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AN EFFICIENT INTERFACE HYDROSTATIC RECONSTRUCTION
FOR THE TWO-LAYER SHALLOW FLOWS WITH ARBITRARY

WET-DRY FRONTS∗

JIAN DONG† AND DINGFANG LI‡

Abstract. This paper aims to propose a well-balanced positivity-preserving numerical scheme
for the two-layer shallow water systems with arbitrary wet-dry fronts based on interface hydrostatic
reconstructions (IHR). One key difficulty in solving the two-layer shallow water systems is the non-
conservative product term which can not be evaluated on the cell boundaries. Another difficulty is
that the well-balanced property for the still water maybe missed when the computational domain has
wet-dry fronts, especially, the wet-dry front is located at the discontinuous bottom topography. For the
nonlinear stability of the numerical scheme, the positivity of the water height is vital. To this end, we
discretize the nonconservative product term based on the IHR method, which is a particular choice of
path-conservative methods. The intermediate bottom level used in the discretization of the bed source
term of two layers is different. The nonconservative product term due to the momentum exchange
between two layers is discretized using the intermediate interface water height.

The resulting numerical scheme can preserve the positivity of two-layered heights and maintain the
still water even when the computational domain has wet-dry fronts. The numerical scheme performs
well in solving the complex problems, such as the Kelvin - Helmholtz instable problems. We demonstrate
these properties of the current scheme through several classical problems of the two-layer shallow water
systems with arbitrary wet-dry fronts.

Keywords. Well-balanced; Positivity preserving; Arbitrary wet-dry fronts; Two-layer shallow
water systems; Interface hydrostatic reconstruction.

AMS subject classifications. 76M12; 35L65.

1. Introduction

We propose an efficient second-order accurate, well-balanced, and positivity-
preserving numerical scheme for the two-layer shallow water equations with arbitrary
wet-dry fronts. It is a challenging task to address the nonconservative product term ap-
pearing in the two-layer shallow water systems, because these nonconservative product
terms can not be well defined in the distributional framework. Several mathematical
theories have been proposed in [26,27]. These nonconservative product terms can be seen
as the Borel measures introduced in [26], which are used to define the path-conservative
numerical scheme to address these difficulties. However, a disadvantage of the path-
conservative schemes is that they depend on the choice of a family of paths in the phase
space. Here we propose a path-conservative method based on a suitable choice of the
path based on a hydrostatic reconstruction (HR). The first HR method was proposed in
Audusse et al. [5], which is well-balanced, positivity-preserving and semi-discrete in-cell
entropy satisfying. Unfortunately, Audusse’s HR method can not correctly reflect the
acceleration due to the sloped bottom topography on a large discrete level. There are
several numerical methods to improve Audusse’s HR method. We refer to [11, 16] and
references therein (obviously, we do not show all the associated references).

We consider the one-dimensional two-layer shallow water system with a nonflat
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bottom topography, which was proposed in [24]:
(h1)t+(h1u1)x=0,

(h1u1)t+
[
h1u

2
1+

1
2g(h1)

2
]
x
=−gh1zx−gh1(h2)x,

(h2)t+(h2u2)x=0,

(h2u2)t+
[
h2u

2
2+

1
2g(h2)

2
]
x
=−gh2zx−gh2(h̃1)x,

(1.1)

where h1 (upper layer) and h2 (lower layer) represents the height of the layer, ui, i=1,2
denote the fluid velocity, g is the acceleration because of the gravity, the function z(x)

denotes the bottom topography. We define h̃1= rh1, where r := ρ1

ρ2
is the constant

density ratio. The system (1.1) admits the steady-state solution:

ui=0, w :=h2+z= const, E :=h1+h2+z= const., i=1,2, (1.2)

where w represents the interface between the upper layer and the lower layer, E denotes
the total water level.

A key difficulty of a numerical scheme for the system (1.1) is the discretization of the
bed slope source term, which should be exactly balanced by the nonzero flux gradients
for the still water even when the computational domain has wet-dry fronts. To shorten
the notations, we first rewrite the system (1.1) in a compact form

∂

∂t
U=− ∂

∂x
F+S(U,z), (1.3)

where

U=


h1

h1u1

h2

h2u2

, F(U)=


h1u1

h1u
2
1+

1
2gh

2
1

h2u2

h2u
2
2+

1
2gh

2
2

 , S(U,z)=


0

−gh1zx−gh1(h2)x
0

−gh2zx−gh2(h̃1)x

 . (1.4)

A well-balanced scheme can preserve the steady state (1.2) at a discrete level. For
examples of the well-balanced schemes for the shallow water equation refer to [3, 4, 7,
9, 14, 15, 30] and references therein. A numerical scheme should preserve the physical
non-negative water height, because of the calculation of the Jacobian matrix of the flux
function. For examples of positivity-preserving schemes refer to [3, 7, 11, 15, 30] and
references therein.

Castro-Dı́az et al. [23] proposed a path-conservative numerical scheme for solving
the two-layer shallow water system. It is worth mentioning that any method, in which
the small scale effects (the vanishing diffusion and/or dispersion) are not taken into
account, regardless of whether it is path-conservative or not, will not converge to the
correct weak solutions when solving the equation with nonconservative products. There
are several methods to solve this difficulty, such as, the Glimm or front-tracking meth-
ods; or controlled viscosity methods based on the equivalent equation etc. In [31], a
path-conservative central-upwind scheme for the two-layer shallow water equation with
nonconservative products was proposed. An entropy satisfying time-splitting method
was proposed in Bouchut and Luna [19], but their scheme lacks conservation of the to-
tal momentum, which leads to a wrong shock at the interface. In [20], they solved this
problem and proposed a robust numerical scheme which is positive and well-balanced.
Abgrall and Karni [22] proposed a relaxation approach for the one-dimensional two-
layer shallow water equations. They discussed the stability of the model. In [34], they
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pointed out that a careful numerical treatment of nonconservative products is crucial for
designing a robust and highly accurate numerical method. A robust and well-balanced
numerical scheme for the two-layer shallow water equations based on a modified HLL
flux formulation was proposed in Lu et al. [21]. A discontinuous Galerkin method for
two-layer shallow water equations was proposed in Izem et al. [25]. Chiapolino and
Saurel [28] constructed a new model of the two-layer shallow water system to address
the lack of hyperbolicity.

In this paper, we propose a second-order well-balanced and positivity-preserving
central scheme (due to the use of Lax-Friedrichs numerical fluxes) for one-dimensional
two-layer shallow water equations with wet-dry fronts. The discretization of the source
term is based on subcell reconstructions. The first-order hydrostatic reconstruction
based on subcell reconstructions for the single layer shallow water equations was pro-
posed in Chen and Noelle [11]. We reconstruct the total water level, the depth-averaged
velocity, and two-layered heights. This reconstruction can preserve the positivity of two-
layered heights and guarantee that the wet-dry fronts are located at the cell boundary.

The paper is organized as follows. In Section 2, we introduce a second-order well-
balanced positivity-preserving finite volume scheme for the two-layer shallow water
equations with source term. We prove that the current scheme can preserve the sta-
tionary solution and the positivity of two-layered heights in Section 3. We present
several numerical experiments to demonstrate the properties of our numerical method
in Section 4. A conclusion follows in Section 5.

2. The numerical method
In this section, we introduce a second-order Godunov-type central scheme for the

two-layer shallow water flows with a nonflat bottom topography. We first denote by

Cj =
[
xj− 1

2
,xj+ 1

2

]
the uniform cell to discretize the computational domain. The mesh

size is ∆x=xj+ 1
2
−xj− 1

2
. We denote by Uj(t) the approximate cell average of the

solution:

Uj(t)≈
1

∆x

∫ x
j+1

2

x
j− 1

2

U(x,t)dx.

