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THE CONDITIONAL BARYCENTER PROBLEM,
ITS DATA-DRIVEN FORMULATION AND ITS SOLUTION THROUGH

NORMALIZING FLOWS∗

ESTEBAN G. TABAK† , GIULIO TRIGILA‡ , AND WENJUN ZHAO§

Abstract. A family of normalizing flows is introduced for selectively removing from a data set the
variability attributable to a specific set of cofactors, while preserving the dependence on others. This
is achieved by extending the barycenter problem of optimal transport theory to the newly introduced
conditional barycenter problem. Rather than summarizing the data with a single probability distribu-
tion, as in the classical barycenter problem, the conditional barycenter is represented by a family of
distributions labeled by the cofactors kept. The use of the conditional barycenter and its differences
with the classical barycenter are illustrated on synthetic and real data addressing treatment effect
estimation, super-resolution, anomaly detection and lightness transfer in image analysis.
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1. Introduction

Given a set of distributions ρ(x|z) indexed by a variable z, the optimal transport
barycenter problem [1, 12, 14] seeks a family of invertible maps y=T (x,z) so that the
push forward distribution µ=T (·,z)#ρ(·|z) is independent of z. Among all maps T (·,z)
satisfying this constraint, the barycenter µ(y) of the ρ(x|z) is defined by the map that
minimizes a cost function C(T ). In an optimal transport setting, the cost C(T ) is the
expected value over the joint distribution ρ(x,z)=ρ(x|z)γ(z) of a pairwise cost function
c(x,T (x,z)). More general costs can be used, for instance to quantify some measure of
the deformation incurred by the map or to compute the barycenter of distributions over
different spaces. This extension gives rise to the distributional barycenter problem [18].

Direct applications of the barycenter problem include:

(1) Finding a single distribution representative of all ρ(·|z). The barycenter µ(y) pro-
vides a much sharper descriptor than the marginal

ρ(x)=

∫
ρ(x|z) γ(z) dz,

as the latter preserves all the variability in x due to z, merely averaging over the
factor z that could have helped explain it. By contrast, the map y=T (x,z) removes
from x all variability attributable to z. For example, the natural variability in the
heart rate x is highly diminished if one accounts for the effect of the patient’s
age z. Averaging the heart rate over the age, on the other hand, is equivalent to
disregarding the age factor altogether, i.e. considering in lieu of the pairs {xi,zi},
their first component alone {xi}.
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For a simple example, consider a one-dimensional normal conditional distribution
of the form

ρ(x|z)= 1√
2π

e−
(x−z)2

2 , γ(z)=
1√
2π

e−
z2

2 ,

with barycenter

µ(y)=
1√
2π

e−
y2

2 ,

which is sharper than the marginal

ρ(x)=

∫
ρ(x|z) γ(z) dz= 1√

4π
e−

x2

4 ,

as it has half its variance. Not only the variance but also the barycenter’s shape
reflects the conditional distributions better than the marginal. Consider for instance
a discrete, z∈{z1,. ..,zK}, where the ρ(x|zk) are all Gaussian. Here the marginal
is a Gaussian mixture, while the barycenter is a Gaussian, just as each conditional
distribution.
In addition to providing a representative µ of the ρ(·|z), eliminating from ρ(x)
the variability explainable by known factors z paves the way to uncover additional,
hidden sources of variability. It is clear that the use of the barycenter or the marginal
ought to be made based on the application at hand. For instance, if one wishes to
compute the mean of x independently of the value of z, computing the empirical
mean of the marginal ρ(x) is the fastest and simplest thing to do.

(2) Simulating the conditional distribution ρ(x|z∗) from n sample pairs {xi,zi}. One
first draws n samples {yi} from the barycenter µ through

yi=T (xi,zi),

and then uses these to produce n samples x∗
i ∼ρ(·|z∗) through the inversion

x∗
i =T−1 (yi,z

∗).

Thus we are using samples from a population with heterogeneous factors z to sim-
ulate the distribution for one particular value z∗.

Factor discovery provides a further application [23]. Here a new factor z is determined
by the condition that is should explain as much variability as possible, thus minimizing
the unexplained variability remaining in the barycenter µ(y).

This article further extends the notion of distributional barycenter to that of condi-
tional barycenter, where the individual, z-indexed objects to push forward are not dis-
tributions ρ(x) but conditional distributions ρ(x|r), further conditioned to z. The use
of the distributional barycenter µ as a representative becomes richer in the conditional
setting, where the conditional barycenter µ(y|r) summarizes the common information
contained in all the ρ(x|r,z). Consider for example the case where x is a measure of
health state, such as cholesterol level, r quantifies treatment, such as the choice of a
drug and its dosage, and z is a qualifier of the patient under consideration, such as age.
Two main tasks are of particular relevance in this setting: assessing the overall effect of
a treatment on a heterogeneous population of individuals, and estimating the treatment
effect on a specific individual.
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After eliminating the effect of z on x, µ(y|r) summarizes the effect of the treatment
r over all values of z. As in the non-conditional case, using instead the marginal

ρ(x|r)=
∫

ρ(x|r,z) γ(z) dz

yields much higher variability as, for each treatment r, the distribution of x covers its
range over all values of z. (In data-driven scenarios, this is the marginal estimated from
pairs {xi,ri}, disregarding the corresponding value of zi.) Moreover, the marginal may
display Simpson’s paradox [8, 13]: consider the synthetic data in Figure 4.2 where, for
each value of z (represented by color), the distribution of x (outcome) moves toward
lower values as r (the treatment) increases, but x increases as a function of z, and
therefore treatments with lower r are typically provided to patients with lower z. Then
in the marginal ρ(x|r), x may increase with r (since higher r correlates with higher
z and therefore higher x). By contrast, a summary based not on marginalization but
on the conditional barycenter µ(y|r), does not display Simpson’s paradox, as shown in
Figure 4.3.

