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Amplitude recursions with an extra
marked point∗

Johannes Broedel and Andre Kaderli

The recursive calculation of Selberg integrals by Aomoto and Tera-
soma using the Knizhnik–Zamolodchikov equation and the Drin-
feld associator makes use of an auxiliary point and facilitates the
recursive evaluation of string amplitudes at genus zero: open-string
N -point amplitudes can be obtained from those at N−1 points.

We establish a similar formalism at genus one, which allows the
recursive calculation of genus-one Selberg integrals using an extra
marked point in a differential equation of Knizhnik–Zamolodchikov–
Bernard type. Hereby genus-one Selberg integrals are related to
genus-zero Selberg integrals. Accordingly, N -point open-string am-
plitudes at one loop can be obtained from (N+2)-point open-string
amplitudes at tree level. The construction is related to and in accor-
dance with various recent results in intersection theory and string
theory.

Keywords and phrases: Selberg integrals, string scattering, KZ equa-

tion, KZB equation.

1. Introduction

1.1. Recursion for open-string amplitudes at genus zero

Scattering amplitudes in open superstring theories at tree level are corre-

lation functions of vertex operators inserted on the boundary of a disk.

When evaluating those conformal correlators, the properties of the partic-

ular string theory in question can be straightforwardly incorporated in the

so-called polarization part. What remains is the evaluation of the so-called
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configuration-space integrals such as the four-point Veneziano amplitude
[Ven68]

(1)

∫ 1

0
dx3 x

s13
3 (x3 − 1)s23

s13
x3

=
Γ(1 + s13)Γ(1 + s23)

Γ(1 + s13 + s23)
.

The complex parameters

(2) si1...ir = α′(ki1 + . . .+ kir)
2

are Mandelstam variables built from the momenta kip of the external par-
ticles. Throughout this article, these variables are assumed to meet a suffi-
cient condition for the convergence of the integrals to be considered, such as
�(si1...ir) > 0 for consecutive insertion points xi1< · · ·<xir [Man74, BD19].

In the case of N -point interactions and for appropriately fixed sij , the
integrands of the configuration-space integrals are defined on the configu-
ration space1 FN,3 of N−3 insertion points xi on R \ {0, 1}: these are the
unfixed insertion points on the real line, which parametrises the boundary
of the disk, formed by the tree-level worldsheet, embedded into the Riemann
sphere. The SL(2)-symmetry of the Riemann sphere is used to fix three of
the N punctures at zero, one and infinity. The configuration-space integrals
are obtained from iteratively integrating these integrands over the N−3 vari-
ables of FN,3, i.e. the unfixed insertion points, on the unit interval. Finally,
α′ serves as counting parameter and will be identified with the inverse string
tension, when considering actual string scattering amplitudes.

The N -point configuration-space integrals in genus-zero open-string am-
plitudes are examples of Selberg integrals [Sel44], which we denote and con-
struct as follows: consider the (L+1)-punctured Riemann sphere with

(x1, x2, xL+1) = (0, 1,∞)(3)

fixed by the SL(2)-symmetry of the Riemann sphere. Writing

xij = xi,j = xi − xj ,(4)

the corresponding integrals of Selberg type are iteratively defined by

S[ik+1, . . . , iL](x1, . . . , xk) =

∫ xk

0

dxk+1

xk+1,ik+1

S[ik+2, . . . , iL](x1, . . . , xk+1) ,

(5)

1This is the real moduli space M0,N = M0,N (R) = FN,3. Below, we will intro-
duce more general configuration spaces FL+1,k+1, which is why we rather use the
notation FN,3 than M0,N (R).
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and the empty Selberg integral (or Selberg seed) is defined as2

(6) S[](x1, . . . , xL) =
∏

0≤xi<xj≤1

x
sij
ji .

The definition (5) presumes that the so-called admissibility condition

(7) 1 ≤ ip < p ∀p ∈ {k + 1, . . . , L}

is met. The integral in eq. (5) is said to be of type (k, L+1) and is, for fixed
sij , a function on Fk+1,3.

Aomoto [Aom87] and Terasoma [Ter02] showed that Selberg integrals of
type (2, L) can be obtained algebraically from those of type (2, L−1): one
starts from a basis vector S(x3) for Selberg integrals of type (3, L+1), which
contain an auxiliary point x3 in contrast to the integrals of type (2, L) and
(2, L−1), respectively. Taking the derivative with respect to x3 leads to an
equation of Knizhnik–Zamolodchikov (KZ) type [KZ84]

(8)
d

dx3
S(x3) =

( e0
x3

+
e1

x3 − 1

)
S(x3) ,

where the (braid) matrices e0 and e1 have entries which are homogeneous
polynomials of degree one in the parameters sij . The regularized boundary
values

C0 = lim
x3→0

x−e0 S(x3) , C1 = lim
x3→1

(1− x3)
−e1 S(x3) ,(9)

of the differential equation (46) can be shown to be related by the Drinfeld
associator [Dri89, Dri91]

C1 = Φ(e0, e1) C0 .(10)

What makes this construction useful for physicists is the fact that the
(N−1)-point and the N -point configuration-space integrals at genus zero
can be identified (upon proper assignment of the Mandelstam variables) as
linear combinations of the components of C0 and C1 respectively, where

2We use the notation
∏

xa≤xi<xj≤xb
=
∏

i,j∈{1,2,...,L}: xa≤xi<xj≤xb
. This notation

ensures that all the differences xji appearing in the product from eq. (6) are positive
and real. In agreement with the standard notation in string theory, we will include
the absolute values in the definitions of the Koba–Nielsen factors and propagators,
and usually write the Mandelstam variables sij = sji as sij with i < j.
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N=L. This relationship has been used to derive a recursive construction for
all configuration-space integrals on genus zero: it provides an analogue of
the Parke–Taylor formula [PT86] for string theory [BSST14].

1.2. Open-string scattering at genus one

For a long time physicists have tried to find a similar recursive algorithm
at genus one. In this article, we are going to establish such a construction.
One-loop open-string amplitudes are calculated on an annulus: again, there
is a polarization part and configuration-space integrals. For simplicity we are
going to stick to those configuration-space integrals where points are inserted
on one boundary exclusively. Upon embedding the annulus into a torus, the
relevant boundary is identified with the A-cycle and parametrised by the
unit interval. In the two-point case, the open-string one-loop configuration-
space integral is of the form

(11)

∫ 1

0
dz2 e

s12 Γ̃21g
(0)
21 .

The functions g
(0)
ij and Γ̃ij =

∫ zij dz g(1)(z, τ) (cf. eq. (85)) are defined by an

infinite class of functions g
(n)
ij = g(n)(zij , τ) and integrals thereof, where n is

a non-negative integer, z1 = 0 and zij = zi − zj is the difference of insertion
points on the A-cycle of the torus. These functions are suitable genus-one
analogues of the fractions in dxk+1

xk+1,ik+1

from eq. (5) and the genus-zero propa-

gator log xji appearing in eq. (6) in exponentiated form, respectively. They
are defined by the Eisenstein–Kronecker series F (z, η, τ) [Kro81, BL11]

(12) F (z, η, τ) =
θ′1(0, τ)θ1(z + η, τ)

θ1(z, τ)θ1(η, τ)
,

where θ1 is the odd Jacobi function and ′ denotes a derivative with respect
to the first argument: expanding in the second complex argument η, the
function g(n) is the coefficient of ηn−1, i.e.

(13) ηF (z, η, τ) =

∞∑
n=0

g(n)(z, τ)ηn .

Various properties of these functions will be discussed thoroughly in subsec-
tion 3.1.
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Considering the similarity between genus-zero configuration-space in-
tegrals such as the four-point example in eq. (1) and genus-zero Selberg
integrals (5), it is very natural to define a suitable genus-one analogue of
Selberg integrals:

Definition 1. Let L ≥ 2, 0 = z1 < zL < ... < z2 < 1 and τ the modular
parameter of the torus C/(Z+τZ). Let the empty genus-one Selberg integral
(or genus-one Selberg seed) be

(14) Sτ = Sτ
[ ]

(z1, . . . , zL) =
∏

0=z1≤zi<zj≤z2

exp
(
sij Γ̃ji

)
.

Genus-one Selberg integrals are then defined recursively by

Sτ
[
nk+1, ..., nL

ik+1, ..., iL

]
(z1, . . . , zk)

=

∫ zk

0
dzk+1 g

(nk+1)
k+1,ik+1

Sτ
[
nk+2, ..., nL

ik+2, ..., iL

]
(z1, . . . , zk+1) ,(15)

where 1 ≤ ip < p for k + 1 ≤ p ≤ L and nk+1, . . . , nL are non-negative
integers.

