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Combinatorial structure of colored
HOMFLY-PT polynomials for torus knots
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Sergey Shadrin, and Alexey Sleptsov

We rewrite the (extended) Ooguri-Vafa partition function for col-
ored HOMFLY-PT polynomials for torus knots in terms of the
free-fermion (semi-infinite wedge) formalism, making it very sim-
ilar to the generating function for double Hurwitz numbers. This
allows us to conjecture the combinatorial meaning of full expansion
of the correlation differentials obtained via the topological recur-
sion on the Brini-Eynard-Mariño spectral curve for the colored
HOMFLY-PT polynomials of torus knots.

This correspondence suggests a structural combinatorial result
for the extended Ooguri-Vafa partition function. Namely, its co-
efficients should have a quasi-polynomial behavior, where non-
polynomial factors are given by the Jacobi polynomials (treated
as functions of their parameters in which they are indeed non-
polynomial). We prove this quasi-polynomiality in a purely com-
binatorial way. In addition to that, we show that the (0,1)- and
(0,2)-functions on the corresponding spectral curve are in agree-
ment with the extension of the colored HOMFLY-PT polynomi-
als data, and we prove the quantum spectral curve equation for
a natural wave function obtained from the extended Ooguri-Vafa
partition function.
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1. Introduction

In 1989 Witten considered the 3D Chern-Simons quantum field theory and
pointed out the existence of polynomial invariants of knots and links colored
by the representations of Lie groups [52]. Based on his paper Reshetikhin
and Turaev in [48] defined these polynomial invariants rigorously with the
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help of quantum groups and the R-matrix approach. The colored HOMFLY-
PT polynomial corresponds to the slpNq case that plays a central role in the
theory of knot polynomials.

In the case of torus knots, a formula for the colored HOMFLY-PT poly-
nomial has a clear symmetric group character interpretation, called the
Rosso-Jones formula, first derived in [49] (see also e.g. [34, 37]). The Rosso-
Jones formula allows to embed the colored HOMFLY-PT polynomials of
torus knots in the realm of KP integrability, as it is done in [39, 42]. In
particular, it allows to represent the Ooguri-Vafa partition function [47] as
an action of cut-and-join operators on a trivial KP tau-function [40]. In the
case of torus knots, this representation is especially simple.

Our first result relates explicitly the Ooguri-Vafa partition function of
[42] to a particular specialization of the partition function of double Hurwitz
numbers [44]. This way we get a representation of the colored HOMFLY-
PT polynomials in terms of the semi-infinite wedge formalism [30], but in
fact we get a more general formula that has more parameters. To be more
precise, our extended partition function Zext depends on the variables p̃m,
m “ 1, 2, . . . , and the original Ooguri-Vafa partition function of the pQ,P q-
torus knot is obtained by specialization p̃m “ 0 for m not divisible by Q:

Zext
pp̃q “

C

exp

˜

8
ÿ

i“1

Ai ´ A´i

e
iuQ

2P ´ e´
iuQ

2P

¨
αi

i

¸

exp puF2q exp

˜

8
ÿ

j“1

α´j p̃j
j

¸G

.

Here A is the parameter of the HOMFLY-PT polynomial, and u is the
parameter that controls the genus expansion of logZext. The necessary def-
initions from the semi-infinite wedge formalism, in particular, the mean-
ing of the operators α˘j and F2, we recall below. See also e.g. papers
[2, 1, 27, 46, 50] for discussions related to representation of partition func-
tions for certain other related models in terms of the semi-infinite wedge
(a.k.a. free-fermion) formalism.

The specialization of the partition function for double Hurwitz num-
ber that we obtain as an extension of the Ooguri-Vafa partition function
is most natural to consider in the realm of the spectral curve topological
recursion [25], see also [3, 5, 13, 14, 26]. Brini, Eynard, and Mariño repre-
sented in [12] the coefficients of the genus expansion of the logarithm of the
Ooguri-Vafa partition function for the pQ,P q-knot as particular coefficients
of formal expansion of certain differential forms ωg,n satisfying topological
recursion on the curve

xpUq “ Q logU ` P
”

log
´

1 ´ AP {Q`1U
¯

´ log
´

1 ´ AP {Q´1U
¯ı

;
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ypUq “ γ logU `
Pγ ` 1

Q

”

log
´

1 ´ AP {Q`1U
¯

´ log
´

1 ´ AP {Q´1U
¯ı

.

Here U is a global coordinate on the rational curve, and γ is an integer
number chosen such that Pγ ` 1 is divisible by Q. One has to consider
the expansions of ωg,n in Λ :“ X´1{Q, X “ exppxq, near the point X “

8, and the coefficients of the Ooguri-Vafa partition function correspond to
the integer powers of X´1, namely, the coefficient of u2g´2`n

śn
i“1 p̃Qli in

logZext is equal, up to a universal combinatorial factor, to the coefficient of
śn

i“1 Λ
Qli
i in the expansion of ωg,n.

The status of this claim of Brini-Eynard-Mariño is the following. In [12]
it is formulated as a conjecture, and it is derived using a matrix model
representation of the colored HOMFLY-PT polynomials of torus knots. Since
that time the matrix models technique was developed in a number of papers,
see [6, 7, 8], and these works make the derivation of Brini-Eynard-Mariño
mathematically rigorous.

We conjecture that our extension of the Ooguri-Vafa partition function
satisfies the topological recursion on the same spectral curve. Namely, we
conjecture that the coefficient of u2g´2`n

śn
i“1 p̃mi

in logZext is equal, up
to a universal combinatorial factor, to the coefficient of

śn
i“1 Λ

mi

i in the
expansion of ωg,n for all m1, . . . ,mn, not only those divisible by Q. We
verify this conjecture for the unstable terms pg, nq “ p0, 1q and p0, 2q.

The main result of this paper is a quasi-polynomiality statement for the
coefficients u2g´2`n

śn
i“1 p̃mi

in logZext, for any m1, . . . ,mn. This includes
new combinatorial structural results for the colored HOMFLY-PT polyno-
mials of torus knots, but in fact it is a more general statement. We prove
that these coefficients can be represented as

ÿ

pi1,...,inq

Pt0,1un

Ci1,...,inpm1, . . . ,mnq

n
ź

j“1

p´1q
mjAmjp

P

Q
´1qPpmjp

P

Q
´1q`ij ,1q

mj´1´ij
p1 ´ 2A2

q,

where Pα,β
n pxq are the classical Jacobi polynomials, and Ci1,...,in are some

polynomials in m1, . . . ,mn of finite degree that depends only on g and n.
Note that the fact that they are called Jacobi polynomials might be slightly
misleading in this case, as they are polynomials in their main x argument,
and not in their n, α, β parameters; in fact, the dependence on mi (which
we are interested in) is non-polynomial for the corresponding factors in the
above formula. Substituting m1, . . . ,mn divisible by Q in this formula, we
obtain a combinatorial structural result for the colored HOMFLY-PT of the
pQ,P q-torus knot.
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There are several sources of interest for this type of expansions. The
first observation of this type in Hurwitz theory goes back to the ELSV-
formula [22] for simple Hurwitz numbers. The ELSV formula represents a
simple Hurwitz number in genus g depending on n multiplicities m1, . . . ,mn

as Cpm1, . . . ,mnq
śn

j“1
m

mj
j

mj !
, for certain polynomials C “ Cg,n whose co-

efficients are coming from the intersection theory of the moduli space of
curves. There are some further results and conjectures relating Hurwitz the-
ory to the intersection theory of the moduli space of curves, see, for in-
stance, [29, 54, 51, 9]. The question of principal importance is whether a
quasi-polynomiality property, natural from the point of view of algebraic
geometry behind Hurwitz theory, can be derived in a combinatorial way,
since it is a purely combinatorial property of purely combinatorial objects.
For instance, for single Hurwitz numbers it was an open question for 15
years, since the ELSV formula was first introduced, until it was settled in
two different ways in [17, 33] (see also a discussion in [35]). Nowadays there
are more of purely combinatorial results of this type, see, for instance, [33],
where the conjectures of [15, 16] are resolved, as well as [18, 32] for more
examples of this type of statements.

The quasi-polynomial structure has appeared to be also very important
from the point of view of topological recursion [25]. It is proved in [24], see
also [21], that the correlation differential obtained by topological recursion
have the structure given by

śn
j“1 dxj

ř

Ci1,...,inp
d

dx1
, . . . , d

dxn
q

śn
j“1 ξij pxjq,

where the indices i1, . . . , in enumerate the critical points of function x on
the curve, Ci1,...,in are certain polynomials, and ξi are certain canonically
defined functions on the spectral curve. This structure of correlation dif-
ferentials is equivalent to the quasi-polynomiality of their expansion in a
suitable coordinate (for example, in x near x “ 0, x´1 near x “ 8, or ex

near ex “ 0). So, in particular in our case the quasi-polynomiality structure
means that the n-point functions corresponding to logZext are expansion in
e´x{Q near e´x{Q “ 0 of Ci1,...,inp

d
dx1

, . . . , d
dxn

q
śn

j“1 ξij pxjq, where ξ1 and ξ2
are some functions canonically associated to the curve.

In this framework it is interesting to review the previously known non-
polynomial parts of the quasi-polynomial formulas in Hurwitz theory. All
of them are proved to be connected to ξ-function expansions. Typically we
have r ě 1 critical points of x, and there is a natural basis of r ξ-functions,
called flat basis due to its connection to flat coordinates in the theory of
Frobenius manifold [20, 19]. We have [33, 32]:

q-orbifold p-spin Hurwitz numbers pr “ pqq :
mt

m

pq
u

t
m
pq u!
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r-orbifold monotone Hurwitz numbers:

ˆ

m ` t
m
r u

m

˙

r-orbifold strictly monotone Hurwitz numbers:

ˆ

m ´ 1

t
m
r u

˙

So, in all these cases there is a unique formula for the non-polynomial part,
which reflects the fact that for each m there is just one function ξ (out of
r functions that form a flat basis) that can contribute to the corresponding
term of the expansion of the correlation differentials. In the case of the
specialization of double Hurwitz numbers that we consider in this paper,
r “ 2, and there are two possible non-polynomial terms for each m:

p´1q
mAmp

P

Q
´1qPpmp

P

Q
´1q,1q

m´1 p1 ´ 2A2
q

and p´1q
mAmp

P

Q
´1qPpmp

P

Q
´1q`1,1q

m´2 p1 ´ 2A2
q

These non-polynomial terms are mixed in the expansions of correlators in
all possible ways, which, along with the fact that non-polynomiality is given
by the values of Jacobi polynomials, makes this case really very special and
challenging. From that point of view, the relation of Zext to the Ooguri-
Vafa partition function for the colored HOMFLY-PT polynomials of the
pQ,P q-torus knots is just an extra nice property.

1.1. Structure of the paper

In Section 2 we recall basic facts regarding the free fermions/semi-infinite
wedge formalism.

In Section 3 we extend the Ooguri-Vafa partition function for the colored
HOMFLY-PT polynomials for torus knots in a way that allows us to rewrite
it in terms of the semi-infinite wedge formalism, which makes it quite similar
to the generating function of double Hurwitz numbers.

In Section 4 we recall the spectral curve introduced in [12] and we derive
the form of the so-called ξ-functions (in the general context these functions
were defined in [24], see also [21, 36]) on this curve. These ξ-functions turn
out to be related to Jacobi polynomials.

In Section 5 we recall the definition and some known properties of Ja-
cobi polynomials. Then we derive some new properties and relations which
are needed for the subsequent sections. Most of the proofs of these new
properties are very technical, so we provide them in Appendix A.
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In Section 6 we express the coefficients Kμ1,...,μn
of the expansion of the

extended Ooguri-Vafa partition function as semi-infinite wedge correlators of
products of certain operators called A-operators. Then we prove that matrix
elements of these operators are polylinear combinations of ξ-functions that
are rational in the arguments of the operators, i.e. in μi.

In Section 7 we prove a theorem that states that the connected corre-
lators of A-operators are polynomial in μ1, . . . , μn. This theorem, together
with its reformulation found in the subsequent section, is the main result of
the present paper.

In Section 8 we provide an alternative formulation of the main theorem
of the present paper. In this alternative form, our main theorem states that
in the stable case, i.e., for 2g ´ 2 ` n ą 0, the connected pg, nq-coefficients
of the extended Ooguri-Vafa partition function can be organized into mul-
tidifferentials on the spectral curve which are finite polylinear combinations
of differentials of derivatives of the ξ-functions. This is a key ingredient
required for a combinatorial proof of topological recursion in the vein of
[17, 18, 33, 32].

In Section 9 we match the unstable connected pg, nq-correlators of the
extended Ooguri-Vafa partition function with the basic data of the spec-
tral curve. This are the initial conditions required for the full topological
recursion statement.

In Section 10 we derive a differential-difference operator that annihi-
lates the wave function obtained from the extended Ooguri-Vafa partition
function by principle specialization. The dequantization of this differential-
difference operator gives the spectral curve of Brini-Eynard-Mariño.

2. Semi-infinite wedge preliminaries

In this section we remind the reader of some facts about semi-infinite wedge
space. For more details see e. g. [17].

Let V be an infinite dimensional vector space with a basis labeled by
the half integers. Denote the basis vector labeled by m{2 by m{2, so V “
À

iPZ`
1

2

i.

Definition 2.1. The semi-infinite wedge space V is the span of all wedge
products of the form

(2.1) i1 ^ i2 ^ ¨ ¨ ¨

for any decreasing sequence of half integers pikq such that there is an integer
c (called the charge) with ik ` k ´

1
2 “ c for k sufficiently large. We denote

the inner product associated with this basis by p¨, ¨q.
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The zero charge subspace V0 Ă V of the semi-infinite wedge space is the
space of all wedge products of the form (2.1) such that

(2.2) ik ` k “
1

2

for k sufficiently large.

Remark 2.2. An element of V0 is of the form

(2.3) λ1 ´
1

2
^ λ2 ´

3

2
^ ¨ ¨ ¨

for some integer partition λ. This follows immediately from condition (2.2).
Thus, we canonically have a basis for V0 labeled by all integer partitions.

Notation 2.3. We denote by vλ the vector labeled by a partition λ. The
vector labeled by the empty partition is called the vacuum vector and de-
noted by |0y “ vH “ ´

1
2 ^ ´

3
2 ^ ¨ ¨ ¨ .

