies condition (2.12). Consider the set

E=

{
u∈L∞([0,T ],Σ(Rd)

)
, u,xu,∇u∈Lq

(
(0,T ),Lr(Rd)

)
:

∥u∥L∞([0,T ],Σ(Rd))≤M,∥u∥Lq((0,T ),W 1,r)≤M, ∥xu∥Lq((0,T ),Lr)≤M,

inf
t∈[0,T ]

∥u∥L2 ≥ N

2

}
,
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equipped with the distance

d(u,v)=∥u−v∥Lq((0,T ),W 1,r)+∥u−v∥L∞([0,T ],Σ)+∥x(u−v)∥Lq((0,T ),Lr).

Clearly (E ,d) is a complete metric space. We fix u,v∈E . We observe that the inequality∣∣|u|2σu−|v|2σv
∣∣≤C (|u|2σ+ |v|2σ

)
|u−v|,

implies that∥∥|u|2σu−|v|2σv
∥∥
Lq′((0,T ),Lr′)≲

(
∥u∥2σL∞([0,T ],Lr)+∥v∥2σL∞([0,T ],Lr)

)
×∥u−v∥Lq′ ((0,T ),Lr).

Moreover, using the embedding Σ
(
Rd
)
↪→Lr

(
Rd
)
and Hölder’s inequality, it also follows

that ∥∥∇(|u|2σu−|v|2σv
)∥∥

Lr′ ≲
(
∥u∥2σ−1

Lr +∥v∥2σ−1
Lr

)
(∥∇u∥Lr +∥∇v∥Lr )∥u−v∥H1

which implies∥∥∇(|u|2σu−|v|2σv
)∥∥

Lq′((0,T ),Lr′)≲
(
∥u∥2σ−1

L∞([0,T ],Lr)+∥v∥2σ−1
L∞([0,T ],Lr)

)
×
(
∥∇u∥Lq′ ((0,T ),Lr)+∥∇v∥Lq′ ((0,T ),Lr)

)
×∥u−v∥L∞([0,T ],H1). (3.2)

In the same way, from∥∥x(|u|2σu−|v|2σv
)∥∥

Lr′ ≲
(
∥u∥2σ−1

Lr +∥v∥2σ−1
Lr

)
(∥xu∥Lr +∥xv∥Lr )∥u−v∥H1

we also obtain∥∥x(|u|2σu−|v|2σv
)∥∥

Lq′((0,T ),Lr′)

≲
(
∥u∥2σ−1

L∞([0,T ],Lr)+∥v∥2σ−1
L∞([0,T ],Lr)

)
×
(
∥xu∥Lq′ ((0,T ),Lr)+∥xv∥Lq′ ((0,T ),Lr)

)
×∥u−v∥L∞([0,T ],H1). (3.3)

Using Hölder’s inequality in time, we deduce from the above estimates that

∥∥x|u|2σu∥∥
Lq′((0,T ),Lr′)+

∥∥|u|2σu∥∥
Lq′((0,T ),W 1,r′)≲

(
T +T

q−q′
qq′

)(
1+M2σ

)
M

and ∥∥x(|u|2σu−|v|2σv)
∥∥
Lq′((0,T ),Lr′)+

∥∥|u|2σu−|v|2σv
∥∥
Lq′((0,T ),W 1,r′)

≲

(
T +T

q−q′
qq′

)(
1+M2σ

)
d(u,v).

Next, given any u,v∈E , we notice that we have

|µ[u]u−µ[v]v|≤ |v||µ[u]−µ[v]|+ |µ[u]||u−v|
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which implies

∥µ[u]u−µ[v]v∥L1((0,T ),Σ)≲T

(
∥µ[u]∥L∞[0,T ]∥u−v∥L∞([0,T ],Σ)

+∥v∥L∞([0,T ],Σ)∥µ[u]−µ[v]∥L∞[0,T ]

)
.

By the definition of L, see (1.2), we notice that for any u∈Σ, from the Cauchy-Schwarz
inequality we have ∣∣∣∣∫ Ω ·Luūdx

∣∣∣∣≤|Ω|∥xu∥L2∥∇u∥L2 ≲∥u∥2Σ. (3.4)

Thus, for any u∈E , there exists C(M,N)>0 such that

∥µ[u]∥L∞[0,T ]≲
1

N2

(
∥u∥2L∞([0,T ],Σ)+∥u∥2σ+2

L∞([0,T ],Σ)

)
≤C. (3.5)

Moreover, from the embedding Σ(Rd) ↪→Lr
(
Rd
)
we also obtain that

∥µ[u]−µ[v]∥L∞[0,T ]≤C∥u−v∥L∞([0,T ],Σ). (3.6)

For any u0∈Σ(Rd), let H(u0)(u)(t)=H(u)(t) be defined as

H(u)(t)=UΩ(t)u0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)(g|u(τ)|2σu(τ)−µ[u(τ)]u(τ))dτ,

where UΩ(t) is defined in (2.2). By using Proposition 2.7, the embedding Σ(Rd) ↪→
Lr(Rd) and Hölder’s inequality, we obtain

∥H(u)∥Lq([0,T ),Lr)∩L∞([0,T ],L2)≲∥u0∥L2 +T
q−q′
qq′ ∥u∥2σL∞([0,T ],Σ)∥u∥Lq([0,T ),Lr)

+T∥µ[u]∥L∞[0,T ]∥u∥L∞([0,T ],L2). (3.7)

Moreover, using the commutator estimates in Proposition 2.4, we get that

∇H(u)=UΩ(t)∇u0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)∇(g|u(τ)|2σu(τ)−µ[u(τ)]u(τ))dτ

− i+γ

1+γ2

∫ t

0

UΩ(t−τ)(∇V − iΩ∧∇)H(u)(τ)dτ

and

xH(u)=UΩ(t)xu0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)∇(g|u(τ)|2σu(τ)−µ[u(τ)]u(τ))dτ

− i+γ

1+γ2

∫ t

0

UΩ(t−τ)(∇− iΩ∧x)H(u)(τ)dτ.

Since ∇V is linear, the embedding Σ(Rd) ↪→Lr(Rd) and Hölder’s inequality imply that

∥∇H(u)∥Lq([0,T ),Lr)∩L∞([0,T ],L2)≲∥∇u0∥L2 +T
q−q′
qq′ ∥u∥2σL∞([0,T ],H1)∥∇u∥Lq([0,T ),Lr)

+T∥µ[u]∥L∞[0,T ]∥∇u∥L∞([0,T ],L2)

+T∥xH(u)∥L∞([0,T ],L2)+T∥∇H(u)∥L∞([0,T ],L2),
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and

∥xH(u)∥Lq([0,T ),Lr)∩L∞([0,T ],L2)≲∥xu0∥L2 +T
q−q′
qq′ ∥u∥2σL∞([0,T ],H1)∥xu∥Lq([0,T ),Lr)

+T∥µ[u]∥L∞[0,T ]∥∇u∥L∞([0,T ],L2)

+T∥xH(u)∥L∞([0,T ],L2)+T∥∇H(u)∥L∞([0,T ],L2).