The successful concept to calculate open-string configuration-space in-
tegrals from Selberg integrals, which worked for genus zero, will be ex-
tended here: starting from genus-one Selberg integrals of type (1, L−1),
which contain the genus-one open-string configuration-space integrals, one
can introduce an auxiliary point z2 leading to genus-one Selberg integrals
of type (2, L). Given a class of type-(2, L) Selberg integrals of fixed weight
w =

∑L
i=k+1 ni, one can find a vector Sτ

w(z2) of basis elements with respect
to Fay identities (a genus-one generalization of partial fractioning) and in-
tegration by parts. Concatenating all those basis vectors into an infinitely
long vector Sτ (z2), one has constructed the genus-one analogue of the (finite-
length) vector S(x3) from above. This article is devoted to the construction
of these integrals and to proving the following theorem:

Theorem 2 (Elliptic KZB-system). Let Sτ (z2) be the vector of genus-one
Selberg integrals of type (2, L) with auxiliary point z2. The derivative with
respect to the auxiliary point z2 can be written in the form

∂

∂z2
Sτ (z2) =

∑
n≥0

g
(n)
21 x(n) Sτ (z2) ,(16)

which is a system of elliptic KZB-type. The non-vanishing entries of the
matrices x(n) are Z-linear combinations of the parameters sij.
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While showing the closure of the above system of differential equations
is elaborate, two regularized boundary values can be easily associated to
each other following the statements in the next proposition.

Proposition 3. The regularized boundary values

Cτ
1 = lim

z2→1
(−2πi(1−z2))

−x(1)

Sτ (z2) and Cτ
0 = lim

z2→0
(−2πiz2)

−x(1)

Sτ (z2)

(17)

are related by the A-cycle component Φ(x(0), x(1), x(2), ...) of the KZB asso-
ciator via

(18) Cτ
1 = Φ(x(0), x(1), x(2), ...)Cτ

0 .

The regularized boundary value Cτ
1 contains (L−1)-point configuration-space

integrals at genus one whereas Cτ
0 contains (L+1)-point configuration-space

integrals at genus zero.

Therefore, the N -point configuration-space integrals appearing in open-
string amplitudes at genus one can be calculated from the (N+2)-point inte-
grals at genus zero via eq. (18), with N=L−1. As examples we will consider
the construction suitable for two-, three- and four-point configuration-space
integrals at genus one, which allow the determination of the (planar) two-,
three- and four-point one-loop scattering amplitudes in open string theory.

1.3. Contents

In section 2 we are going to review the recursive evaluation of Selberg inte-
grals at genus zero. We will apply the technique to genus-zero open-string
amplitudes in a way equivalent to the approach in ref. [BSST14]. We are go-
ing to develop the genus-one formalism in section 3, prove the main theorem
there and discuss the relation between genus-one objects and those at genus
zero. Three examples are provided in section 4. In section 5 we conclude and
point out several open questions.

2. Genus zero (tree level)

In this section we are going to review the recursive evaluation of genus-
zero Selberg integrals of Aomoto and Terasoma [Aom90, Ter02] and relate
it to the formalism for calculating open-string tree-level configuration-space
integrals put forward in ref. [BSST14].
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2.1. Singularities, iterated integrals and multiple zeta values

Configuration-space integrals for open-string tree-level amplitudes are de-

fined on the boundary of a disk, on which the integration parameters xi are

located. Integrating over all configurations of the parameters while keeping

their ordering along the boundary intact leads to iterated integrals.

Whithin the context of open-string tree-level configuration-space inte-

grals, all integrations can either be performed trivially or can be traced

back to iterated integrals of the following differential form on the Riemann

sphere with a simple pole at the fixed insertion points aj ∈ {x1, x2} = {0, 1}:

(19)
dxi

xi − aj
.

Accordingly, the canonical form of iterated integrals appearing in the α′-
expansion of genus-zero configuration-space integrals are multiple polyloga-

rithms

(20) G(a1, a2, . . . , ar;x) =

∫ x

0
dx′

1

x′ − a1
G(a2, . . . , ar;x

′), G(;x) = 1 ,

with ai ∈ {0, 1} and ar 	= 0. Below, it will be useful to write this subclass of

Goncharov polylogarithms [Gon95, Gon01] indexed by words of the form

(21) w = enr−1
0 e1 . . . e

n1−1
0 e1 ,

where ni ≥ 1:

(22) Gw(x) = G(0, . . . , 0︸ ︷︷ ︸
nr−1

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
n1−1

, 1;x) .

Evaluating the above multiple polylogarithms with nr > 1 at x = 1 leads to

multiple zeta values

(23) ζw = (−1)rGw(1) =
∑

1≤k1<···<kr

1

kn1

1 . . . knr
r

,

which are the transcendental numbers appearing in the α′-expansion of open-

string configuration-space integrals at genus zero.
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In the above definitions of multiple polylogarithms and multiple zeta
values divergent situations have been excluded. However, using the defini-
tions

Ge0(x) = G(0;x) = log(x)

ζe1 = ζe0 = 0(24)

and shuffle relations between iterated integrals extended to all multiple poly-
logarithms and multiple zeta values

(25) Gw′(x)Gw′′(x) = Gw′ w′′(x), ζw′ζw′′ = ζw′ w′′ w′, w′′ ∈ {e0, e1}× ,

one can extend the definition to all words from {e0, e1}×. This regulariza-
tion scheme is referred to as shuffle regularization (or tangential basepoint
regularization), see e.g. refs. [Del89, Bro14].

2.2. Selberg integrals

In comparison to the iterated integrals defined in eq. (20) above, genus-zero
configuration-space integrals have one more ingredient: the empty integral
to be iteratively integrated with integration kernels 1/(x−ai) is not one,
but the so-called Koba–Nielsen factor. It contains the open-string tree-level
Green function, also known as propagator, weighted by Mandelstam variables
sij defined in eq. (2). The Green function is the integral over the differential

form from eq. (19): log |xij | = G(0, |xij |) =
∫ |xij |
1

dx
x , where xij = xi − xj is

the difference of two insertion points.

The class of integrals accommodating the above features are Selberg
integrals [Sel44, Aom87, Ter02]. Consider L points on the unit interval with
the ordering

(26) 0 = x1 < xL < xL−1 < · · · < x3 < x2 = 1

and define the empty Selberg integral or Selberg seed

(27) S = S[](x1, . . . , xL) =
∏

0≤xi<xj≤1

exp (sij log xji) =
∏

0≤xi<xj≤1

x
sij
ji ,

with3 complex parameters sij . The Selberg seed is integrated over various

3The empty integral S[] is called the Koba–Nielsen factor if the parameters sij
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integration kernels of the form 1/xij which lead to functions denoted by

S[ik+1, . . . , iL](x1, . . . , xk) =

∫ xk

0

dxk+1

xk+1,ik+1

S[ik+2, . . . , iL](x1, . . . , xk+1) ,

(28)

where

(29) 1 ≤ ip < p ∀p ∈ {k + 1, . . . , L} .

The above admissibility condition motivates the definition of admissible iter-
ated integrals: the integration kernel 1/xk+1,ik+1

in eq. (28) can not depend
on variables which have already been integrated out. In accordance with
ref. [Aom87], this property is called admissibility and an integral with an
integrand of the form S

∏
k 1/xk,ik satisfying eq. (29) admissible. As argued

in subsection 2.4 and subsection 2.5, Selberg integrals of length L− 3

S[i4, . . . , iL](x1, x2, x3) =

∫ x3

0

dx4
x4,i4

S[i5, . . . , iL](x1, . . . , x4)

=

∫
C(x3)

L∏
i=4

dxi S

L∏
k=4

1

xk,ik
,(30)

where C(x3) is the region of integration denoted by

(31) C(xi) = {0 = x1 < xL < xL−1 < · · · < xi}

for xi ≤ x2 = 1, include in the limit of merging punctures x3 → 1 = x2
all integrals appearing in the calculation of L-point open-string tree-level
scattering amplitudes.

For appropriately fixed sij and fixed unintegrated insertion points x1 =
0, x2 = 1, x3, . . . , xk and xL+1 = ∞, the integrands in the Selberg inte-
grals S[ik+1, . . . , iL](x1, . . . , xk) are functions defined on the configuration
space of the L−k insertion points xk+1, . . . , xL on the k-punctured real line
R \ {x1, . . . , xk}:

FL+1,k+1 =

{(xk+1, xk+2, . . . , xL) ∈ (R \ {x1, . . . , xk})L−k|∀i 	= j : xi 	= xj} .(32)

are identified with the momenta of the corresponding external states of a scattering
amplitude. Note that according to eq. (26) all the differences xji in definition (27)
are positive and real. This does apply to the genus-zero propagator mentioned above
as well.
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The differential forms

(33)

L∧
p=k+1

dxp
xp,ip

,

where 1 ≤ ip < p, appearing in the integrands of the Selberg integrals in
eq. (28), represent elements of a basis of the twisted de Rham cohomology
of the (L+1)-punctured Riemann sphere with k+1 fixed coordinates: their
twisted cohomology classes defined by the connection d+d logS pulled back
to FL+1,k+1 appear in such a basis [Aom87], see also ref. [Miz19].

