
Communications in

Number Theory and Physics

Volume 13, Number 1, 225–251, 2019

Fermions on replica geometries and the
Θ - θ relation

Sunil Mukhi and Sameer Murthy

In arXiv:1706.09426 we conjectured and provided evidence for an
identity between Siegel Θ-constants for special Riemann surfaces
of genus n and products of Jacobi θ-functions. This arises by com-
paring two different ways of computing the nth Rényi entropy of
free fermions at finite temperature. Here we show that for n =
2 the identity is a consequence of an old result due to Fay for
doubly branched Riemann surfaces. For n > 2 we provide a de-
tailed matching of certain zeros on both sides of the identity. This
amounts to an elementary proof of the identity for n = 2, while for
n ≥ 3 it gives new evidence for it. We explain why the existence of
additional zeros renders the general proof difficult.
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1. Introduction

The computation of Rényi entanglement entropies for quantum field theories
is commonly performed using the replica trick in the path integral formalism.
This requires us to change the underlying space on which the field theory
is defined to a “replica space” which contains n copies of the original one
glued together in a certain way. This approach has been successfully applied
to the computation of the Rényi entropy for a single interval in arbitrary
2d conformal field theories as long as either the temperature is zero (non-
compact Euclidean time direction) or the space is infinite (non-compact
spatial direction), or both. The answer is a universal expression that does
not depend on any details of the CFT other than the central charge. The
replica trick has also been applied to the computation of multi-interval Rényi
entropies [1, 2, 3], to entanglement negativity [4, 5], and to single-interval
Rényi entropy on a finite space at finite temperature [6, 7, 8, 9]. In these
cases, the result is not universal and depends on details of the CFT beyond
the central charge.

Typically the difference between the cases that give universal answers
and those that do not is the nature of the Riemann surface involved. For the
simplest case of a single interval on a plane, one can uniformise the replica
surface back to the original one, whereupon the computation is relatively
simple. The same is true for a single interval on a cylinder (which can be
mapped to a punctured plane and one proceeds from there). In these cases,
the computation boils down to a product of two-point functions of twist
fields, which on the plane are completely determined by their conformal
dimensions. These dimensions in turn are given by the uniformising map.
However when we have finite temperature and interval size, the space is a
torus and the replica space is a genus-n surface. Similarly when we have n >
1 cuts on a plane, the replica space has genus n−1 > 0. These spaces cannot
be uniformised back to the original one. For free field theories, however, one
can still attempt to use twist fields. When the original space is a torus with
one cut, one needs their two-point functions on a torus. When the original
space is a plane with multiple cuts, one needs their higher-point correlation
functions. These objects are generally computable in free boson and fermion
theories.
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In particular, the Rényi entropy at finite size and temperature has been
computed in [6, 7, 9]. For bosons, the result in [9] is consistent and passes all
reasonable tests including the thermal entropy relation and modular invari-
ance. However, as originally pointed out in [10], the free fermion result of [6]
does not simultaneously pass both these tests. If one chooses to restrict to
a single fermion spin structure then the answer obeys the thermal entropy
relation but is not modular invariant. On the other hand, if one chooses
to sum over spin structures then the answer is modular invariant but does
not obey the thermal entropy relation. This puzzle was addressed in [11]
where it was first argued that the twist-field computation of [6], for a fixed
spin structure, is equivalent to computing the higher-genus partition func-
tion of free fermions for a “diagonal” spin structure on a genus-n Riemann
surface. This is what one would expect, but it implies a very non-trivial
identity between genus-n Siegel Θ-constants on replica surfaces and genus-1
θ-functions, which we call the Θ - θ relation. A precise statement of this iden-
tity and considerable evidence for it were provided in [11]. The resolution of
the puzzle is then as follows: the modular-invariant higher-genus partition
function for free fermions requires a sum over all 2n−1(2n + 1) even spin
structures on the genus-n surface, including the non-diagonal ones. How-
ever no twist-field computation is known that reproduces the non-diagonal
spin structures. Therefore, though the twist-field computation is correct for
diagonal spin structures, it is inadequate to find the contribution of non-
diagonal ones. As a result, the only correct way to compute free fermion
Rényi entropies at finite size and temperature is to use the higher-genus
approach.

The above resolution left three interesting questions open. To explain
these, let us first set up the problem. We have a free fermion CFT on a spatial
region of size L and at a finite temperature T = β−1. By standard methods
the corresponding path integral is defined on a torus whose horizontal axis
is unity and the ratio τ = β

L , after complexification, describes the other
axis of the torus. The entanglement of interest is between the interior of
a straight line segment between the points z1 and z2 on this torus, whose
separation is denoted z12 = z2−z1 and allowed to be complex. Computations
of Rényi entropy depend only on the two complex parameters τ, z12. Now,
one of the open problems was whether a rigorous proof can be found for
the conjectured identity (Equation (2.24) of [11]) between a higher-genus
Siegel Θ-constant for a diagonal spin structure, evaluated on a special replica
surface, and a product of genus-1 θ-functions with the same spin structure.
Another was whether the twist field prescription can be modified in some
way to compute the contribution of non-diagonal spin structures. A third
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question, only briefly addressed in [11], concerns the periodicity of the Rényi
entropy contribution for a fixed diagonal spin structure. These contributions
to the Rényi entropy do not have periodicity in the interval length of the
original torus (z12 → z12 + 1, z12 + τ) but rather, are invariant under n-fold
shifts for odd n and 2n-fold shifts for even n. A related point is that these
contributions have zeros for values of z12 that lie outside the original torus
but inside the larger fundamental region for the n-fold/2n-fold shifts.

In this note, we address all three points above. After a brief review of the
results of [11], we argue that the twist-field prescription cannot be used for
non-diagonal spin structures, for the simple reason that replica symmetry
does not hold in this situation. Next we provide a rigorous proof of the
conjectured identity of [11] for the case n = 2 (corresponding to the second
Rényi). In fact this identity is equivalent to a mathematical result of Fay
[12] on doubly-branched covers, for which we also provide an elementary
proof which relies on information about the zeros of the θ-functions that
appear in the identity. For n > 2 the corresponding identity does not seem
to be known in the mathematics literature. We analyse in some detail the
pattern of zeros for the twist-field calculation at n > 2, which is significantly
different from that at n = 2, and use it to propose some directions in which
a rigorous proof for n > 2 might be found. We are able to match some of
the zeros on the two sides, but for other zeros of the right-hand side we are
unable to compute the left-hand side and verify whether it vanishes. Finally
we discuss some interesting open questions to which these techniques could
be applied.

