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1. Introduction

Mirror symmetry originated from the observation in physics that differ-
ent Calabi-Yau threefolds may provide (physical) compactifications of dual
string theories. Such Calabi-Yau varieties are called mirror pairs. Mathemat-
ically, mirror symmetry is reflected by the relations between mirror pairs on
Hodge numbers, derived and Fukaya categories, Gromov-Witten invariants,
etc.

In recent years, much of the attention has been drawn to the double mir-
ror phenomenon, that is, two Calabi-Yau varieties both are mirrors to a same
Calabi-Yau variety (also called multiple mirror phenomenon in [CK99]). In
this scenario, properties of double mirror Calabi-Yaus can be read off from
mirror symmetry predictions. For example, their (p, q)-stringy Hodge num-
bers should be the same as they should both equal to the (n− p, q)-stringy
Hodge number of their common mirror; their derived categories are expected
to be equivalent, because according to the homological mirror symmetry
conjecture [Kon95], they are both equivalent to the Fukaya category of their
common mirror.

These properties have been studied for various known double mirror
pairs. For the Batyrev-Borisov double mirrors, the equality of their stringy
Hodge numbers is a consequence of [BB96, Theorem 4.15], their derived
equivalence are confirmed for the corresponding stacks in [FK17, Theo-
rem 6.3], and their birationality has been proved under some mild assump-
tions in [Li16, Theorem 4.10]. The analogous results for Berglund-Hübsch-
Krawitz mirrors have been established in [CR11, FK19, Sho14, Bor13, Kel13,
Cla14].
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Mirror symmetry for Calabi-Yau varieties has been generalized to
Landau-Ginzburg model (LG-model) and Calabi-Yau (or Fano) correspon-
dence. An LG-model (X,w) consists of a variety X and a regular function
w on X which is called a potential. On the level of derived categories, an
LG-model corresponds to a derived matrix factorization category which is
equivalent to a (relative) singular category of zero locus of w. There also
exists double mirror phenomenon in this case. In the Givental’s LG/Fano
setting, for Fano complete intersections in toric varieties, certain Laurent
polynomial multiple mirrors are related by a mutation (see [CKP15, Theo-
rem 5.1]). A similar result also appears in [DH16, Theorem 2.24].

Besides above physics considerations, there are a number of sporadic ex-
amples [Muk88, Kuz08, CDH+10, Add09, CT15] in the literature involving
derived equivalent noncommutative varieties which postulate their connec-
tions with double mirror phenomenon. It is this observation that motivates
our work [BL18] to uncover the underling toric geometry of such examples
and relate them to mirror symmetry.

In [BL18], we work in a slightly more general setting than Batyrev-
Borisov construction where we consider a pair of reflexive Gorenstein cones
(Definition 2.2). It has been known that decompositions of the degree el-
ement of a reflexive cone with coefficients 1 will result in Batyrev-Borisov
double mirrors (i.e. two Calabi-Yau complete intersections as double mir-
rors in the Batyrev-Borisov construction). We generalize this by allowing
coefficients 1/2 in the decomposition of degree element, and construct a
noncommutative variety (stack) (S,B0) associated to it, where S is a com-
plete intersection in a Fano toric variety and B0 is a noncommutative sheaf
of algebras. Such construction depends on a choice of a regular simplicial fan
satisfying centrality condition (see Section 2 for details) and a parameter r
which “counts” how many terms with coefficients 1/2. When r = 0, then
B0 = 0, and we are back to the Batyrev-Borisov situation where the noncom-
mutative variety is just a commutative Calabi-Yau variety. However, when
r > 0, B0 is non-trivial and S is no longer Calabi-Yau. In this case, (S,B0)
can be viewed as a “noncommutative Calabi-Yau variety” and we call it the
(general) Clifford mirror. Here “noncommutative” refers to the fact that the
analogous structure sheaf B0 for (S,B0) is a noncommutative sheaf of alge-
bras (see Definition 2.5), and “Calabi-Yau” means that the corresponding
derived category is a Calabi-Yau category.

[BL18, Theorem 6.3] shows that when r achieves its extreme values (i.e.
the complete intersection and pure Clifford mirror cases), the corresponding
double mirrors are derived equivalent. We conjectured further that for gen-
eral r, the corresponding general Clifford double mirrors should also pass
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the double mirror tests. Especially, under some appropriate conditions, no
matter which r is chosen, they are all derived equivalent ([BL18, Conjec-
ture 7.5]). The goal of the present paper is to give an affirmative answer to
that conjecture (Theorem 3.13).

In the recent paper [BW19], Borisov and Wang define a natural modi-
fication of stringy Hodge numbers for noncommutative Clifford mirrors of
quadric complete intersections, and prove the corresponding equality of Eu-
ler characteristics.

We briefly discuss the content of each section. In Section 2, we explain
the construction of general Clifford mirror in [BL18]. During that course, we
give necessary combinatorial definitions and fix the notation. In Section 3,
we prove the derived equivalence of such Clifford double mirrors. It relies on
Shipman, Isik, Hirano’s result on Knörrer periodicity [Shi12, Isi13, Hir17]
and homological variations of GIT quotients [BFK19, HL15]. In Section 4,
we study the general Clifford double mirrors of the product type. We give
examples of such type and provide heuristic explanations for their derived
equivalence.