A complementary use of the conditional barycenter for the same problem reverses
the roles of the treatment r and the factors z, finding the family of maps T (x,r,z) that
push forward ρ(x|r,z) to their barycenter µ(y|z) with respect to r. Here T (·,r,·) is
conceptualized as representing the treatment itself, i.e. transporting the health state x
of a patient with given covariates z between two treatments r1 and r2, mediated by the
barycenter:

x2=T−1 (T (x1,r1,z) ,r2,z) .

In practice, r1 may represent the current treatment (such as no treatment at all) and
x1 the corresponding currently measured health state.

We will discuss below further applications where the conditional distributional
barycenter problem provides a natural framework for analysis. In particular, we il-
lustrate the use of the conditional barycenter problem on four examples:

• Super-resolution volume reconstruction from slice acquisitions. One of the ways
to reconstruct a volumetric image of parts of the human body is through axial,
low resolution MRI images. The images are in low resolution as their acquisition
needs to be fast due to movements of the subject or to moving organs. The
low resolution of the slices and their non-perfect alignment result in inter-slice
artifacts.

• Treatment effects. This can refer to an actual medical treatment, to a habit
–smoking, eating an apple a day, getting a medical check-up every year–, to a
policy –raise taxes on gas to reduce CO2 emissions–, in short, to any scenario
where an outcome x, such as cholesterol level, depends on covariates z, such
as a patient’s age, and decisions r to be made, such as a course of medical
treatment.

• Characterization of anomalies. Climate studies often address anomalies: a sum-
mer warmer than regular, a longer rainy season. Typically, such anomalies are
quantified by comparing actual values to long-time averages, the climatology.
Yet such characterization is far from ideal. On the one hand, defining the
time-window for comparison may prove elusive: a particular day or week, a
season, a year? More importantly, it is not only mean values that characterize
“normality”: the variability around them is a fundamental component of any
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regime. Spring time weather in the American northeast, for instance, is not
characterized so much by a mean temperature or precipitation value, but by
their permanent change. The conditional barycenter distribution µ(y|r) pro-
vides a much better suited descriptor of climatology. Here r may represent, for
instance, the day of the year, and z the year. Then the difference x−T (x,r,z)
characterizes anomaly: how much the observed value of x needs to be changed
to make it consistent with the climatological distribution.

• Image analysis. In data analysis, an image is often conceptualized as a big
vector or matrix, such as a triad of color intensities for each pixel. However,
a characterization better suited for many purposes is in terms of a conditional
probability ρ(x|r), where r is a two dimensional vector encoding position, and
x represents again a triad of color intensities (physically, ρ represents the local
photon density in three frequency windows). Thus, when images are qualified
by factors z, such as the time or location at which a photograph was taken,
we face a conditional barycenter problem. The example we describe concerns
conditional lightness transfer, where the perceptual effect of an evolving lumi-
nosity due, for instance, to weather, season or time of the day, may depend on
the color of the object considered.

Most applications are data-based, i.e. the family of conditional distributions ρ(x|r,z)
and the marginal distributions γ(z) and η(r|z) are not provided in closed form, but
only through n observations, i.e. triplets of samples {xi,ri,zi} drawn from them. Thus
the core of this article is devoted to formulating the problem in terms of samples and
developing a methodology for its numerical solution.

To fully appreciate the usefulness of the conditional barycenter problem, one must
distinguish it from two other related procedures that remove the factor z from a distri-
bution ρ(x|r,z):

• Marginalization, already discussed, simply averages over z or, in the data-driven
case, truncates the samples, leaving just the pairs {xi,ri}. While simplifying
the problem by reducing the number of variables considered, this throws away
potentially useful information encoded in the factors z, enabling for instance
occurrences of the Simpson paradox.

• Regular barycenter over z, which temporarily forgets r and eliminates the effect
of z on x through a map y=T (x,z). Unlike the conditional barycenter problem,
this removes from x variability that r may account for, thus confounding the
dependence of x on r.

This article is structured as follows: after this introduction, Section 2 formulates the
problem, first as a cost minimization with the infinitely many constraints of the push-
forward condition, then as a minimax problem over the transport T and a test function
F that enforces the constraints, and finally as a penalized minimization where F adopts
a prescribed adaptive form. Section 3 formulates the last problem in terms of samples
while proposing an algorithm for its numerical solution, which involves a non-parametric
smooth normalizing flow driven by gradient descent. Section 4 applies the algorithm
to the four examples mentioned above, which simultaneously illustrate the numerical
methodology and the breadth of applicability of the conditional barycenter problem.
Finally, Section 5 concludes with some brief remarks.
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2. Formulation
Consider the joint distribution

ρ(x,r,z)=ρ(x|r,z) η(r|z) γ(z)

of three variables x, r and z, each of which possibly has more than one component.
Here x are the variables of interest or outcome, r may specify the treatment when
describing an action intended to control the outcome x, or simply general coordinates
that x depends on, and z are the covariates, confounding factors or simply factors.
We are using ρ to denote all distributions with x as first argument, with its format
specifying which variables are conditioned to which. Similarly, we will use γ and η for
all distributions on z and r respectively.

We seek to transform the random variable x through a map T with parameters r
and z, so that the resulting random variable y=T (x,r,z) is independent of z:

ρT (y|r,z)=T#ρ(x|r,z)=µ(y|r).

Among all maps T satisfying this constraint, we select the minimizer of a cost functional
C(T ) and define the resulting distribution µ(y|r) as the z-conditional barycenter of the
ρ(x|r,z). In optimal transport settings, the cost function may adopt one of the two
forms

C1(T )=

∫
c(x,T (x,r,z))ρ(x,r|z) dx dr γ(z)dz (2.1)

and

C2(T )=

∫
c(x,T (x,r,z))ρ(x|r,z) dx η(r)dr γ(z)dz, (2.2)

where the pairwise cost function c(x,y) is externally provided. While we use C1 in most
applications, the use of C2 is appropriate when searching for µ(y|r) as a representative
of the ρ(x|r,z). In that case one must weigh all values of z equally for each r, else we
may observe bias in µ(y|r) due to the non-uniformity of γ(z|r) analogous to the one
responsible for the Simpson Paradox (see Section 4.2.1 for an example in more detail).

