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They have ladders that will reach further, but no one will climb them.
– A. Sexton, “Riding the Elevator into the Sky”

1. Introduction

The aim of this paper is to describe limiting invariants for generalized normal
functions of geometric origin at a singularity of the underlying period map-
ping. To describe the underlying geometry, let π̄ : X → S be a proper, dom-
inant morphism of smooth quasi-projective varieties over C, with dimS = 1
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and smooth restriction π : X ∗ → S∗ = S\{s0}. Write Xs = π̄−1(s), and
set V := R2p−r−1π∗Q(p), with monodromy operator T about s0. Consider
a higher Chow cycle Z∗ ∈ CHp(X ∗, r)Q ∼= H2p−r

M (X ∗,Q(r)), and if r = 0
assume that the restrictions Zs = ı∗sZ∗ are homologous to zero. Then there is
an associated (“higher”, if r > 0) admissible normal function ν ∈ ANFr

S∗(V),
given by AJp,rXs

(Zs) ∈ Ext1MHS
(
Q, H2p−r−1(Xs,Q(p))

)
on fibers of π.

General formulas for the regulator maps AJp,r, first constructed by Bloch
[B5], were given in [KLM]. They can often be difficult to compute directly;
even for showing that the normal function is nonzero, one often makes do with
the associated infinitesimal invariant, inhomogeneous Picard-Fuchs equation,
or (if r > 0) the presence of a nontorsion singularity at s0. In the absence
of a singularity, one can also consider the limit of the normal function at s0:
indeed, if the cycle class clp,rX ∗(Z∗) ∈ Hom

(
Q, H2p−r(X ∗,Q(p))

)
has vanishing

residue on Xs0 , then ν extends to S, with ν(s0) in the generalized Jacobian
of ker(T − I) ⊆ H2p−r−1

lim (Xs,Q(p)).
A useful technique for computing this limiting value is given by specializa-

tion: if Z∗ lifts to Z ∈ CHp(X , r)Q, then we obtain a class ı∗s0Z in the motivic
cohomology H2p−r

M (Xs0 ,Q(p)). This formalism, and its relation to the “naive”
specialization to CHp(Xs0 , r)Q, is discussed in detail in §3. As a simple exam-
ple, one can think of a difference of sections of a family of elliptic curves that
degenerate to a nodal rational curve: the class of the naive specialization is
always zero, whereas the specialization into motivic cohomology takes values
in C∗.

Given the specialized cycle ı∗s0Z, then, we can use of a semi-simplicial
hyperresolution of Xs0 to compute its Abel-Jacobi class in absolute Hodge
cohomology H2p−r

H (Xs0 ,Q(p)) ∼= Ext1MHS
(
Q, H2p−r−1(Xs0 ,Q(p)

)
. The main

general result of this paper (Theorem 5.2) is that the image of this class under
the Clemens retraction computes ν(s0). Note that the case of a semistable
degeneration has been treated carefully for r = 0 [GGK], so we concentrate
in §5 on the higher normal function setting, which behaves a bit differently.

The even-numbered sections are devoted to worked examples and special
cases, all of which exhibit the phenomenon referred to in the title: this is a
7-author paper, and some of us prefer “K-theory elevator”, others “going up”.
Whatever one wishes to call it, we all felt it merited a systematic exposition,
given the many contexts in which it arises (e.g. [JW], [dS], [DK], [Ke], [GGK],
[Co]). In the event that Xs0 is a normal crossing variety, and ı∗s0Z “comes
from” its cth coskeleton (with desingularization Y [c]), the basic point is that
we can interpret part of ν(s0) as the regulator of a class in CHp(Y [c], r + c)Q.
So in effect one goes up from Kalg

r (Xs) to Kalg
r+c(Y [c]).
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The special case we study in §2 is a particular kind of semistable de-
generation, with Xs0 the product of a nodal rational curve Q0 by a smooth
variety. We briefly recall results from [KLM, KL], and then use them to di-
rectly compute the limit of the fiberwise regulator maps (Theorem 2.2). This
is applied in §2.6 to compute the limit of a normal function arising from a
family of K2 classes on elliptic curves. A related example comes much later,
in §6, where we specialize a K2 class on a family of genus two curves. The
resulting number-theoretic identities, (6.13) and (6.14), had been proposed by
M. Mariño in recent private correspondence with two of the authors, on the
basis of the t’ Hooft limit of a far-reaching conjectural relationship between
the spectrum of a quantum curve and the enumerative geometry of its mirror
[CGM].

But the motivation for this paper goes back much further, to the seminal
work of Collino [Co], based on a fascinating idea which he attributes to Bloch.
Let C/C be a general genus 3 curve, with Jacobian J(C). Then the Ceresa
cycle ξ0 := C − C− ∈ CH2

hom(J(C)) defines a non-torsion element of the
Griffiths group Griff2(J(C)) [Ce]. Collino considers a one-parameter defor-
mation of J(C), degenerating to a singular variety “isogenous to” J(D)×Q0,
where D is a general genus 2 curve. In the sense described above, ξ0 “goes
up” to a K1 class ξ1 ∈ CH2(J(D), 1), which turns out (by an analysis of the
infinitesimal invariant as D varies) to be regulator indecomposable. This gives
an alternative proof of the nontriviality of ξ0.

A further degeneration to E ×Q0 ×Q0 (up to isogeny), for some general
elliptic curve E, leads (by iteration of the “going up” procedure) to a non-
torsion class ξ2 ∈ CH2(E, 2). This can be identified with an Eisenstein symbol
(cf. [DK, Ex. 10.1]) in the sense of Beilinson, and shown to be nontorsion in
this way; or one can argue as in [Co]. Finally, degenerating the elliptic curve
to a Q0 leaves us with a class ξ3 ∈ CH3(Spec(C), 2) (in fact defined over
Q(i)). Alternatively, one may degenerate C directly to a rational curve with
three nodes and go directly to ξ3 as in [GGK, §IV.D], where the regulator of
this class is computed (and shown to be nontorsion) directly.

In §4, the first step (K0 � K1) of this procedure is made much more
precise, and applied to study “going up” for the modified (small) diagonal
cycle Δ ∈ CH2

hom(C ×C ×C) [GS], which is closely related to Ceresa’s cycle.
In particular, we obtain a regulator indecomposable cycle in CH2(D×D, 1),
and a new approach to the nontriviality of Δ in the Griffiths group as a
corollary (cf. Theorem 4.1).

A couple of comments on notation are in order. With the exception of
parts of §§2-3, the cycle groups in this paper are taken with Q-coefficients,
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denoted by a subscript Q. (This is a basic requirement for Hanamura’s con-
struction [Ha].) When describing the construction of motivic cohomology, we
also require intersection conditions on cycles (and higher cycles) which permit
them to be pulled back. In particular, if YI = Yi1 ∩ · · · ∩ Yi� is a substratum
of a normal crossing variety, and Z ∈ Zp(YI , r) is a higher Chow precycle, we
might impose the condition that Z properly intersect the products of all YJ

(J ⊃ I) and all faces of �r. Such conditions will be denoted throughout by a
subscript “#” for brevity.

2. A first view of going up: semi-nodal degenerations

We begin by providing a concrete view of “going up” in the very simplest
setting: that of a semi-stable degeneration with singular fiber the product of
a smooth variety and a nodal rational curve. In addition to setting the stage
for §§3-4, this should provide the reader with some idea of how the general
formulation of limiting regulators presented in §5 was arrived at, and how to
“decrypt” that construction.

2.1. Bloch’s higher Chow groups

The higher Chow groups are an algebraic version of ordinary simplicial Borel-
Moore homology. Given W/C quasi-projective, let Zp(W ) denote the free
abelian group generated by subvarieties of codimension p in W . Consider the
“algebraic r-simplex”

Δr = Spec
{

C[t0, . . . , tr](
1 −∑r

j=0 tj
)} � Cr,

and put

Zp
Δ(W, r) =

{
ξ ∈ Zp(W × Δr)

∣∣∣∣ ξ meets all faces
{ti1 = · · · = ti� = 0, � ≥ 1}

properly

}
.

Denoting by ∂j : Zp
Δ(W, r) → Zp

Δ(W, r−1) the restriction to j-th facet tj = 0,
we note that ∂ =

∑r
j=0(−1)j∂j : Zp

Δ(W, r) → Zp
Δ(W, r − 1) satisfies ∂2 = 0.

Definition 2.1.1. CHr(W,m) := homology of (Zr
Δ(W, •), ∂) at • = m.
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2.2. Alternate take: cubical version

Let �r := (P1\{1})r, with coordinates zi, and ∂0
i , ∂

∞
i the restriction maps to

the facets zi = 0, zi = ∞ respectively. The rest of the definition is completely
analogous (with cp(W, r) denoting cycles meeting all faces properly) except
that one has to divide out degenerate cycles. More specifically, let Prj : �r →
�r−1 be the projection forgetting the jth factor. Then the degenerate cycles
are the subgroup

dp(W, r) :=
r∑

j=0
Pr∗j

(
cp(W, r − 1)

)
⊂ cp(W, r),

and we take Zp(W, r) := cp(W, r)/dp(W, r) with differential

∂ =
r∑

j=1
(−1)j−1(∂0

j − ∂∞
j

)
: Zp(W, r) → Zp(W, r − 1).

By [L2, Thm. 4.7], the simplicial and cubical complexes are quasi-isomorphic
(with Z-coefficients), so that

Hr (Zp(W, •)) ∼= CHp(W, r).

Remark 2.2.1. In [Ha], Hanamura defines Chow cohomology groups CHp(W,
r) for quasi-projective varieties through a hypercovering, assuming resolution
of singularities for varieties over the ground field. In the case of smooth vari-
eties this coincides with Bloch’s higher Chow groups. See the discussion below
Remark 3.1.7 for details.

2.3. The currents

If (z1, ..., zr) ∈ �r are affine coordinates, set

Tr := (2πi)rTr := (2πi)rδ[−∞,0]r , Ωr :=
∫
�r

r∧
j=1

d log zj , and

Rr :=
∫
�r

log z1

r∧
j=1

d log zj − (2πi)
∫

[−∞,0]×�r−1
log z2

r∧
j=3

d log zj + · · ·

+(−2πi)r
∫

[−∞,0]r−1×�1
d log zr.
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For ξ ∈ Zp(X, r), let π1 : |ξ| ⊂ X × �r → X, π2 : |ξ| ⊂ X × �r → �r. We
put

(2.1) Rξ = (π1,∗ ◦ π∗
2)Rr, Ωξ = (π1,∗ ◦ π∗

2)Ωr, Tξ = (π1,∗ ◦ π∗
2)Tr,

and Tξ = (2πi)rTξ. Recall that in the Deligne cohomology complex,

M•
D = Cone

{
C2p+•
X (X,Z(p)) ⊕ F pD2p+•

X (X) → D2p+•−1
X (X)

}
[−1],

the differential D is given by

D
(
(2πi)p−r (Tξ,Ωξ, Rξ)

)
= (2πi)p−r (dTξ, dΩξ,Tξ − Ωξ − dRξ) .

= (2πi)p−r+1 (T∂ξ,Ω∂ξ, R∂ξ) ;

the resulting cohomology at • = −r is H2p−r
D (X,Z(p)). To guarantee that the

currents in (2.1) are defined, we have to restrict to a subcomplex Zp
R(X, •)

of cycles meeting real faces of [−∞, 0]m properly. The main results we shall
need are summarized in:

Theorem 2.1. (i) [KLM] The formula ξ �→ (2πi)p−r (Tξ,Ωξ, Rξ) induces
a morphism of (cohomological) complexes

Zp
R(X,−•) → M•

D.

(ii) [KL] The inclusion Zp
R(X, •) ↪→ Zp(X, •) is a rational quasi-isomor-

phism.

In view of (ii), we shall work with higher Chow groups with Q-coefficients
CHp(X, r)Q for the remainder of this section.

2.4. A key prototypical situation

Let Δ ⊂ C be a disk centered at 0 ∈ Δ, with Δ∗ = Δ\{0}, and consider the
diagram

(2.2)
X ↪→ X
f
⏐� ⏐�f

Δ∗ ↪→ Δ,

where f is a proper family of complex projective varieties of (relative) dimen-
sion d, and further, f is smooth. This should be seen as a restriction of a
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global setting

(2.3)
X ↪→ X⏐� ⏐�
B ↪→ B,

where all varieties are smooth and quasi-projective, B is a smooth scheme of
dimension 1, and X → B is smooth and proper, with Δ ⊂ B and Δ∗ = B∩Δ.
Put Xt = f

−1(t), for t ∈ Δ. Obviously Xt is smooth projective for t ∈ Δ∗,
and we can consider the monodromy operator T ∈ Aut

(
H2p−r−1(Xt)(p)

)
. Let

us assume that X0 is reduced and of the form Y0 ×Q0, where Y0 is smooth,
projective, and Q0 is a rational curve with a single node as singular set.1 In
particular, T is unipotent.

Now a cycle ξ ∈ CHp(X , r)Q can be assumed to meet all fibers {Xt}t∈Δ
properly; and setting ξt := Xt ·ξ, we will assume that ξt belongs to CHp

hom(Xt,
r)Q for t ∈ Δ. For t = 0, additional conditions will be imposed in §2.5 below,
in order that ξ0 furnishes an element of Chow cohomology of X0.

