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Poisson distribution for gaps between

sums of two squares and level spacings

for toral point scatterers

Tristan Freiberg, Pär Kurlberg, and Lior Rosenzweig

We investigate the level spacing distribution for the quantum spec-
trum of the square billiard. Extending work of Connors–Keating,
and Smilansky, we formulate an analog of the Hardy–Littlewood
prime k-tuple conjecture for sums of two squares, and show that
it implies that the spectral gaps, after removing degeneracies and
rescaling, are Poisson distributed. Consequently, by work of Rud-
nick and Ueberschär, the level spacings of arithmetic toral point
scatterers, in the weak coupling limit, are also Poisson distributed.
We also give numerical evidence for the conjecture and its impli-
cations.
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1. Introduction

According to the Berry–Tabor conjecture [2], the energy levels for generic
integrable systems should be Poisson distributed in the semiclassical limit.

837
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As noted by Connors and Keating [5], the square billiard, though integrable,
is not generic: due to spectral degeneracies, the level spacing distribution
tends to a δ-function at zero. However, if we remove the degeneracies and
rescale so that the mean spacing is unity, numerics indicate Poisson spacings.

Figure 1.1: Rescaled gaps between consecutive energy levels in [1099, 1099 +
110000], after removing degeneracies. The rescaled gaps have mean one;
without rescaling the mean gap is 19.42 · · · . Number of gaps: 5663. We also
plot the density function (red in color printout) P (x) = e−x, consistent with
Poisson spacings.

The energy levels of the square billiard, say with side length 2π, are
number theoretical in nature, and given by a2 + b2 for a, b ∈ Z. After re-
moving degeneracies and rescaling, we are led to study the nearest neighbor
spacing distribution

(1.1)
1

N(x)
#

{
En � x :

En+1 − En

x/N(x)
< λ

}

(as x→∞), where En denotes the nth smallest element of the set

(1.2) E ..= {a2 + b2 : a, b ∈ Z}, and N(x) ..= #{En � x : En ∈ E}.

(In our setting, the leading order of the density of states is asymptotically
equal to C/

√
log x as x→∞ [see (1.5)], and hence the spacing distribution

of the unfolded levels
(
CEn/

√
logEn

)
n�1

is asymptotically the same as that

of the gaps in (1.1).)
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Rather than studying the spacing distribution directly, we shall proceed
by investigating unordered k-tuples of elements in E. Thus, given k � 1 and
h = {h1, . . . , hk} ⊆ Z with #h = k, consider the correlation function

(1.3) Rk(h;x) ..=
1

x

∑
n�x

1E(n+ h1) · · ·1E(n+ hk),

where 1E denotes the indicator function of E. If h = {0}, this is the level
density

(1.4) R1(x) ..=
N(x)

x
.

By a classical result of Landau [23],

(1.5) R1(x) ∼ C√
log x

(x→∞),

where C > 0 is an explicitly given constant (see (2.1)). To formulate an
analog of (1.5) for k > 1 we need some further notation. Given a prime
p �≡ 1 mod 4, define

(1.6) δh(p) ..= lim
α→∞

#{0 � a < pα : ∀h ∈ h, a+ h ≡ �+� mod pα}
pα

.

(That this limit exists is shown in Section 5, see Propositions 5.3 and 5.2.)
Further, for k � 1 and a set h = {h1, . . . , hk} ⊆ Z with #h = k, we define
the singular series for h by

(1.7) Sh
..=

∏
p �≡1 mod 4

δh(p)(
δ{0}(p)

)k ,

with δ{0}(p) and δh(p) as in (1.6). We note that δ{0}(p) > 0 for all p �≡
1 mod 4, and that the product converges to a nonzero limit if δh(p) > 0 for
all p �≡ 1 mod 4 (see Proposition 5.4). If δh(p) = 0 for some p �≡ 1 mod 4, we
define Sh to be zero; it is easy to see that Rk(h;x) = 0 for all x if Sh = 0.

We can now formulate an analog of the Hardy–Littlewood prime k-tuple
conjecture.

Conjecture 1.1. Fix k � 1, and a set h = {h1, . . . , hk} ⊆ Z with #h = k.
If Sh > 0, then

(1.8) Rk(h;x) ∼ Sh

(
R1(x)

)k
(x→∞).
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Our main result, Theorem 1.2 below, is conditional on the hypothesis
that (1.8) holds on average. To be precise, let Eh(x) be defined by the relation

(1.9) Rk(h;x) =..
(
Sh + Eh(x)

)(
R1(x)

)k
.

Further, let Δk be the region in Rk defined by

(1.10) Δk ..= {(x1, . . . , xk) ∈ Rk : 0 < x1 < · · · < xk},

and, given C ⊂ Δk and y ∈ R, let yC be the dilation of C defined by

yC ..= {(yx1, . . . , yxk) : (x1, . . . , xk) ∈ C }.

Our hypothesis is that the error term Eh(x) is small on average over dilates
of certain bounded convex sets.

Hypothesis (k,C ,o). Fix an integer k � 1, and a bounded convex set C ⊂
Δk. Set o ..= ∅, or set o ..= {0}. Let x and y be real parameters tending to
infinity in such a way that yR1(x) ∼ 1. There exists a function ε(x), with
ε(x)→ 0 as x→∞, such that for x sufficiently large in terms of k and C ,

(1.11)

∣∣∣∣∣∣
∑

(h1,...,hk)∈yC∩Zk

Eo∪h(x)
∣∣∣∣∣∣ � ε(x)

∑
(h1,...,hk)∈yC∩Zk

So∪h,

where h = {h1, . . . , hk} in both summands.

Under the above hypothesis we find that the spacing distribution (1.1)
is indeed Poissonian. Moreover, the distribution of the number of points in
intervals of size comparable to the mean spacing is consistent with that of a
Poisson process. (We remark that our hypothesis can be weakened slightly:
see Section 4.)

Theorem 1.2. Let x and y be real parameters tending to infinity in such a
way that yR1(x) ∼ 1. Fix integers m � 0 and r � 1, and fix λ, λ1, . . . , λr ∈
R+. Assume that Hypothesis (k,C , {0})) (respectively, Hypothesis (k,C , ∅)
holds for all k � 1, and all bounded, convex sets C ⊂ Δk. Then (a) (respec-
tively, (b)) holds.
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(a) We have

1

N(x)
#{En � x : ∀j � r, En+j − En+j−1 � λjy}(1.12)

∼
r∏

j=1

∫ λj

0
e−t dt (x→∞).

(b) We have

(1.13)
1

x
#{n � x : N(n+ λy)−N(n) = m} ∼ e−λ

λm

m!
(x→∞).

In [28], Rudnick and Ueberschär considered the spectrum of “toral point
scatterers”, namely the Laplace operator, perturbed by a delta potential, on
two dimensional tori. They showed (cf. [28, Corollary 1.3]) that the level
spacings of the perturbed eigenvalues, in the weak coupling limit, have the
same distribution as the level spacings of the unperturbed eigenvalues (after
removing multiplicities.) An interesting consequence of Conjecture 1.1 (or, to
be precise, Hypothesis (k,C , {0})), is thus that the Berry–Tabor conjecture
holds for toral point scatterers, in the weak coupling limit, for arithmetic
tori of the form R2/Z2.

We remark that Gallagher [8] proved the analog of Theorem 1.2 (b) for
primes. As in Gallagher’s proof, a key technical result is that the singular
series is of average order one, over certain geometric regions.

Proposition 1.3. Fix an integer k � 1, and a bounded convex set C ⊂ Δk.
Set o ..= ∅, or set o ..= {0}. As y →∞, we have

∑
(h1,...,hk)∈yC∩Zk

So∪h = yk
(
vol(C ) +O

(
y−2/3+o(1)

))
,(1.14)

where h = {h1, . . . , hk} in the summand, and vol stands for volume in Rk.

We note that any qualitative error term in Proposition 1.3 is sufficient
to deduce Theorem 1.2. (See Remark 6.6 at the end of Section 6 for a
brief outline how Ford’s [7] and Pintz’s [26] simplification of Gallagher’s
arguments can be adapted to give a weaker error term in Proposition 1.3.)

Acknowledgements. We thank Z. Rudnick for stimulating discussions on
the subject matter, D. Koukoulopoulos for his comments on an early version
of the paper, and the anonymous referee for helpful comments. T. F. was
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2. Discussion

Connors and Keating [5] determined the singular series for shifted pairs of
sums of two squares, giving a probabilistic derivation of Conjecture 1.1 in the
special case k = 2, and found that it matched numerics quite well (to within
2%). Smilansky [30] then expressed the singular series for pairs as products
of p-adic densities, showing that its mean value (over short intervals of shifts)
is consistent with a Poisson distribution, and that the same is true for sums
of two squares, on assuming a uniform version of Conjecture 1.1 for k = 2.
Smilansky also gave the singular series for triples corresponding to the shifts
h = {0, 1, 2}.

As already mentioned, the analog of Theorem 1.2 (b) for primes is due
to Gallagher, who in [8] showed that an appropriate form of the Hardy–
Littlewood prime k-tuples conjecture implies the prime analog of (1.12).
(That it implies the prime analog of (1.13) is mentioned in Hooley’s survey
article [13, p. 137].) To show that the singular series is one on average (i.e.,
the prime analog of Proposition 1.3), Gallagher uses combinatorial identi-
ties for Stirling numbers of the second kind. In [19], Kowalski developed an
elegant probabilistic framework for evaluating averages of singular series.
Rather than using combinatorial identities, Kowalski showed that a certain
duality between k-th moments of m-tuples and m-th moments of k-tuples
holds [19, Theorem 1]. That the k-th moment of 1-tuples is equal to one is
more or less trivial, but, by duality, Kowalski obtains the non-trivial conse-
quence that first moments of k-tuples is also equal to one. (Note that (1.14)
can be viewed as a first moment of k-tuples when o = ∅.)

