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We continue our investigation of the modular graph functions and
string invariants that arise at genus-two as coefficients of low en-
ergy effective interactions in Type II superstring theory. In previ-
ous work, the non-separating degeneration of a genus-two modular
graph function of weight w was shown to be given by a Laurent
polynomial in the degeneration parameter t of degree (w,w). The
coefficients of this polynomial generalize genus-one modular graph
functions, up to terms which are exponentially suppressed in t as
t → ∞. In this paper, we evaluate this expansion explicitly for the
modular graph functions associated with the D8R4 effective inter-
action for which the Laurent polynomial has degree (2, 2). We also
prove that the separating degeneration is given by a polynomial in
the degeneration parameter ln(|v|) up to contributions which are
power-behaved in v as v → 0. We further extract the complete, or
tropical, degeneration and compare it with the independent cal-
culation of the integrand of the sum of Feynman diagrams that
contributes to two-loop type II supergravity expanded to the same
order in the low energy expansion. We find that the tropical limit of
the string theory integrand reproduces the supergravity integrand
as its leading term, but also includes sub-leading terms propor-
tional to odd zeta values that are absent in supergravity and can
be ascribed to higher-derivative stringy interactions.
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1. Introduction

The low energy dynamics of string theory may be described in terms of an
effective action which encodes the influence of massive string states upon the
massless sector. The effective action admits an expansion in powers of space-
time derivatives or, equivalently, in powers of the momenta of the massless
states. The expansion contains the supersymmetrized Einstein–Hilbert ac-
tion as its leading term, plus an infinite series of higher derivative effective
interactions. The coefficients of the effective interactions are functions of
the scalar fields that are associated with geometrical data of the target-
space and are referred to as target-space moduli. These coefficients exhibit
a rich mathematical structure. While relatively little is known about their
exact dependence on the target-space moduli, precise statements can be
made order by order in a variety of further expansions at asymptotic values
of the target-space moduli. String perturbation theory uses an expansion in
powers of the string coupling gs, which is related to the constant value of
the dilaton field.

The low energy effective action may be extracted from superstring scat-
tering amplitudes. In closed superstring perturbation theory an amplitude
is given by an infinite power series in gs where the coefficient of g−2+2h

s

for h ≥ 0 is an integral over the moduli space of compact super-Riemann
surfaces of genus h. Many features of superstring amplitudes have been es-
tablished to all orders in gs, most notably the absence of the ultraviolet
divergence and anomaly problems that plague perturbative quantum field
theories containing gravity. However, explicit formulas for the amplitudes
have been obtained so far only at low orders in the gs expansion. Our in-
terest in this paper will be in the simplest non-trivial Type II amplitude,
namely for the scattering of four gravitons, whose explicit form is known
only for h ≤ 2. The low energy expansion of the four-graviton amplitude is
given by a sum over k ≥ 0 of effective interactions which are schematically
of the form D2kR4, where D and R respectively stand for the covariant
derivative and the Riemann tensor of the target-space, suitably contracted.
The coefficients of the effective interactions will be described next.

The genus-zero (h = 0) term is the tree-level contribution. Its leading
low energy expansion reproduces the amplitudes arising in classical Einstein
gravity. The coefficients of the higher order effective interactions in the low
energy expansion of the four-graviton amplitude are polynomials in odd Rie-
mann zeta values with rational coefficients. More generally, the coefficients
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in the expansion of the tree-level amplitude with more than four gravitons
are single-valued multiple zeta values [1, 2].

The genus-one (h = 1) four-graviton amplitude involves an integral over
the moduli space H1/SL(2,Z) of complex tori Σ (where H1 is the Poincaré
upper half plane) and an integral over four points on Σ, corresponding to
the four gravitons [3]. The coefficients of the effective interactions in the
low-energy expansion of the integral over the points only, without inte-
grating over H1/SL(2,Z), are SL(2,Z)-invariant modular graph functions
on H1 that were recently studied in some detail in [4, 5, 6, 7]. Although
their structure still remains to be fully elucidated, it is clear that modu-
lar graph functions (and their generalizations to modular forms) generalize
the multiple-zeta values that arise in the tree-level expansion, and satisfy
algebraic identities that generalize those satisfied by multiple zeta values
[8, 9, 10] (see also [11, 12, 13, 14, 15] for further studies).

Much less is known about the coefficients of the low-energy expansion
of higher-genus (h ≥ 2) amplitudes in superstring perturbation theory. The
genus-two four-graviton amplitude was evaluated explicitly in [16, 17, 18,
19] for Type II and Heterotic strings by projecting the moduli space of
super Riemann surfaces to that of Riemann surfaces. The Type II amplitude
was reproduced in the pure spinor formulation and extended to include
fermions in [20, 21]. The structure of the genus-two four-graviton amplitude
generalizes that of its genus-one counterpart. It is given by an integral over
the moduli spaceM2 ≈ H2/Sp(4,Z) of genus two compact Riemann surfaces
Σ (where H2 is the Siegel upper half space of rank two, parametrized by the
period matrix Ω) of an integral over four points on Σ, again corresponding
to the four gravitons. The low-energy expansion of the integral over the
points only, without integrating overM2, now gives rise to Sp(4,Z)-invariant
functions on H2 which, by analogy with the genus-one case, are referred to
as genus-two modular graph functions [22].

In the low energy expansion of the genus-two four-graviton amplitude in
Type II superstrings, the effective interactions R4 and D2R4 have vanishing
coefficients. The first non-zero term is D4R4, whose coefficient is constant on
H2 and matches the predictions of S-duality in Type IIB string theory [23].
The next order term is the effective interaction D6R4. Its coefficient is a non-
trivial Sp(4,Z)-invariant function ϕ on H2, which was shown in [24] to be
proportional to the genus-two Kawazumi-Zhang invariant [25, 26] (see also
[27, 28]). The invariant ϕ satisfies a Laplace eigenvalue equation on H2 [29],
which was later used in combination with known leading asymptotics [30, 31]
to establish its representation as a generalized Borcherds-type theta-lift [32].
The latter provides the full asymptotic expansion near the boundary of
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moduli space M2, including all exponentially suppressed terms. The integral

of ϕ(Ω) over M2 can be computed using the eigenvalue equation and also

matches the S-duality prediction [29].

The genus-two contribution to higher order effective interactions, sche-

matically of the form D2kR4 for k ≥ 4, may also be derived from the four-

graviton amplitude and, as was pointed out in [24], produces further and

novel genus-two Sp(4,Z)-invariant modular graph functions on H2. The goal

of previous work in [22], of this paper, and of future work, is to gain un-

derstanding of these novel invariants, and of any algebraic and differential

relations they may satisfy, at a level comparable to the one that has been

achieved for the Kawazumi-Zhang invariant or for the genus-one case. One

important step in this direction, which has proven to be invaluable also at

genus one, is to obtain the behavior of the novel invariants under degenera-

tions of the genus-two Riemann surface.

Powerful techniques were developed in [22] to analyze the behavior of

general classes of modular graph functions at arbitrary genus near the non-

separating degeneration of the Riemann surface. The non-separating degen-

eration of a genus-two surface Σ corresponds to letting a non-trivial homol-

ogy cycle become infinitely long while keeping independent cycles finite so

that a genus-two surface Σ degenerates to a torus Σ1 with two punctures.

1.1. Summary of results

In this paper we will extend the techniques and results of [22] to obtain

the expansions of the genus-two modular graph function B(2,0)(Ω) associ-

ated with the D8R4 effective interaction around both the non-separating

and the separating degeneration limits. We will also consider the further

degeneration, known as the “tropical” limit, in which the two-dimensional

surface reduces to a two-loop irreducible graph shown in Figure 12 on page

401. In the non-separating case this will be compared with the expression

obtained from low energy expansion of two-loop supergravity. Our results

may be summarized as follows:

1. With the help of the genus-two Arakelov Green function, the string

invariant B(2,0)(Ω) may be decomposed into a sum of three non-trivial

Sp(4,Z)-invariant genus-two modular graph functions Zi(Ω) defined

in (2.12),

B(2,0)(Ω) =
1
2Z1(Ω)−Z2(Ω) +

1
2Z3(Ω)(1.1)
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Throughout, Ω will denote a genus-two period matrix, and Y will
denote its imaginary part, whose components are given by,

Ω =

(
τ v
v σ

)
Y = ImΩ =

(
τ2 v2
v2 σ2

)
(1.2)

with τ = τ1+iτ2, v = v1+iv2, σ = σ1+iσ2, and τ1, τ2, v1, v2, σ1, σ2 ∈ R.
The matrix Ω takes values in the Siegel upper-half plane H2 so that
the matrix Y is positive definite.

2. Near the non-separating degeneration t → ∞, Theorem 3 of [22] states
that each modular graph function Zi(Ω) is given by a Laurent poly-
nomial in the degeneration parameter t, of degree (w,w) for w = 2,
with exponentially small corrections,

Zi(Ω) =

w∑
n=−w

(πt)n z
(n)
i (v|τ) +O(e−2πt)(1.3)

The subgroup of the modular group Sp(4,Z) which leaves the degen-
eration invariant is isomorphic to the Fourier-Jacobi group SL(2,Z)�
(Z2 � Z). It was shown in [22] that the non-separating degeneration
takes a strikingly simple form in terms of a special combination t of the
moduli given by t = det (ImΩ)/Im (τ). The parameter t and the coeffi-

cients z
(n)
i (v|τ) are invariant under the modular subgroup SL(2,Z)�Z2

acting on v ∈ Σ1 and τ ∈ H1. The coefficients z
(n)
i (v|τ) may be thought

of equivalently as non-holomorphic elliptic functions, non-holomorphic
Jacobi forms, or modular graph functions with (R/Z)2-character, and
are evaluated explicitly in this paper, see Eq. (3.21).

3. Near the separating degeneration v → 0, we show that each modular
graph function Zi(Ω) is given by a polynomial in (− ln |v̂|) of degree

w = 2, up to corrections that are power behaved in |v| 12 (see Eq.
(4.19)),

Zi(Ω) =

w∑
n=0

(− ln |v̂|)n s(n)i (τ, σ) +O(|v̂| 12 ) v̂ = 2πv η(τ)2η(σ)2

(1.4)

where η is the Dedekind eta-function. The degeneration parameter v̂

and the coefficients s
(n)
i (τ, σ) are invariant under the residual modular
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group SL(2,Z) × SL(2,Z)′ of the separating degeneration as v → 0

while keeping τ and σ fixed. This is in fact a special case of a result

valid for a general class of genus two modular graph functions of degree

w, as we show in Section 4.7.

4. Near the tropical degeneration, the matrix Y is uniformly scaled to ∞
keeping the ratios of its entries fixed, so that the parameter V defined

by V = (detY )−1/2 tends to zero. In this limit, each modular graph

function Zi(Ω) is given by a Laurent polynomial with exponentially

small corrections (see Eq. (5.12), (5.13), (5.16)),

Zi(Ω) =

2w∑
n=−w

V n j
(n)
i (S) +O(e−1/V ) S =

v2
τ2

+ i

√
t

τ2

(1.5)

The coefficients j
(n)
i (S) are modular local Laurent polynomials, which

belong to a class of non-holomorphic modular functions first encoun-

tered in the study of two-loop supergravity amplitudes [33] and further

developed in the mathematics literature [34, 35, 36]. In the vicinity of

the cusp S → i∞, this degeneration is obtained by extracting the be-

havior of the genus-one functions z
(n)
i (v|τ) in the limit τ2 → ∞ keeping

v2/τ2 fixed in the range 0 < v2/τ2 < 1. The tropical degeneration near

the separating degeneration is obtained by extracting the behavior of

the coefficients s
(n)
i (τ, σ) as both τ2, σ2 → ∞, keeping their ratio fixed.

5. We compare the tropical limit of B(2,0) with the coefficient, B(sg)
(2,0), of

the D8R4 interaction in the low energy expansion of the two-loop con-

tribution to Type II supergravity [38], which can be expressed as a sum

of scalar field theory diagrams as shown in Figure 12. In order to make

this comparison we use a world-line formalism that mimics the string

theory world-sheet formalism and expresses B(sg)
(2,0) as a linear sum of

three contributions, which are built out of the world-line Arakelov

Green function and are field theory analogues of Zi(Ω). The tropical

degeneration V → 0 is found to reproduce the known supergravity in-

tegrand at order O(1/V 2), but includes additional sub-leading terms

proportional to odd zeta values such as ζ(3)V , ζ(5)V 3 and ζ(3)2V 4.

The same phenomenon holds for the Kawazumi-Zhang invariant, whose

tropical limit includes a single subleading term proportional to ζ(3)V 2

[32]. In field theory language each subleading term can be interpreted
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Figure 1: Examples of modifications of two-loop supergravity diagrams in
which the black nodes indicate higher-derivative local interaction vertices,
which arise in the tropical limit.

as a two-loop Feynman integrand where one of the supergravity in-
teraction vertices is replaced by a higher derivative tree-level effective
interaction, such as R4, D4R4 or D6R4 as is indicated in Figure 1.
The effect of such higher derivative interactions implies a particular
pattern of logarithmic divergences when the amplitude is considered in
lower dimensions by compactification on a torus. We leave a detailed
analysis of this phenomenon to a forthcoming publication [37].

These results should be important for elucidating further properties of
higher genus modular graph functions. Among many outstanding issues still
to be understood are algebraic and differential identities between the genus-
two modular graph function and the possibility of generalised theta-lift
representation for these functions analogous to the representation of the
Kawazumi–Zhang invariant found in [32]. Moreover, these results are im-
portant in determining the genus-two contribution to the coefficient of the
D8R4 effective interaction, which is given by integration of B(2,0) over the
moduli space of genus-two Riemann surfaces, or equivalently over a funda-
mental domain H2/Sp(4,Z) in the Siegel upper-half plane.

1.2. Organization

The remainder of this paper is organized as follows. In Section 2, we review
the low energy expansion of the genus-two contribution to the four gravi-
ton amplitude. Appendix A reviews related material concerning some basic
features of genus-one surfaces, including details of how various genus-two
integrals reduce to integrals over genus-one surfaces with punctures. In Sec-
tion 3 we use the methods developed in [22] to give a detailed evaluation of
the expansion of B(2,0)(Ω), the Sp(4,Z) invariant coefficient ofD8R4, around
the non-separating degeneration. The determination of the expansion coeffi-

cients z
(n)
i (v|τ) in (1.3) involves a large number of steps, which are detailed
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in Appendix B. In Section 4 we obtain a general result on the separating de-

generation of genus-two modular graph functions, and apply this to obtain

the explicit coefficients, s
(n)
i (defined in (1.4)) of the expansion of B(2,0)(Ω).

In Section 5 we take the further limit that gives the complete (or tropical)

degeneration and evaluate the coefficients, j
(n)
i (defined in 1.5), relevant to

this degeneration. Technical details needed in deriving the coefficients in the

tropical limit are given in Appendix C. In Section 6, we review and extend

the computation of the coefficient of D8R4 in the expansion of the two-loop

supergravity amplitude using world-line techniques, and compare this with

the tropical limit of the non-separating degeneration of the string amplitude.

2. Structure of genus-two string invariants

The genus-two contribution to the four-graviton scattering amplitude

A(2)(εi, ki) is proportional to an integral of a scalar function B(2)(sij |Ω)
over the moduli space M2 of genus-two compact Riemann surfaces [19, 23],

A(2)(εi, ki) =
π

4
κ210 g

2
s R4

∫
M2

|d3Ω|2
(detY )3

B(2)(sij |Ω)(2.1)

The polarization tensors and momenta of the four gravitons are respectively

denoted by εi and ki with i = 1, 2, 3, 4. The kinematic invariants are defined

by sij = −α′ki ·kj/2 and satisfy the relations s12 = s34, s13 = s24, s14 = s23,

and s12 + s13 + s14 = 0 due to momentum conservation. The gravitational

constant in ten-dimensional space-time is denoted by κ210, while α′ is the

string scale. The quantity R4 represents a particular scalar contraction of

four powers of the linearized Riemann curvature tensor whose detailed form

can be found in [3] and is dictated by supersymmetry. Its explicit expression

will not be needed here.

The period matrix Ω ∈ H2 parametrizes the complex structure of a

genus-two Riemann surface Σ. Given a choice of canonical homology cycles

AI ,BI for I = 1, 2, and dual holomorphic one-forms ωI on Σ, the period

matrix is defined by,∮
AI

ωJ = δIJ

∮
BI

ωJ = ΩIJ(2.2)

The Riemann bilinear relations imply that Ω is a symmetric matrix, and that

its imaginary part Y is positive definite, along with the following integral
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relation,1

i

2

∫
Σ
ωI ∧ ωJ = δI

J ωJ = (Y −1)JK ωK(2.3)

where Y −1 denotes the inverse of the matrix Y . Further properties of the pe-
riod matrix, including its behavior under modular transformations Sp(4,Z),
are well-known and are reviewed, for example, in subsection 2.2 of [22]. The
measure factor in the integrand of (2.1) is the Sp(4,Z)-invariant volume
form for the Siegel metric on H2, which will not be needed in the sequel.
By construction, the function B(2)(sij |Ω) will be invariant under Sp(4,Z)
transformations of Ω, for arbitrary values of sij . Therefore, the integral in
(2.1) is intrinsically defined, and we may represent M2 by a fundamental
domain H2/Sp(4,Z) for the action of the modular group Sp(4,Z) on the
Siegel upper half space H2.

2.1. Genus-two string invariants

The function B(2)(sij |Ω) is the starting point of our study, and may be
viewed as a generating function in the parameters sij for genus-two modular
graph functions derived from string theory. It is given by an integral over
four points zi, corresponding to the four gravitons, on a genus-two Riemann
surface Σ with period matrix Ω,2

B(2)(sij |Ω) =
1

16

∫
Σ4

Y ∧ Ȳ
(detY )2

exp

⎧⎨
⎩

∑
1≤i<j≤4

sij G(zi, zj |Ω)

⎫⎬
⎭(2.4)

Here, Y is a holomorphic (1, 0)-form in each point zi ∈ Σ and is linear in
the sij . It was constructed in [19], and is given for example in eq. (2.29) of

1Throughout, we shall use the Einstein summation convention for the indices
I, J = 1, 2 which implies summation over any repeated lower and upper index of
the same name. When no confusion is expected to arise, we shall not exhibit the
dependence on the moduli and the coordinates in differential forms, but we shall
exhibit these dependences for functions.

2In the earlier paper [22], a Riemann surface of genus h was denoted Σh and
we used the notations κh for the canonical Kähler form, Gh for the Arakelov Green
function, and Gh for the string Green function. Since the present paper deals exclu-
sively with genus-two surfaces and their degenerations, we shall drop the subscript
“2” throughout, and use the notation g = G1 for the standard Green function on
the torus.
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[22], but its explicit form will be needed only for a special arrangement of
the parameters sij which will be given below.

The Green function G(zi, zj |Ω) is formally the inverse of the Laplace
operator on Σ. Due to the zero mode of the Laplace operator, the inverse
is not unique, and generally fails to be conformal invariant. However, mo-
mentum conservation relations between the parameters sij imply that the
exponential in (2.4) is invariant under the following shift of G,

G(zi, zj |Ω) → G(zi, zj |Ω) + c(zi) + c(zj)(2.5)

for an arbitrary function c. Since a conformal transformation on G produces
a shift in G which is precisely of the form (2.5) (see for example [39]), the ex-
ponential in (2.4) and thus B(2)(sij |Ω) are conformal invariant, as is essential
in a consistent string theory amplitude. Two convenient choices will be used
below for G, the first being the familiar string Green function [39], the other
being the Arakelov Green function (see for example [40]), both of which will
be discussed in subsection 2.5. We note that the behavior as zj → zi of
either of these scalar Green functions is G(zi, zj |Ω) ≈ − ln |zi − zj |2.

The integrals in (2.4) are absolutely convergent for Re (sij) < 1, and
admit a Taylor series in powers of sij with unit radius of convergence in
s12, s13 and s14. Expanding the exponential in powers of sij , using the re-
lation s12 + s13 + s14 = 0 and the fact that B(2)(sij |Ω) is symmetric in the
variables sij , leads to an infinite series which may be organized as follows
[4],

B(2)(sij |Ω) =
∞∑

p,q=0

B(p,q)(Ω)
σp
2 σ

q
3

p! q!
(2.6)

where σn are symmetric polynomials in sij defined by σn = (s12)
n+(s13)

n+
(s14)

n. Since B(2)(sij |Ω) is Sp(4,Z)-invariant for any value of sij , each coef-
ficient B(p,q)(Ω) is itself Sp(4,Z)-invariant and defines a genus-two modular
graph function, in the sense of [22]. To identify the structure of the effective
interaction to which each coefficient corresponds, it will be convenient to
introduce the notion of weight, defined as the number of Green function G
factors in the Taylor series expansion in powers of sij , which is given by,

w = 2p+ 3q − 2(2.7)

The linearity of Y in sij implies that a modular graph function B(p,q)(Ω) of
weight w corresponds to an effective interaction of the form D2w+4R4. For
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low weights, w ≤ 3, there is a unique effective interaction for each w, but

for w ≥ 4 several independent effective interactions may correspond to the
same weight.

2.2. Convergence of the integrals over M2

The integrals in (2.4) over the points zi ∈ Σ are absolutely convergent for
any point Ω in the interior of moduli space as long as Re (sij) < 1. However,

this convergence is non-uniform as Ω moves to the boundary of M2 so that
the summation in (2.6) and the integration in (2.1) cannot be legitimately

interchanged. Mathematically, this is due to the fact that G grows linearly
with Y , so that the domain of absolute convergence of the integral over M2

is restricted to Re (sij) = 0. Away from this set, analytic continuation in sij
is required, and may be carried out along similar lines as the construction

of the genus-one amplitude in [41]. Physically, the divergences arise because
non-analyticities, such as logarithmic branch cuts, in the variables sij are

produced by this analytic continuation, and these functions cannot be ex-
panded in a convergent Taylor series at sij = 0.

Even when the integrals of B(p,q)(Ω) over M2 are not absolutely conver-

gent, due to the appearance of non-analyticities in sij as explained above,
it is still possible to extract the strength of the corresponding effective in-

teractions. However, this requires isolating the contribution to the integral
from the boundary of M2 first, carrying out its analytic continuation, and
then identifying the low energy expansion of the analytic remainder of the

amplitude. Carrying out this procedure will be the subject of future work
[37].

2.3. Low weights: the Kawazumi-Zhang invariant

In this subsection, we briefly review the results for the string invariants for

weights w ≤ 1. Since Y is linear in sij , we have B(0,0)(Ω) = 0, reflecting the
absence of genus-two corrections to the effective interaction R4. Weight zero

corresponds to the effective interaction D4R4 whose coefficient B(1,0)(Ω) is
constant on M2 (equal to −2 in our conventions) and, upon integration

over M2, provides an important consistency check with the implications of
S-duality in Type IIB superstrings [23].

The weight w = 1 coefficient B(0,1)(Ω) of the effective interaction D6R4

is proportional to the Kawazumi-Zhang invariant ϕ(Ω) for genus two, specif-
ically B(0,1)(Ω) = 4ϕ(Ω). The contribution from the exponential in (2.4) is
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linear in G and therefore one may integrate explicitly over two of the four

points in (2.4), using (2.3), giving the following formula,

ϕ(Ω) = − 1

8

(
2 δJ1

I2δJ2

I1 − δJ1

I1δJ2

I2
)

(2.8)

×
∫
Σ2

ωI1(z1)ω
J1(z1)ωI2(z2)ω

J2(z2)G(z1, z2|Ω)

The complete asymptotics of ϕ(Ω) is known thanks to the theta-lift rep-

resentation established in [32], based on the Laplace-Beltrami eigenvalue

equation derived in [29] and on known leading asymptotics [30, 31]. Its in-

tegral over M2 can be computed using the eigenvalue equation and is also

in agreement with S-duality [29].

2.4. The string invariant B(2,0)

At weight w = 2, there is a single effective interaction, of the form D8R4

corresponding to p = 2 and q = 0 in (2.6) for a single kinematic invariant

(σ2)
2. The explicit form of the corresponding string invariant was given

in [24, 22]. It may be obtained by expanding (2.4) to second order in sij
(equivalently to second order in G), and setting s13 = 0 so that the expression

for Y simplifies. The function B(2,0)(Ω) is given as follows,

B(2,0)(Ω) =

∫
Σ4

|Δ(z1, z3)Δ(z2, z4)|2
64 (detY )2

(2.9)

×
(
G(z1, z2|Ω) + G(z3, z4|Ω)− (z1 ↔ z3)

)2
where Δ(zi, zj) is the holomorphic two-form on Σ2 defined by,

Δ(x, y) = ω1(x) ∧ ω2(y)− ω2(x) ∧ ω1(y)(2.10)

The string invariant B(2,0)(Ω) will be the central object of our study in this

paper.

In the sequel, we shall find it useful to decompose B(2,0)(Ω) into a sum

of three terms by expanding the integrand in (2.9),

B(2,0)(Ω) =
1

2
Z1(Ω)−Z2(Ω) +

1

2
Z3(Ω)(2.11)
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Figure 2: Graphs representing the three distinct contributions Zi to B(2,0)

in (2.11), where each line represents a factor of the Green function G.

where the 8-fold symmetry group generated by the permutations (3214),
(1432) and (3412) allows us to reduce the terms bilinear in the Green func-
tions as follows,

Z1(Ω) =

∫
Σ4

|Δ(z1, z3)Δ(z2, z4)|2
8 (detY )2

G(z1, z2|Ω)2

Z2(Ω) =

∫
Σ4

|Δ(z1, z3)Δ(z2, z4)|2
8 (detY )2

G(z1, z2|Ω)G(z1, z4|Ω)

Z3(Ω) =

∫
Σ4

|Δ(z1, z3)Δ(z2, z4)|2
8 (detY )2

G(z1, z2|Ω)G(z3, z4|Ω)

(2.12)

The modular graph function B(2,0)(Ω) is invariant under shifts of G given in

(2.5), just as the generating function B(2)(sij |Ω) was from which B(2,0)(Ω) is
derived. Thus, B(2,0)(Ω) is independent of the type of Green function chosen
to represent it, and is conformal invariant. However, once we split B(2,0)(Ω)
into a sum of three terms, as in (2.11), each individual term Zi(Ω) will gen-
erally fail to be invariant under the shifts (2.5), and fail to be conformal
invariant. This shortcoming may be remedied by using the conformal invari-
ant Arakelov Green function in each term Zi. As a result, each Zi will be a
genuine genus-two modular graph function in the sense of [22], and may be
represented graphically as in Figure 2.