The Selberg integrals S[ik+1, . . . , iL](x1, . . . , xk) in turn, depend on the
unintegrated variables x1 = 0, x2 = 1, x3, . . . , xk and xL+1 = ∞ with
xi 	= xj , and are therefore functions defined on the configuration space
Fk+1,3. In particular, the Selberg seed from eq. (27) is defined on FL+1,3.
A configuration of the form (26) in FL+1,3 can be depicted on the real line
plus infinity embedded into a circle on the Riemann sphere as follows:

(34) .

2.3. KZ equation for an auxiliary point

The open-string configuration-space integrals at genus zero are recovered
from the integrals

S[i4, . . . , iL](x1 = 0, x2 = 1, x3)(35)

defined in eq. (30) in the following two regularized limits:

• in the limit x3 → x2 = 1, it is merged with the point x2 and one
fixed puncture is removed. The integrands of the Selberg integrals
defined on FL+1,4 degenerate to integrands on FL,3 of the integrals
S[i4, . . . , iL](x1=0, x2=1, x3=x2). The space FL,3 is the configuration
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space known from open-string calculations with three fixed coordinates
on which L-point tree-level amplitudes are defined. Indeed, as shown

below, they will be recovered in this limit from the Selberg integrals.
• the merging of x3 → x1 = 0 is slightly more involved and will lead
to the (L−1)-point integrals in a certain soft limit, which leads to
an additional degeneration of the integrands to functions defined on

the configuration space FL−1,3 relevant for L−1-point tree-level am-
plitudes.

Thus, for x3 ∈ (0, 1) the puncture interpolates between the L- and (L−1)-
point open-string configuration-space integrals. These two boundary values

can be related by a recursive procedure involving matrix operations [Aom87,
Ter02], which leads to the genus-zero string recursion in ref. [BSST14]. The
main idea hereby is the use of x3 as an auxiliary insertion point, such that dif-

ferentiating with respect to x3 leads to a KZ equation (8), whose regularised
boundary values in the above limits can be related via the Drinfeld associa-
tor according to eq. (10). In the remainder of this subsection, we will review
differential equations for the Selberg integrals, while limits/boundary values

of the differential equation are discussed in subsection 2.4 below. Attached
to the point x3 there is an auxiliary external momentum k3 with associated
Mandelstam variables s3i, i ∈ {1, 2, 4, 5, . . . L}. For the moment we are not

imposing any conditions like the momentum conservation and consider the
variables sij = sji as independent parameters whose interpretation as Man-
delstam variables in a scattering amplitude context will become clear when
considering the limits x3 → 0 and x3 → 1 below.

Therefore, let us explore differential equations with respect to the aux-
iliary point x3 acting on the Selberg integrals (35):

(36)
d

dx3
S[i4, i5, . . . , iL](0, 1, x3) =

d

dx3

∫
C(x3)

L∏
i=4

dxi S

L∏
k=4

1

xk,ik
.

Noting that the Selberg seed (27) vanishes for xi = xj and �(sij) > 0

(37) S|xi=xj
= 0 ,

it follows that the derivative in eq. (36) only acts non-trivially on the inte-
grand and not on the integration domain. The identity

(38)
∂

∂xi

1

xij
= − ∂

∂xj

1

xij



86 Johannes Broedel and Andre Kaderli

and integration by parts may be used to let partial derivatives act on the

Selberg seed only:

(39)
d

dx3
S[i4, i5, . . . , iL](0, 1, x3) =

∫
C(x3)

L∏
i=4

dxi

⎛
⎝∑

j∈U3

∂

∂xj
S

⎞
⎠ L∏

k=4

1

xkik
.

The set U3 in the previous equation can be stated explicitly:

U3 =

{
j ∈ {3, 4, . . . , L}

∣∣∣ j = 3 or there exist labels 3 = j1, j2, . . . , jm = j

such that

m−1∏
i=1

1

xji+1,ji

is a factor of

L∏
k=4

1

xkik

}
.

(40)

Partial derivatives of the Selberg seed yield factors of sjl/xjl

(41)
∂

∂xj
S =

∑
l �=j

sjl
xjl

S ,

such that

(42)
d

dx3
S[i4, i5, . . . , iL](0, 1, x3) =

∫
C(x3)

L∏
i=4

dxi S
∑
j∈U3

∑
l �∈U3

sjl
xjl

L∏
k=4

1

xkik
.

Admissibility of S[i4, i5, . . . , iL](0, 1, x3) implies that upon consecutive ap-

plications of partial fractioning

(43)
1

xk,l

1

xk,m
=

(
1

xk,l
− 1

xk,m

)
1

xl,m
,

where k > l > m, we will again find (admissible) Selberg integrals, however,

with different labels ik.

All integrals on the right-hand side of eq. (36) will contain a prefactor

of the form

(44)
sij
x31

=
sij
x3

or
sij
x32

=
sij

x3 − 1
,
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since the indices in x31 and x32 can no longer be reduced by partial frac-
tioning. Accordingly, if we consider the vector of all admissible integrals

(45) S(x3) =
(
S[i4, i5, . . . , iL](0, 1, x3)

)
1≤ik<k

,

its derivative with respect to x3 can be phrased in terms of a vector equation

(46)
d

dx3
S(x3) =

( e0
x3

+
e1

x3 − 1

)
S(x3) ,

where the entries of the (L−1)!/2×(L−1)!/2 matrices e0 and e1 either vanish
or are Z-linear combinations of the parameters sij . In an amplitude context
later, this implies (cf. eq. (2)) that e0 and e1 are proportional to α′.

The fact that the derivative of S[i4, i5, . . . , iL](0, 1, x3) is expressible as
a linear combination of iterated integrals S[i4, i5, . . . , iL](0, 1, x3) originates
in the property mentioned below eq. (33) of the differential forms appearing
in the integrand in eq. (36): they are the building blocks for the so-called
fibration basis of the twisted de Rham cohomology of the (L+1)-punctured
Riemann sphere with four fixed coordinates [Aom87, Miz19]. Note that for
each 4 ≤ k ≤ L, one can get rid of one particular index 1 ≤ i′k < k by partial
fractioning and integration by parts. Thus, one can identify a suitable basis
of the iterated integrals S[i4, i5, . . . , iL](0, 1, x3) as

(47) Bi′4,i
′
5,...,i

′
L
= {S[i4, i5, . . . , iL](0, 1, x3)|1 ≤ ik < k, ik 	= i′k} ,

that is, the ticked indices do not appear as labels. Accordingly, one can
reduce the vector of all admissible integrals to

(48) S(x3)|Bi′
4
,i′
5
,...,i′

L

for which one finds the differential equation

(49)
d

dx3
S(x3)|Bi′

4
,i′
5
,...,i′

L
=
( e0
x3

+
e1

x3 − 1

)
S(x3)|Bi′

4
,i′
5
,...,i′

L
.

While the matrices e0 and e1 contain entries from the same class as for the
matrices in eq. (46), they are now of dimension (L − 2)! × (L − 2)!. These
matrices turn out to be braid matrices, that is, representations of the braid
group of L+1 distinguishable strands with three strands held fixed. It is well
known how to obtain these matrices recursively [Aom87, Ter02, Miz19].

Of course, the choice of the basis is a priori arbitrary. However, depend-
ing on the intended use, certain choices turn out to be much more beneficial
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than others in practice. For example, the recursive definition of the matri-
ces in e0 and e1 in ref. [Miz19] are constructed for the choice B1,1,...,1, i.e.
2 ≤ ik < k. On the other hand, the limits considered in subsection 2.4 will
conveniently be formulated in the basis B2,2,...,2.

Example. Let us consider the simplest example L = 4 and show the above
calculational steps explicitly for the basis B2 = {S[1](0, 1, x3), S[3](0, 1, x3) },
where

(50) S[i4](0, 1, x3) =

∫ x3

0
dx4 S

1

x4,i4
, S = xs1441 x

s13
31 x

s34
34 x

s12
21 x

s24
24 x

s23
23 .

The integrands are functions defined on F5,4 = {x4 ∈ R|x4 	= x1, x2, x3, x5}
and we consider the following order of the punctures:

(51) 0 = x1 < x4 < x3 < x2 = 1 < x5 = ∞ .

The set B2 is indeed a basis, since the only remaining Selberg integral
S[2](0, 1, x3) can be expressed in terms of elements in B2 using

(52) s14 S[1](0, 1, x3) + s24 S[2](0, 1, x3) + s34 S[3](0, 1, x3) = 0 .