Our approach originates with techniques developed in [20, 21], and fur-
ther refined in [10, 22]. Loosely speaking, the singular series Sh is expanded
into local factors of the form 1 + εh(p), and thus

Sh =
∏
p

(1 + εh(p)) =
∑
d�1

squarefree

εh(d),
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where εh(1) = 1 and εh(d) ..=
∏

p|d εh(p). Hence

∑
h

Sh =
∑
d�1

squarefree

∑
h

εh(d),

and the main term is given by d = 1. For d large, |εh(d)| can be shown to be
small on average. For d small, we use that εh(d) (approximately) only de-
pends on h mod d, together with complete cancellation when summing over
the full set of residues modulo d, i.e.,

∑
h mod d εh(d) = 0. This follows, via

the Chinese remainder theorem, from local cancellations
∑

h mod p εh(p) = 0,
which in turn can be deduced from the following easily verifiable identity:
given any subset Xp ⊆ Z/pZ, we have (see Lemma 6.3 (b) and its proof for
more details):

∑
(h1,h2,...,hk)∈ (Z/pZ)k

∑
m∈Z/pZ

∀i�k,m+hi ∈Xp

1 =
∑

(h1,h2,...,hk)∈ (Xp)k

1

However, unlike the setup in [10, 20, 22], where the local error term
εh(p) is determined by h mod p, in the current setting, it is not determined
by h mod pα, for any fixed α. On the other hand, the function h→ εh(p)
has nice p-adic regularity properties, allowing us to approximate εh(p) by
truncations εh(p

α), which do only depend on h mod pα, and for which
εh(p)− εh(p

α) 1/pα−1 for all α. Apart from making the argument more
complicated, this also results in a weaker error term: if εh(p) only depended
on h mod p, in (1.14) we would get a relative error of size y−1+o(1), rather
than y−2/3+o(1). We also note that David, Koukoulopoulos, and Smith [6], in
studying statistics of elliptic curves, have developed quite general methods
for finding asymptotics of weighted sums

∑
hwhSh, provided that the local

factors have p-adic regularity properties similar to those referred to above.
In fact, Proposition 1.3, though with a weaker error term, can be deduced
from [6, Theorem 4.2].

We finally remark that the corresponding question in the function field
setting is better understood: Bary–Soroker and Fehm [1] have recently shown
that the sums of two squares analog of the k-tuple conjecture holds in the
large q-limit for the function field setting (e.g., replacing Z by Fq[T ], and
Z[i] by Fq[

√−T ]).
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2.1. Evidence towards Conjecture 1.1.

We begin by stating a qualitative version of Conjecture 1.1.

Conjecture 2.1. Fix k � 1, and a set h = {h1, . . . , hk} ⊆ Z with #h = k.
If Sh > 0, then there exist infinitely many integers n such that n+ h ⊆ E.

We remark that whether or not Sh > 0 can be determined by a finite com-
putation: this follows from Propositions 5.2 and 5.3. Examples of sets h
for which Sh = 0 are {0, 1, 2, 3} and {0, 1, 2, 4, 5, 8, 16, 21}: any translate of
{0, 1, 2, 3} contains an integer congruent to 3 modulo 4, and hence δh(2) = 0;
any translate of {0, 1, 2, 4, 5, 8, 16, 21} contains an integer congruent to 3 or
6 modulo 9, and hence δh(3) = 0.

It is possible to show that Sh > 0 for any set h containing at most
three integers. The question of whether, for any h1, h2, h3 ∈ Z, we have n+
{h1, h2, h3} ⊆ E for infinitely many n, was apparently raised by Littlewood,
and was answered in the affirmative by Hooley [14], using the theory of
ternary quadratic forms. Conjecture 2.1 remains open for k � 4.

For fixed k � 1, and h = {h1, . . . , hk} with #h = k, the upper bound

∑
n�x

1E(n+ h1) · · ·1E(n+ hk)k
x

(log x)k/2

∏
p≡3 mod 4
p|hj−hj

some i < j

(
1 +

k

p

)
,

can be deduced from Selberg’s sieve (see [29]), which is of the correct order
of magnitude, according to Conjecture 1.1. The special case h = {0, 1} is
due to Rieger [27]; the special case h = {0, 1, 2} is due to Cochrane and
Dressler [4]; the general case is due to Nowak [25].

Lower bounds are more subtle. For k = 2, Hooley [15] and Indlekofer
[16] showed that, for any nonzero integer h,

∑
n�x

1E(n)1E(n+ h)� x

log x

∏
p|h

p≡3 mod 4

(
1 +

1

p

)
,

but we are not aware of any such bounds for k � 3.
Assuming that a certain analog of the Elliott–Halberstam conjecture

holds for sums of two squares, it is possible to deduce, from a result of Iwaniec
[17, Theorem 4], the asymptotic

∑
n�x 1E(n)1E(n+ 1) ∼ x/(2 log x), as x→
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∞, in agreement with the aforementioned conjecture of Connors and Keat-
ing [5], and Conjecture 1.1. (See (2.3), and Figure 2.1 for a numerical com-
parison.) We remark that, on a slightly weaker formulation of an Elliott–
Halberstam analogue for sums of two squares, Iwaniec [17, Corollary 2,
(2.3)] gives

∑
n�x 1E(n)1E(n+ 1) ∼ 3x/(8 log x), as x→∞. (Few details are

given, so it is hard to pinpoint the discrepancy in the constants; possibly
the contribution from those n with n ≡ 0 mod 8 is not taken into account.)

2.2. Numerical evidence

Using Propositions 5.2 (b), (c) and 5.3 (b), (c), we can give Sh explicitly,
as in the following examples. Let us first record that the constant C in (1.5)
is the Landau–Ramanujan constant, given by

(2.1) C ..=
1√
2

∏
p≡3 mod 4

(
1− 1

p2

)−1/2
= 0.764223 . . . .

It is straightforward to verify that

(2.2) S{0,1} =
1

2C2
= 0.856108 . . . .

If (1.8) holds with h = {0, 1} then, by (1.5) and (2.2),

N({0, 1};x) ..=
∑
n�x

1E(n)1E(n+ 1) ∼ x

2C2

(
R1(x)

)2
(2.3)

∼ x

2 log x
(x→∞).

The agreement with numerics is quite good (to within 1%).
As the simplest example with k = 3, we verify that

S{0,1,2} =
A

4C2
, A ..=

∏
p≡3 mod 4

(
1− 2

p(p− 1)

)
,

so Conjecture 1.1 implies that

N({0, 1, 2};x) ..=
∑
n�x

1E(n)1E(n+ 1)1E(n+ 2) ∼ Ax

4C2

(
R1(x)

)3

∼ ACx

4(log x)3/2
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as x→∞. The agreement between numerics and model is only to within
10%.

x N({0, 1};x) xS{0,1}(R1(x))
2 Ratio

1000000000 25927011 25690391.1 1.00921
2000000000 50042411 49603435.5 1.00885
3000000000 73560246 72930222.0 1.00864
4000000000 96705170 95891759.7 1.00848
5000000000 119584162 118589346.3 1.00839
6000000000 142253331 141080935.2 1.00831
7000000000 164749254 163403937.1 1.00823
8000000000 187100631 185584673.5 1.00817
9000000000 209327440 207642640.3 1.00811

Figure 2.1: Observed data vs prediction for h = {0, 1}.

x N({0, 1, 2};x) xS{0,1,2}(R1(x))
3 Ratio

1000000000 1490691 1362419.3 1.09415
2000000000 2818128 2584683.5 1.09032
3000000000 4093602 3762317.2 1.08805
4000000000 5338091 4912433.3 1.08665
5000000000 6560430 6042800.3 1.08566
6000000000 7764604 7157833.6 1.08477
7000000000 8954282 8260369.7 1.08400
8000000000 10132295 9352396.2 1.08339
9000000000 11299877 10435380.5 1.08284

Figure 2.2: Observed data vs prediction for h = {0, 1, 2}.

3. Notation

We define the set of natural numbers as N ..= {1, 2, . . .}. The letter p stands
for a prime, n for an integer. We let �+� stand for a generic element
of E, possibly a different element each time. Thus, for instance, a+ h ≡
�+� mod pα denotes that a+ h ≡ E mod pα for some E ∈ E. We view
k as a fixed natural number, and h as a nonempty, finite set of integers,
with #h = k unless otherwise indicated. We let n+ h ..= {n+ h : h ∈ h}.
For n ∈ N, ω(n) denotes the number of distinct prime divisors of n, νp(n) the
p-adic valuation of n. (We also define νp(0) ..=∞.) That νp(n) = α may also
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be denoted by pα || n. The radical of n is rad(n) ..=
∏

p|n p, not to be confused
with the squarefree part of n, viz. sf(n) ..=

∏
p||n p. By the least residue of

an integer a modulo n we mean the integer r such that a ≡ r mod n and
0 � r < n. When written in an exponent, α mod 2 is to be interpreted as
the least residue of α modulo 2: for instance, pα mod 2 = 1 if α is even.

We view x as a real parameter tending to infinity. Expressions of the
form A ∼ B denote that A/B → 1 as x→∞. We also view y as real pa-
rameter tending to infinity, typically in such a way that yR1(x) ∼ 1, i.e.
y ∼ x/N(x). We may assume that x and y are sufficiently large in terms of
any fixed quantity. Expressions of the form A = O(B), A B and B � A
all denote that |A| � c|B|, where c is some positive constant, throughout the
domain of the quantity A. The constant c is to be regarded as independent
of any parameter unless indicated otherwise by subscripts, as in A = Ok(B)
(c depends on k only), Ak,λ B (c depends on k and λ only), etc. By o(1)
we mean a quantity that tends to zero as y →∞.