Definition 2.4. If P is an operator on V0, then we define the vacuum ex-
pectation value of P by xPy :“ x0|P |0y, where x0| is the dual of the vacuum
vector with respect to the inner product p¨, ¨q, and called the covacuum vec-
tor. We will also refer to these vacuum expectation values as (disconnected)
correlators.

Let us define some operators on the infinite wedge space.

Definition 2.5. Let k be any half integer. Then the operator ψk : V Ñ V is
defined by ψk : pi1 ^ i2 ^ ¨ ¨ ¨ q ÞÑ pk ^ i1 ^ i2 ^ ¨ ¨ ¨ q. It increases the charge
by 1.

The operator ψ˚
k is defined to be the adjoint of the operator ψk with

respect to the inner product p¨, ¨q.

Definition 2.6. The normally ordered products of ψ-operators are defined
in the following way

(2.4) Eij :“ :ψiψ
˚
j : :“

#

ψiψ
˚
j if j ą 0 ;

´ψ˚
j ψi if j ă 0 .

This operator does not change the charge and can be restricted to V0. Its
action on the basis vectors vλ can be described as follows: :ψiψ

˚
j : checks if vλ

contains j as a wedge factor and if so replaces it by i. Otherwise it yields 0.
In the case i “ j ą 0, we have :ψiψ

˚
j :pvλq “ vλ if vλ contains j and 0 if it



Structure of colored HOMFLY-PT for torus knots 771

does not; in the case i “ j ă 0, we have :ψiψ
˚
j :pvλq “ ´vλ if vλ does not

contain j and 0 if it does. These are the only two cases where the normal

ordering is important.

Notation 2.7. Denote

(2.5) ζpzq :“ ez{2
´ e´z{2 .

Definition 2.8. Let n P Z be any integer. We define an operator Enpzq

depending on a formal variable z by

Enpzq :“
ÿ

kPZ`
1

2

ezpk´
n

2
qEk´n,k `

δn,0
ζpzq

.(2.6)

In some situations it is also useful to consider the operator rEnpzq given by

rEnpzq :“
ÿ

kPZ`
1

2

ezpk´
n

2
qEk´n,k .(2.7)

So, rEnpzq “ Enpzq for n “ 0, and in the case n “ 0 the difference of these

two operators is the scalar multiplication by ζpzq´1.

A useful formula for the commutator of these operators is given in [45]:

rEapzq, Ebpwqs “ ζpaw ´ bzqEa`bpz ` wq ,(2.8)

The same formula remains true if we use one or two rE-operators on the left

hand side instead of E-operators.

Definition 2.9. In what follows we will use the following operator:

F2 :“
ÿ

kPZ`
1

2

k2

2
Ek,k “ rz2s rE0pzq .(2.9)

Here rz2s denotes operation of taking the coefficient in front of z2. We

use this notation throughout the paper.

Definition 2.10. We will also need the following operators:

(2.10) αk :“ Ekp0q, k ‰ 0 .



772 Petr Dunin-Barkowski et al.

Note the following fact regarding the commutators of these operators:

(2.11) rαk, αms “ kδk`m,0 .

Also note that

αk|0y “ 0, k ą 0 ;(2.12)

x0|αk “ 0, k ă 0 .

3. Rosso-Jones formula as free-fermion average

In this section we show that in the case of torus knots the Ooguri-Vafa gener-

ating function of the colored HOMFLY-PT polynomials can be extended, by

adding additional parameters, to a partition function that is natural from

the point of view of the theory of double Hurwitz numbers. The Ooguri-

Vafa partition function is then recovered by setting all additional parameters

to 0.

The colored HOMFLY-PT polynomials of torus knots and links are

known explicitly due to a result of Rosso and Jones [49]. The HOMFLY-

PT polynomials are knot invariants, i.e. they are invariant under the three

Reidemeister moves defined on planar diagrams of knots. However, in many

applications the HOMFLY-PT polynomials should be multiplied by an ex-

tra factor, which is not invariant under the first Reidemeister move. For

this reason one can distinguish the topological HOMFLY-PT polynomials

and various non-topological ones; different choices of common factors are

called framings. Adapting the physics terminology, we can say that we con-

sider HOMFLY-PT polynomials in topological framing, or in a so-called

vertical one, or any other. In this paper we need a very specific choice of

framing, which provides a consistency of knot invariants with the correla-

tion differentials on the underlying spectral curve. We call it the spectral

framing.

Definition 3.1. Let T rQ,P s be a torus knot. Then its colored HOMFLY-

PT polynomial in the spectral framing is defined by the following variation

of the Rosso-Jones formula:

(3.1) HRpT rQ,P s; q, Aq :“ AP |R|
¨

ÿ

R1$Q|R|

cR1

R q2κR
P

Q s˚
R1

pq, Aq ,
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where the coefficients cR1

R are integer numbers determined by the equation

l
ź

i“1

sRppQ|R|, pQp|R|´1q, . . . , pQq(3.2)

“
ÿ

R1$Q|R|

cR1

R ¨ sR1
pp|R1|, p|R1|´1, . . . , p1q

(they are called Adams coefficients). The functions sR are the Schur poly-
nomials, and s˚

R :“ sR|pi“p˚
i
, where

p˚
i “

Ai ´ A´i

qi ´ q´i
.(3.3)

(this substitution is called the restriction to the topological locus).

Now let us omit the restriction to the topological locus (3.3) and define
an extended colored HOMFLY-PT polynomial, which is no longer a knot
invariant, but is still a braid invariant.

Definition 3.2. The extended colored HOMFLY-PT polynomials in the
spectral framing are defined as

(3.4) HRpT rQ,P s; pq :“ AP |R|
¨

ÿ

R1$Q|R|

cR1

R q2κR
P

Q sR1
ppq .

Definition 3.3. The Ooguri-Vafa partition function for the torus knot
T rQ,P s is

Zpp, p̄q :“
ÿ

R

HRpT rQ,P s; pq sRpp̄q .(3.5)

Note that we use the extended HOMFLY-PT polynomials in the def-
inition of the partition function. The original Ooguri-Vafa partition func-
tion [47] can be easily restored by the restriction to the topological lo-
cus (3.3).

Definition 3.4. The topological Ooguri-Vafa partition function for the
torus knot T rQ,P s is defined by

(3.6) Zpp̄q :“ Zpp˚, p̄q .

Following [42] we rewrite the Ooguri-Vafa partition function in terms of
the cut-and-join operator.
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Definition 3.5. The second cut-and-join operator Ŵ2ppq in rescaled Miwa
variables pk, k “ 1, 2, . . . , is defined as follows:

(3.7) Ŵ2ppq “
1

2

8
ÿ

a,b“1

ˆ

pa ` bqpapb
B

Bpa`b
` abpa`b

B2

BpaBpb

˙

.

Under the boson-fermion correspondence it corresponds to the operator
F2, defined above. Its a very well-known property [44], see also [41], that
the Schur polynomials sRppq are the eigenfunctions of this operator:

Ŵ2ppq sRppq “ κR sRppq, κR “
ÿ

pi,jqPR

pi ´ jq .(3.8)

Lemma 3.6 ([42]). The substitution � “ 2 log q allows to rewrite the Ooguri-
Vafa partition function for the torus knot T rQ,P s in terms of cut-and-join
operators:

Zpp, p̄q “ exp

ˆ

�
P

Q
Ŵ2ppq

˙

exp

˜

8
ÿ

k“1

pkQp̄kA
kP

k

¸

.(3.9)

Proof. Let us substitute the formula for the HOMFLY-PT polynomials from
Definition 3.2 in the Ooguri-Vafa partition function (3.5) and use the prop-
erty (3.8) of the cut-and-join operator. We have:

Zpp, p̄q “
ÿ

R

sRpp̄qAP |R|
¨

ÿ

R1$Q|R|

cR1

R q2κR
P

Q sR1
ppq(3.10)

“
ÿ

R

sRpp̄qAP |R|
¨

´

qŴ2ppq
P

Q ¨
ÿ

R1$Q|R|

cR1

R sR1
ppq

¯

.

Then we use formula (3.2):

Zpp, p̄q “
ÿ

R

sRpp̄qAP |R| qŴ2ppq
P

Q sRptpkQuq(3.11)

“ qŴ2ppq
P

Q

ÿ

R

sRpp̄qAP |R| sRptpkQuq

“ exp

ˆ

�
P

Q
Ŵ2ppq

˙

exp

˜

8
ÿ

k“1

pkQp̄kA
kP

k

¸

.

Our next step is to represent the Ooguri-Vafa partition function via an
action of some operators on the infinite wedge space. It is our starting point
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to reveal the combinatorial structure of colored HOMFLY-PT polynomials
for torus knots.

Theorem 3.7. The Ooguri-Vafa partition function has the following repre-
sentation in terms of a semi-infinite wedge average with operators F2 and
αk introduced in the Definitions 2.9 and 2.10:

Zpp, p̄q “(3.12)
C

exp

˜

8
ÿ

j“1

α´jpj
j

¸

exp

ˆ

�
P

Q
F2

˙

exp

˜

8
ÿ

i“1

αiQpp̄i ¨ QAiP q

iQ

¸G

.

Proof. Consider the expression given in Lemma 3.6. The cut-and-join oper-
ator is applied to the function that can be represented as

exp

˜

8
ÿ

k“1

pkQp̄kA
kP

k

¸

“(3.13)

C

exp

˜

8
ÿ

j“1

α´jpjQ
j

¸

exp

˜

8
ÿ

i“1

αip̄iA
iP

i

¸G

.

This representation follows from the commutation relations for the α-oper-
ators (2.11) and their action on the vacuum and covacuum (2.12).

Observe, however, that we can represent it using a slightly different
average (using the α-operators with the indices divisible by Q and rescaling
one of the denominators):

C

exp

˜

8
ÿ

j“1

α´jQpjQ
jQ

¸

exp

˜

8
ÿ

i“1

αiQp̄iA
iP

i

¸G

.(3.14)

The sum in the left exponent now runs over p with Q-divisible indices.
However, we can safely substitute it for the sum of all pj ’s – thanks to
the commutation relations between α’s the operators with the indices non
divisible by Q won’t contribute. Thus, the OV partition function becomes

Zpp, p̄q

(3.15)

“ exp

ˆ

�
P

Q
Ŵ2ppq

˙

C

exp

˜

8
ÿ

j“1

α´jpj
j

¸

exp

˜

8
ÿ

i“1

αiQpp̄i ¨ QAiP q

iQ

¸G
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“

C

exp

˜

8
ÿ

j“1

α´jpj
j

¸

exp

ˆ

�
P

Q
F2

˙

exp

˜

8
ÿ

i“1

αiQpp̄i ¨ QAiP q

iQ

¸G

,

where in the last equality we used the boson-fermion correspondence [28]
to bring the cut-and-join operator inside the average (where it becomes the
operator F2).

The expression (3.12) is already very close to a generating function for
double Hurwitz numbers – except for a peculiar sum in the right exponential.
We can mend this by introducing additional parameters p̄i{Q, with fractional
indices.

Definition 3.8. The extended Ooguri-Vafa partition function is

Zext
pp, p̄q “(3.16)

C

exp

˜

8
ÿ

j“1

α´jpj
j

¸

exp

ˆ

�
P

Q
F2

˙

exp

˜

8
ÿ

i“1

αipp̄i{QQAiP {Qq

i

¸G

.

Note that Zpp, p̄q is recovered from Zextpp, p̄q by keeping only p̄i{Q with
integer indices.

The following change of variables allows us to transform the expression
for Zext precisely into the form of the generating function of double Hurwitz
numbers:

Notation 3.9.

p̃i :“ p̄i{QQAiP {Q, i ě 1 ;(3.17)

u :“
P

Q
� .(3.18)

In terms of these variables we get:

Zext
pp, p̃q “

C

exp

˜

8
ÿ

i“1

αipi
i

¸

exp puF2q exp

˜

8
ÿ

j“1

α´j p̃j
j

¸G

,(3.19)

which is precisely the form of the generating function of double Hurwitz
numbers, as claimed.

In what follows, we will work in p̄ variables and not in the p̃ ones (the
latter were needed only to illustrate the relation to double Hurwitz numbers),
but we will still use the u variable in place of � as it makes the formulas
more compact.
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Recall that we are interested in the restriction of Zextpp, p̄q to the topo-
logical locus, i.e. to p “ p˚, where

p˚
i “

Ai ´ A´i

e�i{2 ´ e´�i{2
“

Ai ´ A´i

ζpiuQ{P q
.(3.20)

Denote

(3.21) Zext
pp̄q :“ Zext

pp, p̄q
ˇ

ˇ

p“p˚ .

Let us expand Zextpp̄q in p̄. For an integer partition μ “ pμ1 ě ¨ ¨ ¨ ě μkq

denote

(3.22) Kμpuq :“ Q´n B

Bp̄μ1{Q
. . .

B

Bp̄μk{Q
Zext

pp̄q

ˇ

ˇ

ˇ

ˇ

p̄“0

,

i.e. up to a factor equal to the order of the automorphism group of μ and a
multiple ofQ,Kμpuq is the coefficient in front of the monomial p̄μ1{Q . . . p̄μk{Q

in the expansion of Zextpp̄q.

4. The BEM spectral curve

4.1. Spectral curve

Brini, Eynard and Mariño introduced in [12] the following spectral curve
associated to the torus knot T rQ,P s:

xpUq “ Q logU ` P log
´

1 ´ AP {Q`1U
¯

´ P log
´

1 ´ AP {Q´1U
¯

;(4.1)

ypUq “
γ

Q
xpUq `

1

Q
log

´

1 ´ AP {Q`1U
¯

´
1

Q
log

´

1 ´ AP {Q´1U
¯

.

Here the constant γ is chosen in such a way that

ˆ

Q P
γ δ

˙

P Slp2,Zq .(4.2)

The functions ex and ey are meromorphic on the curve, and U is a global
coordinate (the curve has genus zero). The Bergman kernel is the unique
Bergman kernel for a genus zero curve and is equal to

(4.3)
dU1dU2

pU1 ´ U2q2
.
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Denote

X :“ exppxq “ UQ

˜

1 ´ AP {Q`1U

1 ´ AP {Q´1U

¸P

,(4.4)

Λ :“ X1{Q
“ U

˜

1 ´ AP {Q`1U

1 ´ AP {Q´1U

¸P {Q

.

In what follows the combination P {Q will arise quite often, so let us intro-
duce the following notation to conserve space:

Notation 4.1.