Now, let us calculate the derivatives of S(x3)|B2
in order to recover the KZ

equation (49): for the first basis element, we find U3(S[1](0, 1, x3)) = {3},
such that according to eq. (42)

d

dx3
S[1](0, 1, x3) =

∫ x3

0
dx4 S

(
s13
x31

+
s34
x34

+
s23
x32

)
1

x41

=
s13
x3

S[1](0, 1, x3) +
s23

x3 − 1
S[1](0, 1, x3)

+
s34
x3

(S[1](0, 1, x3)− S[3](0, 1, x3))(53)

where we have used the partial fractioning identity (43) for the third equality.
Similarly, for the second basis element we find U3(S[3](0, 1, x3)) = {3, 4},
such that

d

dx3
S[3](0, 1, x3) =

∫ x3

0
dx4 S

(
s13
x31

+
s23
x32

+
s14
x41

+
s24
x42

)
1

x43

=
s13
x3

S[3](0, 1, x3) +
s23

x3 − 1
S[3](0, 1, x3)

+
s14
x3

(S[3](0, 1, x3)− S[1](0, 1, x3))
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+
1

x3 − 1
((s24 + s34) S[3](0, 1, x3) + s14 S[1](0, 1, x3)) ,(54)

where we have again used partial fractioning (43) and integration by parts
(52) for the fourth equality. Overall we find the differential equation

(55)
d

dx3
S(x3)|B2

=

(
e0
x3

+
e1

x3 − 1

)
S(x3)|B2

,

which is indeed of the form of the KZ equation (49) with the matrices

(56) e0 =

(
s13 + s34 −s34
−s14 s13 + s14

)
, e1 =

(
s23 0
s14 s234

)

given by the braid matrices from ref. [Miz19].

2.4. Boundary values for the KZ equation

Equation (46) is of KZ type [KZ84]. Well known from refs. [Dri89, Dri91],
we provide a brief summary of the relation between the two boundary values
z3 → 0, 1 in appendix A.

Let us consider the regularized limits (9) when taking the auxiliary point
x3 to either zero or one in (46)4:

C0 = lim
x3→0

x−e0
3 S(x3) , C1 = lim

x3→1
(1− x3)

−e1 S(x3) .(57)

Boundary value Cτ
1: Let us start by considering the limit x3 → x2 = 1,

which is depicted in the following figure:

(58) .

4The following paragraph is closely related to the original analysis of Selberg
integrals in ref. [Ter02], which serves as the prime reference for our investigation
and led to the formulation of the amplitude recursion in ref. [BSST14].
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The relevant integrals in the amplitude recursion in this limit turn out to

be the Selberg integrals in B2,2,...,2 ∩ B3,3,...,3 with integrands defined on the

configuration space FL+1,4 with 1 ≤ ik < k and ik 	= 2, 3. For these integrals,

the action of the prefactor (1 − x3)
−e1 is particularly simple: on the one

hand, the set U3 in eq. (42) is simply U3 = {3}. On the other hand, the only

appearance of the insertion point x2 in the integral S[i4, i5, . . . , iL](x1 =

0, x2 = 1, x3) with ik 	= 2 is in the Selberg seed. Therefore using partial

fractioning to obtain the KZ form from eq. (42) does not introduce any factor

of 1/x32 other than s23/x32 obtained from differentiating the Selberg seed.

Thus, for the basis B2,2,...,2, the representation e1 in the KZ equation (49) is

of the form

(59) e1 =

(
s23I(L−3)!×(L−3)! 0(L−3)×(L−3)!

A(L−3)!×(L−3) B(L−3)×(L−3)

)
,

where the upper left block proportional to the identity corresponds to the

integrals in B2,2,...,2 ∩ B3,3,...,3, (cf. example (56)). For this subclass of inte-

grals, the regularization factor (1− x3)
−e1 only contributes with the scalar

(1 − x3)
−s23 = x−s23

23 and the corresponding entries of the regularized limit

C1 can be calculated as

lim
x3→x2

x−s23
23 S[i4, i5, . . . , iL](0, 1, x3)

=

∫
C(x3→x2)

L∏
i=4

dxi
∏

0≤xj<xl<x3

x
sjl
lj

∏
0≤xn<x3

xs2n+s3n
2n

L∏
k=4

1

xkik

= S[i4, i5, . . . , iL](0, 1, x3 = x2)|s̃ij=sij+δi2s3j
s23=0 .(60)

Thus the regularization x−s23
23 cancels the factor xs2323 in the Selberg seed S,

which would otherwise render the integral vanishing. Moreover, the punc-

tures x2 and x3 have merged, such that the associated Mandelstam variables,

and hence, the momenta of the external states, are added to yield effective

Mandelstam variables s̃ij = sij + δi2s3j for i, j ∈ {1, . . . , L} \ {3}, i < j.

The resulting differential form and integration domain in the integral (60)

are known from the type-(L, 3) Selberg integrals defined on the configura-

tion space FL,3. Thus, in this limit, the forms in S(x3) can be expressed as

linear combinations of the Parke–Taylor forms of L-point string amplitudes,

which are discussed in the next subsection. In terms of the disk picture 58,

we are modifying the relative distances on the boundary by taking the limit
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x3 → x2 = 1. Upon identification of the points x2 and x3 we find the tran-
sition

(61) FL+1,4 → FL,3

with the L insertion points x1 = 0, x2 = 1, x4, x5, . . . , xL and xL+1 = ∞,
which is the setup suitable for describing L-point amplitudes.

Boundary value Cτ
0: For the limit x3 → 0, we are facing the following

situation

(62)

This limit can be described in the basis B2,2,...,2, since for this choice, the
maximum eigenvalue of e0 is given by

(63) smax = s1,3,4,...,L .

This can be seen by repeating the observation that led to eq. (59) for e1:
deriving eq. (49) for B2,2,...,2, assembles all the sij with i, j 	= 2, L + 1 in
the matrix e0. Therefore, the regularization factor z−e0

0 in C0 can at most
contribute with a factor x−smax

3 to each integral.
The behavior of these entries for x3 → x1 = 0 may be determined using

the change of variables xi = x3wi for 0 = x1 ≤ xi < x2 = 1, such that in
particular w1 = 0 and w3 = 1. This yields for ik 	= 2

lim
x3→0

x−smax

3 S[i4, . . . , iL](0, 1, x3)

= lim
x3→0

x−smax

3

∫
C(x3)

L∏
i=4

dxi
∏

0≤xj<xl<x3

x
sjl
lj

∏
0≤xm<x3

xs3m3m

∏
0≤xn<x2

xs2n2n

L∏
k=4

1

xkik

= lim
x3→0

∫
0=w1<wi<w3=1

L∏
i=4

dwi

∏
0≤wj<wl<x3

w
sjl
lj

∏
0≤wm<w3

ws3m
3m

∏
0≤xn<x2

(1−x3wn)
s2n

L∏
k=4

1

wkik
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=

∫
0=w1<wi<w3=1

L∏
i=4

dwi

∏
0≤wj<wl<x3

w
sjl
lj

∏
0≤wm<w3

ws3m
3m

L∏
k=4

1

wkik

= S[i4, i5, . . . , iL](0, 1, w3 = 1)|s2j=0 ,
(64)

which is, as for the x3 → 1 limit, an integral with integrand defined on FL,3.
Note that if we would not restrict to the basis B2,2,...,2 and there were

r indices kj ∈ {4, 5 . . . , L} such that ikj
= 2, then the change of variables

would leave r factors of x3 in the quotient of the measure and the denomi-
nator

(65)

L∏
k=4

dxk
xkik

= xr3

L∏
k=4,k �∈{kj}

dwk

wkik

r∏
j=1

dwkj

x3wkj
− 1

,

which vanishes for x3 → 0. Therefore, the entries of C0 are linear combina-
tions of integrals

lim
x3→0

x−smax

3 S[i4, . . . , iL](0, 1, x3)

=

{
S[i4, i5, . . . , iL](0, 1, w3 = 1)|s2j=0 if S[i4, . . . , iL](0, 1, x3) ∈ B2,2,...,2 ,

0 otherwise .

(66)

Mandelstam variables: According to eq. (60), the Mandelstam variables
s3j associated to the momentum of the auxiliary insertion point x3 are re-
dundant in C1: they simply appear as a splitting of the effective momentum
s̃2j = s2j + s3j associated to the insertion point at x2 = 1 and thus, may be
chosen to be set to zero. This choice is more subtle in the boundary value
C0 with the non-vanishing entries being calculated according to eq. (64):
here, the Mandelstam variables s3j are not at all redundant, i.e. an artificial
splitting of the momentum contribution, but encode the full momentum of
the insertion point w3 = 1. Thus, it may be expected that setting this mo-
mentum to zero effectively removes one external state, leaving an integrand
defined on FL−1,3. This expectation is true for certain linear combinations
of Selberg integrals, as argued in the next subsection.

