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En Jacobi forms and Seiberg–Witten
curves

Kazuhiro Sakai

We discuss Jacobi forms that are invariant under the action of the
Weyl group of type En (n = 6, 7, 8). For n = 6, 7 we explicitly
construct a full set of generators of the algebra of En weak Jacobi
forms. We first construct n + 1 independent En Jacobi forms in
terms of Jacobi theta functions and modular forms. By using them,
we obtain Seiberg–Witten curves of type Ẽ6 and Ẽ7 for the E-
string theory. The coefficients of each curve are En weak Jacobi
forms of particular weights and indices specified by the root system,
realizing the generators whose existence was shown some time ago
by Wirthmüller.

1. Introduction and summary

The theory of Jacobi forms was first systematically studied by Eichler and
Zagier [1]. A Jacobi form is a holomorphic function of complex variables τ
and μ which has modular properties in τ and quasi-periodicity in μ. Jacobi
forms invariant under the action of the Weyl group W (R) of a root system R
was investigated by Wirthmüller [2]. Such Jacobi forms, which we callW (R)-
invariant Jacobi forms or just R Jacobi forms, appear in various contexts in
mathematics and physics.

In [2] an inductive construction of the W (R)-invariant Jacobi forms (ex-
cept for R = E8) was also presented. The construction is, however, rather
abstract for R = E6, E7. On the other hand, W (E8)-invariant Jacobi forms
were explicitly constructed in the study of the E-string theory [3, 4, 5]. In
[4] nine independent E8 Jacobi forms were first constructed in the course of
deriving the Seiberg–Witten curve for the E-string theory. The construction
was further refined in [5] in terms of concisely expressed E8 holomorphic
Jacobi forms.

In this paper, we explicitly construct a full set of generators of the algebra
of W (En)-invariant weak Jacobi forms (n = 7, 6). We first construct n +
1 independent En holomorphic Jacobi forms. Most of them are actually
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obtained by mere reduction of En+1 Jacobi forms and thus we have only to

construct two new Jacobi forms in each En case. All these En Jacobi forms

are explicitly expressed in terms of Jacobi theta functions and modular

forms.

Using these Jacobi forms, we next construct Seiberg–Witten curves of

type Ẽ7 and Ẽ6 for the E-string theory. The original Seiberg–Witten curve

for the E-string theory is expressed in terms of E8 Jacobi forms [4, 5]. If we

restrict the value of μ within the En root space, the curve can be expressed

in terms of the above n+1 En Jacobi forms. We transform this curve into the

form of the general deformation of a singularity of type Ẽn. The coefficients

of this new Seiberg–Witten curve are weak Jacobi forms of particular weights

and indices specified by the root system En. They are identified as generators

of the algebra of En weak Jacobi forms over the algebra of modular forms.

The existence of such generators was shown by Wirthmüller [2].

The main theorem of [2] does not cover the case of R = E8. Very little

has been known about generators of the algebra of E8 Jacobi forms over the

algebra of modular forms. We briefly discuss this case and make a conjecture

on the overall picture of the algebra of E8 weak Jacobi forms.

The paper is organized as follows. In section 2, we present the definition

of W (R)-invariant Jacobi forms and construct n + 1 independent En holo-

morphic Jacobi forms. In section 3, we construct Seiberg–Witten curves of

type Ẽ7 and Ẽ6 for the E-string theory and present a full set of generators of

the algebra of En weak Jacobi forms for n = 7, 6. We also discuss the case of

E8. There are three appendices, where Seiberg–Witten curves of type Ẽn at

τ = i∞, our choice of simple roots and fundamental weights, and definitions

of special functions are respectively presented.

2. Construction of holomorphic Jacobi forms

2.1. Definitions and generalities

Let LR be the root lattice of a root system R, and L∗
R the dual lattice

of LR. Let ϕk,m(τ,μ) denote a W (R)-invariant Jacobi form of weight k

and index m (k ∈ Z, m ∈ Z>0). It is a holomorphic function of τ and μ

(Im τ > 0, μ ∈ Cn) satisfying the following properties [1, 2]:

i) Weyl invariance:

ϕk,m(τ, w(μ)) = ϕk,m(τ,μ), w ∈ W (R).(2.1)
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ii) Quasi-periodicity:

ϕk,m(τ,μ+ τα+ β) = e−mπi(τα2+2μ·α)ϕk,m(τ,μ), α,β ∈ LR.

(2.2)

iii) Modular properties:

ϕk,m

(
aτ + b

cτ + d
,

μ

cτ + d

)
= (cτ + d)k exp

(
mπi

c

cτ + d
μ2

)
ϕk,m(τ,μ),

(2.3)

( a b
c d

)
∈ SL(2,Z).

iv) ϕk,m(τ,μ) admits a Fourier expansion as

ϕk,m(τ,μ) =

∞∑
n=0

∑
w∈L∗

R

c(n,w)e2πi(nτ+w·μ).(2.4)

To be precise, ϕk,m(τ,μ) defined as above is called a weak Jacobi form. If

ϕk,m(τ,μ) further satisfies the condition that the coefficients c(n,w) of the

Fourier expansion (2.4) vanish unless w2 ≤ 2mn, it is called a holomorphic

Jacobi form. If ϕk,m(τ,μ) further satisfies the stronger condition that the

coefficients c(n,w) vanish unless w2 < 2mn, it is called a Jacobi cusp form.

In this paper, a Jacobi form means a weak Jacobi form unless otherwise

specified.

The condition (2.1) and the form of the Fourier expansion (2.4) imply

that W (R)-invariant Jacobi forms are closely related to characters of Weyl

orbits of the affine R Lie algebra. In our convention, the index coincides

with the level of the affine Lie algebra. In fact, we observe that any W (R)-

invariant Jacobi form of index m can be written as a linear combination

of characters of affine Weyl orbits of level-m weights, and vice versa. From

this, one can expect that the number of generators of Jacobi forms of index

m coincides with the number of fundamental representations at level m.1

Figure 1 shows the levels of fundamental representations of the affine En

algebra. From this, we see that generators of R Jacobi forms are of the

1Here, “generators” do not mean those for the algebra of W (R)-invariant Jacobi
forms over the ring of modular forms C[E4, E6]. Instead, we consider here a bigger
space where we allow meromorphic modular forms as coefficients.
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Figure 1: Dynkin diagram for affine En: numbers attached to nodes denote
the levels of fundamental weights and the numbers in parentheses show their
labels.

indices

1, 2, 2, 3, 3, 4, 4, 5, 6 for E8,

1, 1, 2, 2, 2, 3, 3, 4 for E7,

1, 1, 1, 2, 2, 2, 3 for E6.(2.5)

Multiple occurrence of the same index means that there are several inde-
pendent generators of the index. In what follows we will explicitly construct
En Jacobi forms of these indices.

2.2. E8 case

Nine independent W (E8)-invariant holomorphic Jacobi forms were con-
structed in [5]. The summary of the results is shown below.

