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LOCALIZATION AND THE LANDSCAPE FUNCTION FOR
REGULAR STURM-LIOUVILLE OPERATORS∗

MIRZA KARAMEHMEDOVIĆ† AND FAOUZI TRIKI‡

Abstract. We consider the localization in the eigenfunctions of regular Sturm-Liouville operators.
After deriving non-asymptotic and asymptotic lower and upper bounds on the localization coefficient
of the eigenfunctions, we characterize the landscape function in terms of the first eigenfunction. Several
numerical experiments are provided to illustrate the obtained theoretical results.
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1. Introduction and main results
Localization is an emergent wave phenomenon observed in, e.g., quantum dynamics,

electrodynamics and acoustics, where some eigenfunctions attain large values over small
subsets of the problem domain and nearly vanish over the rest of the domain [1, 4,
5]. Heilman and Strichartz [8] give an interesting introduction to and examples of
localization, while Yamilov et al. [11] give a good overview of the different physical
settings in which Anderson localization can occur, with special focus on electromagnetic
waves in disordered media in dimension three. For other accounts of localization, see,
e.g., [3–5] and the references therein. In this work we are concerned with localization
in dimension one, specifically with estimating the localization effect in eigenfunctions of
regular Sturm-Liouville operators (Theorems 1.1 and 1.2). Next, there is evidence [5]
that the pointwise behavior of the so-called landscape function can reveal the subset
of the problem domain in which the low-frequency eigenfunctions localize. We shall
here characterize the landscape function in terms of low-frequency eigenfunctions of the
regular Sturm-Liouville operator (Propositions 1.1 and 1.2).

Let L>0, assume p,w∈C2([0,L]) are positive-valued functions satisfying p−1,w−1∈
L∞((0,L)), and let q∈C([0,L]) be nonnegative-valued. Define the unbounded operator
T by

Tu=− 1

w
(pu′)′+

q

w
u,

with domain

D(T )=
{
u∈L2((0,L),w(x)dx) : Tu∈L2((0,L),w(x)dx), u(0)=u(L)=0

}
,

and recall that T is self-adjoint in L2((0,L),w(x)dx) with a compact resolvent. We here
investigate the “localization” in the solution ϕλ∈D(T ) of the regular Sturm-Liouville
problem

Tϕλ = λϕλ, (1.1)
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for positive λ. In particular, writing ∥·∥t for ∥·∥Lt((0,L)), we find non-asymptotic as
well as asymptotic lower and upper bounds for the ‘existence surface’ [3, 4], also called
the ‘localization coefficient’,

α(ϕλ)=∥ϕλ∥42/∥ϕλ∥44.

The quantity α(ϕλ) is independent of any normalization of ϕλ by a scalar factor, and it is
a standard measure of the localization of ϕλ, with low α(ϕλ) indicating high localization.
‘High localization’ means that the amplitude of the solution function is relatively high
over a small connected sub-interval I⊂ (0,L), and relatively low in (0,L)\I. Figure 1.1
helps illustrate the concept of localization. Here, we let L=1, q≡0, w≡1, and

p(x)=tanh(40x/L−10)+1.1, x∈ [0,L], (1.2)

making the operator T in (1.1) the Dirichlet Laplacian on [0,1] with a non-trivial metric,
Tu=−(pu′)′. Note that the most localized eigenfunctions correspond to relatively small
eigenvalues, and that the localization coefficient seems to approach a constant with
increasing eigenvalues. Our results, valid well beyond this single example case, predict
both these empirical observations on localization.

Fig. 1.1. Localization of eigenfunctions of the Dirichlet Laplacian on [0,1] with metric p.