It follows from Proposition 2.7, (3.5) and the estimates above that there exist C1>0
and K(M,N)>0 such that

∥H(u)∥L∞([0,T ],Σ)∩Lq((0,T ),W 1,r)+∥xH(u)∥Lq([0,T ),Lr)

≤C1

(
∥u0∥Σ+

(
T +T

q−q′
qq′

)
KM

)
,

and

d(H(u),H(v))≤C1

(
T +T

q−q′
qq′

)
Kd(u,v).

Note that

q−q′

qq′
=1− 2

q
=

2+2σ−dσ
2σ+2

>0.

We set M =2C1∥u0∥Σ and we choose T small enough so that the following inequality

C1

(
T +T

q−q′
qq′

)
K≤ 1

2
(3.8)

is satisfied. Finally, notice that (2.7), (2.8), (3.4) and (3.7) imply that for any t∈ [0,T ],
there exist C2,C3>0 such that

∥H(u)(t)∥L2 ≥∥UΩ(t)u0∥L2

−C2

∥∥∥∥∫ t

0

UΩ(t−τ)(g|u(τ)|2σu(τ)−µ[u(τ)]u(τ))dτ
∥∥∥∥
L∞([0,T ],L2)

≥
(
∥u0∥2L2 −

2γ

1+γ2

∫ t

0

(
HΩ(UΩ(τ)u0),UΩ(τ)u0

)
dτ

) 1
2

−C2

(
T

q−q′
qq′ ∥u∥2σL∞([0,T ],Σ)∥u∥Lq([0,T ),Lr)+T∥µ[u]∥L∞[0,T ]∥u∥L∞([0,T ],L2)

)
≥
(
∥u0∥2L2 −C3T∥u0∥2L∞([0,T ],Σ)

) 1
2

−C2

(
T

q−q′
qq′ ∥u∥2σL∞([0,T ],Σ)∥u∥Lq([0,T ),Lr)+T∥µ[u]∥L∞[0,T ]∥u∥L∞([0,T ],L2)

)
.

Exploiting (3.5) in the inequality above implies that there exists K1(N,M)>0 such
that

inf
t∈[0,T ]

∥H(u)∥L2 ≥∥u0∥L2 −K1(T
1
2 +T

q−q′
qq′ +T ).

Now we set N =∥u0∥L2 . By choosing T >0 which satisfies condition (3.8) and also

(T
1
2 +T

q−q′
qq′ +T )≤ N

2K1
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we obtain that H maps E into itself and it is a contraction. Thus H admits a fixed point
ψ∈C([0,T ],Σ(Rd)), which is a solution to the Cauchy problem (1.9). The uniqueness
follows from the fact that the map H is a contraction in E . Moreover, notice that we
can extend the local solution until the Σ-norm of ψ(t) is bounded. Hence we obtain
the blow-up alternative, that is, if Tmax>0 is the maximal time of existence, then
Tmax=∞, or Tmax<∞ and

lim
t→Tmax

∥ψ(t)∥Σ=∞.

Remark 3.1. Let us emphasize why we need the condition σ≥ 1
2 . On one hand, in

the absence of the nonlocal term µ, we could use the contraction principle in the set E
with the weaker distance

g(u,v)=∥u−v∥Lq((0,T ),Lr)+∥u−v∥L∞((0,T ),L2).

Indeed, it is standard to prove that (E ,g) is a complete metric space. On the other
hand, the presence of µ requires a stronger distance induced by the L∞

t Σ-norm, as it is
clear from inequality (3.6). This implies that we have to use the distance d instead of
g. But for σ< 1

2 , this is not possible because the power-type nonlinearity is not locally
Lipschitz continuous in Sobolev spaces (inequality (3.2) fails).

3.2. Local well-posedness for σ< 1
2 . In this subsection, we address the

local well-posedness problem in the case 0<σ< 1
2 . Here we adopt a different strategy,

based on an iterative argument that constructs a sequence of approximating solutions.
We start by setting ψ(0)≡0. For k≥1, let us assume that we already constructed
ψ(k−1)∈C([0,T ),Σ(Rd)). We then define the approximating solution ψ(k) as the solution
to the following problem{

(i−γ)∂tψ(k)=− 1
2∆ψ

(k)+V ψ(k)+g|ψ(k)|2σψ(k)−Ω ·Lψ(k)−µ[ψ(k−1)]ψ(k),

ψ(k)(0)=ψ0∈Σ(Rd).

Notice that in the equation above, the term µ[ψ(k−1)] is a L∞ function of time not
depending on ψ(k). Thus we can use the classical contraction principle to prove the local

existence of ψ(k) for the whole range σ∈
[
0, 2

(d−2)+

)
. We will then prove the convergence

of the sequence {ψ(k)} to a profile ψ. In order to show that ψ is indeed a solution to (1.9),
we will use the compact embedding Σ2(Rd) ↪→Σ(Rd) and the supposition |Ω|< ω√

2
. This

supposition is needed to show that ψ∈L2([0,T ),Σ(Rd)), and, in particular, that µ[ψ(t)]
is well defined, see Proposition 3.3. Last, we will prove the uniqueness of solutions using
a classical energy estimate.
In view of the description above, we start by studying the simplified model{

(i−γ)∂tψ=− 1
2∆ψ+V ψ+g|ψ|2σψ−Ω ·Lψ−λψ,

ψ(0)=ψ0∈Σ(Rd)
(3.9)

where λ is a L∞-function of time. Using the Strichartz estimates in Proposition 2.7, we
will prove the local well-posedness of Equation (3.9).

Proposition 3.1. Let 0≤σ< 2
(d−2)+ and λ∈L∞(R). Then for any ψ0∈Σ(Rd), there

exists 0<T =T (∥ψ0∥Σ,∥λ∥L∞), and a unique solution ψ∈C([0,T ),Σ(Rd)) to (3.9).
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Proof. For any u0∈Σ, we define the map F(u0)(u)(t)=F(u)(t) as

F(u)(t)=UΩ(t)u0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)(g|u(τ)|2σu(τ)−λ(τ)u(τ))dτ.

We fix T >0 which will be chosen later, and let (r,q) be defined as in (3.1). We consider
the set

XT =
{
u∈C([0,T ],Σ(Rd));u,xu,∇u∈Lq

(
(0,T ),Lr(Rd)

)}
,

endowed with the distance

d(u,v)=∥u−v∥L∞([0,T ],L2)+∥u−v∥Lq((0,T ),Lr).

It is a standard procedure to prove that the set (XT ,d) is a complete metric space. Let
u∈XT . Proposition 2.7, the embedding Σ(Rd) ↪→Lr(Rd) and Hölder’s inequality imply
that

∥F(u)∥Lq([0,T ),Lr)∩L∞([0,T ],L2)≲∥u0∥L2 +T
q−q′
qq′ ∥u∥2σL∞([0,T ],H1)∥u∥Lq([0,T ),Lr)

+T∥λ∥L∞[0,T ]∥u∥L∞([0,T ],L2). (3.10)

Moreover, using the commutator estimates in Proposition 2.4, we obtain

∇F(u)=UΩ(t)∇u0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)∇(g|u(τ)|2σu(τ)−λ(τ)u(τ))dτ

−(i +γ)

∫ t

0

UΩ(t−τ)(∇V − iΩ∧∇)F(u)(τ)dτ

and

xF(u)=UΩ(t)xu0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)∇(g|u(τ)|2σu(τ)−λ(τ)u(τ))dτ

− i+γ

1+γ2

∫ t

0

UΩ(t−τ)(∇− iΩ∧x)F(u)(τ)dτ.