Recall that for t ∈ Δ∗ we have the Abel-Jacobi invariant

AJ(ξt) ∈ Jp,r(Xt

)
�

[
F d−p+1H2d−2p+r+1(Xt,C)

]∨
H2d−2p+r+1(Xt,Q)(p) ,

given by the functional

(2.4) ωt �→ (2πi)r−m

(
Rm(ξt) + (2πi)m

∫
∂−1(Tm(ξt))

)
(ωt).

modulo periods, on test forms ωt ∈ F d−p+1A2d−2p+r+1
d-closed (Xt). Here Tr(ξt) is

Tξt = PrXt(ξt ∩ {Xt × [−∞, 0]r}), and Rr(ξt) = Rξt ; writing them this way
will clarify the computation below.

Consider the (co)homological situation on X0. First of all, if p0 ∈ Q0 is
the node, then Q0\{p0} = C∗; write S1 for the unit circle. Working with
Q-coefficients, we have

Q(1) ∼= H1(Q0)(1) ∼=
←−

H1
c (C∗)(1) ∼= H1(C∗) = Q〈S1〉

with duals

Q(−1) ∼= H1(Q0)(−1) ∼=
−→

HBM
1 (C∗)(−1) ∼= H1(C∗) = Q〈dlog(z)

2πi 〉.

1A similar story holds if Q0 is replaced by a rational curve with multiple nodes.
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(One may also view (−∞, 0) as the generator of the untwisted Borel-Moore
homology group HBM

1 (C∗).) The perfect pairing

{H2p−r−2(Y0)(p) ⊗H1(Q0)} × {H2d−2p+r(Y0)(d− p) ⊗H1(C∗)} → Q(2.5)

may thus be interpreted via intersection or integration (on X0), with the
second factor identified with a summand of homology (of X0). The plan is to
view the limiting cycle ξ0 as defining an element in Chow cohomology, with
Abel-Jacobi invariant in the generalized Jacobian of the first factor of (2.5).

2.5. The limiting regulator

We seek a formula for

(2.6) AJ(ξ0) := lim
t→0

AJ(ξt) ∈ Jp,r(X0),

where

Jp,r(X0) := Ext1MHS

(
Q, H2p−r−1(X0)(p)

)
∼= Ext1MHS (Q, ker(T − I)(p))

is the “limiting generalized Jacobian”. (The precise sense2 in which the limit
(2.6) is to be interpreted is discussed in §5.) Here we are mainly interested in
the Künneth component

(2.7) AJ(ξ0) ∈
([
F d−pH2d−2p+r(Y0,C)

]
⊗H1(C∗,C)

)∨
H2d−2p+r(Y0,Q)(−d + p) ⊗Q〈S1〉

corresponding to H1(C∗) (rather than H0(C∗)).
We shall use as “test form”

(2.8) ω0 = 1
2πiη0 ∧ Ω1,

where η0 ∈ F d−pA2d−2p+r(Y0,C) is closed and Ω1 = dlogz1. Note that ω0 is
a limit of classes ωt ∈ F d−p+1H2d−2p+r+1(Xt,C) as t �→ 0. This is a classical

2To give a brief glimpse of the idea: the generalized Jacobian bundle
∪t∈S∗Jp,r(Xt) admits a canonical extension across the origin (cf. §5.3), to which
(by Theorem 5.2a) the section AJ(ξt) extends holomorphically. The value in the
fiber over the origin is what we call limt→0 A(ξt). This may be computed by tak-
ing limits of pairings with families of test forms representing sections of the dual
canonically extended cohomology bundle (cf. Cor. 5.3).
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result stemming from an explicit description of the canonical extension of the
bundle with fibers H2d−2p+r+1(Xt,C) for t �= 0 ∈ Δ (cf. [Zu, p. 190] or [GGK,
III.B.7]).

Next we impose several requirements on ξ at t = 0: first, that ξ meet
properly X0×�r, sing(X0)×�r, and all their subfaces. We can then “naively”
define ξ0 by using the canonical desingularization X̃0 := Y0×P1 → Y0×Q0 ⊂
X (sending {0,∞} to the node P ∈ Q0) to pull ξ back to ξ̃0 followed by push-
forward under X̃0 � X0 to CHp(X0, r). But this process factors through the
Chow cohomology group

CHp(X0, r) := H−m

{
Cone

(
Zp(X̃0, •)

ı∗0−ı∗∞−→ Zp(Y0, •)
)

[−1]
}

and the image by CHp(X0, r) → CHp(X0, r) has no invariant in (2.7). So it
is appropriate to consider ξ0 as an element of CHp(X0, r) (and thereby view
Tξ0 = PrX0 (ξ0 ∩ {X0 × [−∞, 0]m}) in F rH2r−m(X0,Q) = {0}). The general
perspective will be covered in §§3-5.

For the present limiting computation, we won’t need the full formalism of
Chow cohomology, but will rather content ourselves with the observations that
ξ0 defines a class in Zp(X0, r)∂−closed, as well as a class in Zp(Y0, r+1)∂−closed,
the latter via this schema:

(2.9) ξ0 ∈ Zp(Y0 ×Q0 ×�r) �→ Zp(Y0 × P1 ×�r)
�→ Zp(Y0 ×�r+1) �→ Zp(Y0, r + 1).

In order to easily compute the regulator, we will also assume that ξ and its
pullbacks (to X̃0, sing(X0)) meet the real sub-cube faces properly (resp. those
of Y0 ×�r+1). Then (in view of (2.8)) we have the limiting formula

(2.10) AJ(ξt)(ωt)
t→0�→ (2πi)p−r−1(Rr(ξ0) + (2πi)rδζ

)
(η0 ∧ Ω1),

where ζ is a (2d− 2p+ r+ 1)-chain on X0 = Y0 ×Q0 with ∂ζ = Tξ0 , properly
meeting sing(X0)(∼= Y0).3 The nodal point p0 ∈ Q0 corresponds to |∂[−∞, 0]|
in the schema (2.9) above. Let ζ0 be a lift of ζ in Y0 ×�1. Then

(2.11) ∂
{
ζ0∩{Y0× [−∞, 0]}

}
= ∂ζ0∩

{
Y0× [−∞, 0]

}
±ζ0∩

{
Y0×∂[−∞, 0]

}
,

3This is possible (even if m = 0) since we assumed ξ0 ≡
hom

0, and 0 = [Tξ0 ] ∈
H2d−2p+r(X0) =⇒ 0 = [Tξ0 ] ∈ H2p−r(X0) due to the specific form of X0.
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and PrY0

(
ζ0∩

{
Y0×∂[−∞, 0]

})
= 0, since the lift arises from the same copies

of a membrane over a given nodal singularity. Therefore

(2.12) ∂
(
PrY0

({
ζ0 ∩ {Y0 × [−∞, 0]}

}))
= ∂ζ0 ∩

{
Y0 × [−∞, 0]

}
.

Again, via the schema (2.9) above, ξ0 has a lift (which we still denote by
ξ0) with support in Y0 × �r+1. With the aid of (2.12), intersecting this lift
with Y0 × [−∞, 0]r+1, followed by a projection to Y0, is precisely ∂ζY0 , where
ζY0 = PrY0

({
ζ0 ∩ {Y0 × [−∞, 0]}

})
.

To compute the limiting AJ invariant, we shall utilize the relation of
currents (cf. [KLM, (5.2)]) on �n

dRn = Ωn − (2πi)nTn − 2πiR∂�n

in the case n = 1, where it reads

(2.13) Ω1 = dR1 + (2πi)T1.

In (2.10), we first consider the term

δζ(η0 ∧ Ω1),

which by (2.13) decomposes into two pieces:

(2.14) (2πi)δζ(η0 ∧ T1) =
by (2.12)

(2πi)δζY0
(η0);

and
δζ(η0 ∧ d[R1]) = (−1)rδζ(d[η0 ∧R1]),

which by Stokes’s theorem4

(2.15) = (−1)rTξ0(η0 ∧R1) = (−1)r ((Tr ∧R1)(ξ0)) (η0)

Recalling the relation (−2πi)rTr ∧ R1 + Rr ∧ Ω1 = Rr+1 from [KLM], the
remaining part of (2.10)

(2.16) (Rm(ξ0))(η0 ∧ Ω1) = ((Rm ∧ Ω1)(ξ0)) (η0)

4We are also using the general fact that Rn vanishes along (P1)n\�n =
⋃n

j=1 P
1×

· · · × {1} × · · · × P1 ⊂ [P1]×n, which here is just the vanishing of R1 = log z at 1.
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now combines with (2πi)r(2.15) to yield simply

Rr+1(ξ0)(η0),

so that altogether (2.10) becomes

(2πi)p−r−1
{
Rr+1(ξ0)(η0) + (−2πi)r+1

∫
ζY0

η0

}
≡

pds.
AJ(ξ0)(η0).

Summarizing, we have

Theorem 2.2. Given the above setting of subsection 2.4 of a normal function
induced by

AJ(ξt) ∈ Jp,r(Xt

)
,

where t ∈ Δ∗, ξt ∈ CHp
hom(Xt, r)Q, and where X0 = Y0 ×Q0, then

lim
t→0

AJ(ξt)(ωt) = AJ(ξ0)(η0),

where ξ0 is interpreted as defining a class in CHp(Y0, r + 1)Q.

Remark 2.5.1. (i) The situation X0 = Y0 × Q0 can be replaced by Y0 × Q�
0

(Y0 smooth) for � ≥ 1, and a parallel analysis expresses the limiting regulator
as the regulator of a class in CHp(Y0, r + �)Q. But there is a caveat in order
here: the total space X over Δ cannot be both smooth and semistable if
� > 1. It all boils down to the situation V (x1y1 − t, ..., xNyN − t) ⊂ C2N ×Δ,
a variety which is singular at (0, ..., 0) if N > 1. This can be remedied in
a number of ways: by blowing up (along the lines of §4.2), allowing non-
semistable degenerations (cf. §5.3), or by passing to several variables (viz.,
V (x1y1 − t1, ..., xNyN − tN ) ⊂ C2N × ΔN ; not pursued here).

(ii) Many natural moduli spaces do not contain singular fibers of the form
X0 = Y0 × Q0. For instance, let Z ⊂ P5 be a very general hypersurface of
high degree. Then Z does not contain any rational curves, and hence neither
does any hyperplane section X0 of Z. Furthermore, there are Hodge-theoretic
obstructions to having such a degeneration. This is another reason to develop
the more general perspectives in §§3 and 5.

2.6. A toy model

Let π : X → P1 be the elliptic surface defined by

y2 = x3 + x2 + t =: h(x),
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and let Σ = {0,∞, 4
27} ⊂ P1 denote the singular set of π. (Note that X0 and

X−4
27

are nodal curves, while X∞ is a simply-connected tree of P1’s. We wish
to verify, as a first application of Theorem 2.2, that CH2(Xt, 2)Q �= {0} for
very general t ∈ P1. Of course, this is a known fact in view of
Theorem 2.3. [Le2, As] Let U = X\

{
X0, X−4

27
, X∞

}
. Then

Γ
(
H2(U,Q(2))

)
� Q2;

moreover it is generated by [Ωξ′ ], [Ωξ′′ ], where

ξ′ =
{(y − x)3

8 ,
(y + x)3

8

}{
y + x

y − x
, t

}3
,

ξ′′ =
{(iy + x + 2

3)3

8 ,
(iy − x− 2

3)3

8

}{ iy − x− 2
3

iy + x + 2
3
,−t− 4

27

}3
,

are classes in CH2(U, 2;Q).
Indeed, given any class ξ ∈ CH2(U, 2) such that [Ωξ] is nonzero in Γ(H2(U,

Q(2))), standard arguments (injectivity of the topological invariant) imply
that AJ(ξt) (hence CH2(Xt, 2)) is nontorsion for very general t.

For the approach based on limits, take a small disk Δ centered at t = 0.
For t ∈ Δ∗, ξ′′t belongs to CH2(Xt, 2)Q, and for t = 0, we shall interpret
ξ′′0 as an element of CH2(Spec(C), 3)Q. We attend to several details. First,
X0 = V (y2 = x3 + x2) is a nodal rational curve parameterized by P1/{0,∞}
via

z �→
( 4z

(z − 1)2 ,
4z(z + 1)
(z − 1)3

)
= (x(z), y(z)) .

The restriction of ξ′′ to X0 may be written

ξ′′0 = 9
(
z,

3
2 5

3

(
−iy(z) + x(z) + 2

3
)
,
−iy(z) + x(z) + 2

3
iy(z) + x(z) + 2

3

)
,

as a cycle in �3, and we set

w(z) := 3
2 5

3

(
−iy(z) + x(z) + 2

3
)
.

Write γ for the closed path Tz = [−∞, 0] on X0; and note that, on γ, w(z)
winds once clockwise about 0. Moreover one easily sees that

(2.17) 2−
5
3 ≤ |w||γ ≤ 2−

2
3
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and
−iy + x + 2

3
iy + x + 2

3

∣∣∣∣∣
γ

= w

w̄

∣∣∣∣
γ

.

So along γ, ξ′′0 looks like (z, w, ww̄ ), and log(ww̄ ) is zero at γ ∩ Tw = {w = −1
3}.