We first derive lower and upper bounds for α(ϕλ) in the non-asymptotic regime,
specifically showing that α(ϕλ) can attain relatively low values only at relatively low
frequencies (small λ). Then, to complete the picture, we prove the lower and upper
bounds for α(ϕλ) in the asymptotic regime as λ→∞.
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The treatment of the Sturm-Liouville problem (1.1) when the coefficients are smooth
usually starts with the Liouville transformation to the eigenvalue problem for the
Schrödinger operator [2]. We work with this transformation in Section 2, but to state
our second and third main results we already here define some of the involved quantities.
Thus let

y(x)=

∫ x

0

√
w(s)/p(s)ds, x∈ [0,L],

and

B=

∫ L

0

√
w(s)/p(s)ds.

The function y : (0,L)→ (0,B) is strictly increasing, and has an inverse denoted by x(y).
Let

f(y)=(w(x(y)))p(x(y)))1/4, y∈ [0,B],

and

Q(y)=f ′′(y)/f(y)+q(x(y))/w(x(y)), y∈ [0,B]. (1.3)

Write also

a(B,λ)=
B∥Q∥∞
2
√
λ

, (1.4)

and

b(B,λ)=

(
B3

12
+

5B

32λ
+

5

32λ3/2

)1/4

∥Q∥4/
√
λ. (1.5)

Finally, for any real λ, let

Φλ(y)=sin(
√
λy), y∈ [0,B].

Our first result gives non-asymptotic bounds on α(ϕλ). Let

β(p,w)=∥w∥−2
∞ ∥p−1/2w−3/2∥−1

∞ and γ(p,w)=∥w−1∥2∞∥p1/2w3/2∥∞.

Theorem 1.1. If

a(B,λ)<1 (1.6)

and

b(B,λ)<1 (1.7)

then

β(p,w)

(
1−b(B,λ)
1+a(B,λ)

)4

≤ α(ϕλ)

α(Φλ)
≤γ(p,w)

(
1+b(B,λ)

1−a(B,λ)

)4

.
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Fig. 1.2. Lower and upper bounds on α(ϕλ) from Theorem 1.1 for the eigenvalue problem (1.1)
after Liouville transformation, with β(p,w)=1, γ(p,w)=1, B=1, ∥Q∥∞=1, and ∥Q∥4=1. The
constant value is the asymptotic 2B/3. For the chosen parameter values, the Assumptions (1.6)–(1.7)
are satisfied for λ⪆0.74.

Figure 1.2 illustrates the bounds on the localization coefficient from Theorem 1.1. Let
BV([0,B]) and AC([0,B]) be respectively the space of bounded variation functions, and
the space of absolutely continuous functions.

Our second result concerns the asymptotic behavior of α(ϕλ):

Theorem 1.2. As λ→∞, we have

β(p,w)
2B

3
+O(λ−1/2)≤α(ϕλ)≤γ(p,w)

2B

3
+O(λ−1/2)

when Q∈C([0,B]),

β(p,w)
B2

4 −B( 14 +∥Q∥1B)λ−1/2

3B
8 +( 9

32 +2∥Q∥1B)λ−1/2
+O(λ−1)≤α(ϕλ)

≤γ(p,w)
B2

4 +B( 14 +∥Q∥1B)λ−1/2

3B
8 −( 9

32 +2∥Q∥1B)λ−1/2
+O(λ−1)

when Q∈BV([0,B]), and

β(p,w)
2B

3
+O(λ−3/2)≤α(ϕλ)≤γ(p,w)

2B

3
+O(λ−3/2)

when Q∈C4([0,B])∩AC([0,B]) and Q′∈BV([0,B]).

Remark 1.1. A straightforward calculation shows that the localization coefficient of
the function Φλ is for any positive λ given by

α(Φλ)=
B2/4+cos(

√
λB)2/4λ−B cos(

√
λB)sin(

√
λB)/2

√
λ−cos(

√
λB)4/4λ

3B/8+cos(
√
λB)3 sin(

√
λB)/4

√
λ−5cos(

√
λB)sin(

√
λB)/8

√
λ

. (1.8)
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Fig. 1.3. The localization coefficient α(Φλ) of the function Φλ(y)=sin
√
λy, y∈ [0,B], for B=

1. The constant value shown is α(Φλn )=2/3, n∈N0, where the Φλn are the eigenfunctions of the
Dirichlet Laplacian on the interval (0,1).