Since ∇V is linear, the embedding H1(Rd) ↪→Lr(Rd) and Hölder’s inequality imply that

∥∇F(u)∥Lq([0,T ),Lr)∩L∞([0,T ],L2)≲∥∇u0∥L2 +T
q−q′
qq′ ∥u∥2σL∞([0,T ],H1)∥∇u∥Lq([0,T ),Lr)

+T∥λ∥L∞[0,T ]∥∇u∥L∞([0,T ],L2)

+T∥xF(u)∥L∞([0,T ],L2)+T∥∇F(u)∥L∞([0,T ],L2),

and

∥xF(u)∥Lq([0,T ),Lr)∩L∞([0,T ],L2)≲∥xu0∥L2 +T
q−q′
qq′ ∥u∥2σL∞([0,T ],H1)∥xu∥Lq([0,T ),Lr)

+T∥λ∥L∞[0,T ]∥∇u∥L∞([0,T ],L2)

+T∥xF(u)∥L∞([0,T ],L2)+T∥∇F(u)∥L∞([0,T ],L2).

By choosing T to be sufficiently small, the function F maps a suitable ball in XT into
itself. Using Proposition 2.7 as in the derivation of (3.10) we can also prove that F
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is a contraction with respect to the distance d. Thus, by the fixed point theorem, we
conclude that for any ψ0∈Σ, there exists a unique solution to (3.9).

We will also need the following lemma in order to find a suitable bound on the
approximating sequence.

Lemma 3.1. For any |Ω|< ω√
2
and ψ∈Σ(Rd), there exists a constant C(Ω,ω)>0 such

that

∥ψ∥2Σ2 ≤C
(
(HΩψ,HΩψ)+∥ψ∥2Σ

)
. (3.11)

Proof. By recalling the definition of the operator HΩ (1.15), we compute

(HΩψ,HΩψ)=
1

4
∥∆ψ∥2L2 +

ω4

4

∥∥|x|2ψ∥∥2
L2 +∥Ω ·Lψ∥2L2 −

ω2

2

(
∆ψ,|x|2ψ

)
+(∆ψ,Ω ·Lψ)−ω2

(
|x|2ψ,Ω ·Lψ

)
=
1

4
∥∆ψ∥2L2 +

ω4

4

∥∥|x|2ψ∥∥2
L2 +∥Ω ·Lψ∥2L2 +

ω2

2

∥∥|x||∇ψ|∥∥2
L2

+ω2(∇ψ,xψ)+(∆ψ,Ω ·Lψ)−ω2
(
|x|2ψ,Ω ·Lψ

)
, (3.12)

where we suppose that ωj =ω for any j, the other case being similar. The fifth term on
the right-hand side of (3.12) is bounded by

ω2(∇ψ,xψ)≤C∥ψ∥2Σ. (3.13)

For the last two terms in (3.12), we use Young’s inequality to obtain

(∆ψ,Ω ·Lψ)≤∥∆ψ∥L2∥Ω ·Lψ∥L2 ≤ ε

2
∥∆ψ∥2L2 +

1

2ε
∥Ω ·Lψ∥2L2 (3.14)

and

ω2
(
|x|2ψ,Ω ·Lψ

)
≤ω2

∥∥|x|2ψ∥∥
L2

∥∥Ω ·Lψ
∥∥
L2 ≤

ε1ω
4

2
∥|x|2ψ∥2L2 +

1

2ε1
∥Ω ·Lψ∥2L2 , (3.15)

for some ε,ε1>0 which will be chosen later. Equation (3.12) and estimates (3.14), (3.15)
imply that

A(ψ,ψ) :=
(
HΩψ,HΩψ)−ω2(∇ψ,xψ)

≥1

2

(
1

2
−ε
)∥∥∆ψ∥∥2

L2 +
ω4

2

(
1

2
−ε1

)∥∥|x|2ψ∥∥2
L2

+
ω2

2

∥∥|x||∇ψ|∥∥2
L2 +

(
1− 1

2ε
− 1

2ε1

)∥∥Ω ·Lψ
∥∥2
L2 . (3.16)

In particular, if we fix ε= 1
2 in the inequality above, we get

A(ψ,ψ)≥ ω4

2

(
1

2
−ε1

)∥∥|x|2ψ∥∥2
L2 +

ω2

2

∥∥|x||∇ψ|∥∥2
L2 −

1

2ε1

∥∥Ω ·Lψ
∥∥2
L2 . (3.17)

By choosing ε1=
1
2 , we consequently obtain that

A(ψ,ψ)≥ ω2

2

∥∥|x||∇ψ|∥∥2
L2 −

∥∥Ω ·Lψ
∥∥2
L2 . (3.18)
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From the definition of L in (1.2), we observe that∥∥Ω ·Lψ
∥∥2
L2 =

∫
|Ω ·(ix∧∇ψ)|2dx≤|Ω|2

∥∥|x||∇ψ|∥∥2
L2 . (3.19)

Thus, from (3.18), we get

A(ψ,ψ)≥
(
ω2

2
−|Ω|2

)∥∥|x||∇ψ|∥∥2
L2 ≥C(ω,Ω)

∥∥|x||∇ψ|∥∥2
L2 , (3.20)

where C(ω,Ω)>0 due to the supposition that |Ω|< ω√
2
.

Moreover, if we choose ε1=
|Ω|2
ω2 in inequality (3.17), then we obtain that

A(ψ,ψ)≥ ω4

2

(
1

2
− |Ω|2

ω2

)∥∥|x|2ψ∥∥2
L2 +

ω2

2

∥∥|x||∇ψ|∥∥2
L2 −

ω2

2|Ω|2
∥∥Ω ·Lψ

∥∥2
L2 .

From this estimate and by exploiting (3.19), it follows that

A(ψ,ψ)≥ ω4

2

(
1

2
− |Ω|2

ω2

)∥∥|x|2ψ∥∥2
L2 ≥C1(ω,Ω)

∥∥|x|2ψ∥∥2
L2 , (3.21)

where we again have that C1(ω,Ω)>0 because |Ω|< ω√
2
.

Furthermore, if in inequality (3.16), we choose ε1=
1
2 , then we obtain that

A(ψ,ψ)≥ 1

2

(
1

2
−ε
)
∥∆ψ∥2L2 +

ω2

2

∥∥|x||∇ψ|∥∥2
L2 −

1

2ε
∥Ω ·Lψ∥2L2 .

In this estimate we choose ε= |Ω|2
ω2 , so that

A(ψ,ψ)≥ 1

2

(
1

2
− |Ω|2

ω2

)
∥∆ψ∥2L2 +

ω2

2

∥∥|x||∇ψ|∥∥2
L2 −

ω2

2|Ω|2
∥Ω ·Lψ∥2L2 .