The plan of the paper is as follows. In Section 2 we start by reviewing
the conjecture of [11] for what we call “diagonal” spin structures, and then
go on to argue that analogous relations do not exist for non-diagonal spin
structures. In Section 3 we give a proof of the Θ - θ identity for n = 2 using
a result of Fay. In Section 4 we discuss the periodicity relations and zeros
of the two sides of the identity, leading to additional evidence for it. This
includes an elementary proof of the conjecture for n = 2. We conclude in
Section 5 with remarks on the geometric interpretation of our identity.

2. Rényi entropy computations and the conjectured Θ − θ
relation

Given a reduced density matrix ρA obtained by tracing out the degrees of
freedom outside the entangling interval, the nth Rényi entropy is defined as:

(2.1) Sn(z12, τ) =
1

1− n
log tr ρnA
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It has been known for some time that this can be computed in terms of a

“replica partition function” on a genus-n Riemann surface:

(2.2) Sn = logZ(n)

For free fermions/bosons, the partition function on generic Riemann surfaces

is known, so in principle one just needs to specialise the answer to the replica

surface.

In particular, the partition function of a modular-invariant free Majo-

rana fermion theory on a compact Riemann surface of genus n is [13, 14]:

(2.3) Z
(n)
higher-genus

[
�α
�β

]
(Ω) =

1

2n
|C|

∑
�α,β

∣∣∣∣Θ[
�α
�β

]
(0|Ω)

∣∣∣∣ ,
where Θ is the genus-n Siegel theta-function with characteristics �α, �β:

(2.4) Θ

[
�α
�β

]
(0|Ω) =

∑
mi∈Z+αi

exp
(
πi

2∑
i,j=1

miΩij mj + 2πi

2∑
i=1

mi βi

)
.

In Equation (2.3), the quantity C is a factor related to the determinant of

an anti-holomorphic differential operator on the surface (see for example

Eq.(5.13) of [13]).

If we wish to compute Equation (2.3) on a replica surface, we must insert

the appropriate period matrix Ω for this surface. This is defined in terms of

a set of n cut differentials:

(2.5) ωk(z, z12, τ) :=
θ1(z|τ)

θ1

(
z + k

nz12

∣∣∣τ)1− k

n

θ1

(
z − (1− k

n)z12

∣∣∣τ) k

n

,

with k = 0, 1, · · · , n − 11. From these differentials we construct a set of n

quantities:

(2.6) Ck(z12, τ) :=

∫ τ
0 ωk(z, z12, τ) dz∫ 1
0 ωk(z, z12, τ) dz

,

1For the odd Jacobi theta function we will often use the standard nota-

tion θ1(z|τ) = −θ

[ 1
2
1
2

]
(z|τ) to reduce clutter in our formulae.
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and the period matrix Ω is then given by:

(2.7) Ωab(z12, τ) =

n−1∑
k=0

e
2πi(a−b)k

n Ck(z12, τ) .

More details, including original references, can be found in [11].
The sum over characteristics in the above equation is a sum over fermion

boundary conditions over closed cycles, or spin structures. Thus we can write
�α = (α1, · · · , αn) and �β = (β1, · · · , βn) where each αi, βj independently
takes values 0 or 1

2 . The value 0 indicates an anti-periodic fermion boundary
condition around the A-cycle (for αi) or the B-cycle (for βi), while the value
1
2 indicates a periodic boundary condition around the same cycle. Diagonal
spin structures are those of the form (α, · · · , α) and (β, · · · , β) and will
be denoted by �αdiag and �βdiag in what follows. It is only for diagonal spin
structures that the fermion has the same boundary condition around every
A-cycle, and similarly for the B-cycles. Notice that in the 3n − 3 complex-
dimensional parameter space of compact genus-n surfaces for n ≥ 2, this set
of period matrices is a subfamily of dimension 2.

2.1. Twist fields and the conjecture

Restricting to replica surfaces, it is possible to write a more explicit form
for the replica partition function in which the spin-structure-independent
prefactor C is made precise. The result, as derived in [11], is:

Z
(n)
higher-genus =

∣∣∣∣ θ′1(0|τ)
θ1(z12|τ)

∣∣∣∣ 1

12
(n− 1

n
) 1

|η(τ)|n

∑
�α,�β

∣∣∣Θ[
�α
�β

]
(0|Ω)

∣∣∣√∏n−1
k=1

∫ 1
0 ωk(z, z12, τ) dz

.

(2.8)

The twist-field computation of a replica partition function attempts to
reproduce the same result by computing a correlation function on the orig-
inal torus. As discussed in [10, 11], this has been only partially successful
for free fermions. Indeed, this method was initially applied to compute the
contribution to the replica partition function for a fixed spin structure (α, β)
on the original torus, and yielded the result [6]:

(2.9) Z
(n)
twist-field =

∣∣∣∣ θ′1(0|τ)
θ1(z12|τ)

∣∣∣∣ 1

12
(n− 1

n
)

n−1

2∏
k=−n−1

2

∣∣∣∣θ[αβ
](

k
nz12

∣∣∣τ)∣∣∣∣
|η(τ)| ,
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This is supposed to represent an alternate approach to the computation of

the free-fermion Rényi entropy. But as it stands, this depends on a pair

(α, β) specifying torus spin structures, and cannot be compared with Equa-

tion (2.8) where 22n spin structures have been summed over. What we should

do is to compare the twist-field result in Equation (2.9) with the contribu-

tion to Equation (2.8) from a fixed, diagonal spin-structure (�αdiag, �βdiag) as

defined above. A sufficient condition for these two to agree is the following

non-trivial mathematical identity between higher-genus Θ-constants (eval-

uated on the period matrix of the replica surface) and genus-1 θ-functions,

which was conjectured in [11]:

(2.10) χg(τ, z12;α, β) = χt(τ, z12;α, β) ,

with

χg(τ, z12;α, β) =

Θ

[
�αdiag

�βdiag

]
(0|Ω)√∏n−1

k=1

∫ 1
0 ωk(z, z12, τ) dz

,(2.11)

χt(τ, z12;α, β) =

n−1

2∏
k=−n−1

2

θ

[
α
β

](
k

n
z12

∣∣∣τ) .(2.12)

We will refer to Equation (2.10) as the Θ - θ identity. The above conjecture

is slightly stronger than what is required for the partition functions coming

from Equation (2.8) and Equation (2.9) to be equal, in that it equates holo-

morphic functions of (z12, τ). Several pieces of evidence were provided for

this identity in [11]. In particular it was shown that both sides transform in

the same way (as weak Jacobi forms) under modular transformations of the

torus, and that they have the same periodicities in the variable z12. These

results will be useful in the following.