The eigenvalues and eigenfunctions of the Dirichlet Laplacian −d2/dy2 on (0,B) are
given by λn=n

2π2/B2 and Φλn
(y)=sin(nπy/B), respectively, with n∈N0 :=N \{0}=

{1,2,. ..}. In particular, α(Φλn)=2B/3 for n∈N0, that is, all eigenfunctions of the
Dirichlet Laplacian on (0,B) have the same localization coefficient. We furthermore
readily see that

lim
λ→∞

α(Φλ)=
2B

3
, (1.9)

and more precisely that, for large λ,

α(Φλ)=
B2/4+O(λ−1/2)

3B/8+O(λ−1/2)
=

2B

3

1

1+O(λ−1/2)
+O(λ−1/2)

=
2B

3
+O(λ−1/2). (1.10)

Figure 1.3 shows α(Φλ) as function of λ for the choice B=1.

Remark 1.2. If p≡1 and w≡1 then T is the Schrödinger operator −d2/dx2+q(x).
For this case, in the high-frequency limit (λ→∞) the localization coefficient of ϕλ
approaches that of Φλ (so it approaches the value 2B/3), that is, the presence of the
potential q becomes insignificant.

Remark 1.3. It is readily seen that the lower bound on α(ϕλ)/α(Φλ) in Theorem 1.1
is a monotonically increasing function of λ, for any fixed positive B. In view of this,
and of the behavior of α(Φλ) discussed above, we conclude that if a solution of (1.1) is
to exhibit high localization (relatively small value of α(ϕλ)) then λ must be relatively
small, that is, localization is a low-frequency phenomenon.

We next focus on the localization in the eigenfunctions associated to low frequencies
(small λ). In [5] the authors have given a simple but efficient way to predict the behavior
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of first eigenfunctions. Precisely they used the landscape function ℓ∈D(T ), solving

Tℓ=1, ℓ∈D(T ), (1.11)

to identify the regions where the solution of (1.1) localizes. This can be observed through
the following pointwise key inequality [10]

ϕ(x)≤λℓ(x)∥ϕ∥∞, x∈ (0,L).

Indeed λ∥ℓ∥∞≥1 and ϕ can then localize only in the region {x∈ (0,L); λℓ(x)≥1}.
Our third result thus characterizes the landscape function in terms of the first

eigenfunction of the operator T :

Proposition 1.1. Assume that w≡1, and let k∈N0. If

T k ℓ̃k=1, ℓ̃k ∈D(T k), ℓk= ℓ̃k/∥ℓ̃k∥2,

as well as

Tϕ1=λ1ϕ1, ϕ1∈D(T ), ∥ϕ1∥2=1, ϕ1>0, λ1<λj for j=2,3,. ..,

where λj ,j∈N0 is the non-decreasing sequence of eigenvalues of T . Then

∥ℓk−ϕ1∥∞≤2λ
1/2
1 L∥P11∥−1

2

(
λ1
λ2

)k−1/2

, (1.12)

where P1 is the spectral projection onto the eigenspace associated with λ1.

Remark 1.4. The asymptotic result in (1.12) shows that the convergence is exponen-
tially fast if the fundamental gap λ2−λ1 is large enough. When p=1, and q is a weakly
convex potential it is known that [9]

λ2−λ1≥
3π2

L2
.

The inequality conjectured by Yau [12] is still an open problem in higher dimensions.
It turns out that this spectral gap also determines the rate at which positive solutions
of the heat equation tend to their projections onto the first eigenspace.