Let us first introduce the following functions

e1(τ) := 1
12

(
ϑ3(τ)

4 + ϑ4(τ)
4
)
,

e2(τ) := 1
12

(
ϑ2(τ)

4 − ϑ4(τ)
4
)
,
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e3(τ) := 1
12

(
−ϑ2(τ)

4 − ϑ3(τ)
4
)
,(2.6)

and

h0(τ) := ϑ3(2τ)ϑ3(6τ) + ϑ2(2τ)ϑ2(6τ).(2.7)

The simplest E8 Jacobi form is the theta function of the root lattice LE8
:

ΘE8
(τ,μ) :=

∑
w∈LE8

exp
(
πiτw2 + 2πiμ ·w

)
(2.8)

=
1

2

4∑
k=1

8∏
j=1

ϑk(μj , τ).(2.9)

Nine W (E8)-invariant holomorphic Jacobi forms can be constructed as fol-

lows:

A1(τ,μ) = ΘE8
(τ,μ), A4(τ,μ) = A1(τ, 2μ),

Am(τ,μ) = m3

m3+1

(
A1(mτ,mμ) + 1

m4

∑m−1
k=0 A1(

τ+k
m ,μ)

)
, m = 2, 3, 5,

B2(τ,μ) = 32
5

(
e1(τ)A1(2τ, 2μ) +

1
24 e3(τ)A1(

τ
2 ,μ) +

1
24 e2(τ)A1(

τ+1
2 ,μ)

)
,

B3(τ,μ) = 81
80

(
h0(τ)

2A1(3τ, 3μ)− 1
35

∑2
k=0h0(

τ+k
3 )2A1(

τ+k
3 ,μ)

)
,

B4(τ,μ) = 16
15

(
ϑ4(2τ)

4A1(4τ, 4μ)− 1
24ϑ4(2τ)

4A1(τ + 1
2 , 2μ)

− 1
22·44

∑3
k=0ϑ2(

τ+k
2 )4A1(

τ+k
4 ,μ)

)
,

B6(τ,μ) = 9
10

(
h0(τ)

2A1(6τ, 6μ) +
1
24

∑1
k=0h0(τ + k)2A1(

3τ+3k
2 , 3μ)

− 1
3·34

∑2
k=0h0(

τ+k
3 )2A1(

2τ+2k
3 , 2μ)

− 1
3·64

∑5
k=0h0(

τ+k
3 )2A1(

τ+k
6 ,μ)

)
.(2.10)

Am, Bm are of weight 4, 6 and index m respectively. If we set μ = 0, these

Jacobi forms reduce to ordinary modular forms. The normalization of these

Jacobi forms is chosen so that they reduce to the Eisenstein series

Am(τ,0) = E4(τ), Bm(τ,0) = E6(τ).(2.11)

For the sake of clarity, the above Am, Bm are sometimes expressed as AE8
m ,

BE8
m .
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2.3. E7 case

W (E7)-invariant Jacobi forms can be obtained by reduction of W (E8)-
invariant ones. This is done by merely restricting μ within the E7 root
space orthogonal to the fundamental weight ΛE8

8 . More specifically, such μ
is parametrized as

μ = μ(7) := (μ1, μ2, μ3, μ4, μ5, μ6, μ,−μ).(2.12)

See Appendix B for our convention. In what follows in this subsection μ is
always constrained as above.

By reducing the E8 Jacobi forms given in (2.10) one immediately obtains

AE7
m (τ,μ) := AE8

m

(
τ,μ(7)

)
(m = 1, 2, 3, 4, 5),

BE7
m (τ,μ) := BE8

m

(
τ,μ(7)

)
(m = 2, 3, 4, 6).(2.13)

These Jacobi forms cover most of the desired E7 Jacobi forms whose indices
are listed in (2.5), but not all of them. We need to construct in addition at
least two new Jacobi forms which are of index one and index two respectively.

Let us start our study with E7 Jacobi forms of index one. There are
two independent E7 Jacobi forms. They can be expressed as some modular-
invariant linear combinations of two level-one affine Weyl orbit characters.
At level one, affine Weyl orbit characters are simply given by the theta
functions

ΘE7
(τ,μ) :=

∑
w∈LE7

exp
(
πiτw2 + 2πiμ ·w

)
,

Θ
[7]
E7
(τ,μ) :=

∑
w∈LE7+Λ7

exp
(
πiτw2 + 2πiμ ·w

)
.(2.14)

Here, Λ7 = ΛE7

7 is a fundamental weight of E7. (See Appendix B.) In terms
of Jacobi theta functions they are expressed as

ΘE7
=

1

2
ϑ2(2μ, 2τ)

2∑
k=1

6∏
j=1

ϑk(μj , τ) +
1

2
ϑ3(2μ, 2τ)

4∑
k=3

6∏
j=1

ϑk(μj , τ),

Θ
[7]
E7

=
1

2
ϑ3(2μ, 2τ)

2∑
k=1

(−1)k
6∏

j=1

ϑk(μj , τ)
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− 1

2
ϑ2(2μ, 2τ)

4∑
k=3

(−1)k
6∏

j=1

ϑk(μj , τ).(2.15)

Note that Fourier expansions of these theta functions are

ΘE7
= 1 + w[10

0
0000]q + w[00

0
0010]q

2 +
(
w[01

0
0000] + w[00

0
0002]

)
q3 +O(q4),

Θ
[7]
E7

= w[00
0
0001]q

3/4 + w[00
1
0000]q

7/4 + w[10
0
0001]q

11/4 + w[00
0
0100]q

15/4

+O(q19/4),(2.16)

where q := e2πiτ . The coefficients are expressed in terms of characters of
Weyl orbits of finite E7. They are defined by

w[n1n3

n2

n4n5n6n7
](μ) :=

∑
v∈O(

∑7
j=1 njΛj)

e2πiv·μ.(2.17)

Here, O(Λ) denotes the Weyl orbit of weight Λ. Λj (j = 1, . . . , 7) are the
fundamental weights of E7.

The above theta functions transform nontrivially under modular trans-
formations. The modular properties of the theta functions are as follows:

ΘE7
(τ + 1,μ) = ΘE7

(τ,μ) ,

Θ
[7]
E7

(τ + 1,μ) = − iΘ
[7]
E7

(τ,μ) ,(2.18) (
ΘE7

(
− 1

τ ,
μ
τ

)
Θ

[7]
E7

(
− 1

τ ,
μ
τ

) )
= e−

7πi

4 τ
7

2 e
πi

τ
μ2 1√

2

(
1 1
1 −1

)

×
(

ΘE7
(τ,μ)

Θ
[7]
E7

(τ,μ)

)
.(2.19)

To construct modular-invariant linear combinations of ΘE7
and Θ

[7]
E7
, let us

first look into the case of AE7

1 . One can easily derive that AE7

1 is expressed
as

AE7

1 (τ,μ) = ϑ3(2τ)ΘE7
(τ,μ) + ϑ2(2τ)Θ

[7]
E7
(τ,μ).(2.20)

The coefficient functions can be interpreted as ϑ3(2τ) = ΘA1
(τ, 0), ϑ2(2τ) =

Θ
[1]
A1
(τ, 0) and transform as

ϑ3(2(τ + 1)) = ϑ3(2τ), ϑ2(2(τ + 1)) = iϑ2(2τ),



60 Kazuhiro Sakai

(
ϑ3

(
− 2

τ

)
ϑ2

(
− 2

τ

) )
= e−

πi

4 τ
1

2
1√
2

(
1 1
1 −1

)(
ϑ3 (2τ)

ϑ2 (2τ)

)
.(2.21)

One can easily check that (2.20) is indeed a modular-invariant combination,
i.e. it transforms as in (2.3).