More general costs C not based on a pairwise function c(x,y) are also possible,
extending the distributional barycenter problem to its conditional counterpart. For any
cost C(T ), the conditional barycenter problem can be formulated as follows:

min
T

C(T ), ρT (y|r,z)=T#ρ(x|r,z)=µ(y|r).

Since the push forward of the map only affects the variable x, an equivalent formu-
lation of the conditional independence constraint can be obtained by multiplying both
sides of the constraint above by ν(z|r) leading to

ρT (y,z|r)=ρT (y|r,z)ν(z|r)=µ(y|r)ν(z|r).

This is itself equivalent to the condition that every measurable test function F satisfying

∀y∀r
∫

F (y,r,z) ν(z|r) dz=0

must also satisfy

∀r
∫

F (y,r,z)ρT (y,z|r) dy dz=0, (2.3)



1640 DATA-DRIVEN CONDITIONAL BARYCENTER

as the following calculation shows: in one direction, if ρT (y,z|r)=µ(y|r)ν(z|r), then∫
F (y,r,z)ρT (y,z|r) dy dz=

∫
dy

∫
F (y,r,z) ν(z|r) dz=0.

In the other direction, it is enough to specialize F (y,r,z) to ρ(y|r,z) and apply Propo-
sition 2.1, stated and proved below.

This observation allows us to re-write the constrained optimization problem defining
the conditional barycenter as

min
T

max
F

[
C(T )+

∫
F (y,r,z) ρT (y,r,z) dy dr dz

]
∀y∀r

∫
F (y,r,z) ν(z|r) dz=0,

(2.4)

which can be re-stated as an unconstrained minimax problem by removing the z-mean
from the test functions F :

min
T

max
F

C(T )+LF ,

LF =

∫ [
F (y,r,z)−

∫
F (y,r,w)ν(w|r) dw

]
ρT (y,r,z) dy dr dz

=

∫
F (y,r,z)[ρT (y|r,z)−ρT (y|r)] η(r|z) γ(z) dy dr dz.

A simpler formulation, not requiring maximizing over the test function F , is enabled
by the following proposition:

Proposition 2.1. Adopting F (y,r,z)=ρT (y|r,z), LF is non-negative, vanishing only
when y and z are conditionally independent.

Proof. For this choice of F , the first term in LF becomes∫
ρT (y|r,z)2 γ(z|r) dz η(r)dr dy=

∫
Ez[ρT (y|r,z)2|r] η(r)dr dy,

while the second term equals∫
ρT (y|r,z)γ(z|r)dz ρT (y|r) dy η(r)dr=

∫
Ez[ρT (y|r,z)|r]2η(r)dr dy.

From Jensen’s inequality, their difference is non-negative, vanishing only if ρT (y|r,z)
does not depend on z.

This result permits restricting the test functions to the form F (y,r,z)=λ ρT (y|r,z),
since for this particular F , the test function LF only vanishes when ρ(y|r) is independent
of z. Hence we have the alternative formulation:

problem 2.1.

min
T

max
λ>0

C(T )+λ

∫
[ρT (y|z,r)−ρT (y|r)]ρT (y,z,r) dy dz dr, (2.5)

where a large penalty coefficient λ enforces the satisfaction of the push forward con-
straint. Section 3 discusses in detail how to pose this problem in data-driven scenarios
and solve it numerically.



TABAK, TRIGILA, AND ZHAO 1641

3. Data-driven formulation
This section discusses the data-driven formulation of the continuous optimization

problem (2.5) and its numerical solution. Replacing in (2.5) all expected values by their
empirical counterpart yields

min
y

max
λ

∑
i

c(xi,yi)+λ [ρT (yi|zi,ri)−ρT (yi|ri)], (3.1)

where yi=T (xi,zi) and for concreteness we have adopted the cost C1, with a pairwise
cost function c that we will specialize to the canonical cost

c(x,y)=
1

2
∥y−x∥2

in all numerical examples. (The algorithm extends with minor modifications to much
more general costs; see [18] for examples of non-pairwise cost functions in a non-
conditional setting.)

We can approximate both conditional densities by their Nadaraya-Waston estimates
[6, 22]:

ρT (y|rk,zk)≈
∑
i

Ka(y,yi)
Kbr,bz ([rk,zk], [ri,zi])∑
jKbr,bz ([rk,zk], [rn,zn])

, (3.2)

ρT (y|rk)≈
∑
i

Ka(y,yi)
Kbr (rk,ri)∑
nKbr (rk,rn)

, (3.3)

where Kh(:,c) is a kernel function, nonnegative and normalized so as to integrate to
one, with center c and bandwidth h. We further factorize the kernels in [r,z]-space into
the product of kernels in each individual space:

Kbr,bz ([rk,zk],[ri,zi])=Kbr (rk,ri) Kbz (zk,zi).

We have adopted isotropic Gaussian kernels in all three spaces, Y , R and Z for the
numerical examples in this article, with bandwidths to be discussed below. Then we
have

ρT (y|rk,zk)−ρT (y|rk)≈
∑
i

Ka(y,yi)Cik, (3.4)

where the matrix

Cik=
Kbr,bz ([rk,zk], [ri,zi])∑
nKbr,bz ([rk,zk], [rn,zn])

− Kbr (rk,ri)∑
nKbr (rk,rn)

, (3.5)

representing the difference between two affinity matrices, Zrz in [r,z] and Zr in r space,
can be pre-computed at the onset of the procedure. Then the problem (3.1) adopts the
simple form

min
y

max
λ

L=
∑
i

c(xi,yi)+λ
∑
i,l

Ka (yl,yi)Cil. (3.6)

In the continuous version (2.5) of (3.6), Proposition 2.1 proves that LF –the sum
weighted by λ– is non-negative definite, vanishing only when the push forward condition
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is satisfied. We need to guarantee that this is also the case for the discretization in (3.6),
in order to apply a penalization method where λ is increased gradually until the push
forward condition is satisfied to the level of accuracy sought. Otherwise a map T may
be found that makes L negative –and large for large values of λ– in an uncontrolled way,
bypassing the satisfaction of the push forward condition and the minimization of the
transportation cost. Another key property that the LF in (2.5) has and that we must
enforce on its discrete version is that it vanishes when y is conditionally independent of
z, i.e. when ρT (y|r,z) is a function of r alone.