4. Deducing Theorem 1.2 from Proposition 1.3

Given 
ι=(i1, . . . , ir)∈Nr such that i1 + · · ·+ ir=k, and 
λ = (λ1, . . . , λr)∈
Rr, let

(4.1) Θ�ι,�λ
..={(x1, . . . , xk)∈Δk : xi1+···+ij− xi1+···+ij−1

�λj , j=1, . . . , r},

where for j = 1 we let xi1+ij−1
= x0 ..= 0. In the case where r = 1 and 
λ =

(λ),

(4.2) Θ�ι,�λ
= Θk,λ

..= {(x1, . . . , xk) ∈ Rk : 0 < x1 < · · · < xk � λ}.

The following proof shows that Theorem 1.2 (a) and (b) hold under slightly
weaker hypotheses than the ones stated: for (a), it is enough to assume that
Hypothesis (k,Θ�ι,�λ

, {0}), where 
ι = (i1, . . . , ir) and 
λ = (λ1, . . . , λr), holds

for all k � r, and all 
ι ∈ Nr satisfying i1 + · · ·+ ir = k; for (b), it is enough
to assume that Hypothesis (k,Θk,λ, ∅) holds for all k � 1.

Deduction of Theorem 1.2. As this argument has appeared many times in
the literature, we merely give an outline of it and provide references. (a)
To ease notation, we let 
ι = (i1, . . . , ir), 
h = (h1, . . . , hk), h = {h1, . . . , hk},
and

N({0} ∪ h;x) ..=
∑
n�x

1E(n)1E(n+ h1) · · ·1E(n+ hk).
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Let � � 0 be an integer, arbitrarily large but fixed. An inclusion-exclusion
argument (see [12], [20, Appendix A] or [18, Key Lemma 2.4.12]) shows that

r+2�+1∑
k=r

(−1)k−r
∑

i1+···+ir=k

∑
�h∈ yΘ�ι,�λ∩Zk

N({0} ∪ h;x)(4.3)

�
∑
En�x

En+j−En+j−1�λjy
j=1,...,r

1 �
r+2�∑
k=r

(−1)k−r
∑

i1+···+ir=k

∑
�h∈ yΘ�ι,�λ∩Zk

N({0} ∪ h;x),

the sums over i1 + · · ·+ ir = k, here and below, being over all 
ι ∈ Nr for
which i1 + · · ·+ ir = k. We make the substitution (1.9), with {0} ∪ h and
k + 1 in place of h and k; we apply Hypothesis (k,Θ�ι,�λ

, {0}) for all k and 
ι
satisfying r � k � r + 2�+ 1 and i1 + · · ·+ ir = k; we use Proposition 1.3,
and our assumption that yR1(x) ∼ 1, i.e. y ∼ x/N(x), as x→∞. Thus, we
deduce from (4.3) that

(4.4)

r+2�+1∑
k=r

(−1)k−r
∑

i1+···+ir=k

vol(Θ�ι,�λ
) � lim inf

x→∞
1

N(x)

∑
En�x

En+j−En+j−1�λjy
j=1,...,r

1,

and

(4.5) lim sup
x→∞

1

N(x)

∑
En�x

En+j−En+j−1�λjy
j=1,...,r

1 �
r+2�∑
k=r

(−1)k−r
∑

i1+···+ir=k

vol(Θ�ι,�λ
).

Since vol(Θ�ι,�λ
) = λi1

1 · · ·λir
r /(i1! · · · ir!), the sums on the left and right of

(4.4) and (4.5) are truncations of the Taylor series for (1− e−λ1) · · · (1−
e−λr). We have chosen � arbitrarily large, so we may conclude that (1.12)
holds, provided Hypothesis (k,Θ�ι,�λ

, {0}) does whenever k � r and i1 + · · ·+
ir = k.

(b) We use an argument of Gallagher [8], who proved an analogous result
for primes. Let � � 1 be an integer, arbitrarily large but fixed. We have
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∑
n�x

(
N(n+ λy)−N(n)

)�

=
∑
n�x

( ∑
0<h�λy

1E(n+ h)

)�

=
∑
n�x

∑
0<h1,...,h��λy

1E(n+ h1) · · ·1E(n+ h�)

=

�∑
k=1

�(�, k)
∑

0<h1<···<hk�λy

∑
n�x

1E(n+ h1) · · ·1E(n+ hk),

where �(�, k) denotes the number of maps from {1, . . . , �} onto {1, . . . , k}.
Thus,

1

x

∑
n�x

(
N(n+ λy)−N(n)

)�

=

�∑
k=1

(
N(x)

x

)k

�(�, k)
∑

0<h1<···<hk�λy

(
Sh + Eh(x)

)
,

with h = {h1, . . . , hk} in the last summand. To sum over 0 < h1 < · · · <
hk � λy is to sum over (h1, . . . , hk) ∈ yΘk,λ ∩ Zk (see (4.2)). If Hypothesis
(k,Θk,λ, ∅) holds then for some function ε(x) with ε(x)→ 0 (x→∞), we
have

∑
0<h1<···<hk�λy

(
Sh + Eh(x)

)
=

(
1 +Oλ,k(ε(x))

) ∑
0<h1<···<hk�λy

Sh.

Applying Proposition 1.3 (noting that vol(Θk,λ) = λk/k!), and our assump-
tion that yR1(x) ∼ 1, i.e. y ∼ x/N(x), as x→∞, we see that if Hypothesis
(k,Θk,λ, ∅) holds for 1 � k � �, then

(4.6)
1

x

∑
n�x

(
N(n+ λy)−N(n)

)� ∼
�∑

k=1

�(�, k)
λk

k!
(x→∞).

Gallagher’s calculation in [8, Section 3] shows that
∑�

k=1 �(�, k)λ
k/k! is the

�th moment of the Poisson distribution with parameter λ, and that the corre-
sponding moment generating function is entire. Since a Poisson distribution
is determined by its moments, it follows (see [3, Section 30]) that for any
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given m � 0, (1.13) holds as x→∞, provided Hypothesis (k,Θk,λ, ∅) holds
for all k � 1. �

5. Preliminaries

A positive integer n is a sum of two squares if, and only if,

n = 2β2

∏
p≡1 mod 4

pβp

∏
p≡3 mod 4

p2βp ,

where β2, βp denote nonnegative integers. (See [11, Theorem 366].) In view of
this and the next proposition, whose proof, being routine and elementary, is
omitted, we have E =

⋂
p Sp, where Sp =

⋂
α�1{n ∈ Z : n ≡ �+� mod pα}.

Further, as Sp = Z for primes p ≡ 1 mod 4, we may write E =
⋂

p �≡1 mod 4 Sp.

Proposition 5.1. Let n ∈ Z. We have n ∈ S2 if, and only if, either n = 0
or n = 2βm for some β � 0 and m ≡ 1 mod 4. For p ≡ 3 mod 4, we have
n ∈ Sp if, and only if, either n = 0 or n = p2βm for some β � 0 and m �≡
0 mod p. For p ≡ 1 mod 4, we have Sp = Z.

Let us introduce some notation in order to state further results. Given
a nonempty, finite set h ⊆ Z, let

(5.1) det(h) ..=
∏

h,h′∈h
h>h′

(h− h′) > 0.

Note that if p � k − 1, where k = #h, then two elements of h occupy the
same congruence class modulo p, so p | det(h). In other words, if p � det(h)
then k � p.

Let

(5.2) hp
..= {h′ ∈ h : −h′ + h ⊆ Sp}.

Note that h2 contains at most one element, for if h, h′ ∈ h2 then ±(h− h′) ∈
S2, which by Proposition 5.1 holds only if h− h′ = 0. Similarly, if k = 1
or k = 2, then #h2 = 1. By Proposition 5.1, hp for p ≡ 3 mod 4 consists
precisely of those elements h′ of h for which 2 | νp(h− h′) for every h ∈
h with h �= h′. (Recall that νp(n) denotes the p-adic valuation of n.) For
instance, if p � det(h) then hp = h.
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Given α � 1, let

(5.3) Th(2
α+1) ..=

{
0�a<2α+1 : a+h ⊆ S2 and max

h∈h
ν2(a+h)<α

}
.

By Proposition 5.1, this is the (possibly empty) set of least residues amodulo
2α+1 such that, for each h ∈ h, there is some β � α− 1 and m ≡ 1 mod 4
such that a+ h = 2βm. Finally, for p ≡ 3 mod 4, let

(5.4) Th(p
α) ..=

{
0 � a < pα : a+ h ⊆ Sp and max

h∈h
νp(a+ h) < α

}
.

This is the (possibly empty) set of least residues a modulo pα such that, for
each h ∈ h, there exists β � (α− 1)/2 for which p2β || a+ h. Note that, for
α � 2 and odd p, the difference between Th(2

α) and Th(p
α) is that Th(2

α)
contains only integers a for which maxh∈h ν2(a+ h) � α− 2, whereas Th(p

α)
contains a for which maxh∈h νp(a+ h) � α− 1. As may be expected in view
of Proposition 5.1, we will need to treat p = 2 as a separate case throughout.

Recall from (1.6) that δh(p) ..= limα→∞ #Sh(p
α)/pα, where

Sh(p
α) ..= {0 � a < pα : ∀h ∈ h, a+ h ≡ �+� mod pα}.

We have introduced Th(p
α) because it is more convenient than Sh(p

α) to
work with. It is not difficult to see that, for p �≡ 1 mod 4, 0 � #Sh(p

α)−
#Th(p

α) � 1 once α is sufficiently large. (One may verify Proposition 5.1 by
showing that n ≡ �+� mod 2α if, and only if, n ≡ 2βm mod 2α for some
β � 0 and odd m, and, for p ≡ 3 mod 4, that n ≡ �+� mod pα if, and only
if, n ≡ p2βm mod pα for some β � 0 andm �≡ 0 mod p.) Thus, the limit δh(p)
exists if, and only if, limα→∞ #Th(p

α)/pα exists, in which case the two limits
are equal.

