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Aspects of (2, 2) and (0, 2) hybrid models

Marco Bertolini and Mauricio Romo

In this work we study the topological rings of two dimensional
(2,2) and (0,2) hybrid models. In particular, we use localization to
derive a formula for the correlators in both cases, focusing on the
B- and B

2 -twists. Although our methods apply to a vast range of
hybrid CFTs, we focus on hybrid models suitable for compactifi-
cations of the heterotic string. In this case, our formula provides
unnormalized Yukawa couplings of the spacetime superpotential.
We apply our techniques to hybrid phases of linear models, and we
find complete agreement with known results in other phases. We
also obtain a prediction for a certain class of correlators involving
twisted operators in (2,2) Landau-Ginzburg orbifolds. For (0,2)
theories, our argument does not rely on the existence of a (2,2) lo-
cus. Finally, we derive vanishing conditions concerning worldsheet
instanton corrections in (0,2) B

2 -twisted hybrid models.
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1. Introduction

Most of what is currently known about the structure of the moduli space of
(2,2) and, more in general, (0,2) superconformal field theories (SCFTs) is due
to our ability to extract relevant structures at special loci/limits. The most
prominent example of this is probably the Calabi-Yau/Landau-Ginzburg
(CY/LG) correspondence [1, 2]. For instance, the overwhelming evidence
that various geometrical data of Calabi-Yau (CY) manifolds is encoded in
orbifolds of Landau-Ginzburg (LG) models has inspired the construction of
the gauged linear sigma model (GLSM) [3]. In turn, the GLSM has been one
of the main tools in exploring various aspects of the moduli space. Another
example is mirror symmetry, which in its early days has been proved as a
correspondence of orbifolds of Gepner models [4], and later generalized to a
vast collection of theories.

Despite these remarkable successes, the picture is far from complete.
Even for (2,2) SCFTs, generically the GLSM comprises only a subspace of
the moduli space, and even in the realm of GLSMs, a generic phase will not
be described by a non-linear sigma model (NLSM) or a LG orbifold (LGO).
Moreover, (2,2) theories admit deformations which preserve only (0,2) su-
perconformal symmetry. This class of deformations is much less understood.
Although there has been recent progress in analyzing these models [5], ques-
tions such as, for example, how to extend mirror symmetry to this larger
moduli space of (0,2) deformations, have not yet found a complete answer
[6, 7].

Even more mysterious are (0,2) theories which do not admit a (2,2) locus.
For instance, the issue of whether instanton contributions to the spacetime
superpotential destabilize the vacuum of a heterotic compactification based
on a (0,2) SCFT, which were believed to be ruled out in the contest of (0,2)
GLSMs [8, 9], is still unresolved even in this subset of theories [10].

An important feature of SCFTs is the existence of chiral rings. In (2,2)
theories there are two such rings, the (a,c)/(c,c) rings (and their equivalent
conjugates)1 which are topological in nature and are independent of a set
of parameters of the theory. In particular, they are exchanged under mirror
symmetry. In (0,2) theories, where we lack the definition of a left-moving
chirality condition, in favorable cases it is possible to show the existence

1In this paper, we will often refer to the (a,c) ring as the A ring and to the (c,c)
ring as the B ring.
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of subrings of the (right-moving) chiral ring, which in particular generalize

the A/B rings, and reduce to these on the (2,2) locus (when available). We

refer to these, following the nomenclature in literature, as A/2 and B/2 rings.

Properties of such rings are still largely unknown. For instance, do B/2 model

correlators receive instanton corrections? If yes, is there a class of theories

where they do not? If yes, this class of theories would constitute a natural

playground for improving our understanding of (0,2) mirror symmetry.

It should be evident at this point that one approach to tackle some of

these issues is to deepen our understanding of more general theories. This

is the path we choose to follow in this work, as we study the ring structure

of B and B/2 rings in hybrid theories. Loosely speaking, a hybrid model is

a class of NLSMs with superpotential, where the theory can be intepreted

as a Landau-Ginzburg (orbifold) whose superpotential varies adiabatically

over a compact and smooth manifold. Such theories depend on a number

of parameters, namely the Kähler class and the complex structure of the

target space, a set of parameters defining a holomorphic bundle over it, and

a set of parameters defining the superpotential. While their existence has

been known for over two decades [3, 11], and both the mathematics [12] and

physics [13] literature exhibit instances of hybrid models, it was only recently

that a systematic study of their physical properties has begun [14, 15]. Be-

sides [12], there has also been other recent developments in mathematics

that study hybrid models closely such as [16, 17].

An important property of (quasi-)topological theories is that often they

depend only on a subset of the parameters of the original theory. In (2,2)

hybrid theories, B-model correlators depend only on the parameters in the

superpotential. When a hybrid model describes a limit in the moduli space

of a Calabi-Yau compactifications, these parameters determine a choice of

complex structure on the Calabi-Yau. In (0,2) models instead, this depen-

dence is naturally enlarged to the set of parameters determining the (0,2)

superpotential. In a large radius interpretation, this set of parameters de-

termine a holomorphic bundle over the CY manifold. Moreover, there could

be in principle a dependence on worldsheet instantons. As mentioned above,

models for which this dependence can be ruled out are particularly interest-

ing.

When a hybrid model arises as a phase in a linear model, we can compare

our results with the ones derived from GLSM techniques. In particular, in

such cases we can interpret the hybrid model as a fixed point along the RG

flow between the GLSM (for a particular choice of the parameters) and the

IR CFT.
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As it is more than likely that the length of the present work and the
number of technical passages the reader will encounter along the way might
obscure the structure we find, which we believe is quite interesting and
actually rather simple, we present here a summary of our main results.

In the first part of this work, we consider a class of N = (2, 2) hy-
brid models, as the ones defined in [14]. These are specified by a triplet
(Y,W,C∗

V ) (further details are given in section 2), where Y is a Kähler man-
ifold, W ∈ H0(OY) and dW−1(0) = B, with B some compact Kähler man-
ifold. These models possess enough supersymmetry to admit a well-defined
B-twisted version of the theory, provided the conditions for an anomaly-
free vector R-symmetry are satisfied. In such case, we compute explicitly
the genus-0 correlators of the B-twisted theory. As expected, the expression
reduces to a classical integral and instanton corrections are absent. This is
given by (eq. (4.30))

〈O(ω)〉S2 =

∫
Y
ΩY ∧ (ΩY�(eL̂ω)) ,(1.1)

where the operator O(ω) is determined by a polyvector field ω on Y.2 The
operator L̂ can be written in terms of various objects defining the hybrid
model

L̂ := −v

4
‖J‖2 + v

ζ−1

4
∂J

α
∂α , J

α
∂α := gαα∂αW∂α ∈ PV 1,0(Y) .(1.2)

The meaning of the various constants as well as the dependence of 〈O(ω)〉S2

on them is explained in section 4. We also make a comparison between
〈O(ω)〉S2 and other similar expressions in the physics and mathematical
literature. In particular, we remark here that (1.1) is not explictly a holo-
morphic expression on the coefficients of W (due to the dependence on W
through J). We argue however that the final result is indeed holomorphic,
by proposing a transformation law for this class of integrals, analogous to
the transformation law of multiple (local) residue integrals. This transfor-
mation law will also be key in the explicit evaluation of the integrals. Let
us summarize our proposal here. We argue for the existence of a section
B ∈ Γ (Hom(T ∗

Y, T ∗
Y)) = Γ (TY ⊗ T ∗

Y), where TY denotes the tangent bun-
dle of Y, such that the form

Tα = B β
α Jβ ∈ Γ(T ∗

Y)(1.3)

2A product of operators O(ω)O(ω′) reduces to O(ω ∧ ω′) where ω ∧ ω′ is the
ordinary wedge product on polyvector fields.
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does not depend on the coefficients of W (while B does) and B = {Tα =

0} ⊂ Y. If Bt ∈ Γ (Hom(TY, TY)) denotes the transpose of B then the wedge

product Bt ∧ Bt is well-defined, and so is the tensor

M(B) := ΩY�Bt ∧ . . . ∧ Bt︸ ︷︷ ︸
(d−p)-times

∈ Γ(Y,∧dT ∗
Y) .(1.4)

The transformation law we propose corresponds to the equality (for ω ∈
PV p,p(Y))

〈O(ω)〉S2 =

(
vζ−1

4

)d−p ∫
Y
ΩY ∧

(
M(B)�

(
e−

v

4
‖T‖2

(∂T
α
∂α)

d−pω
))

.

(1.5)

Thus, all the dependence on the coefficient of W is contained in M(B) which
is in fact holomorphic. We use this property to perform explicit computations

in section 5.

In the second part of this paper, we perform an analogous computation

for N = (0, 2) hybrids, defined recently in [15]. These models are specified

by a quadruple (Z, E , V, J) where Z is a Kähler manifold and E → Z is a

rank-R holomorphic vector bundle. Further conditions on this data required

for the consistency of these models [15] are recalled in section 6. In particular

we study the conditions for which these models admit a B/2-twist. In such

cases, we compute the genus-0 correlators in the zero instanton sector. The

formula we derive reads

〈O(ω)〉S2 =

∫
Z
ΩE�eL̂ω ,(1.6)

where

L̂ := −v

4
‖J‖2 + v

4
∂J

A
∂A JA ∈ Γ(E∗)(1.7)

and ω ∈ Ω•(Z,∧•E), which is the natural generalization of polyvector fields.

The section ΩE is nowhere vanishing, making the integral well-defined. Not

surprisingly, the expression (1.6), as its (2,2) predecessor, involves non-

holomorphic parameters through J . Luckily, the solution is also of the same

nature: the transformation law sketched above generalizes to the (0,2) in-

tegrals (in this case B ∈ Hom(E∗, E∗)). In addition, we derive a sufficient
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condition for (1.6) to admit no instanton corrections. By writing the pull-
back of TZ to the P1 worldsheet

x∗(TZ) = ⊕d
α=1O(dα) ,(1.8)

our condition reads ∣∣{α|dα ≥ 1
}∣∣ �= ∣∣{α|dα ≤ −1

}∣∣ .(1.9)

We found that, though, this condition is in general not very strong. In fact,
we found that for some (0, 2) models that can be shown to be instanton-
free by UV arguments through their GLSM description, the hybrid model
CFT however violates (1.9). We find that it is only possible to recover the
vanishing result from the hybrid perspective by constructing an appropriate
compactification of the moduli space of worldsheet instantons along the lines
of [18]. We also find examples where the opposite happens: the hybrid model
forbids instanton corrections but the GLSM does not rule them out.

Another interesting observation concerns the dependence of the correla-
tors on the various parameters of the theory. In a large class of GLSMs, B
model correlators are independent of E parameters – which instead appear
as parameters in A/2 model correlators – and instead depend exclusively on
J parameters [19]. This separation seems to disappear in the hybrid model,
where E parameters descend to “bundle” parameters and J parameters de-
scend to superpotential parameters. While it is somehow expected that this
splitting does not occur in the IR CFT, it is interesting that it is not manifest
in the UV hybrid theory as well.

This paper is organized as follows. In section 2 we review the construction
of (2,2) hybrids. In section 3 we describe the main object of interest, the
B ring, and review the techniques that allow to compute its elements. In
section 4, we introduce the B-twisted version of the hybrid theory, and use
localization to derive a formula for the correlators and study its properties.
In section 5 we completely solve an example, and we check our results via the
GLSM. Finally, in section 6 we derive an analogous formula for correlators
of B/2-twisted (0,2) hybrid models. We analyze the conditions for instanton
corrections to vanish, and apply our techniques to an example. We conclude
with some open questions in section 7.

2. N = (2, 2) hybrid models

In this section we review the construction of [14] of (2,2) hybrid models in
order to set-up notation and to highlight the aspects relevant for the present
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work. The results are valid for an arbitrary compact Riemann surface Σ. We
will work locally on an open patch U ∼= C of Σ with coordinates (z, z̄).

A hybrid model is determined by the data (Y,W,C∗
V ), where the differ-

ent objects are defined as follows:

• Y is a Kähler manifold and it admits a C∗-action defined by a Killing
vector field V on Y. We denote this action by C∗

V .
• W is a holomorphic function on Y, i.e., W ∈ H0(OY) satisfying
LV W = W .

We impose further conditions on these objects:

• We assume Y is CY, i.e., its canonical class is trivial, KY
∼= OY, and

that it admits a bundle structure with a compact base3 B and V a
vertical Killing vector of Y. When these conditions on Y are met, we
call the triple (Y,W,C∗

V ) a good hybrid.
• The superpotential W is chosen such that it satisfies the potential
condition

dW−1(0) = B ⊂ Y .(2.1)

We write then Y = tot (X → B) and X = ⊕iXi for a decomposition into
eigenspaces with respect to the V -action, that is,

V (B) = 0 , V (Xi) = qiXi ,(2.2)

where qi ∈ Q>0, i = 1, . . . , n. Although not a necessary condition to con-
struct a well-defined model, we will make the simplifying assumption that
Xi are line bundles over B. This is the class of models to which our meth-
ods apply. In the rest of this section we will construct the action for the
corresponding NLSM and study its symmetries.

2.1. Action

We work in (2, 2) superspace in Euclidean signature parametrized by (z, z)

and (θ±, θ
±
), where the + (−) corresponds to the right-moving (left-moving)

sector. In this setting we define the supercharges

Q+ =
∂

∂θ+
+ iθ

+
∂ z̄ , Q+ = − ∂

∂θ
+ − iθ+∂ z̄ .(2.3)

3In all our applications we will restrict to B being Kähler and smooth.
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These anti-commute and satisfy the algebra {Q+,Q+} = −2i∂z, where we
denote ∂ z̄ := ∂/∂z. We also define the superderivatives

D+ =
∂

∂θ+
− iθ

+
∂z , D+ = − ∂

∂θ
+ + iθ+∂z ,(2.4)

which anti-commute among each other and with the operators (2.3), and
satisfy the algebra {D+,D+} = 2i∂z. There is an equivalent structure on
the left-moving sector of the theory, (anti-)commuting with the operators

above and which is obtained by replacing ∂z with−∂z := −∂/∂z and (θ+, θ
+
)

with (θ−, θ
−
).

The field content of the theory is given by d chiral (2,2) supermultiplets
and their anti-chiral conjugates

Xα = Xα +
√
2θ−Ψα + iθ−θ

−
∂zXα , X

α
= Xα −

√
2θ

−
Ψ

α − iθ−θ
−
∂zX

α
,

(2.5)

where α = 1, . . . , d, and where we define

d = dimY , b = dimB , n = rank X .(2.6)

These are decomposed in terms of (0,2) bosonic and fermionic chiral super-
multiplets Xα and Ψα respectively, which have the following expansions

Xα = xα +
√
2θ+ψα

+ − iθ+θ
+
∂ z̄x

α , Xα
= xα −

√
2θ

+
ψ
α
+ + iθ+θ

+
∂ z̄x

α ,

(2.7)

Ψα = ψα
− −

√
2θ+Fα − iθ+θ

+
∂ z̄ψ

α
− , Ψ

α
= ψ

α
− −

√
2θ

+
F

α
+ iθ+θ

+
∂ z̄ψ

α
− .

The chirality conditions read

D±X
α = 0 , D+Xα = D+Ψ

α = 0 ,(2.8)

and similarly for the conjugate anti-chiral fields. The lowest component xα

are coordinates on Y, i.e., maps

xα : Σ → Y ,(2.9)

while ψα
+ (ψα

−) are right-moving (left-moving) fermions on the worldsheet,

i.e., C∞ sections of the tangent sheaf TY := T (1,0)Y, or more precisely

ψα
− ∈ Γ(K

1

2

Σ ⊗ x∗TY) , ψα
+ ∈ Γ(K

− 1

2

Σ ⊗ x∗TY) ,(2.10)
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where KΣ is the anti-canonical bundle of the worldsheet Σ. The action on

Σ in (2,2) superspace is given by4

S[X] :=

∫
Σ
d2z(LK + LW ) =

1

8π

∫
Σ
d2zD+D+D−D−K(X,X)(2.11)

+
m

4π

∫
Σ
d2zD+D−W (X) + c.c. ,

where K is a Kähler potential on Y with Kähler metric gαβ := ∂α∂βK. We

can expand the action in components and we obtain

LK = −gαβ

(
∂μx

α∂μxβ +
i

2
〈ψβ

, γμDμψ
α〉+ i

2
〈ψα, γμDμψ

β〉
)

− 1

4
Rαβδγ〈ψ

α, ψδ〉〈ψβ
, ψ

γ〉

+ gαα

(
Fα − 1

2
Γα
βδ〈ψβ, ψδ〉

)(
F

α
+

1

2
Γ
α
βδ〈ψ

β
, ψ

δ〉
)

,

LW =
1

2

(
Fα∂αW − 1

2
∂α∂βW 〈ψα, ψβ〉+ F

α
∂αW +

1

2
∂α∂βW 〈ψ̄α, ψ̄β〉

)
.

(2.12)

The covariant derivatives act on the fermions as

Dμψ
α = (∂μ +

1

2
ωμ)ψ

α + ∂μx
βΓα

βδψ
δ ,(2.13)

where ωμ is the spin connection on Σ and 〈, 〉 denotes the frame invariant

product (see appendix A). The Kähler connection and the curvature are

given by

Γα
βγ = gγβ,βg

βα , Rαβγ
δ = Γδ

αγ,β
.(2.14)

Finally, it is possible to integrate out the auxiliary fields via the equations

of motion

Fα = −1

2
gαβ∂βW − Γα

δγψ
δ
+ψ

γ
− , F

α
= −1

2
gαβ∂βW − Γ

α
δγψ̄

δ
+ψ̄

γ
− .(2.15)

4Here m is a parameter with a dimension of mass and we will set it to one in

the rest of the paper.
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2.2. Supersymmetry transformations

The action we defined in the previous section is by construction invariant

under (2,2) supersymmetry. For our study of the (c,c) ring in the following

sections, we need the explicit supersymmetry transformations induced by the

supercharges Q+ and Q−. For completeness, we present the supersymmetry

transformations of the component fields for all the supercharges.

Let us define the operator Q± and Q± such that, acting on a superfield

A, [ε∓Q±, A] = ∓ 1√
2
ε∓Q±A, where ε∓ are anticommuting parameters, and

similarly for the barred quantities.5 With these conventions for the charges

(2.3) we find

[Q+, x
α] = −ψα

+ , {Q+, ψ
α
+} = −i∂ z̄x

α ,

{Q+, ψ
α
−} = Fα , [Q+, F

α
] = −i∂ z̄ψ

α
− ,

[Q+, x
α] = ψ

α
+ , {Q+, ψ

α
+} = i∂ z̄x

α ,

{Q+, ψ
α
−} = F

α
, [Q+, F

α] = −i∂ z̄ψ
α
− ,

(2.16)

as well as

[Q−, x
α] = ψα

− , {Q−, ψ
α
−} = −i∂zx

α ,

{Q−, ψ
α
+} = Fα , [Q−, F

α
] = i∂zψ

α
+ ,

[Q−, x
α] = −ψ

α
− , {Q−, ψ

α
−} = i∂zx

α ,

{Q−, ψ
α
+} = F

α
, [Q−, F

α] = i∂zψ
α
+ .

(2.17)

The N = (2, 2) transformations can be written in a more covariant fashion

as follows

δxα = 〈ε, ψα〉 , δxα = −〈ε̄, ψα〉 ,
δψα = iγμ∂μx

αε̄+ εFα , δψ
α
= −iγμ∂μx

αε+ ε̄F
α
,

δFα = i〈ε̄, γμ∂μψα〉 , δF
α
= i〈ε, γμ∂μψ

α〉 .

(2.18)

5The pairing ε∓ ↔ Q± corresponds to the frame invariant product defined in

appendix A.
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2.3. R-symmetries and the low-energy limit

The action (2.12) at W = 0 exhibits the chiral symmetries of the NLSM on
Y, which act on the superfields (2.7) as

θ+ θ− Xα Ψα

U(1)0L 0 1 0 −1

U(1)0R 1 0 0 0

(2.19)

These are however broken in the theory with a non-trivial superpotential.
A consequence of the C∗

V action induced by the Killing vector field V is the
fact that the superpotential satisfies a quasi-homogeneity condition. Assum-
ing that at least for a generic enough superpotential, V is unique, and that
locally it can be written as V = qαx

α∂/∂xα, this condition reads

W (xαeiλqα) = eiλW (xα) .(2.20)

It then follows that the classical action admits the symmetries

θ+ θ− Xα Ψα

U(1)L 0 1 qα qα − 1

U(1)R 1 0 qα qα

(2.21)

These are non-anomalous when Y is a Calabi-Yau manifold, which we as-
sumed in our construction. Moreover, the vertical property of V implies
that qα = 0 for the base coordinates, while each coordinate along the fiber
component Xi has charge 0 < qi ≤ 1/2.