The expressions for the modular graph functions Z1 and Z2 may be
simplified by integrating over the points z3 and z4 in Z1 and the point z3 in
Z2 using (2.3) and (2.10). The resulting expressions are as follows,

Z1(Ω) = 8

∫
Σ2

κ(z1)κ(z2)G(z1, z2|Ω)2

Z2(Ω) =

∫
Σ3

κ(z1)
|Δ(z2, z4)|2

detY
G(z1, z2|Ω)G(z1, z4|Ω)

(2.13)

where κ(z) is the canonical Kähler form defined in (2.14).
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We close this subsection by noting two further motivations for splitting
B(2,0) into three individual modular graph functions Zi. One motivation will
be to establish detailed, graph by graph agreement with the supergravity
calculations – even though the original supergravity calculation for the com-
plete B(2,0) integrand [33] is much simpler than the one required for each
of the three terms separately. A second motivation stems from the ultimate
goal to obtain algebraic and differential equations satisfied by genus-two
modular graph functions of weight w ≥ 1. Experience with the correspond-
ing problem at genus one has revealed that, for high enough weight, one has
to deal with a system of equations involving several modular graph functions
rather than a single equation for a single function [6]. Therefore, it may be
useful to build a “library” of functions such as the individual modular graph
functions Zi.

2.5. The Arakelov Green function

As discussed in the preceding subsection, the use of the Arakelov Green
function is crucial for obtaining a decomposition of the integrand (2.11) into
a sum of well-defined conformal invariant modular graph functions Zi. In
this subsection, we review the salient features of the Arakelov Green function
on a genus-two Riemann surface Σ, and evaluate it concretely. The starting
point is the canonical Kähler form κ normalized to unit integral,

κ =
i

4
ωI ∧ ωI =

i

4
(Y −1)IJωI ∧ ωJ

∫
Σ
κ = 1(2.14)

The canonical Kähler form depends only on the holomorphic one-forms ωI

and their periods. It is conformal and modular invariant, and uniquely de-
termined by its integral over Σ.

The Arakelov Green function G(z, y|Ω) on a genus-two Riemann surface
Σ is a real-valued symmetric function on Σ × Σ × H2, which provides an
inverse to the scalar Laplace operator on Σ equipped with the canonical
Kähler form κ. Expressing κ in local complex coordinates κ = i

2κzz̄(z) dz ∧
dz̄, the Arakelov Green function is defined by the following equations,3

∂z̄ ∂z G(z, y|Ω) = −π δ(2)(z, y) + π κzz̄(z)

∫
Σ
κ(z)G(z, y|Ω) = 0

(2.15)

3Throughout, the “coordinate” Dirac δ-function is normalized by i
2

∫
Σ
dz ∧

dz̄ δ(2)(z, y) = 1.



Asymptotics of the D8R4 genus-two string invariant 367

An explicit expression for G may be obtained by relating it to another Green

function G which is often used in string theory [39], and defined by,

G(x, y|Ω) = − ln |E(x, y|Ω)|2 + 2π Im

(∫ x

y
ωI

)
(Y −1)IJ Im

(∫ x

y
ωJ

)(2.16)

where E(x, y|Ω) is the prime form [42], which is a holomorphic form of weight

(−1/2, 0) in each variable x, y on the covering space of Σ2. As a result, the

Green function G(x, y|Ω) is not a conformal scalar. Therefore, one should

be careful to calculate with G(x, y|Ω) on a simply connected fundamental

domain for Σ obtained by cutting the surface along suitably chosen curves

AI ,BI . The Green functions G and G are related as follows,

G(x, y|Ω) = G(x, y|Ω)− γ(x|Ω)− γ(y|Ω) + γ1(Ω)(2.17)

where

γ(x|Ω) =
∫
Σ
κ(z)G(x, z|Ω) γ1(Ω) =

∫
Σ
κ(z)γ(z|Ω)(2.18)

These relations ensure that G integrates to zero against the canonical Kähler

form κ, as required by (2.15), and that the function G defined by (2.17) is

invariant when G is shifted as in (2.5). As a result, the Arakelov Green

function is conformal invariant, and each individual function Zi defined in

(2.12) will be a conformal invariant modular graph form, as promised earlier.

Henceforth, G will denote the Arakelov Green function, and it will under-

stood throughout that (2.12) is expressed in terms of the Arakelov Green

function G.

3. The non-separating degeneration

In this section we shall obtain the non-separating degeneration, in the form

given in (1.3), of the genus-two modular graph functions Zi, which were

expressed in terms of the Arakelov Green function G in (2.12). We begin with

a review of the methods developed in [22] for parametrizing and calculating

this degeneration, apply the method to reproduce the degeneration of B(0,1)

(proportional to the Kawazumi-Zhang invariant), and then calculate the

degenerations of the string invariants Zi and B(2,0).
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3.1. Funnel construction of the non-separating degeneration

In the non-separating degeneration, a compact genus-two surface Σ degen-
erates to a genus-one surface Σ1 \ {pa, pb}, where Σ1 is a compact genus-one
surface and pa, pb are the two points which are the remnants of the degener-
ating funnel of the surface Σ. Our interest is in evaluating the expansion of
the form (1.3) in a neighborhood of the non-separating node where a non-
trivial homology cycle of the surface Σ becomes a long and skinny, but finite,
funnel. The imaginary part of the period matrix Y , introduced in (1.2), and
its inverse Y −1, may be parametrized as follows,

Y =

(
τ2 τ2u2

τ2u2 t+ τ2u
2
2

)
Y −1 =

(
τ−1
2 0
0 0

)
+

1

t

(
u22 −u2
−u2 1

)(3.1)

where v2 = τ2u2 and t = (detY )/τ2 = σ2 − τ2u
2
2. The non-separating de-

generation corresponds to letting t become large while keeping the other
independent moduli finite. We stress that the above expression for Y −1 in
terms of t is exact.

The methods developed in [22] are tailored to obtaining the expansion
of (1.3), exactly to all orders in powers of t while neglecting any contri-
butions that vanish exponentially in the large t limit. To carry out the
construction, the genus-two surface Σ is parametrized in terms of t as well.
This parametrization may be approached from two opposite directions which
are intimately connected and equivalent to one another. The first approach
starts from the genus-two surface, degenerates the period matrix according
to (3.1) for large but finite t, and infers the degenerations of other func-
tions and forms on Σ, such as the canonical Kähler form, the string Green
function, and the Arakelov Green function. The second approach constructs
the genus-two surface Σ, near a non-separating degeneration node, in terms
of a compact genus-one surface Σ1. As was shown in [22], the link between
these two approaches is a family of Morse functions f(z) which may be
constructed from either approach.

For our purpose, it will be convenient to construct Σ starting from a
compact torus Σ1. We shall denote by g(z, y|τ) = g(z − y|τ) the genus-one
scalar Green function on Σ1 which, by translation invariance, depends only
on the difference z − y, and obeys,

τ2∂z̄∂zg(z|τ) = −πτ2δ
(2)(z) + π

∫
Σ1

dz ∧ dz̄ g(z|τ) = 0

(3.2)
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Its explicit expression in terms of ϑ-functions is given by,

g(z|τ) = − ln

∣∣∣∣ϑ1(x− y|τ)
η(τ)

∣∣∣∣
2

+
2π

τ2
(Im z)2(3.3)

We add two punctures pa, pb on Σ1 to produce a punctured genus-one surface
Σ1\{pa, pb}. On this surface we introduce the Morse-type function f defined
by,

f(z|τ) = g(z, pb|τ)− g(z, pa|τ)(3.4)

We observe that f is well-defined, single-valued, and harmonic on Σ1 \
{pa, pb}, and tends to −∞ as z → pa and to +∞ as z → pb. We define
level sets Ca and Cb by,

Ca = {z ∈ Σ1 such that f(z) = −2πt}
Cb = {z ∈ Σ1 such that f(z) = +2πt}

(3.5)

For sufficiently large values of t, each level set is connected and has the

topology of a circle. (As t is decreased, each level set ultimately becomes
disconnected and splits into two circles.) We define the genus-one surface
Σab with a boundary ∂Σab = Ca∪Cb by cutting out of Σ1 the two discs with
boundaries Ca and Cb, or equivalently,

Σab = {z ∈ Σ1 such that − 2πt ≤ f(z) ≤ +2πt}(3.6)

The genus-two surface Σ is obtained from Σab by gluing together its bound-
ary curves Ca and Cb. The full moduli space of Σ requires identifying Ca

and Cb after a twist by the angle Re (σ), where σ is the bottom diagonal
entry of Ω in (3.1). However, the Laurent polynomial part in the expansion
of (1.3) is independent of Re (σ), since any dependence on Re (σ) of a mod-

ular invariant function must be exponential in σ in view of the periodicity
σ → σ + 1. Thus, the twist by Re (σ) is immaterial for our purposes, and
may be ignored.

To complete the construction of Σ, we specify a canonical homology
basis AI ,BI for H1(Σ,Z), and its dual basis of holomorphic one-forms ωI

for I = 1, 2. The cycles A1,B1 are chosen to be a canonical homology basis
for H1(Σ1,Z), the cycle A2 is homologous to Ca ≈ Cb, and the cycle B2

consists of a curve which lies in Σab and which connects Ca to Cb, as shown
in Figure 3.
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Figure 3: The funnel construction near the non-separating divisor of a genus-
two surface Σ. The surface Σab is obtained from the compact surface Σ1 by
removing the discs with boundaries Ca and Cb centered at the punctures
pa, pb respectively. The surface Σ is obtained from Σab by pairwise identifying
the cycles Ca ≈ Cb, (as well as identifying C′

a ≈ C′
b and C′′

a ≈ C′′
b ). A canonical

homology basis for Σ is obtained by choosing the cycles A1,B1 of the surface
Σ1, along with a cycle A2 homologous to the cycles Ca,C

′
a,C

′′
a,Cb,C

′
b,C

′′
b . The

cycle B2 is obtained by connecting za to zb by a curve in Σab and identifying
the points za ≈ zb. The punctures pa, pb lie on Σ1, but do not belong to either
Σab or Σ. The function f(z) is constant on Ca and Cb and increases from
−2πt on Ca to 2πt on Cb.

To specify the holomorphic one-forms on Σ, represented by Σab with
identified boundary components, we represent the torus by Σ1 = C/(Z+τZ)
and introduce a complex coordinate z subject to the identifications z ≈ z+1
along A1 and z ≈ z + τ along B1. The dual basis of holomorphic one-forms
then consists of the normalized holomorphic one-form ω1 on Σ1 and the
holomorphic one-form ω2 = ωt + u2ω1 defined on Σab by,

ω1 = dz ωt =
i

2π
∂zf(z) dz ,(3.7)

It follows from the above construction that ωI is canonically normalized
on the cycles AI as in (2.2), while on BI cycles we recover Ω of (3.1) with
v = pb−pa and t given by the construction above. Since we have not included
the twist when identifying Ca and Cb we do not have access to the entry
Re (σ) but, as argued earlier, we have no need for this variable here. The
non-separating degeneration corresponds to t → ∞ keeping τ and v fixed.

3.2. Degeneration of the Green functions

The key to the striking results for the non-separating degeneration obtained
in [22] is the use not of the naive modulus σ2 but rather instead of the special
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parameter t which is invariant under the Jacobi group, SL(2,Z)� (Z2�Z).
It is in terms of t that the power series expansion terminates and becomes
a Laurent polynomial of finite degree.

We begin by recalling the degeneration of the genus-two canonical Kähler
form κ in terms of the normalized genus-one Kähler form κ1,

κ =
1

2
κ1 +

i

4t
ωt ∧ ω̄t +O(e−2πt) κ1 =

i

2τ2
ω1 ∧ ω1(3.8)

The degeneration of the string Green function G is given by,4

G(x, y) = g(x, y) +
1

8πt

(
f(x)− f(y)

)2
+O(e−2πt)(3.9)

while the degeneration of the Arakelov Green function G(x, y) is given by,

G(x, y) = πt

12
+ g(x, y)

(3.10)

− 1

4

(
g(x, pa) + g(x, pb) + g(y, pa) + g(y, pb)− g(pa, pb)

)
+

1

16πt

(
f(x)2 + f(y)2 − 4f(x)f(y)− 2F2(v)

)
+O(e−2πt)

Here and below, we find it useful to introduce the following notation,

Fk(v) =
1

k!

∫
Σ1

κ1(z)f(z)
k(3.11)

Clearly, Fk vanishes when k is odd in view of translation and reflection
symmetry of the genus-one Green function g(z). For even k, we shall evaluate
Fk in (3.31) and (3.32). The combination F2 may be evaluated explicitly,
using its definition, and we find,

F2(v) = E2 − g2(v)(3.12)

where E2 is the genus-one non-holomorphic Eisenstein series, and gk is de-
fined to be the genus-one Green function for k = 1 and for higher values is
defined recursively as follows,

gk+1(z) =

∫
Σ1

κ1(x) g(z, x) gk(x)(3.13)

4Henceforth, when no confusion is expected to arise, we shall often suppress the
dependence on the periods τ and Ω to simplify and shorten the notations.
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The non-holomorphic Eisenstein series Ek is simply related to gk by Ek =

gk(0).

For the degeneration of both the Green functions G and G, the asymp-

totic Laurent polynomial is at most of degree (1, 1). The functions γ(x) and

γ1, which account for the difference between G(x, y) and G(x, y) through

(2.17), are given as follows,

γ(x) =
πt

12
+

1

4
g(x, pa) +

1

4
g(x, pb) +

f(x)2

16πt
+

F2(v)

4πt
+O(e−2πt)(3.14)

γ1 =
πt

4
+

1

4
g(v) +

3F2(v)

8πt
+O(e−2πt)

The invariants B(p,q) that we wish to calculate involve integrals of powers

of the Green function over the genus-two surface. In view of the number of

terms in (3.10) compared to (3.9) it will prove convenient to first study the

asymptotics of the integrals defined using the Green function G(x, y) rather

than the Arakelov Green function. We may then obtain the asymptotics

of the individual modular graph invariants associated with the individual

graphs, such as Zi (in Figure 2) by a simple conversion formula involving

γ(x) and γ1.

3.3. Degeneration of the Kawazumi–Zhang invariant

In terms of the Arakelov Green function G, the Kawazumi-Zhang invariant

is given by,

ϕ(Ω) = −1

4

∫
Σ2

ωI(z1)ω
J(z1)ωJ(z2)ω

I(z2)G(z1, z2)(3.15)

Its degeneration limits were discussed in [32]. In the approach to the non-

separating limit, t → ∞, it has an expansion,

ϕ(Ω) =
1

6
πt+

1

2
g(v) +

5F2(v)

4πt
+O(e−2πt)(3.16)

In accord with the general Theorem on the non-separating degeneration

(1.3), the Kawazumi-Zhang invariant indeed produces a Laurent polynomial

in t of degree (1, 1) with coefficients which are modular functions and their

generalizations to include the dependence on v. The precise nature of the

generalization this entails will be spelled out in subsection 3.6.
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3.4. Degeneration of the string invariant B(2,0)

The modular graph function B(2,0)(Ω) may be expressed, via the Arakelov
Green function and (2.11), as a sum of three modular graph functions Zi(Ω),
which were defined in (2.12) with simplified expressions given in (2.13). To
evaluate their non-separating degeneration, we observe in (3.9) and (3.10)
that the degeneration formula for the string Green functionG is simpler than
the one for the Arakelov Green function G. Therefore, we shall first calculate
the degeneration of the analogues Zi of Zi in which G(x, y) is replaced by
G(x, y) in (2.12) and (2.13), which leads to the following definitions,

Z1(Ω) = 8

∫
Σ2

κ(z1)κ(z2)G(z1, z2)
2

Z2(Ω) =

∫
Σ3

κ(z1)
Δ(z2, z4)|2

detY
G(z1, z2)G(z1, z4)

Z3(Ω) =

∫
Σ4

|Δ(z1, z3)Δ(z2, z4)|2
8 (detY )2

G(z1, z2)G(z3, z4)

(3.17)

Unlike the functions Zi(Ω), each individual function Zi(Ω) fails to be
conformally invariant, but the expression for B(2,0)(Ω), which is given by,

B(2,0) =
1

2
Z1 −Z2 +

1

2
Z3 =

1

2
Z1 − Z2 +

1

2
Z3(3.18)

clearly remains conformal invariant. The relations between the individual
functions Zi(Ω) and Zi(Ω) may be recovered in terms of three functions
γi(Ω),

Z1 = Z1 + 8γ21 − 16γ2 γ1 =

∫
Σ
κ(x)γ(x)

Z2 = Z2 + 8γ21 − 8γ2 − γ3 γ2 =

∫
Σ
κ(x)γ(x)2(3.19)

Z3 = Z3 + 8γ21 − 2γ3 γ3 =

∫
Σ2

|Δ(x, y)|2
detY

γ(x)γ(y)

The calculations required to extract the t-dependence of these integrals are
complicated and have been relegated to Appendix B. The key steps involved
are as follows.

1. The integrals of (3.17) and (3.19) over the compact genus-two Riemann
surface Σ are expressed in terms of integrals over the genus-one surface
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Σab with boundary. The Green functions on Σ are expressed in terms
of g and f using (3.9), while the integration measure is expressed in
terms of the genus-one differentials ω1 and ωt using (3.8) and,

Δ(zi, zj) = ω1(zi) ∧ ωt(zj)− ωt(zi) ∧ ω1(zj)(3.20)

2. The remaining determinant factor is given by detY = tτ2.
3. The integrals over Σab obtained in this manner are then analyzed and

recast in the form of a Laurent polynomial in t with coefficients which
can be expressed as convergent integrals over the compact genus-one
Riemann surface Σ1. The difficulty involved in this last step is strongly
correlated with the structure of the associated Feynman graph and its
renormalization properties, and will be given systematically in Ap-
pendix B.

The resulting expressions involve various modular functions and their
generalizations which will be defined and discussed in subsection 3.6 and
in Appendix B. The functions Zi(Ω) and γi(Ω) will be computed in Ap-
pendix B, and give the following result for Zi,

Z1(Ω) =
13π2t2

90
+

πt

3
g(v) + 4E2 +

1

2
g(v)2 − 1

2
F2(v)

(3.21)

+
1

πt

(
−D3 −D

(1)
3 (v)− 1

2
gF2(v) + 2g3(v) + 4ζ(3) +

1

4π
ΔvF4(v)

)

+
1

8π2t2

(
3F2(v)

2 + 12F4(v) +Kc(v)

)
+O(e−2πt)

Z2(Ω) = − 7π2t2

90
− πt

3
g(v)− E2 −

1

2
g(v)2 +

1

2
F2(v)

+
1

πt

(
− 2D3 +

1

2
g(v)F2(v) + 2g3(v) + 2ζ(3)

− 1

16π
Δv

(
F2(v)

2 + 2F4(v)
))

− (Δτ + 5)F4(v)

4π2t2
+O(e−2πt)

Z3(Ω) =
(πt)2

18
+

πt

3
g(v) +

1

6
F2(v) +

1

2
g(v)2

+
1

πt

(
−1

2
g(v)F2(v) +

1

8π
ΔvF2(v)

2

)

+
1

8π2t2
(Δτ + 5)F2(v)

2 +O(e−2πt)
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The total string invariant B(2,0) is then obtained from (2.11) and is given by,

B(2,0)(Ω) =
8π2t2

45
+

2πt

3
g(v) + 3E2 + g(v)2 − 2

3
F2(v)

(3.22)

+
1

πt

(
3

2
D3 −

1

2
D

(1)
3 (v)− g3(v)− g(v)F2(v)

+
1

8π
Δv

(
F2(v)

2 + 2F4(v)
))

+
1

16π2t2
(Δτ + 8)

(
F2(v)

2 + 4F4(v)
)
+

Kc(v)

16π2t2
+O(e−2πt)

The definition of the various modular graph functions involved in these
results will be given in the next subsections, while the corresponding deriva-
tions are relegated to Appendix B.

3.5. Modular graph functions occurring in Zi

All the genus-one modular graph functions and their generalizations occur-
ring in the non-separating degeneration of the genus-two modular graph
functions Zi are built from the canonical volume form κ1(x) and the scalar
Green function g(x, y) = g(x − y) on the compact genus-one surface Σ1.
The most familiar such function is the non-holomorphic Eisenstein series Ek

which may be defined by,5

Ek(τ) =

k∏
i=1

∫
Σ1

κ1(zi) g(zi − zi+1|τ) =
′∑

m,n∈Z

τk2
πk|m+ τn|2k(3.23)

where zk+1 = z1, and the prime on the sum indicates that the term m = n =
0 is omitted. Another familiar family of modular graph functions is defined
by,

Dk(τ) =

∫
Σ1

κ1(z) g(z|τ)k =

′∑
mr,nr∈Z

δm,0δn,0

k∏
r=1

τ2
π|mr + τnr|2

(3.24)

where m = m1 + · · · + mk and n = n1 + · · · + nk. Both Ek(τ) and Dk(τ)
are given by convergent integrals and sums for k ≥ 2, are invariant under

5In this subsection and the next, we exhibit the dependence on moduli for added
clarity.
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Figure 4: Modular graph functions Ek(τ) and Dk(τ).

Figure 5: Modular graph functions gk(v|τ).

SL(2,Z) modular transformations of τ , and obey the following coincidence
relations D2 = E2 and D3 = E3 + ζ(3). Their graphical representation is
well known, and illustrated in Figure 4.

3.6. Generalized modular graph functions occurring in Zi

The remaining coefficients with non-trivial τ -dependence in Zi also depend
on the punctures through the combination v = pb−pa. The simplest of these
is given by the Green function g(v) = g(v|τ) itself. Closely related are the
iterated Green functions, gk(v) = gk(v|τ), which may defined recursively by
(3.13), or in terms of a Kronecker-Eisenstein sum by,

gk(v|τ) =
′∑

m,n∈Z

τk2 e2πi(mu2−nu1)

πk|m+ τn|2k(3.25)

where u1, u2 are real and defined by v = u1+ τu2. For k = 1, we recover the
Green function, g1(v|τ) = g(v|τ), while we also have gk(0|τ) = Ek(τ). The
functions gk(v|τ) are invariant under SL(2,Z) transformations,

gk(v
′|τ ′) = gk(v|τ) v′ =

v

cτ + d
τ ′ =

aτ + b

cτ + d
(3.26)

for a, b, c, d ∈ Z and ad − bc = 1. The transformation induced on the real
variables u1, u2 is linear and given by u′1 = au1 − bu2 and u′2 = −cu1 + du2.
Thus, (u1, u2) provides a (R/Z)2-valued character and the generalization of
modular graph functions provided by the functions gk(v|τ) may be viewed as
the result of introducing R/Z-valued characters in the Kronecker-Eisenstein
sums. Their graphical representation is given in Figure 5.
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Another interpretation of the generalization is to note the relation be-

tween gk(v|τ) and the single-valued elliptic polylogarithms Dk,�(v|τ) intro-

duced by Zagier [51],

Dk,�(v|τ) =
(2iτ2)

k+�−1

2πi

∑
(m,n) �=(0,0)

e2πi(mu2−nu1)

(m+ nτ)k(m+ nτ̄)�
(3.27)

While gk(v|τ) are modular functions satisfying (3.26), Dk,� transforms as a

modular form of weight (1−�, 1−k). The functions gk(v|τ) are special cases
of Zagier’s Dk,�-forms when � = k,

Dk,k(v|τ) = (−4πτ2)
k−1gk(v|τ)(3.28)

Further properties and interrelations satisfied by the forms Dk,� and the

functions gk are provided in Appendix A.

The remaining coefficient functions are all generalized modular graph

functions in the sense defined above, either as modular graph functions with

character, or as single-valued elliptic polylogarithms. We give below the

definitions of these functions, along with their graphical representations.

We have the following infinite families,

D
(k)
� (v|τ) =

∫
Σ1

κ1(z)g(v + z|τ)kg(z|τ)�−k(3.29)

for k, � ≥ 0 integers. They obey the symmetry relation D
(k)
� (v|τ) =

D
(�−k)
� (v|τ), and restrict to modular graph functions by the relation

D
(k)
� (0|τ) = D�(τ), while for k = 1, they satisfy a simple differential re-

lation,

ΔvD
(1)
� (v|τ) = 4πD�−1(τ)− 4πg(v|τ)�−1(3.30)

The graphical representation of these functions is illustrated in Figure 6.

The modular graph function F�(v|τ), defined in (3.11), may be expressed

as a linear combination of these functions,

F�(v|τ) =
�∑

k=0

(−)�−k

k! (�− k)!
D

(k)
� (v|τ)(3.31)
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Figure 6: Modular graph functions D
(k)
� (v|τ).

For odd values of � the sum vanishes in view of the symmetry relation of

D
(k)
� , for � = 2 we have (3.12), while for F2 and F4, the formula reduces to,

F2(v|τ) = E2(τ)− g2(v|τ)

F4(v|τ) =
1

12
D4(τ)−

1

3
D

(1)
4 (v|τ) + 1

4
D

(2)
4 (v|τ)

(3.32)

where we have made use of D2(τ) = E2(τ) and D
(1)
2 (v|τ) = g2(v|τ) on the

first line.