For the regulator, then,

R := AJ(ξ′′0 )(1) = 1
2πi

∫
ξ′′0

R3

= 9
∫
γ
log(w)dlog(ww̄ )

= 18i
∫
γ
log(w)darg(w)

=⇒ Im(R) = 18
∫
γ
log |w|darg(w).

Using the bounds (2.17) and reversing the path (for a positive measure), we
conclude that

(2.18) 36π · 2
3 log(2) ≤ Im(R) ≤ 36π · 5

3 log(2).

Consequently we have

Theorem 2.4.

AJ(ξ0) �= 0 ∈ H1
D(Spec(C),Q(2)) � C

Q · π2 .

Remark 2.5. From a different point of view, limiting calculations were per-
formed in [DK, §6.3] for several families of elliptic curves. The case related to
the present calculation is the “E8” curve family

ET : XY = T
(
1 + X2 + Y3

)
,

which is birational to a base change of the Tate curve via

Θ : (X,Y,T) �→
(
−(2T)2Y, (2T)3X − (2T)2Y,−(2T)6

)
= (x, y, t).

The symbol studied in [op. cit.] is {X,Y} = 1
18Θ∗ξ′; and there is a birational

automorphism α : (x, y, t) �→
(
−x− 2

3 , iy,−t− 4
27
)

of the Tate curve with
α∗ξ′ = ξ′′. Overall, α−1 ◦Θ sends the fiber E

4−
1
3 3−

1
2

=: ET0 isomorphically to
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X0, and pulls ξ′′ back to {X,Y}18. Modulo a conjectural relation in the Bloch
group,5 it was shown in [op. cit.] that 1

2πiAJ
(
{X,Y}ET0

)
= 10

3πG, where

(2.19) G :=
∑
n≥0

(−1)n(2n + 1)−2 = L(χ4, 2)

is Catalan’s constant. So this would give that Im(R) = 120 ·G, which agrees
with (2.18) above.

2.7. Speculation

As another application of the semi-nodal instance of the going-up principle,
we briefly address a relationship between the Griffiths group of a threefold
and the group of indecomposables on a given surface.

Begin with a diagram

X ↪→ X
f
⏐� ⏐�f
B ↪→ B

where X is a smooth projective fourfold, B is a smooth projective curve
and f is smooth and proper. Put Xt := f−1(t), a smooth threefold. A cycle
ξ ∈ CH2(X ) which is relatively homologous to zero determines a normal
function

νξ : B →
∐

t∈B(C)
J2,0(Xt

)
,

with topological invariant [νξ] ∈ HomMHS(Q,
(
H1(B,R3f∗Q(2))

)
. When this

is nonzero, then under suitable monodromy conditions, Griff2(Xt)Q �= {0} for
very general t ∈ B(C).

Now consider the situation where for some 0 ∈ B\B, X0 = Y0 × Q0.
Viewing ξ0 as a class in CH2(Y0, 1)Q, we may ask whether it is indecom-
posable, i.e. nonzero in CH2

ind(Y0, 1)Q/(CH1(Y0) ⊗ C∗). A stronger condi-
tion is regulator indecomposability, which is to say that AJ(ξ0) is nonzero
in J2,1(Y0)/ (NS(Y0) ⊗ C∗).

The point is that the limiting Abel-Jacobi calculation (Theorem 2.2) gives
a connection between these conditions on νξ and ξ0. First note that for very
general t ∈ Δ∗, N1H3(Xt,Q(2)) has constant rank. One has a map

Griff2(Xt) → J

(
H3(Xt,Q(2))

N1H3(Xt,Q(2))

)
.

5Independently conjectured by F. Rodriguez-Villegas [unpublished].
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There are natural isomorphisms

N1H3(Xt) � N1H3(Xt)∨, [N1H3(Xt)]⊥ �
(
[N1H3(Xt)]⊥

)∨
,

and so

J
(
[N1H3(Xt,Q(2))]⊥

)
�

(
[N1F 2H3(Xt,C)]⊥

)∨
[N1H3(Xt,Q(2))]⊥ .

At t = 0, a similar calculation holds, leading to a specialized analogue of
Theorem 2.2, where the limiting calculation is of the form

AJ(ξt) ∈ J
(
[N1H3(Xt,Q(2))]⊥

)
�→ AJ(ξ0) ∈ J

(
H2

tr(Y0,Q(2))
)
.

A well-known conjecture (see [dJL]) states that

AJ : CH2
ind(Y0; 1;Q) → J

(
H2

tr(Y0,Q(2))
)
,

is injective. Assuming this, we have a diagram

(2.20) {ξt} ∈ Griff2(Xt;Q)

(?)

AJ(ξt)
J
(
[N1H3(Xt,Q(2))]⊥

)
� J

(
H3(Xt,Q(2))

N1H3(Xt,Q(2))

)
limt→0

{ξ0} ∈ CH2
ind(Y0, 1;Q)

AJ(ξ0)
J
(
H2

tr(Y0,Q(2))
)
� J

(
H2(Y0,Q(2))

N1H2(Y0,Q(2))

)

where the limiting map (?) is defined by making the diagram commutative. In
particular, then, we expect that indecomposability of ξ0 implies nontriviality
of ξt in the Griffiths group. This line of inquiry, as well as various generaliza-
tions,6 will be pursued in a later work.

On the other hand, there is nothing at all conjectural about regulator
indecomposability of ξ0 implying nontriviality of ξt in the Griffiths group (for
t general). This will be spelled out in the worked example of §4 (see Theorem
4.1), for which we shall need the slightly more general language of the next
section.

6Both to higher degrees of K-theory and to higher AJ maps and the Bloch-
Beilinson filtration [Le1]. Note that we do not see a way to define the dotted arrow
without assuming injectivity of the bottom Abel-Jacobi map.
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3. Motivic picture: specialization and going-up

In this section, we recall the construction of specialization maps in the settings
of higher Chow groups and motivic cohomology, and prove some elementary
properties. These results are then applied to articulate a more general per-
spective on “going up” in K-theory.

3.1. Specialization for higher Chow groups

In the following, f : X → B will denote a flat morphism of regular noetherian
(equi-dimensional) schemes where B = Spec(R) is the spectrum of a discrete
valuation ring. In this setting, Levine ([L1]) has defined a theory of higher
Chow groups CHd+r−p(X, r) ∼= CHp(X, r) (d = relative dimension of f). The
CHq(X, r) are defined as the homology groups of a certain complex Zq(X, •).
These satisfy the following properties:

(1) If X and B are essentially of finite type over a field k, then these are the
usual higher Chow groups defined by Bloch.

(2) If Z ⊂ X is a closed (pure codimension) subscheme (of finite type over
B) of codimension c, then there is a long exact localization sequence

→ CHp−c(Z, r) → CHp(X, r) → CHp(X \ Z, r) ∂−→ CHp−c(Z, r − 1) → .

Remark 3.1.1. In our applications, we work in the setting of a degenerating
family over a one-dimensional base B of equi-characteristic zero.

Let π be a fixed uniformizer in R, s denote the closed point of B, and
η denote the generic point. Furthermore, let Xs (resp. Xη) denote the cor-
responding special (resp. generic) fiber; note that by virtue of regularity of
X, Xη is smooth. Let fs (resp. fη) denote the restriction of f to the special
fiber (resp. generic fiber). Finally, let i : Xs ↪→ X and j : Xη ↪→ X denote
the natural inclusions. Then ψ := f∗

η (π) ∈ CH1(Xη, 1) and one can define a
specialization map

(3.1) Spπ : CHp(Xη, r) → CHp(Xs, r).

by setting Spπ(y) := ∂(ψ · y), where ∂ : CHp+1(Xη, r + 1) → CHp(Xs, r) is
the boundary map coming from the localization sequence. Note that pullback
morphisms induce a CH∗(X, ∗)-module structure on both CH∗(Xη, ∗) and
CH∗(Xs, ∗). Moreover, since the localization sequence respects the module
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structure, the boundary map ∂ is a morphism of CH∗(X, ∗)-modules. It follows
that Spπ is also compatible with this module structure.
Remark 3.1.2. (1) If n = 0, these specialization maps are already considered
in Fulton ([Fu]). In this case, the morphisms are independent of the choice
of uniformizer, and preserve ring structures. In particular, Spπ : CH∗(Xη) →
CH∗(Xs) is a ring homomorphism.
(2) If X = B, then the specialization morphisms above were considered by
Bloch [B4, §5.2]. It is shown there that, under the additional assumption that
B contains its residue field, the specialization map is an algebra map.

It is likely that the construction of the specialization map and the follow-
ing properties are known to the experts. However, we give the details here
due to the lack of a reference.

Proposition 3.1.3. (1) With notation as above, the following diagram
commutes:

CHp(X, r)

i∗

j∗ CHp(Xη, r)

Spπ

CHp(Xs, r) .

(2) Let g : X → X ′ denote a proper morphism of regular schemes smooth
over B. Then the following diagram commutes:

CHq(Xη, r)
Spπ

gη∗

CHq(Xs, r)

gs∗

CHq(X ′
η, r)

Spπ CHq(X ′
s, r).

(3) Let g : X → X ′ denote a flat morphism of regular schemes smooth over
B which is equi-dimensional of relative dimension d. Then the following
diagram commutes:

CHq(X ′
η, r)

Spπ

g∗η

CHq(X ′
s, r)

g∗s

CHq+d(Xη, r)
Spπ CHq+d(Xs, r).

(4) Let i : Z ⊂ X denote a regular (codimension c) immersion with smooth
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generic fiber over B. Then the following diagram commutes:

CHq(Xη, r)
Spπ

i∗η

CHq(Xs, r)

i∗s

CHq−c(Zη, r)
Spπ CHq−c(Zs, r).

(5) Let ζ ∈ CHp(Xη, 1). If ζ is decomposable, then Spπ(ζ) is decomposable.

Proof. 1: Given y ∈ CHp(X,n), one has

Spπ(j∗(y)) = ∂(j∗(y) · ψ) = i∗(y)∂(ψ) = i∗(y).

2: This follows from an application of the projection formula combined with
the fact that ∂ commutes with push-forward. Namely, let f ′ : X ′ → B denote
the structure map and ψ′ := f

′∗
η (π). Note that g∗η(ψ′) = f∗

η (π) = ψ. One has:
gs∗(Spπ(z)) =

= gs∗(∂(z · ψ)) = ∂(gη∗(z · g∗η(ψ′))) = ∂(gη∗(z) · ψ′) = Spπ(gη∗(z)).

3: This follows from the fact that pull-back is a ring homomorphism. Namely,

g∗s(Spπ(z)) = g∗s(∂(z · ψ′)) = ∂(g∗η(z · ψ′)) = ∂(g∗η(z) · ψ) = Spπ(g∗η(z)).

4: The proof is the same as in Part (3).
5: Recall, by definition:

CHp
dec(X, 1) = Im(CH1(X, 1) ⊗ CHp−1(X) → CHp(X, 1)).

Let ζ ∈ CHp(Xη, 1) be a decomposable element. Since specialization is addi-
tive, it suffices to prove the result for z which is the image of a tensor ζ1 ⊗ ζ2
for ζ1 ∈ CH1(Xη, 1) and ζ2 ∈ CHp−1(Xη). Note that ζ2 can be lifted to an
element ζ̃2 ∈ CHp−1(X). Since specialization is compatible with CH∗(X, ∗)-
module structure, one has

Spπ(ζ) = Spπ(ζ1 · ζ2) = ζ̃2Spπ(ζ1) = Spπ(ζ2) · Spπ(ζ1).

It follows that Spπ(ζ) is decomposable.

Remark 3.1.4. Note that proof of Part (2) above does not require the smooth-
ness of f or f ′, only that the generic fibers are smooth. The analogous remark
also applies to Part (3).
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Remark 3.1.5. The last part of Proposition 3.1.3 was proved by Collino and
Fakhruddin ([CF], Theorem 2.1) under the assumption that the cycle ζ lifts
to X. The proof here also partially applies to CHp(Xη, r). Namely, the same
proof shows that if an element of CHp(Xη, r) lies in the image of CHr(X, r)⊗
CHp−r(Xη) (whenever this makes sense), then the same can be said of its
specialization.

Note that Spπ depends on the choice of uniformizer in the setting of higher
Chow groups. However, one has the following comparison result.

Lemma 3.1.6. With notation as above, let π′ = uπ be another choice of
uniformizer where u is a unit in R. Then Spπ′(a) = Spπ(a) + (−1)r(u∂(a))
for any a ∈ CHp(Xη, r).

Proof. This follows directly from the fact that the boundary maps ∂ in the
localization sequence are CH∗(X, ∗)-module maps.

Remark 3.1.7. We note that on ker(∂ : CHp(Xη, r) → CHp−1(Xs, r−1)), the
specialization map is independent of the choice of uniformizer. This follows
from Part (1) of the previous proposition (or from the Lemma).

We conclude this section by noting that the results of this section also
pass to motivic cohomology. We refer to ([Ha]) for the basic definition and
construction of motivic cohomology. Here (passing to Q-coefficients) we sim-
ply recall some of the properties.