In the next two propositions, and throughout, we allow for the possibility
that k = 1. In case h = {h1}, we define maxi �=j νp(hi − hj) to be zero (and
det(h) ..= 1).

Proposition 5.2. Let h = {h1, . . . , hk} be a set of k � 1 distinct integers.
(a) The limits δh(2) (see (1.6)) and limα→∞ #Th(2

α+1)/2α+1 exist, and
are equal:

(5.5) δh(2) = lim
α→∞

#Th(2
α+1)

2α+1
.
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Moreover, for all α � 1, we have

(5.6)

∣∣∣∣#Th(2
α+1)

2α+1
− δh(2)

∣∣∣∣ � k

2α
.

(b) For any α � 2 + maxi �=j ν2(hi − hj), we have

(5.7) δh(2) =
#Th(2

α+1) + #h2

2α+1
,

the right-hand side being constant for α in this range.
(c) If 2 � det(h) (in which case k � 2), then δh(2) = (1/2)k. As a special

case, we record here that δ{0}(2) = 1/2.

Proof. In essence, we use a Hensel-type argument: for α � 1, the condition
that n ≡ �+� mod 2α can be lifted to n ≡ �+� mod 2α+1, unless n =
2αm for some m ≡ 3 mod 4.

(a) As already noted, to show that δh(2) and the right-hand side of
(5.5) exist and are equal, it suffices to show that the right-hand side of
(5.5) exists. Let α � 1, and let 0 � b < 2α+2, so b = a+ 2α+1q, where 0 �
a < 2α+1 and either q = 0 or q = 1. Suppose that, for each i, there exists
βi � α− 1 and mi ≡ ±1 mod 4 such that b+ hi = 2βimi. Then, for each
i, a+ hi = 2βim′i and a+ 2α+1 + hi = 2βim′′i , where m′i ≡ m′′i ≡ mi mod 4.
Recalling Proposition 5.1 and definition (5.3), we see that the following
statements are equivalent: (i) b ∈ Th(2

α+2); (ii) both a and a+ 2α+1 are in
Th(2

α+2); (iii) a ∈ Th(2
α+1).

We have shown that we have a partition

Th(2
α+2) = {a, a+ 2α+1 : a ∈ Th(2

α+1)} ∪ Uh(2
α+2),

where

Uh(2
α+2) ..=

{
0 � b < 2α+2 : b+ h ⊆ S2 and max

h∈h
ν2(b+ h) = α

}

is the set of elements b of Th(2
α+2) for which ν2(b+ hj) = α for some hj ∈ h.

Any element of Uh(2
α+2) is a least residue of ±2α − hj for some hj ∈ h, of

which there are at most 2k. We see that

#Th(2
α+2)

2α+2
− #Th(2

α+1)

2α+1
=

#Uh(2
α+2)

2α+2
� k

2α+1
.
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Consequently, for any β with β � α, we have

0 �
#Th(2

β+1)

2β+1
− #Th(2

α+1)

2α+1
=

β−α∑
r=1

#Uh(2
α+r+1)

2α+r+1
<

k

2α
.

It follows that the limit on the right-hand side of (5.5) exists, and that (5.6)
holds for all α � 1.

(b) Assume that α � 2 + maxi �=j ν2(hi − hj). Suppose that, for some j,
there exists q such that b+ hj = 2α(1 + 2q). We have b+ hj ∈ S2 if, and
only if, 2 | q, equivalently, b+ hj ≡ 2α mod 2α+2. For i �= j we may write
hi − hj = 2βijmij with βij � α− 2 and mij ≡ ±1 mod 4. Thus,

b+ hi = 2βij (mij + 2α−βij (1 + 2q))

is in S2 if, and only if, mij ≡ 1 mod 4, equivalently, hi − hj ∈ S2. By def-
inition of h2, this holds for each i �= j if, and only if, hj ∈ h2. We have
shown that b ∈ Th(2

α+2) and ν2(b+ hj) = α for some hj ∈ h if, and only if,
h2 is nonempty, hj is the (necessarily unique) element of h2, and b+ hj ≡
2α mod 2α+2. Thus,

Uh(2
α+2) = {0 � b < 2α+2 : ∃h′ ∈ h2, b ≡ 2α − h′ mod 2α+2},

and #Uh(2
α+2) = #h2. Also, #Th(2

α+2) = 2#Th(2
α+1) + #h2. Hence

#Th(2
α+2) + #h2

2α+2
=

#Th(2
α+1) + #h2

2α+1
.

(c) Suppose 2 � det(h). If k = 1, i.e. if h = {h1}, then the elements of
Th(8) are precisely the least residues of 1− h1, 2− h1 and 5− h1 modulo 8.
Also, h2 = h. If k = 2, i.e. if h = {h1, h2}, then either h2 − h1 ≡ 1 mod 4 or
h1 − h2 ≡ 1 mod 4. Without loss of generality, suppose h2 − h1 ≡ 1 mod 4.
Then the sole element of Th(8) is the least residue of h2 − 2h1 modulo 8.
Also, h2 = {h1}. Therefore, by (b), δh(2) = (1/2)k. �

For the next proposition, recall that α mod 2, when written in an expo-
nent, denotes the least residue of α modulo 2. For instance, pα mod 2 = 1 if
α is even.

Proposition 5.3. Let h = {h1, . . . , hk} be a set of k � 1 distinct integers,
and let p be a prime with p ≡ 3 mod 4.
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(a) The limits δh(p) (see (1.6)) and limα→∞ #Th(p
α)/pα exist, and are

equal:

(5.8) δh(p) = lim
α→∞

#Th(p
α)

pα
.

Moreover, for all α � 1, we have

(5.9)

∣∣∣∣#Th(p
α)

pα
− δh(p)

∣∣∣∣ � k

pα

(
1 +

1

p

)−1 1

pα mod 2
.

(b) For any α � 1 + maxi �=j νp(hi − hj), we have

(5.10) δh(p) =
1

pα

(
#Th(p

α) + #hp

(
1 +

1

p

)−1 1

pα mod 2

)
,

the right-hand side being constant for α in this range.
(c) We have

(5.11) δh(p) �
(
1 +

1

p

)−1(
1− min{k − 1, p}

p

)
,

with equality attained if p � det(h) (in which case k � p). As a special case,
we record here that δ{0}(p) = (1 + 1/p)−1.

Proof. (a) As noted above the statement of Proposition 5.2, to show that
δh(p) and the right-hand side of (5.8) exist and are equal, it suffices to show
that the right-hand side of (5.8) exists. Let α � 1 and let 0 � b < pα+1.
Thus, b = a+ pαq, where 0 � a < pα and 0 � q < p. Suppose that, for each
i, there exists βi � α− 1 and mi �≡ 0 mod p such that b+ hi = pβimi. Then,
for each i and each q′, 0 � q′ < p, we have a+ pαq′ + hi = pβim′i, wherem

′
i ≡

mi �≡ 0 mod p. Recalling Proposition 5.1 and definition (5.4), we see that the
following are equivalent: (i) b ∈ Th(p

α+1); (ii) a+ pαq′ + hi ∈ Th(p
α+1) for

0 � q′ < p; (iii) a ∈ Th(p
α).

We have shown that we have a partition

Th(p
α+1) = {a+ pαq : a ∈ Th(p

α), 0 � q < p} ∪ Uh(p
α+1),

where

Uh(p
α+1) ..=

{
0 � b < pα+1 : b+ h ⊆ Sp and max

h∈h
νp(b+ h) = α

}



Poisson spacings between sums of two squares 855

is the set of elements b of Th(p
α+1) for which νp(b+ hj) = α for some hj ∈ h.

Plainly, Uh(p
α+1) is empty if α is odd. (If b+ h ⊆ Sp then, by Proposi-

tion 5.1, νp(b+ hj) is even, and hence not equal to any odd α.) Also, any ele-
ment of Uh(p

α+1) is a least residue of pαq − hj mod pα+1, for some 0 < q < p
and hj ∈ h, of which there are at most (p− 1)k. We see that

(5.12)
#Th(p

α+1)

pα+1
− #Th(p

α)

pα
=

#Uh(p
α+1)

pα+1
,

and that

(5.13) 0 �
#Uh(p

α+1)

pα+1
�

(
1− 1

p

)
k

pα
,

with equality on the left if α is odd. Consequently, for any β with β � α, we
have

0 �
#Th(p

β)

pβ
− #Th(p

α)

pα
=

β−α∑
r=1

#Uh(p
α+r)

pα+r
<

(
1− 1

p

)
k

pα

∑
r−1�0

r−1≡α mod 2

1

pr−1
.

Since this last sum is equal to 1/(1− 1/p2) if α is even, and to 1/(p(1−
1/p2)) if α is odd, we have

0 �
#Th(p

β)

pβ
− #Th(p

α)

pα
<

k

pα

(
1 +

1

p

)−1 1

pα mod 2
.

It follows that the limit on the right-hand side of (5.8) exists, and that (5.9)
holds for all α � 1.

(b) Let 0 � b < pα+1, and assume now that α � 1 + maxi �=j νp(hi − hj).
Suppose that, for some j, we have b+ hj = pαmj for some mj �≡ 0 mod p.
We have b+ hj ∈ Sp if, and only if, α is even. Let i �= j. We may write hi −
hj = pβijmij with βij � α− 1 andmij �≡ 0 mod p. Thus, b+ hi = pβij (mij +
pα−βijmj) is in Sp if, and only if, βij is even, equivalently, hi − hj ∈ Sp. By
definition of hp, this holds for each i �= j if, and only if, hj ∈ hp. In that case,
for 0 � q′ < p with q′ �≡ −mj mod p, we have b+ pαq′ + hi ∈ Sp and νp(b+
pαq′ + hi) = βij < α for i �= j; b+ pαq′ + hj ∈ Sp if, and only if, b+ hj ∈ Sp,
and νp(b+ pαq′ + hj) = α. For q′ ≡ −mj mod p, νp(b+ pαq′ + hj) > α.

