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This article lays the foundations for the study of modular forms
transforming with respect to representations of Fuchsian groups of
genus zero. More precisely, we define geometrically weighted graded
modules of such modular forms, where the graded structure comes
from twisting with all isomorphism classes of line bundles on the
corresponding compactified modular curve, and we study their
structure by relating it to the structure of vector bundles over
orbifold curves of genus zero. We prove that these modules are
free whenever the Fuchsian group has at most two elliptic points.
For three or more elliptic points, we give explicit constructions
of indecomposable vector bundles of rank two over modular orb-
ifold curves, which give rise to non-free modules of geometrically
weighted modular forms.
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1. Introduction

The history of vector valued modular forms dates back to Poincaré’s work
on Fuchsian functions and linear differential equations [Poi82], [Poi84]. In
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recent years, vector valued modular forms have played a main role in the

mathematics spawned by the proof of the monstrous moonshine conjecture

[Bor92]. Indeed, these modular forms arise as generating series for characters

of rational vertex operator algebras, and thus form an important part of their

representation theory — see [Gan06] for a survey. Most of the work in this

context has so far focused on the case of level one, that is, vector valued

modular forms for SL2(Z). The aim of this article is to extend the basic

structure theory of vector valued modular forms from the case of level one

to a general genus zero Fuchsian group. This more general theory turns out

to be much richer, and it is closely related to the classification of vector

bundles over orbifold curves of genus zero [GL87], [CB10].

A key result in the theory of vector valued modular forms for SL2(Z) is

the free module theorem, which asserts that the module of modular forms

associated to a rank r representation of SL2(Z) is free of rank r over the

ring of scalar valued modular forms of level one. When the representation

is a Weil representation of a rank one quadratic form, this result is due to

Eichler and Zagier, where freeness is deduced from an analogous result on

freeness of spaces of Jacobi forms — see Theorem 8.4 and the remark on

the following page in [EZ85]. For a general representation the free module

theorem is due to Marks and Mason [MM10]. In [CF16], we deduced the free

module theorem for any SL2(Z)-representation from a splitting principle for

vector bundles over the modular orbifold of level one, thus establishing the

first geometric link between the study of vector bundles over modular curves

and the structure theory of vector valued modular forms. Even for subgroups

of SL2(Z) of small index the picture quickly becomes more complicated. For

example, during the summer of 2016 Geoff Mason observed (private corre-

spondence with the authors) that the free module theorem fails when SL2(Z)

is replaced by its subgroup Γ2 of index two. Mason and Gannon then es-

tablished similar negative results for a number of other subgroups of small

index (unpublished note). On the geometric side, we were able to show that

the splitting principle for vector bundles holds for Γ2 and other subgroups

of small index, thus raising the question of whether the structure of vector

bundles over modular orbifolds of higher level has any connection at all with

that of vector valued modular forms of the corresponding level. One of the

key insights of the present paper is the following: if one is willing to work over

a ring of geometrically weighted modular forms, which is slightly larger than

the classical ring of scalar valued modular forms, then the corresponding

modules of geometrically weighted modular forms possess useful commuta-

tive algebraic properties. For example, we prove a free module theorem for
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geometrically weighted modular forms over certain Fuchsian groups, includ-
ing Γ2 — see Corollary 4.8 and the discussion at the end of Subsection 6.2.
Around the same time that we established these results, Terry Gannon used
a different argument to prove a similarly modified free module theorem for
Γ2 and a number of other Fuchsian groups (unpublished note). Also around
this time, Richard Gottesman established, as part of his forthcoming PhD
thesis, a free module theorem for Γ0(2) using the argument pioneered in
[MM10]. Over Γ0(2) the ring of geometrically weighted modular forms is
equal to that of classical modular forms, so this case can also be treated
using the geometric approach of the present paper.

These results point to a need for a general study of vector valued mod-
ular forms on arbitrary Fuchsian groups. To simplify matters we restrict
in this paper to Fuchsian subgroups Γ ⊆ PSL2(R) of the first kind, with
finite covolume and finitely many cusps. This restriction also implies that
the weights of modular forms on Γ must be even. Further, we restrict to
subgroups with the property that the corresponding Riemann surface they
define is of genus zero when the cusps are included. Such groups are said to
be of genus zero, and the corresponding compact orbifolds are called orb-
ifold lines, or orbilines. Orbifold lines are sufficienly rigid to allow us to
reach some nontrivial general conclusions, but not so rigid that they are un-
interesting — for example, orbifold lines are some of the main protagonists
in monstrous moonshine [CN79], [Bor92], and the study of vector bundles
on orbifold lines has been connected with the representation theory of cer-
tain Kac-Moody algebras [Len86], [GL87], [Mel04], [CB10]. Our results can
be extended to Fuchsian subgroups of SL2(R), and thus to modular forms
of odd weight and half-integral weight by replacing orbifold lines with μ2-
gerbes over them, as shown in [CF16] and [CFK17] for the case of SL2(Z).
We leave this slight generalization open to further exploration.

Note that due to our restriction to subgroups of genus zero, the elliptic
stabilizers will play an important role in this paper, as they generate the
fundamental group of the compactified orbifold. Unlike in the more familiar
case of smooth manifolds, the genus zero case for orbifolds still allows for
an interesting, although finite, fundamental group. Sometimes the topology
becomes complicated enough that the analogue of Grothendieck’s theorem
on the splitting of vector bundles fails.

We will end this introduction by summarizing the contents of the paper.
In Section 2 we define orbifold lines and recall some standard facts about
them. In Section 3 we study the structure of vector bundles over orbifold
lines. As is well-known, every vector bundle over P1 splits into a sum of line
bundles [Gro57]. We establish a similar splitting principle for orbifold lines



490 Luca Candelori and Cameron Franc

with at most two orbifold points using a proof modeled after the standard
cohomological argument for the usual projective line (note that this case
includes the compactification of the orbifold quotient [PSL2(Z)\ h] studied in
detail in [CF16]). We then recall a general result of Crawley-Boevey ([CB10],
Theorem 3.3) classifying indecomposable vector bundles over orbifold lines
in terms of an associated Kac-Moody algebra. In the remainder of the section
we focus on an orbifold line with three orbifold points with stabilizers of size
(2, 2, n), and we give an explicit description of an indecomposable vector
bundle of rank 2 on such an orbifold line (Theorem 3.6) that is independent
of Crawley-Boevey’s existence result. Later in Section 6 we write down the
transition functions of such indecomposable bundles explicitly using modular
forms.

In Section 4 we study the structure of coherent sheaves over an orbifold
line. The key idea is to embed an orbifold line into weighted projective space
and then to identify it with a weighted projective line. The theory of coherent
sheaves over weighted projective lines is due to Geigle-Lenzing [GL87], and
it follows the usual theory for algebraic curves [Ser55]. More precisely, if
X denotes an orbifold line with n + 1 orbifold points, and if W = Pic(X)
denotes the Picard group of isomorphism classes of line bundles on X, then
we describe a natural projective embedding ofX inside a weighted projective
space P(W ) associated to W (Theorem 4.3). This embedding is used in
Proposition 4.5 to give a concrete realization of the category of coherent
sheaves on X in terms of a category of sheaves of W -graded modules. For
any coherent sheaf F on X there is a Serre-type functor [GL87]

GM∗(F) ..=
⊕
x∈W

H0(X,F(x))

to the category of W -graded modules over the W -graded projective coordi-
nate ring S(X) of the embedding X ↪→ P(W ). This functor can be used to
link the structure of vector bundles over X to that of W -graded modules
over S(X). For example, Geigle-Lenzing proved ([GL87], 5.1) that if V is a
vector bundle on X, then GM∗(V) is always maximal Cohen-Macaulay over
S(X). We also deduce from Theorem 3.1 that GM∗(V) is free over S(X)
whenever X has at most two orbifold points (see Corollary 4.8). In gen-
eral, the module GM∗(V) decomposes into a direct sum of indecomposable
maximal Cohen-Macauley modules, each indexed by a certain Kac-Moody
algebra constructed from X.

When X is obtained by adding the cusps to a quotient [Γ\ h] for some
Fuchsian group Γ ⊆ PSL2(R), the W -graded modules GM∗(V) seem to be
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better substitutes for the usual Z-graded modules of modular forms asso-

ciated to a representation of Γ. In Section 5 we apply this observation to

the study of modular forms for Γ. We begin by explaining briefly how the

constructions of [CF16] generalize to arbitrary Fuchsian groups. If V(ρ) de-
notes the canonical extension to X of the local system on [Γ\ h] associated
to a representation ρ of Γ, then we introduce the module of geometrically

weighted ρ-valued modular forms GM(ρ) = GM∗(V(ρ)). Following the above

definition, this is obtained by twisting V(ρ) with all line bundles on X and

putting the global sections together into a single module, rather than twist-

ing only with the standard line bundles Lk of weight k modular forms. In

general this module GM(ρ) is strictly larger than the usual module M(ρ) of

modular forms associated to ρ, but it has the advantage that the preceding

results on GM∗(V(ρ)) apply to it. It is a module over the coordinate ring

S(Γ) = S(X) of the projective embedding X ↪→ P (W ) discussed above,

which likewise is typically larger than the usual ring of scalar valued modu-

lar forms for Γ. Using this construction, the classification of vector bundles

over orbifold lines directly gives a classification of the modules GM(ρ). In

particular, we deduce that when Γ has at most 2 elliptic points, the free

module theorem holds for GM(ρ) (Theorem 5.6).

The constructions of the ring S(Γ) and the modules GM(ρ) are geometric

in origin, and one would like an automorphic description for them. In certain

cases one can use the exact sequence

0 → Pic0(X) → Pic(X)
deg→ 1

m
Z → 0,

where m is the least common multiple of the orders of the stabilizers of the

elliptic points for Γ, to give a convenient automorphic description for S(Γ)

and GM(ρ). One interpets Pic0(X) as those bundles arising from characters

of Γ that are trivial on the stabilizers of the cusps, the so-called cuspidal

characters. This reduces finding an automorphic description for all bundles

in Pic(X) — thereby giving an automorphic description for S(Γ) and GM(ρ)

— to giving an automorphic description of any single bundle on X of degree
1
m . In certain lucky cases the weight shifting bundle L2 is of appropriate

degree, and one finds that S(Γ) is the ring generated by the modular forms

associated to all the cuspidal characters in all weights, and similarly for

GM(ρ). But in general L2 will have too large a degree, and S(Γ) and GM(ρ)

contain slightly more than the forms generated by the cuspidal characters.

