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A Yang-Baxter equation for metaplectic
ice
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Daniel Bump, and Nathan Gray (on the appendix)

We will give new applications of quantum groups to the study
of spherical Whittaker functions on the metaplectic n-fold cover of
GL(r, F ), where F is a nonarchimedean local field. Earlier Brubaker,
Bump, Friedberg, Chinta and Gunnells had shown that these Whit-
taker functions can be identified with the partition functions of sta-
tistical mechanical systems. They postulated that a Yang-Baxter
equation underlies the properties of these Whittaker functions. We
confirm this, and identify the corresponding Yang-Baxter equation

with that of the quantum affine Lie superalgebra U√
v(ĝl(1|n)),

modified by Drinfeld twisting to introduce Gauss sums. (The de-
formation parameter v is specialized to the inverse of the residue
field cardinality.)

For principal series representations of metaplectic groups, the
Whittaker models are not unique. The scattering matrix for the
standard intertwining operators is vector valued. For a simple re-
flection, it was computed by Kazhdan and Patterson, who applied
it to generalized theta series. We will show that the scattering ma-
trix on the space of Whittaker functions for a simple reflection coin-
cides with the twisted R-matrix of the quantum group U√

v(ĝl(n)).

This is a piece of the twisted R-matrix for U√
v(ĝl(1|n)), mentioned

above.
In the appendix (joint with Nathan Gray) we interpret values

of spherical Whittaker functions on metaplectic covers of the gen-
eral linear group over a nonarchimedean local field as partition
functions of two different solvable lattice models. We prove the
equality of these two partition functions by showing the commu-
tativity of transfer matrices associated to different models via the
Yang-Baxter equation.

1. Introduction

The formula of Casselman and Shalika [17] expresses values of the spher-
ical Whittaker function for a principal series representation of a reductive
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algebraic group over a p-adic field in terms of the characters of irreducible
finite-dimensional representations of the Langlands dual group. Their proof
relies on knowing the effect of the intertwining integrals on the normalized
Whittaker functional. Since the Whittaker functional is unique, the inter-
twining integral just multiplies it by a constant, which they computed.

In contrast with this algebraic case, Whittaker models of principal series
representations of metaplectic groups are generally not unique. The effect of
the intertwining operators on the Whittaker models was computed by Kazh-
dan and Patterson [32]. Specifically, they computed the scattering matrix of
the intertwining operator corresponding to a simple reflection on the finite-
dimensional vector space of Whittaker functionals for the n-fold metaplectic
cover of GL(r, F ), where F is a p-adic field. Some terms in this matrix are
simple rational functions of the Langlands parameters, while others involve
n-th order Gauss sums. Though complicated in appearance, this scattering
matrix was a key ingredient in their study of generalized theta series, and
also in the later development of a metaplectic Casselman-Shalika formula
by Chinta and Offen [19] and McNamara [42].

One of the two main results of this paper is that this scattering matrix
computed by Kazhdan and Patterson is the R-matrix of a quantum group,
quantum affine gl(n), modified by Drinfeld twisting to introduce Gauss sums.
This appears to be a new connection between the representation theory of
p-adic groups and quantum groups, which should allow one to use tech-
niques from the theory of quantum groups to study metaplectic Whittaker
functions.

Although we can now prove this directly, we were led to this result by
studying lattice models whose partition functions give values of Whittaker
functions on a metaplectic cover of GL(r, F ). In [10], it was predicted that a
solvable such model should exist; i.e., one for which a solution to the Yang-
Baxter equation exists. Such a solvable model has important applications
in number theory: it gives easy proofs (in the style of Kuperberg’s proof of
the alternating sign matrix conjecture) of several facts about Weyl group
multiple Dirichlet series [14]. The other main result of this paper is the
discovery of a solvable lattice model whose partition function is a metaplectic
Whittaker function. Moreover, we relate this solution to an R-matrix for
the quantum affine superalgebra gl(1|n). The relation between the two main
results follows from the inclusion of (quantum affine) gl(n) into gl(1|n).

We now explain these results in more detail. Let G̃ denote an n-fold
metaplectic cover of G := GL(r, F ) where the non-archimedean local field
F contains the 2n-th roots of unity. Given a partition λ of length � r,
we will exhibit a system Sλ whose partition function equals the value of
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one particular spherical Whittaker function at s
(
diag(pλ1 , . . . , pλr)

)
, where

s : GL(r, F ) → G̃ is a standard section.

The systems proposed in [10] were generalizations of the six-vertex

model. The six-vertex model with field-free boundary conditions was solved

by Lieb [37], Sutherland [47] and Baxter [2] and were motivating examples

that led to the discovery of quantum groups (cf. [36, 29, 20]). In Baxter’s

work, the solvability of the models is dictated by the Yang-Baxter equation

where the relevant quantum group is Uq(ŝl2). In the special case n = 1 (so

when we are working with non-metaplectic GL(r, F )), the systems proposed

in [10] are six-vertex models that coincide with those discussed in Brubaker,

Bump and Friedberg [12, 14] and there is a Yang-Baxter equation avail-

able. However, even in this case, these models differ from those considered

by Lieb, Sutherland and Baxter since they are not field-free. Based on the

results of this paper, we now understand that the relevant quantum group

for the lattice models in [12, 14] is Uq

(
ĝl(1|1)

)
, as we will make clear in

subsequent sections.

It was explained in [10] that a Yang-Baxter equation for metaplectic

ice would give new proofs of two important results in the theory of meta-

plectic Whittaker functions. The first is a set of local functional equations

corresponding to the permutation of the Langlands-Satake parameters. The

second is an equivalence of two explicit formulas for the Whittaker function,

leading to analytic continuation and functional equations for associatedWeyl

group multiple Dirichlet series. The proof of this latter statement occupies

the majority of [14].

However, no Yang-Baxter equation for the metaplectic ice in [10] could

be found. In this paper we will make a small but crucial modification of the

Boltzmann weights for the model in [10]. This change does not affect the

partition function, but it makes possible a Yang-Baxter equation. This is

Theorem 3.1 in Section 3. The solutions to the Yang-Baxter equation may

be encoded in a matrix commonly referred to as an R-matrix.

We further prove that the resulting R-matrix has two important prop-

erties:

1) It is a Drinfeld twist of the R-matrix obtained from the defining rep-

resentation of quantum affine ĝl(1|n), a Lie superalgebra.

2) It contains the R-matrix of a Drinfeld twist of ĝl(n) which, as we

have already explained, we will identify with the scattering matrix of

intertwining operators on Whittaker models for metaplectic principal

series.
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Consider the quantized enveloping algebra of the untwisted affine Lie

algebra ĝl(n), i.e. the central extension of the loop algebra of gl(n). We

denote the quantized enveloping algebra as U√
v(ĝl(n)) instead of the usual

Uq because in our application the deformation parameter v will be q−1, where

q is the cardinality of the residue field of F . If V and W are vector spaces,

let τ = τV,W denote the flip operator V ⊗W → W ⊗ V . The Hopf algebra

U√
v(ĝl(n)) is almost quasitriangular; given any two modules V andW , there

is an R-matrix RV,W ∈ End(V ⊗W ) such that τRV,W : V ⊗W −→ W ⊗ V

is a module homomorphism (though it will not always be an isomorphism).

The R-matrices for U√
v(ĝl(n)) acting on a tensor product of two evaluation

modules were found by Jimbo [30] (see also Frenkel and Reshetikhin [23],

Remark 4.1.); they satisfy a parametrized Yang-Baxter equation.

The quantum group U√
v(ĝl(n)) has an n-dimensional evaluation module

V+(z) for every complex parameter value z. We will label a basis of the

module v+a(z) where a runs through the integers modulo n. The parameter

+a will be called a positive decorated spin (to be supplemented later by

another one, denoted −0). We may think of the decoration a (mod n) as

roughly corresponding to the sheets of the metaplectic cover G̃ −→ GL(r)

of degree n.

The resulting R-matrix in End(V+(z1)⊗ V+(z2)) is the matrix Rz1,z2 :=

RV+(z1),V+(z2) whose entries Rγ,δ
α,β(z1, z2) are indexed by positive decorated

spins α, β, γ and δ such that

Rz1,z2

(
vα(z1)⊗ vβ(z2)

)
=

∑
γ,δ

Rγ,δ
α,β(z1, z2)vγ(z1)⊗ vβ(z2).

These values are given in Figure 1. The coefficients g(a− b) are Gauss sums

that are not present in the out-of-the-box U√
v(ĝl(n)) R-matrix but which

may be introduced by Drinfeld twisting. This will be discussed in Section 4

(see also Section 4 of [7]). This procedure does not affect the validity of the

Yang-Baxter equations, but is needed for comparison with the R-matrix for

the partition functions of metaplectic ice giving rise to Whittaker functions.

To obtain the full R-matrix used in the Yang-Baxter equation for meta-

plectic ice, we must enlarge the set of positive decorated spins +a to include

one more, labelled −0. Thus there are n + 1 decorated spins altogether,

the positive ones and one more. The n-dimensional vector space V+(z) is

enlarged to an n + 1 “super” vector space V±(z). The positive decorated

spins are a basis for the odd part V+(z), and the even part V−(z) is one-

dimensional, spanned by −0. In Section 3, we present an R-matrix that gives
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α, β, γ, δ
+a,+a,+a,+a
(0 � a � n)

+b,+a,+b,+a
(0 � a, b � n, a �= b)

Rγ,δ
α,β(z1, z2)

−v+(z1/z2)
n

1−v(z1/z2)n
g(a− b) 1−(z1/z2)

n

1−v(z1/z2)n

α, β, γ, δ
+b,+a,+a,+b

(0 � a, b � n, a �= b)

Rγ,δ
α,β(z1, z2)

⎧⎪⎨⎪⎩
(1− v) (z1/z2)

n

1−v(z1/z2)n
a > b,

(1− v) 1
1−v(z1/z2)n

a < b.

Figure 1: Boltzmann weights for the Drinfeld twisted U√
v(ĝl(n)) R-matrix

implementing the scattering matrix of the intertwinging operators on the
Whittaker models of the metaplectic principal series representations. Here
g(a−b) is an n-th order Gauss sum defined in (18). The effect of the Drinfeld
twisting is to put them into the R-matrix.

a solution of the Yang-Baxter equation for the metaplectic ice model. In Sec-
tion 4, we show that the solution of the Yang-Baxter equation is equivalent
to the R-matrix corresponding to the defining representation of the quantum
affine Lie superalgebra U√

v(ĝl(1|n)) modified by a Drinfeld twist.
Finally, we explain the connection between the R-matrix of Theorem 3.1

and the structure constants alluded to in item (2) above. The local functional
equations for metaplectic Whittaker functions mentioned earlier may be
understood as arising from intertwining operators. Let T̂ be the diagonal
torus in GL(r,C), the Langlands dual group of G. Each diagonal matrix

z =

⎛⎜⎝ z1
. . .

zr

⎞⎟⎠ ∈ T̂ (C)

indexes a principal series representation πz of G̃. Let Wz be the finite-
dimensional vector space of spherical Whittaker functions for πz. If n = 1,
Wz is one-dimensional, but not in general since if n > 1 the representation
πz does not have unique Whittaker models. If si is a simple reflection in the
Weyl group W , then let Asi denote the standard intertwining integral Asi :
πz −→ πsiz (see (12) for the precise definition). This induces a map Wz →
Wsiz. If n > 1 thenAsi has an interesting scattering matrix on theWhittaker
model that was computed by Kazhdan and Patterson (Lemma I.3.3 of [32]).
This calculation underlies their work on generalized theta series, and was
used by Chinta and Offen [19] and generalized by McNamara [42] to study
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the analog of the Casselman-Shalika formula for the spherical Whittaker
functions.