Our fourth and final result is as follows:

Proposition 1.2. Assume that w≡1, and let λj, j∈N0, be the non-decreasing
sequence of eigenvalues of T . Let Pj be the spectral projection onto the eigenspace
associated with λj. Let k, n0∈N0, and t∈ (λ−1

n0+1,λ
−1
n0

). If

(tT )kℓk,t=1, ℓk,t∈D(T k),

then ∥∥∥∥∥∥ℓk,t−
n0∑
j=1

1

(tλj)k
Pj1

∥∥∥∥∥∥
∞

≤ L

t1/2
1

(tλn0+1)k−1/2
. (1.13)

Remark 1.5. The value of t fixes the number of the eigenfunctions covered by the
generalized landscape function ℓt,k. Notice that t∈ (λ−1

n0+1,λ
−1
n0

) is equivalent to

1

tλn0+1
<1<

1

tλn0

,
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which implies that the contribution of the eigenfunctions Pj1, j >n0 in the localization
of ℓk,t is exponentially small for large k while the contribution of Pj1 for 1≤ j≤n0 can
be exponentially large if in addition Pj1 is not zero. These observations are confirmed
in Section 6 by several numerical tests. Finally the results of Propositions 1.1 and 1.2
are still valid for w non-constant and sufficiently smooth (∥·∥2 should be substituted
by ∥·∥L2((0,L);wdx)).

Theorem 1.1 is proved in Section 2 using a Volterra integral equation representation
of solutions of (1.1) given by Fulton [6], while Theorem 1.2 is proved in Section 3 via
the asymptotic expansions of ϕλ, as λ→∞, given in Fulton and Pruess [7]. Finally, we
prove Propositions 1.1 and 1.2 in Sections 4 and 5 respectively using the power method.

2. Proof of Theorem 1.1 (non-asymptotic bounds on α(ϕλ))
Using the Liouville transformation

y(x)=

∫ x

0

√
w(s)/p(s)ds forx∈ [0,L]; B=y(L);

f(y)=(w(x(y))p(x(y)))1/4, y∈ [0,B];

vλ(y)=ϕλ(x(y))f(y), y∈ [0,B]; (2.1)

and

Q(y)=f ′′(y)/f(y)+q(x(y))/w(x(y)), y∈ [0,B],

we recast the problem (1.1) in the Liouville normal form [7, pp. 303–304]{
−v′′λ+Q(y)vλ = λvλ, y∈ (0,B),
vλ(0)=vλ(B) = 0.

(2.2)

It follows from our assumptions on p, w and q that Q∈C([0,B]), hence Q∈Lt([0,B])
for t∈ [1,∞]. Now∫ L

0

ϕλ(x)
2dx=

∫ B

0

vλ(y)
2

w(x(y))
dy∈

[
∥w∥−1

∞ ,∥w−1∥∞
]
×
∫ B

0

vλ(y)
2dy

and ∫ L

0

ϕλ(x)
4dx=

∫ B

0

vλ(y)
4

p(x(y))1/2w(x(y))3/2
dy

∈
[
∥p1/2w3/2∥−1

∞ ,∥p−1/2w−3/2∥∞
]
×
∫ B

0

vλ(y)
4dy,

so it remains to examine ∥vλ∥22 and ∥vλ∥44. To this end we recall from Fulton and
Pruess [7, p. 308] that a solution of the ODE in (2.2), normalized such that vλ(0)=0
and v′λ(0)=(w(0)p(0))−1/4 ̸=0, satisfies the associated Volterra integral equation(

Id− 1√
λ
KQ

)
vλ(y)=

v′λ(0)√
λ

Φλ(y), y∈ [0,B], (2.3)

where for any u∈C2([0,B]) we have

KQu(y)=

∫ y

0

Q(z)sin(
√
λ(y−z))u(z)dz, y∈ (0,B).
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Now write ∥KQ∥t for the operator norm of KQ as a mapping from Lt((0,B)) to
Lt((0,B)).

Lemma 2.1. For every positive λ we have

∥KQ∥22≤
B2

4
∥Q∥2∞

and

∥KQ∥44≤
(
B3

12
+

5B

32λ
+

5

32λ3/2

)
∥Q∥44.