Nevertheless, if L denotes a line bundle on X of degree 1
m , then it pulls

back to a trivializable bundle on the Stein space h, and this pullback can be
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described by some automorphy factor. It is an open problem to describe a
choice of automorphy factor that works for any given Fuchsian group.

In Section 6 we end the paper by describing these constructions in detail
for several Fuchsian groups: PSL2(Z) and its unique normal subgroups of
index two and three, as well as a nonnormal subgroup of index 4. One of
the most surprising findings in these explorations arose from the explicit
automorphic construction of indecomposable bundles of rank two on the
subgroups of index 3 and 4 considered here. The modular construction of
these bundles involves certain indecomposable representations that are not
unitarizable, and so the corresponding modular forms fall outside the scope
of the classical theory of scalar valued modular forms. These vector val-
ued forms are essentially antiderivatives of classical scalar valued modular
forms, and in this way the ratios of period integrals of classical scalar valued
modular forms between elliptic points arise naturally in the construction of
indecomposable vector bundles. This suggests that the CM values of vector
valued modular forms associated with certain nonunitary representations
may hold some arithmetic interest, although we do not make any general
claims in this direction.

As mentioned above, some of our results have been obtained indepen-
dently by Mason and Gannon. The authors thank them for several useful
discussions about the contents of this paper, and for sharing some of their
private notes with us.

We end this introduction with a brief discussion about notation regard-
ing Fuchsian groups. In this note Fuchsian groups are subgroups of PSL2(R),
rather than SL2(R), although we will commit the standard abuse of writing
elements of PSL2(R) as matrices. We retain the notation

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, R = ST,

of our previous papers, but here χ : PSL2(Z) → C× denotes the unique

character of PSL2(Z) determined by χ(T ) = e2πi
1

6 . In [CF16] we used χ to
denote the generating character of SL2(Z); in this paper, χ is the square
of that character. That is, χ denotes the character of η4 and it satisfies
χ(S) = −1 and χ(R) = ζ2, where ζ = e2πi

1

3 .

2. Orbifold lines

An orbifold curve X is a compact, connected, complex orbifold of dimension
one with finitely many orbifold points (P0, . . . , Pn) with non-trivial cyclic
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stabilizers of orders (p0, . . . , pn), respectively. The genus of X is the genus
of its underlying Riemann surface. An orbifold line is an orbifold curve of
genus 0. Since the only compact, connected Riemann surface of genus 0 is
P1, the sequence (p0, . . . , pn) determines the orbifold line X uniquely up to
re-labeling of the orbifold points Pi (see e.g. [VZB] Lemma 5.3.10). We call
(p0, . . . , pn) the signature of X.

Let L be a line bundle over X. The restriction L|P to an orbifold point
P ∈ {P0, . . . , Pn} is a 1-dimensional vector space together with a one-
dimensional representation

μ(L, P ) : Z/pZ −→ C×,

where p is the order of the stabilizer of P . This representation is completely
determined by the element ι(L, P ) ∈ {0, . . . , p − 1} given by μ(L, P )(1) =

e
2πi

p
ι(L,P ).

Definition 2.1. The integer ι(L, P ) ∈ {0, . . . , p − 1} is called the isotropy
of L at P .

Let now Pic(X) be the group under ⊗ of all line bundles over X up
to isomorphism. There is an isomorphism Pic(X) ∼= Cl(X) with the class
group, i.e. all divisors modulo principal divisors. A divisor for an orbifold
curve X is a formal linear combination

D =
∑
P∈X

aP
|StabX(P)|

P, aP ∈ Z,

and a principal divisor is a divisor of a rational function on X, where the
zeroes and poles of the function are appropriately rescaled by the order of
the stabilizers. The degree of a divisor D is

deg(D) =
∑
P∈X

aP
|StabX(P)|

∈ 1

m
Z,

where m = lcm(p0, . . . , pn). We thus obtain the familiar degree homomor-
phism

deg : Pic(X) −→ 1

m
Z

by associating to a line bundle L the degree of the divisor of a rational
section of L.
Proposition 2.2. Let X be an orbifold line of signature (p0, . . . , pn). Then
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(a) Pic(X) is a rank one abelian group generated by n + 1 elements

x0, . . . , xn with relations

p0x0 = p1x1 = . . . = pnxn.

(b) Let m = lcm(p0, . . . , pn). Then the degree homomorphism induces an

exact sequence

0 → Pic0(X) −→ Pic(X)
deg−→ 1

m
Z → 0,

that identifies Pic0(X) with the torsion subgroup of Pic(X).

(c) There is an isomorphism

Pic0(X) ∼=
∏n

j=0 Z/pjZ

〈(1, 1, . . . , 1)〉 .

Proof. Given L ∈ Pic(X), mapping L to each isotropy ι(L, P ),

P ∈ {P0, . . . , Pn} gives a group homomorphism

(1) Pic(X) →
n∏

i=0

Z/piZ.

The kernel of this isomorphism is the Picard group of the underlying Rie-

mann surface, which is isomorphic to Z for an orbifold line. Therefore (1)

gives an exact sequence

0 → Z → Pic(X) →
n∏

i=0

Z/piZ → 0,

which proves the claim about the rank of Pic(X). To get the more precise

statement about the relations, let xi be the class in Pic(X) corresponding to

the line bundle OX(Pi). Then each OX(Pi)
⊗pi descends to a line bundle over

the underlying Riemann surface P1 of degree one. But line bundles over P1

of the same degree must necessarily be isomorphic, so part (a) follows. For

part (b), note thatOX(Pi) has degree 1/pi, thus the degree map is surjective,

of kernel equal to Pic0(X) since 1
mZ has characteristic zero. Now Pic0(X)

consists of elements of finite order, so each L ∈ Pic0(X) can be given the

structure of an N -torsor (i.e. a principal Z/NZ-bundle), for some positive

integer N . These correspond to homomorphisms π1(X) → Aut(Z/NZ) =
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Z/NZ, where π1(X) is the orbifold fundamental group of X. Since X is of
genus zero, this group has the presentation

π1(X) = 〈γ0, . . . , γn | γpj

j = 1, γ0γ1 · · · γn = 1〉,

thus it is generated by elements of finite order. In particular, one has

Pic0(X) = Hom(π1(X),C×) ∼=
∏n

j=0 Z/pjZ

〈(1, 1, . . . , 1)〉 ,

which proves part (c).

Remark 2.3. The identification Pic0(X) ∼= Hom(π1(X),C×) established
above is well-known and part of a bigger picture. Narasimhan-Seshadri
showed [NS64] that stable holomorphic vector bundles of degree zero on a
compact Riemann surface are in one-to-one correspondence with irreducible
unitary representations of the fundamental group. The case of line bun-
dles and unitary characters of the fundamental group, where the stability
condition becomes empty, is even more classical. These results have been
extended considerably in the direction of nonabelian Hodge theory, due ini-
tially to Hitchin, Donaldson and Simpson — see [Sim91] and the references
therein. In particular, the Narasimhan-Seshadri result has been generalized
[BH16], [Sim11] to the setting of compact orbifolds discussed in Proposition
2.2. For line bundles on a compact orbifold of genus zero, where all repre-
sentations of rank one have finite image, one does not need the full strength
of these results, as shown in the proof of Proposition 2.2.

By a slight abuse of notation (which is standard for the case X = P1),
for any x ∈ Pic(X) we denote by O(x) the corresponding line bundle. For
the distinguished element (of degree one)

c ..= p0x0 = . . . = pnxn ∈ Pic(X)

we call O(c) the distinguished line bundle, and for the dualizing element

ω ..= (n− 1)c−
n∑

i=0

xi ∈ Pic(X)

(of degree n − 1 −
∑n

i=0 1/pi) we call O(ω) the dualizing line bundle. This
line bundle is isomorphic to the canonical bundle Ω1

X , the relative dualizing
sheaf of the orbifold line X.
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For any orbifold line X, the abelian group Pic(X) carries a partial or-

dering. In particular, since Pic(X)/Zc ∼=
∏n

i=0 Z/piZ, we may write any

element of Pic(X) uniquely as

x =

n∑
i=0

ai(x)xi + a(x)c, ai(x) ∈ {0, . . . , pi − 1}, a(x) ∈ Z.

We then say that x ≤ y if ai(x) ≤ ai(y) for all i = 0, . . . , n and a(x) ≤ a(y).

Note that under this partial ordering the degree homomorphism Pic(X) →
1
mZ is thus order-preserving.

Let V be a vector bundle of rank r over an orbifold line X. Restriction

to each non-trivial orbifold point Pi gives an r-dimensional representation

μ(V, Pi) : Z/piZ −→ GLr(C)

which is entirely determined by the linear transformation μ(V, Pi)(1). This

is of finite order, hence diagonalizable, with eigenvalues of the form e
2πi

pi
νij ,

νij ∈ {0, . . . , pi − 1}, j = 1, . . . , r.

Definition 2.4. The integers νij ∈ {0, . . . , pi − 1}, j = 1, . . . , r are called

the isotropies of V at Pi. The integer

ι(V, Pi) ..=

r∑
i=1

νij ∈ Z≥0

is called the isotropy trace of V at Pi.

Let now L be a line bundle over an orbifold line X. Denote by

χ(X,L) ..= dimH0(X,L)− dimH1(X,L)

its Euler characteristic. Then the Riemann-Roch theorem for orbifold lines

says that

χ(X,L) = degL+ 1−
(

n∑
i=0

ι(L, Pi)

pi

)
.

As with algebraic curves ([Ati57], Lemma 1 and [GL87], Prop. 2.6), any

vector bundle V of rank r over X has a filtration by sub-bundles

(2) 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vr = V
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such that each quotient Vi/Vi−1
∼= Li is a line bundle. Among all filtrations

as in (2), it is possible to choose a maximal filtration by requiring V1 = L1

to be a line sub-bundle of V of maximal degree, then L2 to be a line sub-
bundle of V/L1 of maximal degree, etc. By choosing any such filtration, the
Riemann-Roch theorem extends to vector bundles over X by the formula

χ(X,V) ..= dimH0(X,V)−dimH1(X,V) = deg(V )+rk(V)−
(

n∑
i=0

ι(V, Pi)

pi

)

where deg(V ) ..= deg(det(V)). Moreover, the Serre duality theorem for orb-
ifold lines gives a canonical isomorphism H1(X,V) ∼= H0(X,V∗(ω))∗ and
thus

dimH1(X,V) = dimH0(X,V∗(ω)).