The second-order semi-discretization of the system (1.3) can be written as follows:

d

dt
Uj(t)=R(t) :=− 1

∆x

(
Fj+ 1

2
−Fj− 1

2

)
+

1

∆x

(
Sj− 1

2+
+Sj+Sj+ 1

2−

)
, (2.1)

whereR denotes the residuum, Fj+ 1
2
:=

−→
F
(
Uj+ 1

2−
,Uj+ 1

2+

)
is a numerical flux function

which coincides with the true flux, and

Sj− 1
2+

+Sj+Sj+ 1
2−

≈
∫ x

j+1
2

x
j− 1

2

S(U,z)dx,

denotes the discretization of the source term. We construct a piecewise linear func-
tion endowed with a nonlinear limiter in Cj to approximate the exact solution for
obtaining the second-order non-oscillatory properties. We reconstruct the variables
q=(E,h1,h2,u1,u2) instead of U to preserve the static solution (1.2).

For simplicity, we omit the notation t. The piecewise linear approximate solution
reads as follows,

qj(x) :=qj+(x−xj)(qj)
′
, x∈Cj , (2.2)
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where (qj)
′
denotes the first-order approximate spatial derivative of the solution. We

choose the minmod function (see [1, 6, 8, 10] and references therein) to calculate the
numerical derivative (qj)

′
:

(qj)
′
=minmod

(
θ
qj−qj−1

∆x
,
qj+1−qj−1

2∆x
,θ
qj+1−qj

∆x

)
, θ∈ [1,2], (2.3)

where

minmod(x1,x2,x3,...)=

{
sign(xj)min(|xj |), if xj ,∀j∈Z,have the samesign,

0, otherwise,
(2.4)

and θ is a parameter that controls the numerical viscosity of the numerical scheme. Let
us remark that the approximate spatial derivative of the interface w is computed by

(wj)
′
=(Ej)

′
−((h1)j)

′
. (2.5)

Using the Equation (2.2), we compute the left- and right-sided values of the solution at
the cell interface,

qj+ 1
2+

=qj+1−
∆x

2
(qj+1)

′, qj+ 1
2−

=qj+
∆x

2
(qj)

′,

wj+ 1
2+

=Ej+ 1
2+

−(h1)j+ 1
2+

, wj+ 1
2−

=Ej+ 1
2−

−(h1)j+ 1
2−

,

zj+ 1
2+

=wj+ 1
2+

−(h2)j+ 1
2+

, zj+ 1
2−

=wj+ 1
2−

−(h2)j+ 1
2−

.

(2.6)

Next, we use the hydrostatic reconstruction method proposed in [11] to define the
intermediate bottom level and the intermediate layered heights as,

zj+ 1
2

=min
(
max

(
zj+ 1

2−
,zj+ 1

2+

)
,min

(
Ej+ 1

2−
,Ej+ 1

2+

))
,

(h1)
∗
j+ 1

2−
=min

(
Ej+ 1

2−
−zj+ 1

2
, (h1)j+ 1

2−

)
,

(h1)
∗
j+ 1

2+
=min

(
Ej+ 1

2+
−zj+ 1

2
, (h1)j+ 1

2+

)
,

(h2)
∗
j+ 1

2−
=min

(
wj+ 1

2−
−zj+ 1

2
, (h2)j+ 1

2−

)
,

(h2)
∗
j+ 1

2+
=min

(
wj+ 1

2+
−zj+ 1

2
, (h2)j+ 1

2+

)
,

(2.7)

and the interface intermediate layered heights are defined as

(h1)j+ 1
2
= 1

2

(
(h1)

∗
j+ 1

2−
+(h1)

∗
j+ 1

2+

)
,

(h2)j+ 1
2
= 1

2

(
(h2)

∗
j+ 1

2−
+(h2)

∗
j+ 1

2+

)
.

(2.8)

The intermediate discharge (hu)∗
j+ 1

2±
at the point xj+ 1

2
is computed by

(h1u1)
∗
j+ 1

2±
=(h1)

∗
j+ 1

2±
(u1)j+ 1

2±
, (h2u2)

∗
j+ 1

2±
=(h2)

∗
j+ 1

2±
(u2)j+ 1

2±
. (2.9)

We use the method from [2] to compute the velocity,

(u1)j =

{
(h1u1)j
(h1)j

, if (h1)j >ε,

0, otherwise,
(u2)j =

{
(h2u2)j
(h2)j

, if (h2)j >ε,

0, otherwise,
(2.10)

where ε=10−9 is a threshold value of a dry cell.

Remark 2.1. We would like to stress that (i) the reconstruction in (2.6) can guarantee
the positivity of limited values of two-layered heights because of the maximum princi-
ple for θ≤2; (ii) The Equation (2.8) is necessary to mitigate the Kelvin - Helmholtz
instability.
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2.1. Modification at the wet-dry fronts. The definition of the intermediate
states in (2.7) can not preserve the still water when the computational domain has
wet-dry fronts. To overcome this difficulty, we need to redefine the intermediate states.

When the cell interface has the wet-dry front, i.e.

max
(
zj+ 1

2−
,zj+ 1

2+

)
>min

(
Ej+ 1

2−
,Ej+ 1

2+

)
, (2.11)

or

min
(
wj+ 1

2−
,wj+ 1

2+

)
<max

(
zj+ 1

2−
,zj+ 1

2+

)
<min

(
Ej+ 1

2−
,Ej+ 1

2+

)
, (2.12)

we then use the following method. We first define ẑj+ 1
2
=zj+ 1

2
, and then

→ If zj+ 1
2−

>zj+ 1
2+

, we modify the intermediate bottom level and the intermediate
values of the height of the lower layer as

ẑj+ 1
2

=min
(
max

(
zj+ 1

2−
,zj+ 1

2+

)
,min

(
wj+ 1

2−
,wj+ 1

2+

))
,

(h2)
∗
j+ 1

2−
=min

(
wj+ 1

2−
− ẑj+ 1

2
,(h2)j+ 1

2−

)
,

(h2)
∗
j+ 1

2+
=max

(
wj+ 1

2+
− ẑj+ 1

2
,0
)
,

(2.13)

→ If zj+ 1
2−

<zj+ 1
2+

, we modify the intermediate bottom level and the intermediate
values of the height of the lower layer as

ẑj+ 1
2

=min
(
max

(
zj+ 1

2−
,zj+ 1

2+

)
,min

(
wj+ 1

2−
,wj+ 1

2+

))
,

(h2)
∗
j+ 1

2−
=max

(
wj+ 1

2−
− ẑj+ 1

2
,0
)
,

(h2)
∗
j+ 1

2+
=min

(
wj+ 1

2+
− ẑj+ 1

2
,(h2)j+ 1

2+

)
.

(2.14)

Remark 2.2. The condition (2.11) corresponds to the case where the upper layer has
the wet-dry front. The condition (2.12) corresponds to the case where the lower layer
has the wet-dry front while the upper layer is the fully wet case.

2.2. The numerical fluxes. The numerical flux was obtained by the simple
local Lax-Friedrichs flux,

Fj+ 1
2
:=

−→
F
(
U∗

j+ 1
2−

,U∗
j+ 1

2+

)
=

1

2

(
F
(
U∗

j+ 1
2−

)
+F

(
U∗

j+ 1
2+

)
−αj+ 1

2

(
U∗

j+ 1
2+

−U∗
j+ 1

2−

))
, (2.15)

where αj+ 1
2
is computed by

αj+ 1
2
=max(α1, α2, α3, α4),

α1=
∣∣∣(u1)j+ 1

2−

∣∣∣+√g
(
1+

√
r
)(

(h1)∗j+ 1
2−

+(h2)∗j+ 1
2−

)
α2=

∣∣∣(u1)j+ 1
2+

∣∣∣+√g
(
1+

√
r
)(

(h1)∗j+ 1
2+

+(h2)∗j+ 1
2+

)
α3=

∣∣∣(u2)j+ 1
2−

∣∣∣+√g
(
1+

√
r
)(

(h1)∗j+ 1
2−

+(h2)∗j+ 1
2−

)
α4=

∣∣∣(u2)j+ 1
2+

∣∣∣+√g
(
1+

√
r
)(

(h1)∗j+ 1
2+

+(h2)∗j+ 1
2+

)
.