2. The construction of general Clifford double mirrors

In this section, we recall the construction of general Clifford double mirrors
given in [BL18, Section 7], and fix the notation used throughout the paper.
We begin with some combinatorial definitions.

Let M be a lattice and let N := HomZ(M,Z) be its dual lattice. The
natural pairing is given by

〈, 〉 : M ×N → Z.

Let MR := M ⊗Z R, NR := N ⊗Z R be the R-linear extensions of M,N .
The pairing can be R-linearly extended, and we still use 〈, 〉 to denote this
extension.

Definition 2.1. A rational polyhedral cone K ⊂ MR is a convex cone
generated by a finite set of lattice points. We assume that K ∩ (−K) = {0}.
We call the first lattice point of a ray ρ of K a primitive element or a ray
generator of ρ.

Definition 2.2 ([BB97]). A full-dimensional rational polyhedral cone K ⊂
MR is called a Gorenstein cone if all the primitive elements of its rays lie
on some hyperplane 〈−, deg∨〉 = 1 for some degree element deg∨ in N . A
Gorenstein cone K ⊂ MR is called a reflexive Gorenstein cone iff its dual
cone K∨ := {y | 〈x, y〉 ≥ 0 for all x ∈ K} is also a Gorenstein cone with
respect to the dual lattice N .
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Definition 2.3. For a pair of dual reflexive Gorenstein cones (K,K∨), the
pairing of their two degree elements 〈deg, deg∨〉 = k is called the index of
the pair.

We consider a pair of reflexive Gorenstein cones K and K∨ in MR and
NR with degree elements deg ∈ K and deg∨ ∈ K∨ respectively. Suppose that
the index of this pair of Gorenstein cones is k = 〈deg, deg∨〉. In addition, we
consider a generic coefficient function

(2.1) c : K(1) → C,

where K(1) := {m ∈ K ∩M | 〈m, deg∨〉 = 1}.
As explained in [BL18, Sections 2 and 7], a decomposition of the degree

element deg∨ as a summation of lattice elements encompasses the data for
toric double mirrors. For example, all the decompositions of deg∨ as lin-
ear combinations of elements in K∨

(1) with coefficients 1 correspond to the

Batyrev-Borisov double mirrors ([Li16, Theorem 3.4]); and all the decompo-
sitions of deg∨ as linear combinations of elements in K∨

(1) with coefficients

1/2 correspond to the pure Clifford double mirrors. Hence it is natural to
consider a mix of above coefficients.

We make the following assumptions throughout the paper.
Suppose that

(2.2) deg∨ =
1

2
(s1 + · · ·+ s2r) + t1 + · · ·+ tk−r

for some 0 ≤ r ≤ k, with si, tj ∈ K∨ ∩N . The k + r elements si and tj are
assumed to be linearly independent. In addition, we assume that there exists
a regular simplicial fan Σ (see [CLS11, Definition 15.2.8]) with support K∨

such that the following centrality condition holds (see [BL18, (7.1)]):

(†) All maximum dimensional cones of Σ contain {s1, . . . , s2r, t1, . . . , tk−2r}
as ray generators.

For the existence of such fan under certain conditions, see [BL18, Propo-
sition 2.13]. Once it exists, we fix Σ throughout the construction.

We define toric stacks as in [BCS05] (see [FK17, Definition 5.6] or [BL18,
§2.2]). Let K∨

(1) = {ni | 1 ≤ i ≤ l} and ρi be the ray corresponding to ni.

For n ∈ K∨
(1), let z(n) denote the corresponding coordinate function. The

Cox open subset UΣ of CK∨
(1) � Cl consists of all points (a1, . . . , al) ∈ C

K∨
(1)

such that Cone{ni | ai = 0} ∈ Σ. Alternatively, let J := 〈
∏

ρi �⊂σ z(ni) | σ ∈
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Σ〉 be the irrelevant ideal, and V(J) be the subvariety defined by J , then

UΣ = C
K∨

(1) − V(J). Let [s, t] denote the set {s1, . . . , s2r, t1, . . . , tk−r}. We

can similarly consider the subset

UΣ ⊂ C
K∨

(1)−[s,t]

that corresponds to the stacky fan Σ for the group

(2.3) N = N/(Zs1 + · · ·+ Zs2r + Z deg∨+Zt1 + · · ·+ Ztk−r).

We have

UΣ = UΣ × C
2r × C

k−r,

where the last two components correspond to z(si) and z(ti).

There is a group Ĝ defined by

(2.4) Ĝ := {λ : K∨
(1) → Gm

∣∣∣ ∏
n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ Ann(deg∨)},

where Ann(deg∨) := {m ∈ M | 〈m, deg∨〉 = 0}. This group is isomorphic to

the product of Gm (i.e. the H given below) with the group in the definition

of the toric stack (i.e. G′ in (2.14)). The extra Gm coming from a dilation

action on the fiber is needed in [Isi13, Shi12] (see [FK17, Theorem 3.2]). The

group Ĝ acts naturally on UΣ. It has a subgroup H ⊂ Ĝ which is isomorphic

to Gm with action

(2.5) λ(si) = t, λ(ti) = t2, λ(v) = 1, for all v ∈ K∨
(1) − [s, t].

It is shown in [BL18, Section 5] that the toric DM stack corresponding to

(N,Σ) can be realized as the quotient of UΣ by

(2.6) G = Ĝ/H.