(1) Given any quasi-projective variety S over a field k of characteristic
zero (or more, generally characteristic p, assuming resolution of singularities)
one can associate to it the Chow cohomology groups CHp(S, r). Briefly, these
are defined by choosing a semi-simplicial hyper-resolution X• → S, and then
taking the total complex of the double complex formed by the Bloch higher
cycle complex associated to the corresponding semi-simplicial scheme. It can
be shown that the construction is independent of the chosen hyper-resolution.
We refer to ([Ha]) for the details.
(2) The Chow cohomology groups come equipped with a contravariant func-
toriality (for arbitrary maps) and a ring structure.
(3) These are covariantly functorial under proper maps with smooth target,
and under flat maps of projective varieties.
(4) They agree with the usual higher Chow groups in the smooth case.

Suppose now we have a f : X → B as before, where X is regular, and
f is proper and generically smooth. Suppose further that we are in the equi-
characteristic zero case. In this case, Xη and X are smooth. The previously



318 P. Luis del Ángel R. et al.

stated properties of motivic cohomology allow one to specialize cycles on Xη

which are liftable to X. For usual cycles, one has a diagram

CHp(Xs)
i∗←− CHp(X) � CHp(Xη).

We may lift a cycle ζ ∈ CHp(Xη), and then pull-back to the motivic cohomol-
ogy group. In general, this ‘specialization’ depends on the lift. However, in
the following we shall work with examples that come equipped with canonical
extensions to X.7 Similarly, for higher cycles one has a diagram:

CHp(Xs, r)
i∗←− CHp(X, r) � ker(∂ : CHp(Xη, r) → CHp−1(Xs, r − 1)).

In particular, if we are given natural extensions of classes ζ in the right-most
term to all of X, then we can specialize them to the motivic cohomology of X.
These constructions are functorial in families. Namely, suppose we are given
two families f : X → S and f ′ : X ′ → S, as above. Suppose, moreover that
we have a proper S-morphism F : X → X ′ of relative dimension c. Then we
have a natural commutative diagram:

CHp(Xs) CHp(X) CHp(Xη)

CHp−c(X ′
s) CHp−c(X ′) CHp−c(X ′

η)

Here the vertical maps are given by push-forward.
Remark 3.1.8. (1) In the following subsection, our cycles will be naturally
liftable to X, and the previous method combined with the descent spectral
sequence will allow one to construct higher Chow cycles on singular strata of
the special fiber.
(2) One could also work with the motivic cohomology of Suslin and Voevod-
sky; indeed, it is known that CHp(X,n) ∼= H2p−n

M (X,Q(p)). However, in the
following we shall use convenient hyper-resolutions (in the spirit of Hanamura
and Levine) to explicitly compute motivic cohomology.

3.2. Examples of going-up for algebraic cycles

We now demonstrate how to use the specialization map to produce a “going-
up” calculus for higher Chow cycles, which will be elaborated in §5. Namely,

7One should be aware that even (or perhaps especially) in this situation, prop-
erties such as cohomological or algebraic equivalence to zero on nearby fibers need
not specialize.
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we show that in certain types of degenerations, the specialization morphisms
combined with edge morphisms in a certain descent spectral sequence allows
one to construct higher weight Chow cycles from lower weight cycles.

Working over a field of characteristic zero, we continue to assume that X
is regular, and f generically smooth; write dim(X) = d + 1. In this setting,
we have constructed specialization morphisms:

Spπ : CHp(Xη, r) → CHp(Xs, r),
ı∗ : CHp(X, r) → CHp(Xs, r).

Of course, we can compose Spπ with the restriction to obtain a map

sp : CHp(X, r) → CHp(Xs, r)

that is independent of π.
Suppose we are given a smooth proper semi-simplicial hypercover X• →

Xs. In this setting, one has a (1st quadrant) descent spectral sequence:

(3.2) E1
�,k(q) := CHq(X�, k) ⇒ CHq(Xs, � + k).

(See for example [Ge, Thm. 1.4]; this also follows from the double complex
for Chow homology in [Ha, Def. 2.10], by taking the associated spectral se-
quence [We, §5.6].) More importantly, one has similar spectral sequence in the
setting of motivic cohomology. In this case, one has (associated to the Chow
cohomology double-complex in [Ha, Def. 2.10]) a 4th quadrant cohomological
spectral sequence:

(3.3) E�,k
1 (p) := CHp(X�,−k) ⇒ CHp(Xs,−(� + k)).

Rewriting (3.2) as a 3rd quadrant cohomological spectral sequence ′E�,k
1 (p) :=

E1
−�,−k(d−p), there is an obvious map E•,•

1 (p) → ′E•,•
1 (p) given by the identity

on the (0, k)-entries and by zero elsewhere. This induces a homomorphism
CHp(Xs, r)

θ→ CHp(Xs, r) factoring sp = θ ◦ ı∗. However, θ tends to lose
much of the information we want to understand in the limit (via ı∗).
Example 3.2.1. We now apply this to the simple situation of a semi-nodal
degeneration, to give the abstract perspective on §2. Write Xs = Y × Q,
with Q a nodal rational curve. In this case, a smooth hypercover can be
constructed by taking the usual normalization. Then X0 = Y × P1 → Y ×Q
is given by identity on the first component and is just the normalization on
the second component. Moreover, X1 = Y and the semi-simplicial scheme
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X• → Xs is a proper smooth hypercover. In this setting, the 4th-quadrant
descent spectral sequence for motivic cohomology has two columns. Moreover,
the differentials on the E1-terms are given by the difference of pullbacks via
i0, i∞ : Y → Y ×P1. Since this difference is zero, the descent spectral sequence
degenerates. In particular, one has a natural map

CHp(Xs, r) → CHp(Y, r + 1),

which does not factor through θ. One can now compose this with the pull-back
map, to get a going-up map:

CHp(X, r) → CHp(Y, r + 1).

In particular, given an extension of a cycle on the generic fiber to all of X,
one can specialize it to a higher Chow cycle on Y .

Again we emphasize that im(sp) ⊆ im(θ), where θ is a motivic analogue
of taking the “image of cohomology in homology”. Often this simply has the
effect of killing everything. For example, if p = r = 2 and Y = Spec(F ) is a
point over a number field, then CH2(Xs, 2) ∼= CH2(F, 3) ∼= K ind

3 (F )Q while
CH2(Xs, 2) ∼= CH1(F, 1) ∼= K1(F )Q. In this scenario, we have image(sp) =
{0} = image(θ). So only ı∗ (and not sp) captures the K ind

3 information in the
limit.

Typically one cannot expect the descent spectral sequence to degenerate
at E1. In order to formulate more general “going-up” statements, we introduce
a filtration, writing

W−bCHp(Xs, r) ⊂ CHp(Xs, r)

for the image of the cohomology of E�≥b,k
1 (p).

Example 3.2.2. One can apply a similar argument in the setting of degenera-
tions of triple products of curves. Namely, suppose we are in a setting where
F : ′C → B is a semistable family of genus 3 curves, and let ′X := ′C ×

F

′C ×
F

′C

denote the triple fiber-product. Suppose that the special fiber ′Cs = C̃s ∪ P1

where C̃s is the normalization of an irreducible curve Cs of arithmetic genus
three with one node. Moreover, in that case, C̃s is a smooth hyperelliptic
curve of genus 2, and we assume that the inverse image of the node consists
of the two Weierstrass points on C̃s. Finally, suppose C̃s∩P1 consists precisely
of these two Weierstrass points. In this setting, Gross and Schoen [GS] have
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constructed a good family f : X → B such that f is flat, proper, and the
total space is smooth. Moreover, the generic fiber Xη = ′Xη, and the special
fiber Xs has eight components (cf. §4.2).

In the next section, we shall study the modified diagonal cycle (cf. §4.1)
in CH2(Cη × Cη × Cη), which has a natural extension to X . The previous
constructions then allow one to specialize the modified diagonal to a cycle
in W−1CH2(Xs). Furthermore, the previous description of the components of
Xs give rise to a natural smooth proper hypercover of Xs. Considering the
associated descent spectral sequence as in the previous example gives rise to
edge maps

(3.4) W−1CH2(Xs) → CH2(C ′ × C ′, 1).

It follows that the image of the specialization of the modified diagonal under
the image of this map gives rise to a higher Chow cycle in CH2(C ′ × C ′, 1),
and in what follows we shall make the relation of this degeneration and the
Abel-Jacobi map precise.

4. Degeneration of a modified diagonal cycle

In this section, we provide details on the Example sketched in §3.2.2. Fur-
thermore, we show that the specialization is an indecomposable higher Chow
cycle.

4.1. Modified diagonal cycle on a triple product of a curve

Given a smooth projective curve C of genus g (defined over C), the modified
diagonal cycle of Gross and Schoen [GS] on X := C×C×C can be described
as follows. Fixing a closed point e ∈ C(C), consider the codimension-2 sub-
varieties

Δ123 := {x, x, x) : x ∈ X}
Δ12 := {(x, x, e) : x ∈ X}
Δ13 := {(x, e, x) : x ∈ X}
Δ23 := {(e, x, x) : x ∈ X}
Δ1 := {(x, e, e) : x ∈ X}
Δ2 := {(e, x, e) : x ∈ X}
Δ3 := {(e, e, x) : x ∈ X}
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of X; then the cycle

(4.1) Δe := Δ123 − Δ12 − Δ13 − Δ23 + Δ1 + Δ2 + Δ3 ∈ Z2(X)

is homologous to zero [GS, Prop. 3.1]. Furthermore:

• if gC = 0, then Δe ≡
rat

0; and
• if C is hyperelliptic, then 6Δe ≡

rat
0 [GS, Prop. 4.8].

For each p ∈ C(C), we have Abel maps

ϕ±
p : C → J(C)

q �→ ±AJ(q − p)

with image C±
p = ϕ±

p (C), and

(4.2) f : X → Sym3C → J(C)
(q1, q2, q3) �→ Σqi �→ AJ(Σqi − 3p)

Recall that the Ceresa cycle is defined by

ZC,p := C+
p − C−

p ∈ Zg−1
hom(J(C));

when we consider it in Griffg−1(J(C)) = Zg−1
hom(J(C))/Zg−1

alg (J(C)), where it
is nontorsion for C general (in particular, non-hyperelliptic), we may drop
the “p”. The same goes, of course, for the subscripts on fp and Δe. Accord-
ing to results of Colombo and van Geemen [CvG, Props. 2.9 and 3.7], in
Griffg−1(J(C)) we have

(4.3) f∗Δ ≡
alg

3ZC

whenever C is hyperelliptic or trigonal – in particular, if gC = 3. Furthermore,
we have the following:

Lemma 4.1.1. If gC = 3, then f∗f∗Δ ≡
alg

6Δ (in Griff2(C×3)).

Proof. In fact, we claim that for p = e, f∗f∗Δ = 6Δ in Z2(C×3). Indeed,
this formula holds for the morphism f ′ : C×3 → Sym3C by [GS, (4.4)].
Now write f = h ◦ f ′, where h : Sym3C → Pic3C ∼= J(C). Here Pic3C
is the degree-3 Picard scheme, with the isomorphism given by e; and h is a
birational morphism, namely the blow-up of Pic3C along the curve −C+ωC =
{ωC(−x) | x ∈ C} ⊂ Pic3C (cf. [BL, p. 360, Ex. 2(b)]). As the support of
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f ′
∗Δe does not lie in the exceptional locus of the blow-up morphism, we have
h∗h∗(f ′

∗(Δe)) = f ′
∗(Δe); and so

f∗f∗(Δe) = f ′∗h∗(h∗(f ′
∗(Δe))

= f ′∗f ′
∗(Δe)

= 6Δe

as desired.

Together with (4.3), the Lemma implies that for C of genus 3, we have
(in Griff2(C×3))

(4.4) f∗ZC ≡
alg

2Δ.

In what follows, we shall explain how to use the behavior of ZC under
degeneration to understand that of Δ. (We shall also take p = e.)

4.2. Degeneration of C×3 and J(C)

Let C → Spec(R) =: B be a (flat, proper) family of stable curves over a DVR,
with regular total space. The Jacobian J(Cη) of the (smooth) generic fiber
(over η = B \ {s}) is extended over B by the Néron model Ng(C/B), whose
special fiber is a finite disjoint union of semi-abelian varieties [BLR]. One
completion (to a proper B-scheme) is given by the moduli scheme P̄g(C/B)
of degree g semibalanced line bundles, which contains Ng(C/B) as a dense
open subscheme [CE]. Write Ng(Cs) ⊂ P̄g(Cs) for the special fibers.