Thus, if Uh(p
α+1) �= ∅, then α is even and hp �= ∅; and if b ∈ Uh(p

α+1),
then the hj for which νp(b+ hj) = α is uniquely determined by b and must
lie in hp. If α is even, then, writing hj = pαqj + rj , with 0 � rj < pα, we see
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that

Uh(p
α+1) =

⋃
hj∈hp

{pα(q′ + 1)− rj : 0 � q′ < p, q′ �≡ −qj mod p}.

Thus, #Th(p
α+1) = p#Th(p

α) if α is odd, and #Th(p
α+1) = p#Th(p

α) + (p−
1)#hp if α is even. Consequently, if α is odd, then

1

pα+1

(
#Th(p

α+1) + #hp
p

p+ 1

)
=

1

pα

(
#Th(p

α) + #hp
1

p+ 1

)
,

while if α is even, then

1

pα+1

(
#Th(p

α+1) + #hp
1

p+ 1

)
=

1

pα

(
#Th(p

α) + #hp
p

p+ 1

)
.

(c) Note that Th(p) = {0 � a < p : ∀i, a �≡ −hi mod p}, so #Th(p) = p−
κ where κ is the number of distinct congruence classes in {hi mod p : hi ∈
h}. Thus, κ = k if, and only if, p � det(h). First, consider the case p | det(h),
i.e. κ � k − 1. As δh(p) � 0, (5.11) is trivial for p � k − 1, so let us assume
that k � p. The relation (5.12) shows that #Th(p

α+1)/pα+1 � #Th(p
α)/pα

for α � 1, and hence

δh(p) �
#Th(p)

p
� p− (k − 1)

p
> 1− k

p+ 1
.

The right-hand side of (5.11) is equal to 1− k/(p+ 1) when min{k − 1, p} =
k − 1, as we are currently assuming. Next, consider the case p � det(h), i.e.
κ = k. In this case, we have #h = #hp = k, and, by (5.10),

δh(p) =
1

p

(
#Th(p) + #hp

(
1 +

1

p

)−1 1
p

)
=

(
1 +

1

p

)−1(
1− k − 1

p

)
,

which is equal to the right-hand side of (5.11) (since p � κ = k). �

Notice that, for all p �≡ 1 mod 4, we have 0 � δh(p) � 1, by definition.
By the following proposition, the nonvanishing of

Sh
..=

∏
p �≡1 mod 4

δ{0}(p)−kδh(p)

(the singular series for h [see (1.7)]), is equivalent to δh(p) > 0 for all p �≡
1 mod 4.
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Proposition 5.4. Let h = {h1, . . . , hk} be a set of k � 1 distinct integers.
We have

(5.14) e−(k−1) �
∏

p �≡1 mod 4
p�det(h)

δ{0}(p)−kδh(p) � 1,

and the product converges. Consequently,

2kδh(2)

ek−1
∏

p≡3 mod 4
p|det(h)

((
1 +

1

p

)k

δh(p)

)
(5.15)

� Sh � 2kδh(2)
∏

p≡3 mod 4
p|det(h)

((
1 +

1

p

)k

δh(p)

)
.

Proof. If 2 � det(h), then k � 2 and δ{0}(2)−kδh(2) = 1 by Proposition 5.2
(c), so only the primes p ≡ 3 mod 4 have any bearing on the product in
(5.14). Let p ≡ 3 mod 4, and suppose p � det(h). By Proposition 5.3 (c),
k � p and

(5.16) δ{0}(p)−kδh(p) =
(
1 +

1

p

)k−1(
1− k − 1

p

)
.

Thus, δ{0}(p)−kδh(p) = 1 +Ok(1/p
2), and consequently the product in (5.14)

converges.
More precisely, from (5.16) we have, on the one hand,

δ{0}(p)−kδh(p) = 1−
k∑

j=2

{
(k − 1)

(
k − 1

j − 1

)
−

(
k − 1

j

)}
p−j � 1,

with equality attained if k = 1, which gives the upper bound in (5.14), and
also the lower bound for k = 1. On the other hand we have

δ{0}(p)−kδh(p) � 1− (k − 1)2

p2
.

For k = 2 we see that the product in (5.14) is at least
∏

p≡3 mod 4(1−
1/p2), which is equal to 1/(2C2) = 0.856108 . . . (with C being the Landau–
Ramanujan constant; see (1.5)), and is greater than e−1. For k � 3 we apply
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the basic inequality log(1− x) � −x/(1− x) (0 � x < 1) to the above, ob-
taining

log δ{0}(p)−kδh(p) � −
(k − 1)2

p2

(
1− (k − 1)2

p2

)−1

� −(k − 1)2

p2

(
1− (k − 1)2

k2

)−1

(since k � p). Noting that −∑
p�det(h) 1/p

2 � −∑
n�k 1/n

2 � −1/(k − 1)2,

and that −(1− (k − 1)2/k2)−1 = −k2/(2k − 1) > −(k − 1), then exponen-
tiating, we see that product in (5.14) is greater than e−(k−1). The inequali-
ties in (5.15) follow upon recalling that δ{0}(p) = (1 + 1/p)k for p ≡ 3 mod 4

(see Proposition 5.3 (c)), and again that δ{0}(2)−kδh(2) = 1 if 2 � det(h) (see
Proposition 5.2 (c)). �

6. Proof of Proposition 1.3

We will make use of the following elementary bounds. Recall that, for n ∈ N,
ω(n) ..= #{p : p | n}, rad(n) ..=

∏
p|n p, and sf(n) ..=

∏
p||n p.

Lemma 6.1. Let

(6.1) N ..= {ab2 rad(b) : a, b ∈ N, (a, b) = 1, a squarefree}.

Fix any number A � 1. For y � 1 and integers D � 1, we have

(6.2)
∑
n∈N
n>y

Aω(n) (D, rad(n))

n sf(n)
A (1 +A)2ω(D) y

O(1/ log log 3y)

y2/3
,

and

(6.3)
∑
n∈N
n�y

Aω(n)

sf(n)
A y1/3+O(1/ log log 3y).

Proof. Let y � 1 and let D � 1. We claim that the following four bounds
hold:

(6.4)
∑
n>y

squarefree

Aω(n) (D,n)

n2
A (1 +A)ω(D) y

O(1/ log log 3y)

y
;
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∑
n�y

squarefree

Aω(n) (D,n)

n
A (1 +A)ω(D)yO(1/ log log 3y);(6.5)

∑
n2 rad(n)>y

Aω(n)(D, rad(n))

n2 rad(n)
A (1 +A)ω(D) y

O(1/ log log 3y)

y2/3
;(6.6)

and

(6.7)
∑

n2 rad(n)�y

Aω(n) A y1/3+O(1/ log log 3y).

Let us deduce (6.2) and (6.3). The left-hand side of (6.2) is at most

∑
a�y2/3

squarefree

Aω(a) (D, a)

a2

∑
b2 rad(b)>y/a

Aω(b)(D, rad(b))

b2 rad(b)

+
∑

a>y2/3

squarefree

Aω(a) (D, a)

a2

∑
b�1

Aω(b)

b2
.

By (6.5) and (6.6), the first double sum is

A (1 +A)ω(D)y−2/3+o(1)
∑

a�y2/3

squarefree

Aω(a) (D, a)

a4/3

A (1 +A)2ω(D) y
O(1/ log log 3y)

y2/3
.

By (6.4), and since
∑

b�1(A
ω(b)/b2)A 1,

∑
a>y2/3

squarefree

Aω(a) (D, a)

a2

∑
b�1

Aω(b)

b2
A (1 +A)ω(D) y

O(1/ log log 3y)

y2/3
.

Combining gives (6.2). The left-hand side of (6.3) is at most

∑
a�y

squarefree

Aω(a)

a

∑
b2 rad(b)�y

Aω(b);

applying (6.5) and (6.7) gives (6.3).
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We now prove our claim. For (6.4), we first consider the case D = 1.
Note that

∑
n1�y

squarefree

(A− 1)ω(n1)

n1
�

∏
p�y

(
1 +

A− 1

p

)
(6.8)

�
∏
p�y

(
1 +

1

p

)A−1
A (log 3y)A−1,

because 1 + 1/p < e1/p and
∑

p�y 1/p = log log 3y +O(1) Mertens’ theorem.
Now,

∑
n>y

squarefree

Aω(n)

n2
=

∑
n>y

squarefree

1

n2

∑
n1|n

(A− 1)ω(n1)

�
∑
n1�1

squarefree

(A− 1)ω(n1)

n2
1

∑
m>y/n1

squarefree

1

m2
,

the inner sum being O(n1/y) for n1 � y and O(1) for n1 > y. Thus,

∑
n>y

squarefree

Aω(n)

n2
A

(log 3y)A−1

y
+

∑
n1>y

squarefree

(A− 1)ω(n1)

n2
1

.

If A � 2, then this last sum is O(1/y); otherwise, repeating the argument as
many times as necessary gives

∑
n>y

squarefree

Aω(n)

n2
A

(log 3y)A−1

y
.

It follows that, for any integer d � 1,

∑
n>y, d|n
squarefree

Aω(n)

n2
A

Aω(d)

d
· (log 3y)

A−1

y
.
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For any integer D � 1, we trivially have (D,n) �
∑

d|D, d|n d, and hence

∑
n>y

squarefree

Aω(n) (D,n)

n2
�

∑
d|D

squarefree

∑
n>y, d|n
squarefree

Aω(n)

n2

A
(log 3y)A−1

y

∑
d|D

squarefree

Aω(d)

d
.