(4.5) b :“
P

Q
.

The function xpUq has two critical points u0 ˘ Δu with

u0 “
1

2Ab`1

`

1 ` A2
` bpA2

´ 1q
˘

;(4.6)

pΔuq
2

“
1

4A2b`2

`

A2
´ 1

˘ `

pb ` 1q
2A2

´ pb ´ 1q
2
˘

.

It is convenient to use in the rest of the paper the variable

λ :“ log Λ “
1

Q
logX .(4.7)

The correlation multidifferentials ωg,npU1, . . . , Unq on the curve are defined
through the topological recursion procedure [26], see also [3, 5, 14]. The
claim of Brini, Eynard, and Mariño is that the expansion of ωg,n at X “ 8

is related to Z in the following way:

ωg,n „ Q´n
8
ÿ

μ1...μn“1

C
pgq

Qμ1,...,Qμn

n
ź

i“1

p´μiq
dXi

Xμ1`1
i

,(4.8)

where similarity sign means that we drop all terms with non-integer expo-
nents ofXi from expansion of ωg,n atX “ 8, leaving only terms with integer
exponents of Xi. The coefficients of these remaining terms are nothing but
connected correlators for the partition function Z (3.15)

C
pgq

Qμ1,...,Qμn
:“ r�

2g´2`n
s

B

Bp̄μ1

. . .
B

Bp̄μn

logZ

ˇ

ˇ

ˇ

ˇ

p̄“0

.(4.9)
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Note that here we take derivatives with respect to p̄ and not p̃.

A natural conjectural refinement of their claim is the following extended

relation of Zext to the expansion of ωg,n at Λ “ 8:

ωg,n “ Q´n
8
ÿ

μ1...μn“1

Cpgq
μ1...μn

n
ź

i“1

p´μiq
dΛi

Λμi`1
i

,(4.10)

where C
pgq
μ1...μn are now connected correlators for the partition function Zext

Cpgq
μ1...μn

:“ r�
2g´2`n

s
B

Bp̄μ1{Q
. . .

B

Bp̄μn{Q
logZext

ˇ

ˇ

ˇ

ˇ

p̄“0

.(4.11)

Note that this conjectural refinement of the result of Brini-Eynard-Mariño

is very natural in the context of the results of the present paper.

The free-energies Fg,n are certain generating functions for the connected

correlators and are defined by their expansion at Λ “ 8:

Fg,n :“
8
ÿ

μ1...μn“1

Cpgq
μ1...μn

n
ź

i“1

1

Λμi

i

.(4.12)

They are related to the primitives of ωg,n with appropriately chosen inte-

gration constants.

4.2. The ξ-functions through Jacobi polynomials

In this section we compute the so-called ξ-functions for the BEM spectral

curve. The ξ-functions play a critical role in the topological recursion pro-

cedure. Namely, the correlation (multi)differentials ωg,n, 2g ´ 2`n ą 0, are

expressed as finite polylinear combinations of the differentials of ξa, the index

a labels the critical points of x, and their derivatives ([24], see also [21, 36]):

ωg,npU1, . . . , Unq “
ÿ

a1...an

d1...dn

ca1...an

d1...dn

n
ź

i“1

d

ˆ

d

dλi

˙di

ξaipUiq .(4.13)

In the case of a genus 0 spectral curve with a global coordinate U , the

functions ξapUq are defined as some functions that form a convenient basis

in the space spanned by 1{pua ´Uq, where ua are critical points of λpUq and

U is the global coordinate on the spectral curve.
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We show that we can choose these basis functions to have the following
expansion at Λ “ 8:

ξ1pUq “

8
ÿ

m“1

p´1q
mApb´1qmPpmpb´1q,1q

m´1 p1 ´ 2A2
qΛ´m ;(4.14)

ξ2pUq “

8
ÿ

m“1

p´1q
mApb´1qmPpmpb´1q`1,1q

m´2 p1 ´ 2A2
qΛ´m ,

where Ppα,βq
n pxq are the Jacobi polynomials (we recall their definition and

needed properties in Section 5 below). Namely, we prove the following

Theorem 4.2. We have:

ξ1pUq “
u0

pΔuq2Ab`1
ξ̃0pUq `

1

pΔuq2Ab`1
ξ̃1pUq ;(4.15)

ξ2pUq “ ´
1

pΔuq2A2b`2
ξ̃0pUq ,

where

ξ̃0pUq “
1

1 ´
pU ´ u0q2

pΔuq2

; ξ̃1pUq “
U ´ u0

1 ´
pU ´ u0q2

pΔuq2

.(4.16)

In particular, it is clear that they indeed form a basis in the space
spanned by the functions 1{pu0 ˘ Δu ´ Uq.

Notation 4.3. It is convenient to introduce the following piece of notation
for coefficients of expansion of ξipUq in Λ:

ξ1m :“ rΛ´m
sξ1pUq “ p´1q

mApb´1qmPpmpb´1q,1q

m´1 p1 ´ 2A2
q ;(4.17)

ξ2m :“ rΛ´m
sξ2pUq “ p´1q

mApb´1qmPpmpb´1q`1,1q

m´2 p1 ´ 2A2
q .

Proof of Theorem 4.2. Let us calculate the expansions of ξ̃kpUq at Λ “ 8.
Introducing scaled and shifted global coordinate

Ũ “
U ´ u0
Δu

(4.18)

we see that

d

dλ
“

Up1 ´ Ab`1Uqp1 ´ Ab´1Uq

A2bpŨ2 ´ 1qpΔuq2

d

dU
.(4.19)
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Therefore we can express ξ̃k as

ξ̃k “
p´1qA2b pΔuq

2

Up1 ´ Ab`1Uqp1 ´ Ab´1Uq

d

dλ

˜

pU ´ u0q
k`1

k ` 1

¸

, k “ 0, 1 .(4.20)

The coefficients of the expansion of ξ̃k at Λ “ 8 can be computed by

integration by parts and passing to the U -plane:

“

Λ´μ
‰

ξ̃k “
1

2πI

¿

Λ,8

ξ̃kΛ
μ´1dΛ

(4.21)

“
1

2πI

¿

Λ,8

Λμ´1 p´1qA2b pΔuq
2

Up1 ´ Ab`1Uqp1 ´ Ab´1Uq
Λ

d

dΛ

˜

pU ´ u0q
k`1

k ` 1

¸

dΛ

“
A2b pΔuq

2

2πI

¿

U,8

pU ´ u0q
k`1

pk ` 1q
d

˜

Uμ´1
`

1 ´ Ab`1U
˘μb´1

p1 ´ Ab´1Uq
μb`1

¸

.

Using Lemma 4.4 below and differentiating the expansion termwise, we can

easily calculate this residue to find

“

Λ´μ
‰

ξ̃0 “ pΔuq
2

p´1qA2pb`1q
”

Apb´1qμ
p´1q

μPppb´1qμ`1,1q

μ´2 p1 ´ 2A2
q

ı

;

(4.22)

“

Λ´μ
‰

ξ̃1 “ pΔuq
2Ab`1

”

Apb´1qμ
p´1q

μPppb´1qμ,1q

μ´1 p1 ´ 2A2
q

ı

` u0 pΔuq
2A2pb`1q

”

Apb´1qμ
p´1q

μPppb´1qμ`1,1q

μ´2 p1 ´ 2A2
q

ı

,

which immediately implies the statement of the theorem.

Lemma 4.4. We have:

p1 ´ A`Uqbμ´y

p1 ´ A´Uqbμ`y
“

A2bpμ´yq

U2y

8
ÿ

m“0

p´1qm

UmAm
`

Ppbμ´y´m,2y´1q
m p1 ´ 2A2

q .(4.23)
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Proof. It is a direct computation:

p1 ´ A`Uqbμ´y

p1 ´ A´Uqbμ`y
“

p´A`Uqbμ´y

p´A´Uqbμ`y

´

1 ´
1

A`U

¯bμ´y

´

1 ´
1

A´U

¯bμ`y

(4.24)

“
A2bpμ´yq

U2y

«

8
ÿ

k“0

ˆ

´
1

A`U

˙k ˆ

bμ ´ y
k

˙

ff «

8
ÿ

l“0

ˆ

´
1

A´U

˙l ˆ

´bμ ´ y
l

˙

ff

“
A2bpμ´yq

U2y

8
ÿ

m“0

p´1qm

UmAm
`

Ppbμ´y´m,2y´1q
m p1 ´ 2A2

q ,

where in the last transition we use the definition of the Jacobi polynomi-
als.

5. Properties of Jacobi polynomials

In the subsequent sections we heavily use certain results related to Jacobi
polynomials which we formulate in the present section.

See Appendix A for all proofs of the propositions stated in the present
section.

Let us start with recalling the well-known definition of the Jacobi poly-
nomials.

Definition 5.1. The Jacobi polynomials are defined as follows:

Ppα,βq
n pzq :“(5.1)

Γpα ` n ` 1q

Γpα ` 1qΓpn ` 1q
2F1

ˆ

´n, 1 ` α ` β ` n;α ` 1;
1

2
p1 ´ zq

˙

,

where

(5.2) 2F1pa1, a2; b1;xq :“
8
ÿ

s“0

pa1qs pa2qs

pb1qs s!
xs

is the usual hypergeometric function, where

(5.3) pzqn :“
Γrz ` ns

Γrzs
“

"

zpz ` 1q ¨ ¨ ¨ pz ` n ´ 1q, n P Zą0 ;
1, n “ 0

is the usual Pochhammer symbol (rising factorial).
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Let us introduce the following piece of notation:

Notation 5.2.

a :“ A2 ;(5.4)

Jmpρq :“ Ppρb´m´1,1q
m p1 ´ 2aq ,(5.5)

where Pα,β
n pxq is the Jacobi polynomial defined above.

The functions Jmpρq are precisely the main object of our interest in this

section; they are going to be extensively used in the sections below.

We found a certain new relation for the functions Jmpρq which we are

going to need in what follows. We call it the three-term relation:

Proposition 5.3. For k P Zě1

(5.6) Jk `

ˆ

a ` 1 ` pa ´ 1q
ρb

k

˙

Jk´1 ` aJk´2 “ 0 .

We will also need the following important result:

Proposition 5.4. For m P Zě1

ru2kwm
s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸

(5.7)

“ p´1q
m ρ

m

`

G1
kpρ,mqJm´1pρq ` G2

kpρ,mqJm´2pρq
˘

,

where G1
k and G2

k are some polynomials in m and ρ of degree no greater than

9k ` 2. Terms with odd powers of u in the u-expansion of the exponential in

the LHS of the above equality vanish.

Moreover, we are also going to need following properties of the polyno-

mials G1
kpρ,mq:

Proposition 5.5. We have:

G1
kpρ, 0q “ δk,0p1 ´ aqb ;(5.8)

G2
kpρ, 0q “ 0 .(5.9)

Proposition 5.6. @k ě 1 the polynomials G1
kpm,mq and G2

kpm,mq are

divisible by m2, i.e. they have a double zero at m “ 0.
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6. The A-operators and their rationality

In Section 2 we defined the extended Ooguri-Vafa partition function Zextpp̄q

as a fermionic correlator, whose coefficient in front of the monomial

(6.1) p̄μ1{Q . . . p̄μk{Q

is proportional to Kμpuq (3.22). In this section we represent Kμpuq as a cor-

relator of a product of some operators rApμi, uq and prove that this correlator
is a polylinear combination of ξ1μi

and ξ2μi
(see Notation 4.3) with coefficients

that are rational functions in μi.

6.1. A-operators

From (3.22) we have

Kμpuq “

C

exp

˜

8
ÿ

i“1

αip
˚
i

i

¸

exp puF2q

k
ź

i“1

α´μi

μi
Abμi

G

(6.2)

“

C

k
ź

i“1

e
ř8

i“1

αip
˚
i

i euF2
α´μi

μi
Abμie´uF2e´

ř8
i“1

αip
˚
i

i

G

.

Note that

(6.3) euF2α´μe
´uF2 “ E´μpuμq

and

(6.4) rαr, Ekr´μpuμqs “ ζpruμqEpk`1qr´μpuμq .

Definition 6.1. We define the operator rApm,umq by the following formula

rApm,uq :“
Abm

m

8
ÿ

k“0

Ek´mpumq
ÿ

λ$k

lpλq
ź

i“1

ˆ

p˚
i

i
ζ

`

ium
˘

˙λi´λi`1

pλi ´ λi`1q!
.(6.5)

It is straightforward to see that

Kμpuq “

C

k
ź

i“1

rApμi, uq

G

.(6.6)
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Note that the definition (6.5) of the rA-operators, together with the def-
inition (2.6) for the E-operators, implies the following structure of the rA-
operators:

(6.7) rApm,uq “ A0pm,uq Id`
ÿ

lPZ`1{2

ÿ

sPZ

Al,spm,uqEl´s,l ,

where A0pm,uq and A1,spm,uq are certain coefficients depending on m and
u, Id is the identity operator and Ei,j are the operators defined by formula
(2.4).

6.2. Rationality of A-operators

The main goal of this section is to prove the following statement (the ratio-
nality of A-operators):

Proposition 6.2. Let m ą 0. For the coefficients A0pm,uq and Al,spm,uq

in formula (6.7) for the rA-operators we have:

ruksAl,s “
F 1
k,lpm, sqξ1m ` F 2

k,lpm, sqξ2m

pm ` 1q . . . pm ` sq
, s ě 0 ;(6.8)

ruksAl,s “

rF 1
k,lpm, sqξ1m ` rF 2

k,lpm, sqξ2m

pm ´ 1qpm ´ 2q . . . pm ` s ` 1qpm ` sq2
, s ă 0 ;(6.9)

ruksA0 “
F̌ 1
k pmqξ1m ` F̌ 2

k pmqξ2m
m2

,(6.10)

where F 1
k,l, F

2
k,l,

rF 1
k,l,

rF 2
k,l, F̌

1
k , F̌

2
k are, for fixed s, some polynomials in m.

Moreover, the degrees in m of the polynomials F 1
k,lpm, sq, F 2

k,lpm, sq,

rF 1
k,lpm, sq, and rF 2

k,lpm, sq are no greater than 9k ` 2 ` s and the degrees

of F̌ 1
k pmq and F̌ 2

k pmq are no greater than 9k ` 2.