Moreover, there exists a (non-unique) isomorphism Ĝ ∼= G×H ([BL18,

Remark 5.1]).

There is a G-invariant polynomial which is called the potential,

(2.7) C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨
(1)

z(n)〈m,n〉.
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The potential C(z) is of total degree 2 with respect to H ∼= Gm. It can be

further written as

(2.8) C(z) = C1(z) + C2(z),

where C1(z) is the linear term in z(ti), and C2(z) is the quadratic term in

z(si). More precisely,

C1(z) =
∑

m∈K(1)∩Ann(s1,...,s2r)

c(m)
∏

n∈K∨
(1)

z(n)〈m,n〉,(2.9)

C2(z) =
∑

m∈K(1)∩Ann(t1,...,tk−r)

c(m)
∏

n∈K∨
(1)

z(n)〈m,n〉.(2.10)

If we let

fi =
∑

m∈K(1)
〈m,ti〉=1

c(m)
∏

n∈K∨
(1)−{ti}

z(n)〈m,n〉

=
∑

m∈K(1)
〈m,ti〉=1

c(m)
∏

n∈K∨
(1)−[s,t]

z(n)〈m,n〉,
(2.11)

then

(2.12) C1(z) =

k−r∑
i=1

z(ti)fi.

Indeed, by the decomposition (2.2) and the choice of m ∈ K(1), we see

that if 〈m, ti〉 = 1, then 〈m, sl〉 = 〈m, tj〉 = 0 for all sl and tj 
= ti. It is

straightforward to verify that C2(z) and z(ti)fi are both Ĝ-semiinvariant

section with character

(2.13) χ(λ) =
∏

n∈K∨
(1)

λ(n)〈α,n〉,

where α ∈ M is any lattice point satisfying 〈α, deg∨〉 = 1.

One can check that Ĝ is generated by H and another subgroup

(2.14) G′ := {λ : K∨
(1) → Gm

∣∣∣ ∏
n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ M}.
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By definition of G′, z(ti)fi is G′-invariant, and for any λ ∈ H ∼= Gm

(see (2.5)), we have λ · (z(ti)fi) = λ(z(ti))(z(ti)fi) = χ(λ)(z(ti)fi). Hence

(2.15) χ(λ) = λ(z(ti)), 1 ≤ i ≤ k − r.

In particular, this shows that fi is Ĝ-invariant.
We use fi to define an intersection Y ⊂ UΣ by

(2.16) Y =

k−r⋂
i=1

{fi = 0}.

It can be viewed as the zero locus of the section f := (f1, . . . , fk−r) ∈
H0(UΣ,⊕k−r

i=1OUΣ
). Moreover, Y is G-invariant, and will be shown to be a

complete intersection in Proposition 3.5.
We then define S as the quotient stack [Y/G]. The even part of sheaf

of Clifford algebras B0 on S = [Y/G] is defined by using the quadratic part
C2(z) of C(z). We formulate its definition as follows.

Definition 2.4 ([Kuz08, Section 3]). Let the quadratic C2(z) be a section
of Sym2(⊕2r

i=1OY · z∨i )∨, where z∨i are noncommutative variables. Then the
even part of sheaf of Clifford algebras over Y ⊆ UΣ is defined to be the
noncommutative locally constant sheaf of algebras

(
OY {z∨1 , . . . , z∨2r}/〈v⊗v′+v′⊗v−2C2(v, v

′), for all v, v′ ∈ ⊕2r
i=1Cz

∨
i 〉

)
even

,

where C2(v, v
′) is the quadratic form associated to C2(z), and even refers

to elements of even degrees in z∨i . It has a natural Ĝ-equivariant structure
which descends to Ĝ/H = G (see [BL18, Remark 7.4]). Then B0 on [Y/G]
is defined to be above even part of sheaf of Clifford algebras over Y ⊆ UΣ

with G-equivariant structure.

Definition 2.5 ([BL18, Sections 6 and 7]). For arbitrary r, 0 ≤ r ≤ 2k, we
call the noncommutative pair (S,B0) a general Clifford mirror. The even part
of sheaf of Clifford algebras B0 is viewed as the structure sheaf of this general
Clifford mirror. Moreover, Let Db(S,B0) be the bounded derived category of
coherent sheaves on S which are also B0-modules.

Remark 2.6. This definition generalizes the pure Clifford mirror (i.e. r =
2k case) considered in [BL18, Section 5] to a complete intersection in a
toric stack. Thus, we call it a general Clifford mirror. The word “mirror” in
the “general Clifford mirror” refers to the fact that such construction comes
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from mirror symmetry. We do not specify the mirror pair for (S,B0). In

fact, any pair (S∨,B∨
0 ) associated with the dual Gorenstein cone and the

dual data will be its mirror pair.

The main conjecture of [BL18] is that for a fixed reflexive Gorenstein

cone K, all the decompositions (2.2) (with r varied) will give double mirrors.

In terms of homological mirror symmetry, this can be formulated as follows.

Conjecture 2.7 ([BL18, Conjecture 7.5]). Under the centrality and ap-

propriate flatness assumptions (see (3.5)), for all general Clifford mirrors

(S,B0) associated to K, their derived categories Db(S,B0) are equivalent.

Theorem 2.8 ([FK17, Theorem 6.3], [BL18, Theorem 6.3] ). The conjec-

ture 2.7 is true when r is 0 or 2k.