Being a discrete approximation to the continuous LF , the discrete one in (3.6)
satisfies these properties approximately too. Yet we can make them hold exactly by
slightly modifying the matrix C as follows:

(1) Symmetrize C→ 1
2

(
C+CT

)
, a step of little consequence, as C only appears in L

acting on the symmetric kernel Ka.

(2) Perform the eigen-decomposition of C, keeping only the eigenvalues λk larger than a
threshold ϵ>0 and the corresponding eigenvectors Uk (we used ϵ=10−10), in order
to guarantee the non-negative nature of LF . This step only produces changes in C
of O(ϵ).

(3) In order for C to vanish when applied to functions of r alone, we need to make
each Uk orthogonal to those vectors that represent smooth functions of r. Since
any such vector can be well-approximated through kernel regression in r, it must
belong to the range of the affinity matrix Zr. Therefore we project U onto the
subspace orthogonal to this range, spanned by the left singular vectors Q of Zr

with corresponding singular values above a threshold ϵ:

U→ (I−QQT )U.

This step also changes C only slightly. To see this, notice that C(z,r) is orthogo-
nal to all smooth functions of r in the limit of infinitely many sample points and
vanishingly small bandwidths, since then we converge to the measure-based problem
and Proposition 2.1 holds. This orthogonality must still hold approximately in the
sample-based case under a robust choice of bandwidths for the kernels –discussed
below–, though proving it rigorously would entail a long technical exercise.

(4) The final C̃ adopts the form

C̃=
∑
k

λkUkU
T
k .

To verify in an example that the resulting modification of C is small, see for instance
Figure 3.1 for the matrices before and after modification in the volume reconstruction
example from Section 4.1.

3.1. A normalizing flow. We build the map y=T (x,r,z) through a time
dependent flow T t discretized into the composition of near-identity maps, as in normal-
izing flows [5, 7]. Unlike regular normalizing flows, the target distribution is generally
not a Gaussian but the unknown barycenter µ(y). The corresponding current condi-
tional distribution of x, evolving from ρ(x|r,z) to µ(y|r), is represented by its samples
yti =T t(xi,zi,ri). In most previous works in normalizing flows and flow-based optimal
transport [16, 20], each near-identity map is a simple function with a small number
of parameters to optimize over, as first proposed in [15]. We adopt here instead the
free-flow approach of [18], where the yi are individual degrees of freedom, updated
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Fig. 3.1. The C matrix before (left) and after (middle) modification in the volume reconstruction
example, and their relative difference (right).

through gradient descent of L. The smoothness of the underlying map T follows from
the smoothness in y, r and z of the kernels defining L. There is no need to propose
a closed form for T in an optimal transport setting since, unlike in Kullback–Leibler
divergence driven normalizing flows, the procedure does not require the explicit knowl-
edge of the Jacobian of the map. Treating the yi as independent degrees of freedom
makes the algorithm essentially non-parametric, except for the choice of bandwidths for
the three kernel functions.

The algorithm starts with yi=xi and small initial values for the learning rate η and
for the penalty coefficient λ. Then at every step n, we perform the following updates:

(1) Tentatively increase η through

η→αη, α>1,

where α has been determined via cross validation in the examples below: once near
optimality, we want η to increase, since the implicit gradient descent procedure
converges to Newton’s as η→∞.

(2) Writing

L=C+λLF , C=
1

n

∑
i

c(xi,yi), LF =
1

n

∑
i,l

Ka(yi,wl)Cil,

where the wl=yl are considered as fixed parameters, compute ∇yC and ∇yLF ,
their derivatives with respect to the yi. The reason not to name yl the second
argument of Ka and differentiate with respect to it too, is that the two arguments
of Ka play different roles: the first represents the value of y at which F is applied,
the second a parameter defining the test function F itself. The objective function L
must be minimized over y only in its first role: recall that, in the original minimax
formulation, L was not minimized but maximized over F .

(3) Update the penalty coefficient λ through

λn+1=min

{
λmax,max

{
λn,γ− ⟨∇yC,∇yLF ⟩

⟨∇yLF ,∇yLF ⟩

}}
γ >0.

The rationale behind this choice is to have λ (a) never decrease, (b) not become
so large as to force the procedure to overfit the push forward condition, and (c) be
large enough to make the total gradient ∇L point toward the satisfaction of the
push forward constraint –as opposed to the direction of decreasing transportation
cost, which would have the yi return toward their corresponding original xi. In the
runs below, we have adopted λmax=1000 and γ=0.1λmax.
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(4) Compute

∇yL=∇yC+λn+1∇yLF

and the Hessian

Hk
i =

∂2

∂yi∂yk
L,

with special care regarding the second derivatives of Ka, which must be read as

∂2

∂y2
Ka (y,w)

∣∣∣
y=yi,wk=yk

+
∂2

∂y∂w
Ka (y,w)

∣∣∣
y=yi,wk=yk

,

since the implicit anticipation of the future value of ∇y requires a prediction not
only for y but also for w=y.

(5) Perform a tentative implicit gradient descent step [3] with the current value of the
learning rate η:

ỹ=y−η (I+ηH)
−1∇yL,

and verify that

L
(
ỹ,λn+1

)
≤L

(
y,λn+1

)
.