Let πz,ψ be the module of Whittaker coinvariants of the representation
πz. By definition, this is the quotient of the underlying space of πz char-
acterized by the fact that a linear functional is a Whittaker functional if
and only if it factors through πz,ψ. Thus πz,ψ is the dual space of the space
of Whittaker functionals on πz. Its dimension is nr. In Section 5, we will
prove that the scattering matrix of the intertwining integrals on the Whit-
taker coinvariants is essentially τRzi,zi+1

, where Rzi,zi+1
is the R-matrix for

a Drinfeld twist of U√
v(ĝl(n)).

Theorem 1.1. There is an isomorphism θz of the space πz,ψ of Whittaker
coinvariants to the vector space V+(z1)⊗ · · · ⊗ V+(zr) that takes the vectors
v+a1

(z1)⊗ · · · ⊗ v+ar
(zr) into the basis of πz,ψ dual to the basis of Wz given

in [32, 19, 42] (see Section 5). Then the following diagram commutes:

πz,ψ
θz−−−−→ V+(z1)⊗ · · · ⊗ V+(zi)⊗ V+(zi+1)⊗ · · · ⊗ V+(zr)⏐⏐�Āsi

⏐⏐�(τRzi,zi+1
)i,i+1

πsiz,ψ
θsiz−−−−→ V+(z1)⊗ · · · ⊗ V+(zi+1)⊗ V+(zi)⊗ · · · ⊗ V+(zr)

where Āsi denotes the map induced by the normalized intertwining operator
defined in (13).

The notation (τRzi,zi+1
)i,i+1 means that the operator τRzi,zi+1

: V+(zi)⊗
V+(zi+1) → V+(zi+1) ⊗ V+(zi) is applied to the i, i + 1 tensor components,
while we take the identity map on the remaining components.

This offers a new and seemingly fundamental connection between the
representation theory of quantum groups and p-adic metaplectic groups. It
also suggests several immediate questions.

First, one may ask for generalizations to other Cartan types. For sym-
plectic groups, Yang-Baxter equations based on those found here are given
in Gray [27]. A categorical framework for some of these operations would be
desirable. Even for central extensions of GL(r, F ) there are open questions.
We required the 2n-th roots of unity to be in the ground field F , in order to
twist the Matsumoto cocycle defining the metaplectic central extension of
GL(r, F ) by a cocycle of the form (det(g1), det(g2))2n as in (8). We may ask
whether other choices of cocycle admit a similar story; in particular, some
choices result in a strictly smaller dimensional space of Whittaker models,
so wouldn’t biject with basis elements in the tensor product of vector spaces
appearing in Theorem 1.1.
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One may also ask for connections with other literature such as Weiss-
man [48]. It seems particularly important to understand the relation between
our work and the the quantum geometric Langlands program initiated by
Lurie and Gaitsgory in [24], and more specifically the relation to the work
of Lysenko [38] and Gaitsgory and Lysenko [25].

Remark 1.2. While we have given an interpretation of the n + 1 decorated
spins which are the possible states of the horizontal edges as basis vectors
for an evaluation module of U√

v(ĝl(1|n)), the edges of vertical type have

no known similar interpretation. One may ask whether U√
v(ĝl(1|n)) has a

two-dimensional module M such that the Boltzmann weights in Figure 3
are interpreted as the R-matrix for the pair Vz, M . We know no reason
for such an M to exist, except that if it does not, then Theorem 3.1 is an
example of a parametrized Yang-Baxter equation that is not predicted by
quasitriangularity.

The Appendix is a joint work with Gray and was initially posted on
the arxiv as a standalone paper [8]. There we prove that two statistical-
mechanical systems have the same partition function, using the Yang-Baxter
equations from this paper, and supplementary ones from Gray [27].

The two ice models give different ways of writing down values of meta-
plectic Whittaker functions. The fact that their partition functions are equal
was the main result of [14] and was instrumental in proving functional equa-
tions and analytic continuation of certain Weyl group multiple Dirichlet
series. The advantage of the proof in the Appendix compared to the one
in [14] is that it’s much shorter and more clear. One of the two ice models
is described below in Section 2. The other one is similar but has different
weights; it is explained in the Appendix.

The equality of the two partition functions is reminiscent of dualities for
physical systems, for example of the Kramers-Wannier duality that relates
the partition functions of the low-temperature and high temperature Ising
models.

We conclude by reviewing some recent papers which are sequels to this
one.

The paper by Brubaker, Buciumas, Bump and Friedberg [7] was writ-
ten after the first draft of this one was already posted to the arxiv, and
depends on this one. In it, we give a very general method of constructing
representations of the affine Hecke algebra and show that examples of such
representations can come either from the theory of Whittaker functionals on
metaplectic p-adic groups or from certain Schur-Weyl dualities for quantum
affine algebras. Theorem 1 in the present paper is used to prove the two



108 Ben Brubaker et al.

representations mentioned are in fact the same. The paper also contains a

more formal discussion of the Drinfeld twisting, an important supplement

to the brief treatment we give below in Section 4.

In the paper Brubaker, Buciumas, Bump and Gustafsson [9] it is shown

(extending the earlier paper [15] in the n = 1 case) that the row transfer ma-

trices for metaplectic ice can be interpreted as operators on the Fermionic

Fock space F of Kashiwara, Miwa and Stern [31], after Drinfeld twisting.

This is a module for (twisted) U√
v(ŝln). To achieve this, one modifies the

boundary conditions so that the grid has infinitely many columns. Then a

sequence of spins in a row of vertically oriented edges may be interpreted

as a basis vector in F, and the main theorem is that the row transfer ma-

trices have expressions resembling vertex operators. In particular they are

U√
v(ŝln)-module homomorphisms. This partially addresses the lack of an in-

terpretation of the vertical edges as U√
v(ŝln)-modules noted in Remark 1.2.

2. The partition function

In statistical mechanics, the partition function of a model is a generating

function. This means that through its dependence on global parameters of

the system (such as temperature) it carries information about properties of

the system such as entropy and free energy. Here we are concerned with

two-dimensional lattice models that represent metaplectic Whittaker func-

tions, and the global parameters on which it depends are the Langlands

parameters.

Consider a finite two-dimensional rectangular grid of fixed size, com-

posed of interior edges connecting to vertices of the grid and boundary edges

adjacent to a single vertex in the grid. Every edge will be assigned a spin,

which has value + or −. The spins along the boundary edges will be fixed as

part of the data specifying the system; the spins on the interior edges will

be allowed to vary. Thus with the spins on the boundary fixed, a state of

the system will be an assignment of spins to the interior edges.

We associate a system to any integer partition λ = (λ1, . . . , λr) as fol-

lows. The size of the grid will have r rows and N columns, where N may

be any integer greater than or equal to λ1 + r. The boundary edge spins

are set to be + at all left and bottom boundary edges, and − on all right

edges. The boundary edges along the top of the grid depend on the strict

partition λ+ ρ with ρ = (r − 1, . . . , 3, 2, 1, 0). The spins along the top edge

will be − in the columns numbered (λ + ρ)i for all 1 � i � r and + on all
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remaining columns. See Figure 2 for an example of a state in the system for
λ = (3, 2, 0) and N = 5.1

Define the charge at each horizontal edge in the configuration to be the
number of + spins at or to the right of the edge, along the same row. (This
notion was introduced in [10].) We also will speak of the charge at a vertex,
defined to be the charge on the edge to the right of the vertex. The charges
are labeled in Figure 2 as decorations above each vertex.

Definition 2.1. The state will be called admissible if the four spins on
adjacent edges of any vertex are in one of the six configurations in Figure 3.
It will be called n-admissible if it is admissible and if furthermore every
horizontal edge with a − spin has charge ≡ 0 modulo n.

An example of an admissible state is shown in Figure 2. (The appearance
of labels zi on the vertices in the figure will be explained momentarily.) The
illustrated state is n-admissible only if n = 1 or 2, since it has a horizontal
− edge with charge 2.

The Boltzmann weight of a state is obtained as a product of weights
attached to each vertex in the model. The weight attached to any vertex
makes use of a pair of functions h and g defined on the integers satisfying
certain properties which we will now explain.

Let n be a fixed positive integer and v a fixed parameter. Let g(a)
be a function of the integer a which is periodic modulo n, and such that
g(0) = −v, while g(a) g(n− a) = v if n does not divide a. Let

(1) h(a) =

{
1− v if n|a,
0 otherwise.

Choose r nonzero complex numbers z1, . . . , zr and associate one to each row,
as indicated in Figure 2. The rows are labeled r down to 1 in descending
order and zi is associated with the i-th row as in Figure 2. Given a vertex
in the i-th row, its Boltzmann weight is given in Figure 3. Note that this
weight depends on the spins and the charges on adjacent edges, and the row

i in which it appears. Then the Boltzmann weight B
(n)
z1,...,zr(s) of the state

s is the product of the Boltzmann weights over all vertices in the grid. We
often omit the n or the z1, . . . , zr in the notation for B, as the weights may
be stated uniformly for all such choices.

1Strictly speaking, our systems correspond to an integer partition λ and the
choice of sufficiently large integer N specifying the number of columns. However,
the partition function Z(Sλ) is unchanged if we increase N , and we suppress N
from the notation.
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z1 z1 z1 z1 z1 z1

z2 z2 z2 z2 z2 z2

z3 z3 z3 z3 z3 z3row: 3

2

1

− + − + + −

+ + + − + + −

− + + − + +

+ − − − − − −

+ + + − + +

+ + + + − − −

+ + + + + +

012345column:

4 3 2 1 0 0 0

1 0 0 0 0 0 0

5 4 3 2 2 1 0

Figure 2: A state of a six-vertex model system. The columns are labeled in
descending order from N − 1 down to 0. The rows are labeled in descending
order from r down to 1. In this case N = 6, the partition λ is (3, 2, 0), so
λ + ρ = (5, 3, 0); therefore the − in the top row are placed in columns 5,
3, 0. The charges are shown for each horizontal edge. If n = 2, this state is
n-admissible since the charges of the − edges are multiples of 2.

Remark 2.2. In [10] and [14], the functions g and h are defined using n-th

order Gauss sums, with v = q−1, and shown to satisfy the above properties.

We will use this specific choice later in Theorem 2.4 and in Section 5 to

connect the partition function to metaplectic Whittaker functions. However,

only the above properties are required for their study using the Yang-Baxter
equation. The function g(a) is defined in (18) below, and h(a) we already

defined by (1).

Example 1. In the state in Figure 2 we look at the top row. Using the

classification of admissible configurations in Figure 3, the vertex in column
5 is of type b1 with charge 4, so its Boltzmann weight is g(4). There are

two vertices of type c2 in columns 3 and 0, a c1 vertex in column 2, and

a1 vertices in columns 4 and 1. The c1 vertex and one of the c2 vertices

have charge 2, so the state is n-admissible only if n = 1 or 2. Assuming this,

the g(4) from the b1 vertex evaluates to −v and the c1 vertex evaluates to
(1 − v)z1, while the remaining vertices in the row have weight 1. Thus the

total contribution of this row to the weight of the state is (−v)(1 − v)z1.