There is a particularly useful structure which we can use, together with
known renormalization theorems, to relate UV data and the IR CFT. Name-
ly, we can construct a left-moving N = 2 superconformal algebra in Q+-
cohomology [20]. For the class of models under study, the generators have
been worked out in [14] and we report them here for convenience

JL ≡ (qα − 1)ψα
−ψ−,α − qαx

αρα ,

T ≡ −∂zx
αρα − 1

2

(
ψ−,α∂zψ

α
− + ψα

−∂zψ−,α

)
− 1

2
∂zJL ,

G+ ≡ i
√
2
[
ψ−,α∂zx

α − ∂z(qαψ−,αx
α)
]
,

G− ≡ i
√
2ψα

−ρα ,

(2.22)
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where ρα ≡ gαα∂zx
α+Γδ

αγψ−,δψ
γ
−. In term of these fields, the action reduces

to a first-order system, with free fields OPEs

xα(z)ρβ(w) ∼
1

z − w
δαβ , ψα

−(z)ψ−,β(w) ∼
1

z − w
δαβ ,(2.23)

which define the left-moving N = 2 algebra in the full theory, while the non-
trivial geometry is encoded in the transformation properties across patches
of the fields. In this case, there is plenty of evidence [14] that the theory flows
under RG to a conformal fixed point characterized by the central charges

c = c = 3
∑
α

(1− 2qα) .(2.24)

In the present work, we are concerned with the (c,c) ring of the theory, and as
we will see, only a subset of the fields actively plays a role. In particular, the
field ρ will not enter our discussion, thus we do not need to review its prop-
erties. Nonetheless, this patch-wise free-fields first-order system description
of a hybrid model is particularly useful in performing explicit computations,
as we will see in later sections.

2.4. The orbifold and the twisted Jacobian algebra

In application to string theory, the relevant objects are not quite hybrid
models, but rather orbifolds thereof, obtained by quotienting the theory by
the discrete symmetry generated by exp(2πJ0), where J0 is the conserved
charge associated to the JL current.6 Let qi = ai/Ni, where ai, Ni ∈ N>0,
then this discrete symmetry is given by Γ = ZN whereN = lcm(N1, . . . , Nn).
As a consequence, all (NS,NS) states have integral charges under both
U(1)L × U(1)R and the theory can be consistently completed to define a
type II or heterotic string vacuum [21]. In particular, given the vertical
property of V , the orbifold action is purely on the fiber X. As mentioned
above, this condition defines a good hybrid [14]. When this fails to be the
case, it has been shown [13] that the theory develops a singularity at finite
distance in the moduli space, and the hybrid structure of a LGO fibered
over a compact base breaks down.

From a purely mathematical point of view, the orbifold can be viewed
as additional structure on the data defining the hybrid model. In particular,
given W : Y → C, let the Jacobian algebra Jac(W ) be the finite-dimensional

6We remark that exp(2πiJ0) acts on xα and ψα
± with the same phase, hence it

is a flavor symmetry of the theory and the quotient theory is well-defined.
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C-algebra defined by the cohomology of Q+ +Q−, which we will study in

detail in the following section. This algebra is expected to have the structure

of a Frobenius algebra [22, 23]. The authors of [24] defined, in the case of

orbifolds of an invertible polynomial W , a Γ-twisted version of the Jaco-

bian algebra, denoted Jac′(W,Γ). This object is further equipped with an

orbifold residue pairing which defines an orbifold Jacobian algebra, i.e., the

Γ-invariant subalgebra of Jac′(W,Γ). This in turns defines the structure of

a Z2-graded (commutative) Frobenius algebra.

From this perspective, one of the results of this work is to derive a non-

degenerate C-bilinear form, which we can call the residue pairing, which

gives (Y,W,C∗
R) the structure of a (orbifold) Frobenius algebra.

3. The B ring

Having reviewed the construction of the theories we wish to study, we now

turn to the characterization of the main object of interest in this first part

of the work, namely, the (c,c) ring. In generic (2,2) SCFTs, it is defined as

the collection of operators which satisfy the relations h = q/2 and h = q/2,

where h(h) is the left(right)-moving weight and q(q) the charge under the

left(right)-moving R-symmetry [25]. This is identified with the cohomology

of the supercharges Q+ and Q−,
7 or equivalently with the cohomology of

the sum

Q(c,c) := Q+ +Q− .(3.1)

A simple consequence of the N = 2 superconformal algebra is that in a

compact SCFT8 the number of such elements is finite. The ring structure

is provided by the OPE between these operators, which is non-singular as

a consequence of the unitarity bounds. This also implies that the three-

point functions 〈O1(z1)O2(z2)O3(z3)〉 of such operators in a suitable twisted

theory (the B model) are independent of the insertion points z1,2,3, and the

computation of these correlators in hybrid theories is the main result of this

work.

7In (2,2) theories there is another (in general) inequivalent ring, the (a,c) ring,
defined by the cohomology of the supercharges Q+ and Q−, or equivalently by the

relations h = −q/2 and h = q/2.
8By definition, a compact CFt is a CFT where the number of quasi-primary

fields of conformal weight Δ < Δ∗ for any Δ∗ ∈ R is finite. See chapter 2 of [26]
for more details.
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Before we proceed to review the techniques, developed in [14], to com-

pute the elements of the ring, a comment is in order. While it is customary in

the literature to use Q(c,c) as the BRST charge in the B model [27, 28], this

choice has the disadvantage that the corresponding representatives of the

cohomology classes, i.e., the elements of the ring, do not, in general, admit a

well-defined U(1)L ×U(1)R-action. In other words, such representatives are

not eigenvectors of the chiral symmetries (2.21). This issue is avoided in the

context of (2,2) LG models as the cohomology is localized at one particu-

lar position in the (dual) Koszul complex, the ring assumes the usual form

C[x1, . . . , xN ]/〈∂1W, . . . , ∂NW 〉, and the representatives have well-defined

charges and weights. This is not the case for a more general hybrid, as the

description of the ring generally involves, as we will see, some particular

linear combinations of the Fermi fields which do not admit a well-defined

action under the chiral symmetries.

For this reason, we find it more convenient to consider the cohomol-

ogy of both Q+ and Q− separately. Specifically, we observe that there

exists a deformation of the Q(c,c)-cohomology defined by the supercharge

Qζ := Q++ζQ−. We will argue that Qζ-cohomology is equivalent to Q(c,c)-

cohomology. It is clear that Qζ-cohomology will not depend on ζ as long as

ζ �= 0, while at ζ = 0 obviously Qζ=0 = Q+. A look at (2.18) shows that

[Qζ , x
α] = ψ

α
+ − ζψ

α
− , {Qζ , ψ

α
+} = i∂ z̄x

α ,

{Qζ , ψ
α
−} = ζi∂zx

α , {Qζ , ψ−,α + ζψ+,α} = (1 + ζ2)Wα .
(3.2)

At first order in ζ, the only additional condition is that ψα
− are no longer

exact. This implies thatQζ-cohomology is equivalent, up toQ−-exact terms,

to the cohomology of an operator Q which acts as

[Q, xα] = ψ
α
+ , {Q, ψα

+} = i∂ z̄x
α , {Q, ψα

−} = i∂zx
α , {Q, ψ−,α} = Wα .

(3.3)

In particular, we can split Q = Q0 + QW , where Q0 := Q|W=0 and QW

contains all the dependence on W . These satisfy Q
2
0 = Q

2
W = {Q0,QW } =

0, and the non-trivial action of these operators is represented by

[Q0, x
α] = ψ

α
+ , {Q0, ψ

α
+} = i∂ z̄x

α ,

{Q0, ψ
α
−} = i∂zx

α , {QW , ψ−,α} = Wα .
(3.4)
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In order to simplify notation it is convenient to redefine the fields as follows

ηα := ψ
α
+ , χα := ψ−,α .(3.5)

Now, we can rewrite (3.4) as

[Q0, x
α] = ηα, {Q0, ψ

α
+} = i∂ z̄x

α, {Q0, ψ
α
−} = i∂zx

α, {QW , χα} = Wα.

(3.6)

From (3.6) we see that up to (anti-)holomorphic derivatives, ψ± areQ0-exact
and the candidates for elements in Q-cohomology are the local operators

O(ω) = ω(x, x)α1...αr

β1...βs

ηβ1 · · · ηβsχα1
· · ·χαr

.(3.7)

The action of the supercharges on the states (3.7) is given by

Q0 : O(ω) �→ (∂ω)(x, x)α1...αr

γβ1...βs

ηγηβ1 · · · ηβsχα1
· · ·χαr

,(3.8)

where (∂ω)γ ≡ ∂ω/∂xγ , and

QW : O(ω) �→ (−1)sω(x, x)α1...αr

β1...βs

Wα1
ηβ1 · · · ηβsχα2

· · ·χαr
.(3.9)

We now specialize this structure to the hybrid geometry Y = tot
(
X

π−→ B
)
.

Let {Ua} be an open cover of B, then {π−1Ua} is an open cover of Y.
Consider an open set π−1Ua

∼= Ua × Cn parametrized by the coordinates

xα = (yI , φi) ∈ Ua × Cn ,(3.10)

where I = 1, . . . , b and i = 1, . . . , n. On this patch we can identify the
operators (3.7) as sections of the sheaf( ⊕

s1+s2=s

Ω0,s1(Ua)⊗ Ω0,s2(Cn)

)
⊗ ∧rTY ,(3.11)

where all the products ⊗ are over the ring of C∞ functions on π−1Ua. We
take this ring to be C∞ functions on Ua with at most polynomial growth
along the fiber directions. This condition does not affect the cohomology, as
we show in appendix B using the results of [29].
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As shown in [14], upon specialization to Y, in order to compute Q-
cohomology we can restrict our attention to operators that are horizontal
forms and independent of φ̄. That is, we can interpret ω in (3.7) as a (0, s)-
horizontal forms valued in ∧rTY. We identify this vector space as

∧r
sTY := Ω0,s(Y,∧rTY) ,(3.12)

that is, (0, s)-forms in Y valued in ∧rTY with at most polynomial growth
along the fibers. The supercharges act on (3.12) as

Q0 : ∧r
sTY → ∧r

s+1TY , QW : ∧r
sTY → ∧r+1

s TY .(3.13)

The space of operators (3.7) constitutes a double graded complex Kr,s

Er,s
0 ≡ Kr,s :

0 0 · · · 0 0 0 0

0 ∧d
bTY · · · ∧2

bTY ∧1
bTY ∧0

bTY 0

...
...

...
...

...
...

0 ∧d
1TY · · · ∧2

1TY ∧1
1TY ∧0

1TY 0

0 ∧dTY · · · ∧2TY TY OY 0

r

s
(3.14)

and (3.13) implies that Q0 and QW act as the vertical and horizontal differ-
entials, respectively. Thus, the total cohomologyQ is computed by a spectral
sequence determined by this data. In particular, the first stage is obtained
as Er,s

1 = Hs
Q0

(Y,Kr,•), which yields

Er,s
1 :

0 Hb(Y,∧dTY)
QW · · ·

QW
Hb(Y, TY)

QW
Hb(Y,OY) 0

...
...

...
...

...

0 H1(Y,∧dTY)
QW · · ·

QW
H1(Y, TY)

QW
H1(Y,OY) 0

0 H0(Y,∧dTY)
QW · · ·

QW
H0(Y, TY)

QW
H0(Y,OY) 0

r

s
(3.15)
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The next stage is given by taking cohomology with respect to the horizontal
map QW according to (3.9). This is the hybrid generalization of the (dual)
Koszul complex familiar from Landau-Ginzburg models [30, 31]. Higher dif-
ferentials are constructed from (3.13) using the standard zig-zag procedure
[32]. An important fact is that the spectral sequence defined above is ensured
to converge, since s ≤ b = dimB.

An apparent issue in computing the spectral sequence is that, due to the
non-compactness of Y, the cohomology groups H•

Q0

(Y,∧rTY) are generi-

cally infinite dimensional. This issue can be circumnavigated due to the fact
that Q-cohomology commutes with the left-moving N = 2 algebra, and we
can use the generators JL and T to introduce additional gradings on the
space of operators (3.7). This is why it is convenient to choose cohomology
class representatives that admit well-defined charges. In particular, as we
discussed above, the left-chirality condition 2h = q is already automatically
imposed by Q-cohomology, therefore it suffices to restrict our attention to
the grading q corresponding to JL. In practice, this means that we can com-
pute the spectral sequence at a fixed value of q, and the groupsH•

q(Y,∧rTY)
are then finite-dimensional. A prescription for how to compute these graded
cohomology groups in terms of cohomology groups on the base is given in
appendix C of [14].

4. B-twisted N = (2, 2) hybrid models and S2 correlators

In this section we turn to the study of the B model for hybrid theories. The
vector and axial R-charges act on the component fields as

φα ψα
+ ψα

− Fα

U(1)V qαV qαV − 1 qαV − 1 qαV − 2

U(1)A qαA qαA − 1 qαA + 1 qαA

(4.1)

These are related to the left- and right-moving R-charges by

U(1)V = U(1)L +U(1)R , U(1)A = −U(1)L +U(1)R .(4.2)

From (2.21) it follows that in the models under study, qαA = 0 and qαV = 2qα.
The B-twist [28] of the theory amounts to twisting the Euclidean rotation
group U(1)E by U(1)A. There are two options for performing such a twist,
namely

B(+) : U(1)′E = U(1)E +
1

2
U(1)A , B(−) : U(1)′E = U(1)E − 1

2
U(1)A ,

(4.3)
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and for definitiveness we choose the twist denoted B(+). Under this choice,
the spinors ε± become scalars,9 and the matter fermions transform as sec-
tions of the bundles

ψα
+ ∈ Γ(KΣ ⊗ x∗(TY)) , ψα

− ∈ Γ(KΣ ⊗ x∗(TY)) ,

ψ
α
+ ∈ Γ(x∗(TY)) , ψ

α
− ∈ Γ(x∗(TY)) .

(4.4)

There exists a family of nilpotent operators δζ , parametrized by a phase ζ,10

which is defined by setting

δζ = δ|ε̄+=ζε̄− .(4.5)

This differential corresponds to the operator Qζ in (3.2). Since we showed

in the previous section that the cohomology of Qζ does not depend on ζ as
long as ζ �= 0, we choose in this section to restrict our attention to ζ being
a phase. The SUSY transformations generated by δζ acquire a very simple
form if we redefine the fields as follows11

κᾱ = ψ
α
+ − ζψ

α
− , θα = ψ

α
+ + ζψ

α
− , ρα = ψα

z̄ dz̄ + ζ−1ψα
z dz ,

F ′α = ζ−1Fα , F
′ ᾱ

= ζF
ᾱ
.

(4.6)

In terms of these, from (2.18), we obtain

δζx
α = 0 δζ x̄

ᾱ = ε̄−κ
ᾱ

δζρ
α
μ = 2iε̄−∂μx

α δζθ
ᾱ = 2ε̄−F

′ ᾱ

δζF
′α = 2iε̄−ε

μν∂μρ
α
ν , δζF

′ ᾱ
= 0 ,

δζκ
ᾱ = 0 ,

(4.7)

where we defined the symbol εμν as εzz̄ = −εz̄z = 1. The B(+)-twisted
Lagrangian, in terms of the fields (4.6), reads

LK = −gαβ̄

(
hμν∂μx

α∂ν x̄
β̄ +

i

2
hμνραμDνκ

β̄ + iεμν∂νρ
α
μθ

β̄

)
+

1

4
εμνRαᾱββ̄ρ

α
μρ

β
νκ

ᾱθβ̄

9The B(−)-twist is equivalent and, in such case, ε± become scalars.
10In [33], ζ is denoted eiβ and fixed to β = π. δζ is also the same differential

denoted ∂f in [34].
11The Fermi field ρα is not to be confused with the field ρα in (2.23). As men-

tioned before, the latter will make no significant appearance in our computations.
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+ gαᾱF
′αF

′ ᾱ
+

1

2
gαᾱΓ

α
βγε

μνρβμρ
γ
νF

′ ᾱ
+

1

2
gαᾱΓ

ᾱ
β̄γ̄F

′ακβ̄θγ̄

+
1

4
gαᾱΓ

α
βγΓ

ᾱ
β̄γ̄ε

μνρβμρ
γ
νκ

β̄θγ̄ ,

LW =
1

2

(
ζF ′α∂αW +

ζ

2
∂α∂βWεμνραμρ

β
ν+ζ−1F

′ ᾱ
∂ᾱW+

ζ−1

2
∂ᾱ∂β̄Wκᾱθβ̄

)
.

(4.8)

From the above expressions it is easy to see that the net effect of keeping
the phase ζ arbitrary is equivalent to a rescaling of the superpotential

W → ζW , W → ζ−1W .(4.9)

This is a good point to comment on the geometric interpretation of the
differential δζ . The local operators that are candidates to be δζ-closed are

O(ω) = ωα1,...,αs

β̄1,...,β̄r
κβ̄1 · · ·κβ̄rθα1

· · · θαs
,(4.10)

where we defined θα := gααθ
α. While the structure is precisely the same

as in (3.7), here we are using a different basis which does not have a well
defined vector R-charge. The operators O(ω) can be identified with global
sections of the sheaf of polyvector fields

PV :=
⊕
s,r

PV s,r =
⊕
s,r

Ω0,r ⊗ ∧sTY =
⊕
s,r

∧s
rTY ,(4.11)

via the mapping

κα → dxα , θα → ∂α .(4.12)

Then, we identify the operators (4.10) with

O(ω) → ωs
r := ωα1,...,αs

β̄1,...,β̄r
dx̄β̄1 · · · dx̄β̄r ⊗ ∂α1

· · · ∂αs
∈ PV (Y) := Γ(Y, PV ) .

(4.13)

Upon acting on these, the differential δζ is identified with

δζ → ∂ − ζιdW ,(4.14)

where the operator ιdW acts as

ιdW ◦ ωs
r =

s∑
l=1

(−1)r+l+1∂αl
Wωα1,...,αs

r ∂α1
∧ · · · ∧ ∂̂αl

∧ . . . ∂αs
(4.15)
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= s(−1)r∂αWωα,α1,...,αs−1
r ∂α1

∧ . . . ∧ ∂αs−1
.

The charge orthogonal to δζ has instead the following interpretation

δ̃ζ := δ|ε̄+=−ζε̄− → [Λ, ∂ − ζιdW ] = [Λ, δζ ] .(4.16)

The operator Λ is defined as the contraction with the inverse of the Kähler
(symplectic) form on Y, and it acts on ωs

r as

Λ ◦ ωs
ᾱ1,...,ᾱr

dx̄ᾱ1 ∧ · · · ∧ dx̄ᾱr = r(−1)r−1gαᾱωs
ᾱ,ᾱ2,...,ᾱk

dx̄ᾱ2 ∧ · · · ∧ dx̄ᾱk .

(4.17)

The space PV (Y) = ⊕q,pPV q,p(Y) admits a Z-grading (see for example
[34]), given by

deg(ωs
r) = r − s , ωs

r ∈ ∧s
rTY .(4.18)

In particular, δζ shifts deg(ωr
s) by +1.

4.1. Localization on S2

We now turn to the derivation of the formula for the closed B-twisted cor-
relators of local fields via S2 localization. This can be interpreted as the
hybrid generalization of the LG correlators from [27]. We remark that this
result has been first derived in [35] – although in a slightly different fashion
than the one we will present here – as well as in [36]. In the latter work,
however, the result is valid only for the non-degenerate case, as it involves
determinants of the Hessian of W . This is not the case for the models we
study in this work whenever Y is non-compact, that is, whenever X and W
are not trivial. Nevertheless, we find instructive and useful to re-derive this
result from our perspective. This will also pay off in section 6 when we will
perform an analogous localization computation for (0,2) models, where our
result is instead new.

First, let us note that the kinetic term LK in the Lagrangian is δζ-exact,
as

ε̄−LK = δζ

(
i

2
gαᾱh

μνραμ∂ν x̄
ᾱ +

1

2
gαᾱ

(
F ′α +

1

2
εμνΓα

βγρ
β
μρ

γ
ν

)
θᾱ
)

.(4.19)

In particular, the term

δζ

(
i

2
gαᾱh

μνραμ∂ν x̄
ᾱ

)
= −ε̄−gαᾱ

(
hμν∂μx

α∂βx̄
ᾱ +

i

2
hμν ρ̃αμDνκ

ᾱ

)
(4.20)
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is positive-definite, and we can use it to localize the action by regarding, at
a first stage, the fields F ′α, F

′ ᾱ
and θᾱ as background fields. This means

that we first localize regarding only the fields {κᾱ, xα, x̄ᾱ, ρα} as dynamical.
The solution to the saddle point equations

δζκ = δζρ = 0(4.21)

on Σ = S2 is simply given by xα = const. The classical action evaluated at
xα = const reduces to

S0[F, θ] :=

∫
Σ
d2z(LK + LW )|x=const(4.22)

=

∫
Σ
d2z

(
gαᾱF

′αF
′ ᾱ

+
1

2

(
ζF ′α∂αW + ζ−1F

′ ᾱ
∂ᾱW

))
.

The 1-loop determinant coming from the expansion of (4.20) over non-zero
modes is actually a numerical constant that we can ignore. While the zero
modes of xα are weighted by S0[F, θ], we have to be careful with the zero
modes of the fermions κᾱ (on S2, ρ has no zero modes). The usual trick (see
for example [37]) is to use the classical action evaluated at the zero modes
of κᾱ0 to absorb them. Thus, the path integral reads∫

DF ′DF
′Dθ

∫
Y
d2x

∏
α

∫
dκᾱ0 e

S[F,θ] ,(4.23)

and it is weighted by

S[F, θ] :=

∫
Σ
d2z(LK + LW )|(x=const,κᾱ

0 )
= S0[F, θ](4.24)

+

∫
Σ
d2z

(
ζ−1

4
∂ᾱ∂β̄Wκᾱ0 θ

β̄

)
.