(2.16)

We refer to [22] for more details associated with the estimate of the local speeds. The
Lax-Friedrichs flux satisfies the conservativeness and consistency.
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2.3. Weak solutions of the nonconservative product terms. This section
interprets the numerical method which belongs to a class of path-conservative numerical
schemes. We first give the definition of the chosen path which satisfies several local
Lipschitz conditions (see [12,13,31,32] and references therein).

Definition 2.1. A family of paths in an open convex subset Ω of RN is a locally
Lipschitz map

Φ : [0,1]×Ω×Ω→Ω,

such that:

♯ Φ(0;Ul,Ur)=Ul and Φ(1;Ul,Ur)=Ur, ∀Ul,Ur ∈Ω.
♯ For every arbitrary bounded set O⊂Ω, there exists a constant k such that∣∣∣∣∂Φ∂s (s;Ul,Ur)

∣∣∣∣≤k|Ul−Ur|, (2.17)

for any Ul,Ur ∈O and almost every s∈ [0,1].

♯ For every arbitrary bounded set O⊂Ω, there exists a constant K such that∣∣∣∣∂Φ∂s (s;U1
l ,U

1
r)−

∂Φ

∂s
(s;U2

l ,U
2
r)

∣∣∣∣≤K
(
|U1

l −U2
l |+ |U1

r−U2
r|
)
, (2.18)

for any U1
l ,U

1
r,U

2
l ,U

2
r ∈O and almost every s∈ [0,1].

We rewrite the system (1.3) as follows

Ũt+Ã(Ũ)Ũx=0,

where, Ũ := (U,z)⊤ and

Ã(Ũ)=

(
∂F(U)
∂U −B(U) −S(U)

0 0

)
,

and

B(U)=


0 0 0 0
0 0 −gh1 0
0 0 0 0

−grh2 0 0 0

 , S(U)=


0

−gh1

0
−gh2

.

As discussed in [13], the nonconservative product term Ã(Ũ)Ũx can be interpreted
as a Borel’s measure that depends on the family of paths in the phase space.

Definition 2.2. Assume that the solution Ũ(x,t) is a regular piecewise weak solution.

The Borel’s measure denoted by < [Ã(Ũ(·,t))Ũ(·,t)x]Φ,φ> related to the nonconserva-

tive product term Ã(Ũ)Ũx can be defined as

< [Ã(Ũ)Ũx]Φ,φ>=

∫
R

Ã(Ũ(x,t))Ũ(x,t)xφ(x)dx

+
∑
i

(∫ 1

0

Ã(Φ(s;Ũi
l,Ũ

i
r))

∂

∂s
Φ(s;Ũi

l,Ũ
i
r)ds

)
φ(xi(t)), (2.19)
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here xi(t) denotes the discontinuity of the solution at the time t and φ(x) is a smooth

function with compact support. The notations Ũi
l and Ũi

r are the left and right limit of

Ũ at the point xi(t), respectively.

In [33], they proposed a new concept of the high-order path-conservative scheme
for interpreting the hydrostatic reconstruction methods [5] and introducing general hy-
drostatic reconstruction methods. We first introduce the new concept of the high-order
path-conservative scheme.

d

dt
Uj(t)=− 1

∆x

(
Ej− 1

2+
+Ej+ 1

2−
+

∫
Cj

Ã(qj(x))
dqj(x)

dx
dx

)
, (2.20)

here

Ej+ 1
2−

=Dj+ 1
2−

+

∫ 1

0

Ã
(
Φ−,∗(s;Ũj+ 1

2−
, Ũ∗

j+ 1
2−

)
) dΦ−,∗

(
s;Ũj+ 1

2−
, Ũ∗

j+ 1
2−

)
ds

ds,

Ej+ 1
2+

=Dj+ 1
2+

+

∫ 1

0

Ã
(
Φ+,∗(s;Ũj+ 1

2+
, Ũ∗

j+ 1
2+

)
) dΦ+,∗

(
s;Ũj+ 1

2+
, Ũ∗

j+ 1
2+

)
ds

ds,

(2.21)
and

Dj+ 1
2±

=Dj+ 1
2±

(Ũ∗
j+ 1

2−
, Ũ∗

j+ 1
2+

), (2.22)

and

Φ±,∗=

(
Φ±,∗

h

Φ±
z

)
, Φ±,∗

h =


Φ±,∗

h1

Φ±,∗
h1u1

Φ±,∗
h2

Φ±,∗
h2u2

. (2.23)

It is worth mentioning that the Dirac measure satisfies the following consistency prop-
erties.

Dj+ 1
2±

(Ũ, Ũ)=0, (2.24)

and

Dj+ 1
2−

+Dj+ 1
2+

=

∫ 1

0

Ã
(
Φ(s;Ũ∗

j+ 1
2−

,Ũ∗
j+ 1

2+
)
) ∂

∂s
Φ
(
s;Ũ∗

j+ 1
2−

,Ũ∗
j+ 1

2+

)
ds. (2.25)

In [13], they discussed the relations between the conservative and path-conservative
schemes. Using the concept of new path-conservative schemes (2.20)-(2.25) proposed
in [33], we rewrite the Equation (2.1) as

d

dt
Uj(t)=− 1

∆x

(
Ej− 1

2+
+Ej+ 1

2−
+F(Uj+ 1

2−
)−F(Uj− 1

2+
)−Sj

)
, (2.26)

here

Ej+ 1
2−

:=Fj+ 1
2
−F(Uj+ 1

2−
)−Sj+ 1

2−
,

Ej− 1
2+

:=F(Uj− 1
2+

)−Fj− 1
2
−Sj− 1

2+
.

(2.27)
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We have used the following relations:

Dj+ 1
2−

:=Fj+ 1
2
−F(Uj+ 1

2−
),

Dj− 1
2+

:=F(Uj− 1
2+

)−Fj− 1
2
.

It is worth pointing out that the term Sj+ 1
2±

and Sj can be computed as

Sj− 1
2+

=

∫ 1

0

B(Φ+,∗
h (s;Uj− 1

2+
,U∗

j− 1
2+

))
∂

∂s
Φ+,∗

h (s;Uj− 1
2+

,U∗
j− 1

2+
)ds

+

∫ 1

0

S(Φ+,∗
h (s;Uj− 1

2+
,U∗

j− 1
2+

))
∂

∂s
Φ+

z (s;zj− 1
2+

, ẑj− 1
2
)ds,

Sj+ 1
2−

=

∫ 1

0

B(Φ−,∗
h (s;Uj+ 1

2−
,U∗

j+ 1
2−

))
∂

∂s
Φ−,∗

h (s;Uj+ 1
2−

,U∗
j+ 1

2−
)ds

+

∫ 1

0

S(Φ−,∗
h (s;Uj+ 1

2−
,U∗

j+ 1
2−

))
∂

∂s
Φ−

z (s;zj+ 1
2−

, ẑj+ 1
2
)ds,

Sj =

∫
Cj

B(U)
∂

∂x
Udx+

∫
Cj

S(U)
∂

∂x
z(x)dx.

(2.28)

Let us remark that the scheme (2.26) coupled with the discretization of the noncon-
servative product term (2.28) cannot correctly reflect the Kelvin-Helmholtz instable
phenomenona which can be seen in the numerical examples. For overcoming this issue,
we discretize the nonconservative product term using the following paths.