3.7. Higher generalized modular graph functions

The degeneration of the modular graph function Z1 involves substantially

more complicated genus-one modular graph functions than its Kawazumi-

Zhang or Z2 and Z3 counterparts. The complication arises from their higher

loop order, including three and four loops, and the need for subtractions

in some of the graphs, as will be explained below. The main source of the

complication is the integral (B.48) appearing in the degeneration of Z
(a)
1

defined in the first line of (B.39),

K =
τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w) |∂zf(z)∂wf(w)|2 g(z, w)2(3.33)

As is shown in Appendices B.4 and B.5, the non-separating degeneration

of K consists of a polynomial of degree four in t, plus terms which are

exponentially suppressed in t. To extract the polynomial in t, we express f

in terms of the genus-one Green function g, and expand the integrand into

16 terms, which may be regrouped in terms of 5 distinct building blocks,

K = 2Kabab + 2Kabba + 2Kaabb − 8Re (Kaaab) + 2Kaaaa(3.34)
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Figure 7: Modular graph functions Kabab and Kabba. An arrow flowing into a
vertex indicates a ∂-derivative with respect to the coordinate of the vertex,
while an arrow flowing out of a vertex indicates a ∂̄-derivative with respect
to the coordinate of the vertex.

The graphical representation of the functions Kabab and Kabba is given in

Figure 7. These functions are given by the following convergent integrals,

Kabab =
τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w) ∂zg(z, pa)∂z̄g(z, pb) g(z, w)
2 ∂wg(w, pa)

(3.35)

× ∂w̄g(w, pb)

Kabba =
τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w) ∂zg(z, pa)∂z̄g(z, pb) g(z, w)
2 ∂wg(w, pb)

× ∂w̄g(w, pa)

and contribute a polynomial of degree zero in t, up to exponential correc-

tions.

The remaining three functions Kaabb, Kaaab and Kaaaa do have non-trivial

polynomial t-dependence, and are represented schematically in Figures 8

and 9. We isolate this dependence by splitting the integrals as follows,

Kaabb = K0
aabb +K1

aabb

Kaaab = K0
aaab +K1

aaab

Kaaaa = K0
aaaa +K1

aaaa

(3.36)

where the contributions K0 are constant in t, while the contributions K1

are polynomials in t with vanishing constant part, up to exponentially sup-

pressed contributions. The contributions K0
aabb and K0

aaab are given by the

following convergent integrals, while the t-dependent parts K1
aabb,K1

aaab and
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Figure 8: Schematic representation of the modular graph function K0
aabb.

Figure 9: Schematic representation of K0
aaab and K0

aaaa.

K1
aaaa will be evaluated below.

K0
aabb =

τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w) |∂zg(z, pa)|2|∂wg(w, pb)|2
(3.37)

×
(
g(z, w)2 − g(pa, w)

2 − g(z, pb)
2 + g(pa, pb)

2
)

K0
aaab =

τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w)|∂zg(z, pa)|2∂wg(w, pa)∂w̄g(w, pb)

×
(
g(z, w)2 − g(pa, w)

2
)

Finally, the modular graph function K0
aaaa is given by the following con-

vergent integral,

K0
aaaa =

τ2
π

∫
Σ1

κ1(z)|∂zg(z)|2
(
W (z)− 4ζ(3)

)

W (z) =
τ2
π

∫
Σ1

κ1(w)|∂wg(w)|2
(
g(z, w)− g(z)

)(
g(z, w)− g(w)

)(3.38)

The integral over z on the second line is convergent, but that the integral of

each term in the parentheses separately is divergent due to the double pole

of |∂zg(z)|2 at z = 0.

The functions K1
aabb, K1

aaab and K1
aaaa are polynomials in t whose coeffi-

cients are genus-one modular graph functions of the customary type. Their
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contribution to K is given by,

Kt = 2K1
abab + 2K1

abba + 2K1
aabb − 8Re

(
K1

aaab

)
(3.39)

and computed in Appendix B.4, using the variational method introduced in
[22, §3.6]. The functions K0

aabb, K0
aaab and K0

aaaa are more exotic genus-one
modular graph functions, which are schematically represented in Figures
8 and 9 (these figures, however, do not indicate the subtractions in the
integrand). The remainder Kc = limt→∞(K −Kt) is given by,

Kc = 2Kabab + 2Kabba + 2K0
aabb − 4K0

aaab − 4(K0
aaab)

∗ + 2K0
aaaa

(3.40)

+ 4g(v)

(
D3 + 2ζ(3)−D

(1)
3 (v) +

ΔvF4(v)

2π

)
− 3g(v)4 − 7

4
E2

2 +
5

4
D4

+
3

2
E4

This concludes the explanation of the modular graph functions appearing
in the minimal degenerations (3.21) of the string integrands Zi and B(2,0).

4. The separating degeneration

In the separating degeneration, a genus-two Riemann surface Σ tends to
the union of two genus-one surfaces which intersect at a common puncture.
Denoting the corresponding compact genus-one surfaces by Σ1 and Σ′

1 with
respective moduli τ and σ, the punctured surfaces are Σ1 \{p} and Σ′

1 \{p′}
respectively, where the punctures p and p′ are identified with one another.
We shall examine the degeneration of string invariants in a neighborhood
of the separating degeneration, which we parametrize by the off-diagonal
element v of the period matrix. We begin by presenting a review of the
degeneration of the Abelian differentials, the canonical Kähler form, and
the Arakelov Green function, and derive the degenerations of the Kawazumi-
Zhang and B(2,0) example of higher invariants at genus two.

4.1. Funnel construction of the separating degeneration

A convenient parametrization of the neighborhood of the separating divisor
is provided by the funnel construction given in [42]. We shall carry out this
construction here in the simplest case of a genus-two surface Σ because this
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Figure 10: Funnel construction of a family of genus-two Riemann surfaces Σ
near the separating divisor in terms of two compact genus-one surfaces Σ1

and Σ′
1. The circles Ci and C′

i for i = 1, 2, 3 are centered respectively at the
punctures p and p′ and respectively bound the discs Di and D′

i. The surface
Σ is constructed from the surfaces Σ1 \D1 and Σ′

1 \D′
3 by identifying the

annuli [C1,C3] and [C′
1,C

′
3].

is the focus of the present paper, but the construction is easily generalized
to arbitrary genus.

For genus two, the starting point of the construction of Σ in [42] is pro-
vided by the compact genus-one surfaces Σ1 and Σ′

1, to which we add punc-
tures, respectively p and p′. Next, we introduce a system of local complex
coordinates (x, x̄) and (x′, x̄′) on each surface, and denote the coordinates
of the punctures simply by p and p′. We specify (simply connected) discs
Di centered at p with boundaries Ci on Σ1, and (simply connected) discs D′

i

centered at p′ with boundaries C′
i on Σ′

1 for i = 1, 2, 3, as shown in Figure 10.
The genus-two surface Σ is obtained by identifying the annulus [C1,C3]

with the annulus [C′
1,C

′
3] with respective local complex coordinates x and x′

via the relation,

(x− p)(x′ − p′) = vs(4.1)

Here vs is a complex parameter governing the separating degeneration (which
is referred to as t in [42]) and is such that the separating degeneration corre-
sponds to the limit vs → 0. Customarily, the curves Ci and C′

i are defined to
be circles in the local complex coordinates on the surfaces but here instead
we shall use a more intrinsic definition, which will be given below. Next, we
shall construct the Abelian differentials and Green function on Σ in terms
of its genus-one data along with vs.

4.2. Global funnel construction

In analogy with the construction of the neighborhood of the non-separating
node, we may also here provide a convenient intrinsic characterization of Ci
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and C′
i as level-curves of the scalar Green functions g and g′ on the genus-one

surfaces Σ1 and Σ′
1,

Ci = {x ∈ Σ1 such that g(x− p|τ) = ti}
C′
i = {x′ ∈ Σ′

1 such that g(x′ − p′|σ) = t′i}
(4.2)

for sufficiently large values of ti, t
′
i so that each level-set Ci and C′

i is con-
nected. The curves are related by the following relation between their ti-
values, valid for i = 1, 2, 3,

ti + t′i = − ln |2πvs η(τ)2η(σ)2|2 +O(v2s)(4.3)

Here, we have used the short-distance expansion of the scalar Green function
on the torus, given by g(z|τ) = − ln |2πz η(τ)2|2 + O(z2) to convert (4.1)
into the expression above.

When performing integrals over the genus-two surface Σ, it will be con-
venient to decompose the integral into a sum of the contribution from Σ1\D2

plus the contribution from Σ′
1 \D′

2 where the curves C2 and C′
2 are defined

so that t2 = t′2. Under these conditions, the Abelian differentials ω1 and ω2

remain uniformly bounded throughout Σ by a constant of order O(v0s), with
corrections which are suppressed by powers of vs.

4.3. Degeneration of Abelian differentials

We choose canonical homology bases for the genus-one surfaces by A1,B1 ⊂
Σ1 \ {p} and A′

1,B
′
1 ⊂ Σ′

1 \ {p′}, and extend those to a canonical homology
basis AI ,BI for I = 1, 2 for Σ by setting A2 = A′

1,B2 = B′
1. The genus-one

holomorphic Abelian differentials ω and ω′ respectively on Σ1 and Σ′
1 are

normalized as follows,

∮
A1

ω =

∮
A′

1

ω′ = 1

∮
B1

ω = τ

∮
B′

1

ω′ = σ

(4.4)

To construct holomorphic 1-forms on the genus-two surface with period ma-
trix,

Ω =

(
τ v
v σ

)
(4.5)

we extend ω to a differential ω1 on the genus-two surface Σ and ω′ to a
differential on the genus-two surface Σ by using the identification (4.1).
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Choosing complex coordinates x, x′ on Σ1 and Σ′
1 such that ω = dx and

ω′ = dx′, we see that the differential dx extends to −vs/(x
′ − p′)2dx′ in

Σ′
1 while the differential dx′ extends to −vs/(x − p)2dx in Σ1. Thus, the

extensions are governed by meromorphic 1-forms with a double pole. The
meromorphic 1-forms �(x, y) and �′(x′, y′) respectively on Σ1 and Σ′

1 are
normalized to have vanishing A-periods and a double pole of unit strength
at x = y and x′ = y′. Their B-periods are given by the Riemann bilinear
relations,∮

B1

�(x, y) = 2πiω(y)

∮
B′

1

�(x′, y′) = 2πiω′(y′)(4.6)

The holomorphic 1-forms ω1 and ω2 on the genus-two surface Σ, canonically

normalized on A1 and A2-cycles, are then given as follows,

ω1 =

{
ω(x) x ∈ Σ1 \D1

v �′(x′, p′)/(2πiω′(p′)) x′ ∈ Σ′
1 \D′

3

ω2 =

{
v �(x, p)/(2πiω(p)) x ∈ Σ1 \D1

ω′(x′) x′ ∈ Σ′
1 \D′

3

(4.7)

The parameter vs is related to the entry v of the genus-two period matrix
by,

v =

∮
B1

ω2 =

∮
B2

ω1 = −2πi vs ω(p)ω
′(p′)(4.8)

The expressions in (4.7) are valid up to corrections of order O(v2) which
have been omitted.

4.4. Degeneration of the Green function

The degeneration of the string Green function G of (2.16) on the genus-two
Riemann surface Σ was obtained in [24], and is given by,

G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(x− y|τ) + 2 ln(2π|η(τ)|2) x, y ∈ Σ1 \D1

g(x′ − y′|σ) + 2 ln(2π|η(σ)|2) x′, y′ ∈ Σ′
1 \D′

3

g(x− p|τ) + g(y′ − p′|σ) + ln
(
(2π)3|vη(τ)η(σ)|4

)
x ∈ Σ1 \D1, y

′ ∈ Σ′
1 \D′

3

(4.9)
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up to terms of order O(v) which will be omitted in the sequel. The degen-
eration of the canonical Kähler form κ of the genus-two Riemann surface Σ
is given as follows,

κ =

{
1
2κ1(x) =

i
4τ2

ω(x) ∧ ω(x) x ∈ Σ1 \D1

1
2κ

′
1(x

′) = i
4σ2

ω′(x′) ∧ ω′(x′) x′ ∈ Σ′
1 \D′

3

(4.10)

From these results we readily obtain the separating degeneration formulas
for the Arakelov Green function G on the genus-two Riemann surface Σ,
which are given as follows,

G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
2 ln |v̂|+ g(x− y|τ)− 1

2g(x− p|τ)− 1
2g(y − p|τ) x, y ∈ Σ1 \D1

−1
2 ln |v̂|+ g(x′ − y′|σ)− 1

2g(x
′ − p′|σ)− 1

2g(y
′ − p′|σ)

x′, y′ ∈ Σ′
1 \D′

3
1
2 log |v̂|+

1
2g(x− p|τ) + 1

2g(y
′ − p′|σ) , x ∈ Σ1 \D1, y

′ ∈ Σ′
1 \D′

3

(4.11)

where v̂ is related to v by the Dedekind eta-function η,

v̂ = 2π v η(τ)2η(σ)2(4.12)

In the vicinity of the separating degeneration the genus-two modular group
Sp(4,Z) restricts to its SL(2,Z)×SL(2,Z)′ subgroup which acts by Möbius
transformations on (τ, σ), and v by,

τ → aτ + b

cτ + d
σ → a′σ + b′

c′σ + d′
v → v

(cτ + d)(c′σ + d′)

(4.13)

with a, b, c, d, a′, b′, c′, d′ ∈ Z and ad − bc = a′d′ − b′c′ = 1. Since η(τ)2

transforms as a one-form under SL(2,Z) acting on τ , the combination v̂ is
invariant under SL(2,Z)× SL(2,Z)′, as well as under exchange of τ and σ.

4.5. Degeneration of the genus-two Kawazumi-Zhang invariant

As a warm-up, we consider the behavior of the genus-two KZ-invariant un-
der separating degeneration. Instead of the expression (3.15) for the KZ-
invariant, it will be more convenient to use the expression given in [24] and
valid for any scalar Green function,

ϕ(Ω) = −1

8

∫
Σ2

P (x, y|Ω)G(x, y|Ω)(4.14)
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The bi-form P (x, y|Ω) is symmetric in x, y and defined by,

P (x, y|Ω) =
(
2(Y −1)IL(Y −1)JK − (Y −1)IJ(Y −1)KL

)
(4.15)

× ωI(x)ωJ(x)ωK(y)ωL(y)

Up to terms of order O(v), the form P (x, y|Ω) degenerates as follows,

P (x, y|Ω) →

⎧⎪⎪⎨
⎪⎪⎩
−4κ1(x)κ1(y) x, y ∈ Σ1 \D1

−4κ′1(x
′)κ′1(y

′) x′, y′ ∈ Σ′
1 \D′

3

+4κ1(x)κ
′
1(y

′) x ∈ Σ1 \D1, y
′ ∈ Σ′

1 \D′
3

(4.16)

Combining the asymptotic behaviors to this order of the Arakelov Green

function G in (4.11) and of the differential P in (4.7), we see that all the

contributions of the genus-one Green functions in (4.11) integrate to zero

against the degeneration of P , and only the contribution of the terms pro-

portional to ln |v̂| survive, giving,

ϕ = − ln |v̂|+O(|v̂|)(4.17)

This result is consistent with part a) of the main Theorem in [30] for

(h1, h2) = (1, 1), and is identical to the more precise asymptotics derived

in [24].

4.6. Degeneration of the genus-two invariants Zi and B(2,0)

Our starting point is the expression for the genus-two modular graph func-

tions Zi of (2.12), and its simplified form (2.13) after some of the trivial

integrals over points on the surface have been performed, along with the

relation (2.11). To evaluate the degenerations of these invariants, neglecting

terms of order O(|v̂|), we use the asymptotics of the Arakelov Green function

in (4.11), of the canonical Kähler form κ in (4.10), and of the combination

involving the bi-holomorphic form Δ,

Δ =

⎧⎪⎪⎨
⎪⎪⎩
0 x, y ∈ Σ1 \D1 or x′, y′ ∈ Σ′

1 \D′
3

+ω(x) ∧ ω′(y′) x ∈ Σ1 \D1, y′ ∈ Σ′
1 \D′

3

−ω′(x′) ∧ ω(y) x′ ∈ Σ′
1 \D′

3, y ∈ Σ1 \D1

(4.18)
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The results are as follows,

Z1 = 2 ln2 |v̂|+ 4E2(τ) + 4E2(σ) +O(|v̂|)
Z2 = −2 ln2 |v̂| − E2(τ)− E2(σ) +O(|v̂|)
Z3 = 2 ln2 |v̂|+O(|v̂|)

(4.19)

Summing the contributions gives,

B(2,0) = 4 ln2 |v̂|+ 3E2(τ) + 3E2(σ) +O(|v̂|)(4.20)

Note in particular that B(2,0) − 4ϕ2 is finite as v → 0.

4.7. Degeneration of general genus-two modular graph functions

General classes of modular graph functions at genus two and beyond were
constructed in subsection 2.8 of [22], and are given as follows,

C[nij ; c(σ)] = cI1···INJ1···JN

∫
ΣN

N∏
i=1

ωIi(zi)ω
Ji(zi)

∏
1≤i<j≤N

G(zi, zj)nij(4.21)

Here, nij ≥ 0 are integers, while cI1···INJ1···JN
is an invariant modular tensor built

out of a linear combination of products of Kronecker δ-symbols. Given these
properties, it may be expressed as follows,

cI1···INJ1···JN
=

∑
σ∈SN

c(σ)

N∏
i=1

δJσ(i)

Ii(4.22)

where c(σ) are constants which depend on the permutation σ ∈ SN . The
weight w of the modular graph function C is given as follows,

w =
∑

1≤i<j≤N

nij(4.23)

We shall limit attention to the case of genus-two though the results extend
to higher genus. The asymptotics of C under separating degeneration is given
by the following theorem.

Theorem 1 The behavior of the modular graph function C in a neighbor-
hood of the separating degeneration node is given by a polynomial of degree
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w in ln |v̂| plus terms that are suppressed by positive powers of |v̂|, by the
following expression,

C[nij , c(σ)] =

w∑
k=0

ρk(τ, σ)
(
− ln |v̂|

)k
+O(|v̂|1−ε)(4.24)

for any ε > 0. The expansion parameter ln |v̂| and coefficients ρk(τ, σ) are
invariant under the residual group SL(2,Z) × SL(2,Z)′ acting on τ, σ and
v as in (4.13).

The proof of the theorem proceeds as follows. Up to corrections of order
O(|v̂|), the differential forms ωIi(zi)ω

Ji(zi) on the genus-two surface reduces
to a linear combination of κ1(zi) when zi ∈ Σ1 \ D1 and κ′1(zi) when zi ∈
Σ′
1 \D′

3. Therefore, to order O(|v̂|) the integral over ΣN reduces to a sum
of integrals over these genus-one components of products of powers of ln |v̂|,
g(zi − p|τ), g′(z′i − p′|σ), g(zi, zj |τ) and g(z′i, z

′
j |σ), all of which integrate to

produce terms obeying the properties of the expansion announced in the
Theorem. This part is straightforward.

The more delicate part of the proof consists in showing that the cor-
rections of order O(|v̂|) to the leading contributions in the separating de-
generation of the holomorphic Abelian differentials is indeed suppressed as
indicated by the theorem. This part is not straightforward in view of the
fact that the coefficient of v is a meromorphic differential which has a double
pole at the punctures, so that its contribution to various integrals near the
punctures could overcome the O(|v̂|) suppression factor.

To proceed, we shall represent the genus-two surface Σ by the union of
the genus-one surfaces with boundary, given by Σ1 \D2 and Σ′

1 \D′
2, where

we choose the curves C2 and C′
2 to be defined by,

t2 = t′2 = − ln |2π v η(τ)2η(σ)2|+O(|v|2)(4.25)

For sufficiently small v, the parameters t2 and t′2 are large and the curves
C2 and C′

2 are approximately circles centered at the punctures with radii
squared of order v,

C2 = {z ∈ Σ1 such that |z − p| = |v| 12 +O(|v| 32 )}
C′
2 = {z′ ∈ Σ′

1 such that |z′ − p′| = |v| 12 +O(|v| 32 )}
(4.26)

The terms of fastest growth in the integrals required in Theorem 1 are as
follows,

|v|2
∫
Σ1\D2

|�(x, p)|2f(x)(4.27)
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The cases we need are when f(x) is continuous throughout Σ1 or behaves
as a power of a logarithm near the puncture p. For f continuous near p, the
integral is of the form,

|v|2
∫
|x−p|>|v| 12

d2x
f(x)

|x− p|4 = |v|
∫
|x̃|>1

d2x̃
f(p+ |v| 12 x̃)

|x̃|4(4.28)

where the equality was obtained by changing variables locally by setting
x = p+ |v| 12 x̃. Thus, the contribution to the integrals from the Abelian dif-
ferential with double pole is suppressed by a power of |v|. The same scaling
argument shows that upon multiplying f by a factor of g(x−p|τ)n, the sup-
pression factor is instead |v|(ln |v|)n. An analogous argument goes through
for multiple integrations, say over variables x, y, involving also powers of
the Green function g(x − y|τ)n, as may be seen from the following double
integral,

|v|4
∫
(Σ1\D2)2

|�(x, p)|2|�(y, p)|2g(x− y|τ)n(4.29)

≈ |v|2
∫
|x̃|,|ỹ|>1

d2x̃ d2ỹ

|x̃|4|ỹ|4
(
− ln |v||x̃− ỹ|2

)n

which is now suppressed by |v|2 times powers of ln |v|. For any n, the integrals
are therefore bounded by |v|1−ε for any ε > 0, which concludes the proof
of the Theorem. An alternative proof may be given using the variational
method on ln |v|, which is closer in spirit to the proof given for the non-
separating degeneration in terms of t.

5. The tropical degeneration

The complete degeneration of a compact genus-two Riemann surface is ob-
tained by letting the imaginary part of the period matrix Y scale to ∞ while
keeping the ratios of its entries fixed. We shall refer to this limit as the trop-
ical degeneration because maximal degenerations are generally described by
tropical geometry [43]. The tropical degeneration provides a suitable frame-
work for examining the relation between the integrands for amplitudes of
superstring theory and those of the associated supergravity [44]. In this
section, we shall review the geometry and symmetries of the tropical de-
generation, and then obtain the corresponding asymptotic behavior of the
string invariant B(2,0). This study will prepare the ground for the comparison
between string and supergravity amplitudes in Section 6.2.
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5.1. Geometry and symmetry of the tropical degeneration

The geometry and symmetries of the tropical degeneration are most easily
exposed by parametrizing the imaginary part of the period matrix Y , given
in (1.2) and (3.1) in terms of a positive real variable V and a parameter
S = S1 + iS2 in the Poincaré upper half-plane [45],

Y =
1

V S2

(
1 S1

S1 |S|2
)

(5.1)

The relation between the two systems of coordinates is given by,

V =
1√
tτ2

= (detY )−
1

2 S = u2 + i

√
t

τ2
(5.2)

where we recall that v2 = τ2u2 and t = σ2− τ2u
2
2. The tropical degeneration

corresponds to letting V → 0 while keeping S fixed. In terms of the original
variables, it arises equivalently by taking tτ2 → ∞ while keeping u2 and t/τ2
fixed and non-zero.

The subgroup of the genus-two modular group Sp(4,Z) which leaves the
tropical degeneration invariant acts on Ω by 2×2 matrices A,B with integer
entries,

Ω → Ω′ = A(Ω +B)At(5.3)

where A ∈ GL(2,Z) and B is symmetric. Parametrizing the matrix A by
a, b, c, d ∈ Z as exhibited below, we find that V is invariant, while S trans-
forms as follows,

A =

(
d c
b a

)
S → aS + b

cS + d

∣∣∣∣
detA=1

S → aS̄ + b

cS̄ + d

∣∣∣∣
detA=−1

(5.4)

The modular subgroup of these transformations isGL(2,Z)�Z3 ⊂ Sp(4,Z).6

We shall expand genus-two string invariants near the tropical degener-
ation within the approximation where all Laurent polynomial contributions
in the components of Y are retained but exponential contributions are ne-
glected. This asymptotic expansion is the analogue of the one used for the

6The parameterization of two-loop supergravity in terms of the coordinates S
and V was introduced in the analysis of properties of two-loop maximal supergravity
in [45, 46, 33], where the complex coordinate S was denoted by τ .
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non-separating degeneration where all exponential contributions in t are ne-
glected. Since periodicity forces the dependence on the moduli Re (Ω) to
be exponential, this dependence will vanish within the above approxima-
tion. Since the action of the transformation matrix B given in (5.3) af-
fects only Re (Ω) and not Y , the Z3 components of the residual modular
group acts trivially. Similarly, the center of GL(2,Z), which consists of the
group of matrices A = ±I also acts trivially on Y . Therefore, the proper
modular subgroup acting in the tropical degeneration will be PGL(2,Z) =
GL(2,Z)/{±I}. The corresponding fundamental domain may be chosen as
follows,

F =
{
S ∈ H1, 0 < S1 <

1
2 , |S| > 1

}
(5.5)

It will be convenient to consider the six-fold covering space F̂ of F defined
as follows,

F̂ =
{
S ∈ H1, 0 < S1 < 1, |S − 1

2 | >
1
4

}
,(5.6)

which happens to be a fundamental domain for the congruence subgroup
Γ0(2) of matrices A in (5.4) with detA = 1 and c = 0 modulo 2 (see Fig-
ure 11). The corresponding deck transformations S = {Π0,Π1,Π2,Π3,Π4,
Π5} act on S by,

Π0(S) = S Π2(S) = 1− S−1 Π4(S) = (1− S)−1

Π1(S) = 1− S̄ Π3(S) = S̄−1 Π5(S) = (1− S̄−1)−1
(5.7)

and form a group S which is isomorphic to the permutation group S3, so
that F = F̂/S. The action of PSL(2,Z) ⊂ PGL(2,Z) has isolated fixed
points at S = i∞, i and e2πi/6 and their images under SL(2,Z). The set of
fixed points S of transformations in PGL(2,Z) with detA = −1 consists of
the fixed line of the transformation S → −S̄ and its images under SL(2,Z).
The boundary components of F , located at S1 = 0, S1 = 1

2 , and |S| = 1
are fixed lines respectively of S → −S̄, S → 1 − S̄, and S → 1/S̄. The
fundamental domain F has been defined as an open subset of H1 which
excludes the points in S.