Proof. Let us recall a few facts. From (6.5) and (2.6) we have

ruksAl,s “ ruks
Apb´1qm

m
eumpl`s{2q

ÿ

λ$m`s

lpλq
ź

i“1

˜

ai ´ 1

i

ζ
`

ium
˘

ζ piub´1q

¸λi´λi`1

pλi ´ λi`1q!

(6.11)

“

˜

rukws`m
s
Apb´1qm

m
eumpl`s{2q exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸¸ ˇ

ˇ

ˇ

ˇ

ˇ

ρ“m

;
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ruksA0 “ ruks
1

m

Apb´1qm

ζpumq

ÿ

λ$m

lpλq
ź

i“1

˜

ai ´ 1

i

ζ
`

ium
˘

ζ piub´1q

¸λi´λi`1

pλi ´ λi`1q!

(6.12)

“

˜

rukwm
s
1

m

Apb´1qm

ζpumq
exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸¸ ˇ

ˇ

ˇ

ˇ

ˇ

ρ“m

.

From Section 4.2, for ξ’s we have

ξ1m “ p´1q
mApb´1qmJm´1

ˇ

ˇ

ρ“m
;(6.13)

ξ2m “ p´1q
mApb´1qmJm´2

ˇ

ˇ

ρ“m
.

Recall equation (6.11). Let us drop the factor eumpl`s{2q as it clearly does
not affect the statement. From Proposition 5.4 we have:

˜

ru2kws`m
s
1

m
exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸¸ ˇ

ˇ

ˇ

ˇ

ˇ

ρ“m

(6.14)

“ p´1q
m`s

˜

1

m

ρ

m ` s

ˆ

G1
kpρ,m ` sqJm`s´1

` G2
kpρ,m ` sqJm`s´2

˙

¸

ˇ

ˇ

ˇ

ˇ

ρ“m

,

where G1
k and G2

k are polynomial in both arguments.
Now recall the three-term relation for Jacobi polynomials (5.6). It implies

that

(6.15) Jk “ ´

ˆ

a ` 1 ` pa ´ 1q
ρb

k

˙

Jk´1 ´ aJk´2 .

With the help of this relation we get:

G1
kpρ,m ` sqJm`s´1 ` G2

kpρ,m ` sqJm`s´2(6.16)

“

ˆ

´
ppm ` s ´ 1qpa ` 1q ` pa ´ 1qρbqG1

kpρ,m ` sq

m ` s ´ 1

`
pm ` s ´ 1qG2

kpρ,m ` sq

m ` s ´ 1

˙

Jm`s´2
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´ aG1
kpρ,m ` sqJm`s´3 .

If we apply the three-term relation repeatedly s´ 1 more times, we produce
an expression precisely of the form (6.8) (where we should still substitute m
for ρ and take into account the polynomiality of G1

k and G2
k as well as the

relations (6.13) between ξ’s and J ’s). Note that at the last step we acquire
a factor m in the denominator, but it gets canceled once we substitute ρ
for m. Indeed, at the last step k “ m in the three-term relation and thus
the ρ{k “ ρ{m part cancels once we substitute ρ with m. Note that the
degrees of the resulting polynomials in the numerator are no greater than
the degrees of polynomials G1

k and G2
k increased by s, since each application

of the three-term relation potentially increases the degree by 1.
The proof for the case of negative s is completely analogous, we just have

to use the three-term relation in different direction expressing Jk´2 through
Jk´1 and Jk. The proof for the case of A0 is analogous as well.

7. Polynomiality of connected correlators of A-operators

The main goal of the present section is to prove the following

Theorem 7.1. Coefficients in u-expansions of stable connected correlators
of rA-operators can be expressed as

ruksx rApμ1, uq . . . rApμn, uqy
˝

“(7.1)

ÿ

pη1,...,ηnq

Pt1,2un

Pk;η1,...,ηn
pμ1, . . . , μnqξη1

μ1
¨ ¨ ¨ ξηn

μn
,

where Pk;η1,...,ηn
pμ1, . . . , μnq are some polynomials in μ1, . . . , μn. Stable

means pn, kq R tp1,´1q, p2, 0qu.

Remark 7.2. There is an equivalent reformulation of this theorem in terms
of expansions on the spectral curve given in Theorem 8.1, and these two
theorems together are the main theorems of the present paper.

Let us introduce the following definition:

Definition 7.3. We define the A-operators as follows (here m P Zě1):

A1
pm,uq :“

ÿ

lPZ`
1

2

´1
ÿ

s“´m

8
ÿ

k“0

uk
rF 1
k,lpm, sq

pm ´ 1q . . . pm ` s ` 1qpm ` sq2
El´s,l

(7.2)
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`
ÿ

lPZ`
1

2

8
ÿ

s“0

8
ÿ

k“0

uk
F 1
k,lpm, sq

pm ` 1q . . . pm ` sq
El´s,l

`

8
ÿ

k“´1

uk
F̌ 1
k pmq

m2
Id ;

A2
pm,uq :“

ÿ

lPZ`
1

2

´1
ÿ

s“´m

8
ÿ

k“0

uk
rF 2
k,lpm, sq

pm ´ 1q . . . pm ` s ` 1qpm ` sq2
El´s,l

(7.3)

`
ÿ

lPZ`
1

2

8
ÿ

s“0

8
ÿ

k“0

uk
F 2
k,lpm, sq

pm ` 1q . . . pm ` sq
El´s,l

`

8
ÿ

k“´1

uk
F̌ 2
k pmq

m2
Id ,

where F i
k,l,

rF i
k,l, and F̌ i

k are the polynomials introduced in Proposition 6.2.

Note that

(7.4) A1
pm,uqξ1m ` A2

pm,uqξ2m “ rApm,uq .

From Proposition 6.2 it is clear that the expressions Pη1,...,ηn
pμ1, . . . , μnq

in Theorem 7.1 are actually correlators of A-operators:

(7.5) Pη1,...,ηn
pμ1, . . . , μnq “ xAη1pμ1, uq . . .Aηnpμn, uqy

˝ ,

and the statement of the theorem is equivalent to saying that the above
correlators are polynomial in μ1, . . . , μn. In order to prove this theorem,
we first have to introduce certain new operators called A` in the following
definition. These operators are simpler than the A-operators, but the result
of their action on the covacuum is the same (we make a precise statement
below, in the proof of Theorem 7.1).

Definition 7.4. We define the A`-operators as follows (here m P Zě1):

A1
`pm,uq :“

8
ÿ

k“´1

uk
F̌ 1
k pmq

m2
Id(7.6)

`
ÿ

lPZ`
1

2

8
ÿ

s“1

8
ÿ

k“0

uk
F 1
k,lpm, sq

pm ` 1q . . . pm ` sq
El´s,l ;
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A2
`pm,uq :“

8
ÿ

k“´1

uk
F̌ 2
k pmq

m2
Id(7.7)

`
ÿ

lPZ`
1

2

8
ÿ

s“1

8
ÿ

k“0

uk
F 2
k,lpm, sq

pm ` 1q . . . pm ` sq
El´s,l .

We will need a certain technical lemma regarding the A`-operators.
Note that a given coefficient in the u-expansion of the coefficient in front
of El´s,l in the formula for the operator Aη

`pm,uq is a rational function in
m, and thus it can be extended into the complex plane. The same holds for
the coefficient in front of Id. Let us consider these extensions and prove the
following

Lemma 7.5. For r P Zě1 we have

x0| Res
m“´r

´

Aη
`pm,uq ´

8
ÿ

k“´1

uk
F̌ η
k pmq

m2
Id

¯

“(7.8)

cηprq x0|

´

rAp´r, uq ´ A0p´r, uq Id
¯

,

where cηprq is some scalar coefficient, η “ 1, 2. In other words, the residue
at ´r of the Id-less part of any of the two A`-operators coincides with the
Id-less part of the rA-operator taken at m “ ´r up to a scalar factor, under
the condition that both are applied to the covacuum.

Proof. Convention: in what follows we assume that the factor of eumpl`s{2q is
absent from (6.11). It is easy to see that this does not affect the conclusion.

Recall the proof of Proposition 6.2. Let s P Zě0. Define

(7.9) Sn :“
1

n

ˆ

ρbp1 ´ aq ´ np1 ` aq n
´an 0

˙

.

Also define

e1 :“

ˆ

1
0

˙

;(7.10)

e2 :“

ˆ

0
1

˙

;(7.11)

gkpρ, pq :“ G1
kpρ, pq e1 ` G2

kpρ, pq e2 .(7.12)

Now note that from (6.14) and (6.15) we get (for s ě 0)

ruksrEl´s,lsAη
`pm,uq “(7.13)
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p´1q
m

ˆ

ρ

mpm ` sq
eTη SmSm`1 ¨ ¨ ¨Sm`s´1 gkpρ,m ` sq

˙ ˇ

ˇ

ˇ

ˇ

ρ“m

.

This follows from the fact that the matrix Sk encompasses the three-term

relation. Here by ruksrEl´s,lsAη
`pm,uq we mean the coefficient in front of uk

in the u-expansion of the coefficient in front of the operator El´s,l in the

corresponding formula (7.6) or (7.7).

In what follows we always consider s ě 0.

Note that from (7.6) and (7.7) it is clear that

@z P Czt´s,´s ` 1, . . . ,´1u Res
m“z

ruksrEl´s,lsAη
`pm,uq “ 0 .(7.14)

In particular, it is easy to see that the residue at z “ 0 vanishes.

Consider r P t1, 2, . . . , s ´ 1u. From the form of Sk and from the fact of

polynomiality of gk we have

Res
m“´r

ruksrEl´s,lsAη
`pm,uq(7.15)

“ p´1q
r 1

s ´ r

˜

eTη S´rS´r`1 ¨ ¨ ¨S´1

ˆ

ρbp1 ´ aq 0
0 0

˙

ˆ

S1 ¨ ¨ ¨Ss´r´1 gkpρ, s ´ rq

¸

ˇ

ˇ

ˇ

ˇ

ρ“´r

“

ˆ

ρbp1 ´ aq eTη S´rS´r`1 ¨ ¨ ¨S´1 e1

˙

ˇ

ˇ

ˇ

ρ“´r
ˆ

ˆ

p´1qr

s ´ r
eT1 S1S2 ¨ ¨ ¨Ss´r´1 gkpρ, s ´ rq

˙ ˇ

ˇ

ˇ

ˇ

ρ“´r

.

The first equality followed from the fact that there is a simple pole at ´r in

Sm´r, while all the other factors do not have poles at this point.

Now, consider rAp´r, uq. Again, recall (6.14) and (6.15). Note that (6.14)

can be used for m ď 0. For r P t1, 2, . . . , s ´ 1u, we have

ruksrEl´s,ls
rAp´r, uq “(7.16)

Apb´1qp´rq

ˆ

p´1qs´r

s ´ r
eT1 S1S2 ¨ ¨ ¨Ss´r´1 gkpρ, s ´ rq

˙ ˇ

ˇ

ˇ

ˇ

ρ“´r

.

Here we used the fact that J0 “ 1 and J´1 “ 0.
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Note that the RHS of (7.16) differs from the RHS of (7.15) only by a
factor of

(7.17) Apb´1qp´rq
p´1q

r
`

ρbp1 ´ aq eTη S´rS´r`1 ¨ ¨ ¨S´1 e1
˘

ˇ

ˇ

ˇ

ρ“´r
,

which does not depend on s, l or k.

Now let us consider the case r “ s. Recall Proposition 5.5. It provides
an explicit formula for gkpρ, 0q which allows us to obtain the following:

Res
m“´s

ruksrEl´s,lsAη
`pm,uq(7.18)

“ p´1q
s`1

´ρ

s
eTη S´sS´s`1 ¨ ¨ ¨S´1 gkpρ, 0q

¯

ˇ

ˇ

ˇ

ˇ

ρ“´s

“ p´1q
s`1

´ρ

s
eTη S´sS´s`1 ¨ ¨ ¨S´1 e1δk,0p1 ´ aqb

¯

ˇ

ˇ

ˇ

ˇ

ρ“´s

“ p´1q
s

`

ρbp1 ´ aq eTη S´sS´s`1 ¨ ¨ ¨S´1 e1
˘

ˇ

ˇ

ˇ

ρ“´s
¨

ˆ

´
δk,0
s

˙

.

Now consider ruksrEl´s,ls
rAp´s, uq. From (6.11) (remember that we drop the

factor eumpl`s{2q in that formula; it is easy to see that its inclusion does not
affect the conclusion) we immediately obtain (as it is very easy to take the
coefficient in front of w0) that

(7.19) ruksrEl´s,ls
rAp´s, uq “ ´

δk,0
s

Apb´1qp´sq .

We conclude that for this r “ s case expressions Res
m“´s

ruksrEl´s,lsAη
`pm,uq

and ruksrEl´s,ls
rAp´s, uq differ again by the same factor (7.17).

This proves the lemma since all parts with s ď 0 vanish when acting on
the covacuum.

Now we are ready to prove Theorem 7.1. We partially follow the logic
described in [33] and [32].

Proof of Theorem 7.1. As mentioned above, Proposition 6.2 together with
Definition 7.3 imply that the connected correlator of rA-operators indeed has
the desired form:

ruksx rApμ1, uq . . . rApμn, uqy
˝

“(7.20)
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ÿ

pη1,...,ηnq

Pt1,2un

Pk;η1,...,ηn
pμ1, . . . , μnqξη1

μ1
¨ ¨ ¨ ξηn

μn
,

with

(7.21) Pk;η1,...,ηn
pμ1, . . . , μnq “ ruksxAη1pμ1, uq . . .Aηnpμn, uqy

˝ .

We just need to prove that these expressions Pk;η1,...,ηn
pμ1, . . . , μnq are poly-

nomial in μ1, . . . , μn.
Note that correlators

(7.22) ruksx rApμ1, uq . . . rApμn, uqy
˝

are symmetric in μ1, . . . , μn. Together with the fact that functions ξ1m and
ξ2m (as functions of m) are linearly independent over the ring of polyno-
mials in m, this means that it is sufficient to prove that the expressions
Pk;η1,...,ηn

pμ1, . . . , μnq are polynomial just in μ1 with the degree independent
of μ2, . . . , μn, and this will imply the polynomiality in μ2, . . . , μn.

Let us proceed to proving that the correlator in the RHS of (7.21) is
polynomial in μ1. We will also prove that its degree in μ1 is bounded by a
certain number which depends only on k and does not depend on μ2, . . . , μn.