If not, reduce η→ 1
2η and repeat until L does decrease. Then set y= ỹ.

(6) Stop when a termination criterion is met, ∥∇yL∥≤ ϵ, and verify that LF ≤ ϵF .

3.2. Choice of bandwidths. The penalty term LF involves three different
bandwidth parameters: br for r, bz for z and a for y. While the first two are fixed
throughout the procedure, a must evolve from a large initial value associated with the
coarse features of ρ(x) to a smaller one resolving the fine structure of the barycenter
µ(y).

If either r or z are categorical variables, the corresponding bandwidths must vanish,
with the kernels replaced by binary indicator functions, so the description that follows
applies to continuous r and z. Yet keeping the discrete case in mind helps conceptualize
the choice of a bandwidth. If r were categorical, we would –at least to some extent–
perform an independent regular barycenter problem for the distribution ρ(x|z) for each
value of r. This suggests that, for continuous r, the bandwidth adopted should not be
very small, or else each “individual barycenter problem” would contain too few samples.
In the examples below, we have adopted br=σr, the standard deviation of η(r). Given
br, we define the corresponding ‘effective sample size’ as

n(r)=
∑
i

Kr(ri,r)

Kr(ri,ri)
,

a number that will be used in the selection of the remaining bandwidths.
For continuous z∈RLz , the kernel can be chosen via Silverstein’s rule-of-thumb,

with appropriate modification to account for the dependence on r as follows:

bz =

(
4

Lz+2

)1/(Lz+4)

SD(z)min
i
{n(ri)}−1/(Lz+4).
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Given br and bz, the effective number of samples for jointly given values or r and z is

n(r,z)=
∑
i

Kr,z([ri,zi], [r,z])

Kr,z([ri,zi], [ri,zi])
.

The initial value h0
y for the bandwidth in y can be conceptualized in terms of pre-

conditioning, addressing only the coarser features of ρ(x|r,z), such as its conditional
mean and variance. The examples below use h0

y =SD(x). For the final value, instead,
we use

hend
y =

(
4

Ly+2

)1/(Ly+4)

SD(x−xC)min
i
{n(ri,zi)}−1/(Ly+4).

Note that the standard deviation is evaluated on a surrogate for y: the residual of x
after applying kernel regression on z conditioned on r, which reflects the rough features
of the conditional barycenter. Then, at step n, we adopt

a=max

{
h0
y+

n

nend

(
hend
y −h0

y

)
,hend

y

}
,

where nend is an estimate of the number of steps required by the algorithm (the inversion
procedure described below requires that, after n=nend we still perform additional steps
with a and λ kept constant until reaching convergence.)

3.3. Map inversion. Simulating the conditional distribution ρ(x|r,z) for specific
values (r∗,z∗) of r and z requires mapping back the samples yi in the barycenter to

x∗
i =T−1 (yi,r

∗,z∗).

Yet we only have access to the map y=T (x,r,z) through its action on the original
samples, yi=T (xi,ri,zi). Thus we need a procedure to invert this sample-given T .

One possibility is to perform a nonlinear regression based on the available points. A
kernel-based regression is a natural candidate, since we already have kernels available.
Yet there exists a faster and more accurate way to perform this inversion. It assumes
that we have run the algorithm to convergence so that, for all practical purposes, ∂L

∂yi
=0.

Using (3.6), this reads

∂c(xi,yi)

∂yi
+λ

∑
l

Cil
∂

∂yi
Ka (yi,yl)=0,

with care taken to differentiate the kernels Ka only with respect to their first argument.
This is a relation between xi and yi that can immediately be extended to a smooth
regression for arbitrary values of y. In particular, for the canonical cost c(x,y)= 1

2∥y−
x∥2, it reads

x=T−1 (y,ri,zi)=y+λ
∑
l

Cil
∂

∂y
Ka (y,yl) .

(The only requirement for extending this procedure to more general cost functions is

that the expression ∂c(x,y)
∂y =α be invertible for x.) For each pair (ri,zi) in the data set,

this provides n samples of ρ(x|ri,zi), including xi, the only one originally available in
the data. If required to simulate ρ(x|r,z) for pairs (r,z) not in the dataset, one needs
to generate a new row for the matrix C. For this, one can simply choose C(i,:), where
(ri,zi) is the closest neighbor to (r,z), or more accurately interpolate among the rows
of C corresponding to K near neighbors of (r,z).
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4. Examples

4.1. Super-resolution volume reconstruction from slice acquisitions.
This subsection illustrates the use of the conditional barycenter problem on simple
synthetic data designed to mimic volume reconstruction from slice acquisition in the
analysis of medical images.

The data points on the left panel of Figure 4.1 are triplets (x1,x2,z) drawn from a
distribution ρ(x1,x2,r,z)=ρ(x1,x2|r,z) η(r|z) γ(z), where r shows through the coloring
of the markers. The distribution γ(z) is uniform in [0,1]. The distributions ρ(x1,x2|r,z)
and η(r|z) are constructed in the following way: the observations are assigned to two
different branches, colored in yellow and blue in Figure 4.1, according to a Bernoulli ran-
dom variable with probability p=0.5+0.4tanh(3(z−1/2)); such assignment is reflected
in the sign of r, positive and negative in the yellow and blue branches respectively.
The absolute value of r encodes the distance d to the origin of an auxiliary variable x̃
distributed uniformly in the two-dimensional disk or radius 0.3, through |r|=exp(−d2).
Thus, for the yellow and blue branches, r takes values in [e−0.09,1] and [−1,−e−0.09]
respectively. In Figure 4.1, the absolute value of r is represented through color intensity.