It is natural to expect that the other modular-invariant linear combi-
nation can also be constructed by using polynomials of ϑ3(2τ), ϑ2(2τ) as
coefficient functions. One of the simplest candidates for this Jacobi form
would be the one which reduces to E6(τ) when we set μ = 0. In order for
the Jacobi form to be of weight 6, the coefficient functions have to be homo-
geneous quintics in ϑ3(2τ), ϑ2(2τ). And furthermore, in order to be invariant
under the transformation τ → τ + 1, the Jacobi form has to take the form

(
c1ϑ3(2τ)

4 + c2ϑ2(2τ)
4
)
ϑ3(2τ)ΘE7

+
(
c3ϑ3(2τ)

4 + c4ϑ2(2τ)
4
)
ϑ2(2τ)Θ

[7]
E7
.

(2.22)

The requirement that it reduces to E6 when μ = 0 immediately determines
the unknown coefficients cj . In this way, we find the combination

CE7

1 (τ,μ) :=
(
ϑ3(2τ)

4 − 5ϑ2(2τ)
4
)
ϑ3(2τ)ΘE7

(τ,μ)

+
(
ϑ2(2τ)

4 − 5ϑ3(2τ)
4
)
ϑ2(2τ)Θ

[7]
E7
(τ,μ).(2.23)

One can check that CE7

1 is indeed an E7 holomorphic Jacobi form of index
one. It is clear that AE7

1 and CE7

1 are independent. By construction,

CE7

1 (τ,0) = E6(τ).(2.24)

Let us now move on to the construction of a new Jacobi form of index
two. This is actually easy. Applying the Hecke transformation of order two
to CE7

1 , one obtains

CE7

2 (τ,μ) :=
32

33

(
CE7

1 (2τ, 2μ) +
1

64

1∑
k=0

CE7

1

(
τ + k

2
,μ

))
.(2.25)

The normalization is chosen so that

CE7

2 (τ,0) = E6(τ).(2.26)

One can check that CE7

2 is an independent Jacobi form, i.e. it is not expressed
as polynomials in AE7

1 , CE7

1 , AE7

2 , BE7

2 .
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One can also check that AE7

3 , BE7

3 are independent in the same sense.
On the other hand, it turns out that AE7

4 is not independent. It is expressed
in terms of AE7

m , BE7
m , CE7

m (m ≤ 3) as

A4 =
1

13824E2
4Δ

(
− 448E4

4A1A3 + 448E2
4E6C1A3 − 1280E2

4E6A1B3

+ 1280E3
4C1B3 + 216E4

4A
2
2 − 1440E3

4A
2
1A2 + 720E2

4E6A2B2

+ 288E2
4C

2
1A2 + (1275E3

4 − 675E2
6)B

2
2 + (−990E3

4 + 990E2
6)B2C2

+ 360E4E6A
2
1B2 − 2640E2

4A1C1B2 + 360E6C
2
1B2

+ (363E3
4 − 363E2

6)C
2
2 − 264E4E6A

2
1C2 + 528E2

4A1C1C2

− 264E6C
2
1C2 + 1680E2

4A
4
1 − 96E4A

2
1C

2
1 − 48C4

1

)
.(2.27)

Here, we have omitted superscript E7 from the Jacobi forms and introduced

Δ := η24 =
1

1728

(
E3

4 − E2
6

)
.(2.28)

To summarize, we now have eight Jacobi forms

AE7
m (m = 1, 2, 3), BE7

m (m = 2, 3, 4), CE7
m (m = 1, 2),(2.29)

which are of weight 4, 6, 6 and index m respectively. We checked that they
are independent, holomorphic Jacobi forms. Note that

AE7
m (τ,0) = E4(τ), BE7

m (τ,0) = CE7
m (τ,0) = E6(τ).(2.30)

As expected, AE7

5 , BE7

6 are no longer independent and are expressed as
polynomials in the eight Jacobi forms (2.29). While these relations are es-
sential to obtain the results in the next section, their concrete expressions
are rather lengthy and thus we do not present them here. (In any case, these
relations are immediately restored from the results in the next section.)

2.4. E6 case

As in the E7 case, W (E6)-invariant Jacobi forms can be obtained by reduc-
tion of those for E7 or E8. This is done by restricting μ within the E6 root
space orthogonal to both ΛE8

7 and ΛE8

8 . More specifically, such a vector μ
is parametrized as

μ = μ(6) := (μ1, μ2, μ3, μ4, μ5, μ, μ,−μ).(2.31)
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In what follows in this subsection μ is always constrained as above.

By reducing the E7 (or E8) Jacobi forms one immediately obtains

AE6
m (τ,μ) := AE7

m

(
τ,μ(6)

)
= AE8

m

(
τ,μ(6)

)
(m = 1, 2, 3),

BE6
m (τ,μ) := BE7

m

(
τ,μ(6)

)
= BE8

m

(
τ,μ(6)

)
(m = 2, 3, 4),

CE6
m (τ,μ) := CE7

m

(
τ,μ(6)

)
(m = 1, 2).(2.32)

These Jacobi forms cover most of the desired E6 Jacobi forms whose indices
are listed in (2.5), but as in the E7 case, we need to construct at least two
new Jacobi forms which are of index one and index two respectively.

There are three affine E6 Weyl orbit characters at level one: ΘE6
,Θ

[1]
E6

and Θ
[6]
E6
. They are defined by means of the root lattice E6 and fundamental

weights ΛE6

1 ,ΛE6

6 in the same way as in the E7 case. (See Appendix B for
our convention.) They are expressed in terms of Jacobi theta functions as

ΘE6
(τ,μ) =

1

2

4∑
k=1

ϑk(3μ, 3τ)

5∏
j=1

ϑk(μj , τ),

Θ
[1]
E6
(τ,μ) =

1

2

4∑
k=1

σ(k)q1/6e2πiμϑk(3μ+ τ, 3τ)

5∏
j=1

ϑk(μj , τ),

Θ
[6]
E6
(τ,μ) =

1

2

4∑
k=1

σ(k)q1/6e−2πiμϑk(3μ− τ, 3τ)

5∏
j=1

ϑk(μj , τ),(2.33)

where σ(1) = σ(4) = −1, σ(2) = σ(3) = 1. These theta functions are
expanded as

ΘE6
= 1 + w[00

1
000]q + w[10

0
001]q

2 + w[00
0
100]q

3 +O(q4),

Θ
[1]
E6

= w[10
0
000]q

2/3 + w[00
0
010]q

5/3 +
(
w[10

1
000] + w[00

0
002]

)
q8/3 +O(q11/3),

Θ
[6]
E6

= w[00
0
001]q

2/3 + w[01
0
000]q

5/3 +
(
w[00

1
001] + w[20

0
000]

)
q8/3 +O(q11/3).