On the other hand, if ′C is a semistable family and the components of
′Cs are smooth, Gross and Schoen construct a “good model” X → B for
′C ×

B

′C ×
B

′C. In particular, X is flat and proper over B, with regular total
space, such that Xη = ′C×3

η .
The particular case of interest for us is when C has genus g = 3, and

Cs is irreducible, with one node q. Then J := P̄3(C/B) is smooth (over
C); and one may describe the special fiber Js = P̄3(Cs) as follows. First
observe that its normalization J̃s is a P1-bundle over Ã := J(C̃s). Then Js

is formed by attaching the 0- and ∞-sections of this bundle with a shift by
ε := AJC̃s(q̃2 − q̃1) ∈ Ã(C), where {q̃1, q̃2} ⊂ C̃s lie over q. This shift records
the Hodge-theoretic extension class of

(4.5) 0 → H1(Ã) → H1(Js) → H1(Ḡm) → 0,
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where Ḡm := P1/{0,∞} is the nodal rational curve.8 The open smooth subset
J ∗
s = N3(C/B) ⊂ Js is itself an extension of Ã by Gm,C; the corresponding

extension of Hodge structures

(4.6) 0 → H1(Gm) ı→ H1(J ∗
s ) ρ̃→ H1(Ã) → 0

is (by the first bilinear relation) dual to (4.5). Henceforth we shall take {q̃1, q̃2}
to be Weierstrass points on C̃s, so that (4.5) and (4.6) are 2-torsion extensions
of MHS. In this case, there exists a homomorphism σ : J ∗

s → Gm with
(σ ◦ ı)(z) = z2, so that ρ̃× σ : J ∗

s � Ã×Gm is a 2:1 isogeny. Writing ρ for
the composition of ρ̃ with Ã

2:1� A := Ã/〈ε〉, ρ× σ extends to a map

(4.7) ρ : Js � A× Ḡm =: A

which is 4:1 on J ∗
s (and 2:1 on sing(Js) ∼= Ã). Write J •

s → A• for the
map of semi-simplicial schemes, where J 0

s = J̃s, J 1
s = sing(Js) = Ã (resp.

A0 = A× P1, A1 = A).
Now our chosen C doesn’t satisfy the hypotheses of [CE]: the sole com-

ponent of Cs is singular. To fix this, we take the base change of C under
t �→ t2 (B → B) and blow up the double point to get ′C → B semistable,
with ′Cs = C̃s ∪ P1 (C̃s ∩ P1 = {q̃1, q̃2} = {0,∞}). The special fiber of the
associated good model X is Xs = ∪8

i=1Yi, where [GS, Ex. 6.15]:

• Y2 (resp. Y3, Y4) is the blow-up of P1 × C̃s × C̃s (resp. C̃s × P1 × C̃s,
C̃s × C̃s × P1) along the

{
P1 × {q̃i} × {q̃j}

}
;

• Y5 (resp. Y6, Y7) is the blow-up of C̃s × P1 × P1 (resp. P1 × C̃s × P1,
P1 × P1 × C̃s) along the

{
C̃s × {q̃i} × {q̃j}

}
;

• Y1 � C̃s
×3

(resp. {q̃i}× P1 × P1), P̃2 (= degree-6 del Pezzo)-fibers over
the 8 points {q̃i} × {q̃j} × {q̃k}, and point fibers elsewhere.

We will write X •
s for the corresponding semi-simplicial scheme, where X �

s :=∐
|I|=�+1 YI (I ⊂ {1, . . . , 8}, YI := ∩i∈IYi).

4.3. Extension of the Abel map

Likewise, we can base-change the extended Jacobian J (via t �→ t2) and blow
up the preimage of Ã; this results in a smoth total space ′J and singular fiber

8(4.5) is obtained by identifying the end terms of 0 → H1(J̃s) → H1(Js) →
H0(Ã) → 0 with H1(Ã) and H1(Ḡm), respectively; the second identification seems
like a cheap trick (both are Q(0) as Hodge structures), but is natural once we make
the 2-torsion assumption below (which yields a projection from Js to Ḡm).
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′Js = ′Js,0 ∪ ′Js,1 (′Js,i
∼= J̃s), where ′Js,0 is the “identity” component.

Fix a section e : B → ′C such that es is a Weierstrass point on C̃s ⊂ ′Cs,
distinct from q̃1 and q̃2. Together with (4.2), this yields a map Xη

Fη→ ′Jη over
η, which extends continuously to a well-defined morphism

F : X → ′J .

On the smooth locus X sm
s = ((Cs \ {q}) ∪Gm)×3 of the singular fiber Xs, this

extension may be described Hodge-theoretically, or alternatively (at least on
(Cs \ {q})×3) by pulling back the Abel-Néron map of [CE]. Explicitly, we
send (p1, p2, p3) �→ ∑3

i=1
∫ pi
e
εi
s

∈ ω(′Cs)∨/H1(′Cs) ∼= J ∗
s,|ε|, where e0

s := es,
e1
s := 1 ∈ Gm, |ε| :=

∑
εi (mod 2), and εi = 0 (resp. 1) if pi ∈ Cs \ {q} (resp.

Gm). In particular, Y1, Y5, Y6, Y7 are mapped to ′Js,0 while Y2, Y3, Y4, Y8 go to
′Js,1.

Below we shall only need the composition

π : X → J

of F with the finite morphism ′J � J of degree 2. On the singular fiber,
the composition ρ ◦ πs : Xs → A(= A× Ḡm) is easy to describe: Y2, Y3, Y4, Y6

are collapsed to sing(A); Y5, Y6, Y7 have 2-dimensional image; Y1(� C̃s
×3

) →
(Ã �)A is the AJ map for the genus 2 (hyperelliptic) curve C̃s; and Y1(�
C×3
s ) → Ḡ×3

m
×→ Ḡm is the product of the hyperelliptic maps on factors. Our

situation is summarized by the diagram

X
π

′J J

Xs

ıX

πs

′Js Js

ıJ

ρ A.

4.4. Extension and specialization of cycles

The choice of e gives us a natural family of modified diagonal cycles on
Xη and Ceresa cycles on Jη; the naive extensions (obtained by taking clo-
sures of each irreducible component Δi,Δij ,Δijk, C

+, C−) will be denoted by
Δ = Δe ∈ CH2(X ) and ZC = ZC,e ∈ CH2(J ). We may consider the special-
izations ı∗XΔ ∈ CH2(Xs) and ı∗JZC ∈ CH2(Js) in motivic cohomology. The
idea is then that if these are cohomologically trivial in H4(Xs) resp. H4(Js),
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we expect they are rationally equivalent to zero (with Q-coefficients) on the
normalizations X 0

s resp. J 0
s ,9 which would allow us to “go up” into (sub-

quotients of) CH2(X 1
s , 1) resp. CH2(J 1

s , 1). In view of [GGK, Prop. III.B.9]
or [GS, Prop. 7.2], this cohomological triviality holds after replacing Δ resp.
ZC by a modification of the form Δ̂ := Δ − (ıX )∗WΔ (WΔ ∈ Z1(Xs)) resp.
ẐC := ZC − (ıJ )∗WZ (WZ ∈ Z1(Js)).10

Since ı∗XΔ is nonzero on each component Yi ⊂ Xs, the direct construction
of WΔ becomes a complicated exercise in intersection theory and combina-
torics. Instead we shall proceed indirectly, using the fact that ı∗JZC is already
cohomologically trivial. Here it is convenient to use ρ; while ρ is not flat, we
can construct an ad hoc push-forward map, CH2(Js)

ρ∗→ CH2(A) by the map
of double complexes Z2

#(J •
s ,−•) → Z2

#(A•,−•) given by ρ∗ on J 0
s and 2ρ∗

on J 1
s . Then we have ρ∗ρ∗ = 4 · Id on CH2(Js), and

ρ∗ZC,s =: Z+
A − Z−

A ∈ Z2(A0) = Z2(A× P1)

is evidently rationally equivalent to zero. Indeed, writing zA : C̃s → P1 for the
hyperelliptic map and φ±

A for the composition C̃s →
ϕ±
es

Ã �
ρ
A,

Z±
A =

(
φ−
A × z±1

A

)
(C̃s) =

(
φ+
A × z±1

A

)
(C̃s) ⊂ A× P1

may be viewed as the graph of z±1
A over the nodal curve φ+

A(C̃s)(∼= Cs). (More-
over, the zero and pole of zA are located at the node.) The rational equivalence
is given by the push-forward of z−zA

z−z−1
A

under C̃s×P1 →
φ+
A×Id

A×P1, whose divisor

is precisely Z+
A − Z−

A . Viewing this pushforward as an element of Z2
#(A0, 1)

from ρ∗ZC,s ∈ Z2
#(A0) yields

(4.8) Z
(1)
C :=

(
φ+
A(C̃s), z2

A

)
∈ ker(∂) ⊂ Z2(A1, 1) = Z2(A, 1).

By the projective bundle formula, CH2(A × P1, 1) →
ı∗0−ı∗∞

CH2(A, 1) and

CH2(J 0
s , 1) →

ı∗0−ı∗∞
CH2(Ã, 1) are zero; we conclude:

9In view of the triviality (⊗Q) of Ceresa cycles and modified diagonal cycles for
hyperelliptic curves (hence for the genus-2 curve C̃s).

10In fact, for codimension-2 cycles this can be accomplished integrally, after
multiplying the original cycle by the exponent of the (finite) singularity group

G := im{H4(Xs,Q) → H4(X ,Q)}Z
im{H4(Xs,Z) → H4(X ,Z)} .
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Proposition 4.4.1. The specialization ı∗JZC of the Ceresa cycle, belongs to
W−1CH2(Js) = ρ∗W−1CH2(A)(= CH2(Ã, 1) = ρ∗CH2(A, 1)), and is repre-
sented by Z

(1)
C .

4.5. Indecomposability of the specialization

Recall the higher Abel-Jacobi maps associated to this situation:

CH2(A, 1) AJ2,1
J
(
H2(A,Q(2))

)

CH2
ind(A, 1) AJ2,1

J
(
H2

tr(A,Q(2))
)

where J(H) := Ext1MHS(Q, H) = HC

{F 0HC+HQ} , and AJ2,1(Z) (Z = (C, φ))
is given by the class of the current 2πi

∫
C(log φ)( · ) + (2πi)2

∫
Γ( · ) (where

∂Γ = φ−1(R−)). We say that Z is regulator indecomposable if AJ2,1(Z) �= 0;
by the diagram, this implies indecomposability.

Proposition 4.5.1. For C̃s very general in the moduli space M2 of genus
2 curves, Z

(1)
C is regulator indecomposable. (Hence for C̃s general, Z

(1)
C is

indecomposable.)

Proof. Z
(1)
C is a multiple of Collino’s cycle; apply the main result of [Co].

By (4.4), 1
2π

∗ZC =: Δ̃ is algebraically equivalent to Δ on the generic fiber.
To describe the precise sense in which

(4.9) ı∗X Δ̃ = 1
2 ı

∗
Xπ

∗ZC = 1
2π

∗
s ı

∗
JZC ∈ W−1CH2(Xs)

remains regulator indecomposable, we look at the spectral sequence
Ea,b

0 = ⊕|I|=a+1Z
2(YI ,−b)# computing CH2(Xs) (d0 = ∂, d1 = δ). Let(

GrW−1CH2(Xs)
)

ind
denote the quotient of

GrW−1CH2(Xs) =
{

ker(d1) ∩ ker(d2) ⊂ ⊕CH2(Yij ,1)
δ(⊕CH2(Yi,1))

}
by the subspace of (equivalence classes of) decomposable cycles; further, S3
acts on Xs, and we let (· · · )S3 denote invariants.

Lemma 4.5.2. We have isomorphisms
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(a)
(
GrW−1CH2(Xs)

)S3

ind
∼= CH2

ind(C̃s × C̃s, 1)S2

and
(b)

(
GrW2 H3(Xs)

)S3

tr
∼= H2

tr(C̃s × C̃s)S2
∼=←

(π(1)
s )∗

H2
tr(Ã).

Proof. First note that CH2
ind(Yij , 1) is zero for all but Y12, Y13, Y14, each of

which has two components (because of q̃1, q̃2). Moreover, we can ignore
blowups, which only change the decomposable cycles (by the projective bun-
dle formula). Looking at C̃s

×k
(k = 2 or 3), there are hyperelliptic involutions

σi on the factors, with quotients Pi permutations of P1 × C×(k−1)
s and fixed

points containing Qi = a permutation of {q̃1, q̃2}×C×(k−1)
s . We may of course

decompose CHa(C̃s
×k

, b) =
∑

χ CHa(C̃s
×k

, b)χ according to the character tho-
rugh which Z×k

2 acts. In fact, writing

Z =
∑
χ

1
2k

∑
σ∈Zk

2

χ(σ)σ∗Z =
∑
χ

Zχ,

we can do this on the level of cycles. If χ(σi) = −1, then Zχ pulls back to zero
on Qi; while if χ(σi) = +1, Zχ is pulled back from Pi. From this, one deduces
that the image of δ merely equates cycles on each pair of components, leaving
us with 3 copies of CH2

ind(C̃s×C̃s, 1) = CH2
ind(C̃s×C̃s, 1)χ12 . Here χ12(σi) = −1

(i = 1, 2), since pullbacks from C̃s × P1 or P1 × P1 are decomposable. Since
this χ12-part restricts to zero on {q̃j} × C̃s and C̃s × {q̃j}, it already lies
in ker(d1) ∩ ker(d2). Taking S3-invariants gives (a). The same proof applies
verbatim for (b).

Proposition 4.5.3. The regulator of ı∗X Δ̃ is nonzero in the Jacobian of
Lemma 4.5.2(b) (which implies it is nonzero also in (a)).

Proof. Follows at once from the commutative diagram

(
GrW−1CH2(Xs)

)S3

ind

AJ

CH2
ind(Ã, 1)

AJ

(π(1)
s )∗

J

((
GrW2 H3(Xs)

)S3

tr
(2)

)
J
(
H2

tr(Ã)(2)
)

(π(1)
s )∗

and the fact that AJ(ı∗JZC) �= 0 on the right-hand side.
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4.6. The normal function

We assume that C extends to a family Can over an analytic disk D (with s its
central point);11 this is necessary in order to consider the normal functions
associated to Zan

C and Δan, which are sections of a family of nonalgebraic
complex tori. We will drop the “an” in what follows. Write t for the coordinate
on D (with t(s) = 0).