Since
∑

d|D, squarefreeA
ω(d) = (1 +A)ω(D) and (log 3y)A−1 A yO(1/ log log 3y),

this gives (6.4). The bound (6.5) follows from (6.8) and (D,n) �
∑

d|D, d|n d.
For (6.6), we use the following ancillary bound. We have

(6.9)
∑
n>y

rad(n)=m

1

n
 yO(1/ log log 3y)

y
,

uniformly for integers squarefree integers m � 1. To establish (6.9), we use
an estimate involving smooth numbers: for y � z � 2, let

Ψ(y, z) ..= #{n � y : p | n⇒ p � z}

denote the number of z-smooth positive integers n � y. The following can
be found in [9, (1.19)]: for y � z � 2,

(6.10) logΨ(y, z) =

(
log y

log z

)
g

(
z

log y

)(
1 +O

(
1

log z
+

1

log log x

))
,

where g(w) = log(1 + w) + w log(1 + 1/w) � w + 1 (w > 0). Noting that

∑
n�1

rad(n)=m

1

n1/2
=

1

m1/2

∑
n�1

rad(n)|m

1

n1/2

=
1

m1/2

∏
p|m

(∑
a�0

1

pa/2

)
=

∏
p|m

(
1

p1/2 − 1

)
,

we see that

(6.11)
∑
n>y2

rad(n)=m

1

n
�

∑
n>y2

rad(n)=m

1

n

(
n

y2

)1/2

� 1

y

∑
n�1

rad(n)=m

1

n1/2
 1

y
.
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If m > y2, then
∑

n>y, rad(n)=m 1/n =
∑

n>y2, rad(n)=m 1/n, and we are done.

Let us assume, then, that y2 � m. Let �1, . . . , �r denote the prime divi-
sors of m, and let p1 = 2 < p2 = 3 < · · · < pr denote the r smallest primes.
Note that #{(α1, . . . , αr) ∈ Nr : �α1

1 · · · �αr
r � y2} � #{(α1, . . . , αr) ∈ Nr :

pα1

1 · · · pαr
r � y2}, i.e. note that

#{n � y2 : rad(n) = m} � #{n � y2 : rad(n) = p1 · · · pr}.

Since y2 � m � p1 · · · pr, we have 4 log y2 � 4 logm � 4 log(p1 · · · pr) > pr by
one of Chebyshev’s bounds for primes, so if rad(n) = p1 · · · pr, then n is y-
smooth, where y = 4 log y2. Therefore,

∑
y<n�y2

rad(n)=m

1

n
<

1

y

∑
n�y2

rad(n)=m

1 � 1

y

∑
n�y2

rad(n)=p1···pr

1(6.12)

� Ψ(y2, 4 log y2)

y
 yO(1/ log log 3y)

y
,

where the last bound follows, upon exponentiating, from (6.10). Combin-
ing (6.11) and (6.12) gives (6.9).

The left-hand side of (6.6) is at most

∑
m�y1/3

squarefree

Aω(m)(D,m)

m

∑
n2>y2/3

rad(n)=m

1

n2
+

∑
m>y1/3

squarefree

Aω(m)(D,m)

m

∑
n�1

rad(n)=m

1

n2
.

By (6.5) and (6.9) (note that 1/n2 < 1/(y1/3n) when n2 > y2/3), we have

∑
m�y1/3

squarefree

Aω(m)(D,m)

m

∑
n2>y2/3

rad(n)=m

1

n2
A (1 +A)ω(m) y

O(1/ log log 3y)

y2/3
;

by (6.4) (note that 1/m3 < 1/(y1/3m2) when m > y1/3), and since

∑
n�1

rad(n)=m

1

n2
=

1

m2

∑
n�1

rad(n)|m

1

n2
=

1

m2

∏
p|m

(∑
a�0

1

p2a

)
 1

m2
,
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we have

∑
m>y1/3

squarefree

Aω(m)(D,m)

m

∑
n�1

rad(n)=m

1

n2


∑
m>y1/3

squarefree

Aω(m)(D,m)

m3
A

(1 +A)ω(D)

y2/3
.

Combining gives (6.6).
For (6.7), we note that since rad(n)3 � n2 rad(n) and Aω(n) = Aω(rad(n)),

∑
n2 rad(n)�y

Aω(n) �
∑

a�y1/3

squarefree

Aω(a)
∑
b2�y

rad(b)=a

1.

An argument similar to the one leading up to (6.12) shows that, uniformly
for a � y1/3, we have

∑
b2�y, rad(b)=a 1 yO(1/ log log 3y), and

∑
a�y1/3

squarefree

Aω(a) � y1/3
∑

a�y1/3

squarefree

Aω(a)

a
A y1/3+O(1/ log log 3y)

by (6.5). Combining gives (6.7). �

To prove Proposition 1.3, we expressSh as a series. To this end, let us in-
troduce some notation and establish some basic inequalities. Let a nonempty,
finite set h ⊆ Z be given, and let k ..= #h. Recall that Th(2

α) is defined
(and nonempty when h = {0}) for α � 2, and for p ≡ 3 mod 4, Th(p

α) is
defined (and nonempty when h = {0}) for α � 1. Let us set Th(1) ..= {1}
and Th(2) ..= {1, 2} for completeness. For p �≡ 1 mod 4 and α � 1, we may
then define

εh(p
α) ..=

(
#T{0}(pα)

pα

)−k(#Th(p
α)

pα

)
(6.13)

−
(

#T{0}(pα−1)
pα−1

)−k(#Th(p
α−1)

pα−1

)
.

Note that εh(2
2) = 0 by definition.

Lemma 6.2. Let h be a nonempty, finite set of integers, and let k ..= #h.
(a) For p ≡ 3 mod 4 and even α � 2, we have εh(p

α) = 0.
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(b) For p �≡ 1 mod 4, we have

(6.14) εh(p)k
(det(h), p)

p2
.

(c) For p �≡ 1 mod 4 and α � 1, we have

(6.15) εh(p
α)k

(det(h), p)

pα
.

(d) For β � 1, we have

(6.16) δ{0}(2)−kδh(2) = 1 +

β∑
α=2

εh(2
α) +Ok

(
1

2β

)
.

For p ≡ 3 mod 4 and β � 1, we have

(6.17) δ{0}(p)−kδh(p) = 1 +

β∑
α=1

εh(p
2α−1) +Ok

(
1

p2β

)
.

Proof. (a) Let p ≡ 3 mod 4 and let α � 1. As can be seen from Proposi-
tion 5.3, (5.10) and part (c), we have

(6.18)
#T{0}(pα)

pα
=

(
1 +

1

p

)−1(
1− 1

pα+α mod 2

)
.

For even α we therefore have

εh(p
α) =

(
1 +

1

p

)k(
1− 1

pα

)k(#Th(p
α)

pα
− #Th(p

α−1)
pα−1

)
,

and as we noted following (5.12) and (5.13),

#Th(p
α)/pα − #Th(p

α−1)/pα−1 = 0.

(b) Consider p ≡ 3 mod 4 (the case p = 2 is similar). Let α � 1. Define
ηh(p

α) and κh(p) as the numbers given by the relations

(6.19)
#Th(p

α)

pα
=.. δh(p) + ηh(p

α) and δh(p) =..

(
1 +

1

p

)−1(
1− κh(p)

p

)
.

Note that by Proposition 5.3, (5.9) and part (c), |ηh(pα)| < k/pα+(α mod 2)

and κh(p) � min{k − 1, p}, with κh(p) = k − 1 if p � det(h). Also, κh(p) �
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−1 (because δh(p) � 1). Since α+ (α mod 2) � 2, we have

#Th(p
α)

pα
=

(
1 +

1

p

)−1(
1− κh(p)

p
+O

(
k

p2

))
.

In the special case h = {0} we can take κh(p) = 0. We therefore have

(
#T{0}(pα)

pα

)−k#Th(p
α)

pα

=

(
1 +

1

p

)k−1(
1− κh(p)

p
+Ok

(
1

p2

))

=

(
1 +

k − 1

p
+Ok

(
1

p2

))(
1− κh(p)

p
+Ok

(
1

p2

))

= 1 +
k − 1− κh(p)

p
+Ok

(
1

p2

)
.

Writing ξh(p) ..= k − 1− κh(p), we have

(
#T{0}(pα)

pα

)−k#Th(p
α)

pα
− 1k

ξh(p)

p
+

1

p2
.

If p | det(h), then ξh(p)/p = ξh(p)(det(h), p)/p
2, and if p � det(h) then, as al-

ready noted, κh(p) = k − 1, i.e. ξh(p) = 0, so ξh(p)/p = ξh(p)(det(h), p)/p
2

in any case. Since, as already noted, −1 � κh(p) � k − 1, we have 0 �
ξh(p) � k. Thus,

(
#T{0}(pα)

pα

)−k#Th(p
α)

pα
− 1k

(det(h), p)

p2
+

1

p2
 (det(h), p)

p2
.

For α = 1, the left-hand side is equal to εh(p) (see (6.13)), so this gives
(6.14).

(c) Consider p ≡ 3 mod 4 (the case p = 2 is similar). Let α � 1. By (a)
and (b), the result holds for α = 1 and α � 2 even, so we may assume that
α � 3 is odd. In that case, using (6.18) in the definition (6.13) of εh(p

α), we
see that

εh(p
α) =

(
1 +

1

p

)k{(
1− 1

pα+1

)−k#Th(p
α)

pα
−

(
1− 1

pα−1

)−k#Th(p
α−1)

pα−1

}

=

(
1 +

1

p

)k{#Th(p
α)

pα
− #Th(p

α−1)
pα−1

+Ok

(
1

pα−1

)}
,
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since, for any α � 1, (1− 1/pα)−k = 1 +Ok(1/p
α) and #Th(p

α)/pα = O(1).
We deduce, from (5.12) and (5.13), that εh(p

α)k 1/pα−1, which is (6.15)
in the case p | det(h).