Exploiting (3.19), we obtain that

A(ψ,ψ)≥ 1

2

(
1

2
− |Ω|2

ω2

)
∥∆ψ∥2L2 ≥C1(ω,Ω)∥∆ψ∥2L2 . (3.22)

Gathering together the three estimates (3.20), (3.21), (3.22), we see that there exists a
constant C2(ω,Ω)>0 such that

∥∆ψ∥2L2 +
∥∥|x|2ψ∥∥2

L2 +
∥∥|x||∇ψ|∥∥2

L2 ≤C2A(ψ,ψ).

Using (2.1) and (3.13), we conclude that

∥ψ∥2Σ2 ≤C2

((
HΩψ,HΩψ

)
+C∥ψ∥2Σ

)
.

As a direct consequence of this lemma, we find the following a priori estimates on
a solution to (3.9):

Proposition 3.2. Let ψ0∈Σ(Rd) and ψ∈C([0,T ],Σ(Rd)) be the corresponding solu-
tion to (3.9). Then there exists 0<T ∗(∥ψ0∥H1 ,∥λ∥L∞)≤T , such that

∥ψ∥L∞([0,T∗],Σ)≤2∥ψ0∥Σ, (3.23)
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and

inf
[0,T∗]

∥ψ∥L2 ≥ 1

2
∥ψ0∥L2 . (3.24)

Moreover, there exists a constant 0<K(∥ψ0∥Σ) such that

∥µ[ψ]∥L∞[0,T∗]≤K. (3.25)

Finally, we also have

∂tψ∈L2
(
[0,T ∗],L2(Rd)

)
, (3.26)

and if |Ω|< ω√
2
, then

ψ∈L2([0,T ∗],Σ2(Rd)). (3.27)

Proof. For any ψ0∈Σ(Rd), Proposition 3.1 implies that there exists a time T >0
and a solution ψ∈C([0,T ),Σ(Rd)) to (3.9). In particular, by continuity, we can find a
time 0<T ∗=T ∗(∥ψ0∥H1 ,∥λ∥L∞)≤T such that (3.23) and (3.24) are true.

Then, by using (3.4), (3.23),(3.24) and the Gagliardo-Nirenberg inequality, we ob-
tain that

∥µ[ψ]∥L∞[0,T∗]≲ sup
t∈[0,T∗]

(
∥ψ(t)∥2Σ+∥ψ(t)∥2σ+2

L2σ+2

)
≤C

where C(∥ψ0∥Σ)>0.
To prove (3.26) and (3.27), let us for the moment assume sufficient regularity and

spatial decay of ψ so that the following computations are justified. We take the scalar
product of (3.9) with ψ and obtain that

γ
d

dt
∥ψ∥2L2 =2(λ−µ[ψ])∥ψ∥2L2 . (3.28)

Similarly, by taking the scalar product of Equation (3.9) with ∂tψ, integrating in time,
using (3.25), (3.28) and Gagliardo-Nirenberg’s inequality we obtain

2γ

∫ T∗

0

∥∂τψ(τ)∥2L2 dτ =E[ψ0]−E[ψ(T ∗)]+

∫ T∗

0

λ(τ)
d

dτ
∥ψ(τ)∥2L2 dτ

=E[ψ0]−E[ψ(T ∗)]+
2

γ

∫ T∗

0

λ(λ−µ[ψ])∥ψ∥2L2 dτ

≲C(∥ψ0∥Σ)+∥λ∥L∞[0,T∗]

(
∥λ∥L∞[0,T∗]+∥µ[ψ]∥L∞[0,T∗]

)
×T ∗∥ψ∥2L∞([0,T∗],L2)

≤C(∥ψ0∥Σ,∥λ∥L∞)<∞. (3.29)

This implies that ∂tψ∈L2
(
[0,T ∗],L2(Rd)

)
.

Finally, we observe that (3.9) implies formally that

(γ2+1)

∫ T∗

0

∥∂τψ∥2L2 dτ =

∫ T∗

0

(HΩψ,HΩψ)dτ

+

∫ T∗

0

∫
g2|ψ|4σ+2+λ2|ψ|2dxdτ+2

∫ T∗

0

(HΩψ,g|ψ|2σψ−λψ)dτ,
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which is equivalent to∫ T∗

0

(HΩψ,HΩψ)dτ ≤ (γ2+1)

∫ T∗

0

∥∂τψ∥2L2 dτ−2

∫ T∗

0

(HΩψ,g|ψ|2σψ−λψ)dτ. (3.30)

The last term in (3.30) is estimated as∣∣∣∣∣2
∫ T∗

0

(HΩψ,λψ)dτ

∣∣∣∣∣≲∥λ∥L∞[0,T∗]∥ψ∥2L∞([0,T∗],Σ).

Now we suppose that d=3, (the case d=2 is similar). Then, by using Hölder’s inequal-
ity, we estimate the third term in (3.30) as

∣∣(HΩψ,g|ψ|2σψ
)∣∣≲∫ |ψ|2σ(|xψ|2+ |∇ψ|2)dx

≲∥ψ∥2σ
L

2d
d−2

(∥∇ψ∥2Lr +∥xψ∥2Lr ),

where

r=
2d

d−σ(d−2)
.

By using again Hölder’s inequality in time and Sobolev embedding, we obtain∫ T∗

0

∥ψ∥2σ
L

2d
d−2

(∥∇ψ∥2Lr +∥xψ∥2Lr )dτ

≤∥ψ∥2σL∞([0,T∗],H1)(T
∗)1/p×

(
∥∇ψ∥2Lq([0,T∗],Lr)+∥xψ∥2Lq([0,T∗],Lr)

)
where

q=
4

σ(d−2)

is such that (q,r) satisfies condition (2.12) and

0<p=
q

q−2
<∞.

Thus, (3.29), (3.30), (3.23) and (3.24) imply that∫ T∗

0

(HΩψ,HΩψ) dτ

≲∥∂tψ∥2L2([0,T ],L2)+∥λ∥L∞[0,T∗]∥ψ∥2L∞([0,T∗],Σ)+∥ψ∥2σL∞([0,T∗],H1)(T
∗)1/p

×(∥∇ψ∥2Lq([0,T∗],Lr)+∥xψ∥2Lq([0,T∗],Lr))≤C (3.31)

where C=C(∥ψ0∥Σ,∥λ∥L∞)>0. On the other hand, if |Ω|< ω√
2
, then by using (3.11)

we have∫ T∗

0

∥ψ(τ)∥2Σ2 dτ ≤C

(∫ T∗

0

(HΩψ,HΩψ)dτ+T
∗∥ψ∥2L∞([0,T∗],Σ)

)
. (3.32)
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Thus, by combining (3.32), (3.31) and (3.23) we have that∫ T∗

0

∥ψ(τ)∥2Σ2 dτ ≤C

where C is a constant depending on ∥ψ0∥Σ,ω and Ω.

Propositions 3.1 and 3.2 allow us to infer the local existence result for (1.9). The
uniqueness will be given in Proposition 3.5 below.

Proposition 3.3. Let 0<σ< 2
(d−2)+ and |Ω|< ω√

2
. For any ψ0∈Σ(Rd), there exists

a maximal time of existence Tmax>0 and a solution ψ∈C([0,Tmax),Σ(Rd)) to (1.9).
Moreover, either Tmax=∞, or Tmax<∞ and

lim
t→Tmax

∥∇ψ(t)∥Σ=∞.