Let V denote the VHS over D∗ = D \ {0} associated to {H3(Xt)}t∈D∗ ,
Valg the maximal level-one sub-VHS, and Vtr the quotient. Write W··· for
the corresponding objects for H3(J(Ct)), so that Wtr ↪→

π∗
Vtr with image the

S2-invariants. Denote the normal functions by

νZC ∈ ANF(D∗,W(2)) and νΔ, νΔ̃ ∈ ANF(D∗,V(2))

where νΔ̃ = π∗νZC . These are the sections of J(W(2)) resp. J(V(2)) obtained
via fiberwise AJ of the cycles. We write ν̄ for the projections to ANF(D∗,W(2)

tr )
resp. ANF(D∗,V(2)

tr ); these record fiberwise AJ of the class of the cycles in the
Griffiths group Griff2(Xt) resp. Griff2(J(Ct)). But then since Δt ≡

alg
Δ̃t, we

have ν̄Δ = ν̄Δ̃.
Write (· · · )N to denote ker(N) ⊂ (· · · ). By [GGK, Thm. II.B.9], we have

a well-defined limit mapping

(4.10) lims : ANF(D∗,V(2)) → J(VN
lim)(2)).

Moreover, limsνΔ̃ is given by r∗AJ(ı∗X Δ̃) in view of [GGK, Thm. III.B.5],
where r∗ : H3(Xs) → Vlim is the pullback via the Clemens retraction. We need
an extension of (4.10) to Vtr. Consider the preimage W lim

2 ANF(D∗,V(2)) of
J
(
(W2VN

lim)(2)
)

under (4.10): its intersection W lim
2 ANF(D∗,Valg(2)) has lims

in J
(
(W2VN

alg,lim)(2)
)
, and W2VN

alg,lim is of pure type (1, 1), hence dies in
(GrW2 VN

lim)tr. So (4.10) descends to a well-defined mapping

(4.11) lims : W lim
2 ANF(D∗,Vtr(2)) → J

(
(GrW2 VN

lim)tr(2)
)
.

From (4.9) it is clear that νΔ̃ belongs to W lim
2 ANF(D∗,V(2)) and so we may

apply lims to ν̄Δ̃(= ν̄Δ), to obtain

r∗AJ(ı∗X Δ̃) = 1
2r

∗(π(1)
s )∗AJ(ı∗JZC) = 1

2r
∗(π(1)

s )∗AJ(Z(1)
C ).

11That is, Can → D resp. C → B are analytic resp. algebraic localizations of a
family of genus 2 curves over a complex algebraic curve.
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But AJ(Z(1)
C ) �= 0 in the left-hand side of

(4.12) J
(
H2

tr(A)(2)
)

↪→
(π(1)

s )∗
J
(
{GrW2 H3(Xs)}tr

) ∼=→
r∗

J
(
{GrW2 VN

lim}tr(2)
)

and r∗ is an isomorphism on W2. We conclude:

Theorem 4.1. Let ν̄Δ be the section of J(H3
tr(Xt)) over D∗ associated to the

Gross-Schoen cycle. Then:

(i) lims(ν̄Δ) is nonzero, and given by AJ(Z(1)
C ) via (4.12), where Z

(1)
C ∈

CH2
ind(A, 1) is Collino’s cycle; this implies that

(ii) ν̄Δ is nonzero in ANF(D∗,Vtr(2)), and so
(iii) Δ is nontorsion in Griff2(Xt) for very general t.

We have thus used regulator indecomposability of the specialization of
the modified diagonal to check its generic algebraic inequivalence to zero.

4.7. Second and third specializations of ZC and Δ

By adding a second parameter, we can allow Cs to acquire an additional
node q′, with normalization an elliptic curve Ẽ. Suppose moreover that he
preimages {q̃′1, q̃′2} (of q′) and {q̃1, q̃2} (of q) on Ẽ are such that we have the
equalities q̃′2 − q̃′1 ≡ q̃2 − q̃1 ≡ 2(q̃′1 − q̃1) =: ε of two-torsion classes. Then A

semistably degenerates to E × Ḡm, where E := Ẽ/〈ε〉, and Z
(1)
C specializes

(goes up) to a class Z(2)
C ∈ CH2(E, 2) which may be described as follows. Let

f, g ∈ C(Ẽ)∗ have divisors (f) = 2[q̃2]−2[q̃1] and (g) = 2[q̃′2]−2[q̃′1], and satisfy
f(q̃′i) = 1, g(q̃i) = 1 (i = 1, 2). Then the graph of the symbol {f, g} belongs to
CH2(Ẽ, 2), and Z

(2)
C is the projection to E of {f, g} − {f−1, g−1} ≡ 2{f, g}.

Its regulator can be shown to be nontorsion as in [Co, §7], or by identifying
{f, g} as an Eisenstein symbol [DK, Example 10.1].

Degenerating once more, in such a way that our four 4-torsion points
“remain finite”, Z(2)

C goes up to a cycle Z(3)
C ∈ CH2(C, 3) given parametrically

by (z �→)(
z,−

(
1−z
1+z

)2
,−

(
z−i
z+i

)2
)
−

(
z−1,−

(
1−z
1+z

)−2
,−

(
z−i
z+i

)−2
)
,

with regulator 32iG (cf. (2.19)). This can be directly computed (as in §2.6)12
or done using two different formulas in [DK] (cf. Example 10.1, and “D5” in

12This is done in [GGK, §IV.D], but with a small error as regards branches of
log (which produces an extraneous term).
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§6.3). One may view this as a simple proof that ZC , Z(1)
C , and Z

(2)
C are all

nontorsion.
Here is an easy implication for the cycle Δ and its associated normal func-

tion, if we consider instead a good model for the triple fiber-product of the
trinodal degeneration of C. We get a specialization map from ANF(D∗,Vtr(2))
to C/Q(2) (along the lines of [GGK, (IV.D.3)ff]), under which ν̄Δ goes to
16iG. This corresponds to specializing Δ̃ to the special fiber of the good
model, which is a complicated configuration of rational threefolds, with
GrW0 H3 of rank one.

5. Limits of higher normal functions

In this section we extend Proposition 6.2 of [DK] to the non-semistable set-
ting, and provide a proof, which is omitted in [DK] for even the (semistable)
case presented there. We have found it more natural to work with motivic
cohomology notation here; the reader who finds Chow cohomology notation
more convenient may replace Ha

M(X,Q(b)) by CHb(X, 2b − a)Q. All cycle
groups in this section are taken to have Q-coefficients.

5.1. The Abel-Jacobi map for motivic cohomology of a normal
crossing divisor

Let X π̄→ S be a proper, dominant morphism of smooth varieties, with unique
singular fiber π̄−1(0) = X0 = ∪Yi, and dimX = d, dimS = 1. Assume first
that X0 is a SNCD, so as to be able to make the descent spectral sequence
for HM and HD explicit. To this end, we shall write YI := ∩i∈IYi, Y [�] =
�|I|=�+1YI , jI,j : YI∪{j} ↪→ YI , Y I := ∪j /∈IYI∪{j} ⊂ YI , and 〈i〉I for the
position of i in I.

Recall (from [KL, GGK]) that there are double complexes

Z�,k
Y (p) := ⊕|I|=�+1Z

p
#(YI ,−k) resp.

K�,k
Y (p) := B�,k

Y (p) ⊕ F pD�,k
Y (p) ⊕D�,k−1

Y (p)

:= ⊕|I|=�+1

{
C2p+k

# (YI ;Q(p)) ⊕ F pD2p+k
# (YI) ⊕D2p+k−1

# (YI)
}
,

with d0 = ∂B (Bloch differential) resp. D (cone differential D(α, β, γ) :=
(−dα,−dβ, dγ − β + δα)) and d1 = ∂I =

∑
|I|=�+1

∑
j /∈I(−1)〈j〉I∪{j}(jI,j)∗,

whose associated simple complexes compute motivic resp. Deligne cohomol-
ogy:

H2p−r
M (X0,Q(p)) = H−r(Z•

Y (p), ∂B),
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H2p−r
D (X0,Q(p)) = H−r(K•

Y (p), D).

Briefly, D•
#(YI) := N •{Y I}(YI) denotes normal currents of intersection type,

C•
#(YI ;Q(p)) := I•{Y I}(YI) ⊗Z Q(p) the locally integral currents contained

therein, and Zp
#(YI , •) := Zp

R(YI , •)Y I ⊂ Zp(YI , •) the quasi-isomorphic sub-
complex of higher Chow precycles in (real) good position with respect to YI .
(For background on currents of intersection type, the reader may consult the
treatments in [GGK, §III.A] and [KL, §8].)

The KLM formula [KLM, KL], which takes the form

W �→ (−2πi)p+k
(
(2πi)−kTW ,ΩW , RW

)
,

provides a morphism of double complexes Z�,k
Y (p) → K�,k

Y (p) which induces
the Abel-Jacobi map13

AJp,rX0
: H2p−r

M (X0,Q(p)) → H2p−r
D (X0,Q(p)) ∼=

r>0
Jp,r(X0).

Given

Z = {Z [�]}�≥0 = {Z [�]
I }�≥0,|I|=�+1 ∈ ker(∂B) ⊂ ⊕�≥0Z

�−�−r
Y (p) = Z−r

Y (p),

there exist Ξ[�] ∈ F pD−r−1
Y (p), Γ[�] ∈ B−r−1

Y (p) such that{
(−2πi)p−�

(
(2πi)�TZ[�] ,ΩZ[�] , RZ[�]

)}
�≥0

− d
{
(−2πi)p−�

(
(2πi)�Γ[�],Ξ[�], 0

)}
�≥0

=
{
(−2πi)p−�

(
0, 0, RZ[�] + Ξ[�] − (2πi)�δΓ[�]

)}
�≥0

∈ ker(d) ⊂ D−r−1
Y (p)

yields a class ÃJ(Z) ∈ H2p−r−1(X0,C) projecting to

AJ(Z) ∈ Jp,r(X0) = H2p−r−1(X0,C)
F pH2p−r−1(X0,C) + H2p−r−1(X0,Q(p))

(5.1) ∼=
{
F−p+1H2p−r−1(X0,C)

}∨
/

H2p−r−1(X0,Q(p)).

Now consider the double complex

[F q]DY
�,k(−p) := ⊕|I|=�+1[F d+q−�−1]D2(d−p−�)−k−1(YI)

13We concentrate on the r > 0 case since r = 0 has been treated in [GGK].
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with d0 = d, d1 = Gy := 2πi
∑

|I|=�(−1)〈i〉I (jI\{i},i)∗, which computes homol-
ogy:

(5.2) H−r

(
F−p+1DY

• (−p)
)

= F−p+1H2p−r−1(X0,C).

By [GGK, Prop. III.A.13], (5.2) can be represented by elements of the form

ω = {ω[�]}�≥0 ⊂ ⊕�≥0F
d−p−�A2(d−p)−�+r−1(Y [�])〈log(∪|I|=�+1Y

I)〉,

and then (−2πi)r−p〈ÃJ(Z), ω〉 =

(5.3)
∑
�≥0

(∫
Y [�]

RZ[�] ∧ ω[�] − (2πi)r+�
∫

Γ[�]
ω[�]

)
.

The integrals here converge by [GGK, Lemma III.A.6]. In the event that

Z = {Zi} ∈ Zp
#(X0, r) := ker(∂B) ∩ Z0,−r

Y (p),

we can arrange to have Γ[�] = 0 ∀� > 0 [GGK, III.A.19], reducing (5.3) to

(5.4) (−2πi)r−p〈ÃJ(Z), ω〉 =
∑
i

(∫
Yi

RZi ∧ ωi − (2πi)r
∫

Γi

ωi

)
.

5.2. Limits of higher normal functions in the semistable setting

Turning to normal functions, we begin with the morphisms

X ∗ := X\X0
π→ S\{0} =: S∗ j

↪→ S,

and write V = R2p−r−1π∗Q(p), V (resp. Ve) for the corresponding weight-
(−r − 1) VHS (resp. its canonical extension). Below we will abuse notation
by writing V (resp. Ve) also for its sheaf of sections V⊗OΔ∗ (resp. Ṽ⊗OΔ) for
a disk Δ ⊂ S about {0}. Denote the LMHS at {0} by

(
Ṽ0, F

•
lim,W•

)
= Vlim,

with the monodromy logarithm N = log(T ) and Ṽ = e−
log(s)
2πi NV. (A general

reference for the canonical extension and degenerations of Hodge structure
may be found in [PS, §11.1].)

By a higher normal function ν ∈ ANF r
S∗(V), we shall mean an admissible

VMHS of the form

(5.5) 0 → V → Eν → QS∗(0) → 0 ;
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the action of N extends to the underlying local system Eν (which yields Ẽν ,
Elim

ν , Eν,e). Write ı0 : {0} ↪→ S and ı : X0 ↪→ X . Applying the composition

AVMHS(S∗) Rj∗→ DbMHM(S) ı∗0→ DbMHS

of exact functors to V yields (up to quasi-isomorphism) the complex K• :={
V lim

0
N→ V lim

0 (−1)
}
. Therefore, applying it to (5.5) yields a diagram

0

HomMHS
(
Q(0), H1K•)

ANFr
S∗(V)

sing0

ı∗0Rj∗
Ext1DbMHS (Q(0),K•)

ker(sing0) lim0
Ext1MHS

(
Q(0), H0K•) .