Summary of subsection: The vector of type-(2, L) Selberg integrals S(x3)
with integrands on FL+1,4 encodes for N = L the N - and (N−1)-point
amplitudes, in the regularized limits C0 and C1, which can be related to
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each other using the Drinfeld associator Φ(e0, e1), with e0 and e1 determined

by the KZ eq. (46), as follows

(67)

where the exact degeneracy to the amplitudes as s3j → 0 and the corre-

sponding map Φ(e0, e1)|s3j=0 will be explored in the next subsections.

2.5. Open string amplitudes at genus zero

Open-string tree-level amplitudes arise as correlators between vertex-opera-

tors inserted at the boundary of the disk worldsheet. Usually one makes use

of the conformal symmetry of the worldsheet in order to place the boundary

of the disk at the real line. Evaluating the correlators allows to frame the

amplitude in the form [BSS13]:

Aopen(1, L, L− 1, ..., 2, L+ 1;α′) = ZT MK AYM .(68)

While the Yang–Mills tree-level amplitudes AYM can be obtained (for ex-

ample) from BCFW recursion relations [BCF05, BCFW05], the object MK

is known as the momentum kernel and can be represented as a matrix of

dimension (L−2)!× (L−2)!. A recursive formula is known for any multiplic-

ity [Sti09, BBDSV11]. The vector Z consists of (L−2)! so-called Z-integrals

[BSS13]

(69) Z(q1, q2, . . . , qL+1) =

∫
C(x2=1)

L∏
i=3

dxi KN
x1,L+1x2,L+1x12

xq1q2xq2q3 · · ·xqLqL+1
xqL+1q1

,

where the factor x1,L+1x2,L+1x12 together with the fixing of the coordinates

(x1, x2, xL+1) = (0, 1,∞) (cf. eq. (3)) corresponds to dividing out the gauge

volume VCKG of the conformal Killing group SL(2,C). The quotient together

with the integration measure is called Parke–Taylor form, while KN is called
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Koba–Nielsen factor5 and defined by

(70) KN =
∏

0=x1≤xi<xj≤x2=1

|xij |sij =
∏

0=x1≤xi<xj≤x2=1

exp(sij log |xij |) .

Note that we have defined the Selberg seed in eq. (27) in exactly the same
way: it is constructed to equal the (L+1)-point Koba–Nielsen factor

(71) S = KN .

Since log xij is (almost) the genus-zero string propagator, the Koba–Nielsen
factor can easily be identified as a generating functional of graphs connecting
the vertex operators, where each edge connecting vertex operators at posi-
tions xi and xj is weighted by the corresponding Mandelstam variable sij .

Iterated integrals in xi over various derivatives of the Koba–Nielsen fac-
tor, in particular the Z-integrals defined in eq. (69), fall in the class of
Selberg integrals [Sel44]. It is only those integrals, which need to be calcu-
lated in order to determine the full open-string tree-level amplitude at any
multiplicity.

Concretely, in ref. [BSST14] a vector of iterated integrals has been con-
structed, which is related via a basis transformation to the vector of genus-
zero Selberg integrals S(x3)|B1,1,...,1

in the basis B1,1,...,1

F̂(x3) = B S(x3)|B1,1,...,1
.(72)

The transformation matrix (of the corresponding bases of twisted forms) B
has been calculated in ref. [Kad20], its non-vanishing entries are polynomials
over Z of degree L−3 in sij . According to the KZ eq. (49), the function F̂(x3)
satisfies a KZ equation with matrices ê0 = Be0B

−1 and ê1 = Be1B
−1,

where ei are the matrices in the KZ equation satisfied by the Selberg in-
tegrals S(x3)|B1,1,...,1

. Moreover, the first (L−3)!-entries of the regularized
limit as x3 → 1 are linear combinations of the integrals in eq. (60) and con-
tain the L-point, tree-level amplitudes with effective Mandelstam variables
s̃ij = sij + δi2s3j for i, j ∈ {1, . . . , L} \ {3}, i < j, such that

Ĉ1 = lim
x3→1

(1− x3)
−ê1 F̂(x3) =

(
ZT MK|L−point, s̃ij=sij+δi2s3j

...

)
,(73)

5Here, for consistency with other articles, we have written the absolute value,
despite all xji are real and positive in our conventions.
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where the (labels of the) Mandelstam variables s̃ij correspond to the inser-
tion points x1 < xL < xL−1 < · · · < x4 < x2 = 1. On the other hand, the
only non-vanishing entries of the regularized boundary value

Ĉ0 = lim
x3→0

x−ê0 F̂(x3)(74)

degenerate in the soft limit s3j → 0 to the (L−1)-point, tree-level amplitudes

lim
s3j→0

Ĉ0 =

⎛
⎜⎜⎜⎝
ZT MK|(L−1)−point, sij

0
...
0

⎞
⎟⎟⎟⎠ ,(75)

where the Mandelstam variables sij are associated to the insertion points
w1 = 0 < wL < wL−1 < · · · < w4 = 1. The limit s3j → 0 effectively leads
to a merging of the punctures w4 and w3 in the integrals (66), since these
integrals are linearly combined in Ĉ0 such that the integrands are total
derivatives with respect to w4 in the limit s3j → 0. Thus, taking the limit
s3j → 0 of the associator equation

Ĉ1 = Φ(ê0, ê1)Ĉ0(76)

leads to a recursion relating the L-point to the (L−1)-point, genus-zero
amplitudes

(
ZT MK|L−point, sij

...

)
= Φ(ê0, ê1)|s3j=0

⎛
⎜⎜⎜⎝
ZT MK|(L−1)−point, sij

0
...
0

⎞
⎟⎟⎟⎠ .(77)

3. Genus one (one-loop level)

In this section, we develop and explore the genus-one version of the concepts
from section 2 and link the resulting formalism to the evaluation of open-
string configuration-space integrals at one loop. The genus-one recursion is
remarkably similar to the genus-zero recursion of ref. [BSST14] reviewed in
subsection 2.5.

While the genus-zero recursion relates N -point configuration-space in-
tegrals to (N−1)-point versions thereof and is thus a recursion in the num-
ber of external legs, the genus-one mechanism relates N -point one-loop



96 Johannes Broedel and Andre Kaderli

configuration-space integrals to (N+2)-point tree-level configuration-space
integrals, thus linking objects6 occurring at different genera:

(78) .

In the genus-zero recursion, the Drinfeld associator effectively adds an ad-
ditional puncture to an (N−1)-point interaction resulting in an N -point
tree-level interaction. On the other hand, as shown below, the genus-one
recursion amounts to two external states of the (N+2)-point tree-level in-
teraction being glued together by the elliptic analogue of the Drinfeld asso-
ciator, the elliptic Knizhnik–Zamolodchikov–Bernard (KZB) associator, to
form a genus-one worldsheet of N external string states.

In the current section, we follow the structure of the previous section 2:
in subsection 3.1 to subsection 3.5 we introduce elliptic iterated integrals,
a genus-one version of Selberg integrals, the elliptic KZB associator and
the KZB equation for an auxiliary marked point. In the subsequent subsec-
tion 3.6, the relation to open-string configuration-space integrals is drawn,
where we also discuss some practicalities. In section 4, the first orders in
α′ of the two-, three- and four-point one-loop configuration-space integrals
are calculated using the genus-one associator mechanism and are shown to
match known results.

3.1. Singularities, iterated integrals and elliptic multiple zeta
values

In the following, we will consider the annulus formed by open-string world-
sheets at one loop as embedded into a torus with A-cycle (red) and B-cycle

6Notation and limits depicted in figure (78) will be introduced and explained in
the course of this section.
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(blue), where the ratio of the respective lengths, the modular parameter, is
denoted by τ .

(79)

Suitable differentials on the torus are generated by the expansion (13) of
the Eisenstein–Kronecker series F (z, η, τ) in η. This defines – in distinction
to the genus-zero scenario – an infinite number of differentials g(n)(z, τ)dz.
The index n labelling the functions g(n) is called its weight. While g(0) = 1
is trivial, the function g(1) has poles at z ∈ Zτ + Z and can be expanded in
q = exp(2πiτ) as follows [BMMS15]:

(80) g(1)(z, τ) = π cot(πz) + 4π

∞∑
m=1

sin(2πmz)

∞∑
n=1

qmn .

All g(n) with n ≥ 2 are holomorphic in the fundamental elliptic domain
z = s+ τt, s, t ∈ [0, 1). The Eisenstein–Kronecker series F (z, η, τ) is one-
periodic, but only quasi-periodic in z. Therefore, the integration kernels
g(n) are also one-periodic

(81) g(n)(z + 1, τ) = g(n)(z, τ) ,

but not τ -periodic in z, thus, they can not be elliptic functions. Furthermore,
they also inherit the following symmetry property from F (z, η, τ):

(82) g(n)(−z, τ) = (−1)ng(n)(z, τ) .