It is evident that restricting the sum in Equation (2.3) to diagonal spin

structures does not lead to an answer that is invariant under modular trans-

formations. An easy way to see this is that such a sum contains just four

terms corresponding to (α, β) = (0, 0), (0, 12 ), (
1
2 , 0), (

1
2 ,

1
2 ), but a generic

global diffeomorphism of a genus-n Riemann surface—such as cutting, twist-

ing and re-joining a single handle—will change the boundary conditions to

correspond to a non-diagonal spin structure. We have seen that if our con-

jecture is true then twist fields can reproduce the higher-genus result for
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diagonal spin structures, but this motivates us to ask what is the situa-
tion for non-diagonal spin structures and whether there is a corresponding
identity for them.

2.2. Non-diagonal spin structures

We have seen that the spin-structure-dependent part of the partition func-
tion of a higher-genus Riemann surface is given (for Majorana fermions) by
a sum:

(2.13)
∑
�α,�β

∣∣∣∣Θ[
�α
�β

]
(0|Ω)

∣∣∣∣
where Ω is the period matrix of the Riemann surface, which is a complicated
function of (τ, z12). Our conjecture implies that twist fields can reproduce the
above quantity in the case where the higher-genus spin structure is diagonal,
of the form �αdiag, �βdiag. One is therefore naturally led to ask whether some
modification of these twist fields can be employed to reproduce non-diagonal
spin structures of the higher-genus surface.

Unfortunately, as we now argue, this is not possible. The replica method
works due to the Zn replica symmetry, but this symmetry is broken precisely
by the boundary conditions that correspond to non-diagonal spin structures.
To be more precise, on the higher-genus surface one can still define operators
σ located at the end-points of the entangling interval that take the physical
fields from one replica to the next:

(2.14) σ(z)ψj(w) ∼ ψj+1(w)

where ψj , j = 1, · · · , n is the free fermion associated to the ith replica.
However the replica method really becomes useful when one takes linear
combinations of the replicated physical fields and reduces the genus-n prob-
lem to a problem in genus-1 with multiple fields, each acquiring a different
phase upon encircling the end-points of the cut:

(2.15) ψ̃k =

n∑
j=1

e2πijk/nψj , σ(z)ψ̃k(w) ∼ e2πik/nψ̃k(w)

It is evident that if all the ψi do not have the same boundary condition
around the corresponding cycle of the replica surface, then the ψ̃k do not
simply pick up an overall phase when acted on by the twist field. Instead they
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are mixed by the monodromies. In short, the “diagonalising” process fails

with non-diagonal spin structures, and one cannot convert replica fermions

on a genus-n surface into free fermions on a single torus. An inevitable con-

clusion is that the Rényi entropy for modular-invariant free fermion systems

cannot be computed using the twist-field method.

3. Second Rényi entropy: a proof of the identity

In this section we focus on the second Rényi entropy, i.e. the case when the

replica surface has genus n = 2. This surface is a doubly branched cover of

the torus. Such covers have been studied quite intensively and we will see

that useful formulae exist in the mathematical literature which enable us to

prove the Θ - θ identity in this case.

We start by specialising the notation of Section 2 to the case of genus 2.

One easily sees that the cut differentials in this case are

(3.1) ω1(z, z12, τ) =
θ1(z|τ)√

θ1

(
z + 1

2 z12

∣∣∣τ)θ1(z − 1
2 z12

∣∣∣τ) ,

and that the period matrix is

Ω =
1

2

(
τ + C1 τ − C1

τ − C1 τ + C1

)
,

C1(z12, τ) =

∫ τ
0 ω1(z, z12, τ) dz∫ 1
0 ω1(z, z12, τ) dz

.

(3.2)

Our conjectured identity Equation (2.10) becomes, in this case,

(3.3)

Θ

[
α α
β β

]
(0|Ω)√∫ 1

0 ω1(z, z12, τ) dz
= θ

[
α
β

](z12
4

∣∣∣τ) θ

[
α
β

](
−z12

4

∣∣∣τ) ,

In [11] we showed that both sides have the same periodicity under shifts

z12 → z12 + 4, and provided additional evidence by expanding both sides in

powers of z12. In this section we prove Equation (3.3) using an old result due

to Fay [12]. To start with, let us review some basic features of ramified double

coverings. The idea is to describe the simplest class of Riemann surfaces
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Ĉ with non-trivial automorphism group Aut(Ĉ) and a ramified projection
mapping:

(3.4) Ĉ → Ĉ/Aut(Ĉ)

This class consists of Riemann surfaces admitting a conformal involution
with fixed points.

Although the theory applies to such Riemann surfaces of any genus, we
will specialise it to the case where the covering space has genus ĝ = 2 and
the base has genus g = 1. Thus, let π : Ĉ → C be a ramified double covering
of genus 2 of a torus with 2 branch points at Q1, Q2. Let φ : Ĉ → Ĉ be
the conformal automorphism that exchanges the two tori in the covering
surface, with fixed points at Q1, Q2. A canonical homology basis is then:

(3.5) A1 , B1 , A
′
1 , B

′
1 ,

where A1, B1 is a canonical homology basis for the torus C, and

(3.6) A′
1 = −φ(A1) , B′

1 = −φ(B1)

Correspondingly there are normalised holomorphic differentials u1, u
′
1 where

(3.7) u′1(x
′) = −u1(x) ,

and x′ = φ(x) is the conjugate point of x ∈ Ĉ under the automorphism.
An alternate basis for the holomorphic differentials is given by

(3.8) v1 = u1 − u′1 , w1 = u1 + u′1 .