The integral over Dθ is to be interpreted as an integral over the θα zero
modes, and the integration over F ′α, F

′
can be performed by means of a

change of variables. The result, using the geometric interpretation outlined
in the previous section, is the following formula for the correlators

〈O(ω)〉S2 :=

∫
Y
d2x

∫
(
∏
α

dθ0α)(
∏
α

dκᾱ0 ) exp
(
− v

4
‖dW‖2(4.25)

+ v
ζ−1

4
∇ᾱ∂β̄Wκᾱ0 θ

β̄
0

)
O(ω) ,
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where v is the worldsheet volume and ‖dW‖2 := gαα∂αW∂̄αW . The last

step is the integration over the fermion zero modes. If ω ∈ PV r,s(Y), we

have the equality∫
Y
d2x

∫
(
∏
α

dθ0α)(
∏
α

dκᾱ0 )O(ω) =

∫
Y
ΩY ∧ (ΩY�ωs

r) ,(4.26)

where ΩY� is defined as

ΩY�ωs
r := (ΩY)α1···αsαs+1···αd

ωα1···αs

β̄1···β̄r
dx̄β̄1 ∧ · · · ∧ dx̄β̄r ∧ dxαs+1 ∧ · · · ∧ dxαd .

(4.27)

Some comments about this formula are in order. The contributions of the

Fermi fields to the measure are identified with sections of the bundles∏
α

dθ0α ∈ Γ(KY) ,
∏
α

dκᾱ0 ∈ Γ(K
∗
Y) .(4.28)

The condition for the measure to be well-defined is then KY ⊗K
∗
Y

∼= KY ⊗
KY

∼= OY since OY always has a nowhere vanishing global section. This

condition was obtained also in [18]. For the case at hand, where we want to

consider Y being non-compact, the holomorphic volume form ΩY is defined

only up to a multiplicative non-vanishing holomorphic function on Y. We

remedy this ambiguity by requiring

ΩY ∧ ΩY = K̂n , K̂ = igαᾱdx
α ∧ dx̄ᾱ .(4.29)

Finally, the S2 correlators can be written as

〈O(ω)〉S2 =

∫
Y
ΩY ∧ (ΩY�(eL̂ωs

r)) ,(4.30)

where we introduced the operator

L̂ := −v

4
‖J‖2 + v

ζ−1

4
∂J

α
∂α , J

α
∂α := gαα∂αW∂α ∈ PV 1,0(Y) ,(4.31)

whose exponential acts by the usual wedge product on polyvector fields

eL̂ = e−
v

4
‖J‖2

∑
r

ζ−rvr

4rr!

(
∂J

α
∂α

)r
.(4.32)
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We remark that the correlator (4.30), when Y is compact and smooth (thus
L̂ ≡ 0), reduces to the well known expression for a NLSM with target the
CY manifold Y (see for example section 16 of [38]).

Although the formula (4.30) is formally a one-point function, it is of most
interest when interpreted as a three-point function, that is, by expressing
the insertion as the product O(ω) = O(ω1)O(ω2)O(ω3), where O(ω1,2,3) ∈
H•

Q
(Y,∧•TY). In particular, the correlators must be invariant under the

chiral symmetries. From the expression (4.25), it follows that the measure
has charge −c/3 under U(1)L, thus the correlators vanish unless

q(O(ω1)) + q(O(ω2)) + q(O(ω3)) =
c

3
.(4.33)

Invariance of the formula (4.25) under U(1)A, under which the measure has
charge 0, instead implies that O(ω) ∈ ⊕b

p=0PV p,p(Y).

4.2. Properties of S2 correlators

The formula for the S2 correlators we derived in the previous section enjoys
a series of properties that we will argue for in this section. We remark that
some of these properties have already been shown in [29] and [39].

Let us start by showing that (4.30) is independent of the choice of rep-
resentatives. Consider the following integral on S2

〈δζO(ω)〉′S2 :=

∫
Y
ΩY ∧ (ΩY�δζω) , ω ∈ PV p,q

c (Y) .(4.34)

In order for the integral to be well-defined, we take O(ω) to be a compactly
supported (we only need it to be compactly supported alongX), nonsingular,
homogenous (in degree) polyvector field. Since ∂ω ∈ PV p,q+1(Y) and ιJω ∈
PV p−1,q(Y), then 〈δζO(ω)〉′S2 = 0 unless q + 1 = p = d or p− 1 = q = d. If
p = d+ 1, ω vanishes identically, while in the former case we are left with

〈δζO(ω)〉′S2 =

∫
Y
ΩY ∧ (ΩY�∂ω) =

∫
Y
dΩY ∧ (ΩY�ω) = 0 ,(4.35)

where the last equality follows from our assumptions that ω has no poles
on Y and that the integral is convergent. By a direct computation one can
show that

[δζ , e
L̂] = δζ(e

L̂) + eL̂δζ − eL̂δζ = 0 .(4.36)
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Hence

〈δζO(ω)〉S2 = 〈δζ(eL̂O(ω))〉′S2 = 0 ,(4.37)

for any polyvector field ω, concluding the proof that the correlators do not
depend on the choice of representatives.

A second property of 〈O(ω)〉S2 is that it is independent of small varia-
tions of v whenever ω is in δζ-cohomology. This is expected for a topological
field theory and it follows from the identity

exp

(
−v + δv

4
‖J‖2 + ζ−1 (v + δv)

4
∂J

α
∂α

)
= eL̂ + δζ(α̃) ∧ eL̂ ,(4.38)

where

α̃ = δv
ζ−1

4
J
α
∂α .(4.39)

Now, since all the dependence on v is contained in L̂, it follows that

〈O(ω)〉S2 |v+δv = 〈O(ω)〉S2 |v + 〈δζ(O(α̃)) ∧ eL̂O(ω)〉′S2(4.40)

= 〈O(ω)〉S2 |v + 〈δζ(O(α̃) ∧ eL̂O(ω))〉′S2

= 〈O(ω)〉S2 |v ,

where the last equality follows from (4.37).
Next, we are going to show that 〈O(ω)〉S2 is independent of variations

δgαβ̄ of the metric on Y such that δgαβ = δgᾱβ̄ = 0, i.e., our B model
correlators are independent of variations of the Kähler moduli of Y, as
expected. Let, as before, ω ∈ PV s,s(Y) be a homogeneous polyvector field
in δζ-cohomology. Then

ΩY�(eL̂ω) = e−
v

4
‖J‖2

ζ−r
(v
4

)r (−1)rs+
r(r−1)

2

r!

(4.41)

× (ΩY)γ1...γd
∂β1

J
γ1 ∧ · · · ∧ ∂βr

J
γr
ω
γr+1···γd

β̄r+1···β̄d
dz̄β̄1 ∧ · · · ∧ dz̄β̄d ,

where s = d−r. Moreover, notice that the only dependence of L̂ on the metric
is in the form of the inverse metric gαβ . The variation δgαβ̄ in exp(L̂) can
be split in two pieces, namely the variation of the multiplicative exponent

δ(e−
v

4
‖J‖2

) = −v

4
δgαβ̄J β̄Jαe

− v

4
‖J‖2

,(4.42)
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and the variation of the ∂J
α
∂α factors

δ(∂J
α
∂α) = ∂(δgαβ̄J β̄)∂α .(4.43)

The full variation of (4.41), after a slightly lengthy computation, is given by

δ(ΩY�(eL̂ω)) = ζ−1v

4
ΩY�

(
eL̂δζ(Θ) ∧ ω

)
(4.44)

=
ζ−1v

4
ΩY�

(
eL̂δζ(Θ ∧ ω)

)
,

where

Θ := δgαβ̄J β̄∂α ∈ PV (1,0)(Y) .(4.45)

Thus, the variation of the full correlator is

δ〈O(ω)〉S2 =
ζ−1v

4
〈δζO(Θ ∧ ω)〉S2 = 0 .(4.46)

Finally, we want to comment on the independence of the parameters
in W . While we expect 〈O(α)〉S2 to depend holomorphically on the super-
potential parameters, (4.30) is certainly not explicitly holomorphic. Let us
consider a variation J → J + δJ . A direct computation shows

eL̂
∣∣
J+δJ

= eL̂ + δζ(�) ∧ eL̂ ,(4.47)

where

� =
ζ−1v

4
δJ

α
∂α ∈ PV (1,0)(Y) .(4.48)

Thus, this variation produces a δζ-exact form, which gives a vanishing con-
tribution to the correlator, and the correlators do not depend on the anti-
holomorphic parameters in W .

4.3. Reduction to integral over B and residue formula

In this section we are going to analyze more closely the integral arising in the
S2 correlators. Our goal is to show that such integral reduces to an integral
over B, and we will compare it with the residue formula given in [39]. Given
the factor exp(−v‖dW‖2/4) in (4.30) and the assumption of polynomial
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growth along X, the integration over the fiber coordinates is absolutely
convergent. Thus, it should be possible to perform such integration and
obtain 〈O(ω)〉S2 as an integral over B. In this section we will push this line
of reasoning a bit further to derive a residue formula for (4.30).

Let us consider ω =
∑d

p=0 ωp, where ωp ∈ PV p,p(Y), as appropriate for
a non-vanishing integral. This is an element in δζ-cohomology if and only if

∂ωp = ζιJωp+1 , p = 0, . . . , d− 1 .(4.49)

Let us define the collection of functions

fr := (−1)r
dr−1

dar−1
a−1e−a v

4
‖J‖2

∣∣∣
a=1

,(4.50)

for r ∈ Z>0. These satisfy the following properties

∂fr =
(v
4

)r
e−

v

4
‖J‖2‖J‖2r−2∂(‖J‖2) , fr+1 = rfr −

(v
4

)r
‖J‖2re− v

4
‖J‖2

.

(4.51)

Let us also define the collection of polyvector fields As−1 ∈ PV s,s−1(Y) by

As−1 :=

(
J
α
∂α

‖J‖2
)(

∂J
α
∂α

‖J‖2
)s−1

,(4.52)

for s = 1, . . . , d− 1, which instead satisfy

∂As−1 = ιJAs , ∂Ad−1 = 0 .(4.53)

It is possible to show that

(v
4

)p 1

p
e−

v

4
‖J‖2

(∂J
α
∂α)

p = ∂fpAp−1 +
(v
4

)p 1

p
e−

v

4
‖J‖2‖J‖2p∂Ap−1 .

(4.54)

With this property we can write(v
4

)p 1

p
e−

v

4
‖J‖2

(∂J
α
∂α)

pωd−p = ∂ (fpAp−1ωd−p)− fp∂Ap−1ωd−p(4.55)

+ fpAp−1∂ωd−p

+
(v
4

)p 1

p
e−

v

4
‖J‖2‖J‖2p∂Ap−1ωd−p
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= ∂ (fpAp−1ωd−p)−
1

p
fp+1ιJApωd−p

+ ζfpAp−1ιJωd−p+1 .

Now, let us define

Bp := −ζ−p

p!
fp+1ιJApωd−p , Cp :=

ζ−p+1

(p− 1)!
fpAp−1ιJωd−p+1 ,(4.56)

for p = 0, . . . , d, with C0 := 0 and Bd := 0. It is possible to show that12

Bp + Cp+1 = 0 , p = 0, . . . , d− 1 .(4.57)

Putting all together, we obtained the expression

eL̂ω = ∂

⎛⎝ d∑
p=1

ζ−p

(p− 1)!
fpAp−1ωd−p

⎞⎠ .(4.58)

Thus, a generic correlator can be written as

〈O(ω)〉S2 =

∫
Y\B

d (ΩY ∧ (ΩY�Ξ(ω))) ,(4.59)

where the polyvector

Ξ(ω) :=

d∑
p=1

ζ−p

(p− 1)!
fpAp−1ωd−p ∈ PV d,d−1(Y)(4.60)

is meromorphic, and (4.59) is an integral over Y \ B, where B is the zero
section of Y and is the singular loci of Ξ. By Stokes’ theorem, the integral
reduces to an integral over M = ∂(Y \ B), where M has the structure
of a fiber bundle over B, say M : S → B, and the fiber is the sphere
S = S2d−2b−1. Hence

〈O(ω)〉S2 =

∫
B
π∗(ΩY ∧ (ΩY�Ξ(ω))) ,(4.61)

12Here we use the following property: given α ∈ PV p,q(Y) and β ∈ PV r,s(Y),

if we write them in an explicit basis, in terms of fermions, α
[p]
[q]η̄

[q]χ̄[p], etc., then we

have ιJ(αβ) = ιJ(α)β + (−1)p+qαιJβ.
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where π∗(ΩY ∧ (ΩY�Ξ(ω))) is defined by integration over the fiber coordi-
nates by

π∗(ΩY ∧ (ΩY�Ξ(ω)))
∣∣
p∈B =

∫
π−1(p)

ΩY ∧ (ΩY�Ξ(ω)) .(4.62)

We can interpret (4.61) as our residue formula, and it coincides with the
one presented in [39]. As a consistency check we can see that in the case of
a pure LG model, where B = pt. and Y = Cd, (4.61) reduces to an integral
over S2d−1. By a well-known theorem in residue theory (see, for example,
chapter 5 of [40]) (4.61) can be expressed as an integral of a holomorphic
form in Cd \ ∪α{Jα = 0} over the torus {|Jα| = εα} (recall that, for a LG
model, the δζ-cohomology collapses to degree (0, 0), i.e., the relevant ω’s are
just holomorphic functions). This is exactly the formula derived in [27]. A
detailed derivation of this can also be found in [34], where our function fd,
at large v plays the role of the cut-off function introduced in [34].

As a final comment, we were not able to reduce our formula to an in-
tegration over a cycle in Y \ B (and neither are the authors of [39]). More
importantly perhaps, it seems challenging to implement (4.61) for explicit
calculations. For the purpose of actually finding the value of the integrals in
specific examples, or to be more precise, the dependence of the correlators
on the parameters in W , we present in the next section a proposal for a
transformation law.

4.4. A transformation law for hybrid integrals

The transformation law for local residues is well known (see chapter 5 of
[40]). This property is very useful for computing correlators in N = (2, 2)
LG models, since they can be expressed in terms of residue integrals [27].
Let us review how this transformation law can be used to compute S2 B-
twisted correlators in LG models, from the formula of [27]. Let us consider
the LG model (Cn,WLG) (this considerations also apply to LG orbifolds
(Cn,WLG,Γ) where Γ is a finite group), where φ1, . . . , φn are coordinates on
Cn. Then, there exists a n× n matrix B j

i , whose entries are polynomials in
the φi’s, such that

B j
i Jj = Ti , Ti := φai

i , ai ∈ N>0 ,(4.63)

where we defined Jj := ∂jWLG. The matrix B is not unique (and neither
are the integers ai), but the residue is not affected by this choice. By con-
struction, B contains all the dependence on the parameters in WLG, which
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we collectively denote ξ. Then we can write

det(B) =
∑
t

ht(ξ)mt ,(4.64)

where ht(ξ) are rational functions in ξ and mt are monomials in the φi’s.
The local operators spanning the (c,c) ring of the theory are given by
C[φ1, . . . , φn]/ < J >, where < J > is the Jacobian ideal [25]. Let O(ω) ∈
PV 0,0(Cn) be an element of the (c,c) ring. Then, using the local transfor-
mation law, LG S2 correlators can be written as

〈O(ω)〉LGS2 =
∑
t

ht(ξ)Res

(
mtω∏
j Tj

)
=
∑
t

ht(ξ)〈O(mtω)〉TS2 ,(4.65)

where we denoted 〈O(mtω)〉TS2 the correlators obtained by replacing Ji with
Ti. These do not contain any dependence on ξ and are straightforward to
evaluate. The proof of this transformation property for the residue formula,
given in [40], relies on the property that the residue integral is explicitly
expressible as a holomorphic integral over a cycle. As we pointed out above,
we do not know how to generalize this property to the hybrid case, despite
the fact that formally the hybrid correlator has no dependence on the anti-
holomorphic parameters. However, we conjecture that a similar property also
holds in the more general hybrid setting. In the remainder of this section we
are going to provide a non-rigourous argument in favor of the existence of
such a property for the general hybrid S2 correlator.

Let ω ∈ PV p,p(Y), and we do not need to require that ω is an element
in δζ-cohomology for the following argument to hold. This specific form of
the insertion selects one term in the expansion (4.32), and the correlator
(4.30) reads

〈O(ω)〉S2 =

(
vζ−1

4

)d−p ∫
Y
ΩY ∧

(
ΩY�

(
e−

v

4
‖J‖2

(∂J
α
∂α)

d−pω
))

.(4.66)

Let us now assume that there exists B ∈ Γ (Hom(T ∗
Y, T ∗

Y)) = Γ (TY ⊗ T ∗
Y)

such that

Tα = B β
α Jβ ∈ Γ(T ∗

Y)(4.67)

does not depend on the parameters ξ of W and B = {Tα = 0} ⊂ Y, that is
the potential condition holds for T as well. We can interpret the inverse of
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the Kähler metric g−1 to be a section of Hom(T
∗
Y, TY) and write

‖J‖2 = J(g−1J) .(4.68)

Let us define the metric h on Y by

g−1 = Bth−1B ,(4.69)

where Bt ∈ Γ (Hom(TY, TY)) denotes the transpose of B (and B ∈
Γ
(
Hom(T

∗
Y, T

∗
Y)

)
). We can then express the operator L̂ in terms of the

metric h as

L̂ = −v

4
‖T‖2h + v

ζ−1

4
(Bt)βα∂T

α
∂β ,(4.70)

where we emphasized that ‖J‖2 = ‖T‖2h is contracted using the metric h

and T
α
= hαᾱT ᾱ. Since Bt ∈ Γ(T ∗

Y ⊗ TY), the wedge product Bt ∧ Bt is

well-defined, as is the tensor

M(B) := ΩY�Bt ∧ . . . ∧ Bt︸ ︷︷ ︸
(d−p)-times

∈ Γ(Y,∧dT ∗
Y) .(4.71)

Finally, by plugging in these definitions in (4.66) we obtain

〈O(ω)〉S2 =

(
vζ−1

4

)d−p ∫
Y
ΩY ∧

(
M(B)�

(
e−

v

4
‖T‖2

(∂T
α
∂α)

d−pω
))

.

(4.72)

Although the above expression appears to be merely a rewriting of the origi-

nal correlator (4.66), notice that all the ξ dependence is now contained in the

metric h and the tensor M(B). Next, we wish to make use of the property

that the S2 correlators do not depend on variations of the Kähler metric, as

we showed above. This implies that we can choose g in (4.69) such that h

has no dependence on ξ. In particular, we can choose h to be diagonal and

constant over Y. The tensor M(B) can be written in terms of minors of B.
Let us make this more explicit. Let us define the matrix M β

α := ∂αJ
β
and

let Mα1,...,αp

β1,...,βp
be the completely skew-symmetric tensor where each compo-

nent is given by the determinant of the minor of M obtained by removing

the columns ᾱ1, . . . , ᾱp and the rows β1, . . . , βp. This can be expressed as a
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sum of products

Mᾱ1,...,ᾱp

β1,...,βp
=
∑
[γ]

(∂T )ᾱ1,...,ᾱp
γ1,...,γp

(Bt)
γ1,...,γp

β1,...,βp
.(4.73)

In a patch, we can write (ΩY)α1,...,αd
= fYεα1,...,αd

, with fY a nowhere
vanishing holomorphic function. Then (4.72) can be written more explicitly
as

〈O(ω)〉S2 =

(
vζ−1

4

)d−p∑
[γ]

∫
Y
d2dxf2

Ye−
v

4
‖T‖2

(Bt)
γ1,...,γp

β1,...,βp
(∂T )ᾱ1,...,ᾱp

γ1,...,γp
ω
β1,...,βp

ᾱ1,...,ᾱp
.

(4.74)

The determinants (Bt)
γ1,...,γp

β1,...,βp
can be expanded, similarly to (4.64), as

(Bt)
γ1,...,γp

β1,...,βp
=
∑
t

ht(ξ)Mt ,(4.75)

where Mt are monomials in the local coordinates of Y, and the coefficients
ht(ξ) are rational functions of ξ. Thus, (4.74) is expressed as a sum

〈O(ω)〉S2 =
∑
t

ht(ξ)〈MtO(ω)〉TS2 ,(4.76)

where each of the correlators 〈MtO(ω)〉TS2 are computed with respect to T
and do not depend on the parameters ξ. We have arrived, at least formally,
at an analogous situation as in the LG case above.

We conclude by commenting where our argument fails to provide a rig-
orous proof of the conjectured transformation law. Despite the fact that
(4.72) appears to be simply a rewriting of (4.66), it implicitly assumes that
the section B exists and that the map (4.69) is invertible, but det(B) is in
general a non-trivial function on Y, hence it can vanish. Nevertheless, we
believe that a rigorous proof should exist, and that the argument presented
here is sufficiently close to it for our purposes.