3. Vector bundles over orbifold lines

When X = P1 the Grothendieck-Birkhoff Theorem [Gro57] says that any
vector bundle over X decomposes into a sum of line bundles, that is, an
indecomposable vector bundle over P1 is necessarily of rank one. The fol-
lowing Theorem 3.1 shows that an analogous result holds for orbifold lines
with at most two orbifold points. This result was established by Martens and
Thaddeus in [MT12], where a number of other cases are also considered. To
keep the discussion simple and accessible to nonexperts, we provide a simple
proof which is different from that given in [MT12].

Theorem 3.1 (Martens-Thaddeus, [MT12]). Suppose that X is an orbifold
line with at most two orbifold points. Then any vector bundle V of rank r
on X decomposes as a direct sum of line bundles

V ∼=
r⊕

i=1

O(ai),

where deg ar ≥ · · · ≥ deg a1.

Proof. The proof proceeds by induction and is similar to that for P1. Sup-
pose the theorem is true for all vector bundles of rank r− 1. Let L1 ⊆ V be
the first step in a maximal filtration for V, and write L1 = O(−xmin), for
some xmin ∈ Pic(X). Twisting by O(xmin) we obtain an exact sequence

0 → OX → V(xmin) → F → 0,
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for some vector bundle F of rank r − 1. By induction, we may write

F ∼=
r−1⊕
i=1

O(bi), bi ∈ Pic(X).

We now want to show that

Ext1(F ,O) = H1(X,Hom(F ,O)) = H1(X,

r−1⊕
i=1

O(−bi))

vanishes, so that the above sequence is split and the theorem follows. Note
that by Serre duality we have

H1(X,

r−1⊕
i=1

O(−bi)) = H0(X,

r−1⊕
i=1

O(bi + ω))

where ω ∈ Pic(X) is the dualizing element. Suppose first that there are two
orbifold points P1, P2 of orders (p0, p1). We have

Pic(X) = {x0, x1 : p0x0 = p1x1},

so that ω = −x0 − x1. Consider then the twisted sequence

0 → O(−x0)
s→ V(xmin − x0) → F(−x0) → 0,

to which there is associated a long exact sequence in sheaf cohomology

0 → H0(X,O(−x0))
s→ H0(X,V(xmin − x0)) → H0(X,F(−x0))

→ H1(X,O(−x0)) → . . . .

Now

dimH1(X,O(−x0)) = dimH0(X,O(x0 + ω)) = dimH0(X,O(−x0)) = 0,

and H0(X,V(xmin − x0)) = 0 by minimality of xmin. Therefore

H0(X,F(−x0)) = H0(X,

r−1⊕
i=1

O(bi − x0)) = 0

for all i = 1, . . . , r − 1. But

O(bi + ω) = O(b1 − x0 − x1) ⊆ O(bi − x0),
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and therefore H0(X,O(bi+ω)) = 0 as well. If X has only one orbifold point

of order p0 > 1, the Picard group is isomorphic to Zx0, ω = −c − x0 and

the same argument applies.

Remark 3.2. The decomposition in Theorem 3.1 is unique whenever

Pic0(X) = 0. In this case the degree map gives an isomorphism Pic(X) ∼= Z

and the usual argument showing uniqueness of the decomposition for P1

applies. Note that by Proposition 2.2 Pic0(X) = 0 precisely when X has

at most one orbifold point, or two orbifold points of orders p0, p1 with

gcd(p0, p1) = 1.

When X has three or more orbifold points, there exist vector bundles

of rank two or higher that are indecomposable. According to [CB10], the

enumeration of indecomposable vector bundles over an orbifold line X of

arbitrary signature can be done as follows. Suppose X is an orbiline of

signature (p0, . . . , pn) and consider the graph

(3)

01 02 · · · 0, (p0 − 1)

11 12 · · · 1, (p1 − 1)

0
...

...
...

...

n1 n2 · · · n, (pn − 1)

which is entirely determined by the signature of X. Let Σ be the Z-module

freely generated by the vertices of this graph, so that an element in Σ can be

written as a linear combination a0 0 +
∑n

i=0

∑pi−1
j=1 aij ij. Let V be a vector

bundle over X. Then at each orbifold point Pi the vector space Vi
..= V|Pi

has a filtration

Vi ⊇ Vi1 ⊇ · · · ⊇ Vi,pi−1

given by the eigenspace filtration of the isotropy representation μ(V, Pi)(1).

The dimension vector of V is the vector

dim(V) ..= rk(V) 0 +
n∑

i=0

pi−1∑
j=1

dim(Vij) ij ∈ Σ.
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Let g be the Kac-Moody algebra [Kac90] uniquely determined by the root

system (3).

Theorem 3.3 (Crawley-Boevey, [CB10]). For each fixed degree, there is an

indecomposable vector bundle V over X of degree d if and only if dim(V) is
a strict root for g. There is a unique such indecomposable vector bundle if

dim(V) is a real root, and infinitely many if dim(V) is imaginary.

Remark 3.4. For the notion of a strict root, see the discussion following The-

orem 1 of [CB10]. In terms of our notation above, strict roots are elements

a0 0 +
∑n

i=0

∑pi−1
j=1 aij ij ∈ Σ satisfying

a0 ≥ ai1 ≥ ai2 ≥ · · · ≥ ai,pi−1 ≥ 0

for all i.

When the diagram (3) is a Dynkin diagram for a finite simple Lie alge-

bra, the classification of indecomposable vector bundles was already given

in [GL87], 5.4.1. In this case there are finitely many strict positive roots and

thus bounds can be obtained on the rank of indecomposable vector bundles,

by looking at the 0-component of a maximal root. The only signatures for

which g is a simple Lie algebra are (p0), (p0, p1), (2, 2, n), (2, 3, 3), (2, 3, 4)

and (2, 3, 5), corresponding to the Lie algebras Ap0
, Ap0+p1−1, Dn+2, E6, E7

and E8, respectively. We have already seen (Theorem 3.1) directly that for

signatures (p0) and (p0, p1) the maximal rank of an indecomposable vector

bundle is one. We treat the case (2, 2, n) in detail below, where the bound

on the maximal rank is 2. For E6, E7 and E8 the maximal ranks for inde-

composable vector bundles are 3, 4 and 6, respectively, by [Len86].

Remark 3.5. Define the virtual genus of an orbifold curve to be

gv(X) ..=
1

2
deg(ω) + 1,

in analogy with the usual relation between the genus and the degree of

the canonical bundle for Riemann surfaces. The orbifold curves X with

0 < gv(X) < 1 are precisely those whose root system (3) is a Dynkin dia-

gram, i.e. for which the rank of an indecomposable vector bundle is bounded.

These orbifold curves seem to fit in between the two cases of Riemann sur-

faces of genus zero (i.e. P1), where the maximal rank of indecomposable

vector bundles is one, and of genus one (i.e. elliptic curves), where there are

indecomposable vector bundles of arbitrary rank [Ati57].
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3.1. The case of signature (2, 2, n)

If X has signature (2, 2, n) the Lie algebra g of Theorem 3.3 is the simple
Lie algebra Dn+2 and the highest 0-component of a strict root is 2. Thus
for X of signature (2, 2, n) there are indecomposable vector bundles of rank
two, but of no higher rank. Moreover for a fixed degree d there is a unique
such rank two indecomposable vector bundle, by Theorem 3.3. We are able
to describe this vector bundle explicitly:

Theorem 3.6. Let X be the orbifold line of signature (2, 2, n). There is a
unique (up to isomorphism) indecomposable vector bundle of rank two and
degree − 1

n over X. This vector bundle is the unique non-trivial extension

0 → Ω1
X → W → OX → 0.

Proof. The extensions of the form

(4) 0 → Ω1
X → W → OX → 0

are classified by the cohomology group

Ext1(OX ,Ω1
X) ∼= H1(X,Hom(OX ,Ω1

X)) ∼= H1(X,Ω1
X).

Explicitly, recall that the element in H1(X,Hom(OX ,Ω1
X)) classifying W

is given by the connecting homomorphism δ in the long exact sequence
of cohomology corresponding to the short exact sequence obtained by ap-
plying the functor Hom(OX ,−) to the exact sequence defining W . Since
Hom(OX ,V) ∼= V for any vector bundle V, the connecting homomorphism
δ lies in the space

δ ∈ Hom(H0(X,OX), H1(X,Ω1
X)).

This vector space is 1-dimensional, thus there is a unique (up to isomor-
phism) extension W giving δ �= 0 (i.e δ is an isomorphism). We claim that
such W is indecomposable. Indeed, tensoring by W∗ we get an exact se-
quence

0 → W∗ ⊗ Ω1
X → W∗ ⊗W → W∗ → 0,

and thus a long exact sequence in cohomology

0 → H0(X,W∗ ⊗ Ω1
X) → H0(X,W∗ ⊗W) → H0(X,W∗) → . . . ,
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Now dimH0(X,W∗ ⊗ Ω1
X) = dimH1(X,W) = 0 since the long exact se-

quence coming from (4) gives

. . . → H0(X,OX)
δ→ H1(X,Ω1

X) → H1(X,W) → H1(X,OX) = 0 → 0

and δ is an isomorphism by hypothesis. So we have an injection

H0(X,W∗ ⊗W) = H0(X,End(W)) ↪→ H0(X,W∗).

On the other hand, dualizing (4) and taking cohomology we get a long exact
sequence

0 → H0(X,OX) → H0(X,W∗) → H0(X,TX) → . . .

where TX = (Ω1
X)∗ is the tangent bundle of X. Now

deg TX = −1 + 1/2 + 1/2 + 1/n = 1/n > 0

thus H1(X,TX) = 0 and

χ(TX) = H0(X,TX) = 1/n+ 1− 1/2− 1/2− 1/n = 0.