The second row has a vertex c2 (with charge 0) and the remaining vertices



Metaplectic ice 111

a1 a2 b1 b2 c1 c2

+

+

+

+

a+1 a

1

−

−

−

−

a a

zi

+

−

+

−

a+1 a

g(a)

−

+

−

+

a a

zi

−

+

+

−

a a

h(a)zi

+

−

−

+

a+1 a

1

Figure 3: The Boltzmann weights at a vertex for our ice model. The illus-
trated vertices are in the i-th row and have charge a. (The charge is the
number of + signs in the row to the right of the vertex.) The Boltzmann
weight of any configuration not appearing in this table is zero. In an n-
admissible state, any horizontal edge with a − spin will have its charge
divisible by n. Each admissible configuration is assigned a type a1, a2, b1,
b2, c1 or c2.

are all of type b2 or a2, so this row contributes z52 . The last row has a c2
vertex (with charge 0) and two b2 vertices. The remaining three vertices in

the row are of type a1 with Boltzmann weight 1. The Boltzmann weight of

this state is (−v)(1− v)z1z
5
2z

2
3 if n = 1 or 2, and 0 otherwise.

Proposition 2.3. Suppose that s is an admissible state such that the Boltz-

mann weight B(n)(s) �= 0. Then the state is n-admissible.

Proof. We must show that, under this assumption, the charge on every edge

with spin − is a multiple of n. Suppose not and consider the right-most

vertex in any row where this condition fails; that is, the charge a of the edge

to the right is not a multiple of n. We claim that the edge to the right of v

has spin +. We know that v is not the rightmost vertex in its row since its

charge is nonzero. So if the edge to the right of v has spin −, then the vertex

to the right of v has the same charge as v, contradicting our assumption

that v is the rightmost counterexample in its row.

Since the edge to the left of v is − and the edge to the right is +,

consulting Figure 3 we see that the only admissible configuration of spins

at the vertex v is of type c1, so the Boltzmann weight at v is h(a) zi = 0

because n � a. This contradicts our assumption that B(n)(s) �= 0.

We may now explain the distinction between the system in [10] and the

one used throughout this paper. Let S′
λ denote the set of admissible states,

and letSλ denote the smaller set of n-admissible states. In [10], the partition

function Z(S′
λ) is defined to be the sum of B(n)(s) where s runs over S′

λ. In
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this paper, we consider partition function Z(Sλ), the sum over n-admissible

states.

Theorem 2.4. Let λ be a partition with r parts and let n be a fixed pos-

itive integer. Then the partition function Z(Sλ) is (up to normalization)

a value of a p-adic spherical Whittaker function on the metaplectic n-fold

cover of GL(r, F ), where F is a nonarchimedean local field with residue field

of cardinality q ≡ 1 (2n).

Proof. By Proposition 2.3, Z(S′
λ) = Z(Sλ). Combining this with Theorem 4

of [10], the statement follows.

In this result, g(a) and h(a) appearing in the Boltzmann weights for Z

are n-th order Gauss sums as explained in Remark 2.2 and v = q−1 where

q is the cardinality of the residue field of F .

Remark 2.5. Theorem 4 of [10] depends on the crystal description of the

Type A Whittaker functions proved in [40]. (See also [13].) However [40]

treats simple groups such as SL(r). This apparent gap can be remedied by

noting that the metaplectic Casselman-Shalika formula proved for reductive

groups in [42] is equivalent to the needed crystal description by results of

Puskas [45].

Remark 2.6. The normalization that is unspecified in this statement will

be made precise in (24). Moreover, Theorem 6.3 is a generalization of this

result that expresses a basis of all nr spherical Whittaker functions as par-

tition functions of Gamma ice, and also elucidates the relationship with

Theorem 1.1.

To summarize, we may strictly limit the admissible states so that−a only

occurs with the charge a ≡ 0 modulo n. The resulting Boltzmann weights

(derived from Figure 3) may be found in the “Gamma” row in Figure A2

of the appendix. The restriction to n-admissible states does not change the

partition function but has the benefit of making the model solvable in the

sense of Baxter. This means that it is amenable to study by the Yang-Baxter

equation.

3. The Yang-Baxter equation

The partition functions described in Section 2 differ from those of the clas-

sical six-vertex model in a crucial way: the Boltzmann weights depend on

a global statistic, the charge. If we wish to use statistical mechanical tech-
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niques like the Yang-Baxter equation, we need the weight at any vertex to be

local, that is, depending only on nearest-neighbor interactions. We achieve

this by a slight change in point of view, introducing decorated spins for the

horizontal edges. Given a fixed positive integer n, a decorated spin is an

ordered pair (σ, a) where the spin σ is + or − and the decoration a is an

integer mod n. Moreover if σ = −, we will only consider a ≡ 0 mod n. In fig-

ures, we will sometimes draw the spin σ in a circle and write the decoration

a next to it. In text, we will denote (σ, a) as σa. The key point is that the

decoration is now viewed as part of the data attached to a horizontal edge.

Now there are n + 1 possible decorated spins for horizontal edges, rather

than just the spins + and −; we have left the six-vertex model.

Not all choices of decorated spins on horizontal edges will have nonzero

Boltzmann weight. Each decoration a on a horizontal edge to the left of a

vertex must be compatible with its spin σ and the decoration b on the edge

to the right. If σ = +, then a ≡ b + 1 (mod n) and if σ = −, then a ≡ b.

If we set the initial decorations of the right-hand boundary edges (which

all have spin −) to be 0, then this rule clearly recovers the charge (mod n)

of the previous section. Thus the Boltzmann weights in Figure 3 may be

interpreted as purely local; in the figure, we have indicated the decoration

by writing it over the spin. We are justified in requiring the decoration at a

− edge to be 0 modulo n (without affecting the resulting partition functions)

by Proposition 2.3.

Now that the weights at any vertex may be viewed as local, we are ready

to present our solution to the Yang-Baxter equation. Three sets of vertices

with different Boltzmann weights will appear in the Yang-Baxter equation

(Theorem 3.1) below. In figures, these will be labeled zi, zj and Rzi,zj . Here

zi and zj are nonzero complex numbers used in the Boltzmann weight of

the associated vertex. At the vertices with labels zi and zj we will use the

Boltzmann weights already described in Figure 3. In Figure 4 we describe

the Boltzmann weights at the vertices labeled Rzi,zj . The Boltzmann weights

depend only on the residue classes modulo n of the integers a, b, c, . . . that

appear in these formulas, but in some cases depend on a particular choice

of representatives for residue classes. These choices are indicated in the de-

scription below the figure.

Theorem 3.1. The partition functions of the following two systems are

equal. That is, if we fix the charges σ, τ , β, ρ, α and θ and the decorations

a, b, c, d, and sum over all possible values of the inner edge (decorated) spins,
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+

+ +

+

a

a a

a

zni − vznj

+

+ +

+

b

a b

a

g(a− b)(znj − zni )

+

+ +

+

b

a a

b

(1− v)zcjz
n−c
i (*)

−

− −

−
0

0 0

0

znj − vzni

+

− +

−
a

0 a

0

v(znj − zni )

−

+ −

+

0

a 0

a

znj − zni

−

+ +

−
0

a a

0

(1− v)zaj z
n−a
i (†)

+

− −

+

a

0 0

a

(1− v)zn−a
j zai (†)

Figure 4: Boltzmann weights for the R-vertex Rzi,zj . It is assumed that b is
not equal to a. (*) Here c ≡ a− b mod n with 0 � c < n. (†) Here we choose
the representative of a modulo n with 1 � a � n, so if a ≡ 0 mod n, n − a
means 0, not n.

we obtain the same result in both cases.

(2)

σ
a

b
τ

β

c
θ

ρ
d

α

e
ν

μ
f

γRzi,zj

zj

zi σ
a

b
τ

β

c
θ

ρ
d

α

φ
g

h
ψ

δ Rzi,zj

zj

zi

Proof. In every admissible configuration there are an even number of +
spins on the six boundary edges. Therefore there are 32 possible boundary
spin choices, and we must consider each of these cases separately. Moreover,
each case breaks into subcases depending on the decorations at horizontal
boundary edges with spins σ, τ, θ and ρ. To give the reader a feeling for the
possibilities, we will do one case in detail. The remaining cases may be found
in [5].

We will consider Case 10, using the enumeration of cases in [5], whose



Metaplectic ice 115

assignment of boundary spins is (σ, τ, β, θ, ρ, α) = (+,+,−,+,−,+).

Case 10a: With k �= 0, suppose that the (decorated) spins on the six

boundary edges are as follows:

a
σ

b
τ β

c
θ

d
ρ α

k+1

+
1
+ −

k
+

0
− +

On each side there is one n-admissible state:

left-hand side right-hand side

e
ν

f
μ γ

weight

k + 1
+

1
+ −

(znj − zni )×
g(k) g(−k)

g
φ

h
ψ δ

weight

k
+

0
− +

(znj − zni ) v

.

Thus the configurations are as follows:

+
k + 1

1
+

−
k
+

−
0

+

k + 1
+

+
1

−Rzi,zj

zj

zi +
k + 1

1
+

−
k
+

−
0

+

+
k

0
−

+ Rzi,zj

zj

zi

Since g(k) g(−k) = v, (A.1) is satisfied in this case.

Case 10b: With k �= 0,

a
σ

b
τ β

c
θ

d
ρ α

1
+

k+1

+ −
k
+

0
− +
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left-hand side right-hand side

e
ν

f
μ γ

weight

k+1

+
1
+ −

(1− v)×
zkj z

n−k
i g(k)

g
φ

h
ψ δ

weight

0
−

k
+ −

(1− v)×
zkj z

n−k
i g(k)

Case 10c:

a
σ

b
τ β

c
θ

d
ρ α

1
+

1
+ −

0
+

0
− +

left-hand side right-hand side

e
ν

f
μ γ

weight

1
+

1
+ − v(znj v − zni )

g
φ

h
ψ δ

weight

0
−

0
+ − (v − 1) v znj

0
+

0
− +

(znj − zni ) v

This exhausts all possible choices of decorations on boundary edges, and

hence completes the proof of Case 10. See the appendix in [5] for the other

cases.

There is another Yang-Baxter equation to be mentioned.

Theorem 3.2. Let zi, zj and zk be given. Then for every choice of decorated

boundary spins α, β, γ, δ, ε, φ, the partition functions of the following two

systems are equal:

(3)

Rzj ,zk

Rzi,zk

Rzi,zj

α

β

γ δ

ε

φ

Rzj ,zk

Rzi,zk

Rzi,zj

α

β

γ δ

ε

φ
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Theorem 3.2 presents a parametrized Yang-Baxter equation. We will
eventually relate this to the parametrized Yang-Baxter equation associated
with the R-matrix of a quantum group, namely a Drinfeld twist of ĝl(1|n).
Theorem 3.3. Let α, β, γ, δ be decorated spins. Then the partition function
of

Rzi,zj
Rzj,zi

α

β

γ

δ

equals {
(znj − vzni )(z

n
i − vznj ) if α = γ, β = δ

0 otherwise.

As we mentioned in the introduction, we will show in Section 5 that
Theorem 3.2 is related to the intertwining integrals for principal series rep-
resentations of the metaplectic group, which were calculated in Kazhdan
and Patterson [32]. From this point of view, Theorem 3.3 is related to The-
orem I.2.6 of [32].

Because of the last result, it is almost true that if we modified the R-
matrix Rzi,zj by dividing by znj −vzni , the associated quantum (super) group
(which will be identified in Section 4) would be triangular in the sense of
Drinfeld [20]. However because this factor znj − vzni can be zero, this is not
quite true, and the braided category of modules is also not triangular.