5. Main example: the octic hybrid

In this section we apply the techniques developed above to a non-trivial
example. Let us consider the hybrid model defined by the geometric data
Y = tot

(
O(−2)⊕O⊕3 → P1

)
and C∗

V -action with weights qi = 1
4 , i =
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1, . . . , 4, acting on the fiber coordinates and fixing the P1 base. The orbifold
action Γ = Z4 introduces 3 additional twisted sectors, which will not be
relevant for our analysis. The most general superpotential compatible with
this structure is given by

W =

4∑
t=0

S[2i]F[4−t](φ
a)(φ1)t ,(5.1)

where S[p] ∈ H0(P1,O(p)) and F[q] is a homogeneous polynomial of degree
q in the variables φa, a = 2, 3, 4. This model inherits its name from the
geometric phase of the corresponding 2-parameter GLSM, which in the large
radius phase describes an octic hypersurface in the toric resolution of P4

11222.
Specifically, we choose a one-dimensional parameter subspace of the

above superpotential

W =
1

8
(x81 + x82)(φ

1)4 +
1

4
(φ2)4 +

1

4
(φ3)4 +

1

4
(φ4)4 − ψx1x2φ

1φ2φ3φ4 ,

(5.2)

where [x1 : x2] are homogeneous coordinates on B = P1. Let u = x2/x1
and v = x1/x2 be local coordinates on the standard cover U1 = {x1 �= 0}
and U2 = {x2 �= 0} respectively. Just in this section we slightly alter our
notation to α = 0, . . . , d − 1 = 4, so that the base index assumes the value
I = 0 and the fiber coordinates have indices i = 1, . . . , 4. Thus, in the U1

patch we have the (0,2) superpotential13

Ju
0 = u7(φ1

u)
4 − ψφ1

uφ
2
uφ

3
uφ

4
u , Ju

1 =
1

2
(u8 + 1)(φ1

u)
3 − ψuφ2

uφ
3
uφ

4
u ,

Ju
2 = (φ2

u)
3 − ψuφ1

uφ
3
uφ

4
u , Ju

3 = (φ3
u)

3 − ψuφ1
uφ

2
uφ

4
u ,

Ju
4 = (φ4

u)
3 − ψuφ1

uφ
2
uφ

3
u ,

(5.3)

and similarly in the U2 patch

Jv
0 = v7(φ1

v)
4 − ψφ1

vφ
2
vφ

3
vφ

4
v , Jv

1 =
1

2
(v8 + 1)(φ1

v)
3 − ψvφ2

vφ
3
vφ

4
v ,

Jv
2 = (φ2

v)
3 − ψvφ1

vφ
3
vφ

4
v , Jv

3 = (φ3
v)

3 − ψvφ1
vφ

2
vφ

4
v ,

Jv
4 = (φ4

v)
3 − ψvφ1

vφ
2
vφ

3
v .

(5.4)

13This terminology will become clear when we study (0,2) hybrids. Here Ju,v
i :=

∂iW |u,v for the fiber coordinates, while Ju
0 = ∂uW |u and Jv

0 = ∂vW |v for the local
base coordinates.
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Here, φi
u,v = φi|U1,2

indicate the restrictions to the respective patches of the

appropriate sections over the base, which transform according to

φ1
u = v2φ1

v , φa
u = φa

v .(5.5)

It is then easy to verify that (5.3) and (5.4) transform as a section of T ∗
Y.

In particular, we can make use of the fact that the splitting of the geometry

Y = O⊕3 ⊕ Y′, where Y′ = tot
(
O(−2) → P1

)
, induces a similar splitting

for the cotangent bundle

T ∗
Y = O⊕3 ⊕ T ∗

Y′ ,(5.6)

that is, (
Ju
0

Ju
1

)
=

(
−v2 2vφ1

v

0 v−2

)(
Jv
0

Jv
1

)
, Ju

a = Jv
a .(5.7)

The chiral ring

The dimension of the chiral ring for the Z4 orbifold of this hybrid model

has been computed in [14]. However, for our purposes, we need an explicit

representation of the elements of the ring. In this section we will achieve

this by following the prescription outlined in section 3. Before we delve

into the computation, we make a couple of observations which will simplify

considerably our task. First, the GSO projection is onto integral charges,

q ∈ Z, and unitarity bounds further restrict 0 ≤ q ≤ c/3 = 3. Since we can

compute the spectral sequence at fixed value of q, we only need to analyze

the cases q = 0, 1, 2, 3. Second, it is well known that the dimension of the

ring does not depend on the particular form of the superpotential as long as

it does not lead to a singular model. In particular, such choice only affects

the representatives of each cohomology class. Since, as we showed above, our

formula is independent of representatives, we can compute the correlators

for any non-singular W . The simplest choice is to set ψ = 0 in (5.3). As

this computation, although somewhat less explicit, already appeared [14],

we defer the detailed analysis to appendix D, and here we limit ourselves to

a brief summary of the results, keeping in mind that in this sector q → 3−q

corresponds to a CPT transformation.
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At q = 0 we find one state, corresponding to the identity element in the
ring, while at q = 1 the spectral sequence degenerates at the second stage

(5.8)

Er,s
2 :

C3 0

0 C83

01 r

s

The states (5.8) have a geometrical interpretation when the Z4-orbifold of
the hybrid theory is employed for heterotic or type II compactifications.14

These 86 states correspond to complex structure deformations of the K3
fibered CY manifold obtained by blowing up the c = c = 6 LG fiber. The 83
states from the bottom row correspond to polynomial deformations, that is,
deformations of the equation defining the hypersurface. The 3 extra states
from the first row of the spectral sequence correspond to non-polynomial
complex structure deformations [41, 42], that is, deformations that are not
related to parameters in the action (2.12). This fact makes them hard to
study with GLSM techniques, as one lacks the UV description for those, or
with LG techniques, where these parameters appear in twisted sectors. In our
hybrid model, while technically slightly more challenging due to the PV 1,1

component, they appear essentially at the same footing as the polynomial
deformations, and we are able to compute correlators in the ring including
these operators.

5.1. Correlators

In this section we will completely solve the example by evaluating the map
(4.25). As we have seen above, we can qualitatively distinguish between
two types of elements in the (c,c) ring, that is bottom row and first row
operators.15 It turns out that it is technically easier to distinguish correlators
by the numbers of “first row insertions”.

As discussed in section 4.4, we are going to evaluate the map (4.25) by
implementing the proposed hybrid transformation law. The key ingredient

14From a spacetime point of view, these consist of the internal part of the vertex
operators associated to the emission of a scalar field in the 101 component of the
27 of E6.

15We saw in (D.14) and (D.19) that elements involving PV 1,1(Y) operators are
accompanied by appropriate PV 0,0(Y) tails. The term first row operators refers to
the full cohomology classes given by the combination of both operators.
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for achieving this is a section B ∈ Γ(TY ⊗ T ∗
Y) such that

Bα
βJβ = Tα ∈ Γ(T ∗

Y) ,(5.9)

such that T is independent of the parameter ψ and T−1(0) = B, that is, T
satisfies the potential condition as well. An appropriate such section is given
by

T =
(
u25φ13

1
1
2(u

26 + 1)φ12
1 φ13

2 φ13
3 φ13

4

)ᵀ
.(5.10)

The expression of the section B such that (5.9) holds is rather bulky and
unilluminating, and we relegate it to appendix E.

5.1.1. Bottom row correlators Let α = O1O2O3 ∈ Γ(OY), where
O1,2,3 are (c,c) elements of the bottom row type such that q(O1) +q(O2) +
q(O3) = 3. According to the discussion regarding the B ring for this exam-
ple, α will be of the general form

α = ut0(φ1)t1(φ2)t2(φ3)t3(φ4)t4 , tα ≥ 0 ,(5.11)

such that t1 + · · ·+ t4 = 12 and t0 ≤ 2t1. From (5.10) we compute

det ∂T = −2028(19u26 − 150)u24(φ
1
)24(φ

2
)12(φ

3
)12(φ

4
)12 .(5.12)

Thus, the correlators now read

〈α〉S2 =

∫
ΩY ∧ ΩY exp−v/4||T ||2 α detB det(∂T ) ,(5.13)

where ||T ||2 = Tαδ
αβT β = TαT

α
, that is, we used the independence of the

correlators from the metric to set hαβ = δαβ .
Solving this type of integrals exactly proves to be a daunting challenge,

which we are not able to fully overcome. It is possible, however, to perform
the integral over the various phases arg(xα). This will turn out to be enough
to determine the entire dependence of the correlators on the parameter ψ, up
to an unknown constant. While this is easily done for the fiber coordinates,
one has to be careful in considering the exponential factor, as it is not phase
invariant with respect to the base coordinate arg(u). Let us consider the
argument of the exponential

TαT
α
= |u|50|φ1|26+1

4
(|u|52+u26+u26+1)|φ1|24 + |φ2|26 + |φ3|26 + |φ4|26 .

(5.14)



Aspects of (2, 2) and (0, 2) hybrid models 361

We note that the only term which is not phase invariant is 1
4(u

26+u26)|φ1|24.
Now, using the fact that (5.13) is independent of v, we can take the limit
v → 0 and consider the expansion

e−vT
α
Tα =

∞∑
n=0

(−v)n

n!
(T

I
TI)

n =

∞∑
n=0

Fn(|φ|, |u|)(u26 + u26)n(5.15)

=

∞∑
n=0

Gn(|φ|, |u|)(u26n + u26n) ,

where Fn, Gn only depend on the magnitudes |xα| of the coordinates. By
incorporating the full u dependence in (5.13) we obtain the expansion

e−vT
α
Tα

(
u26 − 150

19

)
u24 =

∞∑
n=0

(
Hn(|φ|, |u|)u26n+24 + Ln(|φ|, |u|)u26n−50

)
,

(5.16)

for appropriate functions Hn, Ln. The expansion

detB =
∑

m0,...,m4≥0

fm0,...,m4
(ψ)um0(φ1)m1(φ2)m2(φ3)m3(φ4)m4(5.17)

can be constructed explicitly from the expression of B in appendix E. Con-
sidering the contribution from (5.11) and integrating over arg(φi) we obtain
that the relevant contribution to the correlator is

α detB =
∑

m0,...,m4≥0

fm0,...,m4
(ψ)um0+t0(φ1)24

(
4∏

a=2

(φa)12

)
(5.18)

δm1+t1,24

(
4∏

a=2

δma+ta,12

)
,

where one can check explicitly that m0+t0 ≤ 48. A look at (5.16) shows that
the the integration with respect to arg(u) selects m0 + t0 = 24. Therefore
we have determined that

〈α〉S2 = f24−t0,24−t1,12−t2,12−t3,12−t4(ψ) .(5.19)

In particular, all such functions assume the form

〈α〉S2 =
ψvα

1− ψ8
, 0 ≤vα ≤ 8 ,(5.20)
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where vα is a non-negative integer that depends on the insertion α. The
correlators diverge when ψ8 = 1, which corresponds to a singularity in the
conformal field theory. This singularity appears in the hybrid theory as the
potential condition dW−1(0) = B does not hold for this choice of parameters.

As an example, we can consider the element of charge (3,3) in (D.20),
which can be interpreted as a three-point function as, for example, α =(
u2(φ1)2(φ2)2

) (
u2(φ1)2(φ3)2

) (
u2(φ1)2(φ4)2

)
, which gives

〈detHessW 〉S2 =
1

1− ψ8
.(5.21)

As expected, this is the only possibility for a non-zero correlator in the
undeformed theory at ψ = 0.

5.1.2. First row correlators Next, we tackle the case where α =
O1O2O3, and at least one of the insertions arises from the first-row of the
spectral sequence. In particular, by inspecting the elements of the (c,c) ring

computed above, it follows that α = α1χ1η
0+α0, where α0, α1 ∈ PV 0,0(Y).

Thus, the correlator 〈α〉S2 splits as a sum of two integrals which we can
compute separately. Although α0 /∈ H0(Y,OY), its contribution to the cor-
relator can be nonetheless computed by the methods of the previous section.
Thus, the main novelty here is the α1 contribution.

The correlator 〈α1χ1η
0〉 is determined in terms of the object M0

1, which
we recall is the determinant of the minor of the matrix M = ∂J obtained
by removing the column corresponding to the index α = 0 (from the η0

insertion) and the row corresponding to the index β = 1 (from the χ1

insertion). Then, in this case (4.73) reads

M0
1 =

4∑
k=0

det
0,k

(∂T ) det
k,1

B ,(5.22)

where deti,j indicates the determinant of the minor obtained by removing
the i-th row and the j-th column. In particular, from (5.12) we have that
det0,k(∂T ) = 0 for k = 2, 3, 4. Thus, the sum above reduces to just two
terms, corresponding to

det
0,0

(∂T ) = 13182(u26 + 1)(φ
1
)11(φ

2
)12(φ

3
)12(φ

4
)12 ,

det
0,1

(∂T ) = 28561u25(φ
1
)12(φ

2
)12(φ

3
)12(φ

4
)12 .

(5.23)
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That is, putting all together the full correlator reads

〈α〉S2 =

∫
ΩY ∧ ΩY exp−v/4||T ||2 α1

[
det
0,1

B det
0,0

(∂T ) + det
1,1

B det
0,1

(∂T )

](5.24)

+

∫
ΩY ∧ ΩY exp−v/4||T ||2 α0 detB det(∂T ) .

First, suppose there is only one first-row insertion, that is, say, O1 is

of the form (D.14) or (D.19), while O2,3 ∈ H0
Q
(Y,OY) are bottom row

insertions, again satisfying the charge condition q(O1)+q(O2)+q(O3) = 3.

The general expressions for α0,1 are

α0 =
u7 − u

1 + uu
ut0(φ1)t1+3

4∏
a=2

(φa)ta ,

α1 =
1

(1 + uu)2
ut0(φ1)t1

4∏
a=2

(φa)ta ,

(5.25)

such that

tα ≥ 0 , t0 ≤ 2t1 ≤ 16 , t1 + t2 + t3 + t4 = 9 .(5.26)

The relevant contribution to 〈α0〉S2 , determined again by integrating over

the phases arg(φi), is now given by

α0 detB =

49∑
m0+t0≥−1

∑
m1,...,m4

fm0,...,m4
(ψ)

um0+t0

1 + uu
(φ1)24

(
4∏

a=2

(φa)12

)
(5.27)

× δm1+t1,21

(
4∏

a=2

δma+ta,12

)
,

which, combined with (5.16) and integrating over arg(u), yields

〈α0〉S2 = f24−t0,21−t1,12−t2,12−t3,12−t4(ψ) .(5.28)

For the 〈α1〉 correlator, we need the u dependence of the expansions
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e−vT
α
Tα det

0,0
∂T =

∞∑
n=−∞

H̃n(|φ|, |u|)u26n ,

e−vT
α
Tα det

0,1
∂T =

∞∑
n=0

(
F̃n(|φ|, |u|)u26n+25 + L̃n(|φ|, |u|)u26n−25

)
,

(5.29)

for some appropriate phase-invariant functions H̃n, F̃n, L̃n. Similarly, we rep-
resent the relevant determinants as

det
0,1

B =
∑

m0,...,m4≥0

gm0,...,m4
(ψ)um0(φ1)m1(φ2)m2(φ3)m3(φ4)m4 ,

det
1,1

B =
∑

m0,...,m4≥0

hm0,...,m4
(ψ)um0(φ1)m1(φ2)m2(φ3)m3(φ4)m4 .

(5.30)

Now, after integrating over the fiber arg(φi), we are left with

α1 det
0,1

B =

38∑
m0+t0=0

∑
m1,...,m4

gm0,...,m4
(ψ)um0+t0(φ1)11(φ2)12(φ3)12(φ4)12

× δm1+t1,11

4∏
a=2

δma+ta,12 ,

α1 det
1,1

B =

37∑
m0+t0=0

∑
m1,...,m4

hm0,...,m4
(ψ)um0+t0(φ1)12(φ2)12(φ3)12(φ4)12

×
4∏

i=1

δmi+ti,12 .

(5.31)

Thus, we obtain a contribution from three terms, which reads

〈α1〉S2 = I1g0,11−t1,12−t2,12−t3,12−t4(ψ) + I2g26−t0,11−t1,12−t2,12−t3,12−t4(ψ)
(5.32)

+ I3h25−t0,12−t1,12−t2,12−t3,12−t4(ψ) ,

where the coefficients I1,2,3 are represented by integrals over the magnitudes
|xα|. We see the difficulty with this expression, compared with (5.19) and
(5.28), where the unknown integral can be reabsorbed into a multiplicative
constant. In this case instead it appears that we cannot determine in prin-
ciple the relative coefficients between the various contribution, and thus we
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cannot determine the full dependence on the parameter ψ. However, it turns
out by inspection that all the three contributions to (5.32) vanish separately,
thus 〈α1〉S2 = 0. Finally, we conclude that for one first-row insertion

〈α〉S2 = 〈α0〉S2 .(5.33)

It follows that we can choose a basis A = O1 + O(0)
1 , where16 O1 ∈

H1
Q
(Y, TY ⊕OY), O(0)

1 ∈ H1
Q
(Y,OY) and q(O1) = q(O(0)

1 ), such that

〈AO2O3〉S2 = 0 , ∀O2,3 ∈ H0
Q
(Y,OY) .(5.34)

Explicitly, let

F (1)
a = φa , F (2)

a = φa(φb)2(φc)2 , a �= b �= c .(5.35)

Then, there exists a unique h ∈ C such that

A(q)
a = − 1

(1 + uu)2
F (q)
a χ1η

0 − 1

2

u7 − u

1 + uu
(φ1)3F (q)

a + ψhF (q)
a φ2φ3φ4(5.36)

satisfy (5.34). This simply follows from the fact that the following holds

f24−t0,21−t1,12−t2,12−t3,12−t4(ψ) = ψf24−t0,24−t1,11−t2,11−t3,11−t4(ψ) .(5.37)

Next, we turn to the case of two first row insertions of the form (5.34),
and one insertion from the bottom row O3 ∈ H0

Q
(Y,OY), that is, we study

the correlators

〈A(q1)
a A

(q2)
b O3〉S2 = 〈F (q1)

a F
(q2)
b A2O3〉S2 ,(5.38)

where we defined A by F
(q)
a A = A

(q)
a . The argument above can be repeated

almost identically in this case, the only difference being in the expressions
(5.25). Let us write A = A1χη + A0 + ψC, then the components of the
insertions are given by

α1 = 2F (q1)
a F

(q2)
b O3A1(A0 + ψC) , α0 = F (q1)

a F
(q2)
b O3(A0 + ψC)2 .

(5.39)

16This notation emphasizes that O1 has both a PV 1,1(Y) and a PV 0,0(Y) com-
ponent. Moreover, the spectral sequence degenerates at the second stage, therefore
H1

Q
(Y, •) = H∞

Q
(Y, •).
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The result is that there are only a few non-vanishing correlators, thus we
can present the full list17

F1F2O3 〈A1A2O3〉S2

(φ2φ3φ4)2 1
1−ψ8 + I ′0

ψ8

1−ψ8

u2(φ1)2(φ2)4 ψ6

1−ψ8

u2(φ1)2(φ3)4 ψ6

1−ψ8

u2(φ1)2(φ4)4 ψ6

1−ψ8

u3(φ1)3φ2φ3φ4 ψ4

1−ψ8

(5.40)

We notice that for the first correlator we were not able to determine the
relative coefficient I ′0 between the two contributions.

The last case to consider is for three first-row insertions. Here we find
that all the operators must have q = 1, which we can write

〈A(1)
a A

(1)
b A(1)

c 〉S2 = 〈φaφbφcA3〉S2 .(5.41)

We can simplify the computation by expanding

A3 = (A1χη +A0)
3 + 3ψ(A1χη +A0)

2C + 3ψ2(A1χη +A0)C2 + ψ3C3 ,

(5.42)

and compute the contribution from each term separately. Using (5.34) we
have

〈φaφbφc(A1χη +A0)C2〉S2 = −ψ〈φaφbφcC3〉S2 ,

〈φaφbφc(A1χη +A0)
2C〉S2 = 〈φaφbφcA2C〉S2 − ψ2〈φaφbφcC3〉S2 ,

(5.43)

hence

〈φaφbφcA3〉S2 = 〈φaφbφc(A1χη +A0)
3〉S2 + 3ψ〈φaφbφcA2C〉S2(5.44)

− 5ψ3〈φaφbφcC3〉S2 .

17Here we denote by F1F2O3 the scalar product F
(q1)
a F

(q2)
b O3 without specifying

a, b or q. This completely determines the value of the correlator 〈A(q1)
a A

(q2)
b O3〉S2 ,

but it is up to the reader to extract it from (5.40). For example, F1F2O3 =

(φ2φ3φ4)2 determines the correlator 〈A(1)
a , A

(2)
a , 1〉S2 for any a = 2, 3, 4.
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The only choice for which the correlator does not automatically vanish is
for a �= b �= c, where

〈φ2φ3φ4(A1χη +A0)
3〉S2 = I ′1

ψ9

1− ψ8
+ I ′2

ψ

1− ψ8
,

〈φ2φ3φ4A2C〉S2 = I ′3
1

1− ψ8
+ I ′4

ψ8

1− ψ8
,

〈φaφbφcC3〉S2 = I ′5
ψ6

1− ψ8
.

(5.45)

Thus, the full correlator reads

〈φaφbφcA3〉S2 = (I ′1 + 3I ′4 − 5I ′5)
ψ9

1− ψ8
+ (I ′2 + 3I ′3)

ψ

1− ψ8
.(5.46)

Again, we are not able to determine the various coefficients and therefore
the full dependence of the correlator on the parameter ψ.

5.2. GLSM and comparison with LG phase

A non-trivial test for our formula is provided by the linear model. The B-
twisted GLSM is independent of the Kähler parameters, and the relations in
the B ring can be evaluated at any point in the Kähler moduli space. Thus,
when a hybrid model arises in a phase of a GLSM, our formula must agree
with the computations in other phases.

The hybrid model we have solved in this section arises as a phase of a
(2,2) U(1)2 GLSM [43] with seven chiral superfields with gauge charges

X1 X2 X3 X4 X5 X6 P F.I.