Notice that

(3.9) v1(x) = u1(x)− u′1(x) = u1(x) + u1(φ(x)) ,

where we have used φ−1 = φ, i.e. φ is of order 2. Clearly v1(φ(x)) = v1(x).
Thus v1 is invariant under the automorphism, and is identified as the (nor-
malised) holomorphic differential on the torus C. On the other hand,

(3.10) w1(x) = u1(x) + u′1(x) = u1(x)− u1(φ(x))

is odd under the automorphism.
The above construction has an interesting geometric interpretation. To

every Riemann surface C of genus g ≥ 1, one can associate the Jacobian
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variety J(C) := Cg/(ZΩg +Z1g). The map is given as follows: one chooses
an arbitrary point P0 ∈ C, and a point P ∈ C is then mapped to the
point

∫ P
P0

ζj , j = 1, · · · , g in J(C), where ζj are the g holomorphic one-
forms on the Riemann surface. (This map is well-defined because two paths
between the two points always differ by a linear combination of cycles on the
surface, which map to the identity in the quotient that defines J .) Now, the
map π : Ĉ → C can be lifted in a canonical manner to a map ψ : J(Ĉ) →
J(C). The map ψ is actually a homomorphism, and its kernel itself is an
abelian variety, known as the Prym variety.

In our problem above the Prym variety is a one (complex)-dimensional
torus and the holomorphic differential w1, called the Prym differential on Ĉ,
is the (normalised) holomorphic differential on this torus. In [12] the mod-
ular parameters for Ĉ, C and the Prym variety are denoted τ̂ , τ , and Π
respectively. In this notation, one has the following expressions for these
parameters:

(3.11) τ ≡
∫
B1

v1 , Π ≡
∫
B1

w1 ,

and

(3.12) τ̂ =
1

2

⎛⎝∫
B1

u1
∫
B1

u′1∫
B′

1
u1

∫
B′

1
u′1

⎞⎠ .

Notice that τ is odd and Π is even under the automorphism φ. This follows
from:

(3.13) φ(B1) = −B′
1 , φ∗(v1) = v1 , φ∗(w1) = −w1 ,

where φ∗ is the induced map on the differentials. From the above definitions,
it immediately follows that

(3.14) τ̂ =
1

2

(
τ +Π −τ +Π
−τ +Π τ +Π

)
.

Let us now relate parameters in the notations of Fay and of the present
paper. In our notation τ, τ̂ are denoted τ,Ω, respectively. Further, we have:

(3.15) τ =

∫
B0

ω0∫
A0

ω0
=

∫
B0

ωnorm
0 ,
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where

(3.16) ωnorm
0 ≡ ω0∫

A0
ω0

.

(These equations are trivial since in practice ωnorm
0 = ω0 = 1, still they are

useful in making the correct geometric identification.) Thus we identify

(3.17) (A0, B0)us → (A1, B1)Fay ,

and

(3.18) (ωnorm
0 )us = (v1)Fay .

If we also identify

(3.19) (ωnorm
1 )us = (w1)Fay ,

then we have:

(3.20) Π =

∫
B1

w1 =

∫
B0us

ωnorm
1 =

∫
B0

ω1∫
A0

ω1
= C1 .

The minus sign in identifying the period matrices, noted above, appears

because of a difference in choice of φ between [12] and the present work.

The former has u′1 = −φ∗(u1) while we have implicitly chosen u′1 = φ∗(u1).
Similarly B′

1 = −φ(B1) in [12], while we took it as φ(B1)
2. This results in

the observed sign difference for the off-diagonal elements.

In this context, Proposition (5.10) of [12] relates the theta function with

modular parameter 2τ to a theta function with modular parameter 2C1:

(3.21) θ

[
α
β

]
(0|2C1) =

(
c
(1
2
(a+ b)

)
c(a)

) 1

2

e2πiαβ θ

[
α
β

](1
2
(b− a)|2τ

)
,

where c(x) is a holomorphic section of a line bundle on the genus 2 surface,

independent of the spin structure and a, b are the end-points of the branch

cut.

2This can be seen in [11] by the fact that B0, B1 represent the “same” cycle on
the two copies of the torus (i.e. they are mapped to each other by φ rather than
−φ).
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We can now return to our identity, (3.3), and manipulate the genus-
2 theta-function to bring it into a form where the above results can be
employed. For a period matrix of the form:

(3.22) Ω =
1

2

(
x+ y x− y
x− y x+ y

)
,

the theta function can be written as:

Θ

[
�α
�β

]
(0|Ω) =

∑
n1=m1+m2
n2=m1−m2

e
(1
4

(
n2
1 x+ n2

2 y
)
+

1

2

(
n1(β1 + β2) + n2(β1 − β2)

))
.

(3.23)

The constraints in the sum are solved by:

n1 = 2n′
1 , n

′
1 ∈ Z+

1

2
(α1 + α2) , n2 = 2n′

2 , n
′
2 ∈ Z+

1

2
(α1 − α2) ,

(3.24)

or n1 = 2n′
1 , n

′
1 ∈ Z+

1

2
(α1 + α2 + 1) ,

(3.25)

n2 = 2n′
2 , n

′
2 ∈ Z+

1

2
(α1 − α2 + 1) .

Writing the theta function in terms of these new variables we obtain:

Θ

[
�α
�β

]
(0|Ω) =

∑
γ=0, 1

2

∑
n′
1
∈Z+γ+(α1+α2)/2

n′
2
∈Z+γ+(α1−α2)/2

e
(1
2

(
n′2
1 2x+ n′2

2 2y
)(3.26)

+
(
n′
1(β1 + β2) + n′

2(β1 − β2)
))

,

=
∑

γ=0, 1
2

θ

[
γ + (α1 + α2)/2

β1 + β2

]
(0|2x) θ

[
γ + (α1 − α2)/2

β1 − β2

]
(0|2y) .