Proofs of Theorems 3.2 and 3.3. The earlier version [5] contains a proof that
Theorems 3.2 and 3.3 follow from Theorem 3.1. However Theorem 3.2 may
be proved more straightforwardly along the lines of Theorem 3.1 by consid-
eration of the different cases, or deduced from Kojima [33] equation (2.13).
We will verify at the end of the next section that Kojima’s Yang-Baxter
equation implies Theorem 3.2, and Theorem 3.3 is straightforward.

4. Metaplectic ice and supersymmetry

Perk and Schultz [44] found new solutions of the Yang-Baxter equation.
Meanwhile graded (supersymmetric) Yang-Baxter equations were introduced
by Bazhanov and Shadrikov [3]. It was found by Yamane [49] that the Perk-
Schultz equations were related to the R-matrix of the quantized enveloping
algebra of the gl(m|n) Lie superalgebra in the standard representation. The
quantized enveloping algebra of the corresponding affine Lie superalgebra
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was considered by Zhang [51]. A convenient reference for us is Kojima [33].
See also [50].

We will explain how to relate the R-vertex weights of the prior section,
which depend on a fixed n as in Figure 4, to the gl(1|n) R-matrix. The re-
lationship is rather subtle, since we will have to perform manipulations on
the Perk-Schultz R-matrix in order to make the comparison. These manip-
ulations preserve the Yang-Baxter equation as in Theorem 3.2, but (among
other things) they introduce n-th order Gauss sums which are crucial in the
connection to representation theory of the metaplectic group [32, 10, 14].

If V is the (1|n)-dimensional defining module of quantum gl(1|n), then
for every z ∈ C× there is an evaluation module Vz of Uq(ĝl(1|n)). One can
associate R-matrices Rzi,zj ∈ End(Vzi ⊗ Vzj ) (see [33] for more details) that
satisfy a graded Yang-Baxter equation in End(Vzi ⊗ Vzj ⊗ Vzk). As noted
in [33], we may change some signs in the R-matrix to produce a solution to
the ungraded Yang-Baxter equation; this is the R-matrix we wish to compare
with that in Theorem 3.2. A basis of the ungraded (1|n)-dimensional vector
space Vz can be taken to be the decorated edge spins −0 for the even part,
and +a with a modulo n for the odd part, of a vertex with parameter z.

Referring to [33] for notation, we will take the decorated spin −0 to have
graded degree 0, and the spins +a, where a is an integer modulo n, to have
degree 1. Thus we are concerned with ĝl(1|n). For the sake of comparing
our results to Kojima’s, the parameter q in this section will be Kojima’s q,
which will equal

√
v; it is not the same as q (the cardinality of the p-adic

residue field) in the other sections of this paper.
In Figure 5 we have the Boltzmann weights from Figure 4 divided by zni ,

compared with the corresponding R-matrix entries from (2.4)–(2.7) of [33]
which we have multiplied by the constant 1− q2z.

We will give two ways of modifying the R-matrix to obtain another R-
matrix that is also a solution of the Yang-Baxter equation. One method
only affects the weights in cases III, VII and VIII. The other only affects the
weights in cases II, V and VI. After these changes, we will be able to match
the Kojima Boltzmann weights up to sign, with z = zi/zj and q2 = v. (Then
we will have to discuss the sign.)

For each nonzero complex number z, let V (z) be an (n+1)-dimensional
vector space with basis vα = vα(z), where α runs through n+ 1 “decorated
spins.” These are the ordered pairs +a with 0 � a < n and −0.

Previously we interpreted the vertex Rzi,zj as a vertex in a graph with
certain Boltzmann weights attached to it. We now reinterpret it as an endo-
morphism of a vector space, as usual in the application of quantum groups
to solvable lattice models. If α, β, γ, δ are decorated spins, let Rγ,δ

α,β(zi, zj)
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This paper Kojima This paper Kojima
I.

+

+ +

+

a

a a

a

(z2/z1)
n − v z − q2

V.

+

− +

−
a

0 a

0

v(1− (z2/z1)
n) q(1− z)

II.

+

+ +

+

b

a b

a

g(a− b)(1− (z2/z1)
n) q(1− z)

VI.

−

+ −

+

0

a 0

a

1− (z2/z1)
n q(1− z)

III.

+

+ +

+

b

a a

b

(1− v)(z2/z1)
n−a+b

(1− v)(z2/z1)
−a+b

z(q2 − 1)

if a > b

(q2 − 1)

if a < b

VII.

−

+ +

−
0

a a

0

(1− v)(z2/z1)
n−a z(1− q2)

IV.

−

− −

−
0

0 0

0

1− v(z2/z1)
n q2z − 1

VIII.

+

− −

+

a

0 0

a

(1− v)(z2/z1)
a 1− q2

Figure 5: Left: The R-matrix from Figure 4, divided by zn1 . Right: the Boltz-

mann weights of Kojima’s ĝl(1|n) R-matrix multiplied by 1−q2z. Just taking
the first three cases (and discarding any case with a decorated spin −0) gives

the ĝl(n) R-matrix. It is assumed that a �≡ b mod n.

be the Boltzmann weight of vertex Rzi,zj with the decorated spins α, β, γ, δ

arranged as follows:

α

β γ

δ
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We assemble these into an endomorphism Rzi,zj of V (z1)⊗V (z2) as follows:

(4) Rzi,zj (vα ⊗ vβ) =
∑
γ,δ

Rγ,δ
α,β(zi, zj) vγ ⊗ vδ.

Lemma 4.1. We have

(5) (Rzj ,zk)23(Rzi,zk)13(Rzi,zj )12 = (Rzi,zj )12(Rzi,zk)13(Rzj ,zk)23

as endomorphisms of V (z1)⊗ V (z2)⊗ V (z3).

Here the notation is (as usual in quantum group theory) that Xij where
1 � i < j � 3 means a matrix X acting on the i, j components in V (z1) ⊗
V (z2)⊗ V (z3) with the identity acting on the third component.

Proof. We apply the left-hand side of (5) to vα ⊗ vβ ⊗ vγ and extract the
coefficient of vδ ⊗ vε ⊗ vφ. This is found to be∑

μ,ν,σ

Rμ,σ
α,β(zi, zj)R

δ,ν
μ,γ(zi, zk)R

ε,φ
σ,ν(zj , zk),

which is the partition function of the first system in Theorem 3.2. The same
calculation applied to the right-hand side of (5) gives the partition function
of the second system in Theorem 3.2. So they are equal.

We will now describe two operations that one may perform on the Boltz-
mann weights that do not affect the validity of the Yang-Baxter equation.

Change of basis

We may change basis in V (z). Let f(α, z) be a function of a decorated spin
α and a complex number z. Let uα = f(α, z)vα for vα ∈ V (z). Then

Rzi,zj (uα ⊗ uβ) =
∑
γ,δ

R̂γ,δ
α,β(zi, zj) uγ ⊗ uδ

where

(6) R̂γ,δ
α,β =

f(α, zi)f(β, zj)

f(γ, zi)f(δ, zj)
Rγδ

α,β.

Note that replacing R by R̂ only affects the weights in cases III, VII, and
VIII in Figure 5.
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Let us translate this into the language of Boltzmann weights. At the
moment we are only concerned with Theorem 3.2. Later in Section 5 we
will apply this technique to the first Yang-Baxter equation in Theorem 3.1.
Thus we note the effect on the weights for both types of vertices. Taking the
Boltzmann weights from Figures 4 and 3, with zi and zj as in those figures,
the weights of

α

β β

α

, α

±

β

±

will respectively be multiplied by

(7)
f(α, zi)f(β, zj)

f(γ, zi)f(δ, zj)
,

f(α, zi)

f(β, zi)
.

The first statement is a paraphrase of (6), and the second is checked the
same way.

Returning to the comparison with Kojima’s weights, we take

f(α, z) =

{
za, α = +a,
1 α = −0.

This puts our R-matrix into agreement with Kojima in cases III, VII, and
VIII but has no effect on the other cases. The modification in this subsection
did not fundamentally change the R-matrix, or the quantum group associ-
ated to it. We simply made a change of basis in the vector space on which
it acts.

Twisting

In this subsection we will consider a more fundamental change of the R-
matrix which does not affect the validity of the Yang-Baxter equation. This
procedure is called Drinfeld twisting [21]. The quantum group associated
to the twisted R-matrix is not the original quantum group, as the Drinfeld
twisting procedure modifies the comultiplication and universal R-matrix of
a quasitriangular Hopf algebra. See Chari and Pressley [18] Section 4.2.E
for more details. In Reshetikhin [46] Section 3, Drinfeld twisting is used to
obtain multiparameter deformations of Uq(sl(n)). We explain in [7], Section
4 (at least for the gl(n) part) how the Drinfeld twist on the quantum group
produces the desired change to the R-matrix that we present below.
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Notice that in Figure 4, if we have a nonzero weight for the vertex of

form

±

± ±

±
a

b c

d

,

then either a = c and b = d or a = d and b = c.

Now let us consider a modification of the Boltzmann weights in case II

(i.e., a = c and b = d). We will multiply this weight by a function φ(a, b) of

the decorations a, b that has the following properties. First, it is independent

of zi and zj . Second, φ(a, b)φ(b, a) = 1.

Proposition 4.2. If R̃ is the R-matrix with this modification of the weights

in case II, then R̃ also satisfies the same Yang-Baxter equation that R does

(Theorem 3.2).

Proof. From the Boltzmann weights in Figure 5, we see that the decorated

spins of the two edges to the right of the vertex will have the same dec-

orations as the two edges to the left of the vertex, in some order. From

the form of Rzi,zj it is clear that if either partition function is nonzero, the

decorated spins δ, ε and φ must be the same as α, β and γ in some order.

From this ordering, we may infer the number of case II vertices, and (with

an exception to be explained below) it will be the same for both partition

functions. That is, if +a and +b occur on the left in the opposite order that

they do on the right, then a case II crossing must occur somewhere on a

vertex between the four edges. And this will be true on both sides of the

equation, so multiplying the case II Boltzmann weight by φ(a, b) will have

the same effect on both sides of the equation.

The exception is that if two weights appear in the same order on the left

and right, there may be two case II vertices or none between them. Thus

suppose that α = φ = +a and β = ε = +b. Then in the first partition

function in Theorem 3.3 we may have Rzi,zj and Rzj ,zk either both in case II

or both in case III. However if they are both in case II, the factor that we

have to multiply is φ(a, b)φ(b, a), which equals 1 by assumption.

We may use this method of twisting in order to remove the g(a − b) in

case II, and replace them by q, since in this case a �≡ b mod n, so g(a −
b) g(b − a) = v = q2. We may also adjust the weights in cases V and VI so

that in both cases the coefficient agrees with Kojima’s weights.
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Sign

Using the two methods available to us, we see that we can adjust the Boltz-
mann weights to agree with Kojima’s, up to sign. We must now discuss the
sign. We have agreement for all signs except case IV. As Kojima notes (below
his equation (2.12)) his R-matrix, being supersymmetric, satisfies a graded
Yang-Baxter equation. As he points out, an ungraded Yang-Baxter equation
may be obtained by changing the sign when all edges are odd-graded. For
us, this would mean changing the sign in cases I, II and III. However it works
equally well to change the sign in the case where all edges are even-graded,
that is, in case IV.

In conclusion, putting together the results of all of the above subsections,
the supersymmetric Yang-Baxter equation in Kojima [33] is equivalent to
our Theorem 3.2.