A more physical interpretation of the fixed lines may be obtained by
changing variables from V, S to real variables L1, L2, L3 > 0 related to one
another as follows [45],

Y = 2π

(
L1 + L2 L1

L1 L1 + L3

)
V =

2π

(L1L2 + L2L3 + L3L1)
1

2

(5.8)
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Figure 11: The extended fundamental domain F̂ (shaded in grey) is a six-fold
cover of the fundamental domain F of GL(2,Z) labeled by (123). Here the
labels (ijk) denote the ordering Li < Lj < Lk of the Schwinger parameters.

The variable S takes the following form,

S1 =
L1

L1 + L2
S2 =

(L1L2 + L2L3 + L3L1)
1

2

L1 + L2
(5.9)

As will be further explained in the next section, the Li’s arise as Schwinger

parameters in supergravity Feynman diagrams. The domain where all Li’s

are positive coincides with the domain F̂ and the group S of (5.7) acts by

permuting the Li’s (namely, Π1,Π3,Π5 exchange (L1, L2), (L3, L1), (L2, L3),

respectively while Π2, Π4 act by circular permutations). The domain F cor-

responds to the particular choice of ordering L1 < L2 < L3. The boundary

components of F̂ , namely S1 = 0, S1 = 1 and |S − 1
2 | =

1
4 respectively cor-

respond to the vanishing of L1, L2, and L3. The intersection of the tropical

degeneration with the non-separating degeneration (t → ∞ for fixed τ and

v), corresponds to L3/L1, L3/L2 → ∞ while keeping L1/L2 fixed, or equiva-
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lently V → 0 and S2 → ∞ keeping V S2 and S1 fixed. The intersection of the
tropical degeneration with the separating degeneration (v → 0 for fixed τ
and σ), corresponds to V, L1 → 0 while keeping L3/L2 fixed, or equivalently
V, S1 → 0 keeping S2 fixed.

5.2. Tropical limit of string invariants

The asymptotic behavior of genus-two modular graph functions near the
tropical degeneration consists of a Laurent expansion in the variable V with
coefficients which are functions only of S (and S̄), plus exponentially sup-
pressed contributions, which we neglect. Since the original modular graph
function is invariant under Sp(4,Z) and the expansion parameter V is invari-
ant under its PGL(2,Z) subgroup, it follows that the expansion coefficients
of the Laurent polynomial in V must also be invariant under PGL(2,Z).
If the genus-two string invariant is real-analytic away from the separating
degeneration locus v = 0 (and Sp(4,Z) images thereof), then each expansion
coefficient will be a real-analytic function of S away from the locus S given
by the union of images of the line S1 = 0 under the action of GL(2,Z).The
Laurent coefficients are real-analytic modular invariant functions on H1 \S,
a class of functions known as modular local polynomials, first encountered
in the study of two-loop supergravity amplitudes [33] and further developed
in the mathematics literature [35, 36]. We postpone a general discussion
of these functions to subsection 5.4, and concentrate here on the specific
examples of the first two non-trivial genus-two string invariants, B(0,1) and
B(2,0).

5.3. Tropical limit of non-separating degenerations

In terms of the variables t, τ2, u2 introduced in (3.1), the fundamental do-
main F covers the region t > τ2(1 − u22), 0 < u2 < 1

2 which includes the
non-separating degeneration t → ∞ for τ2 fixed. We can therefore access the
tropical limit V → 0 for S2 near the cusp of F by starting from the asymp-
totic series (1.3) in the non-separating degeneration limit t → ∞. In taking
this limit, we shall retain only terms which are power-behaved in τ2, since
exponentially suppressed terms will not contribute to the Laurent expansion
around V = 0. Due to the modular graph nature of the coefficients in the
large t expansion (1.3), it will turn out that in the limit τ2 → ∞ keeping
u2 = v2/τ2 ∈]0, 1/2[ fixed, each of these coefficients reduces to a Laurent
polynomial in τ2, with coefficients given by Bernoulli polynomials in u2. Af-
ter transcribing these results in terms of V and S, we will be able to express
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the Laurent coefficients around V = 0 in terms of a family of local modular

functions Ai,j(S) defined in the next subsection (see (5.32)). This process

is rather involved and the derivations are relegated to Appendix (C), where

the results are first expressed in terms of the variables t, τ2 and u2.

The tropical limit of the Kawazumi-Zhang invariant ϕ, first obtained

at leading order in [29] and then extended to all orders in [32], is derived

by letting τ2 → 0 at fixed u2 in the expansion (3.16), and retaining only

power-like terms in τ2. The result reads

ϕ(t) =
5π

6V
A1,0 +

5V 2

4π2
ζ(3)A0,0(5.10)

where A0,0 = 1 and

A1,0(S) =
S2

5
+

6

5S2
B2(S1) +

1

S3
2

(
1

30
+B4(S1)

)
.(5.11)

where B2k(S1) are Bernoulli polynomials of even index. These expressions

are valid in the extended fundamental domain F̂ only, and can be extended

to continuous (but non differentiable) functions on the full upper half plane

by GL(2,Z) invariance. As we shall see in the next section, the leading

Laurent coefficient in ϕ of order 1/V matches the two-loop supergravity

integrand, while the sub-leading term, proportional to ζ(3)V , can be traced

to a two-loop diagram with a higher derivative R4 interaction on one vertex.

Similarly, the tropical limit of the genus-two modular graph functions

Z2,Z3 is given by,

Z(t)
2 =

32π2

V 2

[
1

504
A0,0 −

1

1008
A0,2 −

5

792
A1,1 −

17

960
A2,0

]
(5.12)

− 5V ζ(3)

2π
A1,0 −

7V 3ζ(5)

4π3
A0,1

Z(t)
3 =

32π2

V 2

[
− 11

7560
A0,0 +

1

1512
A0,2 +

1

792
A11 +

17

576
A2,0

]
(5.13)

+
5V ζ(3)

6π
A1,0 +

11V 4ζ(3)2

8π4
A0,0

where the functions Ai,j = Ai,j(S) are given in the extended fundamental
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domain F̂ by the following expressions,

A0,1(S) = S2 +
1

S2

(
5

6
+B2

)

A0,2(S) = S2
2 +

(
2

3
+ 2B2

)
+

1

S2
2

(
7

10
+ 2B2 +B4

)

A1,1(S) =
S2
2

7
+

(
1

70
+

9

7
B2

)
+

1

S2
2

(
9

7
B2 +

15

7
B4

)

+
1

S4
2

(
11

420
+

3

2
B4 +B6

)

A2,0(S) =
S2
2

33
+

(
20

693
+

20

33
B2

)
+

1

S2
2

(
20

33
B2 +

70

33
B4

)

+
1

S4
2

(
20

11
B4 +

28

11
B6

)
+

1

S6
2

(
1

630
+

4

3
B6 +B8

)

(5.14)

where for brevity we denote B2n = B2n(S1). After extending them to the full
upper-half plane by modular invariance, the Ai,j ’s become eigenfunctions of
the Laplace-Beltrami operator Δ = S2

2

(
∂2
S1

+ ∂2
S2

)
on H1\S,

ΔAi,j − n(n+ 1)Ai,j = 0 , n = 3i+ j(5.15)

up to a delta function source supported on the singular locus S. They provide
a basis for the class of functions encountered in the low energy expansion of
the two-loop supergravity amplitude computed to high order in [33]. In par-
ticular, they are invariant under the group of permutations S3 on L1, L2, L3.
This particular basis was constructed by Zagier [34] and will be reviewed in
the next subsection.

For the remaining string invariant Z1, in principle we would need to
compute the tropical limit of the integral K0

aaaa defined in (3.38), which
appears to be a project in its own right. By construction however, K0

aaaa

is only a function of τ , independent of the variable v, and therefore the
tropical limit of K0

aaaa/t
2 cannot be written as a linear combination of V αAi,j

without spoiling the coefficients of the higher powers of t. Fortunately, there
are other offending terms coming from the tropical limit of Kc which are
also independent of u2. Collecting these terms together, we obtain

Z(t)
1 =

32π2

V 2

[
− 1

315
A0,0 +

1

252
A0,2 −

1

792
A1,1 +

23

960
A2,0

]
(5.16)

+
V ζ(3)

π

[
18

5
A0,1 −

1

2
A1,0

]
− V 3ζ(5)

2π3
A0,1 +

3ζ(3)2V 4

8π4
A0,0
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+
1

8π2t2

[
K0

aaaa −
2y4

945
+

8yζ(3)

5
+

145ζ(5)

6y
+

3ζ(7)

4y3

]

For consistency with the symmetries of the tropical limit, the bracket on
the last line must be proportional to V 4A0,0 with no dependence on S. We
conclude that the tropical limit of K0

aaaa must be given by

K0
aaaa =

2y4

945
− 8yζ(3)

5
− 145ζ(5)

6y
− 3ζ(7)

4y3
+ (β − 3)

ζ(3)2

π2y2
+O(e−2y)

(5.17)

where the coefficient β is unknown at this stage. Note that the naive evalua-
tion of the integral (3.38) by replacing g(z) by its polynomial approximation
g1(z) and ignoring the term proportional to ζ(3) correctly produces the lead-
ing term in (5.17).

We conclude that the tropical degeneration of the string invariant B(2,0)

is given by,

B(t)
(2,0) =

1

2
Z(t)
1 −Z(t)

2 +
1

2
Z(t)
3

(5.18)

=
32π2

V 2

[
− 13

3024
A0,0 +

5

1512
A0,2 +

5

792
A1,1 +

2

45
A2,0

]

+
V

π
ζ(3)

[
9

5
A0,1 +

8

3
A1,0

]
+

3V 3

2π3
ζ(5)A0,1 + (β + 11)

ζ(3)2V 4

16π4
A0,0

where the coefficient β could in principle be determined by a full analysis of
the tropical limit of the integral K0

aaaa defined in (3.38), which we leave for
future work.

5.4. Modular local polynomials

In this subsection we review the construction of the space of modular local
polynomials, following [34] and expanding thereon. Our goal is to construct
functions A(S) on the Poincaré upper half-plane, which are invariant under
the action (5.4), real-analytic away from the locus S, and given in each
connected domain of H1\S by a Laurent polynomial in S2, with coefficients
which are polynomial in S1. We further require that these functions satisfy
the Laplace eigenvalue equation,

[Δ− n(n+ 1)] A = 0(5.19)
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away from S, with n ≥ 0 integer. Since the differential operator Dk =
∂S+

k
S−S̄

satisfies Δk+2 ·Dk−DkΔk = −kDk, where Δk = 4Dk−2◦(S2
2∂S̄) is

the Laplacian acting on weight k modular forms, it is clear that the function

given locally by A = D
(n)
−2nP where D

(n)
−2n is the iterated derivative operator

D
(n)
−2n =

(−2i)nn!

(2n)!
D−2 ◦D−4 ◦ · · · ◦D−2n+2 ◦D−2n(5.20)

will satisfy (5.19) whenever P is annihilated by the Laplacian Δ−2n, in
particular when P is a holomorphic function of S. Since the operator (5.20)
can be written as

D
(n)
−2n =

(−2i)nn!

(2n)!

n∑
m=0

(
n
m

)
(−n−m)m
(S − S̄)m

∂n−m

∂Sn−m
(5.21)

where (k)m = k(k+1) . . . (k+m−1) is the ascending Pochhammer symbol,
it is also clear that whenever P is a polynomial in S, the resulting function A
will be a Laurent polynomial in S2 with coefficients which are polynomial in
S1. In order for A(S) to be invariant under the action (5.4), the polynomial
P should transform according to,

P |γ(S) =

⎧⎪⎨
⎪⎩
(cS + d)−2nP

(
aS+b
cS+d

)
if det γ = +1

(cS + d)−2nP
(
aS̄+b
cS̄+d

)
if det γ = −1

where γ =

(
a b
c d

)(5.22)

It is easy to check that this action preserves the space V2n of polynomials
of degree at most 2n, while polynomials of higher degree are mapped into

rational functions. Thus, the functions of interest are of the form A = D
(n)
−2nP

where P (S) is a polynomial in S of degree at most 2n.
Since the extended fundamental domain F̂ covers a single connected

component of H1\S, we must restrict to functions are invariant under the
deck transformations (5.7). We claim that this amounts to requiring that
P (S) is a sum of monomials

∑
iCiu

ivn−3i, where Ci’s are real constants
and we set,

u = S2(1− S)2 , v = S2 − S + 1(5.23)

This result may be established by considering the generating function (S +
t)2n for the space of polynomials in V2n parametrized by t ∈ R. The operator
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(5.20) acts on this function by,

D
(n)
−2n (S + t)2n = |S + t|2nS−n

2(5.24)

The deck transformations Πi ∈ S acting on the functions |S + t|2nS−n
2 lift

to purely holomorphic transformations Π̃i acting on the functions (S+ t)2n,

Πi

(
|S + t|2nS−n

2

)
= D

(n)
−2n

{
Π̃i

(
(S + t)2n

)}
(5.25)

where

Π̃0(S + t)2n = (S + t)2n Π̃1(S + t)2n = (S − t− 1)2n

Π̃2(S + t)2n = (S + tS − 1)2n Π̃3(S + t)2n = (tS + 1)2n(5.26)

Π̃4(S + t)2n = (tS − t− 1)2n Π̃5(S + t)2n = (S + tS − t)2n

The projection of the generating function (S + t)2n onto the space PS
n of

weight 2n S-invariant polynomials is given by summing over all images,

Pt(S) =
1

6

5∑
i=0

Π̃i(S + t)2n(5.27)

Invariance under S → 1 − S trivially implies that Pt(S) is a polynomial in
S(1 − S), and therefore a polynomial in u, v. It remains to show that the
only allowed monomials are those of the form uivj with n = 3i+ j.

For this purpose, we linearize the action of G by introducing a set of
three complex variables, z1, z2, z3 in terms of which u and v are given by
symmetric polynomials,

z1 + z2 + z3 = 0

z21 + z22 + z23 = 2v

z31 + z32 + z33 = 3
√
u

(5.28)

The projected generating function Pt(S) can then be obtained as

z2n2 Pt(−z1/z2) = Ft(z1, z2, z3)(5.29)

where Ft is the following polynomial, which is homogeneous of degree 2n in
the variables zi, and invariant under permutations of the zi’s,
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Ft(z1, z2, z3) = (tz1 − z2)
2n + (tz1 − z3)

2n + (tz2 − z1)
2n(5.30)

+ (tz2 − z3)
2n + (tz3 − z1)

2n + (tz3 − z2)
2n

Since Ft is a symmetric polynomial in zi, it may be expressed as a polynomial
in v and

√
u. Under the parity transformation zi → −zi, the polynomial Ft

is invariant, while v is even but
√
u is odd. Since the polynomials u, v, and

Ft have respective homogeneity degree weights 2, 6, and 2n, we have the
decomposition,

Ft(z1, z2, z3) =
∑

i,j≥0; 3i+j=n

Ci(t)u
ivj(5.31)

for some polynomials Ci(t) in t with real coefficients, thus proving the an-
nounced result.

We are now ready to define the family of functions Ai,j whose first few
members appeared in the previous subsection: they are simply the descen-
dents of the monomials

Ai,j(S) = D
(n)
−2n(u

ivj) n = 3i+ j with i, j ≥ 0(5.32)

In the fundamental domain F̂ , the modular function Ai,j(S) takes the fol-
lowing form,

Ai,j(S) =

2i+j∑
k=0

A
(k)
i,j (S1)S

i+j−2k
2(5.33)

where A
(k)
i,j (S1) is a polynomial of degree k in S1(1−S1), and thus of degree

2k in S1. Since it is invariant under S1 �→ 1 − S1, it may be expressed
as a linear combination of Bernoulli polynomials B2k(S1) of even index.
After expressing S1, S2 in terms of L1, L2, L3 using (5.9), the function Ai,j

is then by construction a homogenous function of the Li’s, invariant under
permutations. Multiplying Ai,j by a power V α and expressing it in terms
of the variables t, τ2, u2, we see that V αAi,j has a Laurent expansion near
t = ∞ with powers ranging from 1

2(i+j−α) to −1
2(3i+j+α). This Laurent

expansion is compatible with that of a genus-two modular graph function
with weight w only when

i+ j ≤ 2w + α , 3i+ j ≤ 2w − α , |α| ≤ 2w , i+ j − α even(5.34)

For w = 2 and α = −2, this constraint singles out the functions A0,0, A0,2,
A1,1, A2,0 appearing in the leading term in (C.90). The subleading terms in
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the same equation also satisfy the requirement (5.34), but it is worth men-
tioning that terms with α = −4,−3, 0, 2 are in principle allowed, although
they do not occur in practice. In particular, agreement with supergravity
requires α ≥ −w. Finally, since Ai,j satisfies (5.19) with n = 3i + j, it eas-
ily follows that V αAi,j is an eigenmode of the Laplacian ΔH2

on the Siegel
upper half plane with eigenvalue 1

2 [n(n + 1) + α(α + 3)], away from the
separating degeneration locus.

6. Low energy expansion in two-loop supergravity

The amplitudes of closed superstring theory are related at energy scales
� (α′)−1/2 to amplitudes in maximal supergravity. At tree level this con-
nection is easy to demonstrate, but at loop level the connection to higher
genus string amplitudes is more subtle due to ultraviolet divergences occur-
ring in supergravity loop amplitudes. Still, the maximal degeneration of the
integrand of the genus-h superstring amplitude is expected to be related to
the sum of integrands of the corresponding supergravity amplitude, and in
fact provides an efficient reorganisation of the sum over Feynman diagrams
[47, 48, 49]. In this section we will compare the low energy expansion of the
integrands in maximal supergravity with the genus-two string theory results
of the preceding sections. Our discussion will highlight the fact that the in-
tegrands of the Feynman diagrams do not capture the full content of the
tropical limit that was analyzed in the last section – the terms proportional
to odd zeta values do not arise from the field theory expression.

The Feynman diagrams contributing to the two-loop four-graviton am-
plitude in maximal supergravity were expressed in an efficient manner in
[38], where it was demonstrated that they could be reduced to a sum of
diagrams of the form shown in Figure 12. As indicated in that figure, each
diagram has the structure of a graph in φ3 quantum field theory multiplied
by a kinematic factor of s2R4. The full amplitude, which is symmetric in
the external states is obtained by summing over the diagrams with the three
inequivalent permutations of the external particles, which involve kinematic
factors of t2R4 and u2R4 in addition to the s2R4 term shown in Figure 12.
Note that graphs in which more than two vertices are attached to a single
line are absent.

After integrating over the loop momenta the expression for each Feyn-
man integral involves integration over seven “Schwinger” parameters. These
may be interpreted as the positions of the four vertices, ti (i = 1, 2, 3, 4),
and the parameters, L1, L2 and L3, which label the lengths of the lines, and
which take values in the range 0 ≤ Li ≤ ∞. These real parameters of the
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Figure 12: (a) A “planar” Feynman diagram with a pair of external states
connected to two different lines of a two-loop vacuum diagram. (b) A “non-
planar” Feynman diagram in which one pair of external states is attached
to a single line and the other states are each attached to separate lines.

Feynman integrand can be understood as the moduli of tropical Riemann
surfaces [44] and are analogous to the seven complex parameters that enter
into the integrand of the genus-two superstring amplitude, (2.1) and (2.4),
which label the complex positions of the four vertex operators and the three
complex moduli of the compact genus-two surface.

Expanding the sum of Feynman diagrams in powers of s, t and u and in-
tegrating each term over ti leads to a power series of the form (2.6) with the
string coefficient functions B(p,q)(Ω) replaced by their supergravity coun-

terparts, B(sg)
(p,q)(L1, L2, L3)

7. These functions can be obtained reasonably

straightforwardly up to any given order in the low energy expansion by
expanding the Feynman diagrams. In [33] these coefficients were explic-
itly evaluated up to terms with 2p + 3q = 6 (terms of order s6), and it
is straightforward to generate them to much higher order. The expressions

for B(sg)
(p,q)(L1, L2, L3) are sums of the local modular functions Ai,j(S) (that

were defined in the last section) with rational coefficients, multiplied by a
factor of V −w (where w was defined in (2.7)).

We are here interested in studying the detailed correspondence between
the tropical limit of the genus-two string amplitude and the supergravity ex-
pression. For this purpose we would like to express the Feynman diagrams
in terms of sums over word-lines in a manner that mimics the expression of
string theory amplitudes as sums over world-sheets. Such a world-line proce-
dure was described in the context of scalar field theory in [48, 49, 50] and in
the context of the two-loop four-graviton amplitude in maximal supergravity

7The superscript (sg) will be used to label the supergravity versions of the various
quantities in the following equations.
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in [33]. In the latter reference it was shown that the low energy expansion
of the sum of supergravity Feynman diagrams is reproduced by the sum of

word-line diagrams. In other words, the coefficient B(sg)
(2,0) of the term at order

σ2
2 in the low energy expansion is given by a world-line expression analogous

to the world-sheet expression in (2.9).

Such a world-line formulation will allow us to evaluate quantities Z(sg)
1 ,

Z(sg)
2 ,Z(sg)

3 that are the supergravity analogues of the integrals of bilinears
in the world-sheet Green function that were defined by (2.11) and (2.12).
We will then compare them with the tropical limit of the string invariants,

Z(t)
1 ,Z(t)

2 ,Z(t)
3 that were computed in Section 5. The form of the supergravity

expressions, when expressed in the world-line formalism, is given by,

Z(sg)
1 =

∫
Γ4

Δ(sg)(1, 3)Δ(sg)(2, 4)

8 (detY (sg))2
G(sg)(1, 2)2(6.1)

Z(sg)
2 =

∫
Γ4

Δ(sg)(1, 3)Δ(sg)(2, 4)

8 (detY (sg))2
G(sg)(1, 2)G(sg)(1, 4)(6.2)

Z(sg)
3 =

∫
Γ4

Δ(sg)(1, 3)Δ(sg)(2, 4)

8 (detY (sg))2
G(sg)(1, 2)G(sg)(3, 4)(6.3)

where G(sg)(i, j) = G(sg)(ti, tj) now denotes the Arakelov Green function on
the two-loop graph Γ with three edges of length L1, L2, L3 and ti, tj (i =
1, 2, 3, 4) label the positions of the vertex operators that are to be integrated
over the network of world-lines in the graph (as shown in Figure 12). We
normalize the (real) period matrix of the graph, Y (sg), so that it agrees with
the imaginary part of the period matrix of the Riemann surface Σ in the
maximal degeneration limit (where we have made a particular choice for the
arbitrary overall normalisation)

Y (sg) = 2π

(
L1 + L2 L1

L1 L1 + L3

)
(6.4)

The measure in (6.1)–(6.3) involves factors of Δ(sg)(i, j), each of which is a
two-form on Γ × Γ, and is the limit of the corresponding factor |Δ(zi, zj)|2
in the string measure defined in (2.12). It reduces to ±4 dti dtj if the points
i, j are on different edges, and zero otherwise.

As in the string computation, the expression for the total coefficient

B(sg)
(p,q) =

1

2
Z(sg)
1 −Z(sg)

2 +
1

2
Z(sg)
3 =

1

2
Z

(sg)
1 − Z

(sg)
2 +

1

2
Z

(sg)
3(6.5)
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is independent of whether one uses the world-line Green function,G(sg)(ti, tj)

(as in [50, 33]) or the Arakelov Green function, G(sg)(ti, tj), but the individual

contributions Zi and Zi differ in the two cases. In order to compare these

with the tropical limit of the string calculation, it is crucial that we use

the Arakelov Green function in the following. As stressed earlier, the use

of the Arakelov Green function guarantees the conformal invariance of each

individual component Zi.

However, just as in the string case, it is far more convenient to first

compute the diagrams with the world-line Green function G(sg)(ti, tj), giving

rise to contributions Z
(sg)
i , which may then be transcribed into Z(sg)

i by using

the relation between the Green functions. We will see that the supergravity

results Z(sg)
i (L1, L2, L3) reproduces the leading term in the tropical limit

Z(t)
i (Ω) of the string invariant, upon identifying the graph period matrix

(6.4) (up to an overall scale factor) with the imaginary part of the period

matrix Ω. However, the tropical limit of the string amplitude also contains

subleading terms which do not arise in the supergravity calculations, but can

nevertheless be understood as two-loop amplitudes with higher-derivative

vertices.

6.1. Green functions on graphs

We first recall the general definition of the world-line propagator from [50],

and its relation to the Arakelov-Green function. We consider a graph Γ with

h loops, and denote the edges by ei. We choose a basis aI , I = 1 . . . h of

homology cycles in H1(Γ,Z). The dual one-forms ωI ∈ H1(Γ,Z) are given by

±dt on the edge ej if the edge ej lies on the cycle aI , with a sign depending

on the orientation of ej along aI , or zero of ej does not belong to aI . The

period matrix of the graph is defined by Y
(sg)
IJ = 2π

∫
aI
ωJ and is a symmetric

positive real matrix. The world-line Green function on Γ is given by8

G(sg)(t, t′) = −s(p(t, t′)) + 2πY (sg)IJ
∫
p(t,t′)

ωI

∫
p(t,t′)

ωJ(6.6)

where s(t, t′) is the length of the path p(t, t′) and Y (sg)IJ is the inverse of

Y
(sg)
IJ . Note that G(sg)(t, t′) depends on the choice of homology basis and the

8We use a somewhat unusual normalization of the Green function such that it
agrees with the string Green function (2.16) in the tropical limit.
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choice of path, which we fix by cutting the graph along h edges such that it
becomes simply connected. Moreover it satisfies,

∂2
tG

(sg)(t, t′) = −2δ(t− t′) + 2hκ(sg)(t) ,(6.7)

where κ(sg)(t) is the Arakelov one-form on Γ, given on the edge ei by

κ
(sg)
i =

2π

h
sIJY

(sg)IJdt(6.8)

where sIJ = ±1 if the edge ei belongs to both aI and aJ , or sIJ = 0 if it

does not. Alternatively, κ
(sg)
i = dt/(Li + ri), where Li is the length of the

edge ei and ri is the effective resistance between the two endpoints of ei
once the edge is removed from Γ. By Foster’s theorem from electric network
theory,

∑
i

Li

Li+ri
= h so

∫
Γ κ(sg) = 1. Note that unless h = 1, the r.h.s. of

(6.7) does not integrate to zero. The Arakelov Green function G(sg)(t, t′) is
obtained from G(sg)(t, t′) using the relation,

G(sg)(t, t′) = G(sg)(t, t′)− γ(sg)(t)− γ(sg)(t′) + γ
(sg)
1(6.9)

where

γ(sg)(t) =
1

2

∫
Γ
G(sg)(t, t′)κ(sg)(t′) , γ

(sg)
1 =

∫
Γ
γ(sg)(t)κ(sg)(t)(6.10)

The Arakelov Green function satisfies,

∂2
t G(sg)(t, t′) = −2δ(t− t′) + κ(sg)(t) ,

∫
Γ
G(sg)(t, t′)κ(sg)(t′) = 0(6.11)

so, unlike the world-line Green function, its integral using the Arakelov mea-
sure, vanishes.