U(1)1 1 1 1 1 0 0 −4 r1

U(1)2 −2 0 0 0 1 1 0 r2

(5.47)

We indicate as x1,...,6 and p the lowest components of the various superfields,
and r1,2 are the F.I. parameters. In the large radius phase, i.e., in the cone
r1, r2 > 0, the model reduces to a NLSM with target space a K3-fibered
CY3 obtained by resolving the singularities of the hypersurface W of degree
8 in the toric resolution of the weighted projective space P4

11222.
The hybrid phase we have studied at length in this section arises in

the cone r1 < 0, r2 > 0, where the D-terms force the field p to acquire
a non-zero vev, as well as determine the irrelevant ideal to be (x5, x6).
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Upon the quotient by U(1)2, this data determines the hybrid geometry
Y = tot

(
O(−2)⊕O⊕3 → P1

)
. Finally, U(1)1 is broken by < p > to a Z4

subgroup, which determines the R-symmetry assignment and the orbifold
quotient.

The Landau-Ginzburg orbifold phase arises instead in the cone r2 <
0, 2r1 + r2 < 0, where both x1 and p acquire non-zero vevs, while the re-
maining fields are massless and interact through the superpotential

WLG =
1

4
(x42 + x43 + x44) +

1

8
(x85 + x86)− ψx2x3x4x5x6 ,(5.48)

which corresponds to our choice (5.2) for the superpotential in the hy-
brid phase. The description for the observables in the chiral ring of LGO
theories is well known: for this example these are the elements in R =
C[x2, . . . , x6]/〈∂WLG〉 which are invariant under the Z8 orbifold. Again, set-
ting ψ = 0 will generate good representatives for the cohomology classes.
Explicitly, a generic element in the ring is of the form

OLG =

(
4∏

a=2

xlaa

)
xl55 x

l6
6 , 2

4∑
a=2

la + l5 + l6 = 8m , m = 0, . . . , 4 .

(5.49)

In particular, it follows that l5 + l6 must be even. The correspondence be-
tween hybrid and LG coordinates is quite straightforward. The elements
(5.49) lift in the GLSM to the operators

OGLSM = pxl11

4∏
a=2

xlaa x
l5
5 x

l6
6 , l1 =

1

2
(l5 + l6) ,(5.50)

which reduce in the hybrid theory, in the patch U1 and identifyng without
loss of generality x5 = u, to

OHY = ul5(φ1)l1
4∏

a=2

(φa)la , l1 +

4∑
a=2

la = 4m , l5 ≤ 2l1 .(5.51)

These indeed coincide with the elements from the bottom row of the spectral
sequence we described above. It is possible to check explicitly that, up to a
numerical factor which we are not able to determine, the following holds

〈O1
HYO2

HYO3
HY〉S2 = 〈O1

LGO2
LGO3

LG〉 = Res

{ O1
LGO2

LGO3
LG

∂2WLG · · · ∂6WLG

}
.(5.52)
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In other words, we find a complete match of the correlators involving bottom
row elements on the hybrid side and untwisted elements on the LGO side.

From the linear model point of view, we can employ the elements (5.50)
at q = 1 (that is, m = 1) to deform the theory by

WGLSM = W 0
GLSM + ψO(q=1)

GLSM ,(5.53)

whereW 0
GLSM is the superpotential of the undeformed theory. For this reason

these deformations are dubbed polynomial. On the other hand, there is no
such interpretation for the elements which arise, in hybrid language, from
the first row of the spectral sequence. There are no good representatives for
these operators in the GLSM defined by (5.47) and thus no simple manner
to correspondingly deform the GLSM action. In fact, as pointed out in [41],
these non-polynomial deformations, from the point of view of this GLSM,
are obstructed as turning them on would prevent the embedding of W in
the toric variety which is the toric resolution of P4

11222.
18

In the LGO phase, the non-polynomial representatives in the (c,c) ring
appear in twisted sectors. In this particular example [41] they have the form

T (1)
a =xa|4〉 , T (2)

a =xax
2
bx

2
c |4〉 , a �= b �= c ,(5.54)

where |4〉 is the (NS,NS) vacuum state in the k = 4 twisted sector. Presently,
to the knowledge of the authors, there is no technique to evaluate correlators
involving these states, except when WLG is an invertible polynomial [24],
which, in our example corresponds to ψ = 0. However, at the LG point, the
theory exhibits a Z8 quantum symmetry, which automatically yields

〈TUU〉 = 〈TTT 〉 = 0 ,(5.55)

where by T we denote an element in (5.54) and by U an element from
the untwisted sector (5.49). The first equation above is reminiscent of the
structure in the hybrid theory in (5.34). Hence, it is natural to conjecture a
correspondence between

A(q)
a ←→ T (q)

a ,(5.56)

18The authors of [41] provide a different GLSM which describes the same mod-
uli space of (2,2) SCFTs, but in which all 86 complex structure deformations are
realized polynomially. It is however unknown which 83 dimensional subspace cor-
responds to the polynomial complex structure deformations of the original model.
As the more general GLSM has a hybrid phase (but no LGO), the methods we are
providing in this work could be of help in answering this question.
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and given the identical structure of (5.54) and (5.35), in particular A ←→
|4〉. We can employ this conjecture to derive predictions on the structure of
both theories. On the one side, the correlators (5.40) provide a prediction
for correlators in the LGO theory involving twisted operators

F1F2U3 〈T1T2U3〉
x22x

2
3x

2
4

1
1−ψ8 + I ′0

ψ8

1−ψ8

x42x
2
5x

2
6

ψ6

1−ψ8

x43x
2
5x

2
6

ψ6

1−ψ8

x44x
2
5x

2
6

ψ6

1−ψ8

x2x3x4x
3
5x

3
6

ψ4

1−ψ8

(5.57)

This agrees with the computation at the Fermat point (ψ = 0) [24, 44],
where

〈T1T2U3〉 = Res

{
F1F2U3

∂2W̃LG∂3W̃LG∂4W̃LG

}
,(5.58)

and W̃LG is obtained from WLG by setting to zero all non-invariant variables
with respect to the orbifold action, which in the k = 4 twisted sector are x5
and x6. For a general quasi-homogeneous WLG, the generalization of (5.58)
is to our knowledge not known, thus our hybrid methods allow us to compute
the full list of correlators.

On the other side, the condition 〈TTT 〉 = 0 predicts that the correlator
(5.46) vanishes, that is

〈φ2φ3φ4A3〉S2 = 0 .(5.59)

6. N = (0, 2) hybrid models and B/2 correlators

We now turn to the analysis of hybrid theories which flow in the IR to (0,2)
SCFTs. These models have been recently introduced in [15], and we begin
this section by reviewing that construction. A (0,2) hybrid model is defined
by the quadruple (Z, E , V, J) where Z is a Kähler manifold and E → Z is a
rank-R holomorphic vector bundle. As before, we take Z to be the total space

of a holomorphic vector bundle Z = tot
(
X

π−→ B
)
, and B to be a smooth

compact manifold. Let xα, α = 1, . . . , d = dimZ, be local coordinates on
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Z, which we split according to the fiber/base decomposition19 as (yμ, φi),
μ = 1, . . . , b = dimB and i = 1, . . . , n = rank X. Similarly to the (2,2) case,
V is a U(1)-action on Z determined by a holomorphic Killing vector on Z.
We again assume it acts vertically on Z, thus defining a good (0,2) hybrid,
and that it induces the decomposition X = ⊕iXi, where φ

i is the coordinate
along Xi, into eigenspaces of positive eigenvalues, that is

V (B) = 0 , V (Xi) = qiXi , qi ∈ Q>0 .(6.1)

The bundle E must respect the bundle structure of Z and must admit a lift
of the V -action. Let λA, A = 1, . . . , R, be a section of E , and let GA

B be
the transition functions for E . If {Ua} is a cover of B, we indicate as λA

a the
restriction of λA to the patch π−1Ua. Then, the bundle E admits a lift of
the V -action if, on the intersection Ua ∩ Ub �= ∅, the following holds

V (λA
a ) = QAλ

A
a , V (λA

b = (Gba)
A
Bλ

B
a ) = QAλ

A
b ,(6.2)

that is, the charge assignment holds globally. We take −1 ≤ QA < 0 and
0 < qi < 1. A class of bundles that satisfy this property are classified by
extensions of the form

0 ⊕N
I=1π

∗O(LI) E π∗EB 0 ,(6.3)

where EB is a rank-(R − N) bundle and O(LI), I = 1, . . . , N , LI ∈ PicB,
are a collection of line bundles over B such that20

V (EB) = −EB , V (O(La
I )) = QIO(La

I ), QI > −1 .(6.4)

Finally, the (0,2) superpotential is specified by a holomorphic section J ∈
Γ(E∗), such that

V (JA) = −QAJA =
∑
α

V (xα)∂αJA , V (xα) = qαx
α ,(6.5)

where the V -action on a section J ∈ Γ(E∗) is determined by the V -action on
sections of E in (6.2). Given the property (6.2) this is a globally well-defined
condition. This construction defines a nonsingular model when the potential
condition J−1(0) = B is satisfied.

19For ease of exposition, we assume that X splits as a sum of line bundles,
although the general case can be treated at the price of a more involved notation.

20Again, the restriction to line bundles is not essential but simplifies notation.
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In order to write the action for the corresponding NLSM we introduce
the (0,2) superfields

Xα = xα +
√
2θ+ψα

+ − iθ+θ
+
∂ z̄x

α ,

Xα
= xα −

√
2θ

+
ψ
α
+ + iθ+θ

+
∂ z̄x

α ,

ΨA = ψA
− −

√
2θ+FA − iθ+θ

+
∂ z̄ψ

A
− ,

Ψ
A
= ψ

A
− −

√
2θ

+
F

A
+ iθ+θ

+
∂ z̄ψ

A
− .

(6.6)

These satisfy the same chirality conditions as in (2.8).
LetK be the Kähler potential on Z and gαβ̄ the associated Kähler metric,

and let HAB be a Hermitian metric on E → Z. The action in components
reads

LK = −gαβ∂μx
α∂μxβ − 2igαβψ

α
+Dzψ

β
+ + 2iHABψ

A
−Dz̄ψ

B
−

+RαBAβ̄ψ
α
+ψ

A
−ψ

B
−ψ̄

β̄
+ ,

LJ = −1

2
ψα
+ψ

A
−DαJA +

1

2
ψ
α
+ψ

A
−DαJA − 1

4
HABJBJA ,

(6.7)

where the covariant derivatives

Dzψ
α
+ = (∂z +

1

2
ωz)ψ

α
+ + ∂zx

βΓα
βδψ

δ
+ ,

Dz̄ψ
A
− = (∂ z̄ +

1

2
ωz̄)ψ

A
− + ∂ z̄x

βΓA
βBψ

B
− ,

(6.8)

are constructed with the Kähler and Hermitian connection, respectively,
and RABαβ is the curvature constructed from the Hermitian connection.
In writing (6.7) we have already imposed the equations of motion for the
auxiliary field.

6.1. Anomalies and the low-energy limit

Given the construction outlined above, the action (6.7) admits an unbroken
U(1)L ×U(1)0R symmetry with charges

fields θ+ Xα ΨA

U(1)0R 1 0 1

U(1)L 0 qα QA

(6.9)
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However, anomaly cancellation plays a much more predominant role in the

context of (0,2) hybrids. In order to probe this IR theory, it is useful again

to construct a left-moving algebra

JL := QAψ
A
−ψ−,A − qαx

αρα ,

T := −∂zx
αρα − ψA

−∂zψ−,A − 1

2
∂zJL ,

(6.10)

corresponding to the generators of the global U(1)L symmetry and of the

energy-momentum tensor. Again, we have introduced the field ρα ≡
gαα∂zx

α + ΓA
αBψ−,Aψ

B
− . Using this structure and free-fields OPEs, it fol-

lows that U(1)L is non-anomalous, that is,

T (z)JL(w) ∼
JL(w)

(z − w)2
+

∂wJL(w)

(z − w)
,(6.11)

when ∑
A

Q2
A −

∑
α

q2α = −
∑
A

QA −
∑
α

qα ,(6.12)

which corresponds to the condition that the anomaly of the (0,2) LG fiber

theory vanishes [30, 45]. Note that this fixes the normalization (and the

sign) of the charges U(1)L in (6.9). The remaining anomaly cancellation

conditions [15] impose constraints on the allowed geometric structure and

are given by

∑
I

QIc1(O(La
I ))− c1(EB)−

∑
i

qic1(Xi) = 0 , c1(E) + c1(TZ) = 0 .

(6.13)

When these are satisfied, it is argued in [15] that the theory flows to a

non-trivial IR fixed point characterized by the left-moving central charge

c = 2(d−R) + 3r , r = −
∑
A

QA −
∑
α

qα ,(6.14)

where r is the level of the u(1)L Kac-Moody (KM) algebra.

Next, we need to determine the IR right-moving R-current. Barring ac-

cidental symmetries [46], this must be given as a linear combination of the
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symmetries (6.9), which we take to be U(1)0R + λU(1)L. This can be deter-
mined by c-extremization [47] of the right-moving central charge

c(λ) =
∑
α

(λqα − 1)2 −
∑
A

(λQA + 1)2 ,(6.15)

which yields

λ =

∑
α qα +

∑
AQA∑

α q
2
α −

∑
AQ2

A

= 1 ,(6.16)

where we used (6.12). Thus, the IR U(1)L ×U(1)R symmetries are given by

fields θ Xα ΨA

U(1)R 1 qα QA + 1

U(1)L 0 qα QA

(6.17)

In particular, this yields the right-moving central charge

c = 3(d−R+ r) .(6.18)

Finally, there is one additional anomaly condition we need to impose, which
reads

ch2(E) = ch2(TZ) .(6.19)

This is the condition that the NLSM constructed above is well-defined.

A comment might be useful at this point. The anomaly cancellation
(6.13) does not require c1(TZ) = 0. However, as familiar from GLSM [48]
and NLSM [49] constructions, it is always possible to recover the condition
that the target space is CY by adding spectators fields to the theory. These
are a massive pair, consisting of a bosonic field S and a Fermi field Ξ such
that V (S) = −V (Ξ) = qS < 1. Let XS → B be a line bundle such that
Z′ := tot (X ⊕XS → B) has vanishing first Chern class, i.e., c1(TZ′) = 0.
Then, we take the spectator fields to transform according to

S ∈ Γ(XS) , Ξ ∈ Γ(X∗
S) .(6.20)

By (6.13) we have that E ′ := E ⊕ π∗X∗
S satisfies c1(E ′) = 0. Now, these

fields interact through the potential
∫
d2zdθ

+
ΞS, which is consistent with
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charge assignment and the bundle geometry. Thus, the theory with specta-
tors defines a UV geometry satisfying c1(TZ′) = c1(E ′) = 0, but since these
fields are massive in the IR and can be simply integrated out, the model
with spectators flows to the same IR theory as the model without them.
We will therefore consider models without spectators satisfying the weaker
topological condition.

6.2. The heterotic topological ring

While in (2,2) SCFTs the B ring is defined by the cohomology of the su-
percharge Q(c,c) = Q− +Q+, as considered in the first part of this work, in
general (0,2) SCFTs we do not have this definition at our disposal, as there is
no left-moving supersymmetry and therefore no operator which can assume
the role of Q−. The cohomology of Q+, which we denote HQ+

, still defines

the (infinite dimensional) ring of right-moving chiral operators, which from
here on we will refer to as the chiral ring. In a large class of theories, it is
possible [50] to define a subring of the chiral ring, where we take a projection
within Q+-cohomology onto elements O that satisfy 2h(O) = q(O), where
h(O) and q(O) are the left-moving weight and U(1)L charge, respectively.
We denote this subset HB/2. It is not hard to show that our theories fall
into this category. Let O1,2 ∈ HB/2, then their OPE takes the general form

O1(z) · O2(0) =
∑
s

cs12Osz
hs−qs/2 ,(6.21)

up to Q+-exact terms, where hs = h(Os) and qs = q(Os). Here the sum on
the RHS is over elements Os ∈ HQ+

. The charges of the allowed operators

in the OPE is fixed by qs = q1 + q2. By applying the standard Sugawara
decomposition for the level r u(1) Kac-Moody (KM) algebra (6.10), we can
write any Os as

Os(z) = eiqsΦ/
√
r(z)Ôs(z) ,(6.22)

where we bosonized the current JL = i
√
r∂Φ and Φ is a free chiral boson,

and

q(Ôs) = 0 , h(Ôs) = hs −
q2s
2r

≥ 0 .(6.23)

This unitary bound, together with the charge integrality requirement of the
(NS,NS) spectrum, yield the desired bound hs ≥ qs/2. Therefore, taking the
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limit z → 0 in (6.21) defines a finite subring of the chiral ring known as the
heterotic topological ring.21

At a conceptual level, the computation of the full heterotic topological
ring is a only a slight generalization of the methods in section 3, thus our
discussion will be brief and focused on highlighting the differences which
arise in the (0,2) setting. Again, we will restrict our attention to the un-
twisted (NS,NS) sector. The supersymmetry transformation of the relevant
supercharge again splits as a sum of two terms Q+ = Q0+QJ and are given
by

[Q0, x
α] = ψ

α
+ , {Q0, ψ

α
+} = i∂zx

α , {QJ , ψ−,A} = JA .(6.24)

Then, a generic Q+-closed element takes the form

O(ω) = ω(x, x)A1...Ar

β1...βs,B1...Bt

ψ
β1

+ · · ·ψβs

+ ψB1

− · · ·ψBt

− ψ−,A1
· · ·ψ−,Ar

.(6.25)

We can compute the corresponding weight and the left-moving charge using
the operators (6.10), and we find

2h(O(ω)) = q(ω) +

t∑
μ=1

(1 +QBμ
)−

r∑
ν=1

QAν
,

q(O(ω)) = q(ω) +

t∑
μ=1

QBμ
−

r∑
ν=1

QAν
.

(6.26)

It follows that the condition 2h(O) = q(O) can only be satisfied if t = 0. In
this case, we can interpret ω in (6.25) as a (0, s)-horizontal form valued in
∧rE . Extending the notation from the tangent bundle case we define

∧r
sE := Ω0,s(Z,∧rE) ,(6.27)

where we assume at most polynomial growth along the fibers. On these the
action of the supercharges is

Q0 : O(ω) �→ (∂ω)(x, x)A1···Ar

β1...βsγ
ψ
γ
+ψ

β1

+ · · ·ψβs

+ ψ−,A1
· · ·ψ−,Ar

,

QJ : O(ω) �→ (−1)sω(x, x)A1...Ar

β1...βs

JA1
ψ
β1

+ · · ·ψβs

+ ψ−,A2
· · ·χ−,Ar

.
(6.28)

21In a geometric phase these rings are also denoted by the term quantum sheaf
cohomology rings.
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In particular, the relevant states are double graded with respect to r and s,

and the supercharge still acts as expected

Q0 : ∧r
sE → ∧r

s+1E , QJ : ∧r
sE → ∧r−1

s E .(6.29)

Therefore, the elements of the topological heterotic ring are computed by a

spectral sequence, as in (3.15), where ∧r
sE replaces ∧r

sTY.

At a technical level instead, the explicit computation of the cohomology

groups H•
Q+

(Z,∧r
sE) can be quite daunting. The class of theories reviewed

here are amenable to such computations, as shown in [15], together with a

method to compute their cohomology. Although the formal formula for the

S2 correlators we are going to derive later in this section is valid for a generic

hybrid model, its applicability, and hence its usefulness, relies on our ability

to compute the heterotic topological ring. Thus, it is natural to restrict our

attention to the class of theories studied in [15].

6.3. B/2-twisted hybrid models and S2 localization

The B/2-twist is defined as in the (2, 2) case by

U(1)B/2 := U(1)R −U(1)L ,(6.30)

where in this setting the role of the left-moving R-symmetry is taken by the

flavor symmetry U(1)L, which is guaranteed to exist by construction in our

models. This does not lead to a contradiction, since we have shown in section

6.1 that anomaly cancellation fixes the sign of the IR flavor symmetry.22

We make again the choice of working with the B(+)-twist. Under this

choice the supercharge Q+ becomes a scalar, and the Fermi fields become

C∞ sections of the following bundles

ψA
− ∈ Γ(KΣ ⊗ x∗E) ,

ψ
A
− ∈ Γ(x∗E) ,

ψ
ᾱ
+ ∈ Γ(x∗TZ) ,

ψα
+ ∈ Γ(KΣ ⊗ x∗TZ) .

(6.31)

22If the sign of the flavor symmetry had not been fixed, we would not have been
able to distinguish between the A/2 and the B/2 twists.
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The action (6.24) of Q+ on the component fields can be identified in the
B/2-twisted theory with a cohomology problem via the map

ψ
α
+ → dxα , ψ−,A → ∂A ,(6.32)

where we write ∂A for a local basis of E . It then follows that the operators
(6.25) are mapped to (0, •) differential horizontal forms valued in ∧•E

O(ω) → ω ∈ Ω0,•(Z,∧•E) .(6.33)

Under this identification, we map the supercharge Q+ to a differential op-
erator

Q+ → δ := ∂ − ιJ ,(6.34)

where ιJ acts as

ιJ ◦ ωs
r = s(−1)rJAω

A,A1,...,As−1
r ∂A1

∧ . . . ∧ ∂As−1
,(6.35)

for any ωs
r ∈ Ω(0,r)(Z,∧sE).