Remark 2.9. For r = 0, the noncommutative varieties (S,B0) are actu-

ally the Batyrev-Borisov Calabi-Yau varieties. Hence, Conjecture 2.7 can

be viewed as a generalization of Batyrev-Nill’s conjecture ([BN08, Conjec-

ture 5.3]) on Batyrev-Borisov double mirrors. This case was first proved by

Favero and Kelly in [FK17, Theorem 6.3].

The main result of this paper (Theorem 3.13) confirms Conjecture 2.7.

This is a strong evidence that the construction (S,B0) are indeed double

mirrors, and we expect that they should also pass other tests of mirror

symmetry.

3. Derived equivalence of general Clifford double mirrors

3.1. Derived factorization category and Hirano’s result

Two technical tools to prove Theorem 3.13 are the results on the relations of

derived categories between variation of GIT ([BFK19, HL15]), and Hirano’s

result [Hir17] analogous to that of Isik and Shipman ([Shi12, Isi13]) in the

matrix factorization categories. First let us recall the definition of derived

matrix factorization categories in [Pos11, EP15] (see [Hir17, Definition 2.2]).

Definition 3.1. Let X be a scheme, and G be an affine algebraic group

acting on X. Let χ : G → Gm be a character of G, and W : X → A1

be a χ-semiinvariant function. A factorization F of data (X,χ,W,G) is a

sequence

F =

(
F1

φF
1−−→ F0

φF
0−−→ F1(χ)

)
,
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where Fi are G-equivariant coherent sheaves on X and φF
i are G-equivariant

homomorphisms for i = 0, 1. They satisfy the relations

φF
0 ◦ φF

1 = W · idF1
, φF

1 (χ) ◦ φF
0 = W · idF0

.

A morphism of factorizations g : E → F is a pair of morphisms (g1, g0) that

commute with φE
i and φF

i . We use CohG(X,χ,W ) to denote this abelian

category of factorizations.

There also exists a notion of chain homotopy between morphisms in

CohG(X,χ,W ) and we let KcohG(X,χ,W ) be the corresponding homotopy

category. One can define a natural translation and cone construction in

KcohG(X,χ,W ). These give a triangulated category structure on the ho-

motopy category. Let AcohG(X,χ,W ) be the smallest thick subcategory of

KcohG(X,χ,W ) containing all totalizations of short exact sequences from

CohG(X,χ,W ) (see [Hir17, Section 2]).

Definition 3.2 ([Hir17, Definition 2.10]). The derived factorization cate-

gory of data (X,χ,W,G) is defined as Verdier quotient

DcohG(X,χ,W ) := KcohG(X,χ,W )/AcohG(X,χ,W ).

To state Hirano’s result ([Hir17, Theorem 4.2]), let us fix the following

notation. For consistency, it appears slightly different from that in [Hir17].

Let U be a smooth quasi-projective variety, and G be a reductive affine

algebraic group acting on U . Let χ : G → Gm be a character, and C2 :

U → A1 be a χ-semiinvariant regular function. Suppose that there is a

G-equivariant locally free sheaf E over U , and a G-invariant section f ∈
H0(U, E∨). Let Z be the zero locus of f . We call f to be a regular section

if the codimension of Z in U is rank E (see [Hir17, Section 4]). Set E(χ) =
E ⊗ O(χ) for the character χ, and

(3.1) VU (E(χ)) := Spec(Sym•(E(χ)∨))

the corresponding vector bundle with induced G-action. Let q : VU (E(χ)) →
U and p : V (E(χ))|Z → Z be two natural projections. The regular section

f induces a χ-semiinvariant regular function C1 : VU (E(χ)) → A1. Locally,

this means that f = (f1, . . . , frank E) is associated with a function C1 =∑rank E
i=1 zifi, where zi is an indeterminate such that g ∈ G acting on zi

equals to χ(g)zi.
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Theorem 3.3 ([Hir17, Theorem 4.2]). Under the above notation, assume
that C2|Z is flat and f ∈ H0(U, E∨) is a regular section, then there is an
equivalence

DcohG(Z, χ,C2|Z) ∼= DcohG(VU (E(χ)), χ, q∗C2 + C1).

3.2. Proof of the main theorem

Suppose that there are two decompositions as (2.2)

deg∨ =
1

2
(s1 + . . .+ s2r) + t1 + . . .+ tk−r

=
1

2
(s̃1 + . . .+ s̃2l) + t̃1 + . . .+ t̃k−l,

(3.2)

and respective regular simplicial triangulations Σ, Σ̃ which satisfy centrality
condition (†). Then there exist general Clifford mirrors (S,B0) and (S̃, B̃0)
as constructed in Section 2. In order to show that they are derived equiv-
alent, we use a derived version of Cayley trick. That is, we associate each
derived category to a derived matrix factorization category with the com-
mon potential C(z). After this, a homological variation of GIT argument for
derived categories will give the desired equivalence.

Let us first work with deg∨ = t1+ . . .+tk−r+
1
2(s1+ . . .+s2r). The other

decomposition can be treated analogously. We will show that the regular-
ity assumption in Theorem 3.3 is satisfied for the generic Y in the general
Clifford mirror construction. The proof of the following proposition was ex-
plained to us by Lev Borisov.