6.2. World-line evaluation of two-loop supergravity invariants

We now apply the previous formulae to the diagrams of Figure 12 with three
edges of ei length Li, i = 1, 2, 3. We choose a basis of H1(Γ) such that the
loop B1 = e1 − e2, and B2 = e2 − e3. Then, on the edge e1, the Abelian
differentials (ω1, ω2) reduce to (dt, 0); on e2 to (dt,−dt); and on e3 to (0, dt).
The period matrix of the graph is given in (6.4). The canonical volume form
is then

κ(sg)(t) =
(Lj + Lk) dt

2ΔL
(t ∈ ei)(6.12)
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where ΔL = L1L2 + L2L3 + L3L1 = V −2 and {i, j, k} = {1, 2, 3}. It is
straightforward to check that

∫
Γ κ

(sg) = 1. The world-line Green function is
given by [33]

G(sg)(t, t′) =

{
−1

2 |t− t′|+ Lj+Lk

2ΔL
(t− t′)2 t, t′ ∈ ei

−1
2(t+ t′) + (Lj+Lk)t′2

2ΔL
+ (Li+Lk)t2

2ΔL
+ 2Lktt′

2ΔL
t ∈ ei, t

′ ∈ ej

(6.13)

From this it follows that

γ(sg)(t) =
Lj + Lk

4ΔL
t(t− Li)

(6.14)

−
4L1L2L3 + L2

i (Lj + Lk) + Li(L
2
j + L2

k) + LjLk(Lj + Lk)

24ΔL

γ
(sg)
1 = − (L1 + L2)(L2 + L3)(L3 + L1)

16ΔL

where as before t ∈ ei and {i, j, k} = {1, 2, 3}, from which it is easy to obtain
G(sg)(t, t′).

Using (6.9) it is easy to show that the supergravity invariants (6.1)–

(6.3) are related to their counterparts Z
(sg)
i defined using the world-line

Green function (6.13) via the analogue of (3.19),

Z(sg)
1 = Z

(sg)
1 + 32(γ

(sg)
1 )2 − 64γ

(sg)
2

Z(sg)
2 = Z

(sg)
2 − 32γ

(sg)
3 − 32γ

(sg)
2 + 32(γ

(sg)
1 )2(6.15)

Z(sg)
3 = Z

(sg)
3 − 64γ

(sg)
3 + 32(γ

(sg)
1 )2

where

γ
(sg)
2 =

∫
Γ
γ(sg)(t)2κ(sg)(t) =

1

2880Δ2
L

⎡
⎣13∑

i �=j

L4
iL

2
j + 20

∑
i<j

L3
iL

3
j(6.16)

+L1L2L3

⎛
⎝26

∑
i

L3
i + 67

∑
i �=j

L2
iLj

⎞
⎠+ 106L2

1L
2
2L

2
3

⎤
⎦

γ
(sg)
3 =

∫
Γ2

γ(sg)(t)γ(sg)(t′)
Δ(sg)(t, t′)

(detY (sg))2
(6.17)
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=
1

576ΔL

⎡
⎣2∑

i �=j

L3
iLj + 5

∑
i<j

L2
iL

2
j + 7L1L2L3

∑
i

L3
i

⎤
⎦

The integrals Z
(sg)
i and Z(sg)

i may now be evaluated using the above

procedure. In the case of (6.1), if both t1, t2 are on the same edge e1, then

the integral over t3, t4 along the edges e2, e3 produces 2(L2 + L3)
2/Δ2

L =

8κ(sg)(t1)κ
(sg)(t2). If t1, t2 are instead on distinct edges e1, e2, then the in-

tegral over t3, t4 along the edges e2, e3 produces 2(L1 +L3)(L2 +L3)/Δ
2
L =

8κ(sg)(t1)κ
(sg)(t2).

In the interest of brevity we will only display the results for Z1,Z2,Z3

which are based on the Arakelov Green function, suppressing the interme-

diate results for the Zi’s, which are based on the string Green function. We

shall express the result both in terms of the Schwinger parameters Li, and

in terms of the local modular functions Ai,j introduced in Section 5.4, in

order to facilitate comparison with the tropical limit of the string integrand.

• For the supergravity integrand associated with the graph 1 in Figure 2,

we find,

Z(sg)
1 =

2π2

9

[
− 4

5
ΔL +

13

20
(L1 + L2 + L3)

2 − 17

10
(L1 + L2 + L3)

L1L2L3

ΔL

(6.18)

+
69

20

(
L1L2L3

ΔL

)2 ]

=
32π2

V 2

[
− 1

315
A0,0 +

1

252
A0,2 −

1

792
A1,1 +

23

960
A2,0

]

This result precisely reproduces the leading term in the tropical limit Z(t)
1

in (C.89) of the string invariant, up to subleading terms proportional to odd

zeta values, namely

Z(t)
1 = Z(sg)

1 + ζ(3)V

[
18

5π
A01 −

1

2π
A01

]
− ζ(5)

V 3

2π3
A01 + β

ζ(3)2V 4

π4

(6.19)

• For the supergravity integrand associated with the graph 2 in Figure 2,
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we get instead,

Z(sg)
2 =

2π2

9

[
1

5
ΔL − 7

20
(L1 + L2 + L3)

2 +
23

10
(L1 + L2 + L3)

L1L2L3

ΔL

(6.20)

− 51

20

(
L1L2L3

ΔL

)2 ]

=
32π2

V 2

[
1

504
A0,0 −

1

1008
A0,2 −

5

792
A1,1 −

17

960
A2,0

]

Again, this result precisely matches the tropical limit Z(t)
2 in (C.86) of the

string invariant, up to subleading terms proportional to odd zeta values,

Z(t)
2 = Z(sg)

2 − 5

2π
ζ(3)V A10 −

7

4π3
ζ(5)V 3A01(6.21)

• Finally, for the supergravity integrand associated with the graph 3 in

Figure 2 we find,

Z(sg)
3 =

2π2

9

[
1

4
(L1 + L2 + L3)

2 − 5

2
(L1 + L2 + L3)

L1L2L3

ΔL
(6.22)

+
17

4

(
L1L2L3

ΔL

)2 ]

=
32π2

V 2

[
− 11

7560
A0,0 +

1

1512
A0,2 +

1

792
A11 +

17

576
A2,0

]

Comparing with the tropical limit of Z3 in (C.87), we have

Z(t)
3 = Z(sg)

3 +
5

6π
ζ(3)V A10 +

11ζ(3)2

8π2
V 4(6.23)

Combining these results, we find that the total supergravity invariant which

determines the D8R4 coupling is given by

B(sg)
(2,0) =

1

2
(Z(sg)

1 − 2Z(sg)
2 + Z(sg)

3 )

(6.24)

=
2π2

9

[
− 3

5
ΔL +

4

5
(L1 + L2 + L3)

2 − 22

5
(L1 + L2 + L3)

L1L2L3

ΔL
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+
32

5

(
L1L2L3

ΔL

)2 ]

=
32π2

V 2

[
− 13

1512
A0,0 +

5

756
A0,2 +

5

396
A1,1 +

4

45
A2,0

]

which agrees (up to an overall normalization convention) with the result
in [33]. Comparing with the tropical limit of the string invariant given in
(C.90), we find

B(t)
(2,0) = B(sg)

(2,0) + V ζ(3)

[
18

5π
A01 +

16

3π
A10

]
+

3

π3
ζ(5)V 3A01(6.25)

+ (β + 11)
ζ(3)2V 4

16π4

The leading term proportional to 1/V 2 in the string integrand is there-
fore exactly reproduced by the supergravity computation. The subleading
terms proportional to V, V 3 and V 4 are stringy corrections which can be
interpreted as two-loop Feynman diagrams with one gravity vertex (or two
vertices) replaced by higher derivative couplings.

Appendix A. Genus-one basics and integration formulas

In this appendix, we summarize various definitions and results for functions
and forms on a compact genus-one surface Σ1, including the volume form κ1,
the Green function g and its successive convolutes gn, the non-holomorphic
Eisenstein series Ea and its associated modular forms Da,b. We shall also
evaluate various integrals on the genus-one surface with two boundary com-
ponents Σab and reduce them to integrals on Σ1 which have a smooth limit
as t → ∞ and Σab tends to Σ1 with punctures.

A.1. Genus-one differentials and scalar Green function

We parametrize a genus-one surface Σ1 = C/(Z+Zτ) with modulus τ ∈ H1

by a complex coordinate z = α+βτ where α, β ∈ R/Z. We choose canonical
A1 and B1 homology cycles along the identifications z ≈ z+1 and z ≈ z+τ
respectively, and denote the holomorphic Abelian differential dual to the A1-
cycle by ω1(z) = dz. The volume form κ1 of unit area, and the corresponding
“coordinate” Dirac δ-function are as follows,

κ1(z) =
i

2τ2
dz ∧ dz̄ = dα ∧ dβ δ(2)(z) =

1

τ2
δ(α)δ(β)(A.1)
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The derivatives with respect to z are related to those with respect to α, β
by,

∂z =
1

2iτ2
(∂β − τ̄ ∂α) ∂z̄ = − 1

2iτ2
(∂β − τ∂α)(A.2)

while the (negative) Laplace operator in z is given by,

Δz = 4τ2∂z̄∂z =
1

τ2
(∂β − τ∂α)(∂β − τ̄ ∂α)(A.3)

The scalar Green function g is defined by,

Δzg(z|τ) = −4πτ2δ
(2)(z) + 4π

∫
Σ1

κ1(z)g(z|τ) = 0(A.4)

It may be expressed as a double Fourier series (which converges provided
z /∈ Z+ Zτ),

g(z|τ) =
∑

(m,n) �=(0,0)

τ2
π|m+ nτ |2 e

2πi(mβ−nα)(A.5)

or in terms of the Jacobi ϑ-function, and the Dedekind η-function,

g(z|τ) = − ln

∣∣∣∣ϑ1(z|τ)
η(τ)

∣∣∣∣
2

+
2π

τ2
(Im z)2(A.6)

The Green function g(z|τ) is doubly periodic in z with periods Z+ Zτ and
is invariant under SL(2,Z) modular transformations, as given in (3.26).

A.2. Kronecker-Eisenstein series and elliptic polylogarithms

Iterated integrals of the scalar Green function and its derivatives give non-
holomorphic Eisenstein series and the elliptic polylogarithm functions
Da,b(z|τ) introduced in [51]. In this subsection, we shall provide the precise
normalizations of these integrals, and often replace Da,a by a more trans-
parent modular function ga. These functions are defined as follows using the
notation z = α+ τβ, for α, β ∈ R, and for b− a ∈ Z,

ga(z|τ) =
∑

(m,n) �=(0,0)

τa2 e2πi(mβ−nα)

πa|m+ nτ |2a

Da,b(z|τ) =
(2iτ2)

a+b−1

2πi

∑
(m,n) �=(0,0)

e2πi(mβ−nα)

(m+ nτ)a(m+ nτ̄)b

(A.7)
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Clearly, we have g1(z|τ) = g(z|τ) and ga(0|τ) = Ea(τ), and

Da,a(z|τ) = (−4πτ2)
a−1ga(z|τ)(A.8)

The functions ga(z|τ) satisfy the modular transformation law of g in (3.26),
whileDa,b for a �= b transforms as a modular form. They satisfy the following
integral relations,

ga1+a2
(z|τ) =

∫
Σ1

κ1(w) ga1
(z − w|τ) ga2

(w|τ)

Da1+a2,b1+b2(z|τ) = − 4πτ2

∫
Σ1

κ1(w)Da1,b1(z − w|τ)Da2,b2(w|τ)
(A.9)

The functions ga(z|τ) and Da,b(z|τ) satisfy the following differential equa-
tions,

∂n
z ga(z|τ) = (2πi)n(−4πτ2)

1−aDa,a−n(z|τ)
Δzga(z|τ) = − 4πga−1(z|τ)

∂zDa,b(z|τ) = + 2πiDa,b−1(z|τ)
∂z̄Da,b(z|τ) = − 2πiDa−1,b(z|τ)
ΔzDa,a(z|τ) = 16π2τ2Da−1,a−1(z|τ)

(A.10)

The differential relations given thus far were with respect to the parameter
z. Actually, several differential relations with respect to the modulus τ will
also be useful in the sequel and will be derived here. The basic differential
equation for Da,b in the modulus, from which all others may be deduced, is
given by,

2iτ2∂τDa,b(v|τ) = aDa+1,b−1(v|τ) + (b− 1)Da,b(v|τ)(A.11)

We record the standard normalization the Laplace operator on the upper
half plane,

Δτ = 4τ22∂τ∂τ̄(A.12)

For given α, β the function ga(α + τβ|τ) is an eigenfunction of Δτ with
eigenvalue a(a− 1).

A.3. Reducing integrals on Σab to integrals on Σ1

Extracting the power behavior in t of integrals of various products of Green
functions is achieved by recasting integrals over the genus-one surface Σab
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with boundary to a sum over integrals over the compact genus-one surface
Σ1 without boundary. The key result, obtained in Section 3.5 of [22], states
the following relation between integrals for I, J ∈ {1, t},∫

Σab

ωI ∧ ωJ ψ =

∫
Σ1

ωI ∧ ωJ ψ +O(e−2πt)(A.13)

provided ψ is smooth near the punctures pa, pb and (I, J) �= (t, t). The
relation also holds when I = J = t provided ψ vanishes at both punctures.
Several of the integrals below were derived in Section 4.4 of [22]. In the
remainder of this appendix, we shall no longer indicate the exponentially
suppressed terms, which will always be understood.

A.4. Integrals involving two punctures

We refer to integrals involving two punctures as those whose integration
measure is singular at both punctures. The following integrals [22] are valid
for any integer n ≥ 0,∫

Σab

ωt ∧ ω1 f
n =

∫
Σab

ωt ∧ ωt f
2n+1 = 0(A.14)

and ∫
Σab

ωt ∧ ωt f
2n = − 2i

2n+ 1
(2π)2nt2n+1(A.15)

Throughout, it will be convenient to use the following notation,

fn(z) = gn(z − pb)− gn(z − pa)(A.16)

where for n = 1 we recover f1(z) = f(z). We have the following integrals,∫
Σab

ωt(z) ∧ ω1(z) gn(z − w) =
τ2
π

∂wfn+1(w)(A.17)

For any function ψ(z) which is smooth on Σab, and whose Laplacian ∂z∂z̄ψ(z)
is smooth on Σab, but which does not need to extend to a smooth function
at the punctures z = pa, pb, we have the following integral formula,

∫
Σab

ωt ∧ ωt f
nψ = − i (2πt)n+1

4π2(n+ 1)

∫ 2π

0
dθ
(
ψ
(
pθb

)
+ (−)nψ

(
pθa

))(A.18)
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− iτ2
2π2(n+ 1)(n+ 2)

∫
Σ1

κ1(z) f(z)
n+2 ∂z∂z̄ψ(z)

where pθa, p
θ
b are defined in terms of the variable R as follows,

−2 lnR = 2πt+ λ(τ) + g(v|τ)
pθa = pa +Reiθ

pθb = pb +Reiθ
(A.19)

and λ is given by,

g(z|τ) = − ln |z|2 − λ(τ) +O(z)

λ(τ) = ln
∣∣2πη(τ)2∣∣2(A.20)

In particular, the following special cases will be used in the sequel,∫
Σab

ωt(z) ∧ ωt(z) f(z) g(z, w) = −iπt2f(w) +
i

12π
f(w)3(A.21) ∫

Σab

ωt(z) ∧ ωt(z) f(z)
2n g(z, w)

= − i (2πt)2n+1

4π2(2n+ 1)

∫ 2π

0
dθ
(
g(w, pθa) + g(w, pθb)

)

− i (2n)!

2π
F2n+2 +

i f(w)2n+2

4π(2n+ 1)(n+ 1)

When ψ extends to a smooth function at the punctures, the function ψ
inside the θ-integral in (A.18) is constant up to exponentially suppressed
corrections, and simplifies as follows,

∫
Σab

ωt ∧ ωt f
nψ = − i

(2π)ntn+1

n+ 1

(
ψ(pb) + (−)nψ(pa)

)(A.22)

− iτ2
2π2(n+ 1)(n+ 2)

∫
Σ1

κ1(z) f(z)
n+2 ∂z∂z̄ψ(z)

A.5. Integrals involving at most one puncture

We refer to integrals involving at most one puncture as those whose inte-
grand is singular at most at only one puncture. The following integrals are
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valid for any integer n ≥ 0,

τ2
π

∫
Σab

κ1(z)|∂zg(z, pa)|2 g(z, pa)n−1 =
1

n

(
Tn −Dn

)
(A.23)

where we have used the parameter T , defined by,

T = −2 lnR− λ = 2πt+ g(v)(A.24)

We also use the following integrals,

τ2
π

∫
Σ1

κ1(z)|∂zg(z, pa)|2
(
g(z, pb)

2 − g(pa, pb)
2
)
= −D

(1)
3 (v)− 2D

(a)
4 (v)

(A.25)

τ2
π

∫
Σab

κ1(z)∂z̄g(z, pa)∂zg(z, pb)g(z, pa)
n−1 =

1

n

(
g(v)n −Dn

)

where the function D
(1)
n (v) was defined in (3.29) and D

(a)
4 (v) is defined by,

D
(a)
4 (z|τ) = τ2

π

∫
Σ1

κ1(x)g(z + x)∂xg(z + x)g(x)∂x̄g(x)(A.26)

It may be expressed as the Laplacian in the variable z of the function D
(2)
4

as follows,

ΔzD
(2)
4 (z|τ) = −16πD

(a)
4 (z|τ)(A.27)

Alternatively, it may also be expressed in terms of the Laplacian in z of F4,
using the above identity, (3.32), and (3.30), and we find,

D
(a)
4 (v) =

1

3
g31 −

1

3
D3 −

1

4π
ΔvF4(v)(A.28)

It is in this form that we shall present the final results involving D
(a)
4 .

Furthermore, we have the following integrals for n ≥ 1 which involve the
Green function g(z, w) at a generic point w on Σab,

τ2
π

∫
Σab

κ1(z)|∂zg(z, pa)|2g(z, pa)n−1g(z, w)(A.29)

=
1

n(n+ 1)

(
Dn+1 − g(w, pa)

n+1
)
− 1

n
D

(1)
n+1(w − pa)
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+
Tn

2πn

∫ 2π

0
dθ g(w, pθa)

In the special case n = 1, we have D2 = E2 and D
(1)
2 (w− pa) = g2(w− pa).

Appendix B. Non-separating degeneration of Zi and Zi

In this appendix we will present some of the core calculations of this paper
and compute the three contributions to B(2,0) defined in (2.11), (2.12) in
terms of the functions Zi and in (3.17) and (3.18) in terms of the functions
Zi. In the process, we shall evaluate the intermediate functions of (3.19) as
well. The first ingredient in this evaluation is the relation (3.9) between the
Green function G on the genus-two Riemann surface Σ, in terms of which the
integrals in Zi are expressed, and its representation in terms of the genus-one
surface Σab, which we repeat here for convenience,

G(x, y) = g(x, y) +
1

8πt

(
f(x)− f(y)

)2
+O(e−2πt)(B.1)

The second ingredient is the analogous expression for the integration mea-
sure, which may be decomposed in terms of the following factors,

|Δ(zi, zj)|2 = |ω1(zi) ∧ ωt(zj)− ωt(zi) ∧ ω1(zj)|2 = ν−ij − ν+ij(B.2)

where the forms ν±ij have been separated according to their parity in the
form ωt and its complex conjugate at each point. These forms are given
explicitly by,9

ν+ij = ω1(i) ∧ ω1(i) ∧ ωt(j) ∧ ωt(j) + ωt(i) ∧ ωt(i) ∧ ω1(j) ∧ ω1(j)

ν−ij = ω1(i) ∧ ωt(i) ∧ ωt(j) ∧ ω1(j) + ωt(i) ∧ ω1(i) ∧ ω1(j) ∧ ωt(j)(B.3)

The third ingredient is the representation of the genus-two Arakelov Kähler
form κ in terms of data on Σab, given by (3.8) which we repeat here for
convenience,

κ =
1

2
κ1 +

i

4t
ωt ∧ ω̄t +O(e−2πt) κ1 =

i

2τ2
ω1 ∧ ω1(B.4)

9For the sake of brevity, we shall often abbreviate the points zi by i in the
arguments of functions and forms, and we shall omit the wedge in the product of
forms.
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The determinant is given by detY = tτ2. Finally, we shall extract the t-
power dependence of the integrals over Σab and cast the result in terms of a
Laurent polynomial in t with coefficients given by convergent integrals over
Σ1. A very useful tool will be Stokes theorem on the surface Σab for a (1, 0)
form ω = ωz(z)dz, formulated as follows,

∫
Σab

κ1(z) ∂z̄ωz(z) = − i

2τ2

∮
∂Σab

dz ωz(z) =
i

2τ2

(∮
Ca

+

∮
Cb

)
ωz(z)dz

(B.5)

We shall carry out these procedures in increasing order of difficulty and
complexity. We begin with Z3, then Z2 and finally compute Z1.

B.1. Degeneration of Z3

We start with the simplest modular graph function Z3 defined in (3.17),
which corresponds to the disconnected diagram on the right of Figure 2.
Using (B.1), it will be convenient to expand Z3, in terms of the number of
f functions, into a sum of 3 terms,

Z
(a)
3 =

1

8t2τ22

∫
Σ4

ab

|Δ(1, 3)Δ(2, 4)|2 g(1, 2) g(3, 4)

Z
(b)
3 =

1

32πt3τ22

∫
Σ4

ab

|Δ(1, 3)Δ(2, 4)|2 g(1, 2)
(
f(3)− f(4)

)2
Z

(c)
3 =

1

512π2t4τ22

∫
Σ4

ab

|Δ(1, 3)Δ(2, 4)|2
(
f(1)− f(2)

)2 (
f(3)− f(4)

)2

(B.6)

where it is understood that Δ is expressed in terms of ω1 and ωt using (B.2).
We will start with the last of these integrals since it is the simplest.

B.1.1. Evaluating Z
(c)
3 Thanks to the property (A.14), the contribu-

tions of ν−13 and ν−24 in (B.2) integrate to zero. Further using symmetry and
the property that terms linear in f integrate to zero against either |ω1|2 or
|ωt|2 (see (A.14) and (A.15)), we can replace (f(1) − f(2))2(f(3) − f(4))2

appearing in Z
(c)
3 by 2(f(1)2 + f(2)2)f(3)2 to obtain,

Z
(c)
3 =

1

256π2t4τ22

∫
Σ4

ab

ν+13 ν
+
24

(
f(1)2 + f(2)2

)
f(3)2(B.7)
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The integral over the point 4 can be computed using (A.14) and (A.15),

∫
Σ

(4)
ab

ν+24 = −2it|ω1(2)|2 − 2iτ2|ωt(2)|2 = −8tτ2κ(2)(B.8)

Using the function F� of (3.11) and (3.12) as well as equation (A.15) to

compute the remaining integrals successively, we arrive at,

Z
(c)
3 =

π2t2

9
+ F2 +

F 2
2

4π2t2
+O(e−2πt)(B.9)

where F2(v) = E2 − g2(v) as is familiar by now.