Despite not being elliptic, the functions g(n) can be considered to be genus-
one generalizations of the integration kernels defining the multiple polylog-
arithms (22), which also lead to meromorphic, but multi-valued functions.

The integrals over the kernels g(n) lead to elliptic polylogarithms [Lev97,
BL11]: due to their periodicity in eq. (81) they are single-valued functions on
the annulus, but can be thought of as multi-valued functions on the torus.
This is equivalent to the behavior of the ordinary logarithm at genus zero: on
each Riemann sheet the logarithm is single-valued, while it is a multi-valued
function in the complex plane.
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Due to the poles of the integration kernel g(1), iterated integrals of g(1)

need to be regularized. Moreover, its poles will – in certain limits – act as the
link between the string propagators at Riemann surfaces of genus zero and
genus one. Corresponding to the differentials introduced in eq. (13), one can
define a class of iterated integrals Γ̃ called elliptic multiple polylogarithms:

(83) Γ̃( n1, n2, ..., nk
a1, a2, ..., ak ; z, τ) =

∫ z

0
dz′ g(n1)(z′ − a1, τ) Γ̃(

n2, ..., nk
a2, ..., ak ; z

′, τ) ,

which due to their nature as iterated integrals obey shuffle relations

Γ̃(A1, A2, . . . , Aj ; z, τ) Γ̃(B1, B2, . . . , Bk; z, τ)

= Γ̃
(
(A1, A2, . . . , Aj) (B1, B2, . . . , Bk); z, τ

)
(84)

in terms of combined letters Ai =
ni
ai
.

The integral over g(1) will be of particular interest below: Γ̃ ( 10 ; z, τ)
requires regularization because of an endpoint divergence at the lower in-
tegration boundary due to the pole at z = 0. The standard regularization
procedure – which we are going to use here – is called tangential basepoint
regularization and is discussed in detail for example in refs. [Del89, Bro14].
In short, we subtract the endpoint divergence by defining7

Γ̃reg( 10 ; z, τ) = lim
ε→0

∫ z

ε
dz g(1)(z, τ) + log(1− e2πiε)

= log(1− e2πiz)− πiz + 4π
∑
k,l>0

1

2πk
(1− cos(2πkz)) qkl .(85)

Considering z ∈ (0, 1), the following properties can be read off from the
above q-expansion

Γ̃reg( 10 ; z ± 1, τ) = Γ̃reg( 10 ; z, τ)∓ πi

Γ̃reg( 10 ;−z, τ) = Γ̃reg( 10 ; z, τ) + πi ,(86)

where we place the branch cut of the logarithm such that log(−1) = πi.
This implies in particular invariance under z → 1− z for 0 < z < 1:

(87) Γ̃reg( 10 ; z, τ) = Γ̃reg( 10 ; 1− z, τ) .

7The limit ε → 0 is taken within the unit interval. Unless stated otherwise, the
same holds for any limits in this article.
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In addition, we find the following asymptotic behavior for z → 0

(88) Γ̃reg( 10 ; z, τ) ∼ log(−2πiz)

and z → 1

(89) Γ̃reg( 10 ; z, τ) ∼ log(−2πi(1− z)) .

The above regularization procedure is an algebra homomorphism, i.e. com-
patible with the shuffle product. From now on, we will use the regularized
iterated integrals exclusively and omit the subscript when noting Γ̃. Further-
more, we are going to keep the dependence on τ implicit for all integration
kernels g(n) and all iterated elliptic integrals Γ̃.

In the same way as products of terms of the form 1/xij can be related
by partial fractioning (43), there is a genus-one analogue for the Kronecker
series: the Fay identity. In terms of the functions g(n)(z) it can be phrased
as

g(n1)(t− x)g(n2)(t)

= −(−1)n1g(n1+n2)(x) +

n2∑
j=0

(
n1 − 1 + j

j

)
g(n2−j)(x)g(n1+j)(t− x)

+

n1∑
j=0

(
n2 − 1 + j

j

)
(−1)n1+jg(n1−j)(x)g(n2+j)(t)(90)

and derived from a similar property obeyed by the generating function
F (z, η, τ).

For compactness, we will use a notation similar to definition (22) in terms
of words from an alphabet for the elliptic multiple polylogarithms Γ̃ defined
in eq. (83) with a1 = a2 = · · · = ak = 0. Concretely, since there are infinitely
many integration kernels g(n), the alphabet is infinite as well and denoted by
{x(0), x(1), . . . }. For a word w = x(n1) . . . x(nk) ∈ {x(0), x(1), . . . }×, we denote
the corresponding elliptic multiple polylogarithm by

(91) Γ̃w(z) = Γ̃(x(n1) · · ·x(nk); z) = Γ̃
( n1, ..., nk

0, ..., 0 ; z
)
.

For w 	= (x(1))n, one finds

lim
z→0

Γ̃w(z) = 0 ,(92)
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while the regularization (85) implies logarithmic divergences for words w =

(x(1))n in the limit z → 0:

Γ̃(x(1))n(z) ∼
1

n!
log(−2πiz)n .(93)

Due to the one-periodicity of g(1), this divergence also appears at the upper

integration boundary for words w = (x(1))n as z → 1. The corresponding

regularization procedure is particularly important for elliptic multiple zeta

values to be discussed in the next paragraph.

Considering the limit z → 1 leads to the genus-one analogues of MZVs

defined in eq. (23). These so-called elliptic multiple zeta values (eMZVs)

[Enr16, Mat16, BMMS15] are defined in terms of regularized iterated inte-

grals Γ̃w with w = x(n1) . . . x(nk) ∈ X \ x(1)X, i.e. n1 	= 1, at z = 1:

(94) ω(nk, . . . , n1; τ) = ω(wt; τ) = lim
z→1

Γ̃w(z, τ) = lim
z→1

Γ̃( n1 ... nk

0 ... 0 ; z, τ) ,

where wt denotes the reversal of the word w. In order to extend this definition

to all words w ∈ X, the singularity of Γ̃x(1)w(z, τ) at z = 1 has to be

regularized. This can be done similarly as for the multiple polylogarithms

in eq. (24), and is elaborated on in detail in appendix B. The main result is

the following definition of the regularized eMZVs ωreg(w
t; τ): for any word

w ∈ X \ x(1)X or w = (x(1))n they are defined by

(95) w �→ ωreg(w
t; τ) =

{
ω(wt; τ) if w ∈ X \ (x(1)X) ,

0 if w = (x(1))n, n ∈ N .

Again, the remaining cases w ∈ x(1)X and w 	= (x(1))n can be related to

the above situations using the shuffle algebra. As for the elliptic multiple

polylogarithms, from now on unless stated otherwise, all elliptic multiple

zeta values are assumed to be regularized and simply denoted by ω(wt)

omitting the subscript and the τ -dependence in ωreg(w
t; τ).

In the same way as the shuffle algebra is preserved when regularizing

iterated integrals Γ̃ in eq. (85), this is true for the corresponding MZVs:

(regularized) eMZVs inherit the shuffle algebra, the properties implied by

the Fay identity and some further properties from the elliptic multiple poly-

logarithms such as the reflection identity

(96) ω(nk, . . . , n1) = (−1)n1+···+nkω(n1, . . . , nk)
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due to property (82) of the integration kernels. Furthermore, even elliptic

zeta values are related to the (genus-zero) zeta values according to

ω(2m; τ) = −2ζ2m .(97)

Numerous other relations between eMZVs can be retrieved from [BMS].

3.2. Genus-one Selberg integrals

In order to repeat the construction described for genus zero in subsection 2.2,

we will need to find a genus-one generalization of the Selberg seed function

defined in eq. (27) which can be used to construct genus-one Selberg inte-

grals. The genus-one Selberg seed should depend on the positions of insertion

points inserted on the boundaries of an open-string worldsheet at one loop.

Such worldsheets are quotients of a genus-one Riemann surface, where the

corresponding involution is induced by complex conjugation. For simplic-

ity, we restrict our discussion to oriented worldsheets where all insertion

points are located on one boundary. This scenario corresponds to planar

open-string interactions at one loop with the relevant geometry being the

annulus with one punctured boundary. A generalization to the non-planar

case, where points are allowed on both boundaries is not expected to pose

any structural obstacles. Upon embedding the annulus into a torus, the rel-

evant boundary is identified with the A-cycle and parametrised by the unit

interval. In contrast to the genus-zero labelling (26), the positions of the

insertion points are going to be denoted by and ordered according to

(98) 0 = z1 < zL < zL−1 < · · · < z2 < 1 = z1 mod Z ,

where we have used the symmetries of the torus to fix z1 = 0.