Proposition 3.4. For each 1 ≤ i ≤ k − r, the linear system

Li := {
∑

m∈K(1),〈m,ti〉=1

c(n)
∏

n∈K∨
(1)−[s,t]

z(n)〈m,n〉 | c(n) ∈ C}

is base point free on UΣ.

Proof. For m ∈ {m ∈ K(1) | 〈m, ti〉 = 1}, let Fm =
∏

n∈K∨
(1)−[s,t] z(n)

〈m,n〉. It

suffices to show that there is no common zeros for all monomial functions Fm.
Fm is non-zero on (C∗)#Vert(Σ) ⊂ UΣ, hence we only need to consider zero

locus on the boundary divisors D̃n := {z(n) = 0} ⊂ UΣ for n ∈ K∨
(1) − [s, t].

The zero divisor of Fm is

div0(Fm) =
∑

n∈K∨
(1)−[s,t]

〈m,n〉D̃n.
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Suppose that there were a closed point z ∈ UΣ on which all Fm are zero.
By the definition of UΣ, we may assume that Cone{ρ̄i ∈ Σ(1) | zi = 0} ⊂ σ̄,
where Σ(1) is the set of rays and σ̄ ∈ Σ is a maximum cone.

Let n1, . . . , nd be the preimage in K∨
(1) of the ray generators of σ̄. Then

the preimage σ of σ̄ is the maximum cone with ray generators

n1, . . . , nd, s1, . . . , s2r, t1, . . . , tk−r.

Consider the facet θ of this cone generated by all of the above elements,
except ti. This facet θ lies on a facet of K∨. Indeed, otherwise, it would be
in the interior of K∨ but then points on the opposite side of ti can not be
in any cone that contains deg∨. This contradicts the centrality assumption
(†) in Section 2.

The dual face of θ is generated by some point m ∈ K(1). We must have
〈m, ti〉 
= 0, since otherwise m is orthogonal to all of σ and must be 0. By
the definition of the dual face, 〈m,np〉 = 〈m, sq〉 = 0 for all 1 ≤ p ≤ d, 1 ≤
q ≤ 2k, and 〈m, tj〉 = 0 for all j 
= i. Therefore, 〈m, ti〉 = 〈m, deg∨〉 = 1. We
claim that if nl ∈ K∨

(1)−[s, t]−{n1, . . . , nd}, then z 
∈ D̃nl
. In fact, otherwise,

let ρ̄l ∈ Σ(1) be the ray generated by the image of nl, then z ∈ D̃nl
implies

that zl = 0 and thus nl ∈ σ is a ray generator by the choice of σ. This is a
contradiction because nl 
∈ {n1, . . . , nd}. By 〈m,np〉 = 0 for all 1 ≤ p ≤ d,
we have

Supp(div0(Fm)) ⊂ Supp(∪n∈K∨
(1)−[s,t]−{n1,...,nd}D̃n),

and thus z 
∈ Supp(div0(Fm)). This is a contradiction.

The upshot of the above discussion is the desired regularity property
of f = (f1, . . . , fk−r) ∈ H0(UΣ,⊕

k−r
i=1OΣ) on UΣ (see Section 2 for notation

and (2.15) for the fact that fi is Ĝ-equivariant).

Proposition 3.5. For a general coefficient function c, f is a regular sec-
tion on UΣ in the sense of Theorem 3.3, that is, Y in (2.16) is a complete
intersection of codimension k − r.

Proof. By Proposition 3.4, the linear system Li is base point free. Hence for
general coefficients,

Y =
⋂

1≤i≤k−r

{fi = 0} ⊂ UΣ

is a complete intersection by Bertini’s theorem (for example, see [Mul09,
Proposition 6.7]).
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Recall that by definition (2.3),

N = N/(Zs1 + · · ·+ Zs2r + Z deg∨+Zt1 + · · ·+ Ztk−r),

and according to the discussion in Section 2, the Cox open set UΣ can be

viewed as a Ĝ = G × H invariant variety with H acts trivially. We define
two Ĝ-equivariant locally free sheaves FL and FQ on UΣ. Let

FL := ⊕k−r
i=1OUΣ

be the rank k − r locally free sheaf associated to those ti, or the linear part
of the potential. Let

FQ := ⊕2r
i=1OUΣ

(χi)

be the rank 2r locally free sheaf associated to si, or the quadratic part of
the potential, where χi is the character χi(λ) = λ(z(si)).

The vector bundle VUΣ
(FQ) has a Ĝ = G×H action given by

(3.3) (ḡ, t)× (x̄, z(si)) �→ (ḡ · x̄, t · z(si)),

where ḡ ∈ G acts on x̄ ∈ UΣ by the action of G on UΣ, and t ∈ H ∼= Gm

acts by t · z(si) = tz(si), 1 ≤ i ≤ 2r. Then C2(z) (see (2.10)) is a section
of H0(UΣ, Sym

2FQ), and according to the discussion in Section 2, it is Ĝ-
semiinvariant with character χ. Similarly, the vector bundle VUΣ

(FL(χ)⊕FQ)

has a Ĝ-action given by

(ḡ, t)× (x̄, z(tj), z(si)) �→ (ḡ · x̄, t · z(tj), t · z(si)),

where ḡ · x̄, t · z(si) are the same as (3.3), and t · z(tj) = t2z(tj). Recall that
by (2.15), we have χ(λ) = λ(z(ti)) which amounts to multiplying by t2 under
the identification Ĝ = G×H. Then f = (fi)i is a Ĝ-equivariant section of FL

according to the discussion in Section 2, and C1(z) =
∑k−r

i=1 z(ti)fi in (2.12)

is Ĝ-semiinvariant with character χ.
By the previous discussion, we have

(3.4) [UΣ/Ĝ] ∼= [VUΣ
(FL(χ)⊕FQ)/Ĝ].