5. Intertwining integrals as R-matrices

In this section, we will review results of Kazhdan and Patterson [32], Chinta
and Offen [19] and McNamara [41, 42] concerning the scattering matrix of
the intertwining operators of the principal series representations on their
Whittaker models. Then we return to the R-matrices, using modified Boltz-
mann weights that are suited to make a connection with the notation of [42],
which will be our primary reference. Finally we will prove Theorem 1.1.

Let F be a non-archimedean local field with ring of integers o and a
choice of local uniformizer �. Let q be the cardinality of the residue field
o/�o. Let n be a fixed positive integer. We assume that q ≡ 1 (mod 2n) so
that F contains the 2n-th roots of unity. Let μn denote the group of n-th
roots of unity in F and fix an embedding μn −→ C×.

Let G := GL(r, F ) and let T be the subgroup of diagonal matrices. We
begin by constructing a metaplectic n-fold cover of G, denoted G̃(n) or just
G̃ when the degree of the cover is understood. Recall that G̃ is constructed
as a central extension of G by μn:

1 −→ μn −→ G̃
p−→ G −→ 1.

Thus as a set, G̃ � G×μn, but the multiplication in G̃ is dictated by a choice
of cocycle σ for H2(G,μn). One may construct the cocycle explicitly, as in
Kubota [35], Matsumoto [39], Kazhdan and Patterson [32] and Banks-Levi-
Sepanski [1], or realize the central extension as coming from an extension of
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K2(F ) constructed by Brylinski-Deligne [16]. For the applications at hand,
we need only a few facts about the multiplication on T̃ = p−1(T ), the inverse
image of a maximal split torus T in G, and the splitting properties of some
familiar subgroups.

The cocycle σ is chosen so that its restriction to T × T −→ μn is given
on any x = diag(x1, · · · , xr), y = diag(y1, · · · , yr) in T by

(8) σ (x,y) = (det(x), det(y))2n
∏
i>j

(xi, yj)
−1,

where (·, ·) : F× × F× −→ μn is the n-th power Hilbert symbol and (·, ·)2n
is the 2n-th power Hilbert symbol, so (x, y) = (x, y)22n. General properties
of the Hilbert symbol may be found in [43] noting that the symbol there is
the inverse of ours; one property we use frequently is that (x, x) = 1 for any
element x ∈ F×, since F contains the 2n-th roots of unity.

Let Λ = X∗(T ) denote the group of rational cocharacters of T . The
cocycle σ in (8) is the inverse of the one appearing on p. 39 of [32]. A short
computation shows that the commutator of any pair of elements x̃, ỹ in T̃
projecting to x and y, respectively, in T is

(9) [x̃, ỹ] =

r∏
i=1

(xi, yi).

In particular if x, y ∈ F× and λ, μ are elements of X∗(T ), let λ̃(x), μ̃(y) ∈ T̃
map to xλ and yμ, respectively, under the projection p to T . Then according
to (9),

(10) [λ̃(x), μ̃(y)] = (x, y)〈λ,μ〉,

where 〈·, ·〉 denotes the usual dot product on X∗(T ) � Zr.
In order to make use of results in [42], we must connect this explicit

construction to the one used there. In [42] the construction of G̃ is obtained
by first constructing the extension of G(F ) by K2(F ) using a W -invariant
quadratic form Q, and then using a push forward from K2(F ) to the residue
field, containing μn. The calculation in (10) implies that the bilinear form
B(λ, μ) := Q(λ+μ)−Q(λ)−Q(μ) for our extension, as described in Equa-
tion (2.1) of [42], is given by the dot product. If α is a (co)root thenQ(α) = 1.

Finally, we record that the cocycle splits over any unipotent subgroup
and over the maximal compact subgroup K = GL(r, o). The splitting over
the maximal unipotent is clear from the description of the cocycle in [32]
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and the splitting over K is their Proposition 0.1.2. By abuse of notation, we
will denote the image of K in G̃ also as K.

Let T (o) = K ∩ T , and let T̃ (o) be the preimage of T (o) in G̃. Let H be
the centralizer of T̃ (o) in T̃ . It consists of elements in T̃ whose projection to
the torus t = (t1, . . . , tr) ∈ T � (F×)r has ord� (tj) ≡ 0 (n) for j = 1, . . . , r.
The subgroup H is abelian. Thus we may identify T̃ /μnT̃ (o) and H/μnT̃ (o)
with lattices Λ and nΛ, respectively. In particular Λ is isomorphic to the
cocharacter lattice X∗(T ) of T . The map λ �→ �λ induces an isomorphism
from X∗(T ) to T/T (o). Let s : G → G̃ denote the standard section. By
abuse of notation we will also denote by �λ the image of �λ under s. Let
ρ = (r− 1, . . . , 2, 1, 0) and let Γ be the set of ν ∈ Λ = Zr = X∗(T ) such that

(11) ν − ρ = (c1, . . . , cr), with ci ∈ {0, . . . , n− 1} for all i.

This is a set of coset representatives in Λ = Zr = X∗(T ) for Λ modulo nΛ.
Then {�λ|λ ∈ Γ} are a set of coset representatives for T̃ /H.

Next we recall the construction of the genuine unramified principal series
on G̃. (A representation π of G̃ or any subgroup containing μn is called
genuine if π(εg) = επ(g) for ε ∈ μn, where we are using the fixed embedding
of μn ⊂ F× into C×.) First we construct geniune irreducible representations
of T̃ . Let χ be a genuine character of H that is trivial on T̃ ∩K; the induced
representation i(χ) of such a character to H will be irreducible.

Now we may parabolically induce i(χ) to G̃. This is done by first inflating
the representation from T̃ to B̃, the inverse image of the standard Borel

subgroup B ⊃ T in G and then inducing to obtain I(χ) := IndG̃
B̃
(i(χ)).

Explicitly I(χ) is the space of locally constant functions f : G̃ −→ i(χ) such
that

f(bg) = δ1/2χ(b)f(g) for all g ∈ G̃, b ∈ B̃,

where δ denotes the modular quasicharacter of B. Thus I(χ) is a G̃-module
under the action of right translation. Let φK := φχ

K denote any of the i(χ)-
valued functions in the one-dimensional space of K-fixed vectors in I(χ);
our results will be independent of this choice.

The characters χ of H that are trivial on T̃ ∩K may be parametrized by
elements z ∈ T̂ , which is the group of diagonal elements of GL(r,C). Every
element of H may be written εs(t) with ε ∈ μn and t = diag(t1, · · · , tr) ∈ T
such that each ord(ti) is a multiple of n. We may then define

χz(εs(t)) = ε

r∏
i=1

z
ord(ti)
i .



126 Ben Brubaker et al.

We will denote the corresponding principal series representation πz = I(χz).
It does not depend uniquely on z since if zn = (z′)n then πz ∼= πz′ .

We will assume that I(χz) is irreducible. For this, it is necessary and
sufficient to assume that znα �= q±1 for all roots α. This also guarantees that
the rational functions that appear in the sequel do not have poles.

Let U be the subgroup of upper unitriangular matrices in G, which
is the unipotent radical of B, the positive Borel subgroup. The Matsumoto
construction supplies a splitting of the metaplectic cover over U , so by abuse
of notation we may regard U as a subgroup of G̃. In particular, for any
positive root α ∈ Φ+, we may regard the one-parameter root subgroup Uα

corresponding to α as a subgroup of G̃.

To any element w ∈ W , the Weyl group, we may define the unipotent
subgroup Uw by

Uw :=
∏

α∈Φ+, w(α)∈Φ−

Uα.

Then define the intertwining operator Aw : I(χ) → I(wχ) by

(12) Aw(f)(g) :=

∫
Uw

f(w−1ug) du

whenever the above integral is absolutely convergent, and by the usual mero-
morphic continuation in general. (By abuse of notation we are using the same
letter w for the Weyl group and for a representative in K.)

The representation πz contains a K-fixed vector φK , unique up to con-
stant multiple. We may choose these so that

Awφ
z
K = cw(χ)φ

wz
K

where for any simple reflections s = sα and any w such that the length
function �(sαw) = �(w) + 1,

cs(χ) =
1− q−1znα

1− znα
, and csw(χ) = cs(χ

w)cw(χ).

Let Aw denote the normalized intertwiner:

(13) Aw := cw(χ)
−1Aw.

Let ψ be a character of U such that if iα is the embedding SL2 → GLn

along the simple root α, then the additive character x �→ iα( 1 x
1 ) of F
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a1 a2 b1 b2 c1 c2

+

+

+

+

a+1 a

z
−nδ(a+1)
i

−

−

−

−

0 0

1

+

−

+

−

a+1 a

g(a)z
−nδ(a+1)
i

−

+

−

+

0 0

1

−

+

+

−

0 0

1− v

+

−

−

+

1 0

z
−nδ(1)
i

Figure 6: Modified Boltzmann weights.

is trivial on o but no larger fractional ideal. A Whittaker functional on a
representation (π, V ) of G̃ is a linear functional W π for which

W π(π(u)v) = ψ(u)W π(v) for all u ∈ U and v ∈ V.

As stated in Section 6 of [42], the dimension of the space of Whittaker
functionals for the principal series I(χ) is equal to the cardinality nr of
T̃ /H. Let Wχ denote the i(χ)-valued Whittaker functional on I(χ) defined
by

(14) Wχ(φ) :=

∫
U−

φ(uw0)ψ(u) du : I(χ) −→ i(χ).

(We denote this Wz when χ = χz.) Then there is an isomorphism between
the linear dual i(χ)∗ and the space Whittaker functionals to C on I(χ) given
by

(15) L �−→ L ◦Wχ, for L in i(χ)∗.

Let us describe a particular basis of i(χ)∗ used in [42] for the computation
of the spherical function under the Whittaker functional. Let v0 := φK(1),
an element of i(χ). Let θχ denote the representation of T̃ on i(χ) (denoted

πχ in [42]). Then {θχ(�γ)v0|γ ∈ Γ} is a basis for i(χ). Let {L(χ)
γ } denote

the dual basis of i(χ)∗. If μ ∈ Λ write μ = β + γ with γ ∈ Γ and β ∈ nΛ.
Then

(16) L(χ)
ν (θχ(�

μ)v0) =

{
χ(�β) if ν = γ,
0 otherwise.

Thus we obtain a basis of the space of Whittaker functionals on I(χ), de-
noted Wχ

γ = Lχ
γ ◦Wχ using the isomorphism (15). We will denote W z

γ = Wχ
γ

if χ = χz, or as simply Wγ .
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a1 a2

+

+ +

+

a

a a

a

−v + znα

1− vznα

+

+ +

+

b

a b

a

g(a− b)
1− znα

1− vznα

+

+ +

+

b

a a

b

(1− v)

1− vznα
·
{
znα a > b,
1 a < b

−

− −

−
0

0 0

0

1

b1 b2 c1 c2

+

− +

−
a

0 a

0

v(1− znα)

1− vznα

−

+ −

+

0

a 0

a

1− znα

1− vznα

−

+ +

−
0

a a

0

(1− v)znα

1− vznα

+

− −

+

a

0 0

a

(1− v)

1− vznα

Figure 7: Modified weights R̂z. When combined with the weights in Figure 6,
they satisfy a Yang-Baxter equation. This follows from Theorem 3.1. In this
figure, we are assuming that charges depicted as a and b are in distinct
residue classes mod n.