B.1.2. Evaluating Z
(b)
3 In Z

(b)
3 , the contributions of ν−13 and ν−24 similarly

integrate to zero. Using symmetry again and the fact that terms linear in

f(3) and f(4) integrate to zero to replace (f(3)− f(4))2 by 2f(3)2. In this

way we find,

Z
(b)
3 =

1

16πt3τ22

∫
Σ4

ab

ν+13 ν
+
24 f(3)

2 g(1, 2)(B.10)

Integrating over point z4 using (B.8), we have,

Z
(b)
3 = − 1

2πt2τ2

∫
Σ3

ab

ν+13 κ(2) f(3)
2 g(1, 2)(B.11)

The part proportional to κ1(1) in ν+13 and the part proportional to κ1(2) in

κ(2) integrate to zero. Taking these simplifications into account, the measure

in point 3 is proportional to κ1(3) and the integral over this point may be

performed, simplifying the result to give,

Z
(b)
3 = − F2

2πt3

∫
Σ2

ab

ωt(z)ωt(z)ωt(w)ωt(w) g(z, w)(B.12)

To evaluate the integrals, we use (A.15) and (A.21) to arrive at,

Z
(b)
3 =

2

3
F2 +

2gF2

πt
+

F 2
2

π2t2
+O(e−2πt)(B.13)

where g is shorthand for g = g(v).
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B.1.3. Evaluating Z
(a)
3 The computation of Z

(a)
3 is slightly more com-

plicated. In contrast with the previous two cases, it is now the contribu-

tions from ν+13 and ν+24 that integrate to zero against the Green functions

g(1, 2)g(3, 4). The remaining contribution is given as follows,

Z
(a)
3 =

1

8t2τ22

∫
Σ4

ab

ν−13 ν
−
24 g(1, 2) g(3, 4)(B.14)

This integral is manifestly convergent when extended to the punctures, so
that Σab may be replaced by Σ1, up to exponentially suppressed corrections

which we neglect. We carry out the integrals over the points 2 and 4 using

the following relation (A.17) and its complex conjugate, for the special case

n = 1. The contributions arising from the two terms in ν−24 are pairwise
equal, and we may simplify the result as follows,

Z
(a)
3 = − 1

4π2t2

∫
Σ2

ab

ν−zw ∂z̄f2(z) ∂wf2(w)(B.15)

where z and w respectively stand for the point z1 and z3, and fn was defined

in (A.16). To evaluate the remaining integrations over the points 1 and 3,

we use (A.17), and we find,

Z
(a)
3 =

F 2
2

π2t2
+

τ22
π4t2

∣∣∂2
wf3(w)

∣∣2∣∣∣
w=pa

(B.16)

Expressing the result in terms of D3,1 using (A.10), we have,

Z
(a)
3 =

F 2
2

π2t2
+

1

16π4t2τ22

∣∣∣D3,1(v|τ)−D3,1(0|τ)
∣∣∣2(B.17)

Using the differential relation (A.11) for a = b = 2, and a suitable rear-

rangement formula,

D3,1(v|τ)−D3,1(0|τ) = 4πiτ22∂τF2(v|τ)
ΔτF

2
2 − 4F 2

2 = 8τ22 |∂τF2|2(B.18)

we simplify the final expression for Z
(a)
3 as follows,

Z
(a)
3 =

4F 2
2 +ΔτF

2
2

8π2t2
(B.19)
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Collecting the three contributions Z
(a,b,c)
3 , we arrive at our final formula,

Z3 =
π2t2

9
+

5F2

3
+

2gF2

πt
+

ΔτF
2
2 + 14F 2

2

8π2t2
+O(e−2πt)(B.20)

B.2. Degeneration of Z2

The modular graph function Z2 is defined in (3.17) and corresponds to the

L-shape diagram of Figure 2. Using (3.9), one decomposes Z2 into a sum of

3 terms,

Z
(a)
2 =

1

8t2τ22

∫
Σ4

ab

|Δ(1, 3)Δ(2, 4)|2 g(1, 2) g(1, 4)

Z
(b)
2 =

1

32πt3τ22

∫
Σ4

ab

|Δ(1, 3)Δ(2, 4)|2 g(1, 2)
(
f(1)− f(4)

)2
Z

(c)
2 =

1

512π2t4τ22

∫
Σ4

ab

|Δ(1, 3)Δ(2, 4)|2
(
f(1)− f(2)

)2 (
f(1)− f(4)

)2

(B.21)

We proceed to evaluating these integrals again in order of increasing diffi-

culty.

B.2.1. Evaluating Z
(c)
2 The contributions from ν−13 and ν−24 vanish upon

integrating with respect to points 3 and 4. As a result, and using the sym-

metries of the integrand, the integral reduces to,

Z
(c)
2 =

1

83π2t4τ22

∫
Σ4

ab

ν+13 ν
+
24

(
f(1)4 + 2f(1)2f(4)2 + f(2)2f(4)2

)
(B.22)

The integral over point 3 may be carried out with the help of (B.8) while

the integral over point 4 can be computed using (A.15). Performing also the

integrals over the remaining points 1 and 2, we find,

Z
(c)
2 =

14π2t2

45
+

2

3
F2 +

6F4 + F 2
2

4π2t2
+O(e−2πt)(B.23)

where F4 was defined in (3.11) and given explicitly in (3.32).
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B.2.2. Evaluating Z
(b)
2 The contributions from ν−13 and ν−24 similarly

integrate to zero in Z
(b)
2 . Using (A.15) we find,

Z
(b)
2 =

1

32πt3τ22

∫
Σ4

ab

ν+13 ν
+
24

(
f(1)2 + f(4)2

)
g(1, 2)(B.24)

The integral over point 3 may be performed using (B.8), while the one over

point 4 may be performed using (A.15), and we find,

Z
(b)
2 =

2

πt

∫
Σ2

ab

κ(1)κ(2)f(1)2g(1, 2) +
iF2

πt2

∫
Σ2

ab

κ(1)ωt(2)ωt(2) g(1, 2)

(B.25)

The contribution of κ1 in κ cancels out for point 2 in the first integral and

point 1 in the second integral. The remaining integrals may be evaluated

using (A.21) for both the integrals in points 1 and 2, and we find,

Z
(b)
2 =

3π2t2

10
+

2

3
πtg +

F2

2
+

D3 −D
(1)
3 + 2gF2

2πt
+

3F 2
2 − 5F4

4π2t2
+O(e−2πt)

(B.26)

The functionD
(1)
3 was defined in (3.29), while F2 and F4 were given in (3.11).

B.2.3. Evaluating Z
(a)
2 The contribution from this integral is simplified

by integrating over the point 3, and we have,

Z
(a)
2 =

i

4t2τ22

∫
Σ3

ab

(
t |ω1(1)|2 + τ2 |ωt(1)|2

)(
ν−24 − ν+24

)
g(1, 2)g(1, 4)(B.27)

We begin by carrying out the integrals over points 2 and 4. The terms

proportional to |ω1(2)|2 and |ω1(4)|2 in ν+24 integrate to zero in view of the

normalization of g, leaving only the contribution from ν−24. To evaluate the

integrals over the points 2 and 4, we use the relation derived earlier in (A.17)

for n = 1, and its complex conjugate, and we find,

Z
(a)
2 = − i

2π2t

∫
Σab

ω1(w)ω1(w)|∂wf2(w)|2(B.28)

− iτ2
2π2t2

∫
Σab

ωt(w)ωt(w)|∂wf2(w)|2
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where w = z1 represents the remaining integration point 1. The first integral
is evaluated by integrating by parts in w, and using the following Laplacian
relation,

τ2∂w̄∂wf2(w) = −πf(w)(B.29)

The remaining integral is carried out using the definitions of E3 and g3, and
we find,

Z
(a)
2 = − 2

πt

(
E3(τ)− g3(v|τ)

)
− iτ2

2π2t2

∫
Σab

ωt(w)ωt(w) |∂wf2(w)|2(B.30)

To evaluate the remaining integral we use (A.18) for n = 0 and ψ(w) =
|∂wf2(w)|2. Since ψ is regular at the punctures, we may use the simplified
formula (A.22). We evaluate |∂wf2(w)|2 at the punctures in terms of the
function D2,1, by using the first line of (A.10). Taking into account the fact
that D2,1(0|τ) = 0, we find,∫

Σab

ωt(w)ωt(w) |∂wf2(w)|2(B.31)

= −2it|∂vg2(v)|2 −
iτ2
4π2

∫
Σab

κ1(w)f(w)
2∂w∂w̄|∂wf2|2

The Laplacian of ψ may be simplified with the help of (B.29) and is given
by,

∂w∂w̄ψ(w) =
π2

τ22
f(w)2 + |∂2

wf2(w)|2 −
π

τ2
∂wf2(w) ∂w̄f(w)(B.32)

− π

τ2
∂w̄f2(w) ∂wf(w)

Integrating by parts in the last two terms above so as to regroup in terms of
∂w∂w̄f2(w) and then using (B.29), the integral in (B.31) takes the following
form,

∫
Σab

κ1(w)f(w)
2∂w∂w̄|∂wf2|2 =

8π2

τ22
F4 +

∫
Σab

κ1(w)f(w)
2|∂2

wf2|2(B.33)

Combining the derivative relations in ∂2
wg2 and ∂τg in (A.10), we obtain,

∂2
wf2(w) = 2πi∂τf(w)(B.34)
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Using furthermore the relation ∂τ̄∂τf(w) = 0, we may rearrange the integral

as follows,

∫
Σab

κ1(w)f(w)
2∂w∂w̄|∂wf2|2 =

8π2

τ22
F4 +

2π2

τ22
ΔτF4(B.35)

Using also the relation,

8τ2|∂vg2(v)|2 = ΔvF2(v)
2 − 8πg(v)F2(v)(B.36)

we obtain the following expression,

Z
(a)
2 =

1

πt
(2g3 − 2E3 + gF2)−

ΔvF
2
2

8π2t
− (Δτ + 4)F4

4π2t2
+O(e−2πt)(B.37)

Collecting the three contributions Z
(a,b,c)
2 , we arrive at our final result,

Z2 =
11π2t2

18
+

2gπt

3
+

7F2

6
(B.38)

+
1

2πt

(
D3 −D

(1)
3 + 4gF2 + 4g3 − 4E3 −

ΔvF
2
2

4π

)

+
4F 2

2 − (Δτ + 3)F4

4π2t2
+O(e−2πt)

B.3. Degeneration of Z1

The modular graph function Z1 was defined in (3.17) and corresponds to

the one-loop graph on the left of Figure 2. Using (3.9), one finds that Z1

decomposes into a sum of 3 terms,

Z
(a)
1 = 8

∫
Σ2

ab

κ(1)κ(2) g(1, 2)2

Z
(b)
1 =

2

πt

∫
Σ2

ab

κ(1)κ(2) g(1, 2)
(
f(1)− f(2)

)2
Z

(c)
1 =

1

8π2t2

∫
Σ2

ab

κ(1)κ(2)
(
f(1)− f(2)

)4
(B.39)

The contributions Z
(c)
1 and Z

(b)
1 are routine, but Z

(a)
1 will involve some rather

serious analysis.
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B.3.1. Evaluating Z
(c)
1 Substituting κ by its expression on Σab, given

in (3.8), the integrals in (B.39) can be evaluated successively using (A.15),
and we find,

Z
(c)
1 =

11π2t2

15
+ F2 +

12F4 + 3F 2
2

4π2t2
+O(e−2πt)(B.40)

B.3.2. Evaluating Z
(b)
1 Using symmetry under the exchange of the

points 1 and 2, Z
(b)
1 may be decomposed into a sum of two terms,

Z
(b,1)
1 =

4

πt

∫
Σ2

ab

κ(1)κ(2)g(1, 2) f(1)2(B.41)

Z
(b,2)
1 = − 4

πt

∫
Σ2

ab

κ(1)κ(2) g(1, 2) f(1)f(2)(B.42)

The integral over point 2 in Z
(b,1)
1 may be computed using (A.21),

Z
(b,1)
1 =

1

2πt2

∫
Σab

κ(z)f(z)2(B.43)

×
(
F2(v)−

1

2
f(z)2 +

t

π

∫ 2π

0
dθ
(
g(z, pθa) + g(z, pθb)

))

where the quantities pθa and pθb were introduced in (A.19). The remaining
integrals in z may be computed using (A.21) again, and we find,

Z
(b,1)
1 =

3π2t2

5
+

4πt

3
g +

F2

3
+

D3 −D
(1)
3

πt
+

F 2
2 − 5F4

2π2t2
(B.44)

The second integral Z
(b,2)
1 is a sum of three terms obtained by decomposing

each κ into its κ1 and its ωt∧ωt parts. The resulting integrals may be carried
out using (A.21),

Z
(b,2)
1 = − 8

15
π2t2 − 2F2 +

2

πt
(g3 − E3) +

2F4

π2t2
(B.45)

Combining these results with the contribution (B.44) from Z
(b,2)
1 , we find,

Z
(b)
1 =

π2t2

15
+

4πt

3
g − 5

3
F2 +

D3 −D
(1)
3 − 2E3 + 2g3

πt
+

F 2
2 − F4

2π2t2
(B.46)
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B.3.3. Evaluating Z
(a)
1 We finally come to the most difficult part of the

computation, namely the evaluation of Z
(a)
1 . Substituting the volume form

κ by (B.4), we decompose Z
(a)
1 as follows,

Z
(a)
1 = 2

∫
Σ2

ab

κ1(1) g(1, 2)
2

(
κ1(2) +

i

t
ωt(2)ωt(2)

)
+

K
8π2t2

(B.47)

where K is given by,

K = −4π2

∫
Σ2

ab

ωt(1)ωt(1)ωt(2)ωt(2) g(1, 2)
2(B.48)

The factor of 8π2t2 has been extracted for later convenience. Carrying out
the integral over point 1 in the integral in the first term of (B.47) gives a
result that is independent of point 2, namely E2. Performing the remaining
integral, we find,

Z
(a)
1 = 6E2 +

K
8π2t2

(B.49)

The degeneration of K is complicated, but the calculation of its variation
in t up to exponentially suppressed corrections may be obtained using the
variational method developed in Section 3.6 of [22] and is relatively simple.
Therefore, we shall split the function K into a sum of two contributions,

K = Kc +Kt +O(e−2πt)(B.50)

where Kc is independent of t, and Kt is a polynomial in t of degree four, with
vanishing constant term. The variational method will allow us to compute
Kt completely in the next subsection but does not give us access to Kc, which
will have to be computed by other methods in the subsequent subsection.
The result for Kt will be found to be,

Kt

8π2t2
=

2π2t2

3
+

4πt

3
g + 2g2 +

1

πt

(
D3 −D

(1)
3 + 2ζ(3) +

ΔvF4

2π

)
(B.51)

Collecting the three contributions Z
(a)
1 , Z

(b)
1 , Z

(c)
1 , we arrive at the final for-

mula,

Z1 =
22π2t2

15
+

8πt

3
g + 6E2 −

2

3
F2 + 2g2(B.52)
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+
2

πt

(
g3 −D

(1)
3 + 2ζ(3) +

ΔvF4

2π

)

+
Kc + 20F4 + 10F 2

2

8π2t2
+O(e−2πt)

where Kc is independent of t. Next, we proceed to the calculation of Kt

using the variational method the next subsection and then of the constant

contribution Kc in subsection B.5.

B.4. Variational calculation of Kt

In this subsection, we shall calculate the variation δKt = δK under an in-

finitesimal variation δt holding all other moduli fixed.10 We begin by recast-

ing the defining formula (B.48) for K in the following form,

K =
τ22
π2

∫
Σab

κ1(w)

∫
Σab

κ1(z) |∂zf(z)|2 |∂wf(w)|2 g(w, z)2(B.53)

The integrand is independent of t, so that all t-dependence arises from the

dependence on t of the integration domain, Σab = {z ∈ Σ1, |f(z)| ≤ 2πt}.
As a result, δK is given entirely by the effects of varying the integration

regions for both z and w (which contribute equally) with t, and we have,

δK =
2τ22
π2

∫
Σab

κ1(z)|∂zf |2
[∫

δDa∪ δDb

κ1(w)|∂wf |2g(z, w)2
]

(B.54)

The infinitesimal integration domains δDa, δDb are defined as follows,

δDa = {w ∈ Σ1, −2π(t+ δt) ≤ f(w) ≤ −2πt}
δDb = {w ∈ Σ1, +2πt ≤ f(w) ≤ 2π(t+ δt)}(B.55)

The w-integrals may be simplified as follows. We begin with the contribution

from δDb, the one from δDa being analogous. We parametrize w in δDb as

follows,

2πt ≤ g(w, pb)− g(w, pa) ≤ 2π(t+ δt)(B.56)

10Throughout, we shall neglect all contributions which are exponentially sup-
pressed in t.
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Up to exponential corrections, which we neglect, g(w, pa) equals g(pb, pa) =
g(v) for w ∈ δDb. Furthermore, the Green function in the funnel is given by
(A.20),

g(w, pb) = − ln |w − pb|2 − λ+O(w − pb)(B.57)

where λ was defined as well. In terms of the variable R introduced in (A.19),
the domain δDb consists of the points w restricted by,

Re−πδt ≤ |w − pb| ≤ R(B.58)

and may be parametrized by two real coordinates x, y,

w = pb +Re−x−iθ 0 ≤ x ≤ πδt 0 ≤ θ ≤ 2π(B.59)

With this parametrization, the integral in x may be evaluated at x = 0, so
that we find the simplified formulas,

τ2

∫
δDa,b

κ1(w)|∂wf |2g(z, w)2 = πδt

∫ 2π

0
dθ g(z, pθa,b)

2(B.60)

To evaluate the z-integrals, we split up the calculation of δK into three parts,

δK = δK(m) + δK(a) + δK(b)(B.61)

where

δK(m) = 4τ2 δt

∫
Σab

κ1(z)|∂zf |2
(
g(z, pa)

2 + g(z, pb)
2
)

δK(a,b) =
2τ2
π

δt

∫
Σab

κ1(z)|∂zf |2
∫ 2π

0
dθ
(
g(z, pθa,b)

2 − g(z, pa,b)
2
)(B.62)

The purpose of this rearrangement is to simplify the integrand for the most
complicated part of the calculation, namely in δK(m), and be left with
δK(a), δK(b) which receive contributions only from the funnel parts. We shall
now evaluate each part in turn.

B.4.1. Calculating δK(m) We begin by expanding the factor |∂zf |2,

δK(m) = 4τ2 δt

∫
Σab

κ1(z)|∂zg(z, pa)|2
(
g(z, pa)

2 + g(z, pb)
2
)(B.63)
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Figure 13: The variational method evaluates the contribution from varying
the boundary cycles of Σab through a variation of t, here represented for the
variation of the cycle Ca.

+ 4τ2 δt

∫
Σab

κ1(z)|∂zg(z, pb)|2
(
g(z, pa)

2 + g(z, pb)
2
)

− 4τ2 δt

∫
Σab

κ1(z) ∂z̄g(z, pa)∂zg(z, pb)
(
g(z, pa)

2 + g(z, pb)
2
)
+ c.c

where addition of the complex conjugate applies only to the last line. To eval-

uate the first two lines, we use the integral (A.23) in terms of the parameter

T introduced in (A.24). Using also the integrals of (A.25), and putting all

together, we have,

δK(m) = 4δT

(
1

3
T 3 + Tg(v)2 +

1

3
D3 −

2

3
g(v)3 −D

(1)
3 − 2D

(a)
4

)
(B.64)

Integrating the above equation, we obtain,

K(m) =
T 4

3
+ 2T 2g(v)2 +

4

3
TD3 −

8

3
Tg(v)3 − 4TD

(1)
3 − 8TD

(a)
4(B.65)

+O(t0)

B.4.2. Calculation of δK(a) and δK(b) The bulk contributions to K(a)

and K(b) are exponentially suppressed, as is manifest by Taylor expanding

the Green function. To evaluate the contributions from the funnel, we may

approximate all functions by their form strictly in the funnel, and extend

their functional form arbitrarily beyond the funnel.

To evaluate K(b), we extend the range of z near pb by requiring only

the condition f(z) ≤ 2πt and dropping the lower minimum condition on

f(z). Furthermore, we use the approximations suitable for the funnel for the
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Green functions g(z, w) and g(w, pb),

g(z, w) = − ln |z − w|2 − λ

g(w, pb) = − ln |w − pb|2 − λ
(B.66)

Within this approximation, the integration domain for z then becomes R ≤
|z − pb|, and may be parametrized by two real coordinates α, β,

z = pb +Reα+iθ 0 ≤ α 0 ≤ θ ≤ 2π(B.67)

The integral over y combines with the integral over θ, and we find after some
simplifications,

δK(b) = 4δt

∫ ∞

0
dα

∫ 2π

0
dθ

((
2α− T + ln |1− e−α−iθ|2

)2
− (2α− T )2

)(B.68)

Using the vanishing for α > 0 of the integral over θ of a single power of
ln |1 − e−α−iθ|2, we are left with performing the integral of the square of
the logarithm, which may be done by Taylor expanding each logarithm,
performing the integrals over θ and then performing the integrals over α.
The result is given by δK(b) = 8πζ(3) δt. Upon integration in T , we find,

K(a) +K(b) = 8ζ(3)T +O(t0)(B.69)

Putting all of this together, we find,

K =
T 4

3
+ 2T 2g(v)2 +

4

3
TD3 −

8

3
Tg(v)3 + 8ζ(3)T − 4TD

(1)
3(B.70)

− 8TD
(a)
4 +O(t0)

Using the definition of T = 2πt + g(v), and retaining only the t-dependent
terms in the above formula for K we readily obtain (B.51).

B.5. Calculation of Kc

Having calculated the non-constant t-dependence Kt of K in the preceding
subsection, we define Kc by the following limit,

Kc = lim
t→∞

(
K −Kt

)
(B.71)
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We shall compute all contributions to K, cancel the ones with non-constant

dependence on t, and then extract the remainder in the limit. Although this

procedure duplicates the variational method to some extent, the confirma-

tion of the validity of the t-dependent terms will be of value in this rather

tricky calculation.

B.5.1. Partitioning the integral We recall the starting formula for K,

with the function f expanded into its two contributions,

K =
τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w)
∣∣∣∂zg(z, pa)− ∂zg(z, pb)

∣∣∣2(B.72)

×
∣∣∣∂wg(w, pa)− ∂wg(w, pb)

∣∣∣2g(z, w)2
We decompose K into a sum over sixteen contributions,

K =
∑

α,ᾱ,β,β̄∈{a,b}

(−)#(a)Kαᾱββ̄(B.73)

obtained by expanding both absolute-value-squared factors in (B.72) into

the following basis,

Kαᾱββ̄ =
τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w) ∂zg(z, pα) ∂z̄g(z, pᾱ) ∂wg(w, pβ)(B.74)

× ∂w̄g(w, pβ̄) g(z, w)
2

Here, #(a) is the number of a-labels amongst α, ᾱ, β, β̄ (which equals the

number of b-labels modulo two). Swapping z with w and complex conjugat-

ing produce the following relations,

Kαᾱββ̄ = Kββ̄αᾱ =
(
Kᾱαβ̄β

)∗
(B.75)

Taking also into account the symmetry under swapping pa and pb, the sum

over 16 terms reduces to a sum over 5 irreducible terms,

K = 2Kabab + 2Kabba + 2Kaabb − 4Kaaab − 4K∗
aaab + 2Kaaaa(B.76)

Two of these integrals are finite in the limit t → ∞, and may thus be

extended to finite integrals over the compact torus Σ1, up to exponential
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corrections which we neglect,

Kabab =
τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w) ∂zg(z, pa)∂z̄g(z, pb) g(z, w)
2 ∂wg(w, pa)

× ∂w̄g(w, pb)

Kabba =
τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w) ∂zg(z, pa)∂z̄g(z, pb) g(z, w)
2 ∂wg(w, pb)

× ∂w̄g(w, pa)

(B.77)

They are both three-loop Feynman diagrams represented in Figure 7 on page

379. The remaining integrals do have non-trivial polynomial t-dependence.

To express the remaining contributions, Kaabb, Kaaab and Kaaaa, in terms

of a polynomial in t whose coefficients are convergent integrals over the

compact surface Σ1, we proceed as follows. We split the integrals into a part

K0 which is given by a convergent integral as t → ∞, and a part K1 which

has non-trivial polynomial t dependence and which is easier to evaluate than

the original integral,

Kaabb = K0
aabb +K1

aabb

Kaaab = K0
aaab +K1

aaab

Kaaaa = K0
aaaa +K1

aaaa

(B.78)

We shall begin by discussing the first two functions above, and then proceed

to the most intricate case of the last function.

B.5.2. Decomposing Kaabb and Kaaab The functions Kaabb and Kaaab

are schematically represented by three-loop Feynman diagrams in Figures 8

and 9 respectively. The functions K0
aabb and K0

aaab are defined by,

K0
aaab =

τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w)|∂zg(z, pa)|2∂wg(w, pa)∂w̄g(w, pb)

×
(
g(z, w)2 − g(pa, w)

2
)

K0
aabb =

τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w) |∂zg(z, pa)|2|∂wg(w, pb)|2

×
(
g(z, w)2 − g(pa, w)

2 − g(z, pb)
2 + g(pa, pb)

2
)

(B.79)
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They do have finite limits as t → ∞, so that the integration domains may be
smoothly extended from Σab to Σ1, and the resulting integrals evaluate to
generalized modular graph functions. The finiteness of the integrals in K0

aaab
and K0

aabb as t → ∞ may be proven conveniently by using the variational
method, but we shall not present these proofs here.