Note that

(7.23) @s ď 0 x0|El´s,l “ 0 .

Recall Definition 7.3. It can be rewritten as follows:

(7.24) Aη
pm,uq “

8
ÿ

s“´m

Aη
spm,uq ,

where

Aη
spm,uq “(7.25)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ř

lPZ`
1

2

8
ř

k“0

uk
rF η
k,lpm, sq

pm ´ 1q . . . pm ` s ` 1qpm ` sq2
El´s,l ´m ď s ď ´1 ;

ř

lPZ`
1

2

8
ř

k“0

uk

˜

F η
k,lpm, 0qEl,l `

F̌ η
k pmq

m2
Id

¸

s “ 0 ;

ř

lPZ`
1

2

8
ř

k“0

uk
F η
k,lpm, sq

pm ` 1q . . . pm ` sq
El´s,l 1 ď s .
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Note that a correlator of the form

(7.26)

C

¨

˝

ÿ

l1PZ`
1

2

cl1,s1El1´s1,l1

˛

‚¨ ¨ ¨

¨

˝

ÿ

lnPZ`
1

2

cln,snEln´sn,ln

˛

‚

G

can be nonzero only if
řn

i“1 si “ 0. Thus when one writes the A-operators
in terms of the s-sums (7.24) in the correlator

(7.27) ruksxAη1pμ1, uq . . .Aηnpμn, uqy

and expands the brackets, only the terms with
řn

i“1 si “ 0 will survive.
Also note that in any surviving term in this expression we have s1 ě 0, due
to (7.23). Finally, note that from (7.24) we have si ě ´μi. Thus, for fixed
μ2, . . . , μn we have

(7.28) 0 ď s1 ď μ2 ` ¨ ¨ ¨ ` μn .

Since F η
k,lpm, sq and F̌ η

k pmq are polynomials, this implies that the correlator

(7.29) ruksxAη1pμ1, uq . . .Aηnpμn, uqy

is a rational function in μ1 for fixed μ2, . . . , μn. Moreover, we see that it
can have at most simple poles at the negative integer points, and no other
poles. The total degree in μ1 of this correlator as a rational function (i.e.
the difference between the degree of the numerator and the denominator)
is no greater than 9pk ` n ´ 1q ` 2. This follows from the estimates on the
degrees of polynomials F η

k,lpm, sq and F̌ η
k pmq obtained in Proposition 6.2.

We just need to replace k with k ` n ´ 1 as the u-expansions of correlators
Aη2pμ2, uq, . . . ,Aηnpμn, uq start with the u´1-term.

The fact that the disconnected correlators are rational functions in μ1

automatically implies that the connected ones are rational in μ1 as well. In
order to prove that stable connected correlators are polynomial in μ1 we
only need to prove that they do not have poles at negative integer points.

Recall Definition 7.4. Note that due to (7.23) we have

(7.30) x0|Aη
pm,uq “ x0|Aη

`pm,uq ,

and thus

xAη1pμ1, uqAη2pμ2, uq . . .Aηnpμn, uqy “(7.31)
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xAη1

` pμ1, uqAη2pμ2, uq . . .Aηnpμn, uqy

and

xAη1pμ1, uqAη2pμ2, uq . . .Aηnpμn, uqy
˝

“(7.32)

xAη1

` pμ1, uqAη2pμ2, uq . . .Aηnpμn, uqy
˝ .

Consider the disconnected correlator in the RHS of (7.31). Recall that

Aη
`pm,uq :“

8
ÿ

k“´1

uk
F̌ η
k pmq

m2
Id`(7.33)

ÿ

lPZ`
1

2

8
ÿ

s“1

8
ÿ

k“0

uk
F η
k,lpm, sq

pm ` 1q . . . pm ` sq
El´s,l .

Consider the Id-part of Aη1

` . Note that the inclusion-exclusion formula for
the connected correlator in terms of the disconnected ones for n ě 2 will
always contain the term of the form

(7.34) xAη1

` pμ1, uqyxAη2pμ2, uq . . .Aηnpμn, uqy ,

with the opposite sign. Note that in the one-point correlator only the Id-part
gives a nonzero contribution. More precisely,

(7.35) xAη1

` pμ1, uqy “

8
ÿ

k“´1

uk
F̌ η
k pmq

m2
.

This is precisely the factor which the Id-part of the operator Aη1

` contributes
to xAη1

` pμ1, uqAη2pμ2, uq . . .Aηnpμn, uqy, i.e.

C

8
ÿ

k“´1

uk
F̌ η
k pmq

m2
IdAη2pμ2, uq . . .Aηnpμn, uq

G

(7.36)

“ xAη1

` pμ1, uqyxAη2pμ2, uq . . .Aηnpμn, uqy .

This means that these contributions precisely cancel in the inclusion-exclu-
sion formula. Similar reasoning proves that for n ě 2 the Id-parts of the
A-operators do not give any nonzero contributions into the connected corre-
lator at all. Thus any connected multi-point correlator can only have poles
coming from the Id-less parts of the A-operator.



Structure of colored HOMFLY-PT for torus knots 795

Let us return to the correlator of rA-operators. We are interested in its
dependence on μ1. Let us prove that for any r we have

(7.37) Res
μ1“´r

B

Aη1pμ1, uq rApμ2, uq ¨ ¨ ¨ rApμn, uq

F˝

“ 0 .

For r R Zą0 it is clear. Consider r P Zą0. From Lemma 7.5 for the discon-
nected correlator we have

Res
μ1“´r

B

Aη1pμ1, uq

n
ź

i“2

rApμi, uq

F

“ cη1prq

B

rAp´r, uq

n
ź

i“2

rApμi, uq

F

,

(7.38)

where cη1prq is the coefficient in Lemma 7.5. Recalling equations (6.2), (6.6)
and (6.5) we can see that the RHS of the previous equality reduces to

(7.39) C

B

exp

˜

8
ÿ

i“1

αip
˚
i

i

¸

exp puF2qαr

n
ź

i“2

α´μi

μi

F

for some specific coefficient C that depends only on r and η1. Because
rαk, αls “ kδk`l,0, and αr annihilates the vacuum, this residue is zero unless
one of the μi equals r for i ě 2.

Now return to the connected n-point correlator for n ą 2. It can be
calculated from the disconnected one by the inclusion-exclusion principle,
so in particular it is a finite sum of products of disconnected correlators.
Hence the connected correlator is also a rational function in μ1, and all pos-
sible poles must be inherited from the disconnected correlators. The above
reasoning implies that we can assume μi “ r for some i ě 2. Without loss
of generality we can assume that it is the case for i “ 2, and μi “ r for
i ě 3. Then we get a contribution from (7.39), but this is canceled in the
inclusion-exclusion formula exactly by the term coming from

Res
μ1“´r

B

Aη1pμ1, uq rApr, uq

FB n
ź

i“3

rApμj , uq

F

(7.40)

“ C

B

exp

˜

8
ÿ

i“1

αip
˚
i

i

¸

exp puF2qαr α´r

F

ˆ

B

exp

˜

8
ÿ

i“1

αip
˚
i

i

¸

exp puF2q

n
ź

i“3

α´μi

F

“ C

B

exp

˜

8
ÿ

i“1

αip
˚
i

i

¸

exp puF2qαr

n
ź

i“2

α´μi

F

.
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Thus we have proved (7.37) for n ą 2, which implies that for n ą 2 we

have

(7.41) ruksx rApμ1, uq . . . rApμn, uqy
˝

“
ÿ

η1Pt1,2u

rPk;η1
pμ1;μ2, . . . , μnqξη1

μ1
,

where rPk;η1
pμ1;μ2, . . . , μnq is some expression polynomial in μ1. Since the

total degree of the correlator as a rational function in μ1 was bounded by

9pk ` n ´ 1q ` 2 as explained above, now that we know that it is actually

a polynomial, we see that its degree of rPk;η1
pμ1;μ2, . . . , μnq in μ1 is still

bounded by the same number, i.e. by 9pk ` n ´ 1q ` 2.

Now consider the case of 2-point correlators. Let us prove that they do

not have poles at negative integers for the nonzero genus case. For r P Zą0

we have

Res
μ1“´r

ruks

B

Aη1pμ1, uq rApμ2, uq

F

(7.42)

“ Cruks

B

exp

˜

8
ÿ

i“1

αip
˚
i puq

i

¸

exp puF2qαr α´μ2

F

.

This is nonzero only for μ2 “ r and equal to

(7.43) Cruks

B

exp

˜

8
ÿ

i“1

αip
˚
i puq

i

¸

exp puF2q

F

.

Note that a nonzero power of u comes either from p˚
i puq, and then it comes

together with some αi where i ą 0, or from the exponential, and then

it comes together with F2. It cannot come from the exponential, since

F2|0y “ 0, and it cannot come from p˚
i puq, since αi|0y “ 0 for i ą 0. Thus

for k ą 0 the residue vanishes. The bound on the degree in μ1 in this case

is an obvious implication of Proposition 6.2.

What remains is to prove that stable one-point correlators are polyno-

mial. Note that

(7.44) ruks xApm,uqy “
F̌ η
k pmq

m2
,

since for any i, j we have xEi,jy “ 0. Note that equations (6.10), (6.12),

(5.7), and (6.13) together imply that for k P Zě0
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F̌ η
2kpmq “ 0 ,(7.45)

F̌ η
2k´1pmq “ m2

k
ÿ

i“0

Gη
k´ipm,mq ¨ ru2i´1

s
1

ζpumq

1

m
,(7.46)

where Gη
kpρ,mq are the polynomials from the RHS of (5.7). We need to prove

that polynomials F̌ η
2k´1pmq are divisible by m2 for k P Zě1. Note that the

only interesting term in the sum in the RHS of (7.46) is the term with i “ 0

as we know that Gη
kpm,mq are polynomials in m and that ru2i´1sζpumq´1

is polynomial in m divisible by m2 for i ą 0. Thus we only need to prove

that Gη
kpm,mq is divisible by m2 for k ą 0. But this is exactly the result

of Proposition 5.6. Hence, we have proved the polynomiality of the stable

one-point correlators. The bound on the degree in μ1 in this case is, again,

an obvious implication of Proposition 6.2.

We conclude that the statement in (7.41) holds for n “ 1 and n “ 2 as

well, as long as pn, kq R tp1,´1q, p2, 0qu. Together with the fact that the cor-

relator (7.22) is symmetric in μ1, . . . , μn and the fact that functions ξ1m and

ξ2m (as functions of m) are linearly independent over the ring of polynomials

in m, this implies the statement of the theorem.

This completes the proof of the polynomiality of the stable Ã-correlators.

8. Towards a combinatorial proof of topological recursion

Recall the connected correlators of the extended Ooguri-Vafa partition func-

tion defined in Equation (4.11). From connected correlators we can define

some correlation differentials ω̃g,n via their expansion at Λ “ 8

ω̃g,n :“ Q´n
8
ÿ

μ1...μn“1

Cpgq
μ1...μn

n
ź

i“1

p´μiq
dΛi

Λμi`1
i

.(8.1)

We a priori do not know whether these differentials ω̃g,n coincide with cor-

relation differentials ωg,n, obtained through topological recursion, or even

whether they are well-defined on the curve. However, Theorem 4.2 implies

that the quasipolynomiality result in Theorem 7.1 is equivalent to the fol-

lowing

Theorem 8.1. Correlation multidifferentials ω̃g,n are well-defined mero-

morphic differentials on the spectral curve (4.1), moreover, they are ex-
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pressed in terms of ξ-functions (4.15) in the following way

ω̃g,npU1, . . . , Unq “
ÿ

a1...an

d1...dn

ca1...an

d1...dn

n
ź

i“1

d

ˆ

d

dλi

˙di

ξaipUiq ,(8.2)

where sum over di is finite and each ai runs from 1 to 2.

This is another way to state the main result of this paper.

Remark 8.2. It is straightforward to check that ω̃g,n satisfy the linear ab-

stract loop equation, as well as the projection property [10, 6] (the necessary

checks for unstable correlation differentials are performed in the next sec-

tion). So, in order to be able to claim that ω̃g,n “ ωg,n, it remains to prove

the quadratic abstract loop equation.

9. Unstable correlators

In this section we prove that the unstable correlation differentials for the

BEM spectral curve coincide with the expressions derived from the semi-

infinite wedge formalism.

9.1. The case pg, nq “ p0, 1q

We consider the 1-point correlation differentials in genus 0. Note that this

has already been done in [12] (which, in turn, followed [38]) in a different

way, with the help of considering the Lagrange inversion of ξ. See also [11]

where the pP,Qq “ p1, 0q case was considered.

Theorem 9.1. We have:

d

dλ
F0,1pUq

p´1q

Q2
` logpA2

q “ ypUq ´
γ

Q
xpUq .(9.1)

In order to prove this theorem, we first calculate the 1-point vacuum

expectation in genus 0.

Lemma 9.2. We have

Cp0q
m “

Qp1 ´ A2q

m2
Apb´1qm

p´1q
mPppb´1qm,1q

m´1 p1 ´ 2A2
q .(9.2)
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Proof. Notice that

Cp0q
m “

1

b
Q

“

u´1
‰

Kmpuq .(9.3)

Since the only term that contributes to the vacuum expectation in E0 is the

summand proportional to the identity operator, we have:

“

u´1
‰

Kmpuq “
“

u´1
‰

A

rApm,umq

E

(9.4)

“
“

u´1
‰ Abm

mζpumq

ÿ

λ$m

lpλq
ź

i“1

ˆ

pAi ´ A´iq

i
mb

Spiumq

Spiub´1q

˙λi´λi`1

pλi ´ λi`1q!

“
Abm

m2

ÿ

λ$m

lpλq
ź

i“1

˜

1

pλi ´ λi`1q!

ˆ

pAi ´ A´iq

i
mb

˙λi´λi`1

¸

“
bp1 ´ A2q

m2
Apb´1qm

p´1q
mPppb´1qm,1q

m´1 p1 ´ 2A2
q ,

where we used Corollary A.4 in the last line. Plugging this into (9.3) proves

the lemma.