Proof. Let ψ0∈Σ(Rd), ψ0 ̸≡0. Let ψ(0)=ψ0 and for any k∈N, let ψ(k+1) be
defined as the local solution to the following Cauchy problem:

(i−γ)∂tψ(k+1)=− 1
2∆ψ

(k+1)+V ψ(k+1)+g|ψ(k+1)|2σψ(k+1)

−Ω ·Lψ(k+1)−µ[ψ(k)]ψ(k+1),

ψ(k+1)(0)=ψ0.

(3.33)

By using Proposition 3.1, there exists a local solution ψ(k)∈C
(
[0,Tk],Σ(Rd)

)
, where

0<Tk=T
(
∥ψ0∥Σ,∥µ[ψ(k−1)]∥L∞[0,Tk]

)
is a time which depends on k. We will now

show by induction that there exists T >0, not depending on k, so that for any k∈N,
ψ(k)∈C

(
[0,T ],Σ(Rd)

)
, and we also have

sup
k∈N

∥ψ(k)∥L∞([0,T ],Σ)≤2∥ψ0∥Σ, (3.34)

and

inf
k∈N

inf
[0,T ]

∥ψ(k)∥L2 ≥ 1

2
∥ψ0∥L2 . (3.35)

Clearly, properties (3.34) and (3.35) are true for k=1. Assume that they are true until
some n∈N. Then Proposition 3.2 and inequalities (3.34),(3.35) imply that there exists
a constant K(∥ψ0∥Σ)>0 , not depending on n, such that

∥µ[ψ(n)]∥L∞[0,T ]≤K,

and a time T ∗(∥ψ0∥Σ,K)>0 , also not depending on n, such that the Cauchy prob-
lem (3.33) admits a local solution ψ(n+1)∈C

(
[0,T ∗],Σ(Rd)

)
satisfying estimates (3.23),

(3.24) and (3.25).

Thus we choose T =T ∗(∥ψ0∥Σ,K), which is not depending on k. This implies that
the whole sequence {ψ(k)}⊂C([0,T ],Σ(Rd)) satisfies conditions (3.34) and (3.35). In
particular, the sequence is uniformly bounded in L∞([0,T ],Σ(Rd)) and, from (3.26), we
also have that for all k∈N

∂tψ
(k)∈L2

(
[0,T ],L2(Rd)

)
, ψ(k)∈L2([0,T ],Σ2(Rd)),
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and the sequence {ψ(k)} is uniformly bounded in these spaces. So there exists a sub-
sequence, still denoted by {ψ(k)} and ψ∈L∞([0,T ],Σ(Rd))∩L2([0,T ],Σ2(Rd)) with
∂tψ∈L2([0,T ],L2(Rd)), such that

ψ(k) ∗
⇀ψ in L∞([0,T ],Σ(Rd)) and ψ(k)⇀ψ in L2([0,T ],Σ2(Rd)).

Since the embedding Σ2(Rd) ↪→Σ(Rd) is compact (Proposition 2.2), the two conver-
gences imply that

ψ(k)→ψ in L2([0,T ],Σ(Rd))

strongly, and also that ψ∈C([0,T ],L2(Rd)). Moreover

µ[ψ(k)(t)]→µ[ψ(t)]

strongly in L2(R) and weakly∗ in L∞(R). Then ψ(t) satisfies (1.9) on [0,T ].
Notice also that the time of existence T depends only on the initial condition, so

it is straightforward to obtain the blow-up alternative. Indeed, for any T >0, if the
Σ-norm of ψ(T ) is finite, we could use the same process to extend the lifespan of the
solution to T +T (∥ψ(T )∥Σ). Consequently, either the maximal time of existence of a
solution is infinite Tmax=∞, or Tmax<∞ and

lim
t→Tmax

∥ψ(t)∥Σ=∞. (3.36)

We will need the following properties to prove the uniqueness of solutions.

Proposition 3.4. Let 0<σ< 2
(d−2)+ , ψ0∈Σ(Rd), |Ω|< ω√

2
, and let ψ∈

C([0,Tmax),Σ(Rd)) be the corresponding solution to (1.9). Then for any 0<T <Tmax

and t∈ [0,T ], we have

∥ψ(t)∥L2 =∥ψ0∥L2 (3.37)

and

E[ψ(t)]=E[ψ0]−2γ

∫ t

0

∥∂τψ(τ)∥2L2 dτ. (3.38)

Moreover

∂tψ∈L2
(
[0,T ],L2(Rd)

)
, ψ∈L2([0,T ],Σ2(Rd)). (3.39)

Proof. The proof is very similar to that given for Proposition 3.2. Indeed, let us
assume sufficient regularity and spatial decay of ψ so that the following computations are
satisfied. Then, by taking the scalar product of (1.9) with ψ, we obtain the conservation
of the L2-norm (3.37). Similarly, by taking the scalar product of (1.9) with ∂tψ, we
obtain (3.38). Gagliardo-Nirenberg’s inequality implies that

2γ

∫ t

0

∥∂τψ(τ)∥2L2 dτ =E[ψ0]−E[ψ(t)]

≤E[ψ0]+C
(
∥ψ(t)∥2Σ+∥ψ(t)∥2σ+2

Σ

)
.

Finally, by using (3.12) and by straightforwardly adapting the last part of the proof of
Proposition 3.2, we obtain ψ∈L2([0,T ],Σ2(Rd)).
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Now we prove the uniqueness of solutions to Equation (1.9).

Proposition 3.5. Let 0<σ< 2
(d−2)+ , |Ω|<

ω√
2
and ψ0∈Σ(Rd). Then there exists a

unique solution ψ∈C([0,Tmax),Σ(Rd)) to (1.9).

Proof. It only remains to show the uniqueness of solutions. We suppose that there
exist two different solutions ψ,φ∈C([0,T ),Σ(Rd)) to the Equation (1.9), both starting
from the same initial condition ψ0∈Σ(Rd). Let T >0 be such that

max
(
∥ψ∥L∞([0,T ],Σ),∥φ∥L∞([0,T ],Σ)

)
≤2∥ψ0∥Σ.

As a consequence, Proposition 3.4 implies that there exists a constant C>0 such that

∥ψ∥L2([0,T ],Σ2)+∥φ∥L2([0,T ],Σ2)≤C.

Let (r,q) be defined as in (3.1). Then from Proposition 2.7 we get∥∥∥∥∫ t

0

UΩ(t−τ)
(
|ψ(τ)|2σψ(τ)−|φ(τ)|2σφ(τ)

)
dτ

∥∥∥∥
Lq([0,T ),Lr)∩L∞([0,T ],L2)

≲
(
∥ψ∥2σ+1

L∞([0,T ],Lr)+∥φ∥2σ+1
L∞([0,T ],Lr)

)
∥ψ−φ∥Lq′ ([0,T ),Lr). (3.40)

We can formally write that

|µ[ψ]−µ[φ]|≲ (∥(−∆+V (x))ψ∥L2 +∥(−∆+V (x))φ∥L2)∥ψ−φ∥L2 .