For diagonal spin structures, we have α1 = α2 = α and β1 = β2 = β, so that

Θ

[
�αdiag

�βdiag

]
(0|Ω) =

∑
γ=0, 1

2

θ

[
γ + α
2β

]
(0|2x) θ

[
γ
0

]
(0|2y) ,(3.27)
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=
∑

γ=0, 1
2

e4πi(γ+α)β θ

[
γ + α
0

]
(0|2x) θ

[
γ
0

]
(0|2y) .(3.28)

Applying this identity to our period matrix (3.2) we obtain:

(3.29) Θ

[
�αdiag

�βdiag

]
(0|Ω) =

∑
γ=0, 1

2

e4πi(γ+α)β θ

[
γ + α
0

]
(0|2τ) θ

[
γ
0

]
(0|2C1) .

Applying Equation (3.21) to the second theta-function on the right-hand
side, and defining (b− a) = z12, we reach the following result:

Θ

[
�αdiag

�βdiag

]
(0|Ω)(3.30)

= (−1)4αβk(τ, z12)
∑

γ=0, 1
2

e4πiβγ θ

[
γ + α
0

]
(0|2τ) θ

[
γ
0

](z12
2

∣∣∣2τ) ,

where the prefactor k(τ, z12) =
(
c
(
z12
2

)
c(0)

) 1

2 depends only on the original
torus and the cut length. Using the doubling identity for theta functions
([12], Equation 4), our result (3.30) becomes

Θ

[
�αdiag

�βdiag

]
(0|Ω) = (−1)4αβ k(τ, z12) θ

[
α
β

](z12
4

∣∣∣τ) θ

[
α
β

](z12
4

∣∣∣τ) ,(3.31)

= k(τ, z12) θ

[
α
β

](z12
4

∣∣∣τ) θ

[
α
β

](
−z12

4

∣∣∣τ) .

Thus one reaches the non-trivial relation between the genus-2 Θ-constant
and the genus-1 θ-function. According to our conjecture, the prefactor k
should be equal to the denominator in the definition (2.11) of the higher-
genus expression χg, which was interpreted in [11] as the determinant of
the anti-holomorphic operator ∂. A simple way to fix this is to look at the
modular transformation properties of both sides of our main equality and

notice that this determinant transforms exactly as the ratio Θ

[
�αdiag

�βdiag

]
(0|Ω)

/
θ

[
α
β

](
z12
4

∣∣∣τ)2
. This was shown in [11] and it thus proves the equality of our

main conjectured identity, up to an overall constant, which was also fixed
in [11] to be unity.

It is worth discussing the non-trivial relation (3.31) a bit more. The
essential point of the proof of this relation in Fay’s book is to show that
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the ratio of the higher-genus Θ-constant and a certain product of genus-

1 θ-functions (related to the right-hand side of (3.31)) is holomorphic as

a function of the location of the branch points. One can interpret this as

a statement about the vanishing of the genus-2 Θ-constant for the two-

dimensional sub-moduli-space of genus-2 surfaces described by our branched

coverings in the language of genus-1 θ-functions. In fact one can understand

this vanishing for genus-2 in a very simple manner, this will become evident

in the following section.

4. Zeros of the χt and χg, and their periodicity relations

In this section, we study the zeros of χt and χg and periodicity relations as

a function of the variable z12. In order to present a uniform treatment of the

proof for all n, it is convenient to define a new variable

(4.1) Z =

{
z12
2n n even ,
z12
n n odd .

In the first subsection below, we review the periodicity properties of χg

and χt under shifts of the variable Z. We then argue that, given the period-

icities, the knowledge of all the zeros of these functions would be sufficient

to prove the identity. We then examine a subset of the zeros that are easy

to identify. The details for even n and odd n turn out to be different, and

so we treat them separately. For n = 2 the zeros we are able to identify are

the only ones, which suffices to prove the identity in that case. In the follow-

ing, we will suppress the arguments corresponding to the spin structure α, β

whenever there is no ambiguity, in order to avoid clutter.

4.1. Periodicity relations

We start by recalling from [11] the periodicity properties of the functions

χg(τ, z12;α, β) and χt(τ, z12;α, β) under translations of the argument z12.

These are based on those of the θ-function with characteristics α, β ∈ (0, 12 )

[15]. For λ, μ ∈ Z, we have the following two useful equations:

Integer shifts by lattice vectors:

(4.2) θ

[
α
β

]
(z + μ+ λτ |τ) = e2πiαμ e−2πiβλe−iπλ2τe−2πiλz θ

[
α
β

]
(z|τ) ,
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Half-shifts:

θ

[
α
β

](
z + 1

2

∣∣τ) = e2πiα θ

[
α

β − 1
2

]
(z|τ) ,

θ

[
α
β

](
z + 1

2τ
∣∣τ) = e−iπ(z+β+ τ

4
) θ

[
α− 1

2
β

]
(z|τ) .

(4.3)

The periodicity relations of χt follow immediately, with some differences
between the case of even and odd n as we will now show.
Periodicity of χt for even n. The theta functions θ

(
k
nz12

∣∣τ) appearing
in the definition (2.12) have k ∈ Z + 1

2 . In terms of Z = z12
2n , these theta

functions are θ
(
2kZ

∣∣τ), so that the arguments of all the theta functions
in (2.12) shift by integer multiples of 1 and τ under shifts Z → Z + 1
and Z → Z+τ . Note that this is the smallest shift under which χt(τ, z, α, β)
is periodic, and it corresponds to a torus of sides (2n, 2nτ) in the variable z12.
Using (4.2) we obtain:

χt(z12 + 2n, τ ;α, β) = χt(z12, τ ;α, β) ,

χt(z12 + 2nτ, τ ;α, β) = e−iπ n(n2−1)

3
τe−iπ n2−1

3
z12χt(z12, τ ;α, β) .