In order to generate x, we apply to x̃ an affine map depending on z and the sign of
r:

x=A(z)x̃+B(r,z), x̃∼UD0.3={x̄∈R2:||x̄||2≤0.3}, (4.1)

with

A(z)=

[
− 9

5 cos(2πz)
9
5 sin(2πz)

5
4 sin(2πz)

5
4 cos(2πz)

]
, (4.2)

B(r,z)=1blue

(
1

2

[
cos(2πz)−sin(2πz)
−sin(2πz)−cos(2πz)

]
+

2

5

[
1
−1

])
+1yellow

(
1

2

[
−cos(2πz)+sin(2πz)
sin(2πz)+cos(2πz)

]
+

2

5

[
−1
1

])
, (4.3)

whereby the discs are separated by color, rescaled into ellipses and rotated.
Our tasks are to compute the z-barycenter µ(y|r) of the ρ(x|r,z) and to simulate

ρ(x|r,z∗) for given values of z=z∗. Since for each value of z there is at most one sample
available from the probability distribution, the latter task mimics the reconstruction of
high-resolution images from sets of very sparse observations. Examples include tomog-
raphy, where z represents longitudinal distance and the subject is moving rapidly, hence
the rotations and the short exposure time of each image. In the visualization of embryo
development, z represents time and r labels the organs, whose evolution is mimicked in
our example by the changing mass in the yellow and blue systems.

The top right panel of Figure 4.1 shows the points in the barycenter µ(y|r) as a
function of their original label z, showing that the dependence on the parameter z has
indeed been removed. The bottom left panel, by contrast, displays all available samples
from µ(y|r) without their original label z. This result could not have been obtained from
the classical barycenter problem, in which the map T (x,r,z) pushes forward ρ(x|r,z)
to the single probability density function µ̃(y). Samples from the classical barycenter
would, in this example, fall on a closed line, since only the angle in x̃ remains unexplained
when both r and z are taken into account. Moreover, the blue and yellow points would
be mixed, as would their color intensities, since y could not depend on r. This would not
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serve the purpose, for instance, of reconstructing the shape of evolving organs, when z
represents time, the blue and yellow signal different organs and their intensity indicates
a radial coordinate along them. Finally, the bottom right panel of Figure 4.1 shows the
high resolution reconstruction of slices for different values of z, reminiscent of volume
reconstruction, computed through the inversion procedure described in Section 3.3.
Ellipses with varying semi-axis r and center, are reconstructed robustly, even though
only one sample point is available in the data for each value of z.

-2 -1 0 1 2
-2

-1

0

1

2

Fig. 4.1. Top left: original input data sampled from the ρ1(x|r,z) (blue) and ρ2(x|r,z) (yellow).
Top right: removing the dependence from z results in two steady images for the blue and the yellow
density. Bottom left: barycenter µ(y|r). Bottom right: high resolution reconstruction of the input data
in the top left panel for various values of z.

4.2. Treatment effects: two complementary approaches. A significant
application of the conditional barycenter problem is to the estimation of treatment
effects. Let us introduce some general terminology:

Treatment r: the action taken. It can adopt binary values –to treat or not–,
continuous –a dosage, the reduction of emitted CO2–, or far more general struc-
tures –to treat or not and under which protocol, a diet, an economic package.

State x: variables possibly affected by the treatment, such as a patient’s blood
pressure, the average sea-surface temperature and global inequality indexes.

Factors z: the age of a patient, the state x before treatment, the distribution
of income in a population.

We describe below two alternative uses of the conditional barycenter problem for
the assessment of treatment effects. The map y=T (x,r,z) pushes forward the ρ(x|r,z)
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to their r-barycenter µ1(y|z) in the first use, and to their z-barycenter µ2(y|r) in the
second. Figure 4.2 shows an example of synthetic data illustrating the discussion of
the Simpson paradox in Section 1. Here x represents arterial pressure, r a dosage of a
pressure-reducing drug, and z the patient’s age. Because young people are less likely to
develop high pressure, their prescribed values of r will typically be lower than for older
people. As a consequence, even though for each fixed value of the age z, x decreases
with r, a plot of x against r for the whole population may display x growing with r,
contrary to the actual effect of the drug considered, a typical instance of the Simpson
paradox.

In order to quantify the paradox, we fitted a line to the data by minimizing the
L1 residual. Ignoring the age z results in a positive slope for the best fit line for the
state variable x as function of the treatment r, the opposite of the actual effect of the
treatment for any fixed age.
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Colored by age

Fig. 4.2. Data displaying the Simpson paradox and the regression line of outcome given treatment
that minimizes the L1 residual. For each patient’s age, represented through color, larger values of the
treatment yield lower values of the outcome. Yet when all ages are combined, the treatment–outcome
relationship is inverted, as showed by the regression line: outcome=0.9701× treatment+0.0178.

The literature on treatment effect estimation is vast [2,4,11,21], most of it focusing
on the computation of the average treatment effect τ =E[Y (1)−Y (0)] (where y(1)=y
represents the value of the outcome in presence of the treatment and y(0)=x in the
non-treated case) or the average treatment effect conditional on the some covariates
τ(z)=E[Y (1)−Y (0)|Z=z]. This section presents a different approach, which further
extends the idea introduced in [17], by leveraging the ability of the conditional barycen-
ter problem of selectively removing from a data set the variability attributable to a
specific set of cofactors while preserving the dependence on others.

4.2.1. The conditional barycenter µ(y|r) as a summary of the treatment
effects. One may wish to visualize the effect of a treatment r on a variable x without
providing a detailed description on how this effect depends on the covariates z. Yet, as
seen in Figure 4.2, forgetting the factor z altogether in the description may convey a
treatment effect with the wrong sign, a manifestation of Simpson’s paradox. To sum-
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marize the true treatment effect over all ages, one needs to average over z all conditional
probabilities ρ(x|r,z). The barycenter µ(y|r) provides a natural, horizontal way of per-
forming this averaging. In order to give equal weight to all ages z for each value of r,
we use as transportation cost C2 from (2.2). This requires weighting the samples in the
cost function by a factor

wi=
η(ri)

η(ri|zi)
≈

(∑
jKbr (ri,rj)

)(∑
jKbz (zi,zj)

)
N
∑

jKbr,bz ([ri,zi],[rj ,zj ])
.