Therefore dimH0(X,W∗) = dimH0(X,OX) = 1. This means that

dimH0(X,End(W)) ≤ 1.

If W = O(a1)⊕O(a2) were decomposable, then

End(W) ∼= OX ⊕OX ⊕O(a2 − a1)⊕O(a1 − a2)

and dimH0(X,End(W)) ≥ H0(X,OX ⊕OX) = 2, a contradiction. Thus W
is indecomposable.

Remark 3.7. It is easy to show that all the other indecomposable vector
bundles on X can be obtained from W by twisting by a line bundle.

4. Coherent sheaves over orbifold lines

Let X be an orbifold line of signature (p0, . . . , pn), and for ease of notation
let W = Pic(X), a finitely generated abelian group of rank one (Prop. 2.2).
Let C[W ] be the group algebra of W with coefficients in C, and let

G(W ) ..= Spec(C[W ])
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be the affine group scheme corresponding to it. The closed points of this

group scheme can be identified with tuples (t0, . . . , tn) ∈ (C×)n+1 such that

tp0

0 = · · · = tpn
n . There is an action of G(W ) on An+1 given on closed points

by

(t0, . . . , tn)(X0, . . . , Xn) = (t0X0, . . . , tnXn).

Definition 4.1. The quotient stack P(W ) =
[
G(W )\

(
An+1 − {0}

)]
is

called W -weighted projective space.

For each i = 0, . . . , n consider the line bundle O(xi) = OX(Pi), where

xi ∈ W are the chosen generators of W as in Proposition 2.2. By the

Riemann-Roch theorem,

χ(O(xi)) = dimH0(X,O(xi))−dimH1(X,O(xi)) = degO(xi)+1− 1

pi
= 1,

and thus we may choose a non-zero global section si of O(xi) which vanishes

only at the orbifold point Pi and nowhere else.

Theorem 4.2. The tuple (s0, . . . , sn) gives a well-defined morphism

s : X −→ P(W )

of X into W -weighted projective space.

Proof. First note that the si’s have no common zero since each si vanishes

precisely at the orbifold point Pi and nowhere else. Therefore the collection

Xi = {x ∈ X : si(x) �= 0} is an open cover of X. Over each Xi, we may

define a map

x �→ [s0/si(x), . . . , 1, . . . , sn/si(x)]

to the standard open set Ui = {Xi �= 0} of P(W ). This map is equivariant

with respect to the action of the stabilizers of the orbifold points, hence it

is well-defined. By descent, the local maps defined over each Xi glue to give

a global map s : X → P(W ).

Next we show that s is a closed immersion and we derive the equa-

tions defining X as a subvariety in P(W ). Note that for each i = 0, . . . , n

the function spi

i is a section of O(c). Riemann-Roch gives χ(O(c)) = 2, but

dimH1(X,O(c)) = 0 since the cohomology of O(c) is the same as that of the

usual twisting bundle O(1) over the underlying Riemann surface P1. There-

fore the vector space of global sections of O(c) is 2-dimensional, spanned,
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say, by sp0

0 , sp1

1 (these cannot be proportional since they have different zeroes
P0 �= P1). It follows that for i = 2, . . . , n we must have relations of the form

spi

i = λis
p0

0 − μis
p1

1 , i = 2, . . . , n,

for some λi, μi ∈ C. By rescaling the si’s if necessary, we may assume that
μi = 1 for all i = 2, . . . , n. Let now C[X0, . . . , Xn] be the coordinate ring of
An+1. The polynomials

(5) Xpi

i +Xp1

1 − λiX
p0

0 , i = 2, . . . , n,

cut out an affine subscheme V of An+1 together with a G(W )-action com-
patible with that on An+1. We let

C(W ) ..= [G(W )\ (V − {0})] ⊆ P(W )

be the corresponding closed quotient sub-stack.

Theorem 4.3. The morphism s is a closed immersion inducing an isomor-
phism

s : X
∼=−→ C(W ) ⊆ P(W )

Proof. The complex manifold underlying P(W ) is the usual projective space
Pn, the map P(W ) → Pn being given in coordinates by

[X0, . . . , Xn] �−→ [Xp0

0 , . . . , Xpn

n ].

If we restrict this morphism to C(W ) we obtain the equations of a projective
line in Pn. The map C(W ) → C(W ) ∼= P1 to the underlying Riemann
surface of C(W ) is given in coordinates by

[z0, . . . , zn] �−→ [zp0

0 , zp1

1 ].

The map of underlying Riemann surfaces induced by s is thus given by

x �−→ [sp0

0 (x), sp1

1 (x)].

Since sp0

0 , sp1

1 generate the line bundle O(1) over P1, this map is clearly an
isomorphism. Moreover s is non-trivial at the orbifold points and it preserves
the orbifold structure therefore it must be an isomorphism at the level of
orbifolds as well.
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Remark 4.4. Once a choice of embedding s : X ↪→ P(W ) as above is made,
X can be viewed as a weighted projective line [GL87]. The (weighted) pro-
jective coordinates of the orbifold points of order p0, p1 and pi, i = 2, . . . , n,
of X are precisely ∞, 0 and λi, i = 2, . . . , n, respectively.

Consider now the polynomial ring C[X0, . . . , Xn] together with a W -
grading given by degC = 0 and degXi = xi. Let I(X) be the ideal of
C[X0, . . . , Xn] generated by the polynomials in (5). The quotient

S(X) ..= C[X0, . . . , Xn]/I(X) ∼= C[z0, . . . , zn]

is again a W -graded ring generated by n + 1 elements zi with deg zi = xi.
Let grMod(S(X)) be the category of finitely generated graded modules
over S(X) (the morphisms being degree-preserving S(X)-module homomor-
phisms) and let grMod0(S(X)) be the full subcategory of modules that are
finite dimensional vector spaces over C.

Proposition 4.5. The category coh(X) of coherent sheaves on X is equiv-
alent to the quotient category grMod(S(X))/grMod0(S(X)).

Proof. By Theorem 4.3 X is isomorphic to the quotient stack C(W ) =
[G(W )\ (V − {0})], where V is defined by (5). Thus the category of co-
herent sheaves on X is equivalent to that of G(W )-equivariant coherent
sheaves on V −{0}. Now the category of coherent sheaves on V −{0} is the
quotient category of the category of coherent sheaves on V modulo the co-
herent sheaves with support at 0, and the same is true for G(W )-equivariant
sheaves. In turn, the category of G(W )-equivariant sheaves on V is equiva-
lent to grMod(S(X)) via the sheafification functor

grMod(S(X)) −→ coh([G(W )\V ]), M �→ M̃,

and the subcategory of those coherent sheaves with support on 0 is equiv-
alent to grMod0(S(X)), since the closed point 0 corresponds to the ideal
(z0, . . . , zn) ⊆ S(X).

The sheafification functor grMod(S(X)) −→ coh(X),M �→ M̃ , admits
a right adjoint GM∗ : coh(X) → grMod(S(X)) defined by

GM∗(F) ..=
⊕
x∈W

H0(X,F(x)).

Remark 4.6. Traditionally (e.g. [Ser55], [GL87]) the functor GM∗ is denoted
by Γ. However, in what follows we would like to reserve the symbol Γ to
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indicate a Fuchsian group. The letters GM are chosen to indicate that the
S(X)-module obtained by applying the functor is of geometric origin.

We say that an S(X)-module M is maximal Cohen-Macaulay if M is
(finitely generated) free over the sub-algebra C[Xp0

0 , Xp1

1 ] ↪→ S(X).

Theorem 4.7 (Geigle-Lenzing, [GL87], Thm. 5.1). Suppose V is a vector
bundle on X. Then GM∗(V) is a maximal Cohen-Macaulay S(X)-module.

When F = O(x) is a line bundle on X, the S(X)-module GM∗(O(x)) is
S(X)[−x], the module obtained from S(X) by shifting the W -grading by x.
We say that a (finitely generated) S(X)-module is free if it is a direct sum
of shifts of the form S(X)[−x]. In particular, Theorem 3.1 gives:

Corollary 4.8. Suppose X has at most two orbifold points and let V be a
vector bundle of rank r over X. Then the S(X)-module GM∗(V) is free of
rank r.

Remark 4.9. Alternatively, observe that if X has at most two orbifold points
then S(X) is a polynomial ring in two variables, and any maximal Cohen-
Macaulay S(X)-module over a polynomial ring is free.

Conversely:

Proposition 4.10. Suppose V is an indecomposable vector bundle over the
orbifold line X. Then GM∗(V) is not free.

Proof. Suppose GM∗(V) ∼= ⊕r
i=1S[−ai] for some ai ∈ W = Pic(X). The

sheafification functor gives ˜GM∗(V) ∼= ⊕r
i=1O(ai). But GM∗ is right-adjoint

to F , so there is a canonical isomorphism ˜GM∗(V) ∼= V, contradicting the
fact that V is indecomposable.

Remark 4.11. Line bundles are considered to be decomposable, so that the
bundles addressed in Proposition 4.10 are necessarily of rank at least two.

For example, let X be the orbifold line of signature (2, 2, 2) and let V
be the rank two indecomposable vector bundle W of Theorem 3.6. Then
GM∗(W) is not free over S(X).

5. Vector valued modular forms

Let Γ ⊆ PSL2(R) denote a Fuchsian group of the first kind, and assume
that Γ is of finite covolume. Let τ0, . . . , τn denote the elliptic points of Γ,
each of order p0, . . . , pn, respectively. Let s1, . . . , sm denote the cusps of Γ.
The group Γ acts on h by linear fractional transformations and the orbifold
quotient [Γ\h] is a one-dimensional complex orbifold which is a Riemann
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surface away from the elliptic points and it has a Z/piZ-orbifold structure
around each elliptic point τi.

Let MΓ denote the compact modular orbifold associated to Γ, the orb-
ifold curve obtained by compactifiying the quotient [Γ\h] by adding the
cusps of Γ (if any). This is obtained from [Γ\h] by glueing disks around each
cusp of Γ, as follows. For s a cusp, let α ∈ PSL2(R) be such that α(s) = ∞.
The stabilizer Γs of the cusp s satisfies

αΓsα
−1 =

{(
1 h
0 1

)m

: m ∈ Z

}
∼= Z,

for some real number h > 0, called the width of s. There is a canonical injec-
tion ιs : [Γs\h] ↪→ [Γ\h] and [Γs\h] maps holomorphically to the punctured
unit disk D× via the map

τ �−→ e2πiα(τ)/h.