The spherical Whittaker function W z
γ (π(�

λ)φK) vanishes unless the

weight λ is dominant. One approach to studying them, going back to Cassel-

man and Shalika (for linear groups) and Kazhdan and Patterson for meta-

plectic covers, is to exploit the fact that Wwχ ◦ Aw is an i(χ)-valued Whit-

taker functional for I(χ). This is the approach that was taken by Chinta

and Offen [19] and McNamara [42]. Thus we expand

(17) Wwz
μ ◦ Aw =

∑
ν∈Γ

τμ,νW
z
ν

for some rational functions τμ,ν = τ
(w)
μ,ν (zn). It suffices to understand these

structure constants on simple reflections w = sα. These were computed for

metaplectic covers of GL(r) by Kazhdan and Patterson, and we discuss their

calculation following Theorem 13.1 in [42].

We now introduce the Gauss sums g(a), which depend on a modulo n

and satisfy the conditions g(0) = −v, while g(a) g(n− a) = v if n does not
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divide a, with v = q−1. These are given by the formula

(18) g(a) =
1

q

∑
t∈(o/(�))×

(�, t)aψ

(
t

�

)
.

Proposition 5.1 (Kazhdan-Patterson, [32], Lemma I.3.3). Let s = sα be a

simple reflection and let μ, ν ∈ Γ. The structure constants τν,μ := τ
(w)
ν,μ for

can be broken into two pieces:

τν,μ = τ1ν,μ + τ2ν,μ

where τ1 vanishes unless ν ∼ μ mod nΛ and τ2 vanishes unless ν ∼ s(μ)+α

mod nΛ. Moreover:

(19) τ1μ,μ = (1− q−1)
zn�

〈α,μ〉
n

	α

1− q−1znα

where �x� denotes the smallest integer at least x, and

(20) τ2s(μ)+α,μ = g(〈α, μ− ρ〉) 1− znα

1− q−1znα
.

Proof. This is Theorem 13.1 in [42]. Recall that Q(α) = 1 on simple roots α

so nα = n/ gcd(n,Q(α)) = n. Our cocycle has been chosen so that B(α, μ) =

〈α, μ〉. Our n-th order Gauss sum g is q−1g in the notation of [42]. Finally,

we have xα = zα to obtain (19) and (20).

We now return to the R-matrices. We will not be concerned with par-

tition functions in this section but we will use the notation of Boltzmann

weights (slightly modified) in order to make a connection with Proposi-

tion 5.1.

The weights we need now are given in Figures 6 and 7; we will derive

these from those in Figures 3 and 4. We remind the reader that in Section 2,

we stressed that it suffices to consider only the decoration 0 associated to a

− spin, and the table below reflects this assumption. So we omit other −a

decorated spins with a �= 0.

Proposition 5.2. The Yang-Baxter equation is satisfied with the weights in

Figures 6 and 7.
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Proof. To obtain these from the weights in Figure 3 and 4, we make use

of the change of basis method described in Section 4. We take the function

f(α, z) to equal {
za if α = +a, 0 � a < n,
1 if α = −0.

In Figure 6 we further divide each weight by zi, and in Figure 7 we divide

by zn1 − vzn2 . These multiplications apply to all weights, so we may do this

at our convenience without affecting the Yang-Baxter equation.

Proposition 5.3. Let μ ∈ X∗(T ) � C[Λ] with μ−ρ = (c1, · · · , cr) for some

integers ci ∈ [0, n). Let τν,μ(z) := τ
(si)
ν,μ (z) as in Proposition 5.1. Let wt be

the weights for R̂ in Figure 7 above with v = q−1. Given any pair of integers

a, b with a ≡ ci and b ≡ ci+1 mod n, if a �≡ b mod n, then

τ1μ,μ(z) = wt

⎛⎜⎜⎜⎝ +

+ +

+

a

b b

a

⎞⎟⎟⎟⎠ and τ2si(μ)+αi,μ
(z) = wt

⎛⎜⎜⎜⎝ +

+ +

+

b

a b

a

⎞⎟⎟⎟⎠ .

If a ≡ b mod n, then both τ1μ,μ(z) and τ2si(μ)+αi,μ
(z) are nonzero and

(21) τ1μ,μ(z) + τ2si(μ)+αi,μ
(z) = wt

⎛⎜⎜⎝
+

+ +

+

a

a a

a

⎞⎟⎟⎠ .

Proof. We begin by rewriting τ1 and τ2 in terms of ci and ci+1. Recall from

(19) that with α = αi

τ1μ,μ = ((1− q−1)
zn�

〈α,μ〉
n

	α

1− q−1znα
=(1− q−1)

zn�
ci−ci+1+1

n
	α

1− q−1znα

=
(1− q−1)

1− q−1znα

{
znα if ci − ci+1 � 0

1 if ci − ci+1 < 0.

where the second equality used that 〈α, μ− ρ〉 = ci − ci+1. From (20),

τ2s(μ)+α,μ = g(〈α, μ− ρ〉) 1− znα

1− q−1znα
= g(ci − ci+1)

1− znα

1− q−1znα
.
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Note that μ = si(μ)+αi if and only if ci = ci+1, since si(μ)+αi = si(μ−ρ)+ρ,
so τ1 and τ2 are only simultaneously nonzero when ci = ci+1.

Now we compare to the weights in Figure 7 with a− b ≡ ci+1 − ci (mod
n) according to cases. First if ci �= ci+1 so that a �≡ b (mod n), then the
modified R-vertex weight in the top row, third column entry of Figure 7
indeed matches the evaluation of τ1 above upon setting v = q−1. Moreover,
the top row, second column entry of Figure 7 agrees with τ2 under the same
specialization v = q−1.

To finish, consider the case when ci = ci+1 so that both τ1 and τ2 are
nonzero. Then

τ1μ,μ + τ2s(μ)+α,μ =
(1− q−1)znα

1− q−1znα
− q−1 1− znα

1− q−1znα
=

znα − q−1

1− q−1znα

since g(0) = −v = −q−1. And this in turn is precisely the weight of the
R-vertex in the top row, first column of Figure 7 where a ≡ ci = ci+1 and
v = q−1.

Recall that the module of Whittaker coinvariants πz,ψ is naturally the
dual space of the space Wz of Whittaker functionals on πz. If γ ∈ Γ, let Ωμ

be the image of s(�μ) in πz,ψ. Using (16) this {Ωμ} is the basis of πz,ψ dual
to the basis W z

μ of Wz. Then the map Asi induces the map

(22) Asi(Ωμ) =
∑
ν

τν,μΩν .

This follows from (17) by duality. We define the map θz : πz,ψ −→
⊕

i V+(zi)
(needed for Theorem 1.1) by

θz(Ωμ) = vc1 ⊗ · · · ⊗ vcr

when μ ∈ Γ. Recall that this means μ − ρ = (c1, · · · , cr) with 0 � ci < n.
We will use the notation vμ−ρ to denote this vector.

We are now ready to prove one of our main results.

Proof of Theorem 1.1. Let μ ∈ Γ. Let ν = siμ+α. Write μ−ρ = (c1, · · · , cr)
and ν = siμ + α, so that ν − ρ = si(μ − ρ) has the same components with
ci and ci+1 interchanged.

We consider the case where μ �= ν. We have

θsizAsi(Ωμ) = θ(τμ,μΩμ + τν,μΩν) = τμ,μvμ−ρ + τν,μvν−ρ.
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On the other hand using (4)

τR(vci ⊗ vcj ) =
∑
ck,cl

Rck,cl
ci,cj (vcl ⊗ vck).

Taking j = i+1, on the right-hand side, the only nonzero terms are (cl, ck) =

(ci, ci+1) or (ci+1, ci). So

(τR)i,i+1θz(Ωμ) = (Rci+1,ci
ci,ci+1

)i,i+1vμ−ρ + (Rci,ci+1
ci,ci+1

)i,i+1vν−ρ.

(The subscript Xi,i+1 means that the operator is applied in the i, i + 1
position of the r-fold tensor product V+z.) Thus we need

(Rci+1,ci
ci,ci+1

)i,i+1 = τμ,μ, (Rci,ci+1
ci,ci+1

)i,i+1 = τν,μ

and this is the content of Proposition 5.3.

The case where μ = ν is similar, using (21).

6. Functional equations via partition functions

In Theorem 2.4, we expressed one spherical Whittaker function as the parti-
tion function of a solvable lattice model. However there are nr independent

Whittaker functions. In this section, we will show that the charge statis-
tic can be refined to produce nr independent Whittaker functions. In this

section, we will use the unmodified weights in Figure 3.

In Theorem 2.4, we were vague as to the precise normalization. Now

that we have defined enough notation in the previous section, let us give the
precise normalization. Let χ = χz. There is a unique functional L◦ on i(χ)

such that

(23) L◦(θ(�λ)v0) = zλ .

(This was denoted λ in [40], which underlies the proof of Theorem 1.1.)
Evidently

L◦ =
∑
γ∈Γ

zγLγ ,

where Γ is the set of representatives defined in (11). We define, for g ∈ G̃

W ◦(g) = L◦W(π(g)φK),
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where W is defined in (14). The correct normalization for Theorem 2.4 is:

(24) Z(Sλ) = zw0ρδ−1/2(�λ)W ◦(�λ).

Now if γ ∈ Γ then

Wγ(g) = LγW (π(g)φK),

so that W ◦ =
∑

zγWγ .
Let M = C(z1, · · · , zr, v) be the field of rational functions in zi and v,

which we may think of as indeterminates. Let Mn = C(zn1 , · · · , znr , v). Then
[M : Mn] = nr and a basis of M over Mn consists of the nr elements zγ

where γ ∈ Γ, the set of representatives defined by (11).

Lemma 6.1. Let g ∈ G̃ and let γ ∈ Γ. Then Lγ(π(g)φK) is in Mn.

Proof. We make an Iwasawa decomposition g = εtv�νk where ε ∈ μn,
t ∈ T (o), u ∈ U , ν ∈ Λ and k ∈ K. Then

Lγ(π(g)φK) = εL(π(�ν)φK) = εLγ(θ(�
λ)v0).

This depends only zn by (16).

Proposition 6.2. Let λ be a dominant weight, and let γ ∈ Γ. Then the
function zγW z

γ (�
λφK), considered as a function of z, lies in the coset zγMn.

Proof. The function W z
γ (�

λφK) is defined by the integral∫
U−

Lz
γφK(uw0�

λ)ψ(u) du.

For every value of u the integrand is inMn by Lemma 6.1. Hence the integral
is, also.

If x ∈ Z let [x] denote the least residue of x modulo n. The following
result is a refinement of Theorem 2.4.

Theorem 6.3. Let (c1, · · · , cr) ∈ Zr and let γ ∈ Γ be defined by γi− r+ i =
[N + 1− r − ci]. Then

Z(Sλ; c) = zw0ρ+γδ−1/2(�λ)Wγ(�
λ).

Proof. Since as a vector space M =
⊕

γ∈Γ z
γMn, we may project both sides

in (24) onto zγ+w0ρMn. It follows from Proposition 6.2 that the projection
of the right-hand side is zγ+w0ρδ−1/2(�λ)Wγ(�

λ). As for the left-hand side
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consider a state s of the system Sλ. We observe that in the Boltzmann

weights in Figure 3 the vertex contributes a zi to the partition function if

the spin to the left of the vertex is −, while it increments the charge if the

spin to the left is +. Thus let ci be the charge at the left edge in the i-th

row, and let νi be the power of zi that appears in the Boltzmann weight

of the state. We see that ci + νi = N . Now if the Boltzmann weight of

the state is in zγ+w0ρMn we must have νi ≡ γi + i − 1 modulo N . Now

γi − ρi = γi − r + i ≡ νi − r + 1 ≡ N + 1− r − ci. Remembering that γ ∈ Γ

means that 0 � γi − ρi < n, we see that the state s contributes to Z(Sλ; c)

if and only if γi − r + i = [N + 1− r − ci] and the statement follows.