Proof of Theorem 9.1. Compare the expression for C
p0q
m given by Lemma 9.2

with expansion of function ξ1pUq given by Equation (4.14). We see that the

genus zero 1-point free energy F0,1 analytically continued to the whole curve

must be equal to

F0,1pUq “

8
ÿ

m“1

Cp0q
m Λ´m

“ Qp1 ´ A2
q

ˆ

d

dλ

˙´2

ξ1pUq(9.5)

for an appropriate choice of the integration constants (such that the constant

and the linear in Λ terms do not appear in the expansion of F0,1); pd{dλq
´2

appears due to the presence of the factor 1{m2 in (9.2). Integrating ξ1pUq

once we get

ˆ

d

dλ

˙´1

ξ1pUq “
p´1q

1 ´ A2
log

ˆ

1 ´ Ab`1U

A2 ´ Ab`1U

˙

.(9.6)

Comparing this expression with the formula for y given in Equation (4.1)

proves the theorem
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9.2. The case pg, nq “ p0, 2q

In this section we prove that connected 2-point resolvent in genus 0 agrees
with the expansion of the standard Bergman kernel on genus zero spectral
curve.

Theorem 9.3. We have:

F0,2pU1, U2q “ Q2
rlogpU1 ´ U2q ´ logpΛ1 ´ Λ2qs .(9.7)

Proof. From explicit form of ΛpUq it is easy to conclude that right hand side
of Equation (9.7) has expansion at Λ1,2 “ 8 of the form

8
ÿ

μ1,μ2“1

cμ1,μ2
Λ´μ1Λ´μ2(9.8)

with some coefficients cμ1,μ2
. Therefore, the theorem follows from Lemmas

9.4 and 9.5 below that provide the explicit computation of the expansion of
the left hand side and the right hand side of Equation (9.7).

Lemma 9.4. For the connected, genus zero part of the 2-point correlator
we have:

Cp0q
μ1,μ2

“(9.9)

Q2 pa ´ 1qb

pμ1 ` μ2q

`

ppa ` 1q ` pa ´ 1qbqξ1μ1
ξ1μ2

` a
`

ξ1μ1
ξ2μ2

` ξ2μ1
ξ1μ2

˘˘

,

where ξ1m and ξ2m are the coefficients in front of Λ´m in the Λ´1-expansion
of the functions ξ1pUq and ξ2pUq, respectively.

Proof. The connected 2-point correlator is manifestly given in terms of semi-
infinite wedge formalism by

C

Q2Abpμ1`μ2q

μ1μ2

8
ÿ

k“0

rEk´μ1
puμ1q

˜

ÿ

λ

...

¸

8
ÿ

l“0

rEl´μ2
puμ2q

˜

ÿ

ν

...

¸ G

,(9.10)

where

˜

ÿ

λ

...

¸

:“

¨

˝

ÿ

λ$k

lpλq
ź

i“1

1

pλi ´ λi`1q!

ˆ

Ai ´ A´i

i
μ1b

Spiuμ1q

Spiub´1q

˙λi´λi`1

˛

‚ ,

(9.11)
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˜

ÿ

ν

...

¸

:“

¨

˝

ÿ

ν$l

lpνq
ź

j“1

1

pνi ´ νi`1q!

ˆ

Aj ´ A´j

j
μ2b

Spjuμ2q

Spjub´1q

˙νj´νj`1

˛

‚ .

Note that we have rE-operators inside the average instead of E-operators, be-
cause the ζpzq´1 summands in E0pzq are canceled via the inclusion-exclusion
formula that transforms the disconnected correlators into the connected
ones.

Thus the correlator is represented as a double sum over k, l ě 0. The
vacuum expectation in non equal to zero only for the summands where
k ´ μ1 ą 0 and l ´ μ2 ă 0. Using this and the commutation formula for the
rE-operators (2.8), we see that the right hand side of Equation (9.10) is equal
to

C

8
ÿ

k,l“0
kąμ1

lăμ2

Q2Abpμ1`μ2q

μ1μ2
ζpupkμ2 ´ lμ1qqEk`l´μ1´μ2

pupμ1 ` μ2qqˆ(9.12)

˜

ÿ

λ

...

¸ ˜

ÿ

ν

...

¸ G

.

The genus 0 contribution is given by the coefficient in front of u0. The
average of E-operator is non-zero only when k ` l ´ μ1 ´ μ2 “ 0. Thus the
coefficient of u0 in formula (9.12) is equal to

8
ÿ

k,l“0
kąμ1

lăμ2

k`l“μ1`μ2

Q2Abpμ1`μ2q

μ1μ2

pkμ2 ´ lμ1q

pμ1 ` μ2q
ˆ(9.13)

¨

˝

ÿ

λ$k

lpλq
ź

i“1

1

pλi ´ λi`1q!

ˆ

Ai ´ A´i

i
μ1b

˙λi´λi`1

˛

‚ˆ

¨

˝

ÿ

ν$l

lpνq
ź

j“1

1

pνi ´ νi`1q!

ˆ

Aj ´ A´j

j
μ2b

˙νj´νj`1

˛

‚ .

Taking into account all the restrictions on k and l as well as explicit ex-
pression for sums over partitions in terms of Jacobi polynomials (given in
Corollary A.4), we can rewrite formula (9.13) as
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μ2´1
ÿ

l“0

Q2pμ2 ´ lq

pμ1 ` μ2 ´ lql
p´1q

μ1`μ2Apb´1qμ1`pb´1qμ2p1 ´ A2
q
2b2ˆ(9.14)

Ppμ1b´μ1´μ2`l,1q

μ1`μ2´l´1 p1 ´ 2A2
qPpμ2b´l,1q

l´1 p1 ´ 2A2
q .

We can further simplify this expression. Note that we have the following
decomposition into simple fractions with respect to l

pμ2 ´ lq

pμ1 ` μ2 ´ lql
“

1

μ1 ` μ2

ˆ

μ2

l
´

μ1

μ1 ` μ2 ´ l

˙

.(9.15)

Using three-term relation (5.6) in the form

p1 ´ aq
ρb

k
Jρ
k´1 “ Jρ

k ` pa ` 1q Jρ
k´1 ` aJρ

k´2 ,(9.16)

where for brevity we use the notation Jρ
k :“ Jkpρq “ Ppρb´k´1,1q

k p1 ´ 2aq,
a “ A2, we can rewrite formula (9.14) as

Q2p´1qμ1`μ2Apb´1qμ1`pb´1qμ2p1 ´ A2qb

pμ1 ` μ2q
ˆ(9.17)

μ2
ÿ

l“0

˜

Jμ1

μ1`μ2´l´1J
μ2

l ` p1 ` aqJμ1

μ1`μ2´l´1J
μ2

l´1 ` aJμ1

μ1`μ2´l´1J
μ2

l´2

´ Jμ1

μ1`μ2´lJ
μ2

l´1 ´ p1 ` aqJμ1

μ1`μ2´l´1J
μ2

l´1 ´ aJμ1

μ1`μ2´l´2J
μ2

l´1

¸

.

Most of the summands in the last expression cancel and we finally obtain
(applying the three-term relation in its original form (5.6) so that only the
Jacobi polynomials appearing in the expansions of the ξ-functions remain)
the following expression for the connected 2-point correlator in genus 0:

Q2p´1qμ1`μ2Apb´1qμ1`pb´1qμ2p´1qp1 ´ A2qb

pμ1 ` μ2q
ˆ(9.18)

˜

ppa ` 1q ` pa ´ 1qbqJμ1

μ1´1J
μ2

μ2´1 ` a
´

Jμ1

μ1´1J
μ2

μ2´2 ` Jμ1

μ1´2J
μ2

μ2´1

¯

¸

“
Q2pa ´ 1qb

pμ1 ` μ2q

˜

ppa ` 1q ` pa ´ 1qbqξ1μ1
ξ1μ2

` a
`

ξ1μ1
ξ2μ2

` ξ2μ1
ξ1μ2

˘

¸

.
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Denote by E the Euler operator

E “

ˆ

Λ1
B

BΛ1
` Λ2

B

BΛ2

˙

.(9.19)

Lemma 9.5. We have

E log pU1 ´ U2q “ bp1 ´ aqˆ

(9.20)

8
ÿ

μ1,μ2“1

`

ppa ` 1q ` pa ´ 1qbq ξ1μ1
ξ1μ2

` a
`

ξ1μ1
ξ2μ2

` ξ2μ1
ξ1μ2

˘˘

Λ´μ1

1 Λ´μ2

2 .

Proof. Recall the expression for ΛpUq given by Equation (4.4). The coeffi-
cient in front of Λ´μ1

1 Λ´μ2

2 in the expansion of E log pU1 ´ U2q is equal to
the following residue:

rΛ´μ1

1 Λ´μ2

2 sE logpU1 ´ U2q

(9.21)

“
1

p2π
?

´1q2

¿

Λ1

¿

Λ2

Λμ1´1
1 Λμ2´1

2

ˆ

Λ1
B

BΛ1
` Λ2

B

BΛ2

˙

logpU1 ´ U2qdΛ1dΛ2

“
1

p2π
?

´1q2

¿

Λ1

¿

Λ2

Λμ1´1
1 Λμ2´1

2

ˆ

Λ1
dΛ2

dU2
´ Λ2

dΛ1

dU1

˙

1

pU1 ´ U2q
dU1dU2

“ Iμ1
p1, 0qIμ2

p1, 0q ` b
´

A2pb`1q
´ A2pb´1q

¯

Iμ1
p0, 1qIμ2

p0, 1q

` bpAb´1
´ Ab`1

qA2b
pIμ1

p´1, 1qIμ2
p0, 1q ` Iμ1

p0, 1qIμ2
p´1, 1qq ,

where

Iμpx, yq :“
1

2π
?

´1

¿

U,8

Uμ´x p1 ´ Ab`1Uqbμ´y

p1 ´ Ab´1Uqbμ`y
dU .(9.22)

These integrals are computed below, in Lemma 9.6. In particular, we have:

Iμp1, 0q “ b
´

Ab´1
´ Ab`1

¯

Iμp0, 1q “ bp1 ´ A2
qp´1qξ1μ ;(9.23)

Iμp0, 1q “ p´1qA´b`1ξ1μ ;

Iμp´1, 1q “ A´2b
p´1q

“

ppa ` 1q ` pa ´ 1qbq ξ1μ ` aξ2μ
‰

,
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where we used integration by parts to evaluate the first integral. Substituting
these expressions we obtain that the coefficient of Λ´μ1

1 Λ´μ2

2 in E logpU1´U2q

is equal to

bp1 ´ aq
`

ppa ` 1q ` pa ´ 1qbq ξ1μ1
ξ1μ2

` a
`

ξ1μ1
ξ2μ2

` ξ2μ1
ξ1μ2

˘˘

.(9.24)

Lemma 9.6. We have:

Iμpx, yq :“
1

2πI

¿

U,8

Uμ´x p1 ´ A`Uqbμ´y

p1 ´ A´Uqbμ`y
dU(9.25)

“
A2bpμ´yqp´1qμ´x´2y`1

Aμ´x´2y`1
`

Ppμpb´1q`x`y´1,2y´1q

μ´x´2y`1 p1 ´ 2A2
q .

Proof. Explicit calculation using expansion obtained in Lemma 4.4.

10. Quantum curve

In this Section we derive a quantum spectral curve for a natural wave func-
tion obtained from the extended Ooguri-Vafa partition function given by
the vacuum expectation formula (3.16). In this derivation we follow closely
the ideas used in [53, 43, 4].

A natural wave function ΨpΛq is obtained by the substitution p̄i :“
Q´1Λi in Zext restricted to the topological locus with the simultaneous
change � Ñ ´� (cf. the general formulas and computation for low gen-
era above — we need a sign adjustment of p´1qn for the n-point functions,
which can be achieved by replacing �2g´2`n by p´�q2g´2`n). We have:

ΨpΛq “

C

exp

˜

8
ÿ

j“1

α´j

j
¨
Aj ´ A´j

ζp´j�q

¸

exp p´�bF2q exp

˜

8
ÿ

i“1

αiΛ
iAib

i

¸G

(10.1)

“

8
ÿ

	“0

Λ	A	b exp

ˆ

´�b
�2 ´ �

2

˙ 	
ź

i“1

Ae´�pi´1q{2 ´ A´1e�pi´1q{2

e´�i{2 ´ e�i{2
.

Here we used that sR|pi“ri is non-trivial only for R “ p�, 0, 0, . . . q, in which
case it is equal to r	, and the fact that

(10.2) s˚
	 :“ s	|pi“p˚

i
“

	
ź

i“1

Ae�pi´1q{2 ´ A´1e´�pi´1q{2

e�i{2 ´ e´�i{2
.
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Theorem 10.1. We have:

„

´

e´
�

2
Λ d

dΛ ´ e
�

2
Λ d

dΛ

¯

´ ΛAbe´�bΛ d

dΛ

´

Ae´
�

2
Λ d

dΛ ´ A´1e
�

2
Λ d

dΛ

¯

j

Ψ “ 0 .

(10.3)

Proof. We denote the �-th term in the representation of Ψ above by ψ	, that
is, Ψ “

ř8

	“0 ψ	. Note that

(10.4)
ψ	`1

ψ	
“ ΛAbe�b	

Ae´�	{2 ´ A´1e�	{2

e´�p	`1q{2 ´ e�p	`1q{2
,

or, in other words,

´

e´
�

2
Λ d

dΛ ´ e
�

2
Λ d

dΛ

¯

ψ	`1 “ ΛAbe´�bΛ d

dΛ

´

Ae´
�

2
Λ d

dΛ ´ A´1e
�

2
Λ d

dΛ

¯

ψ	 ,

(10.5)

which implies the statement of the theorem.

The differential-difference operator (10.3) annihilating the wave function
Ψ is the quantum spectral curve. Under the dequantization expp�Λ d

dΛq Ñ V
we obtain the equation

(10.6) Λ “
1 ´ V

Ab`1V ´bp1 ´ A´2V q
,

which is an equivalent way to present the BEM spectral curve (4.1) (in this
form it is given in [12, Equation (3.26)]).

Appendix A. Jacobi polynomials and their generating
functions

In this appendix we prove all of the statements concerning Jacobi polyno-
mials which we use in the sections above.

A.1. The three-term relation

Proof of proposition 5.3. The following relations for Jacobi polynomials are
well-known (see e.g. [23]):

pn ` 1qPpα,βq

n`1 pxq “pn ` α ` 1qPpα,βq
n pxq(A.1)
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´ pn `
α

2
`

β

2
` 1qp1 ´ xqPpα`1,βq

n pxq ;

pn ` βqPpα,βq

n´1 pxq “pn ` α ` βqPpα,βq
n pxq(A.2)

´ p2n ` α ` βqPpα´1,βq
n pxq .