The punctured disk admits a canonical compactification ι : D× ↪→ D by
the unit disk, so the compactification along s is obtained via the following
diagram

(6) [〈Γs〉\h]
ιs

τ �→e2πiα(τ)/h

D×

ι

[Γ\h] = MΓ D,

which identifies the cusp s with the origin 0 ∈ D.
The group Γ is identified with the orbifold fundamental group of [Γ\ h].

The following result is well-known.

Proposition 5.1. Assume that the compact curve MΓ is of genus zero.
Then the Fuchsian group Γ admits a presentation of the form

Γ = 〈e0, . . . , en, σ1 . . . , σm | epj

j = 1 for all j, e0 · · · enσ1 · · ·σm = 1〉.

The ej may be taken to be generators of the elliptic isotropy subgroups, and
the σj may be taken to be generators of the cuspidal isotropy subgroups. In
particular, if Γ has a unique cusp, then Γ is the free product of its elliptic
isotropy subgroups.

Proof. This is a classical result that goes back to Klein and Poincaré, but
it is hard to find a good reference. See the book [Sti92] for a discussion
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that treats the general case of higher genus orbifolds, or the more classical
[Hei64].

Let MΓ be the Riemann surface underlying MΓ, a compact, connected
Riemann surface equipped with a map MΓ → MΓ which is universal among
all maps from the orbifold MΓ to a Riemann surface. Assume that the genus
of Γ is zero, so that MΓ is an orbifold line and there is an isomorphism of
Riemann surfaces (i.e. a hauptmodul)

j : MΓ
∼=−→ P1.

By general descent theory, a vector bundle on MΓ can be specified by
giving a vector bundle V◦ on the open quotient stack [Γ\h], together with
the data of a pair (Ws, φs), for each cusp s, of a vector bundle Ws over D
and an isomorphism of vector bundles

ι∗sV◦ ∼= ι∗Ws

lying over the isomorphism τ �→ e2πiα(τ)/h (notation as in (6)). In particular
a complex, finite dimensional representation

ρ : Γ �−→ GL(V ),

gives by definition a local system V◦(ρ) on [Γ\h]. This local system may be
extended to a vector bundle over all of MΓ as follows: for each cusp s, let
Ts

..=
(
1 h
0 1

)
and let γs ..= α−1Tsα. Choose Ls ∈ End(V ) such that

e2πiLs = ρ(γs).

The extension of V◦(ρ) to MΓ at each cusp s is then given by the trivial

vector bundle O⊕ dim ρ
D over D together with the isomorphism

φs(v, τ) = (e−2πiα(τ)Ls/h v, e2πiα(τ)/h)

of ι∗sV◦(ρ) with ι∗O⊕ dim ρ
D .

Definition 5.2. Let L = {Ls}s∈cusps(Γ) be the vector of matrices chosen
as above. The extension of the vector bundle V◦(ρ) to MΓ given above is
called the extension corresponding to the choice of exponents L and it is
denoted by VL(ρ). If all eigenvalues of each Ls have real part contained in
[0, 1), we say that L is the standard choice of exponents and that VL(ρ) is
the canonical extension of V◦(ρ), denoted by V(ρ).
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Remark 5.3. It is natural and useful to allow choices of exponents other
than the canonical ones. For example, if all eigenvalues of each Ls have real
part contained in (0, 1], then L is the cuspidal choice of exponents and VL(ρ)
is the cuspidal extension of V◦(ρ), denoted by S(ρ). Classically this agrees
with the space of cusp forms for ρ.

There is a special line bundle L2 over MΓ of modular forms of weight
two, which is the extension of the line bundle given on the open quotient
[Γ\h] by the 1-cocycle (

a b
c d

)
�−→ (cτ + d)2,

and characterized by the isomorphism L2
∼= Ω1

MΓ
(log

∑
si), so that

degL2 = degω +#cusps(Γ) = (n− 1)−
n∑

i=0

1

pi
+#cusps(Γ).

For any k ∈ 2Z, the global sections of Lk
..= L⊗k/2

2 are precisely the
classical holomorphic modular forms of weight k on the group Γ, whose
space is denoted by Mk(Γ). Let

R(Γ) ..=
⊕
k∈2Z

Mk(Γ)

be the ring of modular forms over Γ. If V(ρ) is the canonical extension of a
local system given by ρ, let

Vk(ρ) ..= V0(ρ)⊗ Lk.

Definition 5.4. A holomorphic, ρ-valued modular form of weight k on Γ is a
global section of Vk(ρ) over MΓ. The space of all such sections is denoted by
Mk(ρ). The module of ρ-valued modular forms is the Z-graded R(Γ)-module

M(ρ) ..=
⊕
k∈2Z

Mk(ρ).

The rings R(Γ) are classical and well-studied objects (see [VZB] and the
references therein). The structure of the R(Γ)-modules M(ρ) are however
unknown except in level one, where it is known that M(ρ) is always free of
rank dim ρ [MM10]. The goal of the following sections is to demonstrate that
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the modules M(ρ) are in fact poorly behaved, and that a more well-behaved
object GM(ρ) is given by a geometrically weighted version of M(ρ). In order
to define it, let

S(Γ) ..= S(MΓ)

denote the ring obtained by viewing MΓ as an orbifold line canonically
embedded into weighted projective space as in Section 4. This is a W (Γ)-
graded ring, where W (Γ) ..= Pic(MΓ) is a finitely generated abelian group
of rank one (Proposition 2.2). It is the ring generated by the spaces of global
sections of all of the line bundles on MΓ, not just the bundles Lk.

Definition 5.5. The module of geometrically weighted ρ-valued modular
forms is the W (Γ)-graded S(Γ)-module

GM(ρ) ..= GM∗(V(ρ)).

The modules GM(ρ) of geometrically weighted modular forms seem to
be easier to study than the modules M(ρ), since their structure mirrors
that of vector bundles over MΓ. For example, the following general result is
a special case of Corollary 4.8:

Theorem 5.6. Suppose that Γ has at most two elliptic points, and let ρ :
Γ �−→ GL(V ) be any complex finite dimensional representation. Then GM(ρ)
is free of rank dim ρ over S(Γ).

One would like to have a purely automorphic description of the ring
S(Γ) and the modules GM(ρ). Since the upper half plane is a Stein mani-
fold, all vector bundles on curves uniformized by Fuchsian groups pull back
to bundles on h described by automorphy factors. Thus, an automorphic
description of these objects exists, and the automorphy factors can be ex-
pressed as products of characters of Γ and fractional powers of the (cτ + d)-
cocycle. However it seems to be a slightly delicate problem to obtain an
explicit description in generality. In certain cases one has access to a con-
venient description. To state it, we first give an automorphic description of
Pic0(MΓ).

Definition 5.7. A cuspidal character of a Fuchsian group Γ is a rank one
representation χ : Γ → C× such that χ(σj) = 1 for each cuspidal isotropy
generator σj in Proposition 5.1.

Since the fundamental group of MΓ is the quotient of the fundamental
group of [Γ\ h] obtained by throwing away the cuspidal generators, and
since Pic0(MΓ) = Hom(π1(MΓ),C

×), we find that the group of cuspidal
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characters of the Fuchsian group Γ is naturally identified with Pic0(MΓ).
Thus from the exact sequence

0 → Pic0(MΓ) → Pic(MΓ) →
1

m
Z → 0,

we see that to give an automorphic description of S(Γ), it suffices to give
an automorphic description of a line bundle of degree 1/m, where m =
lcm(p0, . . . , pn). The most convenient cases are when L2 is of degree

1
m . This

holds in the cases of signature (2, 3), (3, 3) and (2, 2, 2) discussed below, but
not in the last case of signature (2, 2, 3) that we consider.

When L2 is of degree 1
m , one finds that

S(Γ) ∼=
⊕
(χ,k)

Mk(Γ, χ), GM(ρ) ∼=
⊕
(χ,k)

Mk(Γ, ρ⊗ χ),

where the direct sums are over all of the cuspidal characters χ and integer
weights k. Crucial to this description is the fact that if L denotes a choice of
exponents for a representation ρ, then one can use the exact same exponents
for ρ⊗χ for any cuspidal character χ. Hence one has Vk,L(ρ⊗χ) = V0,L(ρ)⊗
Vk(χ), where Vk(χ) denotes the canonical extension of the cuspidal character
χ. For characters that are not cuspidal, one need not have compatibility of
extensions like this (instead one must adjust the exponents on the left side
of the identity). Note also that since this holds for an arbitrary choice of
exponents for ρ, one can define GML(ρ) using these exponents, and one
obtains an analogous description in terms of the Mk,L(Γ, ρ ⊗ χ). However,
it is not usually the case that L2 is of degree 1

m , and so in most cases the
ring

⊕
(χ,k)Mk(Γ, χ) generated by the cuspidal characters is strictly smaller

than S(Γ). Our final example below illustrates this phenomenon.

6. Examples and counterexamples

This section presents several examples that illustrate the theory above.

6.1. Level one

Let Γ(1) = PSL2(Z). This group has two elliptic points τ0 = i and τ1 =
e2πi/3 of order 2 and 3, respectively. The abelian group W = Pic(MΓ(1)) is
generated by two elements x0 and x1 such that 2x0 = 3x1, and P(W ) is
the weighted projective line P(2, 3) (as in [CF16]). There is a unique order-
preserving isomorphism W ∼= Z such that x0 and x1 correspond to the
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elements 3 and 2, respectively. The canonical generator for W is the class of

the line bundle of weight 2 modular forms L2, of degree
1
6 . The line bundle

O(x0), of degree
1
2 , must then be isomorphic to L6 and by Riemann-Roch

it has a unique (up to rescaling) global section E6 with a simple zero at the

elliptic point of order 2. Similarly, the line bundle O(x1) is isomorphic to L4

and it has a unique (up to rescaling) global section E4 with a simple zero at

the elliptic point of order 3. The isomorphism

s : MΓ(1)

∼=→ C(W )

in this case is given in coordinates by τ �→ [E6(τ), E4(τ)]. The map induced

by s at the level of underlying Riemann surfaces MΓ(1) → P1 is given in

coordinates by

τ �→ [E2
6(τ), E

3
4(τ)],

which sends τ0 = i to λ0 = ∞ = [0, 1] and τ1 = e2πi/3 to λ1 = 0 = [1, 0].