We also write C2(z) for the pullback of C2(z) to this vector bundle. The
zero locus of f is exactly Y , and C2(z) restricted to V (FQ|Y ) is a quadric
section, and hence associated to an even part of sheaf of Clifford algebras
whose pullback to S = [Y/G] is B0.
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Remark 3.6. We slightly abuse the above notation: technically, the twist
of χ should be on the locally free sheaf E which is the pullback of FL over
the morphism VUΣ

(FQ) → VUΣ
. Thus, VUΣ

(FL(χ) ⊕ FQ) should be written
as VV (FQ)(E(χ)) according to the notation in Theorem 3.3.

We need flatness assumption for the quadric fibration defined by C2(z):

(3.5) The quadric fibration {C2(z) = 0} ⊂ VUΣ
(FQ) to UΣ is flat.

Remark 3.7. As pointed out in [BL18, Standing Assumption 5.4]. This flat-
ness assumption is crucial for establishing the expected derived equivalence
of pure Clifford double mirrors. There are examples that derived equivalence
no longer holds when the fibration is not flat. On the other hand, since the
fibration is defined by a single equation, the geometric criterion for flatness
is that all of the fibers are hypersurfaces.

Proposition 3.8 ([BL18, Theorem 6.1]). Under the flatness assumption on
quadric fibrations (3.5), the derived category Db(S,B0) is equivalent to the
derived matrix factorization category DcohĜ(V (FQ|Y ), χ, C2(z)).

This result follows the same argument as [BL18, Theorem 6.1] which
relies on the results of [Kuz08, BDF+18]. Alternatively, one can use equiv-
ariant version of [Kuz08, Theorem 4.2] and [Orl09, Theorem 16].

Proposition 3.9. Under the flatness assumption on quadric fibrations (3.5),
there exists derived equivalence

Db(S,B0) ∼= DcohĜ(VUΣ
(FL(χ)⊕FQ), χ, C(z)).

Proof. By Proposition 3.8, we have

Db(S,B0) ∼= DcohĜ(V (FQ|Y ), χ, C2(z)).

The zero locus of f = (fi)i on VUΣ
(FQ) is V (FQ|Y ), and the associ-

ated χ-semiinvariant function VUΣ
(FL(χ)⊕ FQ) → A1 is exactly C1(z). By

Proposition 3.5, C1(z) is regular. Then by Theorem 3.3 (see Remark 3.6),
there exists equivalence

DcohĜ(V (FQ|Y ), χ, C2(z))
∼=DcohĜ(VUΣ

(FL(χ)⊕FQ), χ, C1(z) + q∗C2(z)),

where q : VUΣ
(FL(χ)⊕ FQ) → VUΣ

(FQ) is the natural projection. However,
q∗C2(z) is exactly the same as C2(z) restricted to VUΣ

(FL(χ)⊕FQ) as there
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are no linear terms in C2(z). Finally, by the decomposition (2.8), C(z) =

C1(z) + C2(z), we have the desired equivalence.

By the same argument, we can establish the derived equivalence

Db(S̃, B̃0) ∼= DcohĜ(VU
Σ̃
(F̃L(χ)⊕ F̃Q), χ, C(z)),

where (̃ ) represent the analogous construction from the decomposition

deg∨ =
1

2
(s̃1 + . . .+ s̃2l) + t̃1 + . . .+ t̃k−l,

and a regular simplicial fan Σ̃ satisfying the centrality condition (†).

Remark 3.10. We emphasize that C(z) is the restriction of the same po-

tential function (2.7)

C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨
(1)

z(n)〈m,n〉,

hence we use the same symbol. Moreover, by the definition of Ĝ (see (2.4))

and χ, they do not depend on decompositions.

Next, we relate the two matrix factorization categories by the result of

[BFK19].

Proposition 3.11. There exists derived equivalence

DcohĜ(VUΣ
(FL(χ)⊕FQ), χ, C(z)) ∼= DcohĜ(VU

Σ̃
(F̃L(χ)⊕ F̃Q), χ, C(z)).

Proof. This version is stated in [BL18, Theorem 3.2]. By (3.4), the category

DB(K, c; Σ) therein is exactly

DcohĜ(UΣ, χ, C(z)) ∼= DcohĜ(VUΣ
(FL(χ)⊕FQ), χ, C(z))

under the current notation. Moreover,

DcohĜ(VU
Σ̃
(F̃L(χ)⊕ F̃Q), χ, C(z)) ∼= DB(K, c; Σ̃)

for the same reason. Recall that Σ, Σ̃ are regular simplicial fans with sup-

port K∨, and K∨
(1) contains all the ray generators {s1, . . . , s2r, t1, . . . , tk−r}
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and {s̃1, . . . , s̃2l, t̃1, . . . , t̃k−l}. There is a bijection between chambers of the
secondary fan for the action of (see (2.14))

G′ = {λ : K∨
(1) → Gm |

∏
n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ M}

on C
K∨

(1) and regular triangulations onK∨
(1) (see [CLS11, Proposition 15.2.9]).