In the remaining part of the proof we always put x “ 1´2a in the arguments
of the Jacobi polynomials and omit these arguments for brevity.

Let us consider the expression in the LHS of (5.6), and let us transform
it with the help of (A.1) and (A.2):

Ppρβ´k´1,1q

k `

ˆ

a ` 1 ` pa ´ 1q
ρb

k

˙

Ppρβ´k,1q

k´1 ` aPpρβ´k`1,1q

k´2

(A.3)

“
(A.1)

ρβ ´ 1

k
Ppρβ´k´1,1q

k´1 `
k ´ ρβ

k
Ppρβ´k,1q

k´1 ` aPpρβ´k`1,1q

k´2

“
(A.1)

ρβ ´ 1

k
Ppρβ´k´1,1q

k´1 `
ρβp1 ´ ρβq

kpρβ ` k ´ 1q
Ppρβ´k,1q

k´1 `
ρβ ´ 1

ρβ ` k ´ 1
Ppρβ´k,1q

k´2

“
(A.2)

ˆ

ρβ ´ 1

k
`

ρβ ´ 1

ρβ ` k ´ 1

1 ´ ρβ ´ k

k

˙

Ppρβ´k´1,1q

k´1

`

ˆ

ρβp1 ´ ρβq

kpρβ ` k ´ 1q
`

ρβ ´ 1

ρβ ` k ´ 1

ρβ

k

˙

Ppρβ´k,1q

k´1

“ 0 .

Remark A.1 (Meixner polynomials I). The specialization of the Jacobi
polynomials that we are using in this paper has a natural interpretation in
terms of the so-called Meixner polynomials [31, Section 9.10]. The Meixner
polynomials are defined as

(A.4) Mnpx, β, cq :“ 2F1p´n, x;β; 1 ´ c´1
q .

So, we see that the polynomials Jmpρq that play the main role in our analysis
can be expressed in terms of the Meixner polynomials as

Jmpρq “ Ppρb´m´1,1q
m p1 ´ 2aq “ p´1q

mPp1,ρb´m´1q
m p2a ´ 1q(A.5)

“ p´1q
m

pm ` 1q 2F1p´m, 1 ` ρb; 2; 1 ´ aq

“ p´1q
m

pm ` 1qam 2F1p´m, 1 ´ ρb; 2; 1 ´ a´1
q

“ p´1q
mampm ` 1qMmpρb ´ 1, 2, aq .
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The recurrence relation for the Meixner polynomials [31, Equation (9.10.3)]
implies that

apk ` 1qMkpρb ´ 1, 2, aq(A.6)

´ ppa ´ 1qpρb ´ 1q ` k ´ 1 ` apk ` 1qqMk´1pρb ´ 1, 2, aq

` pk ´ 1qMk´2pρb ´ 1, 2, aq “ 0 ,

which is equivalent to (5.6). This way we obtain an alternative proof of
Proposition 5.3.

A.2. Exponential generating functions for Jacobi polynomials

This subsection is devoted to proving Proposition 5.4.
In what follows we need the following representation for the special Ja-

cobi polynomials defined in (5.5):

Proposition A.2. For m P Zě1

p´1q
m

p1 ´ aq
ρb

m
Jm´1pρq “ rwm

s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wiρb

¸

;

(A.7)

p´1q
m

p1 ´ aq
ρb

m
Jm´2pρq “ ´

m ´ 1

m
rwm´1

s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wiρb

¸

.

(A.8)

Proof. From the definition of Jacobi polynomials (Definition 5.1) it is easy
to see that for m P Zě1 we have

p´1q
m

p1 ´ aq
ρb

m
Jm´1pρq(A.9)

“ p´1q
m

p1 ´ aq
ρβ

m
¨

m´1
ÿ

s“0

ˆ

ρb ´ 1

s

˙ˆ

m

s ` 1

˙

p´aq
m´1´s

p1 ´ aq
s

“

m´1
ÿ

s“0

ˆ

ρb

s ` 1

˙ˆ

m ´ 1

s

˙

am´1´s
pa ´ 1q

s`1 .

Now let us collect this into the generating series:

1 `

8
ÿ

m“1

p´1q
m

p1 ´ aq
ρb

m
Jm´1pρqwm(A.10)
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“ 1 `

8
ÿ

m“1

m´1
ÿ

s“0

ˆ

ρb

s ` 1

˙ˆ

m ´ 1

s

˙

am´1´s
pa ´ 1q

s`1wm

“ 1 `

8
ÿ

s“0

ˆ

ρb

s ` 1

˙

pwpa ´ 1qq
s`1

8
ÿ

k“0

ˆ

s ` k

s

˙

pwaq
k

“ 1 `

8
ÿ

s“0

ˆ

ρb

s ` 1

˙ ˆ

wpa ´ 1q

1 ´ wa

˙s`1

“

ˆ

1 `
wpa ´ 1q

1 ´ wa

˙ρb

“

ˆ

1 ´ w

1 ´ wa

˙ρb

,

where in the second equality we used that m ´ 1 ´ s “ k ě 0.

The generating series for the RHS of (A.7) has the following form:

exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ ρbwi

¸

“ exp

˜

ρb
8
ÿ

i“1

pwaqi

i
´ ρb

8
ÿ

i“1

wi

i

¸

(A.11)

“ exp p´ρb logp1 ´ waq ` ρb logp1 ´ wqq “

ˆ

1 ´ w

1 ´ wa

˙ρb

,

which precisely coincides with the result of the computation for the LHS in

(A.10). This proves equality (A.7). Equality (A.8) is an easy consequence of

(A.7).

Remark A.3 (Meixner polynomials II). This proposition can also be in-

terpreted in terms of the Meixner polynomials, as in Remark A.1. Indeed,

Remark A.1 allows to rewrite the generating function on the left hand side

of Equation (A.10) as

(A.12) 1 ` pa ´ 1qρbw
8
ÿ

m“0

Mmpρb ´ 1, 2, aqpawq
m .

There is a generating function for the Meixner polynomials, see [31, Equation

(9.10.13) for γ “ 1]. Its specialization to our parameters allows to prove

that (A.12) is equal to the right hand side of Equation (A.10), which leads

to an alternative proof of Proposition A.2.

Proposition A.2 immediately implies the following statement:
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Corollary A.4. For m P Zě1 we have:

ÿ

λ$m

8
ź

i“1

´

Ai´A´i

i ¨ x
¯λi´λi`1

pλi ´ λi`1q!
“(A.13)

p´1q
mA´m

p1 ´ A2
q
x

m
¨ Ppx´m,1q

m´1 p1 ´ 2A2
q .

In order to prove proposition 5.4 we need to go through some further
technical reasoning.

Denote:

Notation A.5.

(A.14) q :“ exp
´

´
u

b

¯

.

N. B.: This notation is internal for the appendix and has different meaning
than the q used in Section 3 in the context of Rosso-Jones formula.

Recall the well-known definition of the q-Pochhammer symbols:

Definition A.6. q-Pochhammer symbols are defined as follows:

px; qqm :“
m

ź

k“1

p1 ´ xqk´1
q .(A.15)

Now let us prove the following

Proposition A.7. For m P Zě1

rwm
s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸

“(A.16)

´

q1{2`ρb{2
¯m pq´ρb; qqm

pq; qqm
2φ1

´

q´m, qρb; qρb`1´m; q; aq
¯

,

where 2φ1 is the q-hypergeometric function

2φ1 pa1, a2; b1; q;xq :“
8
ÿ

n“0

pa1; qqnpa2; qqn

pb1; qqnpq; qqn
xn .(A.17)

Proof. Denote

(A.18) Ξpwq :“ exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸

.
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Note that

(A.19)
ζpiuρq

ζpiub´1q
“

q´iρb{2 ´ qiρb{2

q´i{2 ´ qi{2
“ qip1´ρbq{2 qiρb ´ 1

qi ´ 1
.

Denote

(A.20) σ :“ ρb .

Consider the case of positive integer σ. In this case

(A.21)
ζpiuρq

ζpiub´1q
“ qip1´σq{2 qiσ ´ 1

qi ´ 1
“

σ
ÿ

p“1

qip2p´σ´1q{2 .

Now (still in the case of σ P Zą0)

Ξpwq “ exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸

(A.22)

“ exp

˜

σ
ÿ

p“1

˜

8
ÿ

i“1

qip2p´σ´1q{2aiwi

i
´

8
ÿ

i“1

qip2p´σ´1q{2wi

i

¸¸

“ exp

˜

σ
ÿ

p“1

´

log
´

1 ´ wqp2p´σ´1q{2
¯

´ log
´

1 ´ waqp2p´σ´1q{2
¯¯

¸

“
pwqp1´σq{2; qqσ

pwaqp1´σq{2; qqσ

“
pwqp1´σq{2; qq8pwaqp1`σq{2; qq8

pwqp1`σq{2; qq8pwaqp1´σq{2; qq8

.

Recall the q-binomial formula:

pαx; qq8

px; qq8

“

8
ÿ

n“0

pα; qqn

pq; qqn
xn .(A.23)

With the help of this formula we get:

Ξpwq “
pwqp1´σq{2; qq8pwaqp1`σq{2; qq8

pwqp1`σq{2; qq8pwaqp1´σq{2; qq8

(A.24)
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“

8
ÿ

s“0

pq´σ; qqs

pq; qqs
wsqsp1`σq{2

8
ÿ

r“0

pqσ; qqr

pq; qqr
arwrqrp1´σq{2 .

Collecting the powers of w we get (m “ s ` r):

(A.25) Ξpwq “

8
ÿ

m“0

m
ÿ

r“0

pqσ; qqr

pq; qqr

pq´σ; qqm´r

pq; qqm´r
q´rσarqmp1`σq{2wm .

Now note the following fact:

px; qqm´r

py; qqm´r
“

px; qqm

py; qqm

py´1q1´m; qqr

px´1q1´m; qqr

´y

x

¯r
.(A.26)

This allows us to rewrite Ξpwq as follows:

(A.27) Ξpwq “

8
ÿ

m“0

wmqmp1`σq{2 pq´σ; qqm

pq; qqm

m
ÿ

r“0

pqσ; qqrpq´m; qqr

pq; qqrpqσ`1´m; qqr
qrar .

Note that taking the coefficient in front of wm and recalling the definition of
the q-hypergeometric function (A.17) allows us to immediately obtain the
proof of (A.16) for the case of positive integer σ (since the above arguments
used this assumption).

Now let us relax the assumption on σ and denote

(A.28) z :“ qσ .

Recall from (A.11) that

Ξpwq

(A.29)

“

8
ÿ

m“0

wm
ÿ

λ$m

8
ź

i“1

1

pλi ´ λi`1q!

ˆ

ai ´ 1

i
¨ qip1´σq{2 qiσ ´ 1

qi ´ 1

˙λi´λi`1

“

8
ÿ

m“0

wmq´mσ{2
ÿ

λ$m

8
ź

i“1

1

pλi ´ λi`1q!

ˆ

ai ´ 1

i
¨ qi{2

qiσ ´ 1

qi ´ 1

˙λi´λi`1

.

Thus

rwm
sΞpwq “ z´m{2

ÿ

λ$m

8
ź

i“1

1

pλi ´ λi`1q!

ˆ

ai ´ 1

i
¨ qi{2

zi ´ 1

qi ´ 1

˙λi´λi`1

(A.30)
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“ z´m{2Pmpzq ,

where Pmpzq is some polynomial in z of degree ď m.

Now consider the right hand side of (A.16). Let us denote it by Θm. It

is equal to

(A.31) Θm “ qmp1`σq{2 pq´σ; qqm

pq; qqm

8
ÿ

r“0

pqσ; qqrpq´m; qqr

pq; qqrpqσ`1´m; qqr
qrar .

Note that the sum actually runs until m since for r ą m the factor pq´m; qqr

vanishes. We have

Θm “

m
ÿ

r“0

pqσ; qqr

pq; qqr

pq´σ; qqm´r

pq; qqm´r
q´rσarqmp1`σq{2(A.32)

“

m
ÿ

r“0

śr
k“1p1 ´ zqk´1q

pq; qqr

śm´r
l“1 pz ´ ql´1q

pq; qqm´r
zr´mqm{2arz´r`m{2

“ z´m{2Qmpzq ,

where Qmpzq is some polynomial in z of degree ď m.

From the above we know that Pmpzq and Qmpzq coincide for all values of

z “ qσ where σ is a positive integer. This means that these two polynomials

of degrees ď m coincide at an infinite number of distinct points (all these

points are distinct since q “ exppu{bq, and u is an arbitrarily small formal

parameter, while b is a fixed rational number). Thus, these polynomials

coincide, which proves the proposition.

Suppose we have a function fpq,m, ρq. We can consider either fpe�,m, ρq

and Taylor expansion in powers of �, or fp1` ε,m, ρq and Taylor expansion

in powers of ε (in our case � “ ub´1). These expansions either both have

the polynomiality property, or they both do not, in the following sense:

Lemma A.8. All coefficients of �-expansion of f can be represented as

a sum of two Jacobi polynomials with polynomial coefficients Poly1,k and

Poly2,k in m and ρ

r�
k
sfpe�,m, ρq “ Poly1,kpm, ρqJm ` Poly2,kpm, ρqJm´1(A.33)

if and only if all coefficients of ε-expansion of f can be represented as a sum

of two Jacobi polynomials with some other polynomial coefficients ĆPoly1,k
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and ĆPoly2,k in m and ρ

rεksfp1 ` ε,m, ρq “ ĆPoly1,kpm, ρqJm ` ĆPoly2,kpm, ρqJm´1 ,(A.34)

and moreover in that case the degree of Polyi,kpm, ρq is no greater than the

degree of ĆPolyi,k and vice versa.

Proof. Indeed, every coefficient of �-expansion is a finite linear combina-
tion of the coefficients of ε-expansion, where number of summands depends
neither on m nor ρ, from which the statement follows.

Now let us look at the RHS of (A.16) and analyze the three factors in
it separately. Let us start with the first factor,

`

q1{2`ρb{2
˘m

.

Lemma A.9. For q “ 1` ε, the coefficient in front of εk of the ε-expansion
of

`

q1{2`ρb{2
˘m

is a polynomial in m and ρ of total degree no greater than
2k.