Sj− 1
2+

=

∫ 1

0

B(Φ+,∗
h (s;Uj− 1

2+
,U∗

j− 1
2+

))
∂

∂s
Φ+

h (s;Uj− 1
2+

,Uj− 1
2
)ds

+

∫ 1

0

S(Φ+,∗
h (s;Uj− 1

2+
,U∗

j− 1
2+

))
∂

∂s
Φ+

z (s;zj− 1
2+

, ẑj− 1
2
)ds,

Sj+ 1
2−

=

∫ 1

0

B(Φ−,∗
h (s;Uj+ 1

2−
,U∗

j+ 1
2−

))
∂

∂s
Φ−

h (s;Uj+ 1
2−

,Uj+ 1
2
)ds

+

∫ 1

0

S(Φ−,∗
h (s;Uj+ 1

2−
,U∗

j+ 1
2−

))
∂

∂s
Φ−

z (s;zj+ 1
2−

, ẑj+ 1
2
)ds,

Sj =

∫
Cj

B(U)
∂

∂x
Udx+

∫
Cj

S(U)
∂

∂x
z(x)dx,

(2.29)

here, we use the notations

Φ±=

(
Φ±

h

Φ±
z

)
, Φ±

h =


Φ±

h1

Φ±
h1u1

Φ±
h2

Φ±
h2u2

.

The paths will be discussed in latter.

2.3.1. Discretizing the source terms. We choose a straight line to connect
the states Q±

i+ 1
2

and Q∗
i+ 1

2±
, which is defined as

Φ±,∗
h : [0,1]×R4×R4→R4,

Φ+,∗
h

(
0;Qi+ 1

2+
,Q∗

i+ 1
2+

)
=Q∗

i+ 1
2+

,Φ+,∗
h

(
1;Qi+ 1

2+
,Q∗

i+ 1
2+

)
=Qi+ 1

2+
,

Φ−,∗
h

(
0;Qi+ 1

2−
,Q∗

i+ 1
2−

)
=Qi+ 1

2−
,Φ−,∗

h

(
1;Qi+ 1

2−
,Q∗

i+ 1
2−

)
=Q∗

i+ 1
2−

,

(2.30)
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and the smooth path takes the following form,

Φ+,∗
h

(
s;Qi+ 1

2+
,Q∗

i+ 1
2+

)
=(1−s)Q∗

i+ 1
2+

+sQi+ 1
2+

,

Φ−,∗
h

(
s;Qi+ 1

2−
,Q∗

i+ 1
2−

)
=(1−s)Qi+ 1

2−
+sQ∗

i+ 1
2−

,
(2.31)

here, we denote Q=(h1,h1u1,h2,h2u2)
⊤.

A straight line connecting the states Q±
i+ 1

2

and Qi+ 1
2
can be defined as

Φ±
h : [0,1]×R4×R4→R4,

Φ+
h

(
0;Qi+ 1

2+
,Qi+ 1

2

)
=Qi+ 1

2
,Φ+

h

(
1;Qi+ 1

2+
,Qi+ 1

2

)
=Qi+ 1

2+
,

Φ−
h

(
0;Qi+ 1

2−
,Qi+ 1

2

)
=Qi+ 1

2−
,Φ−

h

(
1;Qi+ 1

2−
,Qi+ 1

2

)
=Qi+ 1

2
,

(2.32)

and the smooth path takes the following form,

Φ+,∗
h

(
s;Qi+ 1

2+
,Qi+ 1

2

)
=(1−s)Qi+ 1

2
+sQi+ 1

2+
,

Φ−,∗
h

(
s;Qi+ 1

2−
,Qi+ 1

2

)
=(1−s)Qi+ 1

2−
+sQi+ 1

2
.

(2.33)

A straight line connects the states zi+ 1
2±

related to the nonconservative product
term that encompasses the bottom topography can be defined as

Φ±
z : [0,1]×R×R→R,

Φ+
z

(
0;zi+ 1

2+
, ẑi+ 1

2

)
= ẑi+ 1

2
, Φ+

z

(
1;zi+ 1

2+
, ẑi+ 1

2

)
=zi+ 1

2+
,

Φ−
z

(
0;zi+ 1

2−
, ẑi+ 1

2

)
=zi+ 1

2−
, Φ−

z

(
1;zi+ 1

2−
, ẑi+ 1

2

)
= ẑi+ 1

2
,

(2.34)

and the smooth path takes the following form,

Φ+
z

(
s;zi+ 1

2+
,zi+ 1

2

)
=(1−s)zi+ 1

2
+szi+ 1

2+
,

Φ−
z

(
s;zi+ 1

2−
,zi+ 1

2

)
=(1−s)zi+ 1

2−
+szi+ 1

2
.

(2.35)

Next, we can give the explicit discretized formulae related to the nonconservative
product terms. As an example, we show the discretization of the term −gh1(h2)x and
−gh1zx. We first omit the time notation tn. According to the Equations (2.19)-(2.33),
we compute the integral of the term −gh1(h2)x,

−
∫
Cj

g(h1)(x)(h2)xdx

=−
∫ 1

0

gΦ+
h1
(s;(h1)j− 1

2+
,(h1)

∗
j− 1

2+
)
∂

∂s
Φ+

h2
(s;(h2)j− 1

2+
,(h2)j− 1

2
)ds

−
∫ 1

0

gΦ−
h1
(s;(h1)j+ 1

2−
,(h1)

∗
j+ 1

2−
)
∂

∂s
Φ−

h2
(s;(h2)j+ 1

2−
,(h2)j+ 1

2
)ds

−
∫
Cj

g(h1)j(x)(((h2)j)x)(x)dx

=− 1

2
g
(
(h1)j− 1

2+
+(h1)

∗
j− 1

2+

)(
(h2)j− 1

2+
−(h2)j− 1

2

)
,
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− 1

2
g
(
(h1)

∗
j+ 1

2−
+(h1)j+ 1

2−

)(
(h2)j+ 1

2
−(h2)j+ 1

2−

)
,

− 1

2
g
(
(h1)j− 1

2+
+(h1)j+ 1

2−

)(
(h2)j+ 1

2−
−(h2)j− 1

2+

)
.

According to the Equations (2.19)-(2.33) and (2.35), we compute the integral of the
term −gh1zx,

−
∫
Cj

g(h1)(x)zxdx=−
∫ 1

0

gΦ+
h1
(s;(h1)j− 1

2+
,(h1)

∗
j− 1

2+
)
∂

∂s
Φz(s;zj− 1

2−
,zj− 1

2
,zj− 1

2+
)ds

−
∫ 1

0

gΦ−
h1
(s;(h1)j+ 1

2−
,(h1)

∗
j+ 1

2−
)
∂

∂s
Φz(s;zj+ 1

2−
,zj+ 1

2
,zj+ 1

2+
)ds

−
∫
Cj

g(h1)j(x)((zj)x)(x)dx

=− 1

2
g
(
(h1)j− 1

2+
+(h1)

∗
j− 1

2+

)(
zj− 1

2+
− ẑj− 1

2

)
,

− 1

2
g
(
(h1)

∗
j+ 1

2−
+(h1)j+ 1

2−

)(
ẑj+ 1

2
−zj+ 1

2−

)
,

− 1

2
g
(
(h1)j− 1

2+
+(h1)j+ 1

2−

)(
zj+ 1

2−
−zj− 1

2+

)
.