Now we turn to the computation of the S2 correlators via localization.
The procedure is analogous to the (2,2) case, that is, we localize with respect

to a subset of dynamical fields {xα, xα, ψα
+, ψ

α
+}, and we keep the remaining

ones as background fields. The saddle point equations in this case are just

δψα
+ = i∂ z̄x

α = 0 .(6.36)

In contrast to the (2,2) case, this does not imply x = const., but x is allowed
more generically to be a holomorphic map. This in fact implies that world-
sheet instanton corrections to B/2 model correlators cannot be ruled out.
For the purpose of deriving our formula we will ignore such corrections, that
is, we assume that in fact the strongest condition x = const holds. In section
6.6 we will address the question of whether instanton corrections do appear
in our models. However, let us point out here that there are several known
classes of examples in the literature where it has been shown that such cor-
rections are absent in their B/2-twisted versions [19]. With our assumption,
ψα
+ and ψA

− have no zero modes, and integrating over the auxiliary fields
F, F we obtain

〈O(ω)〉S2 :=

∫
Z
d2x

∫
(
∏
α

dψ
α
+)(

∏
A

dψ
A
−)exp

(
−v

4
‖J‖2+v

4
DαJAψ

α
+ψ

A
−

)
O(ω).

(6.37)
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Some remarks about the Fermi measure are in order. The two contributions
are identified with sections of the bundles∏

α

dψ
α
+ ∈ Γ(KZ) ,

∏
A

dψ
A
− ∈ Γ(∧RE∗

) ,(6.38)

where KZ := ∧dT
∗
Z is the anti-holomorphic anti-canonical bundle of Z. The

requirement that the measure is well-defined now reads

KZ ⊗ (∧RE)∗ ∼= OZ ,(6.39)

since OZ always admits a nowhere vanishing global section. This condition
was obtained also in [18] and can be rewritten, upon an overall conjugation
of (6.39), as

∧R E ∼= K∗
Z .(6.40)

Since ∧RE and K∗
Z are line bundles over Z, topologically they are deter-

mined by their first Chern class. Thus (6.40) is equivalent to the condition
c1(TY) = 0, where Y = tot(E → Z), and in particular it coincides with the
second anomaly cancellation condition in (6.13). Thus, we do not need any
additional constraints on our models in order for the B/2-twisted theory to
be well-defined.

Another assumption we implicitly made in writing the above, following
[19] and [51], is that the ratio of 1-loop determinants

det∂x∗E
det∂x∗TZ

(6.41)

is a number, which we can just ignore.
Finally, we integrate over the Fermi zero modes and we obtain

〈O(ω)〉S2 =

∫
Z
ΩE�eL̂ω ,(6.42)

where, by a slight abuse of notation, we define

L̂ := −v

4
‖J‖2 + v

4
∂J

A
∂A ,(6.43)

and ΩE is the nowhere vanishing section

ΩE ∈ Γ(KZ ⊗ ∧RE) = Γ(OZ) .(6.44)
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In particular, ΩE is unique up to rescaling by a non-vanishing holomorphic
section of OZ. In deriving (6.42) we used the condition that, if s := H ⊕ g
is a hermitian Kähler metric on the total space E → Z, then the unique
compatible connection is given by s−1∂s, which implies that

ΓA
ᾱC = ΓA

αC
= 0 .(6.45)

Thus, if we define

J
A
:= HABJB ,(6.46)

it follows that

DᾱJ
A
= ∂ᾱJ

A
.(6.47)

The operator ΩE� is defined as

ΩE�ωs
r := fZεα1···αdA1···AsAs+1,···AR

ωA1···As

β̄1···β̄r
dx̄β̄1 ∧ · · · ∧ dx̄β̄r(6.48)

⊗ eAs+1 ∧ · · · ∧ eAR ⊗ dxα1 ∧ · · · ∧ dxαd ,

where fZ is a nowhere vanishing function and {eA} is the dual basis to ∂A.
Let O(ω) ∈ Ω0,p(Z,∧qE). Then, necessary conditions to have a non-

vanishing correlator are

p− q = dimZ− rank E , q(O(ω)) = r ,(6.49)

which follow by requiring (6.37) to be invariant under the chiral symmetries
U(1)L ×U(1)R.

As a final remark, for the case of a (0, 2) LG model, we have Z = Cd

and E a trivial bundle of rank R. Then, ΩE = ΩCd ∧ΩCR and therefore, the
correlator (6.42) reproduces exactly the one derived in [31], where the action
of ΩCR� becomes simply the contraction with the Levi-Civita symbol of rank
R. Similar computations for A/2 twisted correlators for (0, 2) theories with
(2, 2) locus has been carried on in [52], using the GLSM approach.

6.4. Properties of (0,2) correlators

In this section we derive some formal properties for our formula. We start
by showing that (6.42) does not depend on the representatives in HB/2. Let
us define

〈β〉′ :=
∫
Z
ΩE�β , β ∈ Γ(Ω0,•(Z,∧•E)) .(6.50)
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In order for the integral to be well-defined, we assume β to be compactly
supported along the fiber X. In particular, the quantity 〈δβ〉′ is identically
zero unless δβ ∈ Γ(∧R

d E). Thus, β ∈ Γ(∧R
d−1E) and δβ = ∂β. Since ΩE is a

section of a holomorphic bundle, we have

〈δβ〉′ =
∫
Z
ΩE�∂β =

∫
Z
d(ΩE�β) = 0 ,(6.51)

where we assumed that β has no poles. Let us now take a look at δeL̂. By a
direct computation it is possible to show that

δeL̂ ∼ JA∂J
A ∧ ∂J

A1 ∧ . . . ∧ ∂J
AR

∂A1
∧ . . . ∧ ∂AR

∈ Γ
(
Ω(0,R+1) × ∧RE

)
.

(6.52)

If rank E ≥ dimZ,23 δeL̂ vanishes identically because it is a (0, R+1) form.
If rank E < dimZ instead, we note that it is possible to write (6.52) as

δeL̂ ∼ JA∂J
A ∧ ∂J

1 ∧ . . . ∧ ∂J
R
εA1,...,AR∂A1

∧ . . . ∧ ∂AR
.(6.53)

In particular, this expression always involves the product ∂J
A ∧ ∂J

A
= 0

for some A. Hence, we conclude that

δeL̂ = 0 ,(6.54)

and that

〈δO(ω)〉S2 = 〈δ(eL̂ω)〉′ = 0 ,(6.55)

which proves that B/2-correlators do not depend on the representatives of
the δ-cohomology classes.

With this result at our disposal, we can proceed further and show that
our formula (6.42) is invariant under variations of the following parame-
ters:24

23We remark that almost all the examples in the literature, among which defor-
mations of (2,2) hybrids and (0,2) LG models, satisfy this condition but there are
examples that elude it. For instance, the authors of [53] construct a class of stable
rank-2 bundles over CY3 satisfying the heterotic anomaly conditions.

24In the following we use the notation δJ , δHAB and δv for the variations of
the parameters and δ(•) for the differential acting on (•). We hope this is not too
confusing for the reader.
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1. anti-holomorphic parameters J → J + δJ ;
2. worldsheet volume v → v + δv;
3. metric HAB → HAB + δHAB such that δHAB = δHAB = 0.

It is possible to show that under the above variations, the exponential term
in (6.42) transforms, respectively, as

δJe
L̂ = δ

(v
4
HABδJB∂A

)
∧ eL̂ ,

δve
L̂ = δ

(
δv

4
J
A
∂A

)
∧ eL̂ ,

δHe
L̂ = δ

(v
4
δHABJB∂A

)
∧ eL̂ .

(6.56)

Hence, given any operator O(ω) satisfying δO(ω) = 0, we have

δJ〈O(ω)〉S2 = δH〈O(ω)〉S2 = δv〈O(ω)〉S2 = 0 ,(6.57)

as claimed, where we used the property

〈δ(α) ∧ eL̂O(ω)〉′ = 〈δ
(
α ∧ eL̂O(ω)

)
〉′ = 0 ,(6.58)

where α ∈ Γ(Ω0,•(Z,∧•E)) is determined in each case in (6.56).

6.5. The transformation law for (0,2) hybrid integrals

We now turn to a proposal for a generalized transformation law for the inte-
grals (6.42) that arise in the B/2-twisted hybrid correlators. Our derivation
can be regarded as a natural generalization of the argument presented in
section 4.4 for (2,2) correlators. The key assumption is that there exists a
section B of Hom(E∗, E∗) such that

BJ = T , ∂ψT = 0 ,(6.59)

where T ∈ Γ(E∗) satisfies the potential condition T−1(0) = B and it does
not depend on the parameters of J , which we denoted collectively as ψ.
Recall that E → Z is equipped with a hermitian metric HAB. Let us define
a new metric h by

H−1 = Bth−1B .(6.60)

Note that (6.60) is not well-defined in all of Z since B, in general, is not
invertible at every point xα ∈ Z. Nonetheless, we assume that the argument
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can be extended to those points as well. Then, by substituting (6.60) into

(6.42) we obtain the transformed correlator, which reads

〈O(ω)〉 =
∫
Z
ΩE�eL̂

′
ω ,(6.61)

where

L̂′ = −v

4
‖T‖2h +

v

4
(Bt)AB∂T

B
∂A .(6.62)

Although L̂′ = L̂, we wish to emphasize that in (6.62) the indices are con-

tracted with h instead of with H, that is,

‖T‖2h := TAh
AATA , T

B
:= hBBTB .(6.63)

At this point we invoke the property, shown above, that the correlators are

independent of variations δhAA, and thus we argue that h can be considered

independent of the parameters ψ. In order to obtain a more explicit formula,

let ω be a section of ∧q
pE satisfying p− q = dimZ−R, and let

α := (Bt)
[A1

B1
∂T

B1 · · · (Bt)Ak

Bk
∂T

Bk
ωAk+1,...,AR] ∈ Γ

(
Ω0,d(Z,∧RE)

)
,(6.64)

where the antisymmetrization [· · · ] is over the Ai indices only, and k := R−q.

For ease of notation, in (6.64) we omitted the indices corresponding to the

form degree. Then, (6.61) can be written as

〈O(ω)〉 =
∫
Z
e

−v

4
‖T‖2

ΩE�α .(6.65)

Let us define25 M to be the R × d matrix whose components are given by

MA
ᾱ := (Bt∂T )Aᾱ and let M ᾱ1,...,ᾱr

A1,...,As
be the completely skew-symmetric tensor

where each component is given by the determinant of the (R− s)× (d− r)

minor of M obtained by removing the columns ᾱ1, . . . , ᾱr and the rows

A1, . . . , As. With this notation, (6.65) finally becomes

〈O(ω)〉 =
∫
Z
d2dxe

v

4
‖T‖2

fZ(x)M
ᾱ1,...,ᾱp

A1,...,Aq
ω
A1,...,Aq

ᾱ1,...,ᾱp
.(6.66)

25This is the analogue of the matrix M we defined on section 4.4., in the (2,2)
case.



384 Marco Bertolini and Mauricio Romo

The functions M
ᾱ1,...,ᾱp

A1,...,Aq
ω
A1,...,Aq

ᾱ1,...,ᾱp
are C∞ sections of OZ with coefficients

given by rational functions of the parameters ψ. Thus, the integral (6.66)
can be expanded as a sum of integrals where the ψ dependence can be simply
factored out. Unfortunately, it is not possible to derive a more explicit form
for the correlators, as in (4.74), due to the fact that the property (4.73) does
not hold for a generic E , since in general rank E �= dimZ.

6.6. Instanton corrections

In the case of (0, 2) models, B/2 correlators may be subject to instanton
corrections. In this section, we analyze the structure of Fermi zero modes
in the background of a non-trivial instanton, and we derive simple selection
rules for the absence of such corrections.

In hybrid models, worldsheet instantons are associated to holomorphic
maps from the worldsheet into B. These are characterized by homology
classes in H2(B,Z). Picking a basis ξa for H2(B,Z), a given homology class
is determined by a set of integers na, which we denote instanton numbers.

The Fermi fields of the B/2-twisted theory couple over the worldsheet
to the following bundles

ψα
+ ψ

α
+ ψA

− ψ
A
−

bundle KΣ ⊗ x∗TZ x∗TZ KΣ ⊗ x∗E x∗E
# z.m. h1(Σ, x∗TZ) h0(Σ, x∗TZ) h1(Σ, x∗E∗) h0(Σ, x∗E∗) ,

(6.67)

and the number of zero modes is computed by the appropriate cohomology
group.26 The computation is fairly treatable given the fact that these bundles
split over Σ = P1 as sums of line bundles

x∗(TZ) = ⊕d
α=1O(dα) , x∗(E) = ⊕R

A=1O(DA) ,(6.68)

where the degrees dα, DA depend on the instanton numbers na. The coho-
mology of x∗(TZ) is given by

h0(Σ, x∗TZ) =
∑

α|dα≥0

(dα + 1) , h1(Σ, x∗TZ) =
∑

α|dα<0

(−dα − 1) ,(6.69)

26We emphasized in (6.67) that the zero modes of ψ+ and ψ+ are counted by anti-

holomorphic sections of the appropriate bundles, while ψ− and ψ− by holomorphic
ones. Of course, this does not affect the dimensions of the cohomology groups.
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and for E∗ similarly

h0(Σ, x∗E∗) =
∑

A|DA≤0

(−DA + 1) , h1(Σ, x∗E∗) =
∑

A|DA>0

(DA − 1) .

(6.70)

Given a specific instanton background, there will be a non-trivial con-

tribution to the correlator if we can absorb all the Fermi zero modes from

the measure. From the general expression of the insertions (6.25), the only

possibility to soak up zero modes of ψ± is by bringing down appropriate

terms from the action. There are only two terms in the action that contain

these fields: the Yukawa coupling DαJAψ
α
+ψ

A
− and the curvature four-fermi

term. It then follows that the contribution can only be in the form of the

product ψ−ψ+. Hence, the instanton contribution must vanish unless these

zero modes appear in equal number in the measure, that is, if∑
α|dα<0

(−dα − 1) =
∑

A|DA>0

(DA − 1) .(6.71)

For the zero modes of ψ±, in addition to the four-fermi term and the Yukawa

coupling DαJAψ
α
+ψ

A
−, there are in general contributions from the insertion

itself. Thus, the instanton contribution to the correlator 〈α〉S2 , where α ∈
Γ(∧r

sE) vanishes unless

r − s =
∑

A|DA≤0

(−DA + 1)−
∑

α|dα≥0

(dα + 1) .(6.72)

Combining this with (6.71), and using the fact that c1(TZ) + c1(E) = 0, we

obtain the expected relation

r − s = rank E − dimZ .(6.73)

If E = TZ, which describes a subset of deformations of a (2,2) model, these

formulae simplify considerably. Trivially r = s, as rank TZ = dimZ, while

(6.71) becomes ∑
α|dα≥1

(dα − 1) =
∑

α|dα≤−1

(−dα − 1) ,(6.74)
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which, using the fact that c1(TZ) = 0, gives a simple selection rule, which

reads ∣∣{α|dα ≥ 1
}∣∣ = ∣∣{α|dα ≤ −1

}∣∣ .(6.75)

As a final comment, we would like to point out that these selection rules,

although simple, are rather mild, and instanton corrections in a given model

can still be absent even if the conditions above are satisfied. This is somewhat

expected, as the discussion in this section only involves the hybrid geometry,

and it is insensitive to the remaining structure of the model. In the example

we are going to study next, we will see that in order to fully exclude instanton

corrections we need to employ more sophisticated techniques.

6.7. A (0,2) example

We conclude this section with an example of a (0,2) hybrid. In particular,

we choose a model which is obtained as a (0,2) deformation of the octic

model we studied in section 5. For the geometric data we choose again

Z = tot
(
O(−2)⊕O⊕3 → P1

)
/Z4 and E = TZ, and U(1)V acts with charges

qi =
1
4 , i = 1, . . . , 4 on the fiber coordinates and the Γ = Z4 orbifold acts

only on the fibers with weights qi. We choose the (0,2) superpotential

Ju
0 = u7(φ1

u)
4 − ψ1φ

1
uφ

2
uφ

3
uφ

4
u , Ju

1 =
1

2
(u8 + 1)(φ1

u)
3 − ψ1uφ

2
uφ

3
uφ

4
u ,

(6.76)

Ju
2 = (φ2

u)
3 − ψ2uφ

1
uφ

3
uφ

4
u , Ju

3 = (φ3
u)

3 − ψ3uφ
1
uφ

2
uφ

4
u ,

Ju
4 = (φ4

u)
3 − ψ4uφ

1
uφ

2
uφ

3
u ,

in the patch U1, and

Ju
0 = v7(φ1

v)
4 − ψ1φ

1
vφ

2
vφ

3
vφ

4
v , Jv

1 =
1

2
(v8 + 1)(φ1

v)
3 − ψ1vφ

2
vφ

3
vφ

4
v ,(6.77)

Jv
2 = (φ2

v)
3 − ψ2vφ

1
vφ

3
uφ

4
u , Jv

3 = (φ3
v)

3 − ψ3vφ
1
vφ

2
vφ

4
v ,

Jv
4 = (φ4

v)
3 − ψ4vφ

1
vφ

2
uφ

3
u ,

in the patch U2. For generic values of the parameters, (6.76) and (6.77) are

not integrable, thus defining a (0,2) model. When ψ1 = · · · = ψ4 we recover

the (2,2) superpotential (5.2).
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Instanton corrections? The geometry of this example is fairly simple,
which allows us to be explicit. Here B = P1, thus instantons are classified
by an integer n ∈ Z≥0, and since we are interested in probing non-trivial
instanton corrections we restrict to the case n > 0. The splitting (6.68) is
given by

x∗(TZ) = O(−2n)⊕O⊕3 ⊕O(2n) .(6.78)

Thus, (6.75) is satisfied for each value of n, and it appears that the corre-
lators do receive instanton corrections, in disagreement with [19]. In order
to resolve this apparent puzzle, we implement the same approach as in [18].
That is, we look for a suitable compactification of the space of worldsheet
instantons, as well as a suitable extension of the sheaves (6.67) over the
moduli space.

Following [15], we construct a linear model (V + model in the terminology
of [22]) with target space O(−2)⊕O⊕3 → P1 by introducing the (0,2) chiral
matter superfields

X1 X2 P1 P2 P3 P4 F.I.

U(1) 1 1 −2 0 0 0 r

(6.79)

together with a neutral chiral field Σ, with lowest component σ. We indicate
by x1,2 and p1,2,3,4 the lowest components of the superfields X1,2 and P1,2,3,4,
respectively, and by r the F.I. parameter. We introduce a collection of (0,2)
Fermi fields with the same gauge charge assignments

Γ1 Γ2 Λ1 Λ2 Λ3 Λ4

U(1) 1 1 −2 0 0 0

(6.80)

which satisfy the chirality conditions

DΓ1 = Σx1 , DΓ2 = Σx2 , DΛ1 = −2Σp1 , DΛ2 = DΛ3 = DΛ4 = 0 .

(6.81)

We choose the following assignment for the chiral symmetries

X1,2 P1,2,3,4 Γ1,2 Λ1,2,3,4 Σ

U(1)L 0 1
4 −1 −3

4 −1

U(1)R 0 1
4 0 1

4 1

(6.82)
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This allows us to introduce potential terms, which we take of the form
Γ · J + Λ ·H, where

J1 = x71p
4
1 − ψ1x2p1p2p3p4 , J2 = x72p

4
1 − ψ1x1p1p2p3p4 ,(6.83)

H1 =
1

2
(x81 + x82)p

3
1 − ψ3x1x2p2p3p4 , H2 = p32 − ψ4x1x2p1p3p4 ,

H3 = p33 − ψ3x1x2p1p2p4 , H4 = p34 − ψ4x1x2p1p2p3 .

For r > 0, x1,2 cannot simultaneously vanish, and σ is instead forced to
vanish, while the F-term constraints from the vanishing of (6.83) require
p1 = · · · = p4 = 0. Thus, the classical vacuum of the theory is B = P1.
In order for (0,2) supersymmetry to be unbroken, these need to satisfy the
constraint [3]

0 = x1J1 + x2J2 − 2p1H1 ,(6.84)

which holds for the superpotential (6.83). The coordinates p1,...,4 transform
as sections of line bundles over B as specified by their gauge charges, p1 ∈
O(−2) and p2,3,4 ∈ O, while the massless left-moving fermions are described
by the SES

0 π∗O g
π∗O(1)⊕2 ⊕ π∗O(−2)⊕ π∗O⊕3 E 0 ,(6.85)

where g =
(
x1 x2 −2p1 0 0 0

)
is determined by (6.81). This deter-

mines E = TZ, and we have recovered our (0,2) hybrid model.
The gauge instantons for this model in the phase r > 0 are characterized

by an integer n ∈ Z≥0, and again we restrict to the case n > 0. In this
case, x1,2 ∈ Γ(O(n)) have n + 1 zero modes each, p1 ∈ Γ(O(−2n)) has
no zero modes, while p2,3,4 ∈ Γ(O) have one zero mode each. It appears
that the moduli space of instantons is therefore non-compact. However, the
localization conditions need to be supplemented by J = H = 0, which imply
p1,2,3,4 = 0. Thus, taking into account the quotient by the gauge action (6.79)
we find that the moduli space is Bn = P2n+1, which is indeed compact.

