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Rational 2-functions are abelian

L. Felipe Müller

We show that the coefficients of rational 2-functions are contained
in an abelian number field. More precisely, we show that the poles
of such functions are poles of order one and given by roots of unity
and rational residue.
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1. Introduction

Fermat’s and Euler’s congruences are well-known in number theory and are
rich of remarkable consequences. In the following we will give a short survey
of these congruences. We start with the famous

Theorem 1.1 (Euler). The congruence

ap
r ≡ ap

r−1

mod pr(1.1)

holds for all integers a ∈ Z, all primes p, and all natural numbers r ∈ N.

A sequence (ak)k∈N of rational numbers is called an Euler sequence (or
Gauss sequence as in [4]) for the prime p, if ak is a p-adic integer for all
k ∈ N and

ampr ≡ ampr−1 mod pr(1.2)
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for all integers r ≥ 1 and m ≥ 1. A survey of these congruences has been
given in [9] and [12].

Beukers coined the term supercongruence: A supercongruence (with re-
spect to a prime p) refers to a sequence (an)n∈N ∈ ZN

p that satisfies congru-
ences of the type

ampr ≡ ampr−1 mod psr,(1.3)

for all m, r ∈ N and a fixed s ∈ N, s > 1 (cf. [6]). Such supercongruences
are given by the Jacobsthal-Kazandzidis congruence (cf. [5]), Apéry num-
bers (cf. [2], [3]), generalized Domb numbers (cf. [10]) and Almkvist-Zudilin
numbers (cf. [1], [7]) to name a few. Note that all the above mentioned
supercongruences are valid for s = 3 with respect to p ≥ 5.

Let K be an algebraic number field and O its ring of algebraic integers.
We consider a generalization of supercongruences to sequences of algebraic
integers in K. More precisely, for s ∈ N, an s-sequence is a sequence (an) ∈
KN, such that for any unramified prime ideal p ∈ O lying above the prime
p ∈ Z, an ∈ Op, and for all m, r ∈ N,

Frobp(apr−1m)− aprm ≡ 0 mod psrOp,

where Op is the ring of p-adic integers and Frobp is the canonical lift of
the standard Frobenius element of p in the Galois group of the local field
extension (O/p)|(Z/p). The generating function V (z) of an s-sequence then
integrates to what is referred to as an s-function in [11]. More precisely,
the s-sequence a ∈ KN corresponds to the s-function ∫sV (z) given by the
(formal) power series

∫sV (z) =

∞∑
n=1

an
ns

zn ∈ zK�z�,

Interestingly, 2-functions (where s = 2) have their geometric origin in su-
per symmetry. As stated in [11], see Thm. 22 therein, 2-functions appear
as the non-singular part of the superpotential function (without the con-
stant term) with algebraic coefficients. In other words, algebraic cycles on
Calabi-Yau three-folds provide a source of 2-functions that are analytic and
furthermore satisfy a differential equation with algebraic coefficients. It is
therefore expected that understanding the numerical interpretation of open
Gromov-Witten/BPS theory relative to Lagrangian submanifolds mirror to
algebraic cycles highly depend on delivering some (natural) basis of the class
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of 2-functions with algebraic coefficients. It is therefore of main interest to
characterize a submodule of s-functions by suitable algebraic or analytic
properties, and a class of distinguished generators for this submodule. The
contribution of the present work to this problem is to give a characterization
of a 2-function ∫2 V (z), where V represents a rational function. We have

Theorem 1.2. Let V ∈ zK�z�, V (z) �= 0, be the generating function of a
2-sequence (an)n∈N ∈ KN, representing the rational function F (z) ∈ K(z)
as its Maclaurin expansion. Then, there is root of unity ζ primitive of order
N and rational coefficients Ai ∈ Q for i = 1, ..., N such that

F (z) =

N∑
i=1

Aiζ
iz

1− ζiz
.(1.4)

In particular, the coefficients an of V (z) are periodic and have the form

an =

N∑
i=1

Aiζ
in.(1.5)

The first reduction in the proof of Theorem 1.2 is given by Theorem 3.1,
a statement due to Minton (cf. [9]). It states, that the generating functions of
Euler sequences are given by sums of logarithmic derivatives of polynomials
with integral coefficients.