(99)
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Therefore – in analogy to the genus-zero scenario – we expect to find iterated

integrals with integrands defined on the configuration space of k-punctured

A-cycles [0, 1]\{z1, . . . , zk} of tori with purely imaginary modular parameter

τ and k fixed punctures:

Fτ
L,k =

{(zk+1, zk+2, . . . , zL) ∈ ([0, 1] \ {z1, . . . , zk})L−k|∀i 	= j : zi 	= zj}.(100)

Remembering the basic properties of the genus-zero Selberg seed defined in

eq. (27), its generalization to genus one is straightforward. Defining

(101) Γ̃ij = Γ̃( 10 ; zij , τ) = Γ̃x(1)(zij , τ) ,

where

zij = zi − zj ,(102)

one can simply replace log xji = Ge0(xji) in the genus-zero Selberg seed by

Γ̃ji = Γ̃x(1)(zji, τ).

At this point, it is very natural to define a suitable genus-one analogue

of the Selberg integrals (28):

Definition 1. Let L ≥ 2, 0 = z1 < zL < ... < z2 < 1 and τ the modular

parameter of the torus C/(Z+τZ). Let the empty genus-one Selberg integral

(or genus-one Selberg seed) be

(103) Sτ = Sτ
[ ]

(z1, . . . , zL) =
∏

0=z1≤zi<zj≤z2

exp
(
sij Γ̃ji

)
.

Genus-one Selberg integrals are then defined recursively by

Sτ
[
nk+1, ..., nL

ik+1, ..., iL

]
(z1, . . . , zk)

=

∫ zk

0
dzk+1 g

(nk+1)
k+1,ik+1

Sτ
[
nk+2, ..., nL

ik+2, ..., iL

]
(z1, . . . , zk+1)(104)

where 1 ≤ ip < p for k + 1 ≤ p ≤ L, nk+1, . . . , nL are non-negative integers

and

(105) g
(n)
ij = g

(n)
i,j = g(n)(zi − zj , τ) .
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For all genus-one Selberg integrals as well as for the genus-one Selberg
seed, we will indicate the dependence on τ by the upper index and by using
partial derivatives.

The sum nk+1+ · · ·+nL is called the weight of the Selberg integral. This
notation, where instead of the actual shifts ai from eq. (83) the index of a
position variable zi is used, will allow for rather compact equations when
manipulating genus-one Selberg integrals. Moreover, as for the genus-zero

Selberg integrals, the shift zik+1
in the integration kernel g

(nk+1)
k+1,ik+1

can only
be a variable which has not yet been integrated out, which leads to the
genus-one analogue of the admissibility condition in eq. (29):

(106) 1 ≤ ip < p ∀p ∈ {k + 1, . . . , L} ,

whereas the corresponding integrals at genus one are again called admissible.
Similar to the situation for genus-zero Selberg integrals, convergence

is determined by the values of the complex parameters sij . Since the pole
structure of genus-one Selberg integrals matches the corresponding structure
at genus zero, the conditions discussed and referred to apply for genus-one
Selberg integrals as well. We will assume the parameters sij to be fixed
accordingly throughout the remainder of this article.

The expression for the Selberg seed (103) is already very close to the one-
loop Koba–Nielsen factor KNτ appearing in the one-loop string amplitudes
below. In particular, Ge0 and Γ̃x(1) are the regularized integrals as defined
in eqs. (24) and (85), respectively. A key observation for our construction
is the relation between these two functions which is stated in eq. (93): the
polylogarithm Ge0(−2πiz) describes the asymptotic behaviour of the elliptic
polylogarithm Γ̃x(1)(z, τ) as z → 0.

In order to be equipped for the next subsections, let us collect a couple
of identities for genus-one Selberg integrals. Derivatives of the function Γ̃ij

can be redirected to another index via

(107)
∂

∂zi
Γ̃ij = g(1)(zi − zj) = − ∂

∂zj
Γ̃ij .

In the above language, the Fay identity (90) takes the form

g
(m)
kj g

(n)
ki = (−1)m+1g

(m+n)
ji +

n∑
r=0

(
m+ r − 1

m− 1

)
g
(n−r)
ji g

(m+r)
kj

+

m∑
r=0

(−1)m−r

(
n+ r − 1

n− 1

)
g
(m−r)
ji g

(n+r)
ki .(108)
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The left-hand side of eq. (108) is admissible, when w.l.o.g. i < j < k: if this

condition is met, the right-hand side is a Z-linear combination of admissible

products.

The Fay identity is the reason why all integration kernels g
(n)
ij are in-

cluded in the definition of the genus-one Selberg integrals (104) rather than

only g
(1)
ij : application of the Fay identity introduces weights n 	= 1, such that

a closed system with respect to integration by parts and the Fay identity

requires all integration kernels g
(n)
ij .

When discussing a recursive solution for genus-one Selberg integrals be-

low, various derivatives will have to be taken with respect to insertion points

zi, which is thoroughly discussed in appendix C. Here we would like to collect

some key properties used in the calculations below. Taking the regularization

prescription in eq. (85) into account, we find

Sτ |zi=zj = 0 for i 	= j ,(109)

which is the property analogous to eq. (37). Taking a derivative of the one-

loop Selberg seed with respect to a particular variable yields

∂

∂zi
Sτ =

∑
k �=i

sik g
(1)
ik Sτ .(110)

Considering the class of type-(k, L) genus-one Selberg integrals for a

fixed L and a given number of integrations L− k, it is natural to ask for a

basis. There are two operations relating different genus-one Selberg integrals:

one can integrate by parts and one can apply Fay identities. The question of a

basis for this type of integrals is a very old one and amounts to determining

a basis of the corresponding twisted de Rham cohomology, similar to the

fibration basis in genus zero mentioned in the discussion above definition (47)

of the bases for genus-zero Selberg integrals. One possible representation for

a basis of the twisted de Rham cohomology on genus one was suggested in

[MS20b].

Since a reduction to a basis is convenient, but not necessary in our

construction, we do not try to rigorously provide a genus-one analogue of

the fibration basis. Instead, we note certain observations for a class of genus-

one Selberg integrals with fixed L and a fixed number of integrations L−k:

• for an index np = 0, the corresponding integration kernel g
(0)
p,ip

= 1 is

a constant, thus, we can always choose ip = 1 in this case.
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• as for the genus-zero Selberg integrals, for an index np = 1, integration
by parts yields a linear equation for the integrals due to the partial
derivative of the Selberg seed (110). Hence, for each index np = 1, we
expect to be able to reduce the class of integrals from 1 ≤ ip < p to
1 ≤ ip 	= i′p < p for any 1 ≤ i′p < p by such an integration by parts
identity and applications of the Fay identity (to recover admissible
integrals). However, no further such simplifications are expected for
the indices np > 1.

In subsection 3.4 below, we are going to consider a differential equation
for a vector of genus-one Selberg integrals of length L−2, which are the
relevant genus-one Selberg integrals containing the one-loop and tree-level
configuration-space integrals:

Sτ
[
n3, ..., nL

i3, ..., iL

]
(z1 = 0, z2) =

∫ z2

0
dz3 g

(n3)
3,i3

Sτ
[
n4, ..., nL

i4, ..., iL

]
(z1 = 0, z2, z3)

=

∫
C(z2)

L∏
i=3

dzi S
τ

L∏
k=3

g
(nk)
k,ik

,(111)

where 1 ≤ ik < k and the integration region is given by (cf. eq. (31)):

(112) C(zi) = {0 = z1 < zL < zL−1 < · · · < zi} ,

such that the integral over this domain reads

(113)

∫
C(z2)

L∏
i=3

dzi =

∫ z2

0
dz3

∫ z3

0
dz4· · ·

∫ zL−1

0
dzL .

The integrals defined in eq. (111) are the genus-one generalization of the
Selberg integrals (30) relevant for the tree-level amplitude recursion. As for
this genus-zero class, the differential equation satisfied by the vector of these
genus-one Selberg integrals leads to an associator equation relating one-loop
to tree-level configuration-space integrals.

Using the considerations about a fibration basis above, we will at least
reduce the class of iterated integrals defined in eq. (111) to a spanning set

Bτ
i′3,i

′
4,...,i

′
L
=
{
Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2)|nk ≥ 0 and 1 ≤ ik < k

such that ik 	= i′k if nk = 1 and ik = 1 if nk = 0
}

(114)
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similar to the genus-zero basis (47). We also allow i′k = 0 if we only intend to
reduce the kernels with nk = 0 and include all the kernels with nk = 1, which
certainly does not yield a basis, but a spanning set reduced by the redundant

labeling of g
(0)
k,ik

= 1. In other words, the labels i′k in Bτ
i′3,i

′
4,...,i

′
L
denote that

the integrals defined by the set Bτ
i′3,i

′
4,...,i

′
L
are the genus-one Selberg integrals

from eq. (111), where for 3 ≤ k ≤ L any kernel of the form g
(1)
k,i′k

is rewritten

in terms of the kernels g
(1)
k,ik

with 1 ≤ ik < k and ik 	= i′k using integration by

parts and the Fay identity. Similarly, any kernel g
(0)
k,ik

= 1 is simply denoted

by g
(0)
k,1 = 1.