The other terms can be computed using the similar method. Finally, we can obtain the
discretization of the second component of the source term reads as follows

S
(2)

j− 1
2
+

=− 1
2
g
(
(h1)j− 1

2
++(h1)

∗
j− 1

2
+

)(
zj− 1

2
++(h2)j− 1

2
+−zj− 1

2
−(h2)j− 1

2

)
,

S
(2)

j+ 1
2
− =− 1

2
g
(
(h1)

∗
j+ 1

2
−+(h1)j+ 1

2
−

)(
zj+ 1

2
+(h2)j+ 1

2
−zj+ 1

2
−−(h2)j+ 1

2
−

)
,

S
(2)
j =− 1

2
g
(
(h1)j− 1

2
++(h1)j+ 1

2
−

)(
zj+ 1

2
−+(h2)j+ 1

2
−−zj− 1

2
+−(h2)j− 1

2
+

)
,

(2.36)

and the discretization of the fourth component of the source term reads as follows

S
(4)

j− 1
2
+

=− 1
2
g
(
(h2)j− 1

2
++(h2)

∗
j− 1

2
+

)(
zj− 1

2
++(h̃1)

∗
j− 1

2
+
− ẑj− 1

2
−(h̃1)j− 1

2

)
,

S
(4)

j+ 1
2
− =− 1

2
g
(
(h2)

∗
j+ 1

2
−+(h2)j+ 1

2
−

)(
ẑj+ 1

2
+(h̃1)j+ 1

2
−zj+ 1

2
−−(h̃1)

∗
j+ 1

2
−

)
,

S
(4)
j =− 1

2
g
(
(h2)j− 1

2
++(h2)j+ 1

2
−

)(
zj+ 1

2
−+(h̃1)j+ 1

2
−−zj− 1

2
+−(h̃1)j− 1

2
+

)
.

(2.37)

Remark 2.3. In all numerical examples, we use the strong stability third-order
Runge-Kutta method [29] to discretize the system (2.1) in time, which reads as follows

U(1) = U(n)+∆tR
(
U(n)

)
U(2) = 3

4U
(n)+ 1

4

(
U(1)+∆tR

(
U(1)

))
U(n+1) = 1

3U
(n)+ 2

3

(
U(2)+∆tR

(
U(2)

))
,

where R(U) denotes the residuum given by (2.1).

Remark 2.4. It is worth noticing that the numerical methods (2.26)-(2.29) are
Godunov-type path-conservative schemes defined in [12]. The discretization of the
source term can also be interpreted using the subcell reconstruction proposed in [11].

Remark 2.5. (hk)
∗
j+ 1

2±
=(hk)j+ 1

2±
. It should be pointed out that, in [12], they

claimed that the numerical solutions of the path-conservative scheme converge to a
nonconservative hyperbolic system with error source term in general sense. The current
numerical scheme (2.26)-(2.29) also suffers from this difficulty.



JIAN DONG AND DINGFANG LI 1667

3. Positivity-preserving and well-balancing
In this section, we first prove that the new second-order central scheme can preserve

the two-layered heights to be non-negative. Then, we prove that the new scheme is well-
balanced for the still water (1.2) even when the computational domain contains wet-dry
fronts. We consider two time levels tn and tn+1 := tn+∆t, and use the first-order forward
Euler method to discretize the system (2.1) in time.

Theorem 3.1 (positivity preserving). We consider the Equation (2.1). Assume the
system (2.1) is discretized by the first-order forward Euler method in time, if (h1)

n
j ≥

0, (h2)
n
j ≥0 for all j∈Z, and the CFL condition satisfies: να≤ 1

2 , here ν= ∆t
∆x , where

α is taken from (2.16). Then, we obtain (h1)
n+1
j ≥0, (h2)

n+1
j ≥0 for all j∈Z.

Proof. We first prove that the current scheme can preserve the layered height
(h1)

n+1
j to be non-negative. Thanks to Remark 2.1, using the reconstruction (2.6)-

(2.7), we obtain

0≤ (h1)
∗
j+ 1

2−
≤ (h1)j+ 1

2−
, 0≤ (h1)

∗
j− 1

2+
≤ (h1)j− 1

2+
.

Then cell average of the layered height satisfies,

(h1)
n
j =

(h1)j− 1
2+

+(h1)j+ 1
2−

2
≥

(h1)
∗
j− 1

2+
+(h1)

∗
j+ 1

2−

2
. (3.1)

Using the numerical flux (2.15)-(2.16), we first compute,

F
(1)

j+ 1
2

−F
(1)

j− 1
2

=
1

2

[
(h1)

∗
j+ 1

2+
(u1)j+ 1

2+
+(h1)

∗
j+ 1

2−
(u1)j+ 1

2−
−αj+ 1

2

(
(h1)

∗
j+ 1

2+
−(h1)

∗
j+ 1

2−

)]
− 1

2

[
(h1)

∗
j− 1

2+
(u1)j− 1

2+
+(h1)

∗
j− 1

2−
(u1)j− 1

2−
−αj− 1

2

(
(h1)

∗
j− 1

2+
−(h1)

∗
j− 1

2−

)]
=
1

2
(h1)

∗
j+ 1

2+

(
(u1)j+ 1

2+
−αj+ 1

2

)
+

1

2
(h1)

∗
j+ 1

2−

(
(u1)j+ 1

2−
+αj+ 1

2

)
− 1

2
(h1)

∗
j− 1

2+

(
(u1)j− 1

2+
−αj− 1

2

)
− 1

2
(h1)

∗
j− 1

2−

(
(u1)j− 1

2−
+αj− 1

2

)
.

(3.2)
According to the first components of Equations (2.1) and (3.2), we obtain:

(h1)
n+1
j =(h1)

n
j −ν

(
F

(1)

j+ 1
2

−F
(1)

j− 1
2

)
=
(h1)j− 1

2+
+(h1)j+ 1

2−

2
−ν
(
F

(1)

j+ 1
2

−F
(1)

j− 1
2

)
=
(h1)j− 1

2+
+(h1)j+ 1

2−

2

− ν

2

[
(h1)

∗
j+ 1

2+

(
(u1)j+ 1

2+
−αj+ 1

2

)
+(h1)

∗
j+ 1

2−

(
(u1)j+ 1

2−
+αj+ 1

2

)]
+

ν

2

[
(h1)

∗
j− 1

2+

(
(u1)j− 1

2+
−αj− 1

2

)
+(h1)

∗
j− 1

2−

(
(u1)j− 1

2−
+αj− 1

2

)]
.

Then, according to (3.1) and the CFL condition, the height of (h1)
n+1
j satisfies

(h1)
n+1
j ≥

[
1−ν

(
(u1)j+ 1

2
−+αj+ 1

2

)] (h1)
∗
j+ 1

2
−

2
+
[
1+ν

(
(u1)j− 1

2
+−αj− 1

2

)] (h1)
∗
j− 1

2
+

2

−ν
(
(u1)j+ 1

2
−−αj+ 1

2

) (h1)
∗
j+ 1

2
+

2
+ν

(
(u1)j− 1

2
−+αj− 1

2

) (h1)
∗
j− 1

2
−

2
.
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Since all the coefficients are non-negative in the above inequality, we can obtain
(h1)

n+1
j ≥0.

The positivity of (h2)
n+1
j ≥0 can be obtained by using the analogous method that

is used to prove (h1)
n+1
j ≥0. We completed the proof.

In the following theorem, we prove that the present scheme is well-balanced for
the still water. We should prove four cases: (i) the fully wet case; (ii) only the upper
layer has the wet-dry front; (iii) only the lower layer has the wet-dry front; (iv) both
the upper and the lower layer have the wet-dry front. In what follows, we suppose the
bottom topography satisfies

zj− 1
2−

>zj− 1
2+

>zj+ 1
2−

>zj+ 1
2+

.

We begin with proving the fully wet case.

Theorem 3.2. The new second-order central scheme (2.1), (2.7)-(2.10), (2.15) and
(2.36) is well-balanced for the still water when the computational domain does not have
wet-dry fronts.