The functions K1
aabb and K1

aaab are defined by,

K1
aabb =

τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w)|∂zg(z, pa)|2|∂wg(w, pb)|2

×
(
g(pa, w)

2 + g(z, pb)
2 − g(pa, pb)

2
)

K1
aaab =

τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w) |∂zg(z, pa)|2∂wg(w, pa)∂w̄g(w, pb) g(pa, w)2

(B.80)

The integrals K1
aabb and K1

aaab do have non-trivial dependence on t which
may, however, be easily evaluated. To computeK1

aaab we note that its integral
over z may be performed using (A.23), while to compute K1

aabb we use the
fact that the z-integral may be similarly computed for the first and third
term in the parentheses of the integrand, while for the second term it is the
w-integral that may be readily computed. The results are as follows,

K1
aabb =

τ2T

π

∫
Σab

κ1(w)|∂wg(w, pb)|2
(
2g(w, pa)

2 − g(pa, pb)
2
)

K1
aaab =

τ2T

π

∫
Σab

κ1(w) ∂wg(w, pa)∂w̄g(w, pb) g(w, pa)
2

(B.81)

The remaining w-integrals are readily evaluated, and we obtain,

K1
aabb = T 2 g(v)2 − 2T D

(1)
3 − 4T D

(a)
4 +O(e−2πt)

K1
aaab =

T

3
(g(v)3 −D3) +O(e−2πt)

(B.82)

B.5.3. Decomposing Kaaaa The remaining integral Kaaaa is given by
the four-loop Feynman diagram in Figure 9,

Kaaaa =
τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w) |∂zg(z, pa)|2|∂wg(w, pa)|2 g(z, w)2(B.83)

We rearrange Kaaaa as the sum of three integrals,

Kaaaa = K1 +K2 +K3(B.84)
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where each part is defined as follows,

K1 =
τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w)|∂zg(z, pa)|2|∂wg(w, pa)|2

×
(
g(z, w)− g(z, pa)

)(
g(z, w)− g(pa, w)

)

K2 =
2τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w)|∂zg(z, pa)|2|∂wg(w, pa)|2g(z, w)g(z, pa)

K3 =− τ22
π2

∫
Σab

κ1(z)

∫
Σab

κ1(w)|∂zg(z, pa)|2|∂wg(w, pa)|2g(z, pa)g(w, pa)

(B.85)

The purpose of the rearrangement is to expose the last two factors in the
integrand of K1 which vanish at z = pa and w = pa, and decrease the orders
of the poles at these points. For fixed z away from pa, the w-integral is
absolutely convergent. However, the multiple integration over both z, w will
not, in fact, be convergent yet. In quantum field theory language, K1 has
no sub-divergences, but it has a primitive divergence, with which we shall
deal shortly. The remaining integrals K2 and K3 are simpler and can be
evaluated exactly. It is straightforward to evaluate K3 using (A.23) and we
obtain,

K3 = −1

4
(T 2 − E2)

2 +O(e−2πt)(B.86)

To evaluate K2, we use a formula analogous to (A.21) to carry out the
integral over w,

2τ2
π

∫
Σab

κ1(w)|∂wg(w, pa)|2g(z, w)(B.87)

= E2 − 2g2(z, pa)− g(z, pa)
2 +

T

π

∫
dθg(z, pθa)

where pθa was defined in (A.19). We find,

K2 =
τ2
π

∫
Σab

κ1(z)|∂zg(z, pa)|2g(z, pa)
(
−E2 − g(z, pa)

2 + 2Tg(z, pa)
)(B.88)

+
2τ2
π

∫
Σab

κ1(z)|∂zg(z, pa)|2g(z, pa) (E2 − g2(z, pa))
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+
τ2T

π2

∫
Σab

κ1(z)|∂zg(z, pa)|2g(z, pa)
∫ 2π

0
dθ
(
g(z, pθa)− g(z, pa)

)

The first line is evaluated with the help of (A.15). To evaluate the second
line, we integrate by parts twice and use the Laplace equations for g and g2,
taking into account that any δ(z, pa) vanishes since the surface Σab does not
contain the point pa. The integral on the last line receives contributions only
from the region where w is in the funnel. Evaluating these contributions by
using for g the Green function on the plane, we find that the contribution
vanishes. Adding all up, we find,

K2 +K3 =
T 4

6
− 2T

3
D3 −

7

8
E2

2 +
5

8
D4 +

3

4
E4 +O(e−2πt)(B.89)

It remains to analyze K1. We do this by recasting it in the following way,

K1 =
τ2
π

∫
Σab

κ1(z)|∂zg(z, pa)|2Wab(z)

(B.90)

Wab(z) =
τ2
π

∫
Σab

κ1(w)|∂wg(w, pa)|2
(
g(z, w)− g(z, pa)

)(
g(z, w)− g(pa, w)

)

and first studying the function Wab(z). When z is in the funnel, the entire
contribution of the integral in w arises for w in the funnel as well, in view of
the second factor in parentheses in the integrand. Thus, we use the following
parametrization,

z = pa +Rex+iy w = pa +Reα+iβ 0 ≤ y, β ≤ 2π

(B.91)

where x, y are data determined by z, and α, β are to be integrated over.
The condition w ∈ Σab restricts α to be positive and bounded above by a
quantity of order − lnR. The integral inside the funnel will rapidly converge
as α becomes large and may be extended to ∞. For z ∈ Σab we require
x > 0. We shall also be interested in continuing the point z to the interior
of the disc Da in Σ1 outside of Σab where x < 0. Under these assumptions,
and using for g the expression suitable for the funnel, the integral reduces
to,

Wab(z) =
1

π

∫ ∞

0
dα

∫ 2π

0
dβ

(
− ln

∣∣∣1− eα−x+iβ−iy
∣∣∣2)(B.92)
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×
(
− ln

∣∣∣1− ex−α−iβ+iy
∣∣∣2)

The integral is independent of y by translation invariance in β. For x > 0,

we split the integration region for α into two regions, 0 ≤ α ≤ x and

x ≤ α. Expanding the logarithms into absolutely convergent Taylor series,

the integrals over β and α may be carried out,

Wab(z) = 4ζ(3)θ(x)− 2ε(x)

∞∑
m=1

e−2m|x|

m3
(B.93)

where θ(x) is the Heaviside step function and ε(x) = θ(x) − θ(−x) is the

sign function. The function Wab(z) is continuous and differentiable once at

x = 0, and vanishes as z → pa as expected from its defining integral in

(B.90).

Using this result to evaluate the contribution to K1 from the region

where z is in the funnel, we see that the ζ(3) term produces 4Tζ(3) upon

integrating over z ∈ Σab. The z-integral of the second term above is localized

in the funnel thanks to the exponential suppression. The sum of its contri-

butions from the funnel and insider the disc Da cancel. Therefore, we may

extend the domains of integration for W (z) and K1 from Σab to Σ1,

K0
aaaa = K1 − 4Tζ(3) =

τ2
π

∫
Σ1

κ1(z)|∂zg(z)|2
(
W (z)− 4ζ(3)

)
(B.94)

W (z) =
τ2
π

∫
Σ1

κ1(w)|∂wg(w)|2
(
g(z, w)− g(z)

)(
g(z, w)− g(w)

)

Here, we have set pa = 0 by translation invariance on Σ1. While the inte-

grand of Wab(z) vanishes at z = 0 for w away from w = 0, a careful analysis

shows that the integral over w ∈ Σ1 evaluates as follows limz→0Wab(z) =

4ζ(3). This limit arises from the original integral over Σab by taking the

limit as t → 0 of W (z) = Wab(z)+O(e−2πt) for z �= 0. In terms of K0
aaaa we

have,

Kaaaa =
T 4

6
− 2T

3
D3 + 4Tζ(3)− 7

8
E2

2 +
5

8
D4 +

3

4
E4 +K0

aaaa +O(e−2πt)

(B.95)

This concludes the decomposition of Kaaaa.
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B.5.4. Summary of results for K Putting all together, we find,

K =
T 4

3
+ 2T 2g(v)2 +

4T

3
D3 −

8T

3
g(v)3 + 8Tζ(3)− 4TD

(1)
3 (v)− 8TD

(a)
4 (v)

− 7

4
E2

2 +
5

4
D4 +

3

2
E4 + 2Kabab + 2Kabba + 2K0

aabb − 4K0
aaab − 4(K0

aaab)
∗

+ 2K0
aaaa +O(e−2πt)

(B.96)

Splitting the contributions into Kt and Kc we recover precisely Kt of (B.51),
a fact which provides a double check on the calculations since (B.51) was
obtained by the variational method, and allows us to compute the constant
part,

Kc = 2Kabab + 2Kabba + 2K0
aabb − 4K0

aaab − 4(K0
aaab)

∗ + 2K0
aaaa

(B.97)

+ 4g(v)

(
D3 + 2ζ(3)−D

(1)
3 +

ΔvF4

2π

)
− 3g(v)4 − 7

4
E2

2 +
5

4
D4

+
3

2
E4

This result completes the calculation of the functions Zi(Ω).

B.6. Calculation of the functions γi and Zi

The conversion of the functions Zi(Ω) to the genuine modular graph func-
tions Zi(Ω) is achieved with the help of the formulas (3.19). The functions
γ(x) and γ1 govern the conversion of the standard string Green function
G into the Arakelov Green function G and were given in (3.14). The func-
tion γ(x) is readily obtained from its definition and, In the non-separating
degeneration limit, is obtained by substituting (3.8) and (3.9) in (2.18),

γ(x) =

∫
Σab

(
1

2
κ1(y) +

i

4t
ωt ∧ ωt(y)

)(
g(x, y) +

(f(x)− f(y))2

8πt

)
(B.98)

+O(e−2πt)

The integral of κ1 against g vanishes while against the term in f2 it may be
evaluated in terms of F2. The remaining integrals are evaluated using (A.15)
and the second equation in (A.21) for n = 0 and generic w = y, so that we
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recover the result for γ(x),

γ(x) =
πt

12
+

1

4
g(x, pa) +

1

4
g(x, pb) +

f(x)2

16πt
+

F2(v)

4πt
+O(e−2πt)(B.99)

announced in (3.14), and repeated here for convenience. To obtain also γ1
simply requires a further integration using the formulas of (A.15) and (A.21)
for n = 0. Using these results, we shall now also evaluate the remaining
functions γ2 and γ3,

γ2 =

∫
Σab

(
1

2
κ1(x) +

i

4t
ωt ∧ ωt(x)

)
γ(x)2

γ3 =

∫
Σ2

ab

(
ν−xy − ν+xy

)
γ(x)γ(y)(B.100)

where γ(x) is given in (3.14), and ν±xy was defined in (B.3). The calculation
of γ2 may be performed using the following integrals, in addition to those
of (A.15) and (A.21),

τ2
π

∫
Σab

κ1(z)|∂zf(z)|2g(z, pa) =
T 2

2
+ Tg(v)− 3

2
g(v)2 + F2(v)

(B.101)

τ2
π

∫
Σab

κ1(z)|∂zf(z)|2g(z, pa)g(z, pb) = T 2g(v) +
1

3
D3 −

1

3
g(v)3 −D

(1)
3 (v)

− 2D
(a)
4 (v)

as well as the rearrangement (g(x, pa)+g(x, pb))
2 = f(x)2+4g(x, pa, )g(x, pb).

The calculation of γ3 may be performed using the following results,∫
Σab

ωt ∧ ω1(x)γ(x) = − τ2
2π

∂vg2(v)∫
Σab

ω1 ∧ ω1(x)γ(x) = − 2iτ2

(
πt

12
+

3F2

8πt

)
∫
Σab

ωt ∧ ωt(x)γ(x) = − 5πi

6
t2 − itg(v)− 3iF2(v)

4π

(B.102)

Using the rearrangement formula (B.36), we arrive at the following results,

γ1 =
πt

4
+

1

4
g +

3gF2

8πt
+O(e−2πt)

(B.103)
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γ2 =
41π2t2

360
+

5πt

24
g +

1

24
(5E2 − 2g2 + 3g2)

+
1

16πt

(
D3 −D

(1)
3 + 2gF2 +

ΔvF4

4π

)
+

F4 + 2F 2
2

16π2t2
+O(e−2πt)

γ3 =
5π2t2

18
+

1

3
πgt+

3

2
F2 +

2gF2

πt
− ΔvF

2
2

16π2t
+

9F 2
2

8π2t2
+O(e−2πt)

It is now a simple matter of algebraic substitution to use formulas (3.19)
with Z1 given in (B.52), Z2 given in (B.38), and Z3 given in (B.52) and the
above expressions for γ1, γ2, γ3 in order to obtain the expressions for Z1,Z2

and Z3 given in the body of the paper in (3.21).

Appendix C. Tropical limits of modular graph functions

In this appendix, we shall derive the limit as τ → i∞ of the various modular
graph functions which appear as coefficients in the non-separating degener-
ation of the genus-two string invariants ϕ, Zi and B(2,0). The results give the
behavior of these functions in their tropical limit near the non-separating
degeneration node of Section 5.

In the first two subsections we review, without derivation, the Bernoulli
polynomials and the limits of standard modular graph functions and elliptic
polylogarithms. In the third subsection, we derive the limits of the func-

tions D
(1)
3 , D

(1)
4 , D

(a)
4 , F2 and F4. In the fourth subsection, we present the

limit for the one-loop self-energy graph, and related graphs. In the four sub-
sequent subsections, we obtain the limits of the modular graph functions
Kabab,Kabba,K0

aabb,K0
aaab and K0

aaaa.

C.1. Bernoulli polynomials

The Bernoulli polynomials Bk(x) are defined for all integers k ≥ 0 by the
Taylor series,

∞∑
k=0

zk

k!
Bk(x) =

z exz

ez − 1
(C.1)

for x ∈ C, and z ∈ C \ 2πiZ. From this definition, we have the following
relations,

Bk(1− x) = (−)kBk(x)

B′
k(x) = kBk−1(x)

(C.2)
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The Bernoulli polynomials sum up the following Fourier series when 0 ≤
x ≤ 1 and k ≥ 2,

∑
n�=0

e2πinx

nk
= −(2πi)k

k!
Bk(x)(C.3)

The function defined by Bk(x) in the interval x ∈ [0, 1] for k ≥ 2 takes the
same values at x = 1 and at x = 0, and extends to a continuous periodic
function on R by translation of the interval by Z. Its successive derivatives,
however, are not continuous. The validity of the formula may be extended
to all x ∈ R,

∑
n�=0

e2πinx

nk
= −(2πi)k

k!
Bk({x})(C.4)

where the fractional part {x} of x ∈ R, defined so that 0 ≤ {x} < 1 and
x − {x} ∈ Z. The Bernoulli polynomials with even index k for k ≤ 8 are
given explicitly by B0(x) = 1 and

B2(x) =
1

6
− x+ x2

B4(x) = − 1

30
+ x2 − 2x3 + x4

B6(x) =
1

42
− 1

2
x2 +

5

2
x4 − 3x5 + x6

B8(x) = − 1

30
+

2

3
x2 − 7

3
x4 +

14

3
x6 − 4x7 + x8 .

(C.5)

Note that the Bernoulli numbers Bk are related to the Bernoulli polynomials
by Bk = Bk(0).

C.2. Eisenstein series and standard modular graph functions

The limit τ2 → ∞ of the non-holomorphic Eisenstein series En(τ) and of
the elliptic polylogarithms gn(v|τ) and Da,b(v|τ) for u2 = v2/τ2 fixed and
0 < u2 <

1
2 is well known,

En(τ) =
2ζ(2n)

π2n
yn + 2

Γ(n− 1
2)√

π Γ(n)
ζ(2n+ 1)y1−n +O(e−2y)

gn(v|τ) = − (−4y)n

(2n)!
B2n(u2) +O(e−2yu2)

Da,b(v|τ) =
(4y)a+b−1

(a+ b)!
Ba+b(u2) +O(e−2yu2)

(C.6)
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where y = πτ2. The asymptotics of the modular graph functions D� defined
in (3.24) was studied in [6]. For the values � = 3, 4 relevant to this paper we
have,

D3(τ) =
2

945
y3 + ζ(3) +

3ζ(5)

4 y2
+O(e−2y)(C.7)

D4(τ) =
y4

945
+

2ζ(3)

3
y +

10ζ(5)

y
− 3ζ(3)2

y2
+

9ζ(7)

4y3
+O(e−2y)(C.8)

We note the relations D3 = E3 + ζ(3) and D4 = 24C2,1,1 + 3E2
2 − 18E4

established in [6].

C.3. Degeneration of D
(1)
� , D

(2)
4 , D

(a)
4 , F2 and F4

The method developed in [7] for computing the asymptotics of D�(τ) defined
in (3.29) applies just as well to the generalized modular graph function

D
(1)
� (v|τ). Consider the decomposition of the genus-one Green function into

g(z|τ) = g1(z|τ) + g2(z|τ) + g3(z|τ), where we use the parametrization z =
α+ βτ for α ∈ R/Z and −1 < β < 1,

g1(z) = 2y B2(|β|)

g2(z) =
∑
m �=0

1

|m|e
2πim(−α+τ1β)−2y|mβ|

g3(z) =
∑
m �=0

1

|m|
∑
k �=0

e2πim[−α+τ1(β+k)]−2y|m(β+k)|

(C.9)

Given the range for β, with strict inequalities, the term g3(z|τ) contributes
to D

(1)
� terms which are exponentially suppressed by O(e−2πτ2u2) and can

therefore be omitted. Similarly terms linear in g2(z) integrate to zero. In
this way we find,

D
(1)
� (v|τ) = (2y)�

∫ 1/2

−1/2
dβ B2(|β|)�−1B2(|u2 − β|)

+
∑

�−1=�1+�2
�1≥0,�2≥2

(�1 + �2)!

�1! �2!

2�1+3∑
n=1

P (�1, n;u2)S(�2, n) (2y)
�1−n+1

+O(e−2yu2)

(C.10)
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where P (�1, n;u2) are quadratic polynomials in u2, defined by

∫ ∞

−∞
dβ B2(|β|)�1B2(u2 − β) e−y|β| =

2�1+3∑
n=1

P (�1, n;u2) y
−n(C.11)

and S(�2, n) is defined by the multiple sum,

S(�2, n) =
∑

m1,··· ,m�2 �=0

δ(
∑�2

i=1mi)

|m1 · · ·m�2 |(|m1|+ · · ·+ |m�2 |)
(C.12)

Here, we have replaced B2(|u2 − β|) by B2(u2 − β), since for y → ∞ the
integral is dominated by contributions from the region |β| � 1 so that
effectively β < u2, up to corrections of order O(e−2yu2), which we neglect.
In particular, from (C.10), we have,

D
(1)
3 (v|τ) = − 8y3

15
B6 −

4y3

9
B4 + 2ζ(3)B2 +

ζ(5)

4 y2
+O(e−2yu2)

D
(1)
4 (v|τ) = y4

(
4

7
B8 +

16

15
B6 +

2

9
B4

)
+ 2ζ(3)B2 y

+
3ζ(5)

2 y

(
B2 +

1
6

)
− 3ζ(3)2

4 y2
+

9ζ(7)

8 y3
+O(e−2yu2)

(C.13)

where here and henceforth, we omit the argument in B2n(|u2|). One may
check that these results are consistent with the differential equation (3.30).

We note that, upon setting u2 = 0, the polynomial part of D
(1)
� (v|τ) does

not reduce to the polynomial part of D�(τ), since terms of order O(e−2yu2)
cannot be neglected in this limit.

C.3.1. Degeneration of D
(2)
4 (v|τ ) The same method readily applies to

the calculation of D
(2)
4 (v|τ). Replacing g by g1 + g2 and using the fact that

terms linear in g2 integrate to zero, we get,

D
(2)
4 =

∫
Σ1

κ1(z)
(
g21(z) g

2
1(z − v) + 2g21(z − v) g22(z) + g2(z)

2 g2(z − v)2
)(C.14)

+O(e−2yu2)

The first term can be evaluated directly and produces a linear combination
of Bernoulli polynomials B2k(u2) for k ≤ 4. The last term is exponentially
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suppressed as y → ∞. The second term in (C.14) gives,

8π2τ22
∑
m �=0

1

m2

∫ 1/2

−1/2
dβ B2(|u2 − β|)2 e−4πτ2|mβ|(C.15)

which can be evaluated by extending the integral to the full real axis. In

total, we find,

D
(2)
4 (v|τ) =− y4

(
8

35
B8 +

32

45
B6 +

8

27
B4 −

1

2025

)

+ y ζ(3)

(
8B4 +

8

3
B2 +

4

45

)

+
ζ(5)

y

(
6B2 +

1

3

)
+

3ζ(7)

4 y3
+O(e−2yu2)

(C.16)

C.3.2. Degeneration of D
(a)
4 (v|τ ) Although the function D

(a)
4 (v|τ)

does not enter into the final expressions for the degeneration of the genus-

two string invariants considered in this paper, it will be useful to have at

intermediate stages. It was defined in (A.26) and related to the function

D
(2)
4 (v|τ) in (A.27). Thus, its degeneration may be obtained directly from

that of D
(2)
4 by differentiation in u2,

D
(a)
4 (v|τ) = − 1

16πτ2
∂2
u2
D

(2)
4 (v|τ)(C.17)

which is readily computed using the differentiation rule for Bernoulli poly-

nomials,

D
(a)
4 (v|τ) = y3

(
4B6

5
+

4B4

3
+

2B2

9

)
(C.18)

− ζ(3)

(
6B2 +

1

3

)
− 3ζ(5)

4 y2
+O(e−2yu2)

C.3.3. Degeneration of F2, F 2
2 and F4 The degeneration of F2, F

2
2 ,

and F4 are obtained from the definitions of F2 and F4 in (3.32), and the re-

lation to the modular graph functions D4, D
(1)
4 and D

(2)
2 which have already
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been calculated above, and we find,

F2(v|τ) =
y2

45
+

ζ(3)

y
+

2

3
y2B4 +O(e−2yu2)

F2(v|τ)2 = y4
(

2

2835
+

16

27
B6 +

4

9
B8

)

+ yζ(3)

(
2

45
+

4

3
B4

)
+

ζ(3)2

y2
+O(e−2yu2)

F4(v|τ) =
2y4

15

(
1

630
+

4

15
B6 +B8

)
+ 2y ζ(3)

(
1

30
+B4

)

+
1

y
ζ(5)

(
5

6
+B2

)
+O(e−2yu2)

(C.19)

Note that every term in the combination 10F4 − 3F 2
2 involves either ζ(3) or

ζ(5).

C.4. Self-energy and related graphs

For the evaluation of the remaining modular graph functions, we shall make
use of one-loop graphs with two Green function factors, possibly with various
derivatives. Some of these graphs were already studied in [6] to which we refer
for their complete derivation and degeneration, while other graphs appear
for the first time, and for which we shall give a complete derivation.

The Fourier transform T (M,N) of the square of the Green function
(which is often referred to as the self-energy graph in quantum field theory),
is given by,

g(z)2 =
∑

M,N∈Z
T (M,N) e2πi(Mz2−Nz1)(C.20)

where z = z1 + τz2 with z1, z2 ∈ R, and the Fourier coefficients T (M,N)
are given as follows,

T (M,N) =
∑

(m,n) �=(0,0),(M,N)

τ22

π2
∣∣m+ nτ

∣∣2 ∣∣m−M + (n−N)τ
∣∣2(C.21)

We have T (0, 0) = E2. Closely related is the following integral,

F(M,N) =
τ2
π

∫
Σ1

κ1(z)|∂zg(z)|2
(
e2πi(Mz2−Nz1) − 1

)
(C.22)
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which clearly satisfies F(0, 0) = 0. For (M,N) �= (0, 0), both T (M,N) and
F(M,N) are invariant under (M,N) → (−M,−N). The function F(M,N)
may be evaluated by integrating by parts successively in z and z̄, using
the fact that δ(z) cancels against the expression in the parentheses and
expressing the remaining integral in terms of T (M,N),

F(M,N) = − τ2
π|M +Nτ |2 − π

2τ2
|M +Nτ |2T (M,N)(C.23)

The degeneration of T (M,N) for (M,N) �= (0, 0) was evaluated in the
Appendix of [6], while that of F(M,N) may be deduced from the above
relation between the two quantities. For M �= 0, we have,

T (M, 0) =
2τ22
3M2

− 6τ22
π2M4

+
8τ22
M2

J(M) +O(e−2πτ2)

F(M, 0) =
2τ2
πM2

− πτ2
3

− 4πτ2 J(M) +O(e−2πτ2)

(C.24)

where the function J(M) is conveniently given by the following integral
representation,

I(M) =

∫ ∞

0
dt

2− e2πiMt − e−2πiMt

e4yt − 1
(C.25)

and we continue to use the notation y = πτ2. Evaluating the integral, we
find,

J(M) =
1

2y

(
γE +Ψ

(
iπM

2y

))
(C.26)

where Ψ(z) = d ln Γ(z) and γE is the Euler-Mascheroni constant. Thus J(M)
grows logarithmically with M .

C.5. Sums involving powers of J(M)

We shall now present a general procedure to evaluate sums over M involv-
ing powers of J(M), in an expansion wherewe omit exponential corrections
O(e−2yu2). As usual, we assume 0 < u2 < 1

2 . The sums of interest may be
expressed as follows,

∑
M �=0

e2πiMu2
I(M)p

πnMn
= −(2i)n

n!

p∏
i=1

∫ ∞

0

dti
e4yti − 1

B(p)
n (u2; t)(C.27)
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where the double-index family of functions B
(p)
n (u2, t) is defined by,

B(p)
n (u2; t) = − n!

(2πi)n

∑
M �=0

e2πiMu2

Mn

p∏
i=1

(2− e2πiMti − e−2πiMti)(C.28)

and where t stands for the array t = (t1, · · · , tp). The function B
(p)
n (u2; t) is

the sum of 3p terms, obtained by summing the Bernoulli polynomial Bn in

the variable u2 shifted by the various combinations of ±ti, ±ti ± tj and so

on for i, j mutually distinct11 The normalization factor has been included

so that each term contributes a Bernoulli polynomial with its natural mul-

tiplicity. For example, we have,

B(1)
n (u2; t) = 2Bn(u2)−Bn(u2 + t)−Bn(u2 − t)

B(2)
n (u2; t) = 4Bn(u2)− 2Bn(u2 + t1)− 2Bn(u2 − t1)

− 2Bn(u2 + t2)− 2Bn(u2 − t2) +Bn(u2 + t1 + t2)

+Bn(u2 + t1 − t2) +Bn(u2 − t1 + t2) +Bn(u2 − t1 − t2)

(C.29)

The function B
(p)
n (u2; t) is a polynomial in u2 and the variables ti of overall

degree at most n; it is a symmetric function of the ti; it is even in each ti
separately and vanishes whenever ti = 0 for at least one value of i. With

those properties in mind, it becomes straightforward to compute and sim-

plify these functions, and for p = 1 we find,

B(1)
n (u2; t) = −2

[n/2]∑
k=1

(
n

2k

)
t2kBn−2k(u2)(C.30)

To the orders needed here, we shall also make use of the following results,

B
(2)
2 (u2, t) = 0 B

(3)
2 (u2, t) = 0

B
(2)
3 (u2, t) = 0 B

(2)
4 (u2, t) = 24 t21t

2
2(C.31)

11We assume that the ti’s are small enough so that the shifted ũ2 remains in the

interval 0 < ũ2 < 1/2. This is indeed the region which dominates the integral in

the limit y → ∞.
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The integrals for the remaining terms may be evaluated using the following
formula, ∫ ∞

0
dt

tn

e4yt − 1
=

n! ζ(n+ 1)

(4y)n+1
(C.32)

Applying the integrals to the formula in (C.30), we find,

∑
M �=0

e2πiMu2
I(M)

πnMn
= 2(2i)n

[n/2]∑
k=1

Bn−2k(u2)

(n− 2k)!

ζ(2k + 1)

(4y)2k+1
(C.33)

Applying the integrals to the formula in (C.31), we find,

∑
M �=0

e2πiMu2
I(M)2

πnMn
= 0 n = 2, 3

∑
M �=0

e2πiMu2
I(M)2

π4M4
= −ζ(3)2

64y6

(C.34)

When u2 = 0, we use instead the identity, valid up to O(e2y) terms

∑
M �=0

I(M)

πnMn
=

2(2i)n

n!