Thus Σ, Σ̃ correspond to chambers of the secondary fan, and are connected
by elementary wall-crossings (see [BFK19, Definition 3.5.1]). By the defini-
tion of Gorenstein cones, K∨

(1) lies on the hyperplane 〈deg,−〉 = 1, which

is exactly the condition needed for the derived equivalence (see [FK17, Def-
inition 5.10]). For details, see the proof in [BL18, Theorem 3.2] or [FK17,
Theorem 4.4].

Remark 3.12. A far more general version of this result is proved by Ballard,
Favero, Katzarkov [BFK19] and Halpern-Leistner [HL15] independently,
which clarifies the earlier work of Herbst and Walcher [HW12]. The ver-
sion stated above first appears in [FK17, Theorem 4.4] in terms of singular
derived categories. The derived matrix factorization category DB(K, c; Σ)
is equivalent to the Ĝ-equivariant singular derived category of {C(z) = 0}
therein due to the smoothness of UΣ. Otherwise, this needs to be replaced by
the Ĝ-equivariant relative singular category (see [EP15]).

Putting above results together, we have the desired equivalence.

Theorem 3.13. Under the flatness assumption on quadric fibrations (3.5),
the general Clifford double mirrors (S,B0) and (S̃, B̃0) are derived equivalent.

Proof. By Proposition 3.9 and Remark 3.10, we have

Db(S,B0) ∼= DcohĜ(VUΣ
(FL(χ)⊕FQ), χ, C(z)),

Db(S̃, B̃0) ∼= DcohĜ(VU
Σ̃
(F̃L(χ)⊕ F̃Q), χ, C(z)).

By Proposition 3.11, we have Db(S,B0) ∼= Db(S̃, B̃0).

Remark 3.14. We assume the existence of quadric fibrations and their
flatness in Theorem 3.13. In particular, for the two decompositions (3.2)
corresponding to (S,B0) and (S̃, B̃0) respectively, we have r > 0, l > 0. How-
ever, if one of r, l equals to 0 (say r = 0), then the noncommutative variety
(S,B0) becomes a stack Y whose coarse moduli space is the Calabi-Yau va-
riety defined by the Batyrev-Borisov complete intersection in a toric Fano
variety. There still exists derived equivalence between Db(Y) and Db(S̃, B̃0).
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In fact, Db(Y) is also derived equivalent to DcohĜ(UΣ, χ, C(z)) by Shipman

and Isik’s result [Shi12, Isi13]. Therefore, by Proposition 3.11, we still have

Db(Y) ∼= Db(S̃, B̃0).

4. General Clifford mirrors of the product type

One type of general Clifford mirrors can be obtained as a “product” of two

general Clifford mirrors, and we call them general Clifford mirrors of the

product type. The construction is as follows.

Let M1,M2 be lattices. Suppose that there are two reflexive Gorenstein

cones K1,K2 in (M1)R, (M2)R respectively. Their dual cones are K∨
1 ,K

∨
2 in

(M∨
1 )R, (M

∨
2 )R with degree elements deg∨1 , deg

∨
2 respectively. Then there is

a rational polyhedral cone

(4.1) K := {(a; b) ∈ (M1 ⊕M2)R | a ∈ K1, b ∈ K2}.

It is a reflexive cone with degree element deg∨ = (deg∨1 ; deg
∨
2 ). Its dual cone

is exactly

(4.2) K∨ = {(a∨; b∨) ∈ (M∨
1 ⊕M∨

2 )R | a∨ ∈ K∨
1 , b

∨ ∈ K∨
2 },

and hence K,K∨ is a pair of reflexive Gorenstein cones whose index is

〈deg1, deg∨1 〉+ 〈deg2, deg∨2 〉 = k1 + k2. Now let

deg∨1 =
1

2
(s1 + . . .+ s2r) + t1 + . . .+ tk1−r

be a decomposition and Σ1 be a regular simplicial fan with support K∨
1

satisfying the assumptions in Section 2. Similarly, let

deg∨2 =
1

2
(ξ1 + . . .+ ξ2l) + η1 + . . .+ ηk2−l

be a decomposition and Σ2 be a regular simplicial fan with support K∨
2

satisfying the assumptions in Section 2. Then

deg∨ = (deg∨1 ; deg
∨
2 )

=
1

2
((s1;0) + . . .+ (s2r;0) + (0; ξ1) + . . .+ (0; ξ2l))

+ (t1;0) + . . .+ (tk1−r;0) + (0; η1) + . . .+ (0; ηk2−l)
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is a decomposition, and

Σ := {σ1 × σ2 | σ ∈ Σ1, σ2 ∈ Σ2}

is a simplicial fan with support K∨ and satisfying the centrality condi-

tion (†). If Σ is further assumed to be regular, then the decomposition to-

gether with Σ also satisfy the assumptions in Section 2. Let (S,B0) be the

general Clifford mirror associate with the above data. Then (S,B0) is said

to be of the product type. As a special case of Theorem 3.13, we have the

following result.

Corollary 4.1. Under the above notation and assumptions. Assume the

flatness for quadric fibrations (3.5), then the general Clifford mirrors (S,B0)

of the product type are all derived equivalent.

Perhaps, the most simple example of the above kind can be built upon

the anticanonical hypersurfaces associated with the toric Fano variety de-

fined by a reflexive polytope.