0

defining the invariants sing0 and lim0. Of course, we may also view ν as a
(horizontal, holomorphic) section of the Jacobian bundle J (V) = V/(F0⊕V)
over S∗, by taking the difference of lifts νQ(s) ∈ Eν,s resp. νF (s) ∈ F 0Eν,s of
1 ∈ Q(0) in Vs. In this context, admissibility means that we also have (for
some disk14 Δ ⊂ S about 0):

(a) a lift νF of 1 ∈ QS(0) to Eν,e with νF |Δ∗ in F0Eν ; and
(b) a lift νQ of 1 to Ẽν,0 satisfying NνQ ∈ W−2Ṽ0.

One then has

sing0(ν) = [NνQ] ∈ HomMHS

(
Q(0), V lim

0
NV lim

0
(−1)

)
∼= H1(Δ∗,V)(0,0).

If this vanishes, then νQ may be chosen in ker(N), so that ν̃ := νQ − νF gives
a well-defined section of Ve (over Δ) with ∇(νQ − νF )|Δ∗ ∈ Γ(Δ∗,F−1V) by

14We will freely shrink this as needed without further comment.
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horizontality. Using Res0(∇) = −2πiN , we find that

l̃im0ν := ν̃(0) = νQ − νF (0) ∈ ker
{
V lim

0
N→ V lim

0
F−1

}
= ker(N) + F 0V lim

0

which projects to compute lim0ν ∈ Ext1MHS(Q(0), ker(N)).
By [GGK, III.B.7], a holomorphic section ω(s) ∈ Γ

(
S, (F1V∨)e

)
of the

canonical extension may be represented by a drel-closed C∞ relative log〈X0〉
(2(d− p) + r − 1)-form on XΔ, and we write lim0ω for its restriction to
(F1V∨)e,0. Referring to the (dual) portions

→ H2p−r−1(X0)(p)
r∗→ H2p−r−1

lim (Xt)(p)
N→ H2p−r−1

lim (Xt)(p− 1) →,

and

→ H
2(d−p)+r−1
lim (Xt)(d− p) N→ H

2(d−p)+r−1
lim (Xt)(d− p− 1)

r∗→ H2p−r−1(X0)(−p) →

of the Clemens-Schmid sequence, the pullbacks ωi (and their iterated residues
ωI on substrata) define a representative (as described after (5.2)) of

r∗(lim0ω) =: ω(0) ∈ F−p+1H2p−r−1(X0,C).

Note that
〈
l̃im0ν, lim0ω

〉
= lims→0〈ν̃(s), ω(s)〉 ∈ C.

To construct a normal function with sing0(ν) = 0, let z ∈ ker(∂B) ⊂
Zp

#(X , r) be a representative of a class Ξ ∈ CHp(X , r) meeting all YI prop-
erly, and define z0 = {Zi} ∈ Zp

#(X0, r) by Zi := z · Yi. This represents ı∗Ξ ∈
H2p−r

M (X0,Q(p)), where ı : X0 ↪→ X . In a neighborhood XΔ := π̄−1(Δ) of X0,
z (hence Tz) meets all fibers properly, and (since H2p−r(XΔ) ∼= H2p−r(X0))
we may choose an integral current Γ̃ on XΔ with ∂Γ̃ = Tz meeting the Yi and
all fibers properly. Clearly then R̃z := Rz − (2πi)rδΓ̃ is a closed current on
XΔ, of intersection type with respect to the YI . Setting Γi := Γ̃ · Yi, we have
by (5.4) that the restriction of R̃z to the Yi computes a lift to H2p−r−1(X0,C)
of AJX0(ı∗Ξ). Moreover, over Δ∗ the normal function ν(s) = AJXs(Ξs) asso-
ciated to Ξ∗ ∈ CHp(X ∗, r) is computed by the fiberwise restrictions

[
R̃z|Xs

]
∈ H2p−r−1(Xs,C) � Jp,r(Xs) ∼=

{
F d−pH2(d−p)+r−1(Xs,C)

}∨

periods .
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Putting everything together, we have

〈l̃im0ν, lim0ω〉 = lim
s→0

∫
Xs

R̃z|Xs ∧ ω(s)

=
∑
i

∫
Yi

R̃z|Yi ∧ ωi

= 〈 ˜AJX0(ı∗Ξ), ω(0)〉

= 〈r∗ ˜AJX0(ı∗Ξ), lim0ω〉 .

The second equality is the crucial one; it comes about by noting that R̃z ∧ ω

is of X0-intersection type, hence the 0-current (π̄|XΔ)∗
(
R̃z ∧ ω

)
is of {0}-

intersection type. Since it is also holomorphic on Δ∗, it follows that it is
holomorphic (hence continuous) on Δ. So we have proved that

(5.6) lims→0AJXs(Ξs) = J(r∗)AJX0(ı∗Ξ),

for z as above and XΔ → Δ semistable.
Remark 5.1. It is the SSD case which most clearly exhibits the phenomenon of
“going up in K-theory in the limit”. Recall from §3.2 that the semi-simplicial
structure of X0 gives rise to a “weight” filtration W• on H2p−r

M (X0,Q(p)), with
W−b consisting of the classes which admit a representative in ⊕�≥bZ

�,−�−r
Y (p),

and GrW
−b a subquotient of CHp(Y [b], r + b). So the degree of K-theory “goes

up” if ı∗Ξ ∈ W−b for b > 0.

5.3. Limits in the general setting

To state the more general result, we now drop the SSD assumption on π̄,
hence the assumption of unipotency of V at {0} (i.e. of T ). One still has
pullback and AJ maps

CHp(X , r) ı∗→ H2p−r
M (X0,Q(p))

AJp,r
X0→ Jp,r(X0),

where Jp,r(X0) := Ext1MHS(Q(0), H2p−r−1(X0,Q(p))). Write T = TssTun for
the Jordan decomposition, κ for the order of Tss, s for the coordinate on Δ,
and N := log Tun. Note that ker(N) (= ker(T κ − I) ) � ker(T − I), unless
κ = 1. The portions of Clemens-Schmid

→ H2d−2p+r+1(X0)(−d) ı∗ı∗→ H2p−r−1(X0)
r∗→ H2p−r−1

lim (Xs)
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and

H2p−r−1
lim (Xs)(−1) r∗→ H2d−2p+r−1(X0)(−d) ı∗ı∗→ H2p−r+1(X0) →

remain exact sequences of MHS, with im(r∗) = H2p−r−1
lim (Xs) := ker(T − I) ⊆

H2p−r−1
lim (Xs). (This is a sub-MHS although T − I itself is not a morphism of

MHS from H2p−r−1
lim to H2p−r−1

lim (−1).) As above, we write V for the VHS and
J (V) for the family of generalized intermediate Jacobians.

Let σ : Ŝ∗ → S∗ be a cyclic cover extending the map t �→ tκ(= s) from
Δ∗ → Δ∗, with μ ∈ Aut(Ŝ∗/S∗) a generator, and V̂ resp. V̂ the (unipo-
tent) pullback variation resp. local system. We have the canonical extension
J (V̂e) := V̂e/{F̂0

e + j∗V̂}, with fiber over {0} J p,r
lim := V̂e,0/{(j∗V̂)0 + F̂0

e,0},
and write

J(r∗) : Jp,r(X0) → Jp,r
lim

for the map induced by r, with image Jp,r
inv := Ext1MHS(Q(0), ker(T − I)).

Moreover, there is a diagram

X0

ı

X̂ ′
0

ı̂′

P0 Q0
X̂0

ı̂

X
π

X̂ ′

π̂′

Q̄P̄
X̂

π̂

S Ŝ
σ̄

Ŝ

with X̂Δ := π̂−1(Δ) → Δ semistable, X̂ ′, X̂ smooth, and X̂ ′\X̂ ′
0 = X̂ \X̂0 =

X̂ ∗
0 := X ∗ ×σ Ŝ. (That is, Q̄ restricts to the identity on X̂ ∗; write P for the

restriction of P̄ to X̂ ∗ → X ∗.) Note that we have H∗
lim(X̂t) ∼= H∗

lim(Xs). The
natural map

J(r̂∗) : Jp,r(X̂0) → Jp,r
lim

has image Ĵp,r
inv := Ext1MHS(Q(0), ker(T κ − I)).

By definition of admissibility, we have a pullback map

σ∗ : ANFS∗(V) → ANFŜ∗(V̂)
ν �−→ ν̂ ,

and if sing0(ν) := sing0(ν̂) = 0, we define lim0ν := lim0ν̂ ∈ Ĵp,r
inv. The following

result extends Proposition 6.2 of [DK]:
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Theorem 5.2. Let Ξ∗ ∈ CHp(X ∗, r) (r > 0) be given, with

clp,r(Ξ∗) ∈ HomMHS(Q(0), H2p−r(X ∗,Q(p)))

and
νΞ∗(s) := AJXs(Ξs) ∈ ANFS∗(V),

where Ξs := ı∗Xs
(Ξ∗).

(a) Suppose

ResX0 (clp,r(Ξ∗)) = 0 ∈ HomMHS
(
Q(0), H2(d−p)+r−1(X0,Q(−d))

)
.

Then sing0(νΞ∗) = 0, and lim0(νΞ∗) lies in Jp,r
inv.

(b) If Ξ∗ is the restriction of Ξ ∈ CHp(X , r), then we have

lim0(ν) = J(r∗) (AJX0(ı∗Ξ)) .

Proof. (a) Set Ξ̂∗ := P ∗(Ξ∗). The assumption implies that clp,r(Ξ∗) lifts to

ξ ∈ HomMHS(Q(0), H2p−r(X ,Q(p))),

and then clp,r(Ξ̂∗) lifts to Q̄∗P̄
∗ξ, hence has trivial ResX̂0

. It follows at once
that (sing0(νΞ∗) =) sing0(νΞ̂∗) = 0, in view of the diagram

ANFŜ∗(V̂)

sing0

[·]
H1(Ŝ∗, V̂)

|Δ
H1(Δ∗, V̂)

CHp(X̂ ∗, r) clp,r
H2p−r(X̂ ∗)

|Δ
H2p−r(X̂ ∗

Δ) Res
H2p−r+1

X̂0
(X̂ ) .

Using admissibility, νΞ̂∗ lifts to a section of J (V̂e) with value lim0(νΞ̂∗) ∈ Ĵp,r
inv

at 0.
Now μ lifts to M ∈ Aut(X̂ ∗/X ∗), which evidently acts on (j∗V̂)0 as

an automorphism of MHS. That is, the restriction of T to ker(T κ − I) ⊂
H2p−r−1

lim is MHS-compatible, and so T acts on Ĵp,r
inv with fixed locus Jp,r

inv.
Since νΞ̂∗ = σ∗νΞ∗ , we have νΞ̂∗ = μ∗νΞ̂∗ and taking lim0 on both fibers gives
lim0(νΞ̂∗) = T lim0(νΞ̂∗).

(b) Write Ξ̂′ := P̄ ∗Ξ, Ξ̂ := Q̄∗Ξ̂′, Ξ̂′′ := Q̄∗Ξ̂, Ξ0 := ı∗Ξ, Ξ̂′
0 := (̂ı′)∗Ξ̂′,

etc.; note that P ∗
0 Ξ0 = Ξ̂′

0, Q∗
0Ξ̂0 = Ξ̂′′

0, and Ξ̂′ − Ξ̂′′ = ı̂′∗ξ0 for some ξ0 ∈
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CHp−1(X̂ ′
0, r). We have the motivic homology AJ map AJX̂′

0 : CHp−1(X̂ ′
0, r) →

HomMHS(Q(0), H2(d−p)+r+1(X0,Q(−d))), and using functoriality of AJ

J(P ∗
0 ) (AJX0(Ξ0)) = AJX̂0

(Ξ̂′
0)

= AJX̂0
(Ξ̂′′

0) + AJX̂0
((̂ı′)∗ı̂′∗ξ0)

= J(Q∗
0)

(
AJX̂0

(Ξ̂0)
)

+ J ((̂ı′)∗ı̂′∗) AJX̂′
0(ξ0).

Since (r̂′)∗ ◦ (̂ı′)∗ı̂′∗ = 0, P0 ◦ r̂′ = r, and Q0 ◦ r̂′ = r̂, applying J((r̂′)∗) and
using (5.6) gives

J(r∗) (AJX0(Ξ0)) = J(r̂∗)
(
AJX̂0

(Ξ̂0)
)

= lim0(νΞ̂∗) = lim0(νΞ∗).

Remark 5.3.1. A similar result holds for r = 0; details are left to the reader.