(4.4)

There is also a periodicity relation obeyed by χt(τ, z, α, β) under half-integer
shifts of the argument Z, i.e. Z → Z + 1

2 and Z → Z + 1
2 τ . In this case the

spin structures change according to Equation (4.3). We find:

χt(z12 + n, τ ;α, β) = e2πi(α−
1

2
)χt(z12, τ ;α, β − 1

2) ,

χt(z12 + nτ, τ ;α, β) = e−
iπn

2
(τ+n(Z+ 1

4
))χt(z12, τ ;α− 1

2 , β) .
(4.5)

Periodicity of χt for odd n. The theta functions θ
(
k
nz12

∣∣τ) appearing
in (2.12) now have k ∈ Z, which implies that the periodicity relations in z12
change compared to the even case. In terms of the variable Z = z12

n , they
are θ

(
kZ

∣∣τ), so that indeed under the shifts Z → Z+1 and Z → Z+ τ , the
arguments of the theta functions again shift by integer multiples of 1 and τ .
Using (4.2) we have

χt(z12 + n, τ ;α, β) = χt(z12, τ ;α, β) ,

χt(z12 + nτ, τ ;α, β) = e−iπ n(n2−1)

12
τe−iπ n2−1

6
z12χt(z12, τ ;α, β) .

(4.6)

Unlike the even case, there is no good periodicity property for χt under the
half-integer shifts Z → Z + 1

2 and Z → Z + 1
2 τ , as the arguments of the

theta functions with odd k appearing in the definition (2.12) change spin
structure, while those with even k do not.
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Periodicity of χg. The periodicity relations for χg do not follow immedi-
ately from their definition, as the variable z12 enters the Θ-function through
the cut-differential ωk and consequently through the period matrix Ω (in-
stead of as an elliptic variable). In fact, there are two effects which need to
be kept track of. First, the definition of the A- and B-cycles changes under
the shifts of Z of the above type. Second, the period matrix itself changes
by a corresponding shift. These effects were studied in Appendix A.1 of [11]
and the conclusion was that the higher-genus partition function χg obeys
the same periodicity relations as those of χt for even n under both integer
and half-integer shifts of Z (with the same change of spin structure in the
latter case), and for odd n under integer shifts. This means equations (4.4),
(4.5), and (4.6) all hold if we replace χt by χg and α, β by �αdiag, �βdiag,
respectively.

4.2. Zeros of χg and χt for even n

The significance of the zeros of χg and χt as functions of Z is the following.
Since both functions have the same periodicity properties under shifts of Z
by integer multiples of 1 and τ , the ratio χg/χt is a well-defined function
on the torus C/(Zτ + Z). If we can show that χg and χt have the same
zeros and poles in Z, then the ratio χg/χt is a holomorphic function on the
torus, and therefore a constant (by Liouville’s theorem). In fact neither χg

nor χt has poles in Z, because theta functions are holomorphic in all their
variables and the periods in the denominator of (2.11) do not vanish. In
order to use the above argument, it is therefore enough to show that any
zero of χt is a zero of χg of at least the same order, so that the ratio χg/χt

would be a holomorphic function and hence constant. Once this is done, it
is straightforward to evaluate the constant.

Equation (4.5) shows that for even n the four different spin structures
that we consider are related to each other by half-integer shifts of Z. This
means it is enough to study the zeros for any one of the spin-structures. We
will see that (12 ,

1
2 ) is the most convenient choice.

We begin by recalling the zeros of χt(z12, τ). Rewriting the definition
(2.12) in the variable Z, we have:

(4.7) χt

(
τ, z12 = 2nZ; 12 ,

1
2

)
=

n−1

2∏
k=−n−1

2

θ1(2kZ|τ) .

This function has a zero whenever any of its factors does. In the fundamental
domain of Z, θ1(2kZ) has simple zeros at Z = 0 and Z = j

2k ,
j
2kτ , and
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j
2k (τ + 1) with j = 1, · · · , 2k − 1. The corresponding factor θ1(−2kZ) has
zeros at the same values. Thus the pattern of zeros of the entire expression
χt is rather complicated, since zeros from different factors can occur at the
same point. There are however two simple observations one can make: (i)
for n = 2, since k = ±1

2 , there are no additional zeros beyond the double
zero at the origin, (ii) for all other even n there is an nth order zero at the
origin, in addition to various other zeros in the fundamental domain of Z.

It is easy to calculate the coefficient of the nth-order zero at Z = 0,
around which the expansion is:

χt

(
z12 = 2nZ, τ ;

1

2
,
1

2

)
=

n−1

2∏
k=−n−1

2

k2
(
θ′1(0|τ)

)n
(2Z)n +O(Zn+1) ,

= (−1)
n

2

(
(n− 1)!!

)2 (
θ′1(0|τ)

)n
Zn +O(Zn+1) .

(4.8)

Now we turn to the higher genus expression χg. The Θ - θ identity re-
quires (and is implied by) the fact that all the zeros discussed above are also
zeros of χg. Unfortunately it seems difficult to show that most of these are
zeros of χg, but we can show it for the nth-order zero at Z = 0. For this,
recall the cut differential and express it in terms of Z:

ωk(u, Z) =
θ1(u)

θ1(u+ 2kZ)(1−
k

n
) θ1(u− 2(n− k)Z)

k

n

, k = 0, 1, · · · , n− 1 ,

(4.9)

where the τ -dependence has been suppressed to simplify the notation. Notice
that this is invariant under the simultaneous transformation k → n− k and
Z → −Z. We expand this to second order in Z and find:

(4.10) ωk(u, Z) = 1 + 2 k(k − n)
(
log θ1(u)

)′′
Z2 +O(Z3) .

The term of order Z vanishes. The next step is to compute the integrals:

A0k(Z, τ) :=

∫ 1

0
ωk du = 1 + 2 k(k − n)Z2

∫ 1

0

(
log θ1(u)

)′′
du+O(Z3) ,

(4.11)

= 1 +O(Z3) ,
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B0k(Z, τ) :=

∫ τ

0
ωk du = τ + 2 k(k − n)Z2

∫ τ

0

(
log θ1(u)

)′′
du+O(Z3) ,

= τ − i4πk(k − n)Z2 +O(Z3) .

Here we used the identities:(
log θ1

)′
(u+ 1) =

(
log θ1

)′
(u) ,(

log θ1
)′
(u+ τ) =

(
log θ1

)′
(u)− 2πi .