2. Preliminaries

In this section, we recall basic notations in number fields and introduce s-
sequences. For further reference see also [11]. Throughout this paper, the
natural numbers will be meant to be the set of all positive integers, N =
{1, 2, ...}, while N0 = N ∪ {0}. If X is a set, then XN denotes the set of all
sequences indexed by the natural numbers, (xn)n∈N ∈ XN. For a ring R let
R�z� denote the ring of formal power series in the variable z with coefficients
in R.

Let K be a fixed algebraic number field and assume K to be normal
over Q. Denote by O the ring of integers of K. Let D be the discriminant
of K|Q. We say that a prime p ∈ Z is unramified in K|Q if all prime ideals
p | pO are unramified. Note that an unramified prime p is characterized
by the property that p � D. For any prime ideal p, Op denotes the ring
of p-adic integers. Then Op is an integral domain and its field of fractions
Kp = Quot(Op) is the p-adic completion of K.
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For p | (p), the Frobenius element Frp at p is the unique element satis-

fying the following two conditions: Frp is an element in the decomposition

group D(p) ⊂ Gal(K/Q) of p and for all x ∈ O, Frp(x) ≡ xp mod p. By

Hensel’s Lemma, Frp can be lifted to Op and then extended to an automor-

phism Frobp : Kp → Kp. By declaring Frobp(z) = z, Frobp can be (linearly)

extended to an endomorphism Frobp : Kp�z� → Kp�z�.

In [11], an s-function with coefficients in K (for s ∈ N) is defined to be

a formal power series Ṽ ∈ zK�z� such that for every unramified prime ideal

p ⊂ O dividing p ∈ Z, we have

1

ps
FrobpṼ (zp)− Ṽ (z) ∈ zOp�z�.(2.1)

A sequence (an)n∈N ∈ KN is said to satisfy the local s-function property for

p, if p ∈ Z is unramified in K|Q, and an ∈ Op is a p-adic integer for all

n ∈ N, and

Frobp
(
ampr−1

)
≡ ampr mod psrOp,(2.2)

for all m, r ∈ N and all prime ideals p | (p). (an)n∈N is called an s-sequence if

it satisfies the local s-function property for all unramified primes p in K|Q.

By definition, it is evident that the coefficients of an s-sequence are contained

in O
[
D−1

]
. The coefficients of s-functions are given by an s-sequence after

applying s-fold derivation by the Euler operator z d
dz (cf. [11, Lem. 4]). We

denote by Ss(K|Q) ⊂ zO
[
D−1

]
�z� the set of all generating functions of

s-sequences with coefficients in K. Furthermore, the set Ss
rat(K|Q) denote

the subset in Ss(K|Q) of power series which represent rational functions.

3. A theorem due to Minton

The next Theorem 3.1 is a adaptation of Thm. 7.1 in [4], which on the other

hand is a re-proven statement from [9]. It is the starting point for the proof

of Theorem 1.2. The crucial insight is that a rational 1-function only admits

poles of order 1. We give a proof for the sake of completeness. In the course

of this, we follow the ideas given in [4].

Theorem 3.1 (compare with [4], [9]). Let V ∈ S1
rat(K|Q) representing the

rational function F (z) ∈ K(z) as its Maclaurin expansion. Then there is

an integer r ∈ N, distinct algebraic numbers αi ∈ Q
×
, and Ai ∈ Q×, for
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i = 1, ..., r, such that F can be written as

F (z) =

r∑
i=1

Aiαiz

1− αiz
.

Proof. Let F be given by the fraction of P,Q ∈ K[z], Q �≡ 0, i.e. F = P
Q .