Proof. The estimates follow readily from applying Hölder’s inequality. We have

∥KQu∥22≤∥Q∥2∞∥u∥22
∫ B

0

∥sin(
√
λ(y−·))∥2L2((0,y))dy

=∥Q∥2∞∥u∥22
∫ B

0

(
y

2
− cos

√
λy sin

√
λy

2
√
λ

)
dy

=
∥Q∥2∞

4
∥u∥22

(
B2− sin2

√
λB

λ

)

≤ ∥Q∥2∞B2

4
∥u∥22, u∈L2((0,B)),

as well as

∥KQu∥44≤∥Q∥44∥u∥44
∫ B

0

∥sin(
√
λ(y−·))∥4L2((0,y))dy

=∥Q∥44∥u∥44

(
B3

12
+
B cos(

√
λB)2

4λ
− sin

√
λB cos(

√
λB)3

16λ3/2

− 3B

32λ
− 3cos

√
λB sin

√
λB

32λ3/2

)

≤∥Q∥44
(
B3

12
+

5B

32λ
+

5

32λ3/2

)
∥u∥44, u∈L4([0,B]),

We have from (2.3) and from Lemma 2.1 that, for all positive λ,

∥vλ∥2≥λ−1/2|v′λ(0)|∥Φλ∥2−λ−1/2∥KQ∥2∥vλ∥2
≥λ−1/2|v′λ(0)|∥Φλ∥2−λ−1/2B∥Q∥∞∥vλ∥2/2,

∥vλ∥2≤λ−1/2|v′λ(0)|∥Φλ∥2+λ−1/2∥KQ∥2∥vλ∥2
≤λ−1/2|v′λ(0)|∥Φλ∥2+λ−1/2B∥Q∥∞∥vλ∥2/2,

∥vλ∥4≥λ−1/2|v′λ(0)|∥Φλ∥4−λ−1/2∥KQ∥4∥vλ∥4

≥λ−1/2|v′λ(0)|∥Φλ∥4−λ−1/2

(
B3

12
+

5B

32λ
+

5

32λ3/2

)1/4

∥Q∥4∥vλ∥4,
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and

∥vλ∥4≤λ−1/2|v′λ(0)|∥Φλ∥4+λ−1/2∥KQ∥4∥vλ∥4

≤λ−1/2|v′λ(0)|∥Φλ∥4+λ−1/2

(
B3

12
+

5B

32λ
+

5

32λ3/2

)1/4

∥Q∥4∥vλ∥4.

Specifically, for B∥Q∥∞/2<
√
λ (Assumption (1.6)) and(

B3

12
+

5B

32λ
+

5

32λ3/2

)1/4

∥Q∥4<
√
λ

(Assumption (1.7)), we have(
1−b(B,λ)
1+a(B,λ)

)4

≤ α(vλ)

α(Φλ)
≤
(
1+b(B,λ)

1−a(B,λ)

)4

.

3. Proof of Theorem 1.2 (asymptotic bounds on α(ϕλ))
The first part of Theorem 1.2 follows from the fact that

1∓b(B,λ)
1±a(B,λ)

=1+O(λ−1/2), λ→∞,

together with (1.10) and the estimates in Theorem 1.1.

Next, if Q∈BV([0,B]) then we can use the asymptotic expansion of vλ from (2.2)
given by Equation (3.3)2N of Fulton and Pruess [7] with N =1, and get

vλ(y)/v
′
λ(0)=λ

−1/2 sin(λ1/2y)− 1

2λ

∫ y

0

Q(s)ds ·cos(λ1/2y)+O(λ−3/2), y∈ [0,B],

where the remainder O(λ−3/2) is uniform in y∈ [0,B]. This, in turn, implies

∥vλ∥42
v′λ(0)

4
=λ−2B

2

4

−λ−5/2B

(
1

4
sin(2Bλ1/2)+

∫ B

0

∫ y

0

Q(s)ds sin(λ1/2y)cos(λ1/2y)dy

)
+O(λ−3)

and

∥vλ∥44
v′λ(0)

4
=λ−2 3B

8
+λ−5/2

(
sin(4Bλ1/2)−8sin(2Bλ1/2)