(4.12)

Defining Ĉk(Z, τ) through

(4.13)
B0k(Z, τ)

A0k(Z, τ)
= τ − iπ Ĉk(Z, τ) ,

it follows from (4.11) that:

(4.14) Ĉk(Z, τ) = 4 k(k − n)Z2 +O(Z3) .

This enables us to rewrite the matrix Ω as follows:

Ωab(Z, τ) =
1

n

n−1∑
k=0

cos

(
2π(a− b)k

n

)
B0k(Z, τ)

A0k(Z, τ)
,

= τδab −
iπ

n

n−1∑
k=0

Ĉk(Z, τ) cos

(
2π(a− b)k

n

)
.

(4.15)

We define the matrix:

(4.16)

gab(Z, τ) =
1

2n

n−1∑
k=0

Ĉk(Z, τ) cos

(
2π(a− b)k

n

)
, a, b = 1, · · · , n .

It is clear from this definition that gab depends only on the difference a− b.

Such a matrix is called a Toeplitz matrix. Now we can write:

(4.17) Ωab(Z, τ) = τδab − 2πi gab(Z, τ) .

The leading contribution to gab is at order Z
2:

(4.18) gab(Z, τ) = Z2fab +O(Z3) .
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where we have defined:

fab =
2

n

n−1∑
k=0

k(k − n) cos

(
2π(a− b)k

n

)
=

1

sin2 π(a−b)
n

.

(4.19)

Like gab, fab is also a Toeplitz matrix, and this point of view will become
useful in a moment.

Now rewrite the function Θ

[�1
2diag

�1
2diag

](
0
∣∣Ω(z12, τ)) using Equation (4.17):

Θ

[�1
2diag

�1
2diag

](
0
∣∣Ω(z12, τ))

=
∑

ma∈Z+ 1

2

exp
(
−2πi

n∑
a,b=1

iπgab(Z, τ)mamb

)
exp

n∑
c=1

(
iπτm2

c + πimc

)
,

=
∑

ma∈Z+ 1

2

exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

)

× exp

n∑
c=1

(
iπτm2

c + 2πimc(zc +
1
2)
) ∣∣∣∣∣

zc=0

,

= exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

) n∏
c=1

θ1(zc|τ)
∣∣∣∣∣
zc=0

.

(4.20)

What we have done is to introduce fictitious variables za and replace the
integers mamb multiplying gab by derivatives with respect to these variables,
which are set to zero at the end. This allows us to re-express the higher-
genus Θ as an infinite series of derivatives of Jacobi θ-functions, as in the
last line.

We can now expand the right-hand side as a power series in Z by ex-
panding the exponential in the last line of (4.20). Since θ1(z|τ) is an odd
function of z, this expression is zero unless an odd number of derivatives
hits each θ1(z|τ). This means that the first non-zero term in the expansion
of the exponential is the (n2 )

th order term, when there are n
2 pairs of (a, b)
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with a �= b from the derivatives and they are all different. Each such term
occurs n

2 ! times, cancelling the factor 1/n
2 ! from expanding the exponential

to this order. Recalling that gab(Z, τ) = O(Z2) for all a, b, this also means
that the smallest non-zero power (=n) of Z is given by this term. Thus we
obtain, using (4.18):

(4.21) Θ

[�1
2diag

�1
2diag

](
0
∣∣Ω(z12, τ)) = (−1)

n

2 ZnHf
(
fab

)(
θ′1(0|τ)

)n
+O(Zn+1) ,

where Hf indicates the “Hafnian” [16] of an even-dimensional matrix, defined
by:

(4.22) Hf(Mab) =
∑
σ∈Cn

n

2∏
i=1

Mσ(2i−1)σ(2i) .

where the sum is over the set Cn of canonical permutations in Sn, namely
those that satisfy σ(2i−1) < σ(2i) for every i and also σ(2i−1) < σ(2j−1)
for every i < j. For example, for a 4× 4 matrix we have:

(4.23) Hf(Mab) = M12M34 +M13M24 +M14M23 .

Note that this definition implies that the Hafnian only depends on the upper
triangular part of the matrix (excluding the diagonal).

Comparing with Equation (4.8), we see that the behaviour near Z = 0
is precisely the same for both χt(z12, τ ;α, β) and χg(z12, τ ;α, β) in the case
of the spin structure (α, β) = (12 ,

1
2 ), as long as the Hafnian of the Toeplitz

matrix fab obeys the combinatoric identity:

(4.24) Hf

(
1

sin2 π(a−b)
n

)
=

(
(n− 1)!!

)2
,

which we have verified numerically to several orders.

4.3. Elementary proof of the conjecture for n = 2

Using the result of the previous subsection, we can give an elementary proof
of the Θ - θ relation χg = χt of Equation (2.10) in the case n = 2, for each
of the four diagonal spin-structures α, β = 0, 12 .
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As we have seen, for the (12 ,
1
2 ) spin structure χt has a double zero

at Z = 0 and no other zeros in the fundamental domain. We have also

seen that χg has a double zero at Z = 0 with the same coefficient, thus

proving equality according to the argument above! We do not actually need

to establish the absence of additional zeros for χg: since it has the same

periodicity as χt and no poles, it necessarily must have the same number of

zeros. Finally we use the fact that for even n, one can use half-shifts to go

to the other spin structures. Thus the Θ - θ relation is proved at n = 2.

A crucial feature of this proof was that at n = 2 and for the spin struc-

ture (12 ,
1
2 ), χt has no additional zeros away from the origin (and likewise

for the other spin structures, χt has zeros only at a single point on the Z-

torus). For n > 2 there are additional zeros on the Z-torus and this is the

key reason why a complete proof is lacking in those cases.

4.4. Zeros of χg and χt for odd n

For odd n, the four different spin structures are not related to each other

by half-integer shifts of Z, in contrast to the case of even n. The above

methods can nevertheless be used to study the zeros of the (12 ,
1
2 ) spin-

structure. This problem, unfortunately, is a little degenerate because both

sides vanish identically in this case. The higher-genus expression vanishes

because the (�12diag,
�1
2diag

) spin structure is an odd spin structure for odd n,

and so the corresponding Θ-constant vanishes. The twist-field expression

vanishes because the product over k in (2.12) now runs over integers (in

contrast to half-integers in the even n case) and includes k = 0, so that one

of the factors is the odd Jacobi theta constant which is identically zero.