Proof. In this case, the height of the upper layer and the interface are constants,
we assume to be h1 and W respectively. Using the reconstruction (2.6) - (2.7), we
can obtain the intermediate bottom level and the intermediate water depth at the cell
interface,

zj− 1
2
= ẑj− 1

2
=zj− 1

2−
, zj+ 1

2
= ẑj+ 1

2
=zj+ 1

2−
,

(h1)
∗
j− 1

2−
=(h1)

∗
j− 1

2+
=h1, (h1)

∗
j+ 1

2−
=(h1)

∗
j+ 1

2+
=h1,

(h2)
∗
j− 1

2−
=(h2)

∗
j− 1

2+
=(h2)j− 1

2−
, (h2)

∗
j+ 1

2−
=(h2)

∗
j+ 1

2+
=(h2)j+ 1

2−
,

(3.3)

and using the Equation (2.8), the modified interface water height is computed by

(h1)j− 1
2
=

(h1)
∗
j− 1

2−
+(h1)

∗
j− 1

2+

2
=h1,

(h1)j+ 1
2
=

(h1)
∗
j+ 1

2−
+(h1)

∗
j+ 1

2+

2
=h1,

(h2)j− 1
2
=

(h2)
∗
j− 1

2−
+(h2)

∗
j− 1

2+

2
=(h2)j− 1

2−
,

(h2)j+ 1
2
=

(h2)
∗
j+ 1

2−
+(h2)

∗
j+ 1

2+

2
=(h2)j+ 1

2−
.

(3.4)

Note that since in this case the height of the upper layer is constant, the proof is a direct
application of the same property for the classical (single-layer) shallow water system,

already demonstrated in [11]. Then, we can prove that R
(2)
j =0.

Next, we prove R
(4)
j =0. Noting that h̃1= rh1, here r is a constant. Using (3.3)

- (3.4) and (2.36), we obtain the discretization of the fourth component of the source
term

S
(4)

j− 1
2+

=−1

2
g
(
(h2)j− 1

2+
+(h2)

∗
j− 1

2+

)(
zj− 1

2+
+(h̃1)

∗
j− 1

2+
− ẑj− 1

2
−(h̃1)j− 1

2

)
=−1

2
g
(
(h2)j− 1

2+
+(h2)

∗
j− 1

2+

)(
W −(h2)j− 1

2+
−W +(h2)j− 1

2−

)
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=−1

2
g
(
(h2)

2
j− 1

2−
−(h2)

2
j− 1

2+

)
,

S
(4)

j+ 1
2−

=−1

2
g
(
(h2)

∗
j+ 1

2−
+(h2)j+ 1

2−

)(
ẑj+ 1

2
+(h̃1)j+ 1

2
−zj+ 1

2−
−(h̃1)

∗
j+ 1

2−

)
=0

S
(4)
j =−1

2
g
(
(h2)j− 1

2+
+(h2)j+ 1

2−

)(
zj+ 1

2−
+(h̃1)j+ 1

2−
−zj− 1

2+
−(h̃1)j− 1

2+

)
, (3.5)

=−1

2
g
(
(h2)j− 1

2+
+(h2)j+ 1

2−

)(
W −(h2)j+ 1

2−
−W +(h2)j− 1

2+

)
=−1

2
g
(
(h2)

2
j− 1

2+
−(h2)

2
j+ 1

2−

)
.

The fourth component of the numerical fluxes are computed by:

F
(4)

j+ 1
2

=
1

4
g

[(
(h2)

∗
j+ 1

2
+

)2

+
(
(h2)

∗
j+ 1

2
−

)2
]

− 1

2
αj+ 1

2

(
(h2)

∗
j+ 1

2
+(u2)j+ 1

2
+−(h2)

∗
j+ 1

2
−(u2)j+ 1

2
−

)
=
1

2
g
(
(h2)j+ 1

2
−

)2

,

F
(4)

j− 1
2

=
1

4
g

[(
(h2)

∗
j− 1

2
+

)2

+
(
(h2)

∗
j− 1

2
−

)2
]

− 1

2
αj− 1

2

(
(h2)

∗
j− 1

2
+(u2)j− 1

2
+−(h2)

∗
j− 1

2
−(u2)j− 1

2
−

)
=
1

2
g
(
(h2)j− 1

2
−

)2

,

then, we obtain

∆xR
(4)
j =F

(4)

j− 1
2

−F
(4)

j+ 1
2

+S
(4)

j− 1
2+

+S
(4)
j +S

(4)

j+ 1
2−

=
1

2
g

((
(h2)j− 1

2−

)2
−
(
(h2)j+ 1

2−

)2)
− 1

2
g

((
(h2)j− 1

2−

)2
−
(
(h2)j+ 1

2−

)2)
=0.

The following theorem proves the well-balanced property of the current scheme for
the system with wet-dry fronts.

Theorem 3.3. The new second-order central scheme (2.1), (2.7)-(2.10), (2.15) and
(2.36) is well-balanced for the still water when the computational domain has wet-dry
fronts.

Proof. In this case, we should consider three cases: (A1) only the upper layer has
the wet-dry front; (A2) only the lower layer has the wet-dry front; (A3) both the upper
and the lower layer have the wet-dry front. We begin with only the upper layer having
the wet-dry front.

• Case (A1) Only the upper layer has the wet-dry front, as shown in the middle
part of the Figure 3.1. In this case, the system (1.1) changes to be the classical one-layer
shallow water equations. The well-balanced property is similar to that in [11], because
the reconstruction (2.7) is the subcell reconstructions proposed in [11]. Then, we omit
the details.

• Case (A2) Only the lower layer has the wet-dry front, as shown in the left part
of the Figure 3.1. In this case, the total level is a constant, we assume is E. Using
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Fig. 3.1. Three partially-wet cases. Left: only the lower layer has wet-dry front; Middle: only
the upper layer has wet-dry front; Right: Both the layers have wet-dry front.

the reconstruction (2.6) - (2.7), we can obtain the intermediate bottom level and the
intermediate water depth at the cell interface,
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and using the Equation (2.8), the modified interface water height is computed by
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Then, we first prove R
(2)
j =0. Using (3.6) - (3.7) and (2.36), we obtain the discretization

of the second component of the source term
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The second component of the numerical fluxes are computed by:
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then, a straightforward calculation gives
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Next, we prove R
(4)
j =0. Noting that h̃1= rh1, here r is a constant. Using (3.6)

- (3.7) and (2.36), we obtain the discretization of the fourth component of the source
term
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(3.8)
The fourth component of the numerical fluxes are computed by:
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then, we obtain
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It remains to prove the final case: (A3).

• Case (A3) Both the upper and the lower layers have the wet-dry front, as shown
in the right part of the Figure 3.1. Using the reconstruction (2.6) - (2.7), we can obtain
the intermediate bottom level and the intermediate water depth at the cell interface,
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and using the Equation (2.8), the modified interface water height is computed by
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Then, we first proveR
(2)
j =0. Using (3.9) - (3.10) and (2.36), we obtain the discretization

of the second component of the source term
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The second component of the numerical fluxes are computed by:
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then, a straightforward calculation gives
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Finally, we prove R
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term
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The fourth component of the numerical fluxes are computed by:
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The proof is completed.
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4. Numerical experiments
In this section, we present several computational results of the current scheme for

the two-layer shallow water equations with wetting and frying transitions. We set the
gravitational acceleration constant to be g=9.8 and the CFL number to be 0.4 in all
our numerical examples. Let us remark that ref.• denotes the reference solution of •.

We first test the numerical order of accuracy of the current scheme. The bottom
topography is defined by the following function:

z(x)=sin2(πx),

with the initial layered heights and the discharge

h1(x,0)=5+ecos(2πx), h1u1(x,0)=h2u2(x,0)=0, h2(x,0)=5−ecos(2πx).

The reference solution is computed by the current scheme with 6400 uniform cells on
the computational domain [0, 1]. The final time is t=0.1. At this time, the solution is
smooth. Table 4.1 shows that our new scheme has second-order accuracy.