Our next result is a variant of Theorem 1.1 that describes the functional

equations of the partition function. In view of (24), this can also be regarded

as a functional equation for the Whittaker functions. We will add z to the

notation and denote Z(Sλ; c) = Z(Sλ,z; c). Let si be the simple reflection

that interchanges i and i+1. In our notation, note that zαi = zi/zi+1, where

αi is the i-th simple root.

Proposition 6.4. Let c be the least residue of ci − ci+1 modulo n. Then

Z(Sλ,siz; sic)(25)

= (1− v)
z(n−c)αi

1− vznα
Z(Sλ,z; sic) + g(ci − ci+1)

1− znα

1− vznα
Z(Sλ,z; c).

Proof. We attach the vertex Rzi,zi+1
to the right of the partition function of

the system (Sλ,siz; sic), thus:

zi

zi+1

zi

zi+1

zi

zi+1

zi

zi+1+

+

−

−

0

0

ci+1

ci

Consulting Figure 4, there is only one possible configuration for the R-

vertex, so attaching it just multiplies the partition function by zni+1 − vzni .

Now using the Yang-Baxter equation we may move the R-matrix to the left,
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and obtain the partition function of a system that looks like this:

zi

zi+1

zi

zi+1

zi

zi+1

zi

zi+1

+

+

−

−

0

0

ci+1

ci

In this case there are two possibilities for the charges on the edges to the

right of the R-vertex (unless ci ≡ ci+1 modulo n) and the two terms may be

found again in Figure 4.

It must be checked that the statement remains true if ci = ci+1 though

in this case the two terms on the right-hand side in (25) may be combined.

Since g(0) = −v the coefficient is

(1− v)znαi

1− vznαi
+

−v(1− znαi)

1− vznαi
=

−v + znαi

1− vznαi
.

This is what we want by Figure 4.

Consider the following version of equation (25):

Z̃(Sλ,siz; sic) =

w̃t

⎛⎜⎜⎜⎝ +

+ +

+
ci

ci+1 ci

ci+1

⎞⎟⎟⎟⎠ Z̃(Sλ,z; sic) + w̃t

⎛⎜⎜⎜⎝ +

+ +

+
ci

ci+1 ci+1

ci

⎞⎟⎟⎟⎠ Z̃(Sλ,z; c),
(26)

where now Z̃ is the partition function of the same ice model as before, but

using the modified weights from Figure 6, and w̃t are also the modified

weights from Figure 7.

This may be compared with a result from Section 5. Let �ν be a rep-

resentative in T̃ /H with ν − ρ = (c1, · · · , cr) with ci ∈ [0, n). Then for a

simple reflection si the following functional equation holds as explained in

Proposition 5.1:

(27) W
siχ
ν ◦ Asi(π(�

λ)φK) = τ1ν,νW
χ
ν (π(�

λ)φK) + τ2ν,si·νW
χ
siν(π(�

λ)φK).
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Remark 6.5. Combining the results of Proposition 5.3 and Theorem 6.3, we
immediately conclude that the right-hand sides of (26) and of (27) are equal.
We therefore obtain an interpretation of the action of the intertwining op-
erator on the Whittaker function at the ice model level. To be more precise,
the effect of the intertwining operator As1 on spherical Whittaker functions
is realized by swapping the roles of the parameters zi and zi+1 in the ice
model while attaching an R-matrix at the edge of the system.

This shows that the functional equation of the Whittaker function has
an interpretation as equality of partition functions. Such equivalences are
useful when they transform a hard problem in one area to an easy problem
in a different area. Another example of such an equivalence is given in the
Appendix. There, we (together with Gray) prove the equality of the parti-
tion functions of two ice models which is equivalent to the equality of two
expressions for coefficients of Weyl group multiple Dirichlet series. The proof
of this fact occupies most of [14]; the proof is long and intricate. The proof
in the Appendix on the other hand is very short and clear.

Appendix A. Duality for metaplectic ice

In this appendix, we will consider two different kinds of metaplectic ice and
show that (with suitable boundary conditions) they have the same parti-
tion functions. An earlier version of this work as a stand-alone paper with
additional details is presented in [8].

“Gamma ice” refers to the systems considered in this main body of the
paper. Recall that the vertical edges are allowed two states + and −, while
the horizontal edges are allowed states +a where a is an integer modulo n,
and −0. “Delta ice” is similar, but for the horizontal edges, we allow deco-
rated charges −a where a is an integer modulo n, and +0. The Boltzmann
weights of the two systems are summarized in Figure A.1.

Gamma ice and Delta ice appear together in different contexts. In sym-
plectic ice, referring to systems whose partition functions are generalizations
of highest weight characters of symplectic groups (or, more precisely, Whit-
taker functions on the metaplectic covers of odd orthogonal groups) both
ice flavors occur together. See [27] and the earlier references [28, 11] for this.
Moreover a result that may be expressed as the equality of two partition
functions for Gamma and Delta ice, respectively, was the main theorem
in [14]. The goal of this Appendix is to reprove the latter result in a simpler
fashion using Yang-Baxter equations.

It is shown in [9] that for infinitely wide grids, the row transfer matrices
of Gamma and Delta ice can be interpreted as endomorphisms of a certain
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a1 a2 b1 b2 c1 c2

Γ-ice
+

+

+

+

a+1 a

RΓ
z

1

−

−

−

−

0 0

RΓ
z

z

+

−

+

−

a+1 a

RΓ
z

g(a)

−

+

−

+

0 0

RΓ
z

z

−

+

+

−

0 0

RΓ
z

(1− v)z

+

−

−

+

1 0

RΓ
z

1

Δ-ice
+

+

+

+

0 0

RΔ
z

1

−

−

−

−

a a+1

RΔ
z

g(a)z

+

−

+

−

0 0

RΔ
z

1

−

+

−

+

a a+1

RΔ
z

z

−

+

+

−

0 0

RΔ
z

(1− v)z

+

−

−

+

0 1

RΔ
z

1

Figure A.1: The Boltzmann weights for Γ and Δ vertices associated to a
row parameter z ∈ C×. The charge a above an edge indicates any choice
of charge mod n and gives the indicated weight. The weights depend on a
parameter v and any function g with g(0) = −v and g(n − a)g(a) = v if
a �≡ 0 mod n. If a configuration does not appear in this table, its weight is
zero.

infinite-dimensional module of U√
v(ŝln), the q-Fock space of Kashiwara,

Miwa and Stern [31]. From this point of view, Delta ice and Gamma ice are
adjoints of each other.

The systems we will describe will be denoted SΓ
z,λ and SΔ

z,λ. The first

system is the same as the system of n-admissible states denoted SΓ
λ = Sλ in

Section 2. We will review this and define the system SΔ
z,λ at the same time.

Let λ be a partition of length � r, and let ρ = (r−1, r−2, · · · , 0). As in
Section 2, we consider a rectangular grid with r rows and N columns where
N � λ1 + r. As in Figure 2, the columns will be labeled from 0 to N in
descending order. For boundary conditions, both systems will have the top
(vertical) edges with − in columns λi + r − i (1 � i � r) and the bottom
(vertical) edges will all be labeled +.

In both systems, the boundary conditions put + charges on the horizonal
edges at the left of the grid, and − charges on the right. We sum over all legal
combinations of charges modulo n for the charges on these edges. Thus in
Gamma ice the only legal − charge is 0, so the charges on the right edge are
“grounded” at 0, while we sum over all nr possible charges a = (a1, · · · , ar)
for the left edge charges +ai, as in Figure 2. For Delta ice, the left edge
charges are grounded to +0, but we still sum over all possible charges for
the right edge decorated spins.

Returning to the Boltzmann weights in Figure A.1, these depend on
a parameter z. We fix a vector z = (z1, . . . , zr) of complex numbers, and
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let zσ = (zr, . . . , z1). For SΓ
zσ,λ, we use the parameter values (reading the

rows from top to bottom) z = zr, . . . , z1, and in SΔ
z,λ we use z = z1, . . . , zr.

The use of zσ in SΓ
zσ,λ codifies the fact that the order of the parameters is

reversed between the two systems.

Theorem A.1. The partition functions Z(SΓ
zσ,λ) and Z(SΔ

z,λ) are equal.

This is equivalent to the main theorem of [14]. The proof here, using the
Yang-Baxter equation is much simpler than the intricate proof in [14].

It was shown in [10] how to write values of Whittaker functions on the
metaplectic n-cover of GL(r, F ) as partition functions of two models with
different Boltzmann weights [10]. (These models differed slightly from the
models that we will use, a point explained in Section 2.) Two problems
were proposed in [10] that seemed amenable to proof by the Yang-Baxter
equation.

Problem 1. Prove, for any choice of dominant weight λ, functional equations
for this pair of partition functions corresponding to the Weyl group action
on the spectral (Langlands) parameters zi.

Problem 2. Prove, for any choice of dominant weight λ, that the two parti-
tion functions, “Gamma ice” and “Delta ice”, are equal (without using the
fact that the models represent metaplectic Whittaker functions).

Our Theorem 1.1 may be regarded as an answer to Problem 1. Problem 2
is solved by Theorem A.1.

Regarding Problem 2, in [14], the equivalence of Gamma and Delta ice
was used to prove the analytic continuation and functional equations of
certain multiple Dirichlet series, but its significance goes beyond this appli-
cation. The phenomenon that two systems can have the same (or closely
related) partition functions occurs frequently in physics. Thus Kramers-
Wannier [34] duality relates the partition functions of the low- and high-
temperature Ising models. Or in the dualities of string theory, different the-
ories may represent the same universe, and this is reflected in the equality of
their partition functions. See for example [4], or for a specific case [26] (6.31).
We believe the relationship between Gamma and Delta ice is analogous to
such dualities.

A.1. Reduction of the main theorem to two layers of ice

In order to reduce the theorem to a simpler statement, we define a two
systems of two-row ice. A partition λ = (λ1, . . . , λk) is called strict if it has
no repeated parts, so λ1 > λ2 > · · · > λk. Let λ = (λ1, . . . , λk) and μ =
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RΔ
zi RΔ

zi RΔ
zi RΔ

zi RΔ
zi RΔ

zi

RΓ
zj RΓ

zj RΓ
zj RΓ

zj RΓ
zj RΓ

zj

+ − + − − +

+ −

+ −

+ − + + + +

012345

Figure A.2: SΓΔ
z,λ,μ-ice for λ = (2, 1, 1) and μ = (4).

(μ1, . . . , μk−2) be strict partitions and let z = (zi, zj) ∈ (C×)2. We denote
by SΓΔ

zj ,zi,λ,μ
the system of metaplectic ice with the following properties:

• the grid consists of 2 rows and N columns;
• the left and right boundary edges have spins + and −, respectively;
the top and bottom boundary edges have spins − at the columns
corresponding to parts of λ and μ, respectively;

• the top row vertices have weights RΓ
zj and the bottom row vertices

have weights RΔ
zi .

See Figure A.2 for an example of such a system SΓΔ
zj ,zi,λ,μ

. We denote by

SΔΓ
zi,zj ,λ,μ

the system of metaplectic ice with the above conditions, but now
with top row Δ and parameter zi and bottom row Γ with parameter zj . The
boundary condition we impose is still charge 0 for left boundary edges in a
Δ row and right boundary edges in a Γ row.