We may assume that Q(0) �= 0 and P (0) = 0. By [4, Prop. 3.5], we have
deg(P ) ≤ deg(Q). By adding a constant C ∈ K to F it does not affect the
1-function condition but we may assume deg(P ) < deg(Q). Then, by the
Partial Fraction Decomposition F̃ = P

Q + C has the form

F̃ =

r∑
i=1

mi∑
j=1

Ai,j

(1− αiz)j
,

where the αi ∈ Q
×
, i ∈ {1, ..., r} are distinct algebraic numbers, mi ∈ N and

Ai,j ∈ Q for all (i, j) ∈ {1, ..., r} × {1, ...,mi}. Let p be a sufficiently large
prime, unramified in K|Q, such that αi, αi − αj ∈ O×

p , and p > mi for all
i, j ∈ {1, ..., r}. What we need to show is mi = 1 for all i ∈ {1, ..., r}. We
have

1

(1− αiz)j
=

∞∑
k=0

(
k + j − 1

j − 1

)
αk
i z

k.

Therefore, if Ṽ (z) = V (z) + C is the Maclaurin series expansion of F̃ , the
Cartier operator Cp applied to Ṽ is given by

CpṼ =

∞∑
k=0

⎡⎣ r∑
i=1

mi∑
j=1

Ai,j

(
pk + j − 1

j − 1

)
αpk
i

⎤⎦ zk.

Since p > mi, we find
(
pk+ν
ν

)
≡ 1 mod p for all 0 ≤ ν < mi (in particular,

ν < p) by the following calculation(
pk + ν

ν

)
=

ν∏
�=1

(
1 +

pk

�

)
≡ 1 mod p.

Consequently,

CpṼ ≡
∞∑
k=0

⎡⎣ r∑
i=1

mi∑
j=1

Ai,jα
pk

⎤⎦ zk =

r∑
i=1

mi∑
j=1

Ai,j

1− αp
i z

=

r∑
i=1

Ai

1− αp
i z

mod p,
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where Ai =
∑mi

j=1Ai,j . Hence, CpṼ represents a rational function with exclu-

sively simple poles modulo p. Thus, the 1-function property CpṼ −Frobp Ṽ ≡
0 mod pOp�z� ensures that F̃ has only simple poles as well. Therefore, we
write from now on

F̃ =

r∑
i=1

Ai

1− αiz
,

where Ai, αi ∈ Q
×
and αi �= αj for i �= j. Evaluating F̃ at z = 0 we conclude

that C =
∑r

i=1Ai. Therefore,

F = F̃ − C =

r∑
i=1

Ai

1− αiz
−

r∑
i=1

Ai =

r∑
i=1

Aiαiz

1− αiz
.

In particular, we have an =
∑r

i=1Aiα
n
i for all n ∈ N. The local 1-function

property for p then gives

0 ≡ Frobp(am)− amp =

r∑
i=1

(Frobp(Ai)Frobp(α
m
i )−Aiα

mp
i ) mod pOp,

for all m ∈ N. Since Frobp is given by taking component-wise the p-th power
modulo p for all p | (p), we conclude

0 ≡
r∑

i=1

(Ap
i −Ai)α

mp
i mod pOp,

for all m ∈ N. The Vandermonde type r × r matrix M =
(
αip
j

)
i,j=1,...,r

. is

invertible modulo pOp. Indeed, its determinant is given by

det(M) ≡
( r∏
i=1

αp
i

)
×

∏
1≤i<j≤r

(αj − αi)
p mod pOp.

By assumption, we obtain det(M) ∈ O×
p . Hence, Ap

i ≡ Ai mod p for all
i ∈ {1, ..., r}. From Frobenius’s Densitiy Theorem, see for instance [8], it
follows that Ai ∈ Q for all i ∈ N.

4. Proof of Theorem 1.2

In the present section we will give a proof of Theorem 1.2. Let V ∈ S2
rat(K|Q)

and let an be the n-th coefficient of V . In particular, V ∈ S1(K|Q) and
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by Theorem 3.1, there is an r ∈ N, Ai ∈ Q× and distinct αi ∈ Q
×

for

i ∈ {1, ..., r} such that an are given by the power sums an =
∑r

i=1Aiα
n
i for

all n ∈ N. In the following, let us assume αi ∈ K, since we might otherwise

substitute K by a normal closure of K(α1, ..., αr). Let p ∈ Z be a prime,

unramified in K|Q and let p be a prime ideal in O dividing p such that

(i) Ai, αi, αi − αj and all their Frobp-conjugates are p-adic units, and

(ii) max{2, r} < p.