∫ ∞

0
dt

Bn(t)−Bn(0)

e4yt − 1
(C.35)

and evaluate the integral using (C.32).

C.6. Degeneration of K0
aabb

This function was defined in (B.79), and we shall use translation invariance
to shift z and w by pa, so that the integral may be expressed directly in
terms of v,

K0
aabb =

τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w)|∂zg(z)|2|∂wg(w − v)|2
(C.36)

×
(
g(z − w)2 − g(w)2 − g(z − v)2 + g(v)2

)
The Fourier transform of the combination in the parentheses of the integrand
may be evaluated with the help of (C.20) and its dependence on z and w
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may be factored using the following formula, and its analogue for w → v,

g(z − w)2 − g(w)2 =
∑

M,N∈Z
T (M,N) e−2πi(Mw2−Nw1)

(
e2πi(Mz2−Nz1) − 1

)(C.37)

where we continue to use the notation v = u1 + τu2, z = z1 + τz2 and
w = w1 + τw2. In terms of the Fourier coefficients T and F , the function
K0

aabb takes on the following form,

K0
aabb =

∑
M,N∈Z

T (M,N)|F(M,N)|2 e2πi(Mu2−Nu1)(C.38)

Retaining only the constant Fourier mode in u1 in the limit where we omit
exponential dependence on u2, we are led to keep only the contribution from
N = 0, and we find,

K0
aabb =

∑
M �=0

T (M, 0)|F(M, 0)|2 e2πiMu2 +O(e−2yu2)(C.39)

Note that F (0, 0) = 0 so that only M �= 0 contributes. Expressing both T
and F in terms of the function J using (C.24), we find,

K0
aabb = 128y4

∑
M �=0

e2πiMu2

π2M2

(
1

12
− 3

4π2M2
+ I(M)

)
(C.40)

×
(

1

12
− 1

2π2M2
+ I(M)

)2

As a result of the right most equation in (C.31), the contribution from the
term in I3 sums to zero. The integrals for the remaining terms may be
evaluated using the remaining formulas in (C.30), (C.31), and (C.33) and
we find,

K0
aabb =

4y4

135

(
5B2 + 35B4 + 32B6 +

36

7
B8

)
(C.41)

− y

3
ζ(3)

(
1 + 28B2 + 32B4

)
− ζ(5)

6y

(
7 + 48B2

)

+
7ζ(3)2

2y2
− ζ(7)

y3
+O(e−2yu2)
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The leading term in fact agrees with the naive evaluation of the integral
(C.36) by replacing g(z) by its polynomial approximation g1(z).

C.7. Degeneration of Kabab and Kabba

The starting point is pair of integrals defined in (C.42). By translation in-
variance and reflection symmetry, we may shift z, w by pa and express the
result in terms of v,

Kabab =
τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w)∂zg(z − v)∂z̄g(z)g(z − w)2∂wg(w − v)∂w̄g(w)

(C.42)

Kabba =
τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w)∂zg(z − v)∂z̄g(z)g(z − w)2∂wg(w)∂w̄g(w − v)

(C.43)

As we shall neglect exponential corrections we are interested only in the
zero mode in u1, where v = u1+ τu2. To extract it projection, we define the
following integrals,

L+(z, w;u2) =

∫ 1

0
du1 ∂zg(z − v) ∂wg(w − v)

L−(z, w;u2) =

∫ 1

0
du1 ∂zg(z − v) ∂w̄g(w − v)

(C.44)

The dependence of L± on the modulus τ is understood throughout. It will be
convenient to parametrize z = z1+τz2 and w = w1+τw2 with z1, z2, w1, w2 ∈
R and with ranges 0 ≤ z1, w1 ≤ 1 and −1

2 ≤ z2, w2 ≤ 1
2 . Since L±(z, w;u2)

depends only on the combination z1 − w1, it is clear that the remaining
integration over w1 has the net effect of projecting onto the constant Fourier
mode of the complex conjugate combinations as well, and we have,

Kabab =
τ22
π2

∫ 1

0
dz1

∫ 1

2

− 1

2

dz2

∫ 1

2

− 1

2

dw2 g(z − w)2L+(z, w;u2)L+(z, w; 0)

+O(e−2πτ2u2)

Kabba =
τ22
π2

∫ 1

0
dz1

∫ 1

2

− 1

2

dz2

∫ 1

2

− 1

2

dw2 g(z − w)2L−(z, w;u2)L−(z, w; 0)

+O(e−2πτ2u2)

(C.45)
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We shall compute L± for −1
2 ≤ u2 <

1
2 using the following formula,

∂zg(z) = −iπ
e2πi(z1+τz2) + 1

e2πi(z1+τz2) − 1
− 2πiz2 +O(e−πτ2)(C.46)

It will be convenient to organize the result in terms of the Fourier compo-
nents in z1 − w1,

L±(z, w;u2) = 4π2
∞∑

n=−∞
�±n (z2, w2;u2) e

2πin(z1−w1)(C.47)

where the Fourier coefficients �±n are given by,

�±0 (z2, w2;u2) = ∓
(
z2 − u2 −

1

2
ε(z2 − u2)

)(
w2 − u2 −

1

2
ε(w2 − u2)

)
�+n (z2, w2;u2) = e2πinτ(z2−w2) �̃+n (z2, w2;u2)

�−n (z2, w2;u2) = e2πin
(
τ(z2−u2)−τ̄(w2−u2)

)
�̃−n (z2, w2;u2)

(C.48)

and the functions �̃±n are given by (using the convention θ(0) = 0),

�̃+n (z2, ww;u2) = θ(n)θ(z2 − u2)θ(u2 − w2) + θ(−n)θ(u2 − z2)θ(w2 − u2)

�̃−n (z2, ww;u2) = θ(n)θ(z2 − u2)θ(w2 − u2) + θ(−n)θ(u2 − z2)θ(u2 − w2)

(C.49)

We shall also use the Fourier expansion of g(z − w)2, given in (C.20). The
integrals over z1 may now be performed (where we abbreviate z = z2, w =
w2),

Kabab = 16y2
∑

M,N,n

T (M,N)

∫ 1

2

− 1

2

dz

∫ 1

2

− 1

2

dw e2πiM(z−w) �+n (z, w;u2)

× �+n−N (z, w; 0)

Kabba = 16y2
∑

M,N,n

T (M,N)

∫ 1

2

− 1

2

dz

∫ 1

2

− 1

2

dw e2πiM(z−w) �−n (z, w;u2)

× �−n−N (z, w; 0)

(C.50)
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up to exponential corrections. There are five cases to be distinguished,

(C.51)

(1) n �= 0, n �= N

(2) n = 0, n �= N requiring N �= 0

(3) n �= 0, n = N requiring N �= 0

(4) n = 0, n = N,M �= 0 requiring N = 0

(5) n = 0, n = N,M = 0 requiring N = 0

We designate the contributions to Kabab and Kabba of each sum range above

respectively by K(i)
abab and K(i)

abba for i = 1, 2, 3, 4, 5. The following contribu-

tions are pairwise equal,

K(1)
abab = K(1)

abba = O(e−2yu2)

K(5)
abab = K(5)

abba = 4y2E2B
2
2 +O(e−2yu2)(C.52)

as well as,

K(4)
abab = K(4)

abba = y2
∑
M �=0

T (M, 0)e2πiMu2

(
1

π4M4
−

4B2 +
1
3

π2M2
− 4iB1

π3M3

)
+ c.c.

(C.53)

+ y2
∑
M �=0

T (M, 0)

(
2

π4M4
+

8B2 +
2
3

π2M2

)
+O(e−2yu2)

K(2)
abab = K(3)

abab = y2
∑
M

∑
N �=0

T (M,N)

(
1

π4(M + τ̄N)4
+

4B2 +
1
3

π2(M + τ̄N)2

)

K(2)
abba = K(3)

abba = y2
∑
M

∑
N �=0

T (M,N)

(
1 + 4yNB1(u2)

π4|M + τN |4 +
4B2 +

1
3

π2|M + τN |2

)

We shall denote the contribution of the first and second line of (C.53) by

K(4′)
abab and K(4′′)

abab, respectively.

The term proportional to B1(u2) cancels since the summand that multi-

plies it is odd in (M,N) → (−M,−N) while T (M,N) is even. The asymp-

totics of the first line of (C.53) can be computed using the techniques de-
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veloped earlier,

K(4′)
abab = K(4′)

abba = 2y4
(
164

105
B8 +

416

135
B6 +

92

135
B4 −

8

14175

)(C.54)

− 2yζ(3)

(
10

3
B4 + 2B2 +

4

45

)
+

ζ(5)

y

(
B2 +

1

6

)
− ζ(7)

8y3

+O(e−2yu2)

For the remaining terms, we recognize the contributions with (M,N) �= 0 as
arising from 2-loop modular graph forms, whose definition and normalization
we recall here,

C
[
a1 a2 a3
b1 b2 b3

]
=
(τ2
π

) 1

2

∑
i(ai+bi) ∑

p1,p2,p3∈Λ′

δ(p1 + p2 + p3)

pa1

1 pa2

2 pa3

3 p̄b11 p̄b22 p̄b33
(C.55)

for Λ = Z+ τZ and Λ′ = Λ \ {0}. When bi = ai for i = 1, 2, 3, we shall use
the simplified notation Ca1,a2,a3

instead. In terms of these functions, we have

K(3)
abab +

1

2
K(4′′)

abab = C
[
4 1 1
0 1 1

]
+ 4y

(
B2 +

1

12

)
C
[
2 1 1
0 1 1

]

K(2)
abba +

1

2
K(4′′)

abba = C2,1,1 + 4y

(
B2 +

1

12

)
C1,1,1

(C.56)

We shall need the asymptotics of C1,1,1 and C2,1,1, as well as of D4,

C1,1,1 =
2y3

945
+ ζ(3) +

3ζ(5)

4y2
+O(e−2y)(C.57)

C2,1,1 =
2y4

14175
+

yζ(3)

45
+

5ζ(5)

12y
− ζ(3)2

4y2
+

9ζ(7)

16y3
+O(e−2y)

D4 =
y4

945
+

2

3
yζ(3) +

10ζ(5)

y
− 3ζ(3)2

y2
+

9ζ(7)

4y3
+O(e−2y)(C.58)

The asymptotics of C
[
2 1 1

0 1 1

]
and C

[
4 1 1

0 1 1

]
can be obtained by taking successive

derivatives with respect to ∇ = 2iτ22∂τ (which reduces to τ22∂τ2 when acting
on functions independent of τ1):

C
[
2 1 1
0 1 1

]
=

1

3τ2
∇E3 =

2y3

945
− ζ(5)

2y2
+O(e−2y)(C.59)
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while we also have (see eq (4.26) of [9]),

C
[
4 1 1
0 1 1

]
=

1

24τ22
∇2D4 −

1

4τ22
E2∇2E2(C.60)

As a result we obtain the following asymptotics,

C
[
4 1 1
0 1 1

]
=

2y4

14175
+

yζ(3)

45
− ζ(3)2

4y2
+

9ζ(7)

16y3
+O(e−2y)(C.61)

Combining these results, we find

Kabab =
y4

945
(1 + 44B2 + 1372B4 + 5824B6 + 2952B8)

(C.62)

− yζ(3)

3

(
8B4 + 8B2 +

1

3

)
− ζ(5)

y

(
3B2 +

1

6

)
− ζ(3)2

2y2
+

ζ(7)

y3

+O(e−2yu2)

Kabba =
y4

945
(1 + 44B2 + 1372B4 + 5824B6 + 2952B8)

(C.63)

− yζ(3)

3

(
8B4 − 16B2 −

5

3

)
+

ζ(5)

y

(
7B2 +

3

2

)
− ζ(3)2

2y2
+

ζ(7)

y3

+O(e−2yu2)

The leading term in each expression agrees with the result obtained by

evaluating the integrals (C.42), (C.43) after replacing g(z) by its polynomial

approximation g1(z).

C.8. Degeneration of K0
aaab

The modular graph function K0
aaab was defined in (B.79). Using translation

invariance, we may shift z and w by pa and express the result solely in terms

of v,

K0
aaab =

τ22
π2

∫
Σ1

κ1(z)

∫
Σ1

κ1(w)|∂zg(z)|2∂wg(w)∂w̄g(w − v)(C.64)

×
(
g(z, w)2 − g(w)2

)
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We use the relation (C.37) to factorize the dependence of the integrand on
z and w. The result may be expressed as follows,

K0
aaab =

∑
(M,N) �=(0,0)

T (M,N)F(M,N)G(M,N)(C.65)

where T was defined in (C.21) and F was calculated in (C.22) in terms of
T . The coefficients G(M,N) are defined as follows,

G(M,N) =
τ2
π

∫
Σ1

κ1(w)∂wg(w)∂w̄g(w − v) e−2πi(Mw2−Nw1)(C.66)

Since we neglect exponentially suppressed contributions, we retain only the
zero mode in u1, which is calculated by integrating over u1,∫ 1

0
du1g(w − v) = 2yB2(|w2 − u2|)(C.67)

Substituting this result into the definition of G(M,N), we find,

G(M,N) = iτ2

∫ 1

2

− 1

2

dw2 ∂u2
B2(|w2 − u2|)e−2πiMw2

∫ 1

0
dw1∂wg(w) e

2πiNw1

(C.68)

+O(e−2yu2)

Within this approximation, the w1-integral may be carried out using (C.46),
and we find,

G(M, 0) = − 2iyB1(u2)

πM
+

y

π2M2
+

(
2iyB1(u2)

πM
+

y

π2M2

)
e−2πiMu2

(C.69)

G(M,N) = − 2iyB1(u2)

π(M +Nτ)
+

y

π2(M +Nτ)2

where on the first line M �= 0 and on the second line N �= 0. Since we have
retained only the zero mode the above formulas are valid up to exponentially
suppressed contributions.

We split the sum in (C.65) according to whether N = 0 or not, and
further split the N = 0 part into parts with and without exponential u2-
dependence in G(M, 0),

K0
aaab = KA +KB +KC(C.70)
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where

KA = y
∑
M �=0

T (M, 0)F(M, 0)

(
2iB1(u2)

πM
+

1

π2M2

)
e−2πiMu2

KB = y
∑
M �=0

T (M, 0)F(M, 0)
1

π2M2

KC = y
∑
N �=0

∑
M

T (M,N)F(M,N)
1

π2(M +Nτ)2

(C.71)

We have simplified these expressions by using the fact that the terms which

are proportional to B1(u2) in the non-exponential terms in G are odd under

(M,N) → (−M,−N) and sum to zero since both T and F are even.

C.8.1. Calculating KB +KC As a result, KB and KC are independent

of u2. Their sum is an ordinary genus-one modular graph function,

KB +KC =
∑

(M,N) �=(0,0)

T (M,N)F(M,N)
τ2

π(M +Nτ)2
(C.72)

Using the explicit expression for F of (C.23), we find more explicitly,

KB +KC = −
∑

(M,N) �=(0,0)

(
τ22 T (M,N)

π2(M +Nτ)3(M +Nτ̄)
(C.73)

+
1

2
T (M,N)2

M +Nτ̄

M +Nτ

)

This is recognized as the sum of the following modular graph functions [9],

KB +KC = −C
[
3 1 1
1 1 1

]
− 1

2
C
[
1 1
1 1

∣∣∣∣1 1
1 1

∣∣∣∣ 1−1

]
(C.74)

We may simplify the trihedral modular graph function using the rules of [9,

§7],

C
[
1 1
1 1

∣∣∣∣1 1
1 1

∣∣∣∣ 1−1

]
= 2 C

[
1 1
1 1

∣∣∣∣1 1
1 0

∣∣∣∣10
]
= 2 C

[
1 1
1 1

∣∣∣∣2 1
1 0

∣∣∣∣00
]
− 2 C

[
1 1
1 1

∣∣∣∣2 0
1 0

∣∣∣∣10
](C.75)



Asymptotics of the D8R4 genus-two string invariant 453

Using now also the algebraic reduction formulas of [9], we find,

C
[
1 1
1 1

∣∣∣∣1 1
1 1

∣∣∣∣ 1−1

]
=

1

2τ2
∇E2

2 −
1

6τ2
∇D4 + 2 C

[
3 1 1
1 1 1

]
(C.76)

Hence we have,

KB +KC = − 1

4τ2
∇E2

2 +
1

12τ2
∇D4 − 2 C

[
3 1 1
1 1 1

]
(C.77)

To evaluate the last term is more involved. We begin with the observation

that this modular graph form satisfies the following differential equation

(for the rules of differentiation and further manipulation of modular graph

forms, see [9]),

∇
(
τ2 C

[
3 1 1
1 1 1

])
= 3τ22 C

[
4 1 1
0 1 1

]
+

1

4
(∇E2)

2 − 1

20
∇2E4(C.78)

Since the Laurent expansion on the right side is known, we obtain the fol-

lowing Laurent expansion by integrating the above differential equation

C
[
3 1 1
1 1 1

]
=

2y4

14175
+

ζ(3)y

45
+

c

y
+

ζ(3)2

2y2
− 3ζ(7)

4y3
+O(e−2y)(C.79)

where c is the integration constant which is left undetermined by the above

calculation. It may be evaluated by direct summation, and one finds c =

−5ζ(5)/12. Using these asymptotics we obtain,

KB +KC = − 2y4

4725
+

15ζ(7)

16y3
+O(e−2y)(C.80)

C.8.2. Calculating KA It remains to evaluate KA, which we write out

explicitly as follows,

KA = − 32y4
∑
M �=0

(
1

12
− 3

4π2M2
+ J(M)

)(
1

12
− 1

2π2M2
+ J(M)

)(C.81)

×
(

2iB1

π3M3
+

1

π4M4

)
e−2πiMu2
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The contributions to KA = K+
A+K−

A respectively with an even or odd power

of M multiplying the exponential, are given by,

K+
A = − y4

∑
M �=0

e2πiMu2

π4M4

(
32J(M)2 − 40J(M)

π2M2
+

16J(M)

3
+

12

π4M4

(C.82)

− 10

3π2M2
+

2

9

)

K−
A = − 2iB1y

4
∑
M �=0

e2πiMu2

π3M3

(
32J(M)2 − 40J(M)

π2M2
+

16J(M)

3
+

12

π4M4

− 10

3π2M2
+

2

9

)

We use (C.27), (C.33), (C.29), (C.30) to evaluate the remaining integrals,

and we find,

K+
A = y4

(
8

105
B8 +

8

27
B6 +

4

27
B4

)
− y

3
ζ(3)(10B4 + 4B2)

(C.83)

− ζ(5)

6y
(15B2 + 1) +

ζ(3)2

2y2
− 5ζ(7)

16y3
+O(e−2yu2)

K−
A = y4

(
− 64

105
B8 −

32

15
B6 −

52

45
B4 −

16

315
B2 +

2

4725

)

+
y

3
ζ(3)

(
40B4 + 18B2 +

1

3

)
+

5ζ(5)

y

(
B2 +

1

12

)
+O(e−2yu2)

Collecting all terms together we get

K0
aaab = − y4

945
(48B2 + 952B4 + 1736B6 + 504B8)

(C.84)

+ yζ(3)

(
10B4 +

14

3
B2 +

1

9

)
+

ζ(5)

4y
(10B2 + 1) +

ζ(3)2

2y2
+

5ζ(7)

8y3

+O(e−2yu2)

The leading term agrees with the result obtained by evaluating the integral

(C.64) after replacing g(z) by its polynomial approximation g1(z).
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C.9. Summary of the tropical degeneration

Collecting the various contributions computed in the previous subsections

we can now state the tropical limits of the string invariants considered in

Section 5.2. For the Kawazumi-Zhang invariant, we recover the result ob-

tained earlier in [32]:

ϕ(t) =
πt

6
+ y B2 +

5y2

6πt

(
B4 +

1

30

)
+

5ζ(3)

4πyt
(C.85)

where we recall that we denote B2n = B2n(|u2|), and assume that |u2| < 1.

For the invariants Z2 and Z3 defined in (3.21), we find

Z(t)
2 = − 7(πt)2

90
− 2πty

3
B2 − y2

(
5

3
B4 +

2

3
B2 +

1

45

)(C.86)

− y3

πt

(
74

45
B6 +

4

3
B4 +

1

189

)
− 17

y4

(πt)2

(
1

30
B8 +

2

45
B6 +

1

18900

)

− ζ(3)

2

(
1

y
+

6B2

πt
+

(5B4 +
1
6)y

(πt)2

)
− 7ζ(5)

4

(
1

y2πt
+

(B2 +
5
6)y

(πt)2

)

Z(t)
3 =

(πt)2

18
+

2πty

3
B2 + y

(
19

9
B4 +

2

3
B2 +

2

135

)(C.87)

+
y3

πt

(
22

9
B6 +

16

9
B4 +

1

945

)
+ 17

y4

(πt)2

(
1

18
B8 +

2

27
B6 +

1

11340

)

+
ζ(3)

6

(
1

y
+

6B2

πt
+

(5B4 +
1
6)y

(πt)2

)
+

11

8(πyt)2
ζ(3)2

For the invariant Z1 defined in (3.21), we require the tropical limit of

the term Kc defined in (3.40). Using the results of Sections C.6-§C.8 we find

Kc = y4
(
16

5
B8 +

64

15
B6 +

2

675

)
− 32yζ(3)

(
B4 +

1

60

)(C.88)

− ζ(5)

y

(
16B2 −

65

6

)
− 9 ζ(3)2

2y2
+

3ζ(7)

4y3
+K0

aaaa +O(e−2yu2)
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where K0
aaaa is the integral (3.38). We have not analyzed the tropical limit

of this integral (which is a function of τ but not of v), but we shall be able
to infer it indirectly, up to an undetermined term proportional to 1/y2 (see
(5.17)). It follows from (C.88) and earlier results in this section that the
tropical limit of Z1 is given by

Z(t)
1 =

13(πt)2

90
+

2πty

3
B2 + y2

(
5

3
B4 +

2

3
B2 +

4

45

)(C.89)

+
y3

πt

(
86

45
B6 +

4

3
B4 −

1

945

)

+
y4

(πt)2

(
23

30
B8 +

46

45
B6 +

1

1050

)

+ ζ(3)

(
7

2y
+

3B2 + 3

πt
−

y(B4(u2)− 11
30)

2(πt)2

)

+
ζ(5)

2

(
− 1

2πt y2
−

B2(u2)− 125
24

2(πt)2 y

)
+

3ζ(7)

32π2y3t2
− 3ζ(3)2

(4πyt)2
+

K0
aaaa

8π2t2

The tropical limit of the complete string invariant B(t)
(2,0) =

1
2

(
Z(t)
1 − 2Z(t)

2 +

Z(t)
3

)
is then given by

B(t)
(2,0) =

8(πt)2

45
+

4πty

3
B2 + y2

(
32

9
B4 +

4

3
B2 +

2

27

)(C.90)

+
y3

πt

(
172

45
B6 +

26

9
B4 +

1

189

)

+
y4

(πt)2

(
64

45
B8 +

256

135
B6 +

241

113400

)

+ ζ(3)

(
7

3y
+

5B2 +
3
2

πt
+

(8B4 +
17
30) y

3(πt)2

)

+ ζ(5)

(
3

2y2πt
+

(3B2 +
265
48 )

2y (πt)2

)
+

3ζ(7)

64π2y3t2
+

19 ζ(3)2

32(πyt)2
+

K0
aaaa

16π2t2

Upon changing variables from (t, y = πτ2, u2) to (V, S1, S2) using (5.9), and
making use of the functions Ai,j defined in (5.11), (5.14), we recover the
results announced in Section 5.2.
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4 place Jussieu

F-75005 Paris

France

E-mail address: pioline@lpthe.jussieu.fr

Received 20 July 2018

Accepted 5 January 2019

mailto:pioline@lpthe.jussieu.fr

	Introduction
	Summary of results
	Organization

	Structure of genus-two string invariants
	Genus-two string invariants
	Convergence of the integrals over M2
	Low weights: the Kawazumi-Zhang invariant
	The string invariant B(2,0)
	The Arakelov Green function

	The non-separating degeneration
	Funnel construction of the non-separating degeneration
	Degeneration of the Green functions
	Degeneration of the Kawazumi–Zhang invariant
	Degeneration of the string invariant B(2,0)
	Modular graph functions occurring in Zi
	Generalized modular graph functions occurring in Zi
	Higher generalized modular graph functions

	The separating degeneration
	Funnel construction of the separating degeneration
	Global funnel construction
	Degeneration of Abelian differentials
	Degeneration of the Green function
	Degeneration of the genus-two Kawazumi-Zhang invariant
	Degeneration of the genus-two invariants Zi and B (2,0)
	Degeneration of general genus-two modular graph functions

	The tropical degeneration
	Geometry and symmetry of the tropical degeneration
	Tropical limit of string invariants
	Tropical limit of non-separating degenerations
	Modular local polynomials

	Low energy expansion in two-loop supergravity
	Green functions on graphs
	World-line evaluation of two-loop supergravity invariants

	Genus-one basics and integration formulas
	Genus-one differentials and scalar Green function
	Kronecker-Eisenstein series and elliptic polylogarithms
	Reducing integrals on ab to integrals on 1
	Integrals involving two punctures
	Integrals involving at most one puncture

	Non-separating degeneration of Zi and Zi
	Degeneration of Z3
	Degeneration of Z2
	Degeneration of Z1
	Variational calculation of Kt
	Calculation of Kc
	Calculation of the functions i and Zi

	Tropical limits of modular graph functions
	Bernoulli polynomials
	Eisenstein series and standard modular graph functions
	Degeneration of D(1), D4(2) , D4(a), F2 and F4
	Self-energy and related graphs
	Sums involving powers of J(M)
	Degeneration of K0aabb
	Degeneration of Kabab and Kabba
	Degeneration of Kaaab0
	Summary of the tropical degeneration

	Acknowledgments
	References