Theorem A.2. Given strict partitions λ and μ and z = (zi, zj) ∈ (C×)2 as
above, Z(SΓΔ

zj ,zi,λ,μ
) = Z(SΔΓ

zi,zj ,λ,μ
).

We delay the proof until Section A.2 where we introduce our main tool,
the Yang-Baxter equation. This theorem is equivalent to Statement B in
[14]; for details see Theorem 5 of [10]. We now prove Theorem A.1 assuming
Theorem A.2.

Proof of Theorem A.1 assuming Theorem A.2. Let us consider, in addition
to the system SΓ

z,λ, a system with identical boundary conditions, except
that all rows but the last are Γ-ice, but the bottom row has been changed
to Δ-ice. We will call this system S′. We will argue that there is a bijection
between the admissible states of SΓ

z,λ and those of S′ in which corresponding
states have the same Boltzmann weight, so the two systems have the same
partition function.
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To see this recall that along the bottom boundary of Γ-ice, all the (ver-
tical) edges have been assigned spin +. It is easy to see that in the row
above this, there must be exactly one vertical edge with spin −, and all the
other vertical edges will have spin +. Regarding the horizontal edges in this
bottom row, those to the left of the unique − vertical edge must have spin
+, and those to the right must have spin −. Thus the bottom row looks like
this:

+ + + + + +

+ + + − + +

+ + + + − − −RX
z RX

z RX
z RX

z RX
z RX

z

Now, there is a unique way of assigning charges to the horizontal edges here
to an admissible state of either Γ-ice or Δ-ice. Moreover, examining the
Boltzmann weights of Γ-ice and Δ-ice in Figure A.1, we notice that only the
vertices of type a1, b2, and c2 have bottom edge with spin +, and for all
these configurations the weight of the vertex of type Γ is the same as the
weight of the vertex of type Δ. Moreover, choosing the charges in the unique
way that makes the state admissible, the Boltzmann weight is zNr , where N
is the number of b2 vertices in the row. The contribution to the partition
functions for S′ and SΓ

z,λ are the same, and so these partition functions are
equal.

We see that we may change the bottom row from Γ-ice to Δ-ice without
changing the partition function. This would not work for any other row.

The second step uses Theorem A.2 repeatedly. Since we have changed
the bottom row from Γ-ice to Δ-ice, Theorem A.2 allows us to interchange
the bottom two rows and move the Δ row one step up. By doing this process
repeatedly we move the Δ row with parameter zr to the top of the system
without changing the partition function.

Now the layer of Γ-ice with the zr−1 parameter is at the bottom, and as
before we may change it to Δ-ice without affecting the partition function.
Then we again move this row of Δ-ice up using Theorem A.2 until it reaches
the second row. We continue the process until all rows become Δ-ice. The
final model will be the system SΔ

zσ,λ.

A.2. The Yang-Baxter equation

In this section we prove Theorem A.2 by a classical argument involving the
Yang-Baxter equation which was initially used by Baxter [2] to solve the
(classical, field-free) six- and eight-vertex models. In order to explain our
version of the Yang-Baxter equation, we first introduce another family of
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vertices, which we’ll refer to as tilted vertices, whose adjacent edges are all
horizontal edges of our prior models. Thus each adjacent edge is assigned a
charge and a spin. They are depicted in the partition functions in (A.1).

Each tilted vertex is now assigned a set of Boltzmann weights RXY
z1,z2

depending on a pair of types X, Y ∈ {Γ,Δ} and a corresponding pair
of parameters z1, z2 ∈ C×. The X type is associated to the northeast and
southwest adjacent edges in the tilted vertex (with associated parameter z1),
while the Y type is associated to the northwest and southeast adjacent edges
with parameter z2. Thus the order in which these types and parameters are
listed matters. We assign Boltzmann weights to each of the four types of
tilted vertex according to Table A.1. As noted previously, any labeling of
adjacent edges that is not listed has Boltzmann weight 0.

One can now combine such tilted vertices with vertices of type RX
z1 and

RY
z2 in the rectangular grid discussed in the previous section, in order to

create slightly more complicated systems consisting of three vertices.
The following result is the main tool we use to prove Theorem A.2.

Theorem A.3 ([6], [27]). For any X, Y ∈ {Γ,Δ}, let RX and RY weights
be as in Figure A.1 and RXY weights as in Table A.1. Then the two partition
functions of

(A.1)

σ
a

b
τ

β

c
θ

ρ
d

α

e
ν

μ
f

γRXY
zi,zj

RX
zj

RY
zi

σ
a

b
τ

β

c
θ

ρ
d

α

φ
g

h
ψ

δ RXY
zi,zj

RX
zj

RY
zi

are equal.

Proof. Having chosen the Boltzmann weights, the proof is computational.
Fix X, Y ∈ {Γ,Δ}. Fix boundary spins α, β, θ, ρ, σ, τ ∈ {+,−} as in
(A.1); there are 64 such cases. For each such choice, simply compute the
two partition functions for all possible charges (a, b, c, d) mod n, and show
that they are equal. The case of X = Y = Γ was proved in [6] and we
refer the reader to the Appendix of [27] where all the computations for the
remaining choices of X and Y are done in detail.

Using the Yang-Baxter equation we now prove Theorem A.2.

Proof of Theorem A.2. Given λ, μ, let SΓΔ
zj ,ziλ,μ

be the resulting two-row

system. Form a new system by attaching an RΔΓ
zi,zj -vertex to the right of
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SΓΔ
z,λ,μ, with the resulting right-hand boundary having both spins −, bottom

right charge 0, and top right charge arbitrary. Regardless of the choice of
top right charge, the only admissible choice for the vertex RΓΔ

zi,zj has left
spins both − and Boltzmann weight znj − vnzni according to the second
column in Table A.1. Therefore the partition function of the new system is
(znj −vnzni )Z(SΓΔ

zj ,zi,λ,μ
). Now apply what Faddeev calls the “train argument”

Table A.1: The Boltzmann weights for ΓΔ, ΔΔ, ΔΓ, and ΓΓ vertices. For
ΔΔ and ΓΓ, a �= b for each tilted vertex whose charges involve only a and
b. For the last two vertices in the top row of ΓΔ, a �= b. The function g
satisfies g(0) = −v and g(n− a)g(a) = v if a �≡ 0 mod n

ΓΔ
+

+ +

+
a

0 a

0

RΓΔ
zi,zj

−

− −

−
0

a 0

a

RΓΔ
zi,zj

+

− +

−
a

a a

a

RΓΔ
zi,zj

+

− +

−
a

b a

b

RΓΔ
zi,zj

+

− +

−
a

b a

b

RΓΔ
zi,zj

zn
j −vzn

i zn
j −vzn

i (∗) v2zn
i −zn

j (†) (‡)

+

− +

−
a

b c

d

RΓΔ
zi,zj

−

+ −

+
0

0 0

0

RΓΔ
zi,zj

−

+ +

−
0

0 a

b

RΓΔ
zi,zj

+

− −

+
b

a 0

0

RΓΔ
zi,zj

(§) zn
j −zn

i (1−v)za
j z

b−1
i (‖) (1−v)za−1

j zb
i (‖)

ΔΔ
+

+ +

+
0

0 0

0

RΔΔ
zi,zj

−

− −

−
a

b b

a

RΔΔ
zi,zj

−

− −

−
a

b a

b

RΔΔ
zi,zj

−

− −

−
a

a a

a

RΔΔ
zi,zj

+

− +

−
0

a 0

a

RΔΔ
zi,zj

zn
j −vzn

i (1−v)zn−c
j zc

i (#) g(a−b)(zn
j −zn

i ) zn
i −vzn

j v(zn
j −zn

i )

−

+ +

−
a

0 0

a

RΔΔ
zi,zj

−

+ −

+
a

0 a

0

RΔΔ
zi,zj

+

− −

+
0

a a

0

RΔΔ
zi,zj

(1−v)zn−a+1
j za−1

i (∗∗) zn
j −zn

i (1−v)za−1
j zn−a+1

i (∗∗)

ΔΓ
+

+ +

+
0

a 0

a

RΔΓ
zi,zj

−

− −

−
a

0 a

0

RΔΓ
zi,zj

+

− +

−
0

0 0

0

RΔΓ
zi,zj

−

+ −

+
a

b a

b

RΔΓ
zi,zj

−

+ −

+
a

b a

b

RΔΓ
zi,zj

zn
i −vnzn

j zn
i −vnzn

j zn
i −vn+1zn

j vn−1zn
j −zn

i (†) (††)

−

+ +

−
b

a 0

0

RΔΓ
zi,zj

−

+ −

+
a

b c

d

RΔΓ
zi,zj

+

− −

+
0

0 a

b

RΔΓ
zi,zj

(1−v)va−1za
j z

b−1
i (‖) (‡‡) (1−v)va−1za−1

j zb
i (‖)
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Table A.1: Continued

ΓΓ
+

+ +

+
a

a a

a

RΓΓ
zi,zj

+

+ +

+
b

a b

a

RΓΓ
zi,zj

+

+ +

+
b

a a

b

RΓΓ
zi,zj

−

− −

−
0

0 0

0

RΓΓ
zi,zj

+

− +

−
a

0 a

0

RΓΓ
zi,zj

zn
i −vzn

j g(a−b)(zn
j −zn

i ) (1−v)zc
jz

n−c
i (#) zn

j −vzn
i v(zn

j −zn
i )

−

+ −

+
0

a 0

a

RΓΓ
zi,zj

−

+ +

−
0

a a

0

RΓΓ
zi,zj

+

− −

+
a

0 0

a

RΓΓ
zi,zj

zn
j −zn

i (1−v)za
j z

n−a
i (∗∗) (1−v)zn−a

j za
i (∗∗)

* Weight: v2zn
i −zn

j if 2a ≡ 1 (n); else,

g(2a−1)(zn
j −vzn

i ).
† Here a+b ≡ 1 (n).
‡ Here a+b �≡ 1 (n). Weight: g(a+b−1)(zn

j −vzn
i ).

§ Here a+b ≡ c+d ≡ 1 (n), a �≡ c (n). Let e ≡
a−c (n) with e ∈ [0, n−1]. Weight: (v−1)zn−e

j ze
i

if ad = 0 or if both abcd �= 0 and a > c;

v(v−1)zn−e
j ze

i if bc = 0 or if both abcd �= 0 and

a < c.

‖ Here a+b ≡ 1 (n). Take a, b ∈ [1, n].
#Here c ≡ a−b (n) with c ∈ [1, n−1].
** Take a ∈ [1, n].
†† Here a+b �≡ 1 (n). Weight: (zn

i − vnzn
j )/

g(a + b − 1).
‡‡ Here a+b ≡ c+d ≡ 1 (n), a �≡ c (n).

Let e ≡ c−a (n) with e ∈ [1, n−1]. Weight:

(1−v)ve−1ze
j z

n−e
i .

(cf. [2, 22], or [12] for depictions closely related to the present context)
repeatedly applying the Yang-Baxter equation to move the tilted R-vertex
from right to left, leaving the partition function unchanged. Once the tilted
R-vertex has moved all the way to the left, it must have spins which are
all + and, according to the first column of Table A.1, has weight znj −
vnzni , independent of the relevant charges. We conclude that the identity of
partition functions in the theorem holds when znj −vnzni �= 0. If znj −vnzni = 0,
the result remains true by an easy continuity argument.
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