In particular, p is a generator of the maximal ideal in Op.

Lemma 4.1. Let p ≥ 3 and let x ∈ Op \ {0}. Then for every n ≥ 1 there is

a ρn ∈ Op such that

xp
n

Frobp (xp
n−1)

= 1 + pnρn(4.1)

and ordp(ρn) = ordp(ρ1) for all n ∈ N.

Proof. For n = 1, by definition of Frobp there is a ρ1 ∈ Op such that eq. (4.1)

is satisfied. Let n ∈ N and suppose that eq. (4.1) is true for k < n. Then

xp
n

Frobp (xp
n−1)

=

(
xp

n−1

Frobp (xp
n−2)

)p

=
(
1 + pn−1ρn−1

)p
= 1 + pnρn−1

(
1 +

p−1∑
k=2

(
p

k

)
p(k−1)(n−1)−1ρk−1

n−1 + p(p−1)(n−1)−nρp−1
n−1

)
.

Since p > 2, the sum in the brackets has p-order greater than 0. Therefore,

ρn = ρn−1(1 + ρ′) with ρ′ ∈ pOp. Hence, ordp(ρn−1) = ordp(ρn) for all

n ∈ N.

For x ∈ Op \ {0} we then obtain for all n ∈ N

xmpn

Frobp (xmpn−1)
≡ 1 +mpnρn mod p2nOp.(4.2)

Set

αpn

i

Frobp

(
αpn−1

i

) = 1 + pnρi,n,
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with ρi,n ∈ Op for all i = 1, ..., r. The local 2-function property eq. (2.2)
then gives

0 ≡ ampn − Frobp
(
ampn−1

)
=

r∑
i=1

Ai

(
αmpn

i − Frobp

(
αmpn−1

i

))
mod p2nOp.

Applying Lemma 4.1 and eq. (4.2) then gives

0 ≡ mpn
r∑

i=1

Ai Frobp

(
αmpn−1

i

)
ρi,n mod p2nOp.

For gcd(m, p) = 1, we may divide this equation by mpn and obtain

0 ≡
r∑

i=1

Ai Frobp

(
αmpn−1

i

)
ρi,n mod pnOp.

For m = 1, ..., r, (in particular p � m by the assumptions on p) we find the
system of linear equations⎛⎜⎜⎜⎜⎝

Frobp α
pn−1

1 Frobp α
pn−1

2 · · · Frobp α
pn−1

r

Frobp α
2pn−1

1 Frobp α
2pn−1

2 · · · Frobp α
2pn−1

r
...

...
. . .

...

Frobp α
rpn−1

1 Frobp α
rpn−1

2 · · · Frobp α
rpn−1

r

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
A1ρ1,n
A2ρ2,n

...
Arρr,n

⎞⎟⎟⎟⎠ ≡ 0 mod pn.

The determinant of the Vandermonde type matrix is given by

Frobp

⎛⎝ r∏
i=1

αpn−1

i ×
∏
i<j

(
αpn−1

i − αpn−1

j

)⎞⎠ ,(4.3)

which is a p-adic unit by assumption (1) on p. Indeed, modulo p, eq. (4.3)
is congruent to

Frobnp

⎛⎝ r∏
i=1

αi ×
∏
i<j

(αi − αj)

⎞⎠ ∈ O×
p .

Therefore, Aiρi,n ≡ 0 mod pnOp and since Ai ∈ O×
p , we obtain the limit

limn→∞ ρi,n = 0 for all i ∈ {1, ..., r}. Due to Lemma 4.1 this implies ρi,1 = 0
and equivalently, Frobp(αi) = αp

i . Assuming Frobκp = id for a suitable κ ∈ N

implies αpκ

i = αi, hence αi is a root of unity for all i ∈ {1, ..., r}.
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