32

−2

∫ B

0

∫ y

0

Q(s)ds sin3(λ1/2y)cos(λ1/2y)dy

)
+O(λ−3)

as λ→∞. Thus c−≤λ2∥vλ∥42/v′λ(0)4≤ c+ with

c±=
B2

4
±λ−1/2B

(
1

4
+B∥Q∥1

)
+O(λ−1), λ→∞,

and d−≤λ2∥vλ∥44/v′λ(0)4≤d+ with

d±=
3B

8
±λ−1/2

(
9

32
+2B∥Q∥1

)
+O(λ−1), λ→∞.
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Finally, if Q∈AC([0,B]) and Q′∈BV([0,B]) then we can use the asymptotic expansion
of vλ given by [7, Equation (3.3)2N+1] with N =1, to get

vλ(y)/v
′
λ(0)=λ

−1/2 sin(λ1/2y)−λ−1 1

2
cos(λ1/2y)

∫ y

0

Q(s)ds

+λ−3/2 1

4
sin(λ1/2y)

(∫ y

0

Q(s)

∫ s

0

Q(τ)dτds+Q(0)+Q(y)

)
+O(λ−2),

(3.1)

where the remainder O(λ−2) is uniform in y. This, in turn, implies

∥vλ∥42
v′λ(0)

4
=λ−2B

2

4

−λ−5/2B

(
sin(2Bλ1/2)

4
+

∫ B

0

sin(λ1/2y)cos(λ1/2y)

∫ y

0

Q(s)dsdy

)

+λ−3B

(
1

4

∫ B

0

cos2(λ1/2y)

(∫ y

0

Q(s)ds

)2

dy

+
1

2

∫ B

0

sin2(λ1/2y)

(∫ y

0

Q(s)

∫ s

0

Q(τ)dτds+Q(0)+Q(y)

)
dy

)
+O(λ−7/2)

and

∥vλ∥44
v′λ(0)

4
=λ−2 3B

8

+λ−5/2

(
sin(4Bλ1/2)−8sin(2Bλ1/2)

32
−2

∫ B

0

sin3(λ1/2y)cos(λ1/2y)

∫ y

0

Q(s)dsdy

)
+λ−3

(
3

2

∫ B

0

sin2(λ1/2y)cos2(λ1/2y))

(∫ y

0

Q(s)ds

)2

dy

+

∫ B

0

sin4(λ1/2y)

(∫ y

0

Q(s)

∫ s

0

Q(τ)dτds+Q(0)+Q(y)

)
dy

)
+O(λ−7/2).

Now each eigenvalue λ is a zero of λ 7→vλ(B) [7, p. 319, Case 4], and in light of (3.1)
we therefore have

sin(λ1/2B)=λ−1/2 1

2

∫ B

0

Q(s)ds ·cos(λ1/2B)+O(λ−3/2),

sin2(λ1/2B)=λ−1 1

4

(∫ B

0

Q(s)ds

)2

cos2(λ1/2B)+O(λ−2), cos2(λ1/2B)=1+O(λ−1),

sin(2λ1/2B)=λ−1/2

∫ B

0

Q(s)ds ·cos2(λ1/2B)+O(λ−3/2),

and

sin(4λ1/2B)=λ−1/22

∫ B

0

Q(s)ds ·cos(2λ1/2B)cos2(λ1/2B)+O(λ−3/2).
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Also, using integration by parts, we find for any ϕ,ψ∈C4([0,B]) with ϕ(0)=0 that∫ B

0

sin(λ1/2y)cos(λ1/2y)ϕ(y)dy

=λ−1/2

(
sin2(λ1/2B)

2
− 1

4

)
ϕ(B)+O(λ−1)=−λ−1/2 1

4
ϕ(B)+O(λ−1),

∫ B

0

cos2(λ1/2y)ϕ(y)dy

=
1

2

∫ B

0

ϕ(y)dy+λ−1/2 sin(2λ
1/2B)

4
ϕ(B)+O(λ−1)=

1

2

∫ B

0

ϕ(y)dy+O(λ−1),

∫ B

0

sin2(λ1/2y)ψ(y)dy

=
1

2

∫ B

0

ψ(y)dy−λ−1/2 sin(2λ
1/2B)