(2.34)

The modular properties of these theta functions are as follows:

ΘE6
(τ + 1,μ) = ΘE6

(τ,μ) ,

Θ
[1]
E6

(τ + 1,μ) = e4πi/3Θ
[1]
E6

(τ,μ) ,
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Θ
[6]
E6

(τ + 1,μ) = e4πi/3Θ
[6]
E6

(τ,μ) ,(2.35) ⎛⎜⎜⎝
ΘE6

(
− 1

τ ,
μ
τ

)
Θ

[1]
E6

(
− 1

τ ,
μ
τ

)
Θ

[6]
E6

(
− 1

τ ,
μ
τ

)
⎞⎟⎟⎠ = iτ3e

πi

τ
μ2 1√

3

⎛⎝ 1 1 1

1 e4πi/3 e2πi/3

1 e2πi/3 e4πi/3

⎞⎠

×

⎛⎜⎜⎝
ΘE6

(τ,μ)

Θ
[1]
E6

(τ,μ)

Θ
[6]
E6

(τ,μ)

⎞⎟⎟⎠ .(2.36)

AE6

1 and CE6

1 are expressed in terms of these theta functions as

AE6

1 (τ,μ) = h0ΘE6
(τ,μ) + h1

(
Θ

[1]
E6
(τ,μ) + Θ

[6]
E6
(τ,μ)

)
,

(2.37)

CE6

1 (τ,μ) =
(
h30 − 4h31

)
ΘE6

(τ,μ)− 3h20h1

(
Θ

[1]
E6
(τ,μ) + Θ

[6]
E6
(τ,μ)

)
,

(2.38)

where hj = hj(τ). h0(τ) was introduced in (2.7) and

h1(τ) := 3
η(3τ)3

η(τ)
=

1

2
(h0(τ/3)− h0(τ)) .(2.39)

They can be interpreted as h0(τ) = ΘA2
(τ,0), h1(τ) = Θ

[1]
A2
(τ,0) =

Θ
[2]
A2
(τ,0).
By taking account of the above modular properties, the other Jacobi

form of index one is found as

DE6

1 (τ,μ) := η(τ)8
(
Θ

[1]
E6
(τ,μ)−Θ

[6]
E6
(τ,μ)

)
.(2.40)

This is a Jacobi form of weight 7. If we set μ = 0, it vanishes:

DE6

1 (τ,0) = 0.(2.41)

The remaining Jacobi form of weight two can be constructed from DE6

1

by the Hecke transformation of order two. One obtains

DE6

2 (τ,μ) := DE6

1 (2τ, 2μ) +
1

128

1∑
k=0

DE6

1

(
τ + k

2
,μ

)
.(2.42)
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Table 1: Our choice of independent En Jacobi forms. The subscripts of the
Jacobi forms represent their index.

E8 :
weight 4 A1 A2 A3 A4 A5

weight 6 B2 B3 B4 B6

E7 :
weight 4 A1 A2 A3

weight 6 B2 B3 B4

C1 C2

E6 :

weight 4 A1 A2 A3

weight 6 C1 B2

weight 7 D1 D2

To summarize, we now have seven Jacobi forms

AE6
m (m = 1, 2, 3), BE6

2 , CE6

1 , DE6
m (m = 1, 2),(2.43)

which are of weight 4, 6, 6, 7 respectively and index given by their subscripts.
We checked that they are independent. We also checked that AE6

m , BE6

2 , CE6

1

are holomorphic Jacobi forms, while DE6
m are Jacobi cusp forms. Note that

Am(τ,0) = E4(τ), B2(τ,0) = C1(τ,0) = E6(τ), Dm(τ,0) = 0.
(2.44)

As expected, CE6

2 , BE6

3 , BE6

4 are expressed as polynomials in these Jacobi
forms. We will use these relations to obtain the results in the next section.
Again, we do not present concrete expressions here, as these relations can
easily be restored from the results we will obtain there.

We summarize our choice of independent En Jacobi forms in Table 1.

3. Seiberg–Witten curves and generators of weak Jacobi
forms

3.1. Generalities

In [2] Wirthmüller proved that for any irreducible root system R exclud-
ing E8, the algebra of W (R)-invariant Jacobi forms over the algebra of
modular forms C[E4, E6] is generated as the polynomial algebra in some
W (R)-invariant Jacobi forms

{αk(j),m(j)(τ,μ)} (j = 0, 1, . . . , n).(3.1)
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Here, {k(j)} and {m(j)} are given respectively by the list of degrees of

independent Casimir invariants of R and the list of levels of the fundamental

representations of the affine R Lie algebra. In what follows, we explicitly

construct {αk(j),m(j)} forR = E6, E7 exploiting the Seiberg–Witten curve for

the E-string theory. We also present a similar set of meromorphic functions

(i.e. not exactly Jacobi forms) for R = E8.

3.2. E8 case

In [5] the Seiberg–Witten curve for the E-string theory [4] was expressed

in terms of the nine Jacobi forms Am, Bm given in (2.10). The result is as

follows:

y2 = 4x3 − 1

12
E4u

4x− 1

216
E6u

6

−
4∑

m=2

α4−6m,mu4−mx−
6∑

m=1

α6−6m,mu6−m,(3.2)