The resulting barycenter is displayed in Figure 4.3. Contrasting it to Figure 4.2,
one can see a much decreased variability, as the effect of the age z has been explained
away, and a resolution of the Simpson paradox, as now y decreases with the treatment
r, since x decreases with r for any fixed value of z.
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Fig. 4.3. Conditional barycenter µ(y|r) and the regression line of outcome given treatment
that minimizes the L1 residual. The regression line is outcome=−0.1467× treatment+0.6036. The
barycenter summarizes the treatment effect regardless of the age z of the patients, displayed through
color. A larger dosage of the treatment results in a lower value of the outcome, even though the
barycenter ignores the age of the patient.

4.2.2. The map T as a representation of the treatment. How can one
quantify the effect of a treatment? For a binary treatment r∈{0,1}, one should compare
the values of x with and without treatment, x1 and x0. Since both are random variables
–seldom does one have full control over all factors affecting x– we are really comparing
the conditional distributions ρ(x|z,r=0) and ρ(x|z,r=1). A natural way to perform this
assessment is through the estimation of a map T (x,z) that pushes forward ρ(x|z,r=0)
to ρ(x|z,r=1). Such map has a natural interpretation as the effect of the treatment on
x, conditioned on z.

Moving next to more general, non-binary treatments, the goal broadens to esti-
mating how r affects the state x, i.e. how the distribution ρ(x|z,r) depends on r.
Again, this can be achieved through a family of maps Tr that transform the conditional
distributions ρr1,2(x|z) corresponding to pairs of values of r into each other. More eco-
nomically, these pairwise maps can be described through invertible, r-dependent maps
that, for each value of r, push forward ρ(x|z,r) to a common conditional distribution
µ(x|z). When these maps minimize a transportation cost, µ(x|z) becomes the condi-
tional barycenter of the ρ(x|z,r).
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The characterization of treatment effects above assumes that we have access to the
distributions ρ(x|z,r). A problem arises though when the treatment r depends on some
factor w that may also affect x, i.e. a confounder. Consider, for instance, a binary
treatment r∈{0,1} for high blood pressure x. If this treatment (i.e. r=1) is provided
only to patients above a certain age, and high blood pressure is more prevalent for older
patients, we could observe that the distribution of blood pressure for treated patients
concentrates at higher values than for untreated ones, even for effective treatments,
an instance of the Simpson paradox. In terms of maps, T should not push forward
ρ(x|r=0) to ρ(x|r=1), since a share of the population at r=0, the younger patients,
have never been treated, so they do not show up for r=1: mass conservation does not
hold between the two distributions. If we could consider the two distributions but only
for patients above the threshold age for treatment, this problem would disappear.

But this is exactly the case when w, the age, is included among the factors z in a
conditional transport problem. Then the push forward condition holds for each value of
z, and the procedure retains its validity. Similarly, the state x before treatment could
play the role of w, when only patients with high pressure are subject to treatment.
Again, including this prior condition among the z solves the problem.

This makes a strong case for the use of conditional optimal transport, as well as the
conditional barycenter problem for non-binary treatments. Expanding the set of factors
z so as to more likely include most confounders makes the estimation of treatment effects
more robust to instances of the Simpson paradox.

We illustrate the characterization and prediction of treatment effects using the
same synthetic dataset as in the prior subsection. For each individual patient with age
z, treatment level r and outcome x, in order to predict the outcome after switching to
treatment r∗, we may adopt the identical two-step procedure as in the super-resolution
example, though exchanging the roles of z and r, as follows: (1) first we find the map
from the original dataset which removes the conditional dependence on the treatment.
The resulting barycenter µ(y|z), shown in Figure 4.4 (upper left), is free of treatment
effects, given the age, and will be used for simulating outcome at different treatment
levels. (2) For each treatment level r∗, we apply the inverse map for their corresponding
age z to obtain the predicted outcome. Figure 4.4 compares the true model prediction
for each treatment level (upper right) and the data-driven prediction (lower left). Each
vertical bar contains information for all patients present in the dataset at their corre-
sponding age z, but is now associated with the treatment as indicated on the horizontal
axis. The difference between truth and prediction is displayed through the root-mean-
square-error (RMSE), averaged over the whole population, for each treatment level
(Figure 4.4, lower right, green line labeled ‘CBary’). Three other methodologies for
the same purpose are compared: (1) CBary+Bary: first remove the conditional effect
on age, then effect on treatment, then apply two inverse maps in the procedures for
prediction, (2) Bary: remove effects on both age and treatment in one step and use the
inverse map for prediction, and (3) 2Bary: remove first the effect of age, then effect
of treatment, through two barycenter problems, and use inverse maps for prediction.
For all treatment levels, the proposed procedure reaches the minimal error among all
four procedures. The reason of this superior performance may be explained by minimal
accumulated numerical error: procedures (1), (2) and (3) all first explain away the effect
of z and then bring it back at the same value of z, while the procedure proposed only
removes and restores (at a different value of r) the variability explained by r at constant
z.
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Fig. 4.4. Upper left: conditional barycenter after removing the treatment effect (nearly horizontal
for each age). Upper right: true treatment effect for the whole population at different treatment levels.
Lower left: prediction of the previous subplot, by applying the inverse of the map. Lower right: RMSE
as a function of treatment level for the procedure proposed and three alternatives.

4.3. Ground temperature anomalies. This section presents a meteorological
example to further illustrate the applicability of the conditional barycenter with real
data. Here we use daily averaged measurements of the ground-level temperature in
Ithaca, NY, publicly available from NOAA (https://www1.ncdc.noaa.gov/pub/data/
uscrn/products/daily01/). The overall goal is to characterize temperature anomalies
on the yearly time scale. The variable of interest, x∈R, is the ground temperature,
measured in degrees Celsius, available from January 2011 to June 2022 (4116 data
points). A natural set of covariates is the following:

(1) The day of the year r∈ [0,365.25], modeled as continuous and periodic, required to
capture the seasonal cycle.