Number of the cells
h1-upper layer height h2-lower layer height

L1-error EOC L1-error EOC

100 1.18e-01 - 6.97e-02 -
200 3.95e-02 1.59 2.94e-02 1.25
400 9.90e-03 1.99 7.70e-03 1.94
800 2.50e-03 2.01 1.80e-03 2.07

Table 4.1. Experimental order of convergence (EOC) measured in L1 - norm.

4.1. Well-balanced test. In this example, we test the well-balanced property
of the current scheme for the still water when the computational domain has wet-dry
fronts. We consider two cases: (i) The bottom topography is smooth; (ii) The bottom
topography is discontinuous.

For the first case (i): the bottom topography is defined by the following function

z(x)=
1

4
(1−cos(π(2x−1))), (4.1)

and the initial data are

E(x,0)=max(0.4,z(x)), h2(x,0)=max(0.35−z(x),0), u1(x)=u2(x,0)=0. (4.2)

For the second case (ii): the bottom topography is defined by the following function,
which is discontinuous at the point x=0.3 and x=0.7

z(x)=

{
0, if 0.3<x<0.7

1, otherwise.
,

and the initial data are

h1(x,0)=

{
0.1, if 0.3<x<0.7

0, otherwise.
,h2(x,0)=

{
0.4, if 0.3<x<0.7

0, otherwise.
,

u1(x,0)=u2(x,0)=0.
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Fig. 4.1. Well-balanced test. Top Left: the total water height E, the interface w, and the bottom
topography B; Top Right: the discharge of two layers corresponds to the smooth bottom topography;
Bottom Left: the total water height E, the interface w, and the bottom topography B; Bottom Right:
the discharge of two layers corresponds to the discontinuous bottom topography.

Fig. 4.2. Well-balanced test. Numerical results obtained by the CU scheme.

The density ratio is r=0.7. We compute the numerical solution using 100 uniform cells
which discretize the computational domain [0, 1]. The final time is t=0.5. In the Figure
4.1, we can observe that the numerical discharge computed by the current scheme is
zero (within the machine accuracy) in two cases. These confirm that the current scheme
is well-balanced for the still water even when the computational domain has wet-dry
fronts.

Finally, we test the well-balanced property of the central-upwind (CU) scheme pro-
posed in [18] using the condition (4.1)-(4.2) to verify the advantage of the present
scheme. We show the numerical results obtained by the CU scheme with 100 uniform
cells and t = 0.05 in Figure 4.2. One can see spurious oscillations near the wet-dry
fronts, which confirm that the CU scheme is not well-balanced when the computational
domain contains wet-dry fronts.
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Fig. 4.3. Topography and drying. Top left: The computed interface using different uniform cells;
Top right: A zoom of the interface at interval [0, 0.4]; Bottom left: A zoom of the interface at interval
[0.4, 0.65]; Bottom right: A zoom of the total surface at interval [0.66, 0.76].

4.2. Topography and drying. This test case was proposed in [20]. The
constant density ratio is r=0.95 and the gravitational constant is g=9.8. The bottom
topography is given by

z(x)=

{
0, if x<0.5,

4(x−0.5), otherwise,

and the initial data

h2=

{
0.5, if x<0.25

0, otherwise.
, h1=max(1−h2−z(x),0), u1=0, u2=0.

The computational domain is [0, 1]. The final time is t=0.5. The numerical solutions
are obtained by the current scheme using different uniform cells: 100, 200, 400, 2000.
One can see the computational results in Figure 4.3. The current scheme can guarantee
the layered heights to be nonnegative. The numerical results confirm that the current
scheme can converge to the reference solutions.

4.3. Small perturbation of the still water over a discontinuous bed. In
this example, we consider a small perturbation of the still water steady state solution.
The bottom topography has two discontinuities (x = 0.7 and x = 0.8). The compu-
tational domain is [0, 1]. The constant density ratio is r=0.98 and the gravitational
constant is g=9.8. The bottom topography is given by

z(x)=

{
1, if 0.7<x<0.8,

0, otherwise,



JIAN DONG AND DINGFANG LI 1677

t = 0.03 t = 0.06

t = 0.09 t = 0.12

Fig. 4.4. Small perturbation of the still water over a discontinuous bed. Numerical results of the
interface (W) and the total surface (E).

and the initial data

h1=

{
max(0.7,z(x))−max(0.5,z(x))+0.05, if 0.5<x<0.55,

max(0.7,z(x))−max(0.5,z(x)), otherwise.

h2=max(0.5−z(x),0), u1=0, u2=0.

The output time is t=0.03,0.06,0.09,0.12. We discretize the computational domain
using 200 uniform cells. The reference solution is obtained by the current scheme using
2000 uniform cells. The computational results are shown in Figure 4.4. The current
scheme can guarantee the layered heights to be nonnegative. The numerical results
confirm that the current scheme can capture the small perturbation nicely and avoid
producing spurious oscillation near wet-dry fronts.

4.4. Internal dam break over a nonflat bottom. This test problem was also
considered in [18]. In this example, the solution of the problem is expected to converge
to a steady-state after a long time. The steady state contains a hydraulic jump. It is a
challenging task to approximate the hydraulic jump. The computational domain is [-5,
5] and is discretized by 500 uniform cells. The bottom is continuous and is defined by
the following function

z(x)=0.5e−x2

−2.5,

and the initial data are

(h1,h1u1,h2,h2u2)=

{
(1.95,0,−1.95−B(x),0), if x<0.0

(0.05,0,−0.05−B(x),0), otherwise.
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Fig. 4.5. Internal dam break over a nonflat bottom. Left: the initial time t=0; right: the final
time t=200.

Fig. 4.6. Lock exchange problem. Left: the initial time t=0; right: the final time t=40.

The density ratio is r=0.998. We run this simulation until the time t=200. The
obtained results are shown in Figure 4.5. One can see a high overall resolution of the
interface. The numerical results agree well with that obtained in [18].

4.5. Lock exchange problem. This test problem was also discussed in [18].
In this example, we modify the initial data proposed in [18]. Noting that the numerical
scheme introduced in [18] is restricted to the amplitude of the total water height, in
which the scheme maybe produce spurious oscillations for the large water total height
due to the influence of nonconservative product term. The bottom is given by

z(x)=e−x2

,

and the initial data are

(h1,h1u1,h2,h2u2)=

{
(2−B(x),0,0,0), if x<0.0,

(0,0,2−B(x),0), otherwise.

The density ratio is r=0.98. The boundaries h1u1=−h2u2 are imposed at each end of
the computational domain. We compute the numerical solution using 200 uniform cells
until t=40, which were shown in the Figure 4.6. The numerical results obtained by the
current scheme agree well with that of [18] and are similar to the rigid lid approximation
proposed in [17]. We can not observe the spurious oscillations. These also confirm that
the current scheme is positivity preserving.
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Fig. 4.7. Interface propagation. Top Left: the total water height E; Top Right: the height of the
upper layer h1; Middle left: the velocity of the upper layer u1; Middle right: the velocity of the lower
layer u2; Bottom Left: the discharge of the upper layer h1u1; Bottom Right: the discharge of the lower
layer h2u2

4.6. 1-D Interface propagation. This test problem was also considered
in [18]. This example was used to verify that the current scheme is stable. We made
a small modification on the initial data. The constant density ratio is r=0.98 and the
gravitational constant is g=10. The bottom topography is B(x)=0 and the initial data

(h1,h1u1,h2,h2u2)=

{
(0.50,1.250,0.50,1.250), if x<0.3

(0.45,1.125,0.55,1.375), otherwise.

The computational domain is [0,1]. The final time is t=0.1. The numerical results
are computed by four different uniform meshes: 200, 400, 800, 104 uniform cells. One
can see the computational results in Figure 4.7. Due to the numerical viscosity, a low
resolution and “ENO-type” oscillations can be observed using the coarse mesh. When
the grid is refined, one can see a higher resolution and an intermediate state emerges.