Up to a linear change of coordinates in P1, this map corresponds with the

usual j-function. Note that since W ∼= Z, generated by L2, we have

S(Γ(1)) = R(Γ(1)) = C[E4, E6]

and similarly M(ρ) = GM(ρ), for any representation ρ : Γ(1) → GL(V ).

Thus, for Γ(1), geometrically weighted modules of modular forms correspond

to the usual Z-graded modules of modular forms. In particular, Theorem

5.6 specializes in level one to the well-known free module theorem for vector

valued modular forms on Γ(1) ([EZ85], [MM10], [Gan14], [CF16]).

6.2. The subgroup of index two

Let Γ2 denote the subgroup of PSL2(Z) of index two. This group is discussed

in Section 1.3 of [Ran77]. If χ denotes the generating character of PSL2(Z)

satisfying χ(T ) = e
2πi

6 , then Γ2 = kerχ3, so that T is not an element of

Γ2. Similarly S is not an element of Γ2, while R is an element of Γ2. Thus,

τ0 = ζ = e2πi/3 and τ1 = ζ + 1 are two elliptic points for Γ2 with stabilizers

R0 = R and R1 = TRT−1, respectively, and there are no other elliptic

points. Since Γ2 has a unique cusp, it follows by Proposition 5.1 that Γ2

is freely generated by R0 and R1. Since R0 and R1 are of order three, it

follows that χ3 restricts to the trivial character of Γ2, but that χ and χ2 are

nontrivial. Observe that R1R0 = T 2 in PSL2(R).
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Define characters α0, α1 ∈ Hom(Γ2,C×) by setting αi(Ri) = ζ and
αi(Rj) = 1 if i �= j. Since χ(R0) = χ(R1) = ζ2, we have χ = α2

0α
2
1. The sub-

group of cuspidal characters is {1, α0α
2
1, α

2
0α1). If φ ∈ Hom(Γ2,C×), then

let φT denote the conjugate character defined by

φT (g) = φ(T−1gT ).

If ρ = Indφ, where by Ind we mean the induction up to PSL2(Z), then
observe that there exists a basis for ρ such that

ρ(T ) =

(
0 φ(T 2)
1 0

)
, ρ(S) =

(
0 φ(R)

φ(T−1RT−1) 0

)
,

ρ(R) =

(
φ(R) 0
0 φT (R)

)
.

In particular, (det Indφ)(T ) = −φ(T 2). Mackey’s criterion for irreducibility
implies that Indφ is irreducible if and only if φ �= φT . The characters fixed
by conjugation are precisely the characters χr = αr

0α
r
1, and for each of these

one has Indχr ∼= χr ⊕ χr+3.
To determine the pairs (φ, φT ) for the remaining characters, observe that

since R0 = ST and R1 = TS, one has αT
0 = α1. Thus, the characters αu

0α
u
1

have reducible inductions, while the characters in each pair (αu
0α

v
1, α

v
0α

u
1)

for u �= v yield irreducible and isomorphic inductions. The following table
lists the exponents for the induced representations and the minimal weight,
obtained via the isomorphism M(φ) ∼= M(Indφ) and results about vector
valued modular forms of rank two for SL2(Z) (cf. [FM14a] or [FM14b]).

(φ, φT ) (α0α
2
1, α

2
0α1) (α0, α1) (α2

0, α
2
1)

φ(T 2) 1 ζ ζ2

Exponents for Indφ 0, 1
2

1
6 ,

2
3

1
3 ,

5
6

Minimal weight 2 4 6

Moving to the right along this table corresponds to tensoring with χ. In
general, multiplication by η4 defines an inclusion M(ρ) ↪→ M(ρ⊗ χ). For ρ
equal to a character φ as in the table, one sees that this map is in fact an
isomorphism, since the minimal weights increase by two with each twist.

For ease of notation set β = α0α
2
1. In the summer of 2016, Geoff Mason

showed that not all modules M(ρ) of vector valued modular forms for Γ2

are free over the ring R of scalar valued modular forms for Γ2. Since R is
not a polynomial ring, it is natural to ask whether the modules M(ρ) are
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at least projective over R, in analogy with the free module theorem in level

one. We will show that M(β) is not a projective module over the ring

R =
C[E4, E6, η

12]

(E3
4 − E2

6 − 123η24)

of scalar valued modular forms for Γ2. Here Ek denotes the Eisenstein series

of weight k for Γ(1), normalized so that its constant term is 1, and η denotes

the Dedekind eta function.

It is easy to see that M(β) is not a free R-module. This is because

Ind(β) is irreducible, and sinceM(β) ∼= M(Indβ), it follows that the Hilbert-

Poincaré series
∑

k∈Z dimMk(β)T
k for the graded module M(β) is equal to

T 2+T 4

(1−T 4)(1−T 6) (cf. [FM14a] or [FM14b]). However, a free graded R-module has

a Hilbert-Poincaré series that is a sum of series of the form T l+T l+6

(1−T 4)(1−T 6) for

various weights l. It follows that M(β) is not a free R-module.

The exponents of ρ = Indβ are 0 and 1/2. This corresponds to Example

21 in [FM14b]. There exists a basis for M(β) in terms of the theta series1

θ2(q) = 2

∞∑
n=0

q
(2n+1)2

8 , θ3(q) = 1 + 2
∑
n≥1

qn
2/2,

θ4(q) = 1 + 2
∑
n≥1

(−1)nqn
2/2.

Using the transformation laws of theta series, and the classical fact that

θ43 = θ42 + θ44, one sees that

F = (1 + e2πi
1

6 )θ42 − e2πi
5

6 (θ43 + θ44)

is the unique, up to rescaling, form F ∈ M2(β). Further, the structure

theory of vector valued modular forms of rank two (cf. [Mas08], [FM14a]

or [FM14b]) implies that F and DF generate M(β) freely as an R(1) =

C[E4, E6] module. By examining q-expansions, one finds that

η12F = u (E6F + 6E4DF ) , η12DF = −1

6
u
(
E2

4F + 6E6DF
)
,

where u = 1
72(2e

2πi 1
6 − 1) is a square root of −12−3.

1Here q = e2πiτ rather than q = eπiτ .
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Proposition 6.1. The module M(β) of vector valued modular forms for β
is not projective over the ring R = C[E4, E6, η

12] of scalar valued modular
forms for Γ2.

Proof. Consider the exact sequence

(7) 0 → ker p → R⊕R
p→ M(β) → 0

of R-modules defined by p(x, y) = xF + yDF . We will show that (7) is not
split, and hence M(β) is not a projective R-module.

Let (a + bη12, c + dη12) ∈ ker p where a, b, c and d are classical scalar
forms of level one. By hypothesis

0 = aF + bη12F + cDF + dη12DF

= aF + bu(E6F + 6E4DF ) + cDF − 1

6
du

(
E2

4F + 6E6DF
)

=

(
a+ buE6 −

1

6
duE2

4

)
F + (c+ 6buE4 − duE6)DF

Thus, after relabeling variables,

ker p =
{(

u(bE2
4 − aE6) + aη12, 6u(bE6 − aE4) + 6bη12

)
| a, b ∈ R(1)

}
.

An R(1)-basis for ker p is given by

e1 = (−uE6 + η12,−6uE4), e2 = (uE2
4 , 6uE6 + 6η12).

Observe that since −123u2 = 1, then Δ = u2(E2
6 − E3

4). It follows that the
matrix of multiplication by η12 acting on ker p in this R(1)-basis is

u ·
(
−E6 E2

4

−E4 E6

)
.

The preimages of F and DF under p must be of the form

b1 = (1, 0) + ae1 + be2, b2 = (0, 1) + ce1 + de2,

for unique scalar forms a, b, c, d ∈ R(1). In order for the exact sequence (7) to
split, it must be possible to find choices of b1 and b2 such that R(1)b1⊕R(1)b2
is stable under multiplication by η12. To see that no such choice exists,
observe that
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η12b1 = (η12, 0) + u(bE2
4 − aE6)e1 + u(bE6 − aE4)e2,

η12b2 = (0, η12) + u(dE2
4 − cE6)e1 + u(dE6 − cE4)e2.

Solving xb1 + yb2 = η12b1 for x, y ∈ R(1) amounts to solving

η12b1 = (x, y) + (xa+ yc)e1 + (xb+ yd)e2

= (x, y)− u(xa+ yc)(E6, 6E4) + u(xb+ yd)(E2
4 , 6E6)

+ (xa+ yc)(η12, 0) + (xb+ yd)(0, 6η12)

On the other hand,

η12b1 = (1 + u(bE2
4 − aE6))(η

12, 0) + u(bE2
4 − aE6)(−uE6,−6uE4) +

u(bE6 − aE4)(0, 6η
12) + u(bE6 − aE4)(uE

2
4 , 6uE6)

These considerations lead to the equations

xa+ yc = 1 + u(bE2
4 − aE6),

xb+ yd = u(bE6 − aE4),

x− u(xa+ yc)E6 + u(xb+ yd)E2
4

= −u2(bE2
4 − aE6)E6 + u2(bE6 − aE4)E

2
4 ,

y − 6u(xa+ yc)E4 + 6u(xb+ yd)E6

= −6u2(bE2
4 − aE6)E4 + 6u2(bE6 − aE4)E6.

Substituting the first two equations above into the last two yields x = uE6

and y = 6uE4. But then the first equation is not satisfied. This shows that
the exact sequence (7) is not split as an R-module, and hence M(β) is not
a projective R-module.

In this case since 1, β and β2 are the cuspidal characters, and since L2

is of degree 1/3 (so that β and L2 generate the Picard group of line bundles
on the weighted projective line associated to Γ2), one has

S(Γ2) = M(Γ2, 1)⊕M(Γ2, β)⊕M(Γ2, β2).