where

α0,1 = − 4

E4
A1,

α−6,2 =
5

6E2
4Δ

(
E2

4B2 − E6A
2
1

)
, α−8,2 =

6

E4Δ

(
−E4A2 +A2

1

)
,

α−12,3 =
1

108E3
4Δ

2

(
−7E5

4A3 − 20E3
4E6B3

− 9E4
4A1A2 + 30E2

4E6A1B2 + (16E3
4 − 10E2

6)A
3
1

)
,

α−14,3 =
1

9E2
4Δ

2

(
−7E2

4E6A3 − 20E3
4B3 − 9E4E6A1A2 + 30E2

4A1B2

+ 6E6A
3
1

)
,

α−18,4 =
1

1728E4
4Δ

3

(
(−5E7

4 + 5E4
4E

2
6)B4 + (80E6

4 − 80E3
4E

2
6)A1B3

+ 9E5
4E6A

2
2 + 30E6

4A2B2 + 25E4
4E6B

2
2 − 48E4

4E6A
2
1A2

+ (−140E5
4 + 60E2

4E
2
6)A

2
1B2 + (74E3

4E6 − 10E3
6)A

4
1

)
,

α−20,4 =
1

864E3
4Δ

3

(
(E6

4 − E3
4E

2
6)A4 + (56E5

4 − 56E2
4E

2
6)A1A3 − 27E5

4A
2
2

− 90E3
4E6A2B2 − 75E4

4B
2
2 + (180E4

4 − 36E4E
2
6)A

2
1A2
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+ 240E2
4E6A

2
1B2 + (−210E3

4 + 18E2
6)A

4
1

)
,

α−24,5 =
1

72E5
4Δ

3

(
(−21E7

4 + 21E4
4E

2
6)A5 − 294E6

4A2A3 − 770E4
4E6B2A3

− 840E4
4E6A2B3 − 2200E5

4B2B3 + 168E5
4A

2
1A3 + 480E3

4E6A
2
1B3

− 621E5
4A1A

2
2 + 3525E4

4A1B
2
2 + 1224E4

4A
3
1A2 − 240E2

4E6A
3
1B2

+ (−456E3
4 + 24E2

6)A
5
1

)
,

α−30,6 =
1

13436928E6
4Δ

5

(
(−20E12

4 + 40E9
4E

2
6 − 20E6

4E
4
6)B6

+ (−189E10
4 E6 + 378E7

4E
3
6 − 189E4

4E
5
6)A1A5

+ (−9E10
4 E6 + 9E7

4E
3
6)A2A4 + (−15E11

4 + 15E8
4E

2
6)B2A4

+ (−180E11
4 + 180E8

4E
2
6)A2B4 + (−300E9

4E6 + 300E6
4E

3
6)B2B4

+ (22E9
4E6 − 22E6

4E
3
6)A

2
1A4

+ (150E10
4 + 120E7

4E
2
6 − 270E4

4E
4
6)A

2
1B4

+ (196E10
4 E6 − 196E7

4E
3
6)A

2
3 + (1120E11

4 − 1120E8
4E

2
6)A3B3

+ (1600E9
4E6 − 1600E6

4E
3
6)B

2
3

+ (−2982E9
4E6 + 2982E6

4E
3
6)A1A2A3

+ (−2520E10
4 − 4410E7

4E
2
6 + 6930E4

4E
4
6)A1B2A3

+ (3360E10
4 − 10920E7

4E
2
6 + 7560E4

4E
4
6)A1A2B3

+ (−19800E8
4E6 + 19800E5

4E
3
6)A1B2B3

+ (2016E8
4E6 − 2016E5

4E
3
6)A

3
1A3

+ (−5920E9
4 + 7360E6

4E
2
6 − 1440E3

4E
4
6)A

3
1B3

+ (405E9
4E6 + 162E6

4E
3
6)A

3
2

+ (1215E10
4 + 1620E7

4E
2
6)A

2
2B2 + 4725E8

4E6A2B
2
2

+ (1125E9
4 + 1500E6

4E
2
6)B

3
2 + (−9477E8

4E6 + 5103E5
4E

3
6)A

2
1A

2
2

+ (−9180E9
4 − 5400E6

4E
2
6)A

2
1A2B2

+ (20925E7
4E6 − 33075E4

4E
3
6)A

2
1B

2
2

+ (20304E7
4E6 − 9072E4

4E
3
6)A

4
1A2

+ (12780E8
4 + 5400E5

4E
2
6 + 540E2

4E
4
6)A

4
1B2

+ (−11076E6
4E6 + 1512E3

4E
3
6 − 36E5

6)A
6
1

)
.(3.3)

Since E4(e
2πi/3) = 0, it is very likely that the above αk,m have a pole at

τ = e2πi/3. Apart from this flaw, αk,m satisfy all the conditions required for
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W (E8)-invariant weak Jacobi forms (of weight k and index m): By construc-
tion they satisfy conditions (2.1)–(2.3). It is also obvious that no fractional
powers of q appear in their Fourier expansions. It is known [4] that they
are finite at q = 0 (see Appendix A for the concrete expressions). Thus, the
condition (2.4) is also satisfied.

If we set μ = 0, all αk,m of negative weight vanish:

α0,1(τ,0) = −4,

αk,m(τ,0) = 0 (k < 0).(3.4)

Although Wirthmüller’s theorem [2] does not cover the case of R = E8

and the above αk,m are not exactly Jacobi forms, it would still be interesting
to examine to what extent the statements of the theorem hold for R = E8.

2

Interestingly, there is a small mismatch between the above αk,m and the
generators that would be expected supposing Wirthmüller’s theorem held:
The theorem would require a generator of weight −2 and index 2 instead of
α−6,2. In fact such a Jacobi form can easily be constructed as

α̃−2,2 := E4α−6,2.(3.5)

However, if one replaces α−6,2 with α̃−2,2 in the generator set, certainW (E8)-
invariant Jacobi forms cannot be generated over the ring of modular forms
C[E4, E6].

3

Though the above αk,m themselves are not exactly Jacobi forms, one can
still consider the polynomial algebra generated by αk,m over C[E4, E6]. To
the best of our knowledge, this algebra seems general enough to contain all
E8 weak Jacobi forms whose concrete expressions are known. Therefore we
conjecture that the algebra of W (E8)-invariant weak Jacobi forms would be
a proper subset of the polynomial algebra generated by αk,m over C[E4, E6].
It would be very interesting to investigate this problem in a more mathe-
matically rigorous manner.

3.3. E7 case

One can reduce the Seiberg–Witten curve presented in the last subsection
to the curve that has only W (E7) symmetry by setting μ = μ(7). The

2 There is an algebro-geometric explanation why E8 should be exceptional [6].
3 The author is grateful to Haowu Wang for explaining this point and also indi-

cating some misunderstandings aboutW (E8)-invariant Jacobi forms in the previous
manuscript.
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curve can be expressed in terms of the eight E7 Jacobi forms constructed in
section 2.3. It is expected that the elliptic fibration described by this curve
develops a degenerate fiber. (It was systematically studied in [7] how special
values of μ correspond to degenerations of the elliptic fibration described by
the Seiberg–Witten curve for the E-string theory.) One immediate outcome
of expressing the curve in terms of the eight E7 Jacobi forms is that one can
directly see this fiber degeneration as the factorization of the discriminant.
For the elliptic curve in the Weierstrass form

y2 = 4x3 − fx− g,(3.6)

the discriminant is given by

D = f3 − 27g2.(3.7)

For the above Seiberg–Witten curve expressed in terms of the eight E7

Jacobi forms, the discriminant indeed factorizes as

D = (u− u0)
2P10(u),(3.8)

where

u0 =
E4C1 − E6A1

12E4Δ
(3.9)

and P10(u) is some tenth degree polynomial in u. (In this subsection we omit
superscript E7 from Jacobi forms.) This is not the only peculiar feature of
the above reduced curve. We can in fact transform the curve into the form
of the general deformation of a singularity of type Ẽ7, as we will see below.

The general deformation of a singularity of type Ẽ7 takes the form [6]

y2 = 4ux3 − 1

12
E4u

3x− 1

216
E6u

4

+α0,1u
3 + α−2,1u

2x+ α−6,2u
2 + α−8,2ux+ α−10,2x

2

+α−12,3u+ α−14,3x+ α−18,4.(3.10)

For the moment αk,m are just deformation parameters. We formally assign
weights −6,−4,−9, k and indices 1, 1, 2,m to u, x, y, αk,m respectively, so
that all terms in the equation are of weight −18 and index 4. The elliptic
curve (3.10) can be transformed into the Weierstrass form (3.6) with

f =
1

12
E4u

4 +

4∑
k=1

fku
4−k, g =

1

216
E6u

6 +

6∑
k=1

gku
6−k(3.11)
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in the following manner: First, perform a translation of x to remove the
quadratic term in x. Next, rescale the variables as x → u−1x, y → u−1y.
We then obtain the Weierstrass from with f, g being of the form (3.11). One
finds that the discriminant of this curve factorizes as

D = u2P̃10(u),(3.12)

where P̃10(u) is some tenth degree polynomial in u. Another peculiar feature
of the curve is that the coefficients f4, g6 also factorize

f4 =
(α−10,2)

2

12
, g6 = −(α−10,2)

3

216
.(3.13)

The locations of the double roots of the discriminants (3.8) and (3.12) imply
that the original Seiberg–Witten curve with μ = μ(7) is identified with
the above obtained curve in the Weierstrass form by the translation u →
u + u0. Indeed, after the translation is applied to the former curve, one
can see the factorizations of coefficients as in (3.13) and determine α−10,2.
Furthermore, by comparing two curves term by term, one can fully determine
the coefficients αk,m in (3.10). The results are as follows:

α0,1 =
E2

4A1 − E6C1

432Δ
, α−2,1 =

E6A1 − E4C1

36Δ
,

α−6,2 =
1

82944Δ2

(
(−25E3

4 + 25E2
6)B2 + (−11E3

4 + 11E2
6)C2

−36E4E6A
2
1 + 72E2

4A1C1 − 36E6C
2
1

)
,

α−8,2 =
1

288Δ2

(
(E3

4 − E2
6)A2 − E2

4A
2
1 + 2E6A1C1 − E4C

2
1

)
,

α−10,2 =
1

576E4Δ2

(
(−15E3

4 + 15E2
6)B2 + (11E3

4 − 11E2
6)C2

−4E4E6A
2
1 + 8E2

4A1C1 − 4E6C
2
1

)
,

α−12,3 =
1

746496E4Δ3

(
(28E6

4 − 28E3
4E

2
6)A3 + (80E4

4E6 − 80E4E
3
6)B3

+ (36E5
4 − 36E2

4E
2
6)A1A2 + (−45E3

4E6 + 45E3
6)A1B2

+ (−75E4
4 + 75E4E

2
6)C1B2 + (33E3

4E6 − 33E3
6)A1C2

+ (−33E4
4 + 33E4E

2
6)C1C2 + (−64E4

4 + 92E4E
2
6)A

3
1

−84E2
4E6A

2
1C1 + (96E3

4 − 12E2
6)A1C

2
1 − 28E4E6C

3
1

)
,

α−14,3 =
1

15552Δ3

(
(7E3

4E6 − 7E3
6)A3 + (20E4

4 − 20E4E
2
6)B3



70 Kazuhiro Sakai

+ (9E3
4 − 9E2

6)C1A2 + (−30E3
4 + 30E2

6)A1B2

+3E4E6A
3
1 − 9E2

4A
2
1C1 + 9E6A1C

2
1 − 3E4C

3
1

)
,

α−18,4 =
1

5971968E4Δ4

(
(10E7

4 − 20E4
4E

2
6 + 10E4E

4
6)B4

+ (−56E5
4E6 + 56E2

4E
3
6)A1A3 + (56E6

4 − 56E3
4E

2
6)C1A3

+ (−160E6
4 + 160E3

4E
2
6)A1B3 + (160E4

4E6 − 160E4E
3
6)C1B3

+ (−18E5
4E6 + 18E2

4E
3
6)A

2
2

+ (−105E6
4 + 150E3

4E
2
6 − 45E4

6)A2B2

+ (33E6
4 − 66E3

4E
2
6 + 33E4

6)A2C2 + (−50E4
4E6 + 50E4E

3
6)B

2
2

+ (12E4
4E6 − 12E4E

3
6)A

2
1A2 + (96E5

4 − 96E2
4E

2
6)A1C1A2

+ (−12E3
4E6 + 12E3

6)C
2
1A2 + (325E5

4 − 325E2
4E

2
6)A

2
1B2

+ (−90E3
4E6 + 90E3

6)A1C1B2 + (−75E4
4 + 75E4E

2
6)C

2
1B2

+ (−33E5
4 + 33E2

4E
2
6)A

2
1C2 + (66E3

4E6 − 66E3
6)A1C1C2

+ (−33E4
4 + 33E4E

2
6)C

2
1C2 − 8E3

4E6A
4
1

+ (−152E4
4 + 184E4E

2
6)A

3
1C1

−48E2
4E6A

2
1C

2
1 + (56E3

4 − 24E2
6)A1C

3
1 − 8E4E6C

4
1

)
.(3.14)

Here, Am, Bm, Cm are the holomorphic Jacobi forms constructed in sec-

tion 2.3 and we have omitted superscript E7.

In contrast to the E8 case, the above αk,m are genuine W (E7)-invariant

weak Jacobi forms (of weight k and index m). This can be shown as follows:

By construction they satisfy conditions (2.1)–(2.3) and no fractional powers

of q appear in their Fourier expansions. We checked explicitly that they are

finite at q = 0. We present the concrete expressions of αk,m at q = 0 in

Appendix A. On the other hand, it is less trivial to show that αk,m are

holomorphic in τ . As the expressions of α−10,2, α−12,3 and α−18,4 contain

E4 in the denominator, these generators may have a pole at τ = e2πi/3. By

carefully examining the structure of these expressions, one finds that these

generators can be written as

α−10,2 =
E6X + · · ·
576Δ2

,

α−12,3 =
3E2

6A1X + · · ·
746496Δ3

,

α−18,4 =
E2

6(−E6A2 + 2A1C1)X + · · ·
1990656Δ4

,(3.15)
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where “· · · ” are some polynomials in Am, Bm, Cm, Ek and

X :=
15E6B2 − 11E6C2 − 4C2

1

E4
.(3.16)

Clearly, potential divergence can arise only through X. Therefore the proof
boils down to showing that X is regular at τ = e2πi/3. This can be done as
follows: The relation (2.27) can be rewritten as

3X2 − 24A2
1X = −13824ΔA4 − 448E2

4A1A3 + 448E6C1A3 − 1280E6A1B3

+1280E4C1B3 + 216E2
4A

2
2 − 1440E4A

2
1A2 + 720E6A2B2

+288C2
1A2 + 1275E4B

2
2 − 990E4B2C2 − 2640A1C1B2

+363E4C
2
2 + 528A1C1C2 + 1680A4

1.(3.17)

Since the right-hand side is holomorphic in τ , X has to be regular at τ =
e2πi/3. Hence, we have shown that all αk,m are indeed W (E7)-invariant weak
Jacobi forms.

The above αk,m satisfy all the conditions required for the generators in
the Wirthmüller’s theorem explained in section 3.1. Thus we conclude that
they give a full set of generators of the algebra of W (E7)-invariant weak
Jacobi forms over the algebra of modular forms C[E4, E6].

If we set μ = 0, the generators become

α0,1(τ,0) = 4,

αk,m(τ,0) = 0 (k < 0).(3.18)

3.4. E6 case

In the same way as in the E7 case, one can reduce the Seiberg–Witten curve
for the E-string theory to the curve that has only W (E6) symmetry and
transform it into the form of the deformed singularity of type Ẽ6.

The general deformation of a singularity of type Ẽ6 takes the form [6]

uy2 = 4x3 − 1

12
E4u

2x− 1

216
E6u

3

(3.19)

+ α0,1u
2 + α−2,1ux+ α−5,1xy + α−6,2u+ α−8,2x+ α−9,2y + α−12,3.

One can formally assign weights −6,−4,−3, k and indices 1, 1, 1,m to u, x,
y, αk,m respectively, so that all terms in the equation are of weight −12
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and index 3. The curve (3.19) can be transformed into the Weierstrass form
(3.6) with (3.11) as follows: First, perform a translation of y to eliminate the
linear terms in y. Next, perform a translation of x to eliminate the quadratic
terms in x. Finally, rescale the variables as x → u−1x, y → u−2y.

Next, we reduce the original Seiberg–Witten curve in section 3.2: We
first set μ = μ(6), then rewrite it in terms of the seven E6 Jacobi forms
constructed in section 2.4, and finally replace u by u+ u0. Here, u0 is given
in (3.9). By comparing this curve with the above curve in the Weierstrass
form, we are able to determine all the coefficients αk,m in (3.19). The results
are as follows:

α0,1 =
E2

4A1 − E6C1

432Δ
, α−2,1 =

E6A1 − E4C1

36Δ
, α−5,1 =

2iD1

Δ
,

α−6,2 =
1

10368Δ2

(
(−5E3

4 + 5E2
6)B2

−5E4E6A
2
1 + 10E2

4A1C1 − 5E6C
2
1 + 72E4D

2
1

)
,

α−8,2 =
1

288Δ2

(
(E3

4 − E2
6)A2 − E2

4A
2
1 + 2E6A1C1 − E4C

2
1

)
,

α−9,2 =
i

108E4Δ2

(
(−8E3

4 + 8E2
6)D2 − 3E2

4A1D1 + 3E6C1D1

)
,

α−12,3 =
1

186624E2
4Δ

3

(
(7E7

4 − 14E4
4E

2
6 + 7E4E

4
6)A3

+ (9E6
4 − 9E3

4E
2
6)A1A2

+ (−9E4
4E6 + 9E4E

3
6)C1A2 + (30E4

4E6 − 30E4E
3
6)A1B2

+ (−30E5
4 + 30E2

4E
2
6)C1B2 + (1152E3

4E6 − 1152E3
6)D1D2

+ (−16E5
4 + 23E2

4E
2
6)A

3
1 − 21E6E

3
4A

2
1C1

+ (30E4
4 − 9E4E

2
6)A1C

2
1 − 7E2

4E6C
3
1

+(432E3
4 − 432E2

6)C1D
2
1

)
.(3.20)

Here, Am, B2, C1, Dm are the Jacobi forms constructed in section 2.4 and
we have omitted superscript E6.