First, we work with one copy of the data and consider the example in

[BL18, Section 9.4]. Let Δ be the 2 dimensional reflexive polytope

Δ = Conv{(1, 1), (1,−1), (−1,−1), (−1, 1)} ⊂ (M1)R,

whose dual polytope is

Δ∨ = Conv{(1, 0), (0,−1), (−1, 0), (0, 1)} ⊂ (M∨
1 )R.

Then a pair of reflexive Gorenstein cones can be associated with these poly-

topes

K1 = {(a; a ·Δ) | a ≥ 0} ⊂ (M1)R, K∨
1 = {(b; b ·Δ∨) | b ≥ 0} ⊂ (M∨

1 )R.

The degree element deg∨1 can be written in two different ways:

deg∨1 = (1;0) =
1

2
(s1 + s2),

where s1 = (1,−1, 0), s2 = (1, 1, 0). For each decomposition, there is a unique

regular simplicial fan satisfying assumptions in Section 2.
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Let E be an one dimensional variety defined by the expression deg∨1 =

(1;0). It is an elliptic curve in PΔ∨ = P1 × P1 given by equation

f = a11x
−1y + a12y + a13xy

+ a21x
−1 + a22 + a13x

+ a31x
−1y−1 + a32y

−1 + a33xy
−1,

(4.3)

where aij ∈ C, 1 ≤ i, j ≤ 3 are generically chosen coefficients.

There is a Clifford mirror (S,B0) associated to deg∨1 = s1 + s2. To be

precise, M∨
1 = Z3/Z3 ∩ (Rs1 + Rs2) ∼= Z, and Θ = (K∨

1 )(1) = Conv(−1, 1),

the toric stack PΘ is actually the smooth toric variety P1. By straightforward

computations, one can find that among the lattice points of (K1)(1), elements

in {(1,−1, 1), (1,−1, 0), (1. − 1,−1)} pairing with s1 equal to 2; elements

in {(1, 1, 1), (1, 1, 0), (1, 1,−1)} pairing with s2 equal to 2; and elements in

{(1, 0, 1), (1, 0, 0), (1, 0,−1)} pairing with both s1, s2 equal to 1. If we use

z1, z2 for the coordinate of the vector bundle, and t for the coordinate of the

base S = P1, then the quadric fibration can be written as

0 = C(z) = a11z
2
1t+ a21z

2
1 + a31z

2
1t

−1

+ a12z1z2t+ a22z1z2 + a32z1z2t
−1

+ a13z
2
2t+ a23z

2
2 + a33z

2
2t

−1,

(4.4)

where aij are the same coefficients as in (4.3). C(z) is a family of quadratic

forms parametrized by t, and because their coefficients are chosen generi-

cally, the corank of this quadratic form is less than 2 for any t. Hence the

derived category of (S,B0) is equivalent to a commutative variety S̃, which
is a ramified double cover of S ([Kuz08, Corollary 3.14]). Moreover, the ram-

ification locus is determined by where the quadratic form degenerates, that

is,

(a11t+ a21 + a31t
−1)(a13t+ a23 + a33t

−1)− 1

4
(a12t+ a22 + a32t

−1) = 0.

Hence, the ramification locus on P1 is exactly the same as those of E over

S = P1 (i.e. the morphism is the projection of t). This shows that S̃, E are in

fact isomorphic elliptic curves. In particular, Db(S,B0) ∼= Db(S̃) ∼= Db(E).

Now, we consider the general Clifford mirrors of the product type built

on two copies of this example. Let M1 = M2,M
∨
1 = M∨

2 and K1 = K2. Then

K,K∨ constructed in (4.1), (4.2) are reflexive Gorenstein cones in rank 6
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lattices. There are three different ways to express deg∨ which give double
mirrors,

deg∨ = (t1;0) + (0; t1)

= (t1;0) +
1

2
((0; s1) + (0; s2))

=
1

2
((s1;0) + (s2;0) + (0; s1) + (0; s2)) .

The corresponding fans in these cases are regular can be derived from [FK17,
Proposition 5.20]. The first expression corresponds to a Batyrev-Borisov
complete intersection, which is a product of two elliptic curves E × E;
the third expression corresponds to the pure Clifford mirror (SK , (BK)0)
explored in [BL18]. Their derived equivalence is a consequence of [BL18,
Theorem 6.3]. The second expression exhibits the general Clifford mirror
(Sgen, (Bgen)0) considered in this paper, where the hypersurface Sgen = E
defined by (t1;0) “parametrizes” pure Clifford mirrors (St, (Bt)0) � (S,B0).
We had shown that E and (S,B0) have equivalent derived categories. There-
fore, it is reasonable to have the derived equivalence

Db(E × E) ∼= Db(Sgen, (Bgen)0) ∼= Db(SK , (BK)0)

which is the consequence of Theorem 3.13.

Remark 4.2. In general, when the reflexive Gorenstein cone does not have
above “direct sum” property, the corresponding noncommutative varieties are
predictably more complicated. It is interesting to classify the combinatoric
data for general Clifford mirrors in low dimensions just as in the Batyrev-
Borisov case. Moreover, it is desirable to use the above method to construct
examples as [Căl02], where an elliptic threefold without a section is derived
equivalent to the twisted derived category of its (small resolution of) relative
Jacobian. The twist there should be replaced by the even part of sheaf of
Clifford algebras B0.
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