Proof. Indeed

´

p1 ` εq1{2`ρb{2
¯m

“

8
ÿ

k“0

εk
ˆ

m`ρbm
2
k

˙

,(A.35)

where each term is clearly polynomial, and the degree is evident.

Let us proceed to the second factor in formula (A.16). We have the
following:

Lemma A.10. For m P Zě1, q “ 1 ` ε,

pq´ρb; qqm

pq; qqm
“

Γpm ´ ρbq

Γpm ` 1qΓp´ρbq

˜

1 `

8
ÿ

k“1

εkPolykpm, ρq

¸

,(A.36)

i.e. modulo common non-polynomial factor coefficients of ε-expansion of the
second coefficient are polynomials in m and ρ. Moreover, the total degree of
Polykpm, ρq is no greater than 2k ` 1.

Proof. Indeed, it is easy to extract common non-polynomial factor

śm
i“1p1 ´ p1 ` εq´ρb`i´1q
śm

i“1p1 ´ p1 ` εqiq
“

śm
i“1

ˆ

ř8

k“1

ˆ

´ρb ` i ´ 1
k

˙

εk
˙

śm
i“1

ˆ

ř8

k“1

ˆ

i
k

˙

εk
˙

(A.37)
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“

śm
i“1p´ρb ` i ´ 1q

śm
i“1 i

śm
i“1

ˆ

ř8

k“0 ε
k

ˆ

´ρb ` i ´ 1
k ` 1

˙

1
p´ρb`i´1q

˙

śm
i“1

ˆ

ř8

k“0 ε
k

ˆ

i
k ` 1

˙

1
i

˙ .

Let’s illustrate what happens by expanding the numerator up to second
order in ε:

1 ` ε
m
ÿ

i“1

´ρb ` i ´ 2

2
` ε2

˜

m
ÿ

i“1

p´ρb ` i ´ 2qp´ρb ` i ´ 3q

3 ¨ 2
(A.38)

`
ÿ

iăj

p´ρb ` i ´ 2qp´ρb ` j ´ 2q

2 ¨ 2

¸

.

We clearly see that terms linear and quadratic ε are polynomial in m and
ρ. This follows from the fact that sums of the form

m
ÿ

i“1

ik(A.39)

are polynomials in m of degree k ` 1, and from our ability to rewrite

ÿ

iăj

fpiqfpjq “
1

2

»

–

˜

m
ÿ

i“1

fpiq

¸2

´

m
ÿ

i“1

fpiq2

fi

fl .(A.40)

The coefficient in front of εk in the whole expression is some finite sum (the
number of summands depends only on k and not on m or ρ) of similar
expressions and hence analogously is also polynomial in m and ρ. Since
expressions (A.39) have degree k ` 1 in m and we see that in the coefficient
of εk the degree of ρ is at most k, the total degree of Polykpm, ρq is at most
2k ` 1.

Finally, let’s consider the expansion of the q-hypergeometric function.
It’s not simply polynomial, but instead it is a linear combination of the usual
hypergeometric function and its first derivative with polynomial coefficients.

Lemma A.11. For q “ 1 ` ε,

rεks 2φ1

´

q´m, qρb; qρb`1´m; q; aq
¯

(A.41)

“ Poly1,kpm, ρq 2F1p´m, ρb; ρb ` 1 ´ mqpaq
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` Poly2,kpm, ρq
d

da
2F1p´m, ρb; ρb ` 1 ´ mqpaq ,

where Poly1,kpm, ρq and Poly1,kpm, ρq are polynomials in m and ρ of total
degree no greater than 5k.

Proof. Consider the coefficient in front of zn in the definition of the q-
hypergeometric function (A.17). Analogously to Lemma A.10 its coefficient
in front of εk is the ratio of the ordinary Pochhammer symbols times a
polynomial in n, m and ρ:

p´mqnpρbqn
pρb ` 1 ´ mqnn!

Polykpn,m, ρq .(A.42)

Here Polykpn,m, ρq has total degree in m and ρ no greater than k, and its
degree in n is no greater than k ` 1.

If we pretend for a moment that the argument of our q-hypergeometric
function is a and not aq, we would immediately conclude that

rεks 2φ1

´

q´m, qρb; qρb`1´m; q; a
¯

“(A.43)

Polykpz
d

dz
,m, ρq 2F1p´m, ρb; ρb ` 1 ´ mqpzq

ˇ

ˇ

ˇ

z“a
.

The hypergeometric function 2F1pa, b; cqpzq satisfies the hypergeometric
equation

zp1 ´ zq
d2

dz2
F ` rc ´ pa ` b ` 1qzs

d

dz
F ´ abF “ 0 ,(A.44)

which in our case takes the form

ap1 ´ aq
d2

da2
F ` pρb ` 1 ´ mqp1 ´ aq

d

da
F ` mρbF “ 0 .(A.45)

So we see that we can eliminate all higher derivatives from the formula (A.43).
We apply this relation no more than k times (as the degree of Polykpn,m, ρq

in n is no greater than k ` 1), and with each application the total degree in
m and ρ rises by no more than 2. Thus we see that the resulting polynomials
in the coefficients in front of the hypergeometric functions have total degrees
in m and ρ no greater than 5k.

One final observation is that aq instead of a in the last argument of 2φ1

does not spoil anything. It just results in a finite, m-, n- and ρ-independent
resummation of the polynomials Polykpn,m, ρq, which preserves the bound
on the total degree. This completes the proof of the lemma.
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Recall the notation Jm introduced in (5.5). Let us prove the following

Proposition A.12. We have:

Γpm ´ ρbq

Γpm ` 1qΓp´ρbq
2F1p´m, ρb; ρb ` 1 ´ mqpaq(A.46)

“ p´1q
m p1 ´ aqρb

m
Jm´1 ;

Γpm ´ ρbq

Γpm ` 1qΓp´ρbq

d

da
2F1p´m, ρb; ρb ` 1 ´ mqpaq(A.47)

“ p´1q
m`1ρb pJm´1 ` Jm´2q .

Proof. Let us start with proving (A.46). First note that

(A.48)
Γpm ´ ρbq

Γp´ρbq
“ p´1q

m Γpρb ` 1q

Γpρb ´ m ` 1q
.

Then note that from the definition of Jacobi polynomials Ppα,βq
m we have:

Γpρb ` 1q

Γpm ` 1qΓpρb ´ m ` 1q
2F1p´m, ρb; ρb ` 1 ´ mqpaq “(A.49)

Ppρb´m,´1q
m p1 ´ 2aq .

Recall the following well-known relations for the Jacobi polynomials (see
e.g. [23]):

Ppα,β´1q
n pxq “ Ppα,βq

n´1 pxq ` Ppα´1,βq
n pxq ;(A.50)

pn ` α ` 1qPpα,βq
n pxq “(A.51)

pn ` 1qPpα,βq

n`1 pxq `

ˆ

n `
α

2
`

β

2
` 1

˙

p1 ´ xqPpα`1,βq
n pxq .

Also recall the three-term relation (5.6) proved in Proposition 5.3. With the
help of the aforementioned three relations we obtain (in what follows we
omit the arguments of the Jacobi polynomials for brevity, they are always
equal to 1 ´ 2a):

Ppρb´m,´1q
m “

(A.50)
Ppρb´m,0q

m´1 ` Ppρb´m´1,0q
m

(A.52)

“
(A.50)

Ppρb´m,1q

m´2 ` 2Ppρb´m´1,1q

m´1 ` Ppρb´m´2,1q
m
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“
(A.51)

1

ρb ´ 1

`

pm ` 1qJm`1 ` p2m ` pm ` ρb ` 1qaJm

` pm ´ 1 ` 2pm ` ρbqaqJm´1 ` pm ` ρb ´ 1qaJm´2q
˘

“
(5.6)

p1 ´ aqρb

m
Jm´1 .

Combining (A.48), (A.49) and (A.52) we obtain the proof of (A.46).
Let us continue to the proof of (A.47). Recall the formula for the deriva-

tive of the hypergeometric function:

d

da
2F1p´m, ρb; ρb ` 1 ´ mqpaq “(A.53)

´
mρb

ρb ` 1 ´ m
2F1p´m ` 1, ρb ` 1; ρb ` 2 ´ mqpaq .

Thus (also recalling the definition of the Jacobi polynomials)

Γpρb ` 1q

Γpm ` 1qΓpρb ´ m ` 1q

d

da
2F1p´m, ρb; ρb ` 1 ´ mqpaq(A.54)

“ ´ρb
Γpρb ` 1q

ΓpmqΓpρb ´ m ` 2q
2F1p´m ` 1, ρb ` 1; ρb ` 2 ´ mqpaq

“ ´ρbPpρb´m`1,0q

m´1 .

With the help of (A.50) we get

(A.55) Ppρb´m`1,0q

m´1 “ Ppρb´m`1,1q

m´2 ` Ppρb´m,1q

m´1 “ Jm´1 ` Jm´2 .

Combining (A.48), (A.54), and (A.55) we obtain the proof of (A.47).

Now we are finally ready to prove Proposition 5.4.

Proof of Proposition 5.4. Proposition 5.4 is a straightforward implication of
the results of Proposition A.7, Lemmas A.8–A.11, and Proposition A.12.

A.3. Properties of the G-polynomials

Let us prove two certain properties of the polynomialsG1
kpρ,mq andG2

kpρ,mq

(introduced in Proposition 5.4) stated in Propositions 5.5 and 5.6.

Proof of proposition 5.5. Note that the polem´1 in the RHS of (5.7) is com-
ing only from (A.46) and not from (A.47), while, at the same time, the only
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contribution to G2
k is coming from (A.47). Thus, G2

kpρ,mq is proportional
to m, and thus G2

kpρ, 0q vanishes.
Note that the LHS of (A.46) makes perfect sense for m “ 0 and is

actually equal to 1 (since, as it follows straightforwardly from the definition,

2F1p0, α, β;xq “ 1 for any α, β, and x). This implies that we have

(A.56) lim
mÑ0

Jm´1

m
“

1

ρbp1 ´ aq
.

In fact, the proof of Proposition 5.4 works perfectly well for m “ 0 if one
replaces

Jm´1

m
with

1

ρbp1 ´ aq
(A.57)

and puts G2
kpρ, 0q “ 0 in the RHS of (5.7). It is obvious that for m “ 0 the

LHS of (5.7) is equal to δk,0. Thus we obtain (5.8).

Proof of proposition 5.6. Let m P Zą1 in what follows. Consider the LHS of
(5.7). Let us introduce a piece of notation:

(A.58) Spzq :“ ζpzq{z .

Note that the Taylor series of Spzq at z “ 0 starts from 1 and contains only
even powers of z. With the help of this notation we rewrite the LHS of (5.7)
as follows:

ru2kwm
s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸

“(A.59)

ru2kwm
s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wiρb

Spiuρq

Spiub´1q

¸

.

Let us denote the Taylor coefficients of Spzq´1 as s2k, i.e.

(A.60)
1

Spzq
“ 1 `

8
ÿ

k“1

s2kz
2k .

Then we have

ru2kwm
s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wi ζpiuρq

ζpiub´1q

¸

(A.61)
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“ ru2kwm
s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wiρb

1 ` Opρ2q

Spiub´1q

¸

“
am ´ 1

m
ρb ru2ks

1

Spmub´1q
` Opρ2q

“ pam ´ 1qβ1´2k s2k m
2k´1 ρ ` Opρ2q .

Now consider the RHS of (5.7). From Proposition A.2 we have:

p´1q
m ρ

m

`

G1
kpρ,mqJm´1 ` G2

kpρ,mqJm´2

˘

(A.62)

“ G1
kpρ,mq

1

βp1 ´ aq
rwm

s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wiρb

¸

´ G2
kpρ,mq

1

βp1 ´ aq

m ´ 1

m
rwm´1

s exp

˜

8
ÿ

i“1

ai ´ 1

i
¨ wiρb

¸

“ G1
kpρ,mq

1

βp1 ´ aq

ˆ

am ´ 1

m
ρb ` Opρ2q

˙

´ G2
kpρ,mq

1

βp1 ´ aq

m ´ 1

m

ˆ

am´1 ´ 1

m ´ 1
ρb ` Opρ2q

˙

“
1

mp1 ´ aq

´

G1
kpρ,mq pam ´ 1q ´ G2

kpρ,mq
`

am´1
´ 1

˘

¯

ρ ` Opρ2q .

From (5.7) we know that the RHS of (A.61) and the RHS of (A.62) must
coincide, i.e. for any m P Zą1 we have

G1
kpρ,mq pam ´ 1q ´ G2

kpρ,mq
`

am´1
´ 1

˘

(A.63)

“ p1 ´ aqβ1´2ks2k m
2k

pam ´ 1q ` Opρq

and thus for all m P Zą1 we have

G1
kp0,mq pam ´ 1q ´ G2

kp0,mq
`

am´1
´ 1

˘

“(A.64)

p1 ´ aqβ1´2ks2k m
2k

pam ´ 1q .

Here s2k are fixed constants that do not depend on a, and G1
kp0,mq and

G2
kp0,mq are fixed polynomials in m with coefficients depending on a.
Since functions am´1 ´ 1 and am ´ 1 are linearly independent over the

ring of polynomials in m with coefficients depending on a, the fact that we
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have equality (A.64) for all m P Zą1 implies that

(A.65) G2
kp0,mq “ 0 .

Furthermore, we obtain that

(A.66) G1
kp0,mq “ m2k

qG1
kpmq ,

where qG1
kpmq is some polynomial in m.

Note that Proposition 5.5 implies that G1
kpρ,mq and G2

kpρ,mq are divis-
ible by m. Equality (A.65) furthermore implies that G2

kpρ,mq is divisible by
ρ, which means that G2

kpm,mq is divisible by m2, which is exactly what we
wanted to prove regarding G2

kpm,mq.

Now for G1
kpρ,mq we have

(A.67) G1
kpρ,mq “ G1

kp0,mq ` ρĂGk
1
pρ,mq ,

where ĂGk
1
pρ,mq is some polynomial in ρ and m. Since G1

kpρ,mq is divisible

by m as noted above, ĂGk
1
pρ,mq is divisible by m as well. This implies that

the second term in the RHS of the equality

(A.68) G1
kpm,mq “ G1

kp0,mq ` mĂGk
1
pm,mq

is divisible by m2. Equality (A.66) implies that for k P Zě1 the first term
in the RHS of (A.68) is divisible by m2 as well. Thus, for k P Zě1 the
polynomial G1

kpm,mq is divisible by m2.
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