Now consider the case p � det(h). Note that, by Proposition 5.3, (5.9)
and part (c), we have, for any α � 1,

#Th(p
α)

pα
=

(
1 +

1

p

)−1(
1− k − 1

p
− k

pα+α mod 2

)
.

In view of this and (the special case) (6.18), we have, for odd α � 3,

εh(p
α) =

(
1 +

1

p

)k−1{(
1− 1

pα+1

)−k(
1− k − 1

p
− k

pα+1

)

−
(
1− 1

pα−1

)−k(
1− k − 1

p
− k

pα−1

)}
.

Since (1− 1/pα+1)−k = 1 + k/pα+1 +Ok(1/p
α+2), we have

(
1− 1

pα+1

)−k(
1− k − 1

p
− k

pα+1

)
= 1− k − 1

p
+Ok

(
1

pα+2

)
;

similarly,

(
1− 1

pα−1

)−k(
1− k − 1

p
− k

pα−1

)
= 1− k − 1

p
+Ok

(
1

pα

)
.

Combining gives εh(p
α)k 1/pα, i.e. (6.15), for odd α � 3.

(d) Consider p ≡ 3 mod 4 (the case p = 2 is similar). Let β � 1. We have

1 +

β∑
α=1

εh(p
2α−1) = 1 +

2β∑
α=1

εh(p
α) =

(
#T{0}(p2β)

p2β

)−k(#Th(p
2β)

p2β

)
,

because εh(p
α) = 0 for α even (by (a)), and the middle sum telescopes. Now,

Proposition 5.3 (c) gives δ{0}(p)−k = (1 + 1/p)k, and by definition of ηh(p
2β)

(see (6.19)), δh(p) =
(
#Th(p

2β)/p2β
)− ηh(p

2β). With these substitutions,
and (6.18), we verify that

δ{0}(p)−kδh(p)−
(

#T{0}(p2β)
p2β

)−k(#Th(p
2β)

p2β

)

=
#Th(p

2β)

p2β

(
1 +

1

p

)k(
1−

(
1− 1

p2β

)−k
− ηh(p

2β)

)
.
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Now, #Th(p
2β)/p2β � 1, (1 + 1/p)k k 1, (1− 1/p2β)−k = 1 +Ok(1/p

2β),
and as noted in (b), Proposition 5.3, (5.9) and part (c) show that |ηh(p2β)| <
k/p2β . Combining gives (6.17). �

For n ∈ N such that p | n implies p �≡ 1 mod 4, we extend (6.13) by defin-
ing

εh(n) ..=
∏

pα||n
εh(p

α).

For such n, Lemma 6.2 (b) and (c) give

(6.20) |εh(n)| � A
ω(n)
k

(det(h), rad(n))

n sf(n)
,

provided Ak is sufficiently large in terms of k. Since εh(2) = 0 by definition,
and by Lemma 6.2 (a), εh(n) = 0 if either ν2(n) = 1 or νp(n) is even (and
nonzero) for some p ≡ 3 mod 4. Letting N1

..= {n ∈ N : p | n⇒ p �≡ 1 mod
4}, where N is as in (6.1), we define

(6.21) D ..= N1 ∪ {2n : n ∈ N1, 2 | n}.

Thus,

D =
{
2αp2α1−1

1 · · · p2αr−1
r : α � 0, α �= 1, r, αi � 1, pi ≡ 3 mod 4 (i � r)

}
,

and εh(n) = 0 unless n ∈ D. By definition (1.7) and Lemma 6.2 (d),

Sh =

(
1 +

∑
α�2

εh(2
α)

) ∏
p �≡1 mod 4

(
1 +

∑
α�1

εh(p
2α−1)

)
(6.22)

= 1 +
∑
d∈D

εh(d),

the last sum being absolutely convergent in view of Lemma 6.1 and (6.20).
For the purposes of stating and proving the next lemma, we define

εh(p
α; j) ..=

(
#T{0}(pα)

pα

)−j(#Th(p
α)

pα

)

−
(

#T{0}(pα−1)
pα−1

)−j(#Th(p
α−1)

pα−1

)
,

for p �≡1 mod 4, α�1, and j�1; we then set εh(n; j) ..=
∏

pα||n εh(p
α; j) for

n composed of primes p �≡ 1 mod 4. Thus, εh(n) = εh(n; j) when j = #h.
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Lemma 6.3. Set o ..= ∅, or set o ..= {0}. Let n � 2 be such that p | n im-
plies p �≡ 1 mod 4, and let R1, . . . , Rk be complete residue systems modulo n.
We have ∑

h1∈R1

· · ·
∑

hk∈Rk

εo∪h(n; #o+ k) = 0,

where h = {h1, . . . , hk} in the summand. (Note that we may have #h < k
here.)

Proof. Let p �≡ 1 mod 4, α � 1. Suppose h = {h1, . . . , hk} and h′ =
{h′1, . . . , h′k} satisfy hi ≡ h′i mod pα, and hence hi ≡ h′i mod pα−1 as well,
for i = 1, . . . , k. For p ≡ 3 mod 4, it is clear from (5.4) that #To∪h(pβ) =
#To∪h′(pβ) for β = α, and for β = α− 1 as well. Thus, εo∪h(pα; #o+ k) =
εo∪h′(pα; #o+ k). Similarly, we have εo∪h(2α; #o+ k) = εo∪h′(2α; #o+ k)
(see (5.3)). Therefore, by the Chinese remainder theorem,

∑
h1∈R1

· · ·
∑

hk∈Rk

εo∪h(n; #o+ k) =
∏
pα||n

( ∑
h1∈Zpα

· · ·
∑

hk∈Zpα

εo∪h(pα; #o+ k)

)
,

where h = {h1, . . . , hk} in both summands, and Zpα
..= {0, . . . , pα − 1}. It

therefore suffices to show that

(6.23)
∑

h1∈Zpα

· · ·
∑

hk∈Zpα

εo∪h(pα; #o+ k) = 0

for all p �≡ 1 mod 4 and α � 1.
Consider the case o = ∅. For p ≡ 3 mod 4 and α � 1, we have

∑
h1∈Zpα

· · ·
∑

hk∈Zpα

#Th(p
α) =

∑
a∈Zpα

∑
h1∈Zpα

a+h1∈Sp

νp(a+h1)<α

· · ·
∑

hk∈Zpα

a+hk∈Sp

νp(a+hk)<α

1,

as can be seen by applying the definition (5.4) of Th(p
α) and changing the

order of summation. For i = 1, . . . , k, each sum over hi on the right-hand side
enumerates a translation of T{0}(pα), so the entire sum (i.e. the left-hand

side) is equal to pα(#T{0}(pα))k. Whence

∑
h1∈Zpα

· · ·
∑

hk∈Zpα

(
#T{0}(pα)

pα

)−k(#Th(p
α)

pα

)
= pkα.
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Since

∑
h1∈Zpα

· · ·
∑

hk∈Zpα

#Th(p
α−1) = pk

∑
h1∈Zpα−1

· · ·
∑

hk∈Zpα−1

#Th(p
α−1),

we similarly have

∑
h1∈Zpα

· · ·
∑

hk∈Zpα

(
#T{0}(pα−1)

pα−1

)−k(#Th(p
α−1)

pα−1

)
= pkpk(α−1) = pkα.

Subtracting gives (6.23) for α � 1. In a similar fashion, we obtain (6.23)
in the case o = {0}. An analogous argument gives the same results for
p = 2. �

In the proof of Proposition 1.3, we also make use of basic lattice point
counting arguments, as in the final two lemmas below.

Lemma 6.4. Let D be as in (6.21). Set o ..= ∅, or set o ..= {0}. Fix an
integer k � 1, and a number Mk � 1 that depends on k only. Also, fix B � 1.
For y � 1, we have
(6.24)∑

d∈D
d>y

M
ω(d)
k

d sf(d)

∑
0<h1<···<hk�By

(det(o ∪ h), rad(d))k,B yk−2/3+O(1/ log log 3y),

where h = {h1, . . . , hk} in the summand.

Proof. Let y � 1. Let us first show that, for any squarefree integer c � 1,

(6.25)
∑

0<h1<···<hk�By

c|det({0,h1,...,hk})

1 � k2ω(c)
(
(By)k

c
+Ok

(
(By)k−1

))
.

Let h0 = 0, h1, . . . , hk be pairwise distinct integers, and suppose that c di-
vides

∏
0�i<j�k(hi − hj). Then, since c is squarefree, there exist pairwise

coprime positive integers cij such that c =
∏

0�i<j�k cij and cij | hi − hj ,
0 � i < j � k. Therefore,

∑
0<h1<···<hk�By

c|det({h0,h1,...,hk})

1 �
∑

c=c01···c(k−1)k

∑
h1∈IBy

∑
h2∈IBy

· · ·
∑

hk−1∈IBy

0�i<j�k−1⇒cij |hi−hj

∑
hk∈IBy

0�i�k−1⇒cik|hi−hk

1,
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where on the right-hand side, the outermost sum is over all decompositions
of c as a product of

(
k+1
2

)
positive integers, and IBy

..= (0, By].
Consider the decomposition c = c01 · · · c(k−1)k. Let us define cj ..=∏j−1

i=0 cij for j = 1, . . . , k. Notice that c =
∏k

j=1 cj . By the Chinese remain-
der theorem, the condition on hk in the innermost sum above is equivalent
to hk being in some congruence class modulo ck, uniquely determined by
h0, h1, . . . , hk−1. The sum is therefore equal to By/ck +O(1). Iterating this
argument k times, we see that the inner sum over h1, . . . , hk is equal to

k∏
j=1

(
By

cj
+O(1)

)
=

(By)k

c
+Ok((By)k−1).