The strategy, following [51], to determine the extension of the sheaves
(6.67) over the moduli space Bn, is to expand the various Fermi fields into
zero modes, and then interpret the coefficients of the expansion as line bun-
dles over the moduli space27. In particular, we are interested in the exten-
sions of the bundles KΣ ⊗ x∗T

∗
Z and KΣ ⊗ x∗E over Bn. The former is

27If one denotes the moduli space of instantons x : Σ → Z by M, the universal
instanton map by α : Σ ×M → Z and the projection π : Σ ×M → M, then the



Aspects of (2, 2) and (0, 2) hybrid models 389

determined by the zero modes of the massless right-moving Fermi fields in

X1,2 and P1,2,3,4, which we denote collectively as ρα
′

+ , α′ = 1, . . . , 6. The

latter is parametrized by the zero modes of the massless lowest components

of left-moving fields Γ1,2 and Λ1,2,3,4, which similarly we denote collectively

as ρα
′

− .

Applying this procedure to the LES28

0 O
O(1)⊕h0(Σ,O(n))

⊕
O(−2)⊕h0(Σ,O(−2n)) ⊕O⊕3 G0

0
O(1)⊕h1(Σ,O(n))

⊕
O(−2)⊕h1(Σ,O(−2n))

G1 0

(6.86)

associated to the SES (6.85) and using the fact that

H0(Σ,KΣ ⊗ x∗T
∗
Z) = H1(Σ, TZ)

∗ ,(6.87)

we have that the zero modes of ρα
′

+ couple to

G∗
1 = O(2)⊕(2n−1) .(6.88)

It is often more convenient to work with holomorphic bundles, thus we

can make use of a Hermitian fiber metric to dualize the bundle to G1 =

O(−2)⊕(2n−1).

For the extension sheaves of zero modes of ρα
′

− , we instead consider the

LES induced by the dual of (6.85), which simplifies to

0 F0 O(2)⊕(2n+1) g̃=0 O F1 O(−1)2(n−1) 0.

(6.89)

sheaves where the zero modes of the fermions belong are given by (possibly dual or
conjugates of) Fi = Riπ∗α

∗E∗ and Gi = Riπ∗α
∗TZ. It is crucial for this analysis to

choose a compactification of M and an extension of these bundles over it. There is
no systematic method to do this in general. When a GLSM model is available this
is instead possible, as pointed out in [51, 18].

28In the following all the sheaves are over Bn.
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The map g̃, induced from g, vanishes identically because p1 has no zero
modes. Therefore we obtain

F0 = O(2)⊕(2n+1) , F1 = O ⊕O(−1)⊕2(n−1) .(6.90)

Now, since we have

H0(Σ,KΣ ⊗ x∗TZ) = H1 (Σ, T ∗
Z)

∗ ,(6.91)

it follows that the zero modes of ρ− couple to F∗
1 = O ⊕O(1)⊕2(n−1).

Now, to solve the aforementioned puzzle, let us have a closer look at the
term in the action DαJAψ

α
+ψ

A
−, which appears it can be used to soak up ψ±

zero modes. In our GLSM interpretation, this corresponds to a term in the
action of the form Dα′Jβ′ρα

′

+ ρβ
′

− , where for simplicity we have grouped the
various superpotential terms Jα′ = (J,H). Following the same logic as in
[18], we interpret DαJA as an element of H0(Bn,G1 ⊗F∗

1 ), and

H0(Bn,G1 ⊗F∗
1 ) = H0

(
P2n+1,O(−2)⊕(2n−1) ⊗

(
O ⊕O(1)⊕2(n−1)

))(6.92)

= H0
(
P2n+1,O(−2)

)⊕(2n−1)

⊕H0
(
P2n+1,O(−1)

)⊕2(n−1)(2n−1)
= 0 .

The other term that can be used to soak up ψ± zero modes is the 4-Fermi

term RαBAβ̄ψ
α
+ψ

A
−ψ̄

B
− ψ̄

β̄
+. Again, following [18] we can interpret this term as

an element in H1(Bn,G1 ⊗F∗
1 ⊗F0). Therefore, we compute:

H1(Bn,G1 ⊗ F∗
1 ⊗F0) = H1

(
P2n+1,O

)⊕(2n−1)(2n+1)
(6.93)

⊕H1
(
P2n+1,O(1)

)⊕2(n−1)(4n2−1)
= 0 .

Thus, the terms that we are required to bring down from the action in order
to soak up the relevant Fermi zero modes are trivial in cohomology, and they
cannot contribute to the correlator. Hence, we conclude that no instanton
corrections are possible for our example, in agreement with [19].

Although in our (0,2) octic hybrid example a simple zero mode counting
could not rule out instanton contributions, our selection rules prove them-
selves useful in some non-trivial models. A nice example [41] is the hybrid
geometry Z = tot

(
O(−1)⊕2 ⊕O⊕2 → P1

)
and E = TZ, with U(1)V charge

assignment qi = 1/4 for the fiber coordinates, and the analysis of the cor-
responding linear model [19] does not rule out instanton corrections. From
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our hybrid perspective, it is obvious that (6.75) cannot be satisfied and thus
instanton corrections are absent in the B/2 model correlators.

B/2-correlators Let us now turn to the computation of the correlators,
where for simplicity we restrict our attention to bottom row insertions.
A choice of representatives for the cohomology classes of the B/2 chiral ring
is still described by (5.11). It has been shown in [14] that for this class of
J-deformations, for which E = TZ, the dimension of the heterotic topological
ring does not jump, and it agrees with its value at the (2,2) locus. Thus, we
can carry out the computation for any choice of non-singular superpotential
J , in particular at ψ1,2,3,4 = 0, where it becomes isomorphic to our com-
putation in section 5. That is, α = O1O2O3, where O1,2,3 ∈ HQ+

(Z,OZ),

assumes again the form

α = ut0(φ1)t1(φ2)t2(φ3)t3(φ4)t4 , tα ≥ 0 .(6.94)

Here the charge condition implies t1 + · · ·+ t4 = 12, and the condition that
this is a restriction to the patch U1 of the product of sections of the trivial
bundle OZ forces t0 ≤ 2t1.

Moreover, there exists B ∈ Γ(TZ ⊗ T ∗
Z) such that

TI = B J
I JJ =

(
u25φ13

1
1
2(u

26 + 1)φ12
1 φ13

2 φ13
3 φ13

4

)�
.(6.95)

Note that although this is a section of the same bundle E = TZ, and T is
given by the same expression as in the (2,2) case, B is necessarily a different
section, as it depends on the parameters ψ1, . . . , ψ4. We report it in appendix
E, and we represent its determinant as

detB =
∑

m0,...,m4≥0

f̃m0,...,m4
(ψ1, . . . , ψ4)u

m0(φ1)m1(φ2)m2(φ3)m3(φ4)m4 .

(6.96)

Integrating over the fiber phases arg(φi) we have that the only contribution
to the integral is

α detB =
∑

m0,...,m4≥0

f̃m0,...,m4
(ψ1, . . . , ψ4)u

m0+t0(φ1)24

(
4∏

a=2

(φa)12

)
(6.97)

× δm1+t1,24

(
4∏

a=2

δma+ta,12

)
.
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Putting all together, and integrating over arg(u), where we make use of

(5.16), we obtain

〈α〉S2 = f̃24−t0,24−t1,12−t2,12−t3,12−t4(ψ1, . . . , ψ4) .(6.98)

As an example, we see that

〈detHessW 〉S2 =
1

1− ψ2
1ψ

2
2ψ

2
3ψ

2
4

.(6.99)

When ψ1 = · · · = ψ4 = ψ we recover the (2,2) correlator (5.21). More

generally, for each insertion of the form (6.94) we obtain the structure

〈α〉S2 =
ψ
vα
1

1 ψ
vα
2

2 ψ
vα
3

3 ψ
vα
4

4

1− ψ2
1ψ

2
2ψ

2
3ψ

2
4

,(6.100)

where vαi are non-negative integers that depend on the form of the inser-

tion α. In particular, we have that in this class of (0,2) deformations the

discriminant is the locus ψ2
1ψ

2
2ψ

2
3ψ

2
4 = 1, which determines the locus where

the condition J−1(0) = B fails to be satisfied.

To check our results we invoke again the GLSM. In particular, our (0,2)

hybrid arises in a phase of a linear model which is obtained as a (0,2) defor-

mation of the (2,2) GLSM we studied in section 5. In particular, the phase

structure is unaltered by the class of deformations considered, and in the

cone r2 < 0, 2r1 +2r2 < 0 the model exhibits a LG phase, where the hybrid

(0,2) superpotential (6.76) corresponds to the LG (0,2) superpotential

JLG
2 = x32 − ψ2x3x4x5x6 , JLG

3 = x33 − ψ3x2x4x5x6 ,

JLG
4 = x34 − ψ4x2x3x5x6 ,

JLG
5 = x75 − ψ1x2x3x4x6 JLG

6 = x76 − ψ1x2x3x4x5 .

(6.101)

The B/2 ring in this phase is described by R = C[x2, . . . , x6]/〈JLG〉. Invari-
ance under the Z8 orbifold action implies that good representatives for the

ring are given again by (5.49) and the correspondence between hybrid and

LG operators is quite straightforward

OLG =

4∏
a=2

xlaa x
l5
5 x

l6
6 ←→ OHY = ul5(φ1)(l5+l6)/2

4∏
a=2

(φa)la .(6.102)
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By applying the methods of [54] we verify explicitly that the following holds

〈O1
HYO2

HYO3
HY〉S2 = 〈O1

LGO2
LGO3

LG〉 = Res

{O1
LGO2

LGO3
LG

JLG
2 · · · JLG

6

}
.(6.103)

Again, up to a numerical factor, we find a complete agreement between these
sets of correlators.

6.7.1. Bundle deformations and E-parameters dependence The
hybrid model offers another set of deformations off the (2,2) locus. Namely,
we can take E to be a deformation of TZ. As an example, we can take
Eε = O⊕3 ⊕ E ′

ε, where E ′
ε is a one-parameter family of rank 2 bundles with

transition functions given by

Guv =

(
−v−2 2vεφ1

v

0 v2

)
.(6.104)

In particular Eε=1 = TZ. Of course, J ∈ Γ(E∗
ε ) depends on the parameter ε.

However, one can show that

1. the dimension of HB/2 is independent of ε;
2. the number of parameters of J , which we collectively denote ψ, is

independent of ε.

A natural question is then the following: is ε actually a parameter of the
B/2-twisted theory? From the hybrid perspective the answer seems to be
yes, as any correlation function 〈α〉S2 will be a function of ψ and ε.

This is somewhat puzzling when we interpret our result from the GLSM
perspective. In fact, parameters defining the bundle E → Z arise as E-
parameters in the GLSM construction [3]. These are the natural parameters
that appear in A/2-model computations, and their appearance in B/2-model
correlators was ruled out in a class of theories, including our example, in [19].
It then appears that from the hybrid perspective, B/2-model correlators do
depend on these. The resolution of the apparent puzzle resides in taking into
consideration the action of field redefinitions in the linear model. In fact, at
the level of the GLSM, it is always possible to perform a field redefinition
absorbing the parameter ε. Hence, in the hybrid phase of the GLSM obtained
after performing such a field redefinition we have ε = 1, i.e., E = TZ. In
other words, the hybrid model defined by (Eε, Jε) is equivalent to the model
(Eε=1, J̃), where J̃ is not necessarily equal to Jε=1. While this equivalence is
evident at the level of the linear model, it would be interesting to investigate
it in the hybrid model directly.
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7. Discussion

In this work we have started an analysis of the S2 B-type (and B/2-type)
correlators in (2,2) and (0,2) hybrid models. Some features of these correla-
tors have been already studied for a different class of (2,2) hybrid models in
[36]. In fact, the treatment there applies only when dW−1(0) = 0 is a com-
plete intersection and, moreover, their explicit formulas require the points
dW−1(0) = 0 to be non-degenerate. Both of these conditions are not sat-
isfied generically in the class of hybrid theories studied in this work. For
instance, the octic example studied at length in this work does not satisfy
this criteria. More relevant to us are the properties of the correlators stud-
ied in [55]. There, the authors propose Mathai-Quillen like forms for (0,2)
and (2,2) correlators, for both B- and A-twist. To make connection with our
notation, the Mathai-Quillen like form allows to write integrals over B of
products of elements in Q-cohomology as integrals over Y (of appropriately
defined lifts of the insertions). From our perspective, this can be achieved by
integrating along the fibers. It would be interesting to give a more thorough
connection between their results and ours.

We also find an interesting connection with the work [56]. There, the
author defines the Koszul-De Rham complex, which is an extension of the
usual De Rham complex by auxiliary commuting and anti-commuting vari-
ables. This is a bi-complex with differentials (dDR, ∂K) that can be identified
as dDR → Q− +Q0 and ∂K → QW acting on ρα, x

α, x̄ᾱ, ψ̄−, α and Jα.
Another connections with recent mathematical work can be find in [57].

In this work, the authors study hybrid models in the context of homological
mirror symmetry of Fano manifolds and define different classes of Hodge
numbers associated to a hybrid. It would be interesting to elucidate the
physical interpretation of these invariants.

A natural extension of this work would be to consider the cases when
∂Σ �= ∅ and the theory admits boundary conditions corresponding to B-
branes. This situation is considered, in the (2,2) case, in [58, 35, 29]. It
would be interesting to extend the constructions of this paper to correlators
involving B-branes, or more in general defects, in particular to the situation
where the orbifold action is non-trivial. We hope to return to these cases in
a sequel.

On a more technical note, our results fall short in a number of ways.
First, it would be important to give a formal proof of the transformation law
we proposed for non-trivial hybrid models. Second, it would be illuminating
to posses a residue formula where the integration is over a holomorphic
cycle over Y\B. Third, it would be very important to have a technique to
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evaluate the integrals that arise in our correlators. In fact, while for simple
examples we managed to elude this, in order to compute the full dependence
in more complicated situations (see for instance (5.45)) this seems to be a
unavoidable.

Appendix A. Conventions

In this appendix we collect our convention for superspace. Our choice of
Euclidean signature is obtained from the Minkowski metric

d2s = −(dx0)2 + (dx1)2 ,(A.1)

by performing the Wick rotation

x0 = −iy2 , x1 = y1 .(A.2)

With this choice we have

x+ = x0 + x1 = y1 − iy2 = z , x− = x0 − x1 = −y1 − iy2 = −z ,(A.3)

and

∂+ ≡ ∂

∂x+
= ∂z , ∂− ≡ ∂

∂x−
= −∂z .(A.4)

We follow the convention of [59] for Dirac spinors(
ψ−

√
dz

ψ+

√
dz̄

)
,(A.5)

with the following product structure

〈ψ1, ψ2〉 = ψ1αε
αβψ2β = −ψ1−ψ2+ + ψ1+ψ2− ,(A.6)

where we defined ε−+ = −1. In our (0,2) application we will work with left-
and right-moving Weyl spinors, which are obtained from (A.5) by setting
the bottom or the top component to zero, respectively. Conjugation acts
on bosonic and fermionic fields alike, by exchanging barred and unbarred
components, that is

〈ψ1, ψ2〉 = −〈ψ1
, ψ

2〉 .(A.7)
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The product (A.6) also satisfies

〈ψ1, γμψ2〉 = −〈γμψ1, ψ2〉 ,(A.8)

and the Fierz identities

〈ε̄, ε〉λ+ 〈ε̄, λ〉ε+ 〈ε, λ〉ε̄ = 0 ,

〈ε̄, γmε〉γmλ+ 〈ε, ε̄〉λ+ 2〈ε̄, λ〉ε = 0 .
(A.9)

The Dirac operator in flat space in Euclidean signature reads

γμDμ = γ2∂2 + γ1∂1 =

(
0 2∂z

2∂ z̄ 0

)
,(A.10)

where we have used the choice of γ matrices

γ1 = σ1 , γ2 = σ2 .(A.11)

Appendix B. A note on cohomology of polyvector fields

In Proposition 3.7 of [29] is proved that the inclusion ı : PVc(Y) ↪→ PV (Y)
induces a quasi-isomorphism on the cohomologies (PVc(Y), δ) and
(PV (Y), δ), where PVc(Y) are compactly supported polyvector fields on Y
and PV (Y) are C∞ polyvector fields. The proof of the quasi-isomorphism
involves two operators

π := ρ · id + (∂ρ)R̂ , R := (1Y − ρ)R̂ ,(B.1)

where 1Y is the unit function on Y, ρ is a function with compact support
on a open set of Y containing B = dW−1(0) and R̂ is constructed out of the
section s = i

‖dW‖2 (∂ᾱW )gᾱβ∂β and its δ-derivatives. These operators maps

the spaces as

π : PV (Y) → PVc(Y) , R : PV (Y) → PV (Y) .(B.2)

The quasi-isomorphism is proved by showing that ı◦π and π◦ı are homotopi-
cally equivalent to the identity (acting on the respective spaces). The proof
requires that R preserves the subspace PVc(Y) inside PV (Y). Since the
operators π and R have at most polynomial growth because dW is a regular
section of T ∗

Y, the proof goes through by replacing PVc(Y) with PVpol(Y),
the space of polyvector fields on Y with at most polynomial growth along
the fiber X, where Y = Tot(X → B) and dW−1(0) = B. Therefore the co-
homology rings (PV (Y), δ), (PVc(Y), δ) and (PVpol(Y), δ) are isomorphic.
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Appendix C. Sections of various bundles

In this appendix we provide explicit expressions for various geometrical

quantities we need in solving the examples in the main body of the work. The

geometric set-up is given by Y = O⊕3 ⊕Y′, where Y′ = tot
(
O(−2) → P1

)
.

We denote by u = v−1 the local coordinates on the standard cover U1 = U |u
and U2 = U |v of B = P1.

The tangent bundle The tangent bundle splits as TY = O⊕3 ⊕ TY′ ,

therefore we can restrict our attention to the non-trivial summand Y′. A
generic section of TY′ at grade d, which here is simply given by the overall

power of φ1, satisfies

(
(φ1

u)
dTu (φ1

u)
d+1Yu

)
=
(
(φ1

v)
dTv (φ1

v)
d+1Yv

)(−v2 2vφv

0 v−2

)
,(C.1)

which implies

Tu = −Σ2d+2

∣∣
u
, Yu = Σ2d

∣∣
u
− 2u−1(Tu(u)− Tu(0)) ,

Tv = Σ2d+2

∣∣
v
, Yv = Σ2d

∣∣
v
+ 2v2d+1Tu(0) .

(C.2)

Here Σm ∈ H0(P1,O(m)). In particular, in the patch U1, these have the

form

Tu = a0 + a1u+ a2u
2 + · · ·+ a2d+2u

2d+2 ,

Yu = (b0 − 2a1) + (b1 − 2a2)u+ · · ·+ (b2d − 2a2d+1)u
2d − 2a2d+2u

2d+1 .

(C.3)

The cotangent bundle The cotangent bundle has a similar splitting

T ∗
Y = O⊕3 ⊕ T ∗

Y′ and again the only non-trivial component is given by

sections of T ∗
Y′ . At grade d we have(

Su(φ
1
u)

d+1

Zu(φ
1
u)

d

)
=

(
−v2 2vφv

0 v−2

)(
Sv(φ

1
v)

d+1

Zv(φ
1
v)

d

)
,(C.4)

which means that Zu,v are restriction of a section of O(2d+ 2) and we can

take

Su = −Σ2d

∣∣
u
+ 2u−1(Zu − Zu(0)) , Sv = Σ2d

∣∣
v
+ 2v2d+1Zu(0) ,(C.5)
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where as before Σ2d ∈ H0(P1,OP(2d)). Explicitly, in the U1 patch we have

Zu = a0 + a1u+ · · ·+ a2d+2u
2d+2 ,

Su = (2a1 − b0) + (2a2 − b1)u+ (2a3 − b2)u
2 + · · ·

+ (2a2d+1 − b2d)u
2d + 2a2d+2u

2d+1 .

(C.6)

The tensor product TY⊗T ∗
Y For our hybrid geometry, the tensor prod-

uct splits as TY ⊗ T ∗
Y = O⊕9 ⊕ (TY′)⊕3 ⊕ (T ∗

Y′)⊕3 ⊕ (TY′ ⊗ T ∗
Y′). The only

novelty here is the section of TY′ ⊗ T ∗
Y′ , which, at degree d, satisfies

(
−v2 2vφv

0 v−2

)(
Avφ

d+1
v Bvφ

d+2
v

Cvφ
d
v Dvφ

d+1
v

)(
−v−2 2vφv

0 v2

)
=

(
Auφ

d+1
u Buφ

d+2
u

Cuφ
d
u Duφ

d+1
u

)
.

(C.7)

With a bit of algebra one shows that the most general solution is given by

Cu = Σ2d+4

∣∣
u
, Cv = −Σ2d+4

∣∣
v
,

Du = Σ2d+2

∣∣
u
− 2u−1(Cu − Cu(0)) , Dv = Σ2d+2

∣∣
v
+ 2v2d+3Cu(0) ,

Au = Σ̃2d+2

∣∣
u
+ 2u−1(Cu − Cu(0)) , Av = Σ̃2d+2

∣∣
v
− 2v2d+3Cu(0) ,

(C.8)

where Σ2d+2, Σ̃2d+2 are two distinct elements of H0(P1,OP1(2d+2)), as well

as

Bu = Σ2d

∣∣
u
− 2u−1(Au −Au(0)) + 2u−1(Du −Du(0)) + 4u−2C ′′

u ,

Bv = −Σ2d

∣∣
v
− 2v2d+1Au(0) + 2v2d+1Dv(0) + 4v2d+2Cu(0) + 4v2d+1C ′

u(0) ,

(C.9)

where, if Cu = c0 + c1u+ c2u
2 + · · · , then

C ′
u = u−1 (Cu − Cu(0)) = c1 + c2u

2 + · · · ,

C ′′
u =

(
Cu − Cu(0)− C ′

u(0)
)
= c2u

2 + · · · .
(C.10)
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Finally, in the U1 patch these quantities assume the following form

Cu = c0 + c1u+ · · ·+ c2d+4u
2d+4 ,

Du = (d0 − 2c1) + (d1 − 2c2)u+· · ·+(d2d+2 − 2c2d+3)u
2d+2 − 2c2d+4u

2d+3,

Au = (a0 + 2c1) + (a1 + 2c2)u+· · ·+(a2d+2 + 2c2d+3)u
2d+2 + 2c2d+4u

2d+3,

Bu = (b0 − 2a1 + 2d1 − 4c2) + (b1 − 2a2 + 2d2 − 4c3)u+ · · ·
+ (b2d − 2a2d+1 + 2d2d+1 − 4c2d+2)u

2d

+ (−2a2d+2 + 2d2d+2 − 4c2d+3)u
2d+1 − 42d+4u

2d+2 .