When μ = μ(6), αE7

k,m are expressed as polynomials in αE6

k,m. The relations
are extremely simple:

αE7

0,1 = αE6

0,1, αE7

−2,1 = αE6

−2,1, αE7

−6,2 = αE6

−6,2,

αE7

−8,2 = αE6

−8,2, αE7

−10,2 =
1

4

(
αE6

−5,1

)2
, αE7

−12,3 = αE6

−12,3,

αE7

−14,3 =
1

2
αE6

−5,1α
E6

−9,2, αE7

−18,4 =
1

4

(
αE6

−9,2

)2
.(3.21)
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This is in agreement with the description of the generators of E7 Jacobi

forms in [2].

In the same way as in the E7 case, one can show that αk,m given in (3.20)

are genuine W (E6)-invariant weak Jacobi forms (of weight k and index m).

We present the concrete expressions of them at q = 0 in Appendix A. The

expressions of αE6

−9,2 and αE6

−12,3 contain E4 in the denominator and thus they

may have a pole at τ = e2πi/3. However, since all αE7

k,m are genuine Jacobi

forms, it is clear from (3.21) that αE6

−9,2 and αE6

−12,3 are in fact regular at

τ = e2πi/3.

The above αk,m satisfy all the conditions required for the generators in

the Wirthmüller’s theorem explained in section 3.1. Thus we conclude that

they give a full set of generators of the algebra of W (E6)-invariant weak

Jacobi forms over the algebra of modular forms C[E4, E6].

If we set μ = 0, the generators become

α0,1(τ,0) = 4,

αk,m(τ,0) = 0 (k < 0).(3.22)

In [8] E6 Jacobi forms were used in the study of the flat structure for

the elliptic singularity of type Ẽ6. The generators specified in [8] (up to the

overall factor e(−mt)) are expressed in terms of our generators as

ϕ0 = 18α0,1, ϕ1 =
3

2
α−2,1, ϕ2 = − i

2
α−5,1,

ϕ3 = −9α−6,2 −
5

64
E4 (α−5,1)

2 , ϕ4 = −3α−8,2, ϕ5 = −3iα−9,2,

ϕ6 = 27α−12,3 −
159

16
α−2,1 (α−5,1)

2 .(3.23)

Appendix A. Seiberg–Witten curves at q = 0

In this appendix we present the Seiberg–Witten curves of type Ẽn at q = 0

(τ = i∞). These Seiberg–Witten curves describe the low-energy theory of

5d SU(2) Nf = 7 gauge theory on R4 × S1. The Ẽ8 curve below is the 5d

E8 curve in [4]. The Ẽn (n = 7, 6) curves below are not equivalent to the 5d

En curves in [4]: The former curves give a degenerate fiber at u = 0 while

the latter curves give a degenerate fiber at u = ∞. Physically, the former

curves describe special cases of 5d SU(2) Nf = 7 theory while the latter ones

describe 5d SU(2) Nf = n− 1 theories.
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For each En let us define

α
(0)
k,m(μ) := αk,m(τ = i∞,μ)(A.1)

and the Weyl orbit character associated with the fundamental weight Λj

wj(μ) :=
∑

v∈O(Λj)

e2πiv·μ.(A.2)

• Ẽ8 curve:

y2 = 4x3 − 1

12
u4x− 1

216
u6

−
4∑

m=2

α
(0)
4−6m,mu4−mx−

6∑
m=1

α
(0)
6−6m,mu6−m,(A.3)

where

α
(0)
0,1 = − 4, α

(0)
−6,2 = − 1

18
w1 − 3w8 + 840,

α
(0)
−8,2 = − 2

3
w1 + 12w8 − 1440,

α
(0)
−12,3 = − 1

6
w2 − 4w7 − 8w1 + 528w8 − 79680,

α
(0)
−14,3 = − 2w2 + 96w1 − 1152w8 + 103680,

α
(0)
−18,4 =

2

9
w2
1 −

1

3
w3 −

16

3
w6 − 24w1w8 − 120w2

8

+
424

3
w2 + 1272w7 + 4608w1 − 25920w8 + 3939840,

α
(0)
−20,4 =

4

3
w2
1 − 4w3 − 16w6 − 48w1w8 − 144w2

8

+ 400w2 + 1440w7 + 1728w1 + 41472w8 − 2073600,

α
(0)
−24,5 =

2

3
w1w2 − 4w5 − 16w1w7 + 64w2w8 + 288w7w8 − 96w2

1 − 60w3

− 160w6 + 3456w2
8 + 800w2 − 24480w7 − 108480w1 + 933120w8

− 97873920,

α
(0)
−30,6 = − 8

27
w3
1 + w2

2 +
4

3
w1w3 − 4w4 −

32

3
w1w6 − 48w2

1w8 + 48w2w7

+ 288w2
7 − 40w3w8 − 480w6w8 − 2592w1w

2
8 − 9792w3

8
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+
1124

3
w1w2 + 548w5 + 6688w1w7 + 1884w2w8 + 25632w7w8

+ 24576w2
1 + 12920w3 + 88320w6 + 578688w1w8 + 1714176w2

8

− 1694400w2 − 8460000w7 − 30102720w1 − 104198400w8

+ 721612800.(A.4)

• Ẽ7 curve:

y2 = 4ux3 − 1

12
u3x− 1

216
u4

+α
(0)
0,1u

3 + α
(0)
−2,1u

2x+ α
(0)
−6,2u

2 + α
(0)
−8,2ux+ α

(0)
−10,2x

2

+α
(0)
−12,3u+ α

(0)
−14,3x+ α

(0)
−18,4,(A.5)

where

α
(0)
0,1 =

1

36
w7 +

22

9
, α

(0)
−2,1 =

1

3
w7 −

56

3
,

α
(0)
−6,2 = − 1

16
w2
7 +

26

9
w1 +

5

36
w2 +

1

36
w6 − 6w7 + 67,

α
(0)
−8,2 = − 1

2
w2
7 −

32

3
w1 +

4

3
w2 +

2

3
w6 + 32w7 − 152,

α
(0)
−10,2 = − w2

7 + 32w1 − 4w2 + 4w6 − 32w7 + 176,

α
(0)
−12,3 =

7

108
w3
7 −

32

9
w1w7 −

7

18
w2w7 −

1

9
w6w7 +

46

9
w2
7

− 1244

9
w7 +

736

9
w1 −

77

9
w2 +

10

3
w3 +

1

3
w5 +

104

9
w6 +

13216

27
,

α
(0)
−14,3 =

1

3
w3
7 +

64

3
w1w7 −

2

3
w2w7 −

4

3
w6w7 − 8w2

7

− 896

3
w1 −

116

3
w2 − 8w3 + 4w5 −

160

3
w6 − 80w7 −

3968

3
,

α
(0)
−18,4 = − 1

36
w4
7 −

4

9
w1w

2
7 +

2

9
w2w

2
7 +

1

9
w6w

2
7 −

16

9
w3
7 + 64w2

1 + 16w1w6

− w2
2 −

896

9
w1w7 −

326

9
w2w7 −

8

3
w3w7 −

2

3
w5w7 −

64

9
w6w7

− 596

3
w2
7 +

29888

9
w1 +

1184

9
w2 +

208

3
w3 + 4w4 −

32

3
w5

+
5632

9
w6 +

2816

9
w7 +

111488

9
.(A.6)
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• Ẽ6 curve:

uy2 = 4x3 − 1

12
u2x− 1

216
u3

+ α
(0)
0,1u

2 + α
(0)
−2,1ux+ α

(0)
−5,1xy + α

(0)
−6,2u+ α

(0)
−8,2x+ α

(0)
−9,2y + α

(0)
−12,3,(A.7)

where

α
(0)
0,1 =

1

36
w1 +

1

36
w6 +

5

2
, α

(0)
−2,1 =

1

3
w1 +

1

3
w6 − 18,

α
(0)
−5,1 = i (2w1 − 2w6) ,

α
(0)
−6,2 = − 1

16
w2
1 −

1

16
w2
6 −

7

72
w1w6 + 3w2 +

1

6
w3 +

1

6
w5 −

10

3
w1 −

10

3
w6

+ 54,

α
(0)
−8,2 = − 1

2
w2
1 −

1

2
w2
6 −

1

3
w1w6 − 12w2 + 2w3 + 2w5 + 20w1 + 20w6

− 108,

α
(0)
−9,2 = i

(
−1

3
w2
1 +

1

3
w2
6 + 2w3 − 2w5 − 14w1 + 14w6

)
,

α
(0)
−12,3 =

7

108
w3
1 +

7

108
w3
6 +

1

12
w2
1w6 +

1

12
w1w

2
6 − 2w1w2 − 2w6w2

− 1

2
w1w3 −

1

2
w6w5 −

1

6
w1w5 −

1

6
w3w6 +

11

6
w2
1 +

11

6
w2
6

+ 15w1w6 + 4w4 − 12w2 − 6w3 − 6w5 − 60w1 − 60w6 − 72.(A.8)

Appendix B. Simple roots and fundamental weights of En

Let {ej} (j = 1, 2, . . . , 8) be the orthonormal basis of C8.

• The simple roots of E8:

αE8

1 = 1
2 (e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8) ,

αE8

2 = e1 + e2,

αE8

j = −ej−2 + ej−1 (j = 3, 4, . . . , 8).(B.1)

• The fundamental weights of E8:

ΛE8

1 = 2e8,

ΛE8

2 = 1
2e1 +

1
2e2 +

1
2e3 +

1
2e4 +

1
2e5 +

1
2e6 +

1
2e7 +

5
2e8,
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ΛE8

3 = − 1
2e1 +

1
2e2 +

1
2e3 +

1
2e4 +

1
2e5 +

1
2e6 +

1
2e7 +

7
2e8,

ΛE8

4 = e3 + e4 + e5 + e6 + e7 + 5e8,

ΛE8

5 = e4 + e5 + e6 + e7 + 4e8,

ΛE8

6 = e5 + e6 + e7 + 3e8,

ΛE8

7 = e6 + e7 + 2e8,

ΛE8

8 = e7 + e8.(B.2)

• The simple roots of E7:

αE7

j := αE8

j (j = 1, 2, . . . , 7).(B.3)

• The fundamental weights of E7:

ΛE7

1 = − e7 + e8,

ΛE7

2 = 1
2e1 +

1
2e2 +

1
2e3 +

1
2e4 +

1
2e5 +

1
2e6 − e7 + e8,

ΛE7

3 = − 1
2e1 +

1
2e2 +

1
2e3 +

1
2e4 +

1
2e5 +

1
2e6 −

3
2e7 +

3
2e8,

ΛE7

4 = e3 + e4 + e5 + e6 − 2e7 + 2e8,

ΛE7

5 = e4 + e5 + e6 − 3
2e7 +

3
2e8,

ΛE7

6 = e5 + e6 − e7 + e8,

ΛE7

7 = e6 − 1
2e7 +

1
2e8.(B.4)

• The simple roots of E6:

αE6

j := αE8

j (j = 1, 2, . . . , 6).(B.5)

• The fundamental weights of E6:

ΛE6

1 = − 2
3e6 −

2
3e7 +

2
3e8,

ΛE6

2 = 1
2e1 +

1
2e2 +

1
2e3 +

1
2e4 +

1
2e5 −

1
2e6 −

1
2e7 +

1
2e8,

ΛE6

3 = − 1
2e1 +

1
2e2 +

1
2e3 +

1
2e4 +

1
2e5 −

5
6e6 −

5
6e7 +

5
6e8,

ΛE6

4 = e3 + e4 + e5 − e6 − e7 + e8,

ΛE6

5 = e4 + e5 − 2
3e6 −

2
3e7 +

2
3e8,

ΛE6

6 = e5 − 1
3e6 −

1
3e7 +

1
3e8.(B.6)
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Appendix C. Special functions

The Jacobi theta functions are defined as

ϑ1(z, τ) := i
∑
n∈Z

(−1)nyn−1/2q(n−1/2)2/2,

ϑ2(z, τ) :=
∑
n∈Z

yn−1/2q(n−1/2)2/2,

ϑ3(z, τ) :=
∑
n∈Z

ynqn
2/2,

ϑ4(z, τ) :=
∑
n∈Z

(−1)nynqn
2/2,(C.1)

where

y = e2πiz, q = e2πiτ .(C.2)

We often use the following abbreviated notation

ϑk(τ) := ϑk(0, τ).(C.3)

The Dedekind eta function is defined as

η(τ) := q1/24
∞∏
n=1

(1− qn).(C.4)

The Eisenstein series are given by

E2n(τ) = 1− 4n

B2n

∞∑
k=1

k2n−1qk

1− qk
(C.5)

for n ∈ Z>0. The Bernoulli numbers Bk are defined by

x

ex − 1
=

∞∑
k=0

Bk

k!
xk.(C.6)

We often abbreviate η(τ), E2n(τ) as η, E2n respectively.
Modular properties of the above functions are as follows:

ϑ1(z, τ + 1) = e
πi

4 ϑ1(z, τ), ϑ1(
z
τ ,−

1
τ ) = e−

3πi

4 τ
1

2 e
πi

τ
z2

ϑ1(z, τ),
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ϑ2(z, τ + 1) = e
πi

4 ϑ2(z, τ), ϑ2(
z
τ ,−

1
τ ) = e−

πi

4 τ
1

2 e
πi

τ
z2

ϑ4(z, τ),

ϑ3(z, τ + 1) = ϑ4(z, τ), ϑ3(
z
τ ,−

1
τ ) = e−

πi

4 τ
1

2 e
πi

τ
z2

ϑ3(z, τ),

ϑ4(z, τ + 1) = ϑ3(z, τ), ϑ4(
z
τ ,−

1
τ ) = e−

πi

4 τ
1

2 e
πi

τ
z2

ϑ2(z, τ),

η(τ + 1) = e
πi

12 η(τ), η(− 1
τ ) = e−

πi

4 τ
1

2 η(τ),

E2n(τ + 1) = E2n(τ), E2n(− 1
τ ) = τ2nE2n(τ) (n ≥ 2).(C.7)
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