This implies that∥∥∥∥∫ t

0

UΩ(t−τ)(µ[ψ(τ)]ψ(τ)−µ[φ(τ)]φ(τ))dτ
∥∥∥∥
Lq([0,T ),Lr)∩L∞([0,T ],L2)

≲
∥∥|µ[ψ]−µ[φ]|ψ∥∥

L1([0,T ),L2)
+∥µ[φ]∥L2[0,T )∥ψ−φ∥L2([0,T ),L2)

≲
(
∥ψ∥L2([0,T ),Σ2)+∥φ∥L2([0,T ),Σ2)

)
∥ψ−φ∥L2([0,T ),L2). (3.41)

Using the integral formulation of Equation (1.9)

ψ(t)=UΩ(t)ψ0−
i+γ

1+γ2

∫ t

0

UΩ(t−τ)
(
g|ψ(τ)|2σψ(τ)−µ[ψ(τ)]ψ(τ)

)
dτ,

we obtain

∥ψ−φ∥L∞([0,T ],L2)+∥ψ−φ∥Lq([0,T ),Lr)

≲∥ψ−φ∥L2([0,T ),L2)+∥ψ−φ∥Lq′ ([0,T ),Lr)

≲T
1
2 ∥ψ−φ∥L∞([0,T ],L2)+T

q−q′
qq′ ∥ψ−φ∥Lq([0,T ),Lr).

Since q−q′

qq′ >0, by choosing T >0 sufficiently small, it follows that

∥ψ−φ∥L∞([0,T ],L2)+∥ψ−φ∥Lq([0,T ),Lr)≤0,

that is ψ=φ in the interval [0,T ].

We notice that the proof of Theorem 1.2 is given by combining Propositions 3.3 and
3.5.
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3.3. Global Well-posedness. Under the conditions for local well-posedness
stated in Theorems 1.1 and 1.2, with the additional supposition that σ< 2

d if g<0, we
obtain the global well-posedness of solutions by a classical argument which follows from
the fact that the energy is decreasing, see (1.13). We shall first prove the following
estimate.

Lemma 3.2. If |Ω|<ω, then there exists a constant C(Ω,ω)>0 such that for any
u∈Σ(Rd),

∥u∥2Σ≤C(HΩu,u). (3.42)

Proof. By recalling the definition of HΩ (1.15), we observe that

(HΩu,u)=
1

2
∥∇u∥2L2 +

ω2

2
∥xu∥2L2 −Ω(Lu,u), (3.43)

were we suppose that ωj =ω for any j in (1.3), the other case being similar. We use
Cauchy-Schwartz and Young’s inequalities to obtain

|Ω(Lu,u)|≤ |Ω|∥∇u∥L2∥xu∥L2 ≤ ε

2
∥∇u∥2L2 +

|Ω|2

2ε
∥xu∥2L2 ,

for any ε>0. In particular, by choosing ε=1, we obtain from Equation (3.43)

ω2−|Ω|2

2
∥xu∥2L2 ≤ (HΩu,u),

while, by choosing ε= |Ω|2
ω2 , we get

1

2

(
1− |Ω|2

ω2

)
∥∇u∥2L2 ≤ (HΩu,u).

Thus it follows that

∥u∥2Σ≤ 2

C
(HΩu,u),

with

C=min

(
ω2−|Ω|2

2
,
1

2

(
1− |Ω|2

ω2

))
and C>0 for any |Ω|<ω.

With the lemma above and the fact that the energy is decreasing (1.13), we can
now prove Theorem 1.3 on the existence of global solutions.

Proof. (Proof of Theorem 1.3.) First, we consider the case g≥0, and σ< 2
(d−2)+ .

Then estimate (3.42) and the definition of the energy (1.12) imply that

∥ψ(t)∥2Σ≤C(HΩψ,ψ)≤C
(
(HΩψ,ψ)+

g

σ+1
∥ψ∥2σ+2

L2σ+2

)
=CE[ψ].

Since the energy is decreasing in time (1.13), we obtain the uniform bound

∥ψ(t)∥2Σ≤CE[ψ0]. (3.44)
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In the same way, when g<0, we can use (3.42), (1.13), the conservation of the mass
(3.37) and the Gagliardo-Nirenberg inequality to obtain

∥ψ(t)∥2Σ≲E[ψ0]−
g

σ+1
∥ψ∥2σ+2

L2σ+2 ≲E[ψ0]+∥ψ0∥2+(2−d)σ
L2 ∥ψ(t)∥dσΣ . (3.45)

Since dσ<2, we obtain again a uniform-in-time bound on ∥ψ(t)∥Σ.

Remark 3.2. Notice that (3.42) implies that for u∈Σ(Rd),
√
(HΩu,u) is an equivalent

norm to ∥u∥Σ. Indeed we get

∥u∥2Σ≤C(HΩu,u)≤K∥u∥2Σ, (3.46)

where K=K(ω)>0.

4. Asymptotic behavior of the linear equation
In this section, we study the asymptotic behavior of solutions in the linear case

g=0. We will show that the asymptotic state depends on the initial condition. We
introduce some notations to state our result. We denote the spectrum of the linear
operator HΩ by σ(HΩ)={λn}n∈N which is discrete, see Proposition 2.9. We order the
eigenvalues in an increasing order

λn<λm if n<m.

Let Wn be the eigenspaces associated with the eigenvalues λn, and ϕn,k ∈Wn the rela-
tive orthonormal basis of eigenfunctions, where k=1,...,mn, and mn=dim(Wn). Since
these eigenfunctions form a complete orthonormal basis of L2, we decompose the initial
condition as

ψ0=

∞∑
n=1

mn∑
k=1

(ψ0,ϕn,k)ϕn,k.

Let us denote by λM the smallest eigenvalue in the decomposition of ψ0 that is

λM =min{λn∈σ(HΩ) : ∃ϕn,k ∈Wn, (ψ0,ϕn,k) ̸=0} . (4.1)

Then we will prove that ψ(t) asymptotically converges to the eigenspaceWM and µ[ψ(t)]
to the eigenvalue λM .

Theorem 4.1. Let g=0, ψ0∈Σ(Rd) and let ψ∈C([0,∞),Σ(Rd)) be the corresponding
solution to (1.9). Then we have

lim
t→∞

µ[ψ(t)]=λM ,

where λM is defined in (4.1). Moreover,

lim
t→∞

inf
φ∈WM

∥ψ(t)−φ∥Σ=0.

Proof. Without losing generality, we suppose that ∥ψ0∥L2 =1. From the conser-
vation of the mass, this implies that for any t>0, ∥ψ(t)∥L2 =1. Moreover, since g=0,
we also have that

µ[ψ(t)]=(HΩψ,ψ)=E[ψ(t)]. (4.2)
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Thus µ[ψ(t)] is decreasing in time and also bounded from below by the first eigenvalue
of the operator HΩ. This implies that there exists µ∞∈R such that

lim
t→∞

µ[ψ(t)]=µ∞.

First, we show that µ∞∈σ(HΩ). We observe that from (3.42), (4.2) and (1.13),
there exists a constant C>0 such that for any t≥0

∥ψ(t)∥2Σ≤C (HΩψ,ψ)≤CE[ψ0].