(C.11)

Appendix D. The chiral ring: detailed computation

As prescribed in the main text, we carry out our computation of the chiral
ring at fixed values of q = 0, 1, 2, 3, with superpotential of the form (5.3)
with ψ = 0.

At q = 0 the spectral sequence is trivial except at H0
q=0(Y,OY) = C.

This operator has charges (0, 0) and therefore it can be interpreted as the
identity element in the ring.

At q = 1, the spectral sequence at the first stage is

(D.1)

Er,s
1 :

C3 0

C22 QW
C105

01 r

s

To show how we obtained this, let us look first at the bottow row (s = 0).
A generic section of H0

q=1(Y, TY) is parametrized by the operators(
Tuχ0 Yuφ

1χ1

)
, cabφ

bχa , Sa
[2]φ

1χa ,(D.2)

where in the patch U1 we have (see appendix C)

Tu = a0 + a1u+ a2u
2 , Yu = (b0 − 2a1)− 2a2u , S[2] = d0 + d1u+ d2u

2 ,

(D.3)

and cab ∈ C. Counting the number of parameters

#a+#b+#c+#d = 3 + 1 + 9 + 3 · 3 = 22 ,(D.4)
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leads to the value in (D.1). Sections of H0
q=1(Y,OY) are simply

S[2t]F[4−t](φ
a)(φ1)t , t = 0, . . . , 4 ,(D.5)

where S[2t] ∈ H0(B,O(2t)) and F[d](φ
a) is a generic polynomial of degree d

in φa. It is easy to count those, as

4∑
t=0

(2t+ 1)

(
6− t

4− t

)
= 105 .(D.6)

The first row (s = 1) is much simpler, and the only non-vanishing ∂-closed
polyvectors PV r,1(Y) have the form

Sa
[−2],0

φaχ1η
0 ,(D.7)

where

Sa
[−2],0

∈ H1
q=0(Y, π∗O(−2)) = H1(B,O(−2)) = C ,(D.8)

which therefore yield three elements in ∂-cohomology at r = s = 1. To
compute the second stage of the spectral sequence, for the bottom row we
can write explicitly the action of QW on the states (D.1) as

QW

(
Tuχ0 Yuφ

1χ1

)
=
(
Tu Yuφ

1
)(J0

J1

)
=

1

2

[
(b0 − 2a1)− 2a2u+ 2a0u

7 + b0u
8
]
(φ1)4 ,

QW (cabφ
b + S[2]φ

1)χa = (cabφ
b + S[2]φ

1)Ja = (cabφ
b + S[2]φ

1)(φa)3 .

(D.9)

While it is easy to verify that this map has a trivial kernel, we would like
to have explicit representatives of its cokernel. As mentioned above, these
will be good representatives for the cohomology classes even after we turn
on the ψ deformation. First, the operators

S[2t1](φ
1)t1(φ2)t2(φ3)t3(φ4)t4 , t1 ≤ 3, t2,3,4 ≤ 2 ,(D.10)

are clearly not in the image of (D.9). Since t1+ t2+ t3+ t4 = 4, we count 78
of them. When t1 = 4, a little more carefulness is required, and the cokernel
of the first map in (D.9) can be parametrized by the operators

ut(φ1)4 , 2 ≤ t ≤ 6 ,(D.11)
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accounting for additional 5 operators, which give rise to the second stage of
the spectral sequence

(D.12)

Er,s
2 :

C3 0

0 C83

01 r

s

However, we are not quite done yet, as the first row operators (D.7) are
manifestly not QW -closed. This can be fixed by requiring

Q
(
Sa
[−2]0

φaχ1η
0 +RaφaJ1

)
= Sa

[−2]0
φaJ1η

0 + ∂uR
aφaJ1η

0 = 0 ,(D.13)

which has solution when Ra ∈ Γ(OY) such that ∂uR
a = −Sa

[−2]0
. Explicitly,

the representatives for the cohomology classes corresponding to the PV 1,1

operators (D.7) are given by

− 1

(1 + uu)2
φaχ1η

0 − 1

2

u7 − u

1 + uu
(φ1)3φa , a = 2, 3, 4 .(D.14)

For the operators at q = 2 we have at the first stage

(D.15)

Er,s
1 :

C18 QW
C3 0

C126 QW
C868 QW

C825

2 1 0 r

s

The second stage of this spectral sequence has been computed in [14] and
we simply report it here

(D.16)

Er,s
2 :

C3 0

0 C83

1 0 r

s

which agrees as expected with (5.8). Let us list the explicit representatives.
The bottom row consists again of states of the form (D.10), where now
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instead t1+ t2+ t3+ t4 = 8, yielding 26 states. The missing elements can be
identified as the cokernel of the map

QW

(
Tuφ

tχ0 Yuφ
t+1χ1

)
F[4−t](φ

a) =
1

2

[
(b0 − 2a1)+· · ·+ (b1 − 2a2t+1)u

2t

−2a2t+2u
2t+1 + 2a0u

7 + b0u
8 + · · ·+ b2tu

8+2t
]
(φ1)4+tF[4−t](φ

a) ,

(D.17)

for t = 0, . . . , 4, where F[4−t] has degree 4 − t in the φa coordinates and is
subject to the condition that each variable is allowed to appear to a power
not greater than 2. Explicitly,

t operator #

0 ut̃(φ1)4F[4](φ
a) , 2 ≤ t̃ ≤ 6 , 30

1 ut̃(φ1)5F[3](φ
a) , 4 ≤ t̃ ≤ 6 , 21

2 ut̃(φ1)6F[2](φ
a) , t̃ = 6 , 6

(D.18)

while there are no states for t = 3, 4. In total, we produced 83 operators, as
expected. The 3 operators from the first row can be written as

− 1

(1 + uu)2
(φa)2(φb)2φcχ1η

0 − 1

2

u7 − u

1 + uu
(φ1)3(φa)2(φb)2φc ,(D.19)

a �= b �= c = 2, 3, 4 .

Finally, at q = 3 we only find one operator in cohomology, which correspond
to detHessW , and has the expression

detHessW = u6(φ1)6(φ2)2(φ3)2(φ4)2 .(D.20)

The cohomology is empty for q > 3, as expected from unitarity bounds,
thus this concludes our discussion of the (untwisted) (c,c) ring.

Appendix E. Transformation law for the octic hybrid

In this appendix we collect the details concerning the section B ∈ Γ(TY⊗T ∗
Y)

which we implement in the transformation law to solve our examples. We
work in the patch U1 and we recall that

BJ = T =
(
u25φ13

1 (u26 + 1)φ12
1 φ13

2 φ13
3 φ13

4

)�
.(E.1)
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For ease of notation, in this appendix we write the fiber coordinates with

lower indices.

E.1. (2,2) example

In this case we have

u25φ13
1 =

1

1− ψ8

[ [
−ψ8u18φ9

1 − ψ9u11φ6
1φ2φ3φ4 − 2ψ10u4φ3

1φ
2
2φ

2
3φ

2
4

+ 3ψu11φ6
1φ2φ3φ4 − u10φ9

1

+ψ6φ3
1φ

2
2φ

2
3φ

2
4 + ψ2u4φ3

1φ
2
2φ

2
3φ

2
4

]
J0

+
[
2u17φ10

1 + 2ψ10u3φ4
1φ

2
2φ

2
3φ

2
4 − 2ψu10φ7

1φ2φ3φ4

]
J1

+
[
ψ7φ4

1φ
3
3φ

3
4 + ψ3u4φ4

1φ
3
3φ

3
4

]
J2

+
[
ψ8uφ5

1φ3φ
4
4 + ψ4u5φ5

1φ3φ
4
4

]
J3

+
[
ψ9u2φ6

1φ2φ3φ
2
4 + ψ5u6φ6

1φ2φ3φ
2
4

]
J4

]
,

(u26 + 1)φ12
1 =

1

1− ψ8

[ [
−uφ8

1 + u19φ8
1 − ψu2φ5

1φ2φ3φ4

+ ψu12φ5
1φ2φ3φ4 − ψ2u3φ2

1φ
2
2φ

2
3φ

2
4

+ ψ2u5φ2
1φ

2
2φ

2
3φ

2
4 + ψ6uφ2

1φ
2
2φ

2
3φ

2
4

− ψ6u7φ2
1φ

2
2φ

2
3φ

2
4 + 2ψ10u3φ2

1φ
2
2φ

2
3φ

2
4

− 2ψ10u5φ2
1φ

2
2φ

2
3φ

2
4 + ψ9u2φ5

1φ2φ3φ4

−ψ9u12φ5
1φ2φ3φ4 + ψ8uφ8

1 − ψ8u19φ8
1

]
J0

+ 2
[
ψ10u4φ3

1φ
2
2φ

2
3φ

2
4 − ψ10u2φ3

1φ
2
2φ

2
3φ

2
4

+ ψ6u6φ3
1φ

2
2φ

2
3φ

2
4 − ψ9uφ6

1φ2φ3φ4

−ψ8φ9
1 + ψ2u2φ3

1φ
2
2φ

2
3φ

2
4 + ψuφ6

1φ2φ3φ4 + φ9
1

]
J1

+ [ψ3u5φ3
1φ

3
3φ

3
4 + ψ3u3φ3

1φ
3
3φ

3
4

+ ψ7u7φ3
1φ

3
3φ

3
4 + ψ7uφ3

1φ
3
3φ

3
4]J2

+ [ψ4u6φ4
1φ3φ

4
4 + ψ4u4φ4

1φ3φ
4
4

+ ψ8u8φ4
1φ3φ

4
4 + ψ8u2φ4

1φ3φ
4
4]J3

+
[
ψ5u7φ5

1φ2φ3φ
2
4 + ψ5u5φ5

1φ2φ3φ
2
4

+ψ9u9φ5
1φ2φ3φ

2
4 + ψ9u3φ5

1φ2φ3φ
2
4

]
J3

]
.

(E.2)
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The remaining entries are

φ13
2 =

1

1− ψ8

[
ψ7φ3

1φ
3
3φ

3
4

(
−u8 2u7φ1

)(J0
J1

)
+ ψ8φ2φ

4
3φ

4
4

(
u 0

)(J0
J1

)
+
[(
1− ψ8

)
φ10
2 +

(
ψ − ψ9

)
uφ7

2φ1φ3φ4 +
(
ψ2 − ψ10

)
u2φ2

1φ
4
2φ

2
3φ

2
4

+ψ3u3φ3
1φ2φ

3
3φ

3
4 + ψ6u6φ6

1φ
2
3φ

2
4

]
J2

+
(
ψ4u4φ4

1φ2φ3φ
4
4 + ψ9uφ1φ

2
2φ

2
3φ

5
4

)
J3

+
(
ψ5u5φ5

1φ
2
2φ3φ

2
4 + ψ10u2φ2

1φ
3
2φ

2
3φ

3
4

)
J4

]
.

(E.3)

Similarly, by permuting the indices a = 2, 3, 4 we obtain the expressions for
φ13
3 and φ13

4 .

E.2. (0,2) example

In this case we have instead

u25φ13
1 =

1

1− ψ2
1ψ

2
2ψ

2
3ψ

2
4

[
[−ψ2

1ψ
2
2ψ

2
3ψ

2
4u

18φ9
1 − ψ3

1ψ
2
2ψ

2
3ψ

2
4u

11φ6
1φ2φ3φ4

(E.4)

− 2ψ4
1ψ

2
2ψ

2
3ψ

2
4u

4φ3
1φ

2
2φ

2
3φ

2
4 + 3ψ1u

11φ6
1φ2φ3φ4 − u10φ9

1

+ ψ3
1ψ2ψ3ψ4φ

3
1φ

2
2φ

2
3φ

2
4

+ ψ2
1u

4φ3
1φ

2
2φ

2
3φ

2
4]J0 + [2u17φ10

1 + 2ψ4
1ψ

2
2ψ

2
3ψ

2
4u

3φ4
1φ

2
2φ

2
3φ

2
4

− 2ψ1u
10φ7

1φ2φ3φ4]J1

+ [ψ4
1ψ2ψ3ψ4φ

4
1φ

3
3φ

3
4 + ψ3

1u
4φ4

1φ
3
3φ

3
4]J2

+ [ψ4
1ψ

2
2ψ3ψ4uφ

5
1φ3φ

4
4 + ψ3

1ψ2u
5φ5

1φ3φ
4
4]J3

+ [ψ4
1ψ

2
2ψ

2
3ψ4u

2φ6
1φ2φ3φ

2
4 + ψ3

1ψ2ψ3u
6φ6

1φ2φ3φ
2
4]J4

]
,

u26 + 1

2
φ12
1 =

1

1− ψ2
1ψ

2
2ψ

2
3ψ

2
4

[
[
1

2
u19φ8

1 −
1

2
uφ8

1 +
1

2
ψ1u

12φ5
1φ2φ3φ4

− 1

2
ψ1u

2φ5
1φ2φ3φ4 +

1

2
ψ2
1u

5φ2
1φ

2
2φ

2
3φ

2
4

− 1

2
ψ2
1u

3φ2
1φ

2
2φ

2
3φ

2
4 −

1

2
ψ3
1ψ2ψ3ψ4u

7φ2
1φ

2
2φ

2
3φ

2
4

+
1

2
ψ3
1ψ2ψ3ψ4uφ

2
1φ

2
2φ

2
3φ

2
4 − ψ4

1ψ
2
2ψ

2
3ψ

2
4u

5φ2
1φ

2
2φ

2
3φ

2
4

+ ψ4
1ψ

2
2ψ

2
3ψ

2
4u

3φ2
1φ

2
2φ

2
3φ

2
4
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− 1

2
ψ3
1ψ

2
2ψ

2
3ψ

2
4u

12φ5
1φ2φ3φ4 +

1

2
ψ3
1ψ

2
2ψ

2
3ψ

2
4u

2φ5
1φ2φ3φ4

− 1

2
ψ2
1ψ

2
2ψ

2
3ψ

2
4u

19φ8
1

+
1

2
ψ2
1ψ

2
2ψ

2
3ψ

2
4uφ

8
1]J0 + [ψ4

1ψ
2
2ψ

2
3ψ

2
4u

4φ3
1φ

2
2φ

2
3φ

2
4

− ψ4
1ψ

2
2ψ

2
3ψ

2
4u

2φ3
1φ

2
2φ

2
3φ

2
4

+ ψ3
1ψ2ψ3ψ4u

6φ3
1φ

2
2φ

2
3φ

2
4

− ψ3
1ψ

2
2ψ

2
3ψ

2
4uφ

6
1φ2φ3φ4 − ψ2

1ψ
2
2ψ

2
3ψ

2
4φ

9
1

+ ψ2
1u

2φ3
1φ

2
2φ

2
3φ

2
4 + ψ1uφ

6
1φ2φ3φ4 + φ9

1]J1[
1

2
ψ3
1(u

5 + u3)φ3
1φ

3
3φ

3
4

+
1

2
ψ4
1ψ2ψ3ψ4(u

7 + u)φ3
1φ

3
3φ

3
4]J2 + [

1

2
ψ3
1ψ2(u

6 + u4)φ4
1φ3φ

4
4

+
1

2
ψ4
1ψ

2
2ψ3ψ4(u

8 + u2)φ4
1φ3φ

4
4]J3

+ [
1

2
ψ3
1ψ2ψ3(u

7 + u5)φ5
1φ2φ3φ

2
4

+
1

2
ψ4
1ψ

2
2ψ

2
3ψ4(u

9 + u3)φ5
1φ2φ3φ

2
4]J4

]
,

and

φ13
2 =

1

1− ψ2
1ψ

2
2ψ

2
3ψ

2
4

[
(−ψ5

2ψ3ψ4u
8φ3

1φ
3
3φ

3
4 + ψ1ψ

5
2ψ3ψ4uφ2φ

4
3φ

4
4)J0

(E.5)

+ 2ψ5
2ψ3ψ4u

7φ4
1φ

3
3φ

3
4J1

+ ((1− ψ2
1ψ

2
2ψ

2
3ψ

2
4)φ

10
2 + ψ2(1− ψ2

1ψ
2
2ψ

2
3ψ

2
4)uφ1φ

7
2φ3φ4

+ ψ2
2(1− ψ2

1ψ
2
2ψ

2
3ψ

2
4)u

2φ2
1φ

4
2φ

2
3φ

2
4 + ψ3

2u
3φ3

1φ2φ
3
3φ

3
4

+ ψ4
2ψ3ψ4u

6φ6
1φ

2
3φ

2
4)J2

+ (ψ4
2u

4φ4
1φ2φ3φ

4
4+ψ2

1ψ
5
2ψ3ψ4uφ1φ

2
2φ

2
3φ

5
4)J3+(ψ2

1ψ
5
2ψ

2
3ψ4u

2φ2
1φ

3
2φ

2
3φ

3
4

+ ψ4
2ψ3u

5φ5
1φ

2
2φ3φ

2
4)J4

]
.

As before, the remaining relations can be obtained from (E.5) by permuta-
tions of the indices a = 2, 3, 4.

Appendix F. A (0,2) LG model

In this appendix we apply the hybrid techniques to solve a (0,2) LG model,
for which a residue form is not attainable [31]. Let us consider the model
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with n = 2, N = 3 and superpotential

J1 = φ2
1φ2 , J2 = φ2(φ

2
1 − ψφ2) , J3 = φ1(φ

2
1 − ψφ2) .(F.1)

If ψ �= 0 the model is non-singular, and it has the property that there does

not exist a two-dimensional subset of the J ’s such that the model is non-

singular. This is precisely the condition [31] for the existence of a residue

formula for the correlators. Anomaly cancellation fixes the normalization of

the charges to be

q1 =
2

9
, q2 =

4

9
, Q1 = −8

9
, Q2 = −8

9
, Q3 = −6

9
.(F.2)

These lead to c = 10/3, c = 5/3 and r = 16/9. The chiral ring is computed

as the cohomology of the Koszul complex

K := 0 ∧3E J ∧2E J E J
R 0 ,(F.3)

where we interpret E = R3 as a module over the ring R = C[φ1, φ2]. In

particular, we find that the only non-zero elements are

H0(K) = R/J∼=C5, H1(K) = {φ2
1φ2ψ

1
−, φ

2
1φ2ψ

2
−, φ

4
1ψ

2
−, φ

3
1φ2ψ

3
−, φ1φ

2
2ψ

3
−}.

(F.4)

In order to solve this model we apply the transformation law, which for this

example is fairly straightforward. Let B : R3 → R3 given by

B · J =

⎛⎝ 1 0 0
ψ 0 φ1

ψ−1 −ψ−1 0

⎞⎠⎛⎝J1
J2
J3

⎞⎠ =

⎛⎝φ2
1φ2

φ4
1

φ2
2

⎞⎠ ≡ T .(F.5)

The quantity T does not depend on the parameter ψ and satisfies the con-

dition T−1(0) = {φ = 0}. Next, we construct the matrix

MA
α =

(
2φ1φ2 + 4ψφ

3
1 0 4φ

3
1φ1

φ
2
1 + 2ψ−1φ2 −2ψ−1φ2 0

)
.(F.6)
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The determinants relevant for the correlators are obtained from the appro-
priate minors, as prescribed in section 6.5. We obtain

M1 = 8ψ−1φ
3
1φ2φ1 ,

M2 = 4φ
3
1φ1(φ

2
1 + 2ψ−1φ2) ,

M3 = −4φ1φ2(2φ
2
1 + ψ−1φ2) ,

(F.7)

where MA denotes the determinant of the minor of M given by ignoring the
i-th column. A general correlator is then given by

〈α〉S2 =

∫
C2

d2φ1d
2φ2e

− v

4
||T ||2MAα

A ,(F.8)

where αA ∈ H1(K) has the general form αA = φk
1φ

l
2ψ

A
−. It is then straight-

forward to compute, up to overall constants, the full list of correlators

〈φk
1φ

l
2ψ

1
−〉 = 2c1,3ψ

−1δl,1δk,2 ,

〈φk
1φ

l
2ψ

2
−〉 = c5,0δl,0δk,4 + 2c3,1ψ

−1δl,1δk,2 ,

〈φk
1φ

l
2ψ

3
−〉 = −2c3,1δl,1δk,3 − c1,2ψ

−1δl,2δk,1 .

(F.9)

The coefficients ca,b ∈ C are given as integrals of the form

ca,b = 4

∫
R2

≥0

d|φ1|d|φ2|e−
v

4
||T ||2 |φ1|2a|φ2|2b .(F.10)
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