Next, we set the bottom topography to be B(x)=−1. We compare the numerical
results obtained by the new scheme and the CU scheme using 800 uniform cells with
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Fig. 4.8. Interface propagation. Numerical results obtained by the CU scheme. Top Left: the
total water height E; Top Right: the height of the upper layer h1; Bottom Left: the velocity of the
upper layer u1; Bottom Right: the velocity of the lower layer u2.

Fig. 4.9. Interface propagation. Numerical results obtained by the new and CU scheme. Left: the
total water height E; Right: the height of the upper layer h1.

the reference solution which is obtained by the CU scheme using 2000 uniform cells in
Figure 4.8. Both the new scheme and the CU scheme can correctly reflect this complex
wave pattern. The numerical results obtained by the two schemes are well in agreement.

Finally, we use 400 uniform cells to compute the numerical results using the new,
CU and PCCU schemes. The PCCU scheme is proposed in [31], which can be seen as
the extension of the CU scheme. We set the bottom topography function to be B(x)=0.
We compare the numerical results with the references solutions, which are obtained by
the new scheme with 104 uniform cells, in Figures 4.9-4.10. Only the CU scheme cannot
correctly reflect this complex wave pattern. This confirms that the CU scheme depends
on the reference level. The new and PCCU schemes produced similar results.
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Fig. 4.10. Interface propagation. Numerical results obtained by the new and PCCU scheme. Left:
the total water level E; Right: the height of the upper layer h1.

Fig. 4.11. Unsteady flow over a flat bottom. Top left: Numerical surface and interface by the
new scheme using the parameter r=0.7; Top right: Numerical discharge by the new scheme using the
parameter r=0.7; Bottom left: Numerical surface and interface by the new scheme using the parameter
r=0.98; Bottom right: Numerical discharge by the new scheme using the parameter r=0.98.

4.7. Unsteady flow over a flat bottom. In this example, we consider a
flat bottom B(x)=0. This test problem was also considered in [19, 20]. As considered
in [20], if a numerical scheme lacks conservation of the total momentum, it may lead to
the appearance of unphysical solutions. A wrong shock maybe produced due to the weak
instability near the original discontinuity at the interface. The computation domain is
[0,10].

We first set the constant density ratio is r=0.7, t=1 and the gravitational constant
is g=9.8. The initial data is

h2=

{
0.2, if x<5,

1.8, otherwise,
h1=2−h2, u1=u2=0.
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Fig. 4.12. Unsteady flow over a flat bottom. Numerical results obtained by the CU scheme. Left:
r=0.7; Right: r=0.98.

Fig. 4.13. Unsteady flow over a flat bottom. Numerical results obtained by the new and PCCU
schemes. Left: the total water level; Right: the interface.

We run this simulation using 400 uniform cells. The numerical result is shown in Figure
4.11, one can not observe a wrong shock at the interface.

Next, we set the constant density ratio as r=0.98, t=5 and the gravitational con-
stant is g=9.8. One can see that the wrong shock is not present in Figure 4.11. This
confirms that the current scheme can preserve the conservation of the total momentum
and is stable. We also use the CU and PCCU schemes to compute same issues. The
computational results are shown in Figures 4.12-4.13, we can see that the CU scheme
fails to capture the correct wave patterns. Both the new and PCCU schemes produced
similar results which agree well with the reference solutions.

4.8. Small perturbation of a constant state with complex eigenvalues.
This test case was discussed in [20]. The eigenvalues become to complex in this case.
The constant density ratio is r=0.98 and the gravitational constant is g=9.81. The
bottom topography is B(x)=0 and the initial data

h2=

{
1
2 +

1
100 (1+cos(10π(x−5))), if |x−5|<0.1,

1
2 , otherwise,

h1=1−h2, u1=0.6, u2=−0.6.

The computational domain is [0, 10]. The final time is t=1. We compute the numerical
solutions using 1000 cells. One can see the computational results obtained by the new
scheme and the CU scheme in Figure 4.14. The new scheme is robust and does not
have large spurious oscillations. In particular, the numerical results obtained by the
new scheme are still bounded.
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t = 0 t = 1 t = 1

Fig. 4.14. Small perturbation of a constant state with complex eigenvalues. Left: the initial
condition; Middle: Numerical results obtained by the new scheme; Right: Numerical results obtained
by the CU scheme.

5. Conclusion

We proposed a well-balanced, positivity-preserving, second-order accurate,
Godunov-type finite volume scheme based on interface hydrostatic reconstruction for
the two-layer shallow water equation with wetting and drying states. We use the sub-
cell reconstruction method to discretize the source term. We proved the current scheme
can preserve the still water steady state solution of the system with arbitrary wet-dry
fronts and is capable of preserving both layers h1 and h2 to be positive. Several classical
problems confirm that the current scheme is robust and effective.

Acknowledgement. This work was supported in part by the Natural Science
Foundation of Hunan (No.2022JJ40538) and the National Key Research and Develop-
ment Plan of China (2017YFC0405901).

REFERENCES

[1] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory
central difference schemes for systems of conservation laws, SIAM J. Sci. Comput., 24(4):1157–
1174, 2003. 2

[2] A. Bollermann, G. Chen, A. Kurganov, and S. Noelle, A well-balanced reconstruction of wet/dry
fronts for the shallow water equations, J. Sci. Comput., 56(2):267–290, 2013. 2

[3] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind
scheme for the Saint-Venant system, Commun. Math. Sci., 5(1):133–160, 2007. 1
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for the shallow water equations with dry beds, Commun. Comput. Phys., 10(2):371–404, 2011.
1

[8] S. Jin and X. Wen, Two interface-type numerical methods for computing hyperbolic systems with
geometrical source terms having concentrations, SIAM J. Sci. Comput., 26(6):2079–2101, 2006.
2

[9] Y. Xing and C.-W. Shu, A new approach of high order well-balanced finite volume WENO schemes
and discontinuous Galerkin methods for a class of hyperbolic systems with source, Commun.
Comput. Phys., 1(1):567–598, 2006. 1

[10] S. Noelle, N. Pankratz, G. Puppo, and J.R. Natvig, Well-balanced finite volume schemes of ar-
bitrary order of accuracy for shallow water flows, J. Comput. Phys., 213(2):474–499, 2006.

https://doi.org/10.1137/S1064827501392880
https://doi.org/10.1137/S1064827501392880
https://link.springer.com/article/10.1007/s10915-012-9677-5
https://dx.doi.org/10.4310/CMS.2007.v5.n1.a6
https://doi.org/10.1016/S0045-7930(02)00011-7
https://doi.org/10.1137/S1064827503431090
https://doi.org/10.1137/0721062
https://doi.org/10.4208/cicp.220210.020710a
https://doi.org/10.1137/040605825
https://doi.org/10.1016/j.jcp.2005.10.005
https://doi.org/10.1016/j.jcp.2005.08.019


1684 IHR SCHEMES FOR TLSWEs

2
[11] G. Chen and S. Noelle, A new hydrostatic reconstruction scheme based on subcell reconstructions,

SIAM J. Numer. Anal., 55(2):758–784, 2017. 1, 1, 2, 2.4, 3, 3
[12] M.J. Castro, P.G. LeFloch, M.L. Munoz-Ruiz, and C. Parés, Why many theories of shock waves

are necessary: Convergence error in formally path-consistent schemes, J. Comput. Phys.,
227(17):8107–8129, 2008. 2.3, 2.4, 2.5

[13] C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework,
SIAM J. Numer. Anal., 44(1):300–321, 2006. 2.3, 2.3, 2.3

[14] V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher, A well-balanced scheme for the shallow-
water equations with topography or Manning friction, J. Comput. Phys., 335:115–154, 2017.
1

[15] X. Liu, J. Albright, Y. Epshteyn, and A. Kurganov, Well-balanced positivity preserving central-
upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant
system, J. Comput. Phys., 374:213–236, 2018. 1
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