The minimal weights for β and β2 are both 2, and dimM2(Γ
2, β) =

dimM2(Γ
2, β2) = 1. If F and G denote generators for these spaces, then

S(Γ2) = C[F,G]. If ρ is any representation of Γ2, and if L denotes any
choice of exponents for ρ(T 2), then Corollary 4.8 states that GML(ρ) =
ML(ρ) ⊕ ML(ρ ⊗ β) ⊕ ML(ρ ⊗ β2) is a free module over C[F,G] of rank



Fuchsian groups of genus zero 517

dim ρ. This is the appropriate generalization of the free module theorem of
[MM10] to the subgroup of PSL2(Z) of index 2.

Remark 6.2. The free module theorem for Γ2 has been obtained indepen-
dently by Gannon using a different argument (unpublished note). Gannon
has also proved similar results for other subgroups, but it is not clear to the
authors whether Gannon’s method generalizes as easily as the geometric
arguments presented here.

6.3. The normal subgroup of index three

Let Γ3 denote the unique normal subgroup of PSL2(Z) of index 3, which
is discussed in Section 1.2 of [Ran77]. Since Γ3 = kerχ2, it follows that
T 3 ∈ Γ3, S ∈ Γ3 and R �∈ Γ3. The elliptic points are τ0 = i, τ1 = i + 1 and
τ2 = i + 2. The matrices S0 = S, S1 = TST−1, S2 = T 2ST−2 generate the
isotropy subgroups, and thus by Proposition 5.1, they generate Γ3 freely.

Define characters of Γ3 by setting αi(Si) = −1 and αi(Sj) = 1 for j �= i.
Then α0, α1 and α2 generate the character group freely. Let χ denote the
restriction of the character of η4 for PSL2(Z) to Γ3. Then χ(Si) = −1 for all
i, so that χ = α0α1α2. One easily checks that conjugation by T permutes
the generating characters by α0 �→ α1 �→ α2 �→ α0. The orbit decomposition
for the characters is thus

Hom(Γ3,C×) = {1} ∪ {α0α1α2} ∪ {α0, α1, α2} ∪ {α1α2, α0α2, α0α1}.

The cuspidal characters are {1, α1α2, α0α2, α0α1}.
The following table lists the exponents and minimal weights for Indφ as

φ ranges over the two nontrivial orbits above. The exponents can be com-
puted using the identity S0S1S2 = T−3, since the characteristic polynomial
of Indφ(T ) is X3 − φ(T 3).

Orbit Exponents Minimal weight

{α1α2, α0α2, α0α1} 0, 1/3, 2/3 2
{α0, α1, α2} 1/6, 1/2, 5/6 4

The modular forms for α1α2, α0α2 and α0α1 can be found inside the space
M2(Γ(3)), which is a three-dimensional space of modular forms spanned by
Eisenstein series. If Gα is the Eisenstein series of level 3 associated to the
cusp α, then equation (4) in Section VII of [Sch74] shows that Gα|g = Ggtα

for all g ∈ SL2(Z). Using this, one finds

A = G0 +G1 −G2 −G∞ ∈ M2(α0α1),
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B = G0 −G1 +G2 −G∞ ∈ M2(α0α2),

C = G0 −G1 −G2 +G∞ ∈ M2(α1α2).

These modular forms satisfy the quadratic relation

A2 + ζB2 − (ζ + 1)C2 = 0,

which is an example of the relation (5) from Section 4. In this case L2 again

has the correct degree of 1/2 and we can give the automorphic description:

S(Γ3) ∼= C[A,B,C]

(A2 + ζB2 − (ζ + 1)C2)
.

If ρ denotes a representation of Γ3 and L denotes a choice of exponents for

ρ(T 3), then

GML(ρ) ∼= ML(ρ)⊕ML(ρ⊗ α0α1)⊕ML(ρ⊗ α0α2)⊕ML(ρ⊗ α1α2).

By Theorem 4.7, the S(Γ3)-module GML(ρ) is maximal Cohen-Macaulay,

although it no longer need be free.

Since the signature of MΓ3 is (2, 2, 2), Theorem 3.6 states that there

exists an indecomposable bundle of rank two on MΓ3 . To give a modular

description of such a bundle, consider the following family of representations

ρz indexed by z ∈ P1:

ρz(S0) =

(
−1 1
0 1

)
, ρz(S1) =

(
−1 z
0 1

)
, ρz(S2) =

(
−1 0
0 1

)
,

if z �= ∞, while if z = ∞ set

ρ∞(S0) =

(
−1 0
0 1

)
, ρ∞(S1) =

(
−1 1
0 1

)
, ρ∞(S2) =

(
−1 0
0 1

)
.

These are all of the extensions of the trivial character by χ, up to isomor-

phism as abstract representations (not as extensions). Note that Ω1
MΓ3

∼=
V(χ) so if ρ = ρz is one of the above representations, then we get a corre-

sponding extension of vector bundles

0 → Ω1
MΓ3

→ V(ρ) → OMΓ3 → 0.
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As in the proof of Theorem 3.6, the vector bundle V(ρ) is indecompos-

able if and only if the connecting homomorphism δ in the long exact se-

quence

0 → H0(MΓ3 ,Ω1
MΓ3

) → H0(MΓ3 ,V(ρ)) → H0(MΓ3 ,OMΓ3 )

δ→ H1(MΓ3 ,Ω1
MΓ3

) → . . .

is nontrivial. Since H0(MΓ3 ,Ω1
MΓ3

) = 0 and dimH0(MΓ3 ,OMΓ3 ) = 1, the

nontriviality of δ is equivalent to H0(MΓ3 ,V(ρ)) = M0(Γ
3, ρ) = 0. One can

show that there exists a unique z0 such that M0(Γ
3, ρz0) �= 0, and hence

there exists a unique z0 such that the bundle associated to ρz0 decomposes

as a direct sum of two line bundles. All other z ∈ P1 yield indecomposable

and isomorphic bundles of rank two.

To compute the value z0 ∈ P1 corresponding to a split bundle explicitly,

note that a form ( ab ) ∈ M0(Γ
3, ρz) satisfies b ∈ M0(Γ

3, 1), so that b is

constant, and a′ ∈ M2(Γ
3, χ). In particular, the derivative a′ is independent

of z ∈ P1. To determine M2(Γ
3, χ), note first that it is not hard to see that

dimM2(Γ
3, χ) = 1. Hence since M2(Γ

3, χ) clearly contains η4, it is in fact

spanned by this form. It follows that a′ is a scalar multiple of η4. Hence after

rescaling ( ab ), we may assume that a is an antiderivative of η4.

Using the transformation law for functions in M0(Γ
3, ρz), one sees that

since ρz(S2) is diagonal, necessarily this antiderivative a must vanish at

τ2 = i+ 2, the fixed point of S2. This pins a down uniquely as the integral

a(τ) =

∫ τ

i+2
η4(z)dz.

Examination of the transformation law of ( ab ) at the other two elliptic points

τ0 = i and τ1 = i+ 1 shows that z0 =
a(i+1)
a(i) . Thus,

1

z0
=

∫ i
i+2 η

4dτ∫ i+1
i+2 η4dτ

= 1 +

∫ i
i+1 η

4dτ∫ i+1
i+2 η4dτ

= 1 + χ(T−1) = 1 + e−2πi/6,

so that if z �= 1
6(3 +

√
3i), then V(ρz) is indecomposable. For such z, the

module GM(ρz) is maximal Cohen-Macaulay but not free over S(Γ3), by

Proposition 4.10.
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6.4. A nonnormal subgroup of signature (2,2,3)

The previous examples were normal subgroups of PSL2(Z) with cyclic quo-
tient, which simplified some of the computations. Our final example con-
cerns a nonnormal subgroup of index 4. There is a well-known isomorphism
S4

∼= PSL2(Z/4Z). Let G be the subgroup of PSL2(Z) generated by Γ(4)
and the matrices S =

(
0 −1
1 0

)
and A = ( 1 1

1 2 ). Then G/Γ(4) is isomorphic
with S3 and the image of G in PSL2(Z/4Z) is equal to the following set of
representative matrices:(

1 0
0 1

)
≡ I

(
1 1
1 2

)
≡ A

(
2 3
3 1

)
≡ A2(

0 3
1 0

)
≡ S

(
1 2
3 3

)
≡ SA

(
3 1
2 1

)
≡ SA2

This describes the subgroup G of index 4 in PSL2(Z) as a congruence sub-
group. The elements 1, T , T 2 and T 3 are a full set of nontrivial coset rep-
resentatives of G in PSL2(Z). Thus, the only possible elliptic points for G
are the G-orbits of i, i + 1, i + 2, i + 3 and ζ, ζ + 1, ζ + 2, ζ + 3, where
ζ = e2πi/3. By computing the full stabilizers of these points in PSL2(Z) and
then considering the congruence description of G, one easily sees that the
elliptic points for G are τ0 = i, τ1 = i + 3 and τ2 = ζ + 2. Thus G is of
genus zero with a single cusp of width 4 and three elliptic points of signature
(2, 2, 3). By Proposition 5.1, G is generated freely by the matrices

S0 = S, S1 = T 3ST−3, R2 = T 2RT−2 = T 2ST−1.