If we can divide both sides of the expression by this vanishing Jacobi

theta constant, then we can hope to make sense of the identity even for

the odd spin structure. In order to do so, we deform the spin structure by

a small amount (we recall that the characteristics of a theta function are

actually real-valued).3 The twist-field expression now becomes

(4.25) χt

(
τ, z12 = nZ; 12+ ε, 12+ ε

)
=

n−1

2∏
k=−n−1

2

θ

[ 1
2 + ε
1
2 + ε

]
(kZ|τ) .

3Our original conjecture was proposed for characteristics of order 2. However,
the present result suggests that it could extend to real characteristics. This may be
worth pursuing in the future.
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The term we have to be careful about is the one with k = 0 which identically
vanishes at ε = 0. In the other θ-functions we can safely take the limit ε → 0,
and in that limit their zeros in the fundamental domain of Z are at Z = 0
and Z = j

k ,
j
kτ , and

j
k (τ + 1), with j = 1, · · · , (k − 1).

We can thus write the expansion near Z = 0:

lim
ε→0

χt

(
τ, z12 = nZ; 12+ ε, 12+ ε

)/
θ

[ 1
2 + ε
1
2 + ε

]
(Z|τ)

=

n−1

2∏
k=−n−1

2

k
(
θ′1(0|τ)

)n
Zn +O(Zn+1) ,

= (−1)
n−1

2

(
n−1
2

)
! 2

(
θ′1(0|τ)

)n
Zn +O(Zn+1) .

(4.26)

Now we turn to the higher genus expression. The analysis for even n
from Equation (4.9) to Equation (4.19) go through with the only change Z →
Z/2 (because of the different definitions (4.1)). Thus we reach:

Θ

[
(�12 + �ε)diag

(�12 + �ε)diag

](
0
∣∣Ω(z12, τ))

=
∑

ma∈Z+ 1

2
+ε

exp
(
−2πi

n∑
a,b=1

iπgab(Z, τ)mamb

)

× exp

n∑
c=1

(
iπτm2

c + 2πimc

(1
2
+ ε

))
,

=
∑

ma∈Z+ 1

2
+ε

exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

)

× exp

n∑
c=1

(
iπτm2

c + 2πimc

(
zc +

1
2 + ε

))∣∣∣∣∣
zc=0

,

= exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

) n∏
c=1

θ

[ 1
2 + ε
1
2 + ε

]
(zc|τ)

∣∣∣∣∣
zc=0

.

(4.27)

When we expand the right-hand side as a power series in Z as before, we
see that this expression identically vanishes as ε → 0, as at any order of the
expansion there are an even number of derivatives hitting an odd number
of θ-functions so that there is always at least one odd Jacobi theta function
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that is evaluated at z = 0. This also makes it clear that the limit

(4.28) lim
ε→0

(
Θ

[
(�12 + �ε)diag

(�12 + �ε)diag

](
0
∣∣Ω(z12, τ))/θ

[ 1
2 + ε
1
2 + ε

]
(Z|τ)

)

exists and is non-zero. The same type of combinatorics as in the even case
now shows that the smallest non-vanishing order of Z appears from the
term of order (n−1)/2 which has n−1 derivatives acting on n−1 Jacobi θ-
functions. There are now n ways to choose the n−1 derivatives (because one
could omit any one of the zc). From the same type of calculation as before,
we now obtain:

lim
ε→0

(
Θ

[
(�12 + �ε)diag

(�12 + �ε)diag

](
0
∣∣Ω(z12, τ))/θ

[ 1
2 + ε
1
2 + ε

]
(Z|τ)

)
= (−1)

n−1

2 Zn−1Hf
(
fab

)(
θ′1(0|τ)

)n−1
+O(Zn) ,

(4.29)

where this time the matrix elements f are:

(4.30) fab =
1

4 sin2 π(a−b)
n

,

It is important to note that, although f looks the same as in the even case,
here the matrix itself is an (n − 1) × (n − 1) matrix. Thus it is distinct
from the f matrix that appeared for the even case discussed in the previous
section. The corresponding combinatoric identity now is:

(4.31) Hf

(
1

4 sin2 π(a−b)
n

)
=

(
n−1
2

)
! 2 , a, b = 1, · · · , n− 1 ,

which we have also verified to several orders.

5. Concluding remarks

The primary motivation of this investigation was to understand the nature of
the Rényi entropy in a theory of free 1+1-dimensional fermions on a periodic
space at finite temperature. This investigation led us to conjecture a non-
trivial mathematical relation between higher-genus Θ-constants and genus
one theta functions that follows from the fact that there are two methods
(higher-genus and twist-field) of the same calculation which are mutually
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consistent. One could even regard these considerations as a physics proof of
the relation using path-integral based methods for free fields and orbifolds.

In this paper we presented two completely mathematical proofs of this
relation for genus n = 2 and evidence (i.e. checks of interesting consequences
of the conjecture) for genus n > 2. From the mathematical point of view,
we stumble upon the Schottky problem, that is to characterize the space of
Jacobian varieties inside the space of abelian varieties, within the reduced
context of cyclic n-sheeted coverings of a genus-1 surface ramified at two
points.

For the n = 2 case, the ideas of Fay gave a nice geometric characteriza-
tion of this problem, which we used to solve it. The picture is that the Jaco-
bian of the genus-2 surface splits into an image of the original torus and the
Prym variety. The two pieces have eigenvalues ±1 under the automorphism
of the genus-2 surface induced by the covering map. The left-hand side of
our identity (2.10) naturally comes from the Jacobian of the 2-sheeted cover
(evaluated at the origin), while the right-hand side is naturally associated
with the two pieces of this split.

While we don’t have a rigorous mathematical proof for n > 2, it seems to
us that a generalization of the same idea should apply for any n, although we
are not aware of the analog of the theory of Prym varieties for higher covers.
In this case, the Jacobian of the cyclic n-sheeted cover splits into n pieces,
each of whose eigenvalues are the nth roots of unity under an automorphism.
The two sides of the conjecture (2.10) are now associated with these two
geometric pictures, respectively.
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