In particular, ∥ψ(t)∥Σ is uniformly bounded in time. By Proposition 3.4, this also
implies that ∂tψ∈L2([0,∞),L2(Rd)). Thus there exists a ψ∞∈Σ(Rd) and a sequence
of times {tj}⊂R+, tj →∞ as j→∞ such that

ψj⇀ψ∞, in Σ(Rd),

∂tψj →0, in L2,

(i−γ)∂tψj+(µ[ψj ]−µ∞)ψj =HΩψj−µ∞ψj →0 in L2

as j→∞, where {ψj}={ψ(tj)}. Therefore, the profile ψ∞ satisfies

HΩψ∞=µ∞ψ∞

in a weak sense. From the compact embedding Σ(Rd) ↪→L2(Rd), we have that ∥ψ∞∥L2 =
1. Consequently µ∞∈σ(HΩ) and µ∞=µ[ψ∞]= (HΩψ∞,ψ∞). In particular, we have

(HΩψj ,ψj)→ (HΩψ∞,ψ∞).

Since for any u∈Σ(Rd), (HΩu,u) is an equivalent norm to ∥u∥Σ, see Remark 3.2, this
implies the strong convergence ψj →ψ∞ in Σ(Rd).

Next, we will show that µ∞=λM where M is the smallest eigenvalue in the decom-
position of ψ0, see (4.1). We decompose ψ(t) as

ψ(t,x)=

∞∑
n=1

mn∑
k=1

bn,k(t)ϕn,k(x)

where bn,k(t)=(ψ(t),ϕn,k). We plug this decomposition into (1.9) and obtain that

(i−γ)
∞∑

n=1

mn∑
k=1

ḃn,kϕn,k=

∞∑
n=1

mn∑
k=1

λnbn,kϕn,k−µ[ψ]
∞∑

n=1

mn∑
k=1

bn,k(t)ϕn,k(x). (4.3)

By taking the scalar product of (4.3) with ϕn,k we obtain that

bn,k(t)= bn,k(0)exp

(
γ

∫ t

0

µ[ψ(τ)]−λndτ
)
.

Consequently, if bn,k(0)=0 then bn,k(t)=0 for every t≥0. Now let λM be defined as in
(4.1). Suppose that µ∞ ̸=λM . Thus there exists m>M such that µ∞=λm>λM . Since
µ[ψ(t)] is decreasing in time, this implies that there exists δ>0 so that µ[ψ(t)]−λM >δ
for any t≥0. Let k≤mM be such that bM,k(0)=(ψ0,ϕM,k) ̸=0. It follows that

|bM,k(t)|= |bM,k(0)|exp
(
γ

∫ t

0

µ[ψ(τ)]−λM dτ

)
> |bM,k(0)|eγδt,
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which is a contradiction with respect to the conservation of the L2-norm (3.37). This
is enough to conclude that µ∞=λM .

Finally, we prove that the solution converges strongly in Σ(Rd) to the eigenspace
WM relative to the eigenvalue λM . Let δ>0 be such that for any n>M ,

λn≥λM +2δ.

Since µ[ψ(t)]→λM as t→∞, there exists T =T (δ)>0 such that for any t≥T ,

λM ≤µ[ψ(t)]≤λM +δ.

Therefore, it follows that for any n>M , and t>T

|bn,k(t)|= |bn,k(T )|exp
(
γ

∫ t

T

µ[ψ(τ)]−λndτ
)

< |bn,k(T )|e−γδ(t−T ).

As a result, we obtain the convergence from∥∥∥∥∥ψ(t,x)−
mM∑
k=1

bM,k(t)ϕM,k(x)

∥∥∥∥∥
Σ

=

∥∥∥∥∥∑
n>M

mn∑
k=1

bn,k(t)ϕn,k(x)

∥∥∥∥∥
Σ

≤

∥∥∥∥∥∑
n>M

mn∑
k=1

bn,k(T )ϕn,k(x)

∥∥∥∥∥
Σ

e−γδ(t−T )

≲e−γδ(t−T )∥ψ(T,x)∥Σ→0

as t→∞. In this way, we have shown that

lim
t→∞

inf
φ∈WM

∥ψ(t)−φ∥Σ=0.

Remark 4.1. In general, the eigenvalues of HΩ are not simple, and thus we cannot
identify precisely the asymptotic state. In the case µ∞ is simple, for example when µ∞
is the smallest eigenvalue of HΩ, we obtain a strong convergence to a stationary state.

5. Asymptotic behavior in the nonlinear case
In the previous section, we studied the asymptotic behavior when g=0. In this

case, different eigenspaces are invariant under the flow of (1.9). Thus the dissipation
of the energy (1.13) implies the convergence to the eigenspace of least energy in the
decomposition of the initial datum. When g ̸=0, the power-type nonlinearity mixes the
eigenspaces, and studying the asymptotic behavior becomes more complex.

In this section, we will first study the ω-limit set for (1.9) under the hypothesis
of global well-posedness stated in Theorem 1.3. For any ψ0∈Σ(Rd), the ω-limit set is
defined as follows.

Definition 5.1. Let ψ0∈Σ(Rd) and let ψ∈C[[0,∞),Σ(Rd)) be the corresponding
solution to (1.9). Then the ω-limit set with respect to the metric induced by the Σ-norm
is defined as

ω(ψ0)=
{
u∈Σ: ∃{tn}⊂R+, tn→∞, s.t. ψ(tn)→u in Σ(Rd)

}
.

We shall also recall that a stationary state Q∈Σ(Rd) is a solution to

0=−1

2
∆Q+V Q+g|Q|2σQ−Ω ·LQ−µ[Q]Q, (5.1)
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and given a ψ0∈Σ(Rd), the set of all stationary states with the same mass as ψ0 is
denoted as

S(ψ0)={u∈Σ: ∥u∥L2 =∥ψ0∥L2 , u solves (5.1)}. (5.2)

Proposition 2.3 implies that there exists a functionQgs∈S(ψ0), referred to as the ground
state, which minimizes the energy among all the elements of S. We prove the following.

Theorem 5.1. Under the hypothesis of Theorem 1.3, let ψ0∈Σ(Rd) and let ψ∈
C([0,∞),Σ(Rd)) be the corresponding solution to (1.9). Then there exists Q∈S(ψ0)
such that Q∈ω(ψ0). Moreover, we also have

E[ψ(t)]→E[Q] as t→∞. (5.3)

Proof. We suppose that ∥ψ0∥L2 =1 without losing generality. Then (3.37) implies
that ∥ψ(t)∥L2 =1 for every t≥0 and

µ[ψ(t)]=E[ψ(t)]+
gσ

σ+1
∥ψ(t)∥2σ+2

L2σ+2 .

Notice that the energy E[ψ(t)] is a continuous and decreasing function of time, see
(1.13). It is also bounded from below by the energy of the ground state E[Qgs], see
Proposition 2.3. As a consequence, there exists E∞≥E[Qgs] such that

lim
t→∞

E[ψ(t)]=E∞.

By using (1.13), this implies that

E∞−E[ψ0]= lim
t→∞

(E[ψ(t)]−E[ψ0])=−2γ lim
t→∞

∫ t

0

∥∂τψ(τ)∥2L2 dτ

and consequently ∂tψ∈L2([0,∞),L2(Rd)). Moreover, by a straightforward adaption of
Proposition 2.3 we obtain that µ[ψ(t)] is a continuous function bounded from below by

µmin=inf
{
µ[u] : u∈Σ(Rd), ∥u∥L2 =1

}
.