Define characters of G by setting α0(S0) = −1, α0(S1) = α0(R2) = 1.
Define α1 similarly but with S0 and S1 permuted, and define α2 by setting
α2(R2) = ζ, α2(S0) = α2(S1) = 1. These characters generate the character
group Hom(G,C×). If χ is the usual character of PSL2(Z) then χ(S) = −1
and χ(R) = ζ2. Thus since G contains elliptic elements of order 2 and 3, its
restriction to G remains order 6. In fact, we have χ = α0α1α

2
2 as characters

of G. Since T 4 = S1R2S0, and a character φ for G is cupsidal if and only if
φ(T 4) = 1, the cuspidal characters are 1 and α0α1 = χ3. Unfortunately in
this case L2 has degree 2/3, so L2 does not generate the non-torsion part
of the Picard group, since m = lcm(2, 2, 3) = 6. Therefore tensoring L2

with all the cuspidal characters of G fails to capture all of the ring S(G) of
geometrically weighted modular forms for G, and so we cannot give a simple
automorphic description of S(G) as we did in the previous examples.
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In order to determine the Hilbert-Poincaré polynomials of the characters
χn and to describe the modules M(G,χn), observe that the trivial represen-
tation of G induces to the standard representation of S4

∼= PSL2(Z)/Γ(4),
and so it decomposes into a one-dimesional trivial character and a three di-
mensional irreducible representation. Since T corresponds to the cycle (1234)
in this representation, the exponents for the three-dimensional irrep are 1/4,
1/2 and 3/4. Hence Tr(L) = 3/2, and for three-dimensional irreps the mini-
mal weight is 4Tr(L)− 2, which in this case is 4. Thus the Hilbert-Poincaré
polynomial for the trivial character of G is 1+T 4+T 6+T 8

(1−T 4)(1−T 6) . This is the Hilbert-

Poincaré polynomial for the ring of classical scalar modular forms for G.
More generally, twisting by χ and using the formulae of Section 6 of [CF16]
yields the following Hilbert-Poincaré polynomials for the powers of χ:

1 :
1 + T 4 + T 6 + T 8

(1− T 4)(1− T 6)
χ :

T 2 + T 6 + T 8 + T 10

(1− T 4)(1− T 6)

χ2 :
2T 4 + T 6 + T 8

(1− T 4)(1− T 6)
χ3 :

T 2 + T 4 + 2T 6

(1− T 4)(1− T 6)

χ4 :
T 4 + T 6 + 2T 8

(1− T 4)(1− T 6)
χ5 :

T 2 + T 4 + T 6 + T 10

(1− T 4)(1− T 6)

In order to describe a rank two indecomposable bundle for G, we first classify
all indecomposable representations of rank 2. The classification of such rep-
resentations containing the trivial representation is as follows — the general
case can be deduced from this by tensoring with a character.

Proposition 6.3. Up to isomorphism of ρ, the following lists all of the
nonsplit indecomposable rank 2 representations of G containing a copy of
the trivial representation:

(1) there is a single extension

0 → 1 → ρ → χ3 → 0

given by

ρ(S0) =

(
1 1
0 −1

)
ρ(S1) =

(
1 0
0 −1

)
ρ(R2) =

(
1 0
0 1

)
.

(2) there are two infinite families of nonisomorphic representations pa-
rameterized by P1 which arise from extensions

0 → 1 → ρ → χ−a → 0
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when a = 1 or 5, given by

ρ(S0) =

(
1 1
0 −1

)
ρ(S1) =

(
1 z
0 −1

)
ρ(R2) =

(
1 0
0 ζa

)
ρ(S0) =

(
1 0
0 −1

)
ρ(S1) =

(
1 1
0 −1

)
ρ(R2) =

(
1 0
0 ζa

)
where z ∈ C.

(3) there are two extensions

0 → 1 → ρ → α0χ
−a → 0

where a = 2 or 4, given by

ρ(S0) =

(
1 1
0 −1

)
ρ(S1) =

(
1 0
0 1

)
ρ(R2) =

(
1 0
0 ζa

)
.

(4) there are two extensions

0 → 1 → ρ → α0χ
−a → 0

when a = 1 or 5 given by

ρ(S0) =

(
1 0
0 1

)
ρ(S1) =

(
1 1
0 −1

)
ρ(R2) =

(
1 0
0 ζa

)
.

Proof. This is a standard cohomological computation. Given an extension

0 → 1 → ρ → φ → 0

for some character φ of G, let κ denote the top right entry of ρ. This is a
1-cocycle living in

Z1 = {κ : G → C | κ(gh) = φ(h)κ(g) + κ(h)}.

The isomorphism classes of extensions of φ by 1 are parameterized by the
cohomology group H1 = Z1/B1 where

B1 = {κ ∈ Z1 | ∃z ∈ C such that κ(g) = (φ(g)− 1)z}.

Being isomorphic as extensions is stricter than being isomorphic as ab-
stract representations. The isomorphy classes as abstract representations
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arising from the nontrivial extensions are identified with the projective space

P(H1). We will describe the computation for the extensions of φ = χ−a by

1 and omit the details for the other six characters.

There is an embedding f : Z1 → C3 defined by f(κ) =

(κ(S0), κ(S1), κ(R2)). Observe that

f(B1) = {(((−1)a − 1)z, ((−1)a − 1)z, (ζa − 1)z) | z ∈ C}.

In particular, B1 is zero dimensional if a = 0 and otherwise it is one dimen-

sional. To determine Z1, let us first examine what the cocycle conditions

enforces. Of course κ(1) = 0. Since S2
0 = S2

1 = R3
2 = 1 we deduce that

0 = ((−1)a + 1)κ(S1) = ((−1)a + 1)κ(S2) = (ζ2a + ζa + 1)κ(U)

If a = 0 then κ = 0 and Z1 is also zero dimensional. If a = 2, 4 then

κ(S0) = κ(S1) = 0 and Z1 is at most one dimensional. In this case there are

no nontrivial extensions. If a = 3 then κ(R2) = 0 and κ(S0) and κ(S1) can

be nonzero. Hence after modding out by B1 we get a one dimensional space

of extensions. Finally if a = 1, 5 then there are no conditions whatsoever and

Z1 is three dimensional, hence there is a two dimensional space of extensions.

Since the nontrivial extensions break up into isomorphism classes according

to P(Z1/B1), one deduces the stated classification.

Let ρ denote an indecomposable but not irreducible rank two represen-

tation of the form

0 → χ5 → ρ → 1 → 0.

As with the subgroup of index three, the corresponding bundle V(ρ) on MG

is decomposable if and only if there exist nonzero modular forms for ρ of

weight zero. To write down such a form explicitly, note that by Proposition

6.3, up to isomorphism ρ must be of the form ρz for z ∈ C, or ρ∞, where

ρz(S1) =

(
−1 −1
0 1

)
ρz(S2) =

(
−1 z
0 1

)
ρz(R2) =

(
ζ2 0
0 1

)
ρ∞(S1) =

(
−1 0
0 1

)
ρ∞(S2) =

(
−1 −1
0 1

)
ρ∞(R2) =

(
ζ2 0
0 1

)
.

Let F = ( ab ) be nonconstant of weight zero for one of the representations

ρz. As above, b must be a nonzero scalar and a′ ∈ M2(G,χ5). Since we

computed the Hilbert-Poincaré polynomial of χ5 on G to be
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∑
k∈Z

dimMk(G,χ5)T k =
T 2 + T 4 + T 6 + T 10

(1− T 4)(1− T 6)

it follows that M2(G,χ5) is one dimensional.
To describe M2(G,χ5), observe that the induction Indχ5 to PSL2(Z) is

a four dimensional representation that breaks up into a copy of χ5 regarded
as a character of PSL2(Z), and a three dimensional irreducible representa-
tion with exponents 1/12, 1/3 and 7/12. It is only the three dimensional
irreducible representation that contributes to M2(G,χ5). Using the results
of [FM14b] on three dimensional representations of PSL2(Z), one can show
that M2(G,χ5) is spanned by a linear combination of forms with Fourier
coefficients:

f1 = q
1

12

(
1 + 2q − 5q2 − 10q3 + 9q4 + 14q5 − 10q6 + 14q8 + · · ·

)
,

f2 = q
1

3

(
1− 4q2 + 2q4 + 8q6 − 5q8 + · · ·

)
,

f3 = q
7

12

(
1− 2q + q2 − 2q3 + 4q5 + · · ·

)
.

One finds that

f1 =

(
η(q2)5

η(q)η(q4)2

)2

, f2 = η(q2)4, f3 =

(
η(q)η(q4)2

η(q2)

)2

.

Using the transformation law for η2, it is not hard to show that f = f1+4f3
spans M2(G,χ5). Hence, after possibly rescaling ( ab ) ∈ M0(G, ρz), we may
assume that a′ = f . As in the case of the group of index 3, since ρz(R2) is
diagonal, we must have

a(τ) =

∫ τ

ζ+2
f(z)dz.

If a(τ0) = a(τ1) = 0 then one easily checks from the transformation law for
a that it is in fact a scalar modular form of weight zero for χ5 on G, hence
it must be constant. Since a is not constant, at least one of a(τ0) or a(τ1)
is nonzero. The transformation law for a then shows that the point z0 =
(a(τ0) : a(τ1)) ∈ P1 corresponds to the unique representation ρz0 yielding
the decomposable bundle, and all other bundles V(ρz) are indecomposable.
We used Sage to compute this value numerically:

z0 =
a(i+ 3)

a(i)
= 1.0910849089 . . .+ 0.4942818186 . . . i.

Computer experiments do not suggest that z0 is algebraic. This may be
because it is obtained by integrating a classical scalar congruence form be-
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tween CM points corresponding to different CM fields, in this case Q(i) and
Q(ζ), and so the two different CM periods intervene.2 Note that if a were an
ordinary scalar modular form, and not an antiderivative of such a form, then
of course this ratio of CM values would be algebraic by [Shi75]. These com-
putations suggest that there may be some interesting arithmetic encoded
in the CM values of vector valued modular forms for some nonunitarizable
representations of congruence groups.

References

[Ati57] M. F. Atiyah. Vector bundles over an elliptic curve. Proc. London
Math. Soc. (3), 7:414–452, 1957. MR0131423

[BH16] Indranil Biswas and Amit Hogadi. Unitary representations of the
fundamental group of orbifolds. Proc. Indian Acad. Sci. Math. Sci.,
126(4):557–575, 2016. MR3568250

[Bor92] Richard E. Borcherds. Monstrous moonshine and monstrous Lie
superalgebras. Invent. Math., 109(2):405–444, 1992. MR1172696

[CB10] William Crawley-Boevey. Kac’s theorem for weighted projec-
tive lines. J. Eur. Math. Soc. (JEMS), 12(6):1331–1345, 2010.
MR2734343

[CF16] Luca Candelori and Cameron Franc. Vector valued modular forms
and the modular orbifold of elliptic curves. Int. J. of Num. Th.,
2016. MR3573412

[CFK17] L. Candelori, C. Franc, and G. Kopp. Generating weights for the
Weil representation attached to an even order cyclic quadratic
module. J. Number Theory, 180, 2017. MR3679809

[CN79] J. H. Conway and S. P. Norton. Monstrous moonshine. Bull. Lon-
don Math. Soc., 11(3):308–339, 1979. MR0554399

[EZ85] Martin Eichler and Don Zagier. The theory of Jacobi forms, vol-
ume 55 of Progress in Mathematics. Birkhäuser Boston, Inc.,
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