3.3. Generating function for iterated integrals Γ̃ and the KZB
associator

Before writing down a differential equation of KZB type for a vector of
genus-one Selberg integrals in subsection 3.4 below, which is the genus-one
generalization of the KZ equation (46), let us consider its formal solution8

in terms of the so-called (elliptic) KZB associator, originally described9 in
ref. [Enr14]. In fact, although usually represented in a language using a
derivation algebra, we would like to point out that the equation as well
as its formal solution is very naturally expressed in terms of the canonical
iterated integrals Γ̃ on the annulus.

By following exactly the same line of arguments as in appendix A, let
us start from a generating function10

Lτ (z) =
∑
w∈X

w Γ̃w(z, τ)(115)

8As for the KZ equation, we are rather interested in relating a certain regularized
boundary value to another regularized boundary value using an associator equation,
than completely solving the equation. A rigorous discussion on solutions of the
elliptic KZB equation can e.g. be found in ref. [FV95].

9KZB equations are the higher-genus generalization of the KZ equation [Ber88b,
Ber88a]. In this article, we exclusively consider the elliptic KZB equation and the
A-cycle component of the elliptic KZB associator. Therefore, we simply refer to
these genus-one objects as KZB equation and KZB associator, respectively, while
the genus-zero analogues are called KZ equation and Drinfeld associator.

10For this subsection, we explicitly denote the τ -dependence of the functions
in order to keep track of the analytic behavior of certain limits. For example, in
the asymptotic behavior shown in eqs. (117) and (118), the right-hand side is τ -
independent.
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of elliptic multiple polylogarithms Γ̃w(z, τ), which can be shown to satisfy
the differential equation

∂

∂z
Lτ (z) =

∑
n≥0

g(n)(z, τ)x(n) Lτ (z) .(116)

This differential equation is known as the Knizhnik–Zamolodchikov–Bernard
equation (or KZB equation, for short) [Ber88b, Ber88a]. As for the genus-
zero case, the asymptotic behavior around z = 0 is determined by the asymp-
totics of the iterated integrals in eqs. (92) and (93) which amounts to

(117) Lτ (z) ∼ exp
(
x(1) Γ̃( 10 ; z, τ)

)
∼ (−2πiz)x

(1)

.

Due to the one-periodicity (81) of the integration kernels g(n), the KZB
equation is invariant under z �→ z − 1 and, hence, there is another solution
of the differential eq. (116), Lτ

1(z), with the following asymptotics near z = 1

(118) Lτ
1(z) ∼ exp

(
x(1) Γ̃( 10 ; z, τ)

)
∼ (−2πi(1− z))x

(1)

.

As for the genus-zero case, the associator

Φτ =
(
Lτ
1(z)

)−1
Lτ (z)(119)

is independent of z, which can be verified straightforwardly by taking the
derivative of both sides of Lτ

1 Φ
τ = Lτ and using the differential eq. (116).

Thus, the elliptic associator Φτ can be expressed in the limit z → 1, which
yields the generating series of regularized eMZVs

Φτ = lim
z→1

exp
(
−x(1) Γ̃( 10 ; z, τ)

)
Lτ (z)

=
∑
w∈X

wω(wt; τ) .(120)

The last equation follows from definition (115) and the cancellation of the
divergent integrals due to the exponential prefactor in eq. (120). This is
exactly the same mechanism which lead to the expression of the Drinfeld
associator in terms of the regularized multiple zeta values in eq. (227) and
effectively implements the appropriate regularization. Considering letters up
to x(2) only, the first couple of terms of the KZB associator read

Φτ = 1 + x(0)ω(0; τ) + x(1)ω(1; τ) + x(2)ω(2; τ)+

+ x(0)x(0)ω(0, 0; τ) + x(0)x(1)ω(1, 0; τ) + x(0)x(2)ω(2, 0; τ)
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+ x(1)x(0)ω(0, 1; τ) + x(1)x(1)ω(1, 1; τ) + x(1)x(2)ω(2, 1; τ)

+ x(2)x(0)ω(0, 2; τ) + x(2)x(1)ω(1, 2; τ) + x(2)x(2)ω(2, 2; τ) + · · ·
= 1 + x(0) − 2ζ2x

(2)

+
1

2
x(0)x(0) − (x(0)x(1) − x(1)x(0))ω(0, 1; τ)− ζ2(x

(0)x(2) + x(2)x(0))

+
(
x(1)x(2) − x(2)x(1)

)(
ω(0, 3; τ)− 2ζ2ω(0, 1; τ)

)
+ 5ζ4x

(2)x(2) + · · ·
The elliptic associator Φτ provides an associator equation similar to eq. (226)
at genus zero: it connects the regularized boundary values of an arbitrary
solution Fτ (z) of the KZB equation

∂

∂z
Fτ (z) =

∑
n≥0

g(n)(z, τ)x(n) Fτ (z) ,(121)

which are regularized in order to compensate the asymptotic behavior shown
in eqs. (117) and (118)

(122) Cτ
0 = lim

z→0
(−2πiz)−x(1)

Fτ (z), Cτ
1 = lim

z→1
(−2πi(1−z))−x(1)

Fτ (z) .

The calculation is similar to the genus-zero case (cf. eq. (224)) and the result
is the genus-one associator equation

ΦτCτ
0 = lim

z→0
(Lτ

1(z))
−1 Lτ (z)(−2πiz)−x(1)

Fτ (z)

= lim
z→1

(Lτ
1(z))

−1 Fτ (z)

= Cτ
1 .(123)

3.4. KZB equation for an auxiliary point

The one-loop version of the recursive construction of open-string amplitudes
will again facilitate a differential equation for an extra marked point: the
point z2, which is the variable parametrizing the integration domain of the
integrals in eq. (111). The relevant case for the calculation of the (L−1)-point
genus-one configuration-space integrals below is k=2. The configuration-
space integrals to be calculated are contained in boundary values corre-
sponding to limits of the variable z2:

• in the limit z2 → 1 = z1 mod Z, the integration domain closes and
amounts to one complete boundary of the annulus: it leads to (L−1)-
point genus-one configuration-space integrals with integrands defined
on Fτ

L−1,1.
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• when taking z2 → 0 = z1, genus-one Selberg integrals degenerate to

tree-level string corrections, since the integration domain gets confined

to a genus-zero domain and the resulting integrands are defined on

FL+1,3.

The two associated boundary values can be related by the genus-one as-

sociator equation (123) providing the genus-one analogue of the amplitude

recursion of ref. [BSST14]. After establishing the KZB equation in this sub-

section, the boundary values will be discussed in subsection 3.5 below.

Consider a vector of Selberg integrals with fixed upper labels, but lower

labels stretching over all admissible values:

(124) Sτ
(nk+1,...,nL)

=

⎛
⎜⎜⎜⎝

Sτ
[
nk+1, ..., nL

1, ..., 1

]
(z1, ..., zk)

...

Sτ
[
nk+1, ..., nL

k, ..., L−1

]
(z1, ..., zk)

⎞
⎟⎟⎟⎠ .

For the three-point example to be evaluated below, we have to consider

integrals with k = 2, L = 4, such that we are going to work with vectors like

(125) Sτ
(2,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sτ
[
2, 1
1, 1

]
(z1, z2)

Sτ
[
2, 1
1, 2

]
(z1, z2)

Sτ
[
2, 1
1, 3

]
(z1, z2)

Sτ
[
2, 1
2, 1

]
(z1, z2)

Sτ
[
2, 1
2, 2

]
(z1, z2)

Sτ
[
2, 1
2, 3

]
(z1, z2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The entries are going to be ordered canonically. As agreed on in the discus-

sion of the spanning set Bτ
i′3,i

′
4,...,i

′
L
defined in eq. (114), whenever there is an

nk = 0, we write ik = 1 and we generally do not incorporate integration by

parts identities to reduce the number of independent integrals, that is, we

usually work with the set of integrals Bτ
0,0,...,0. Accordingly, if none of the

labels n3, . . . , nL is zero, the vector Sτ
(n3,...,nL)

has (L−1)! components.

In establishing the KZB equation for a vector of Selberg integrals, we

are going to take derivatives of Sτ
(n3,...,nL)

(z1 = 0, z2) with respect to the

auxiliary point z2. As will be pointed out below, taking a derivative of a

Selberg integral of weight w will lead to a combination of genus-one Selberg
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integrals of weights between zero