Notice that for g≥0, (1.13) implies µ[ψ(t)] is also straightforwardly bounded from
above by (1+σ)E[ψ0]. For g<0, by the Gagliardo-Nirenberg inequality, µ[ψ(t)] is still
bounded from above by

∥µ[ψ]∥L∞[0,∞)≲E[ψ0]+∥ψ∥2σ+2
L∞([0,∞),Σ)

where we use that ∥ψ∥2σ+2
L∞([0,∞),Σ)≲1, see (3.45). Thus there exists a sequence {tn}⊂

R+, tn→∞ as n→∞ such that
ψ(tn)⇀ψ∞ in Σ(Rd),

∂tψ(tn)→0 in L2,

µ[ψ(tn)]→µ∞.

Then it follows that

0=(i−γ)∂tψ+
1

2
∆ψ−V ψ−g|ψ|2σψ+Ω ·Lψ+µ[ψ]ψ

⇀
1

2
∆ψ∞−V ψ∞−g|ψ∞|2σψ∞+Ω ·Lψ∞+µ∞ψ∞,
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where the convergence is intended in a weak sense. In particular, the profile ψ∞ satisfies
weakly the stationary equation

0=−1

2
∆ψ∞+V ψ∞+g|ψ∞|2σψ∞−Ω ·Lψ∞−µ∞ψ∞.

Since ψ∞∈Σ(Rd), from the equation above, we obtain µ∞=µ[ψ∞]. The compact
embedding Σ(Rd) ↪→L2(Rd)∩L2σ+2(Rd) (see Proposition 2.1) implies that ∥ψ∞∥L2 =
∥ψ0∥L2 =1, ψ∞∈S(ψ0) and

∥ψ(tn)∥2σ+2
L2σ+2 →∥ψ∞∥2σ+2

L2σ+2 .

Thus, from the convergence

µ[ψ(tk)]=(HΩψ(tk),ψ(tk))+g∥ψ(tk)∥2σ+2
L2σ+2 →µ[ψ∞]= (HΩψ∞,ψ∞)+g∥ψ∞∥2σ+2

L2σ+2

we obtain that

(HΩψ(tn),ψ(tn))→ (HΩψ∞,ψ∞).

Consequently, by using (3.42), we obtain the strong convergence in Σ(Rd)

∥ψ(tn)−ψ∞∥2Σ≲ (HΩ (ψ(tn)−ψ∞),ψ(tn)−ψ∞)→0.

From the monotonicity of the energy (1.13), it also follows that

E∞= lim
t→∞

E[ψ(t)]= lim
n→∞

E[ψ(tn)]=E[ψ∞].

As a consequence of Theorem 5.1, we obtain the following properties of the ω-limit
associated with the evolutionary system (1.9).

Proposition 5.1. Under the hypothesis of Theorem 1.3, let ψ0∈Σ(Rd). Then
ω(ψ0) is connected and compact with respect to the Lp-norm for any p∈ [2,2d/(d−2)+).
Moreover, ω(ψ0)⊂S(ψ0) and for any u∈ω(ψ0), E[u]=E∞.

Proof. Notice that for any s>0, the set

{ψ(t) : t≥s}

is connected and relatively compact in Lp(Rd) for any p∈
[
2, 2d

(d−2)+

)
(see Proposition

2.1). As a consequence,

ω(ψ0)=
⋂
s>0

{ψ(t) : t≥s},

is connected and compact in Lp(Rd). Moreover, Theorem 5.1 implies that there exists
Q∈S(ψ0) such that Q∈ω(ψ0) and also that for any u∈ω(ψ0), E[u]=E[Q]=E∞, see
(5.3).

We now show that ω(ψ0)⊂S(ψ0). Suppose by contradiction that there exists v0∈
ω(ψ0) such that v0 /∈S(ψ0). Let {tn}⊂R+, tn→∞ as n→∞ be such that ψ(tn)→v0
in Σ(Rd). Let v∈C([0,∞),Σ(Rd)) be the solution to (1.9) stemming from v0. Then
Theorem 5.1 implies that there exists {τn}⊂R+ such that v(τn)→W in Σ(Rd), where
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W ∈S(ψ0). Then it is straightforward to see that ψ(tn+τn)→W in Σ(Rd), thus W ∈
ω(ψ0) and E[W ]=E[v0]=E∞. Thus (1.13) implies that∫ ∞

0

∥∂tv(τ)∥2L2 dτ =E[W ]−E[v0]=0,

that is ∂tv=0 almost everywhere in L2 and v solves the stationary Equation (5.1) in a
weak sense for almost every t>0. Since v∈Σ(Rd), we obtain that v∈S(ψ0), which is a
contradiction.

In general, neither Theorem 5.1 nor Proposition 5.1 imply the uniqueness of the
asymptotic limit, nor that the solution tends to the limit for all t>0. The uniqueness
could follow from the fact that ω(ψ0) is connected. This would require showing that the
set of stationary states with fixed L2-norm and fixed energy is not connected (excluding
the phase shift invariance), which is a result the authors are not aware of.

On the other hand, there exist initial conditions that stem solutions where both
uniqueness and convergence for all times can be proven. Indeed if the energy of the
initial condition is small enough, for instance, smaller than that of the first excited state
in S(ψ0), then the solution must converge to the ground state at least on a sequence of
times. We will now suppose that Conjecture 1.6 is true. We recall that this conjecture is
partially confirmed by numerical approaches and formal expansion in [10] and reference
therein, although a general theoretical proof seems to be missing.

Under the hypothesis that the conjecture is true, we can prove Theorem 1.7, that
is, we can show that a solution with small enough initial energy converges strongly to a
ground state.

Proof. (Proof of Theorem 1.7.) Theorem 5.1 and Equation (3.38) imply that
there exists ϕ∈ [0,2π) such that eiϕQgs∈ω(ψ0), where ∥Qgs∥L2 =∥ψ0∥L2 , and Qgs is
given by Proposition 2.3. Without losing generality, we suppose ϕ=0.

Suppose by contradiction that

ψ(t)↛Qgs, in Σ(Rd)

as t→∞. Then there exists {tn}⊂R+, tn→∞ as n→∞ and ε>0 such that

∥ψ(tn)−Qgs∥Σ≥ε.

From the uniform boundness of ∥ψ(tn)∥Σ, there exists a subsequence, still denoted by
tn and u∈Σ(Rd) such that

ψ(tn)⇀u in Σ.

From the compact embedding Σ(Rd) ↪→L2(Rd)∩L2σ+2(Rd), we obtain that

∥u∥L2 =∥ψ0∥L2 , ∥ψ(tn)∥2σ+2
L2σ+2 →∥u∥2σ+2

L2σ+2 .

As a consequence, from (3.46) and the weak lower semi-continuity of the norm we obtain

E[u]≤ liminf
n

E[ψ(tn)]=E[Qgs].

Proposition 2.3 implies that E[u]=E[Qgs]. As a result, it follows from (3.42) that

∥ψ(tn)∥Σ→∥Qgs∥Σ

that is ψ(tn)→Qgs in Σ(Rd). This is a contradiction.
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