(2) The year z∈ [2011,2012, ·· · ,2021,2022], modeled as a categorical variable, capturing
inter-annual variability, which may reflect relevant global phenomena, such as El
Niño or global warming.

The original data is shown in the top panels of Figures 4.5 and 4.6, which display
in different ways the dependence of the ground temperature on both covariates. To
investigate variation over one time scale without being confused by the other, one needs
to decompose the variability into two parts, explained by r and z respectively.

The removed variability itself is also informative as a new notion of temperature
anomaly, the departure from the year-independent temperature distribution character-

https://www1.ncdc.noaa.gov/pub/data/uscrn/products/daily01/
https://www1.ncdc.noaa.gov/pub/data/uscrn/products/daily01/
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Fig. 4.5. Daily averaged ground-level temperature as functions of day of year r. The year z
in which the data are measured is indicated via colors. From top to bottom: original data x, points
y=T (x,r,z) of conditional barycenter µ(y|r), and anomalies measured as x−T (x,r,z). Notice that,
in displaying the points y in the barycenter, we still color them according to the color z relative to
the year they were originally from. This allowed us to find the year in which a temperature anomaly
occurred as a function of the day.

ized by the conditional barycenter. The difference between each data point x and its
image y=T (x,r,z) in the conditional barycenter serves this purpose, as it represents
the anomalous behavior attributable to the year. This is a much more appropriate de-
scription of anomalies than the standard difference from the mean (the climatology in
climate studies), as it takes into account the full distribution, not just its mean value.
The differences x−T (x,r,z) are shown in the bottom panels of Figures 4.5 and 4.6.
These anomalies display, for instance, how extreme were the beginning and end of the
the year 2015, in which one of the strongest El Niño event occurred.

4.4. Lightness transfer. This section applies the conditional barycenter to
lightness transfer problem in image processing. Consider the four images of different
flowers photographed under different light conditions in the top panel of Figure 4.7.
Lightness is distributed unequally between the purple flower and the green background
across the different images. We seek to transform all the images to some notion of
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Fig. 4.6. Same as Figure 4.5, but with the years z displayed in succession, not through colors.
Top: original data x and data y=T (x,r,z) in the conditional barycenter, which removes the conditional
effect of z. Bottom, anomaly x−T (x,r,z).

“average” light condition and, using the transportation map and its inverse, to the light
condition in a specific image. The bottom panels show the images represented in the
three dimensional CIELAB space, with coordinates L, A and B for lightness, red/green
contrast and blue/yellow contrast respectively.

It is in this space that we perform conditional optimal transport following 3 main
steps:

(1) We first reduce the number of sample points in each image by defining superpixels
following the work in [10,19], which roughly cluster each image into 200 superpixels.

(2) We apply the conditional barycenter procedure to the reduced CIELAB represen-
tation, using the lightness L for x, the color contrasts A and B for r, and the image
identity (a categorical variable with four values) for z. The rationale for condi-
tioning lightness on color is that a changing light setting affects the various colors
differently.

(3) Finally, we apply a TMR filter [9] to recover the sharp details in the original images
under the new, average palette.

Figure 4.8 presents results of the conditional and the regular barycenter problems,
where the light-transfer in the latter simply ignores the color contrasts A and B. The
main luminosity difference among the images lies in the green background. Conse-
quently, a conditional barycenter is required to determine how to resolve the discrep-
ancy in lightness. Ignoring the foreground-background contrast, the regular barycenter
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Fig. 4.7. Source images (top) and their representation in CIELAB coordinates (bottom). The
lightness coordinate L is represented through the color on the scatter plot.

(a) Source images

(b) Light transfer results using the conditional barycenter

(c) Light transfer results using the regular barycenter

Fig. 4.8. Source images (top), conditional barycenter (middle), and regular barycenter (bottom).
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Fig. 4.9. Source images adapted to light condition in the first image (bright flower, dark back-
ground, top) and third image (dark flower and brighter background, bottom).

adjusts the light homogeneously, while the conditional barycenter is able to adjust the
background independently, with minimal alteration in the flowers. Consider for instance
the first image, with a dark background, and the third image, with a much brighter
one. Unlike the regular barycenter, which could not alter this contrast, the light trans-
fer to the conditional barycenter managed to make the two backgrounds about equally
bright without substantially altering the lightness of the flower that appears to be much
brighter in the regular barycenter.

The conditional barycenter procedure also allows one to transform back the con-
ditional barycenter to any of the four ρi∗(L|A,B), using the map inversion described
in Section 3.3. This enables us to adapt each source image to any of the four light
conditions in the source images. Two light conditions are used as targets for illustration
in Figure 4.9. The first image has a brighter flower and a dark background; it was likely
taken in the shade on a not very bright day. The third image, with a well-lit back-
ground, was probably taken in the morning. After the two corresponding inverse maps
are applied to the barycenter, all four resulting images have the luminosity features of
the corresponding target.

5. Conclusions

This work extends the optimal transport barycenter to the conditional barycen-
ter problem, which selectively removes from data the variability attributable to some
cofactors while preserving the dependence on others. This allows, for instance, to char-
acterize the effect of a medical treatment on a heterogeneous population as a function
of selected cofactors, such as dosage, irrespective of others, such as the patient’s age.

In order to pose the data-driven conditional barycenter problem and solve it nu-
merically, we introduce a new class of normalizing flows that extend the work in [18].
This procedure is essentially non-parametric, having as only tunable parameters the
bandwidths of three kernel functions.

The conditional barycenter problem provides a new conceptual and a computational
framework for data analysis. Numerical examples illustrate various uses of this tool: to
mitigate the Simpson paradox, to provide a new characterization of anomalous variation
in climate data, to volume reconstruction from slice acquisitions and to lightness transfer
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in image processing. Despite their broad scope, these applications may only scratch the
surface of the conditional barycenter’s rich field of applicability.
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