4
ψ(B)+O(λ−1)=

1

2

∫ B

0

ψ(y)dy+O(λ−1),

∫ B

0

sin3(λ1/2y)cos(λ1/2y)ϕ(y)dy

=λ−1/2

(
sin4(λ1/2B)

4
− 3

32

)
ϕ(B)+O(λ−1)=−λ−1/2 3

32
ϕ(B)+O(λ−1),

∫ B

0

sin2(λ1/2y)cos2(λ1/2y)ϕ(y)dy

=
1

8

∫ B

0

ϕ(y)dy+λ−1/2

(
sin(2λ1/2B)−4sin(λ1/2B)cos3(λ1/2B)

16
ϕ(B)

−cos4(λ1/2B)

2
ϕ′(B)+

3

16
ϕ′(B)+

5

16
ϕ′(0)

)
+O(λ−1)

=
1

8

∫ B

0

ϕ(y)dy+λ−1/2 5

16
(ϕ′(0)−ϕ′(B))+O(λ−1),

and ∫ B

0

sin4(λ1/2y)ψ(y)dy

=
3

8

∫ B

0

ψ(y)dy−λ−1/2

(
sin3(λ1/2B)cos(λ1/2B)

4
+

3sin(2λ1/2B)

16

)
ψ(B)+O(λ−1)

=
3

8

∫ B

0

ψ(y)dy+O(λ−1).

Using these expansions, we get

λ2
∥vλ∥42
v′λ(0)

4
=
B2

4
+λ−1B

4

[
1

2

∫ B

0

(∫ y

0

Q(s)ds

)2

dy

+

∫ B

0

(∫ y

0

Q(s)

∫ s

0

Q(τ)dτds+Q(0)+Q(y)

)
dy

]
+O(λ−3/2)



1744 LOCALIZATION AND THE LANDSCAPE FUNCTION

and

λ2
∥vλ∥44
v′λ(0)

4
=
3B

8
+λ−1 3

8

[
1

2

∫ B

0

(∫ y

0

Q(s)ds

)2

dy

+

∫ B

0

(∫ y

0

Q(s)

∫ s

0

Q(τ)dτds+Q(0)+Q(y)

)
dy

]
+O(λ−3/2).

Note that the factors multiplying λ0 and λ−1 in ∥vλ∥42 are proportional to those in
∥vλ∥44, with the proportionality constant 2B/3. We thus have

α(vλ)=
B2/4+λ−1s+O(λ−3/2)

(3/2B)(B2/4+λ−1s+O(λ−3/2))
=

2B

3
+O(λ−3/2),

where

s=
B

4

[
1

2

∫ B

0

(∫ y

0

Q(s)ds

)2

dy+

∫ B

0

(∫ y

0

Q(s)

∫ s

0

Q(τ)dτds+Q(0)+Q(y)

)
dy

]
.

4. Proof of Proposition 1.1
By construction T is self-adjoint and diagonalizable. Hence it can be written in the

following form

T =

∞∑
j=1

λjPj , (4.1)

where (λj)j∈N0 is the strictly increasing sequence of eigenvalues of T , and Pj are the
orthogonal projections onto the eigenspaces associated to λj , j∈N0.

Since ℓk ∈D(T ), it has the following expansion

ℓk= ℓ̃k/∥ℓ̃k∥2, ℓ̃k=

∞∑
j=1

λ−k
j Pj1.