The bound (6.25) follows by combining and noting that, since c is squarefree,
the number of ways of writing c as a product of

(
k+1
2

)
positive integers is(

k+1
2

)ω(c)
, and that

(
k+1
2

)
� k2.

For h = {h1, . . . , hk}, with h1, . . . , hk pairwise distinct, nonzero integers,
and any d ∈ N, we trivially have

(det(o ∪ h), rad(d)) �
∑

c|det({0,h1,...,hk}), rad(d)
c.

If h1, . . . , hk � By as well, then p | c implies p � By. From this and (6.25),
it follows that

∑
0<h1<···<hk�By

(det(o ∪ h, rad(d))k,B yk
∑

c|rad(d)
k2ω(c)

+ yk−1
∑

c|rad(d)
p|c⇒p�By

ck2ω(c),

where h = {h1, . . . , hk} in the summand on the left. Now, for c | rad(d) we
have k2ω(c) � k2ω(d), and

∑
c|rad(d) 1 = 2ω(d). Applying these bounds to the

left-hand side of (6.24), we see that it is

(6.26) k,B yk
∑
d∈D
d>y

A
ω(d)
k

d sf(d)
+ yk−1

∑
d∈D

A
ω(d)
k

d sf(d)

∑
c|rad(d)

p|c⇒p�By

c,

where Ak, here and below, denotes a sufficiently large number depending on
k, which may be a different number at each occurrence.
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By definition (6.21) of D, for every d ∈ D, we have d = n or d = 2n for
some n ∈ N , where N is as in (6.1). Therefore, as a direct consequence of
Lemma 6.1, we have

(6.27)
∑
d∈D
d>y

A
ω(d)
k

d sf(d)
k

yO(1/ log log 3y)

y2/3
.

More specifically, for every d ∈ D, we have d = ab2 rad(b) or d = 2ab2 rad(b)
for some uniquely determined a, b ∈ N, where a is squarefree and (a, b) = 1.
Furthermore, d is not exactly divisible by 2, and so we have 2 � a in the
case d = ab2 rad(b), while 2 | ab in the case d = 2ab2 rad(b). In either case,

we have the following: A
ω(d)
k = A

ω(a)
k A

ω(b)
k ; d sf(d) = a2b2 rad(b) or d sf(d) =

2a2b2 rad(b); and rad(d) = a rad(b). Thus, if c | rad(d), then c = c1c2, where
c1 | a and c2 | rad(b). Consequently,

∑
d∈D

A
ω(d)
k

d sf(d)

∑
c|rad(d)

p|c⇒p�By

c
∑
a�1

squarefree

A
ω(a)
k

a2

∑
b�1

A
ω(b)
k

b2 rad(b)

∑
c1|a

p|c1⇒p�By

c1
∑

c2|rad(b)
p|c2⇒p�By

c2.

Now,

∑
a�1

squarefree

A
ω(a)
k

a2

∑
c1|a

p|c1⇒p�By

c1 �
∑
c1�1

squarefree
p|c1⇒p�By

A
ω(c1)
k

c1

∑
a1�1

squarefree

A
ω(a1)
k

a21

k

∑
c1�1

squarefree
p|c1⇒p�By

A
ω(c1)
k

c1
;

as can be seen by writing a = a1c1 and changing order of summation; also

∑
c1�1

squarefree
p|c1⇒p�By

A
ω(c1)
k

c1
�

∏
p�By

(
1 +

Ak

p

)
k,B (log 3y)Ak .
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(See (6.8).) Next, note that since
∑

c2|rad(b) c2 � rad(b)
∑

c2|rad(b) 1
� 2ω(b) rad(b),

∑
b�1

A
ω(b)
k

b2 rad(b)

∑
c2|rad(b)

p|c2⇒p�By

c2 �
∑
b�1

A
ω(b)
k

b2

∑
c2|rad(b)

1 �
∑
b�1

A
ω(b)
k

b2
k 1.

Combining all of this gives

(6.28)
∑
d∈D

A
ω(d)
k

d sf(d)

∑
c|rad(d)

p|c⇒p�By

ck,B (log 3y)Ak .

Finally, we obtain (6.24) by combining (6.26) with (6.27) and (6.28). �

Lemma 6.5. Fix an integer k � 1, and a bounded convex set C ⊂ Rk. For
y � 1 we have #(yC ∩ Zk) = ykvol(C ) +Ok,C (y

k−1).

Proof. This is a special case of [24, pp. 128–129]. �

Proof of Proposition 1.3. Fix an integer k � 1, and a bounded convex set
C ⊂ Δk, where Δk ..= {(x1, . . . , xk) ∈ Rk : 0 < x1 < · · · < xk} (see (1.10)).
Set o ..= ∅, or set o ..= {0}. Let y � 1. To ease notation throughout, let
H ..= yC ∩ Zk, 
h = (h1, . . . , hk), and h = {h1, . . . , hk}. Note that 0 < h1 <
· · · < hk C y for 
h ∈ H. Also, let Ak stand for a sufficiently large number
depending on k, which may be a different number at each occurrence.

In view of (6.22) we see, upon partitioning the sum over d and changing
order of summation, that

(6.29)
∑
�h∈H

So∪h =
∑
�h∈H

1 +
∑
d∈D
d�y

∑
�h∈H

εo∪h(d) +
∑
d∈D
d>y

∑
�h∈H

εo∪h(d),

with D as defined in (6.21). By Lemma 6.5, we have

(6.30)
∑
�h∈H

1 = ykvol(C ) +Ok,C (y
k−1).
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By (6.20) and Lemma 6.4, we have

∑
d∈D
d>y

∑
�h∈H

|εo∪h(d)| �
∑
d∈D
d>y

∑
�h∈H

A
ω(d)
k

(det(o ∪ h), rad(d))

d sf(d)
(6.31)

k,C yk−1
yO(1/ log log 3y)

y2/3
.

Consider the middle sum on the right-hand side of (6.29). Let d be any
element of D with d � y, and partition Rk into cubes

Cd,�t
..= {(x1, . . . , xk) ∈ Rk : tid � xi < (ti + 1)d, i = 1, . . . , k},

with
t ..= (t1, . . . , tk) running over Z
k. Each 
h ∈ H is a point in a unique cube

of this form: we call 
h a d-interior point if this cube is entirely contained in
yC , and 
h a d-boundary point if this cube has a nonempty intersection with
the boundary of yC . We partition H into d-interior points and d-boundary
points. As 
h runs over all d-interior points of H, hi (i = 1, . . . , k) runs over a
pairwise disjoint union of complete residue systems modulo d, none of which
contain 0. By Lemma 6.3 (we have #(o ∪ h) = #o+ k for each 
h ∈ H), it
follows that

(6.32)
∑
d∈D
d�y

∑
�h∈H

εo∪h(d) =
∑
d∈D
d�y

∑
�h∈H

d-boundary

εo∪h(d).

By (6.20), and the aforementioned trivial bound for (det(o ∪ h), rad(d)),

∑
d∈D
d�y

∑
�h∈H

d-boundary

|εo∪h(d)| �
∑
d∈D
d�y

A
ω(d)
k

d sf(d)

∑
�h∈H

d-boundary

(det(o ∪ h), rad(d))

�
∑
d∈D
d�y

A
ω(d)
k

d sf(d)

∑
c|rad(d)

c
∑
�h∈H

d-boundary
c|det({0,h1,...,hk})

1.

For each d ∈ D with y/d � 1, the proof of Lemma 6.5 (see [24, pp. 128–129])
shows that there are k,C (y/d)k−1 cubes Cd,�t that have a nonempty inter-
section with the boundary of yC . For each such boundary cube Cd,�t, the cor-

responding d-boundary points are all in Cd,�t ∩ Zk, which is a product of com-
plete residue systems modulo d, and, given that c | rad(d) (and hence c | d),
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the condition c | det({0, h1, . . . , hk}) is equivalent to c | det({0, h′1, . . . , h′k})
when hi ≡ h′i mod d, i = 1, . . . , k.

If follows that, for d ∈ D with d � y, and for c | rad(d), we have

∑
�h∈H

d-boundary
c|det({0,h1,...,hk})

1k,C
yk−1

dk−1
∑

0<h1<···<hk�d
c|det({0,h1,...,hk})

1k yk−1d
(
A

ω(c)
k

c

)

by (6.25). Whence

∑
d∈D
d�y

∑
�h∈H

d-boundary

|εo∪h(d)| k,C yk−1
∑
d∈D
d�y

A
ω(d)
k

sf(d)

∑
c|rad(d)

A
ω(c)
k � yk−1

∑
d∈D
d�y

A
ω(d)
k

sf(d)
,

since
∑

c|rad(d)A
ω(c)
k is at most A

ω(d)
k

∑
c|rad(d) 1 = (2Ak)

ω(d). By (6.3), this

last sum is k y1/3+O(1/ log log 3y). Combining, we obtain

(6.33)
∑
d∈D
d�y

∑
�h∈H

εo∪h(d)k,C yk−1y1/3+O(1/ log log 3y).

Combining (6.29) with (6.30), (6.31), and (6.33) gives (1.14). �

Remark 6.6. A simpler argument, though giving a much weaker error
term, is to take P =

∏
p<y p

ep and y = 1
3 log t in Ford’s argument [7] and

choosing (ep)p<y appropriately; together with the results in Section 5 we
can then obtain a lower bound of the form

∑
(h1,...,hk)∈ tC∩Zk

So∪h � tk(1 + o(1)), t→∞.

Further, by removing the condition νp(a+ h) < α in the definition of Th,
we obtain upper bounds for the p-adic densities, and a similar adaption
of Ford’s argument then gives a matching upper bound (up to lower order
errors). �
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