5.4. Limits of truncated normal functions

Continuing in the setting of §5.3, recall that the fiber over {0} of the canonical
extension (V∨)e decomposes as a direct sum of generalized eigenspaces Eλ

for Ress=0(∇), with eigenvalues in [0, 1). The natural morphism σ̄∗(V∨)e
ρ→

V̂∨
e has kernel the skyscraper sheaf ⊕λ∈(0,1)Eλ over {0}. We may use the

composition

Γ (Δ, (V∨)e)
lim0→ (V∨)e,0

ρ|0→ V̂∨
e,0

∼= H
2(d−p)+r−1
lim (X̂t)(d− p− 1)

r̂′∗→ H2p−r−1(X̂ ′
0)(−p) (P0)∗→ H2p−r−1(X0)(−p)

to define ω(0) ∈ H2p−r−1(X0,C) by

ω(s) �→ lim0ω �→ lim0(σ̄∗ω) �→ (σ̄∗ω)(0) �→=: ω(0).

Note that a section of F1(V∨)e lands in F−p+1H2p−r−1(X0,C). From Theorem
5.2(b) we have at once the
Corollary 5.3. Given ω(s) ∈ Γ(Δ,F1(V∨)e) and Ξ ∈ CHp(X , r), there exist
lifts ν̃ of νΞ∗ to Ve that make FΞ,ω(s) := 〈ν̃(s), ω(s)〉 holomorphic and single-
valued on Δ. For any such lift, we have

(5.7) lim
s→0

FΞ,ω(s) ≡ 〈AJX0(ı∗X0Ξ), ω(0)〉

modulo periods of ω(0) over H2p−r−1(X0,Q(p)).



340 P. Luis del Ángel R. et al.

Of course, this limiting value may lie in C modulo some horrible subgroup
with lots of generators. This corollary is used most successfully when one has
a splitting

H2p−r−1(X0)(p)
η
� Q(p) [dually Q(0)

η∨

↪→ H2p−r−1(X0)]

of the MHS on the singular fiber, with ω(0) = η∨(1): then (5.7) becomes

lim
s→0

F (s) ≡ J(η)
(
AJX0(ı∗X0Ξ)

)
∈ J(Q(p)) ∼= C/Q(p).

The tempered Laurent polynomials of [DK] give one method of construct-
ing such splittings, for maximal unipotent degenerations of Calabi-Yau vari-
eties.15

Example 5.4.1. Consider the Fermat quintic family defined by

f(t,X) := t
4∑

i=0
X5
i −

4∏
i=0

Xi = 0

in P4 (t in a small disk about 0). Let XΔ be its semistable reduction. (See
[GGK] for an explicit description; X0 is a union of 4 P3’s blown up along Fer-
mat quintic curves.) Then the standard residue (3, 0)-form {ωt}t∈Δ produces
a splitting Q(0) ↪→ H3(X0) over {0}, essentially because f(t,X)/

∏4
i=0 Xi is

tempered [DK]. In [GGK], this was used to study limits of usual normal
functions (paired with ω) in C/Q(2).

Of course, there are many cases where H2p−r−1(X0) (or at least its image
by r∗) is Q(0), and here the Corollary applies automatically; for examples,
see [JW] and [dS].

6. Application to a conjecture from topological string theory

In this section we apply Theorem 5.2(b) (or (5.6)) to an an algebraic K2-class
on a 2-parameter family X of genus-2 curves. The fibers Xz1,z2 of our family
are obtained by compactifying

Yz1,z2 := {φ(X,Y) = 0} ⊂ (C∗)2

15In the special case where V is a VHS of CY type, and ω is a section of the top
Hodge filtrand, FΞ,ω is called a truncated normal function.
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in the toric Fano surface PΔ associated to the Newton polytope Δ = Δ(φ),
where

φ(X,Y) := x0 + x1X + x2Y + x3X−1Y−1 + x4X−2Y−2

and
z1 = x1x2x3

x3
0

, z2 = x0x4

x2
3

.

For the total space X (resp. Y), we take the union of the Xz (resp. Yz) for
z ∈ (P1

z1\{z1 = 0})×(P1
z2\{z2 = 0}); note that the base contains the “conifold

point”

z(0) := (z(0)
1 , z

(0)
2 ) :=

(
− 1

25 ,
1
5

)
.

(This is actually an ordinary double-point of the conifold curve.) In effect,
we will be applying the Theorem to a 1-parameter slice through this point,
which is a 1-parameter semistable degeneration.

We shall begin by describing two vanishing cycles α1, α2 ∈ H1(Xz,Z),
corresponding respectively to z1 = 0 and z2 = 0. Fix a small ε > 0. For
the cycle α1 vanishing at z1 = 0, we reason that z1 → 0 with z2 constant
corresponds to x1 → 0 (or x2 → 0); let α1 be the cycle pinched to the node
at x1 = 0. If we make the coordinate change u = X−1Y, v = Y−1, then

φ = x0 + φ1 := x0 +
{
x1u

−1v−1 + x2v
−1 + x3uv

2 + x4u
2v4

}
and (for very small |x1|, |x2|) the image of α1 under Tube : H1(X) →
H2(PΔ\X) (dual to 2πiRes) is given by τ1 = {|u| = |v| = ε}. Similarly,
z2 → 0 and z1 constant corresponds to x4 → 0. Taking α2 to be the cycle
pinched to the node there, the coordinate change ũ = X3Y2, ṽ = X−2Y−1

makes

XYφ = ũṽφ = x3 + φ2 := x3 +
{
x0ũṽ + x1ṽ

−1 + x2ũ
3ṽ4 + x4ũ

−1ṽ−1
}

;

and (for very small |x4|, |x1|) Tube(α2) = τ2 := {|ũ| = |ṽ| = ε}. It should
be emphasized that both cycles vanish at z = 0, but (as we describe below)
neither cycle vanishes at z = z(0).

By rescaling φ,X,Y, ε, etc., we may both retain the descriptions
Tube(αi) = τi and have x1 = x2 = x4 = 1, so that φ is tempered (and
z1 = x3/x

3
0, z2 = x0/x

2
3). This implies that the symbol {X,Y} ∈ CH2(Y , 2)

lifts to a class Ξ ∈ CH2(X , 2). The images of the Ξz := ı∗Xz
Ξ under the

Abel-Jacobi maps

AJ : CH2(Xz, 2) → H1(Xz,C/Q(2))
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for

z ∈ U :=
{
(z1, z2) | 0 < |z1| < 1

25 , 0 < |z2| < 1
5
}

may be computed as in [DK, §4.2] for elliptic curves, suitably modified for
genus 2 and two vanishing cycles. We now briefly sketch the procedure, using
the regulator current notation of [DK, §1].16

Referring to the toric coordinate changes above, note the equality of
symbols {u, v} = {X,Y} = {ũ, ṽ} in K2(G2

m), hence in CH2(Yz, 2) (for Yz

smooth). By temperedness,17 for sufficiently small nonzero |z1|, |z2| we have

1
(2πi)2

∫
τ1

R{φ, u, v} ≡
Q(1)

1
2πi

∫
α1

R{u, v} ≡
Q(1)

1
2πi

∫
α1

R{X,Y}

= 1
2πiAJ(Ξz)(α1) ;

and similarly

1
(2πi)2

∫
τ2

R{ũṽφ, ũ, ṽ} ≡
Q(1)

1
2πi

∫
α2

R{ũ, ṽ} ≡
Q(1)

1
2πiAJ(Ξz)(α2) .

Moreover, for small arg(z1) and arg(z2) we have Tφ ∩ τ1 = ∅, and so R{φ, u,
v} = log φdu

u ∧ dv
v . Noting that z2

1z2 = x−5
0 , this yields

1
2πiAJ(Ξz)(α1) ≡

Q(1)
1

(2πi)2

∫
τ1

log(x0 + φ1)
du

u
∧ dv

v
(6.1)

≡
Q(1)

log(x0) −
∑
n>0

(−1)nx
−n
0
n

[(
x1u

−1v−1 + x2v
−1 + x3uv

2 + x4u
2v4

)n]
0

(6.2)

= −1
5 log(z2

1z2) −
∑

m,r≥0

′ (5m + 3r)!(−z1)r(−z2
1z2)m

((2m + r)!)2m!r!(5m + 3r) ,(6.3)

16In brief, we have R{f, g} = log(f)dgg − 2πi log(g)δTf
and R{f, g, h} =

log(f)dgg ∧ dh
h + 2πi log(g)dhh · δTf

+ (2πi)2 log(h)δTf∩Tg , where Tf = f−1(R<0)
(oriented from −∞ to 0) and log(f) is the (discontinuous) branch with imaginary
part in [−π, π).

17Otherwise there would be a contribution from Resv=0R{φ, u, v}, and not just
the one shown (from Resφ=0); the detailed argument is exactly as in [DK, §4.2].
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where [ ]0 takes the constant term of a Laurent polynomial, and
∑′ means

to omit (m, r) = (0, 0). For α2, the analogous computation is

1
2πiAJ(Ξz)(α2) ≡

Q(1)
1

(2πi)2

∫
τ2

log(x3 + φ2)
dũ

ũ
∧ dṽ

ṽ
(6.4)

≡
Q(1)

log(x3) −
∑
n>0

(−1)nx
−n
3
n

[(
x0ũṽ + x1ṽ

−1 + x2ũ
3ṽ4 + x4ũ

−1ṽ−1
)n]

0

(6.5)

= −1
5 log(z1z

3
2) −

∑
m,r≥0

′ (5m + 2r)!(−z1z
3
2)m(−z2)r

(3m + r)!r!(m!)2(5m + 2r) .(6.6)

The series in (6.3) and (6.6) converge absolutely on U , hence compute
1

2πiAJ(Ξz)(αi) (i = 1, 2) there, and can be shown to converge to their limit at
z = z(0). Write Ni = log Ti for the monodromy logarithms about the 2 local
components of the discriminant locus at z(0), and N := N1 + N2. Then α1
and α2 generate coker(N) ∼= (ker(N))∨, hence (6.3) and (6.6) are sufficient
to capture the limit of the normal function ν associated to Ξ at z(0).

Turning to the right-hand side of (5.6), we may write the formula for the
limiting curve Xz(0) as

(6.7) 0 = X + Y + X−2Y−2 − 5X−1Y−1 + 5.

The two singularities of this curve are

q1 = (−ϕ,−ϕ) , q2 = (−ϕ̃,−ϕ̃) ,

where ϕ := 1
2(1 +

√
5) and ϕ̃ := 1

2(1−
√

5). The cycles γ1, γ2 passing through
these nodes
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are the images of α1 and α2 in H1(Xz(0)) under r∗. Consider the two uni-
formizations of Xz(0) by P1:

(6.8) X1(t) = −ϕ

(
1 − ζ2

t

)3

(
1 − 1

ζ2t

)2 (
1 − 1

t

) , Y1(t) = −ϕ

(
1 − ζ2t

)3(
1 − t

ζ2

)2
(1 − t)

,

and

(6.9) X2(t) = −ϕ̃

(
1 − ζ

t

)3

(
1 − 1

ζt

)2 (
1 − 1

t

) , Y2(t) = −ϕ̃
(1 − ζt)3(

1 − t
ζ2

)2
(1 − t)

,

where ζ := e
2πi
5 . The first one t �→ (X1(t),Y1(t)) maps t = 0,∞ to q1; the

second maps 0,∞ �→ q2: so they send the path from “−∞ to 0” to γ1 resp.
γ2. This allows us to “plug in” to the formula from [DK, §6.2], which assigns
a divisor N on P1\{0,∞} to each uniformization. In the present case,

N2 = −6[ζ] + 9[ζ2] + 4[ζ3] + 4[ζ4]

and
N1 = −6[ζ2] + 9[ζ4] + 4[ζ] + 4[ζ3].

Working modulo the scissors congruence relations

[ξ] + [ 1ξ ] = 0, [ξ] + [ξ̄] = 0, [ξ] + [1 − ξ] = 0, and

[x] + [y] + [ 1−x
1−xy ] + [1 − xy] + [ 1−y

1−xy ] = 0,

we have

(6.10)

⎧⎨⎩ N1 ≡ −10[ζ2] + 5[ζ4] ≡ 10[−ζϕ̃] ≡ 10[ζϕ]

N2 ≡ −10[ζ] + 5[ζ2] ≡ 10[−ζ3ϕ] ≡ 10[eπi
5 ϕ] .

But according to [loc.cit.] we then have (using (6.10))

Re
(

1
2πiAJ(Ξz(0))(γ1)

)
= 1

2πD2(N1) = 5
πD2(ζϕ) ,(6.11)

Re
(

1
2πiAJ(Ξz(0))(γ2)

)
= 1

2πD2(N2) = 5
πD2(e

πi
5 ϕ) .(6.12)
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Here Ξz(0) denotes the pullback motivic cohomology class on Xz(0) , and
D2(z) = Im(Li2(z)) + arg(1 − z) log |z| is the Bloch-Wigner function.

By (5.6), we have that (6.11) [resp. (6.12)] is equal to the real part of the
z → z(0) limit of (6.3) [resp. (6.6)], which yields precisely the relations

(6.13) 5
πD2(e

2πi
5 ϕ) = log(5) −

∑
m,r≥0

′ (−1)m(5m + 3r)!
((2m + r)!)2m!(5m + 3r)55m+2r

and

(6.14) 5
πD2(e

πi
5 ϕ) = log(5) −

∑
m,r≥0

′ (−1)r(5m + 2r)!
(3m + r)!r!(m!)2(5m + 2r)55m+r

conjectured by Codesido, Grassi and Marino [CGM, (4.106)] as a test (for the
mirror C3/Z5 geometry) of the correspondence between spectral theory and
enumerative geometry proposed in [GHM].
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