Straightforward computations give

∥λk1 ℓ̃k−P11∥2≤L1/2

(
λ1
λ2

)k

, and ∥P11∥2≤∥λk1 ℓ̃k∥2. (4.2)

We then deduce

∥λk1 ℓ̃k∥2−∥P11∥2≤L1/2

(
λ1
λ2

)k

. (4.3)

Similarly, since T ℓ̃k ∈L2((0,L)), we have

∥λk1T 1/2ℓ̃k−T 1/2P11∥2≤ (λ1L)
1/2

(
λ1
λ2

)k−1/2

. (4.4)

Recall that ϕ1>0, which implies ∥P11∥2>0 and ϕ1=P11/∥P11∥2. Now combining
inequalities (4.2), (4.3) and (4.4), we get

∥T 1/2ℓk−T 1/2ϕ1∥2≤∥λk
1T

1/2ℓ̃k−T 1/2P11∥2∥P11∥−1
2 +λ

1/2
1

(
∥λk

1 ℓ̃k∥2−∥P11∥2
)
∥P11∥−1

2

≤2(λ1L)
1/2

(
λ1

λ2

)k−1/2

∥P11∥−1
2 .

(4.5)
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On the other hand, we have

|φ(x)|≤
∫ x

0

|φ′(s)|ds≤L1/2∥φ′∥2, ∀x∈ (0,L),

for all φ∈C∞
0 ((0,L)).

Since C∞
0 ((0,L)) is dense in D(T 1/2), we get

∥φ∥∞≤L1/2∥T 1/2φ∥2, ∀φ∈D(T 1/2). (4.6)

Combining inequalities (4.6) and (4.5), we obtain the desired result.

5. Proof of Proposition 1.2
Using the spectral expansion (4.1), we get

ℓk,t=

∞∑
j=1

1

(tλj)k
Pj1.

Hence

T 1/2

ℓk,t− n0∑
j=1

1

(tλj)k
Pj1

=

∞∑
j=n0+1

1

(tλj)k
T 1/2Pj1.

Therefore ∥∥∥∥∥∥T 1/2

ℓk,t− n0∑
j=1

1

(tλj)k
Pj1

∥∥∥∥∥∥
2

≤ L1/2

t1/2
1

(tλn0+1)k−1/2
. (5.1)

Applying again the Sobolev inequality (4.6), we recover the final estimate.

6. The landscape function: numerical tests
We start by illustrating the consequences of Proposition 1.1. For Figure 6.1 we use

L=1 and

p(x)=tanh(40x/L−10)+1.1, q(x)=0, x∈ [0,L],

as in (1.2) in Section 1), while Figure 6.2 shows the graphs of

p(x)=tanh(40x/L−20)+1.1, q(x)=2+sin(2πx), x∈ [0,L],

used, with L=1, for the results of Figure 6.3. Finally, Figure 6.4 shows the functions

p(x)=tanh(40x/L−10)+1.1, q(x)=2+sin(2πx), x∈ [0,L],

used, with L=5, for the results of Figure 6.5.
Next, in Figure 6.6 we illustrate the validity of the upper bound on ∥ℓk,t−∑n0

j=1(tλj)
−kPj1∥∞, as given in Proposition 1.2. Since the constants (tλj)

−1, j=
1,. ..,n0, are greater than 1, the numerical error present in the above L∞-norm can
grow exponentially with k. To avoid this numerical instability, in Figure 6.6 we plot
the equivalent quantity ∥

∑∞
j=n0+1(tλj)

−k(tλj)
−kPj1∥∞, with the series truncated at

j=20.
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Fig. 6.1. Left: the functions ℓk approach the first eigenvector ϕ1 pointwise as k increases. Right:
actual value vs. upper bound on ∥ϕ1−ℓk∥∞, see Proposition 1.1.

Fig. 6.2. The functions p(x) and q(x) used for the results of Figure 6.3.

Fig. 6.3. Left: the functions ℓk approach the first eigenvector ϕ1 pointwise as k increases. Right:
actual value vs. upper bound on ∥ϕ1−ℓk∥∞, see Proposition 1.1.

Fig. 6.4. The functions p(x) and q(x) used for the results of Figure 6.5.
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Fig. 6.5. Left: the functions ℓk approach the first eigenvector ϕ1 pointwise as k increases. Right:
actual value vs. upper bound on ∥ϕ1−ℓk∥∞, see Proposition 1.1.

Fig. 6.6. Illustration of the upper bound of Proposition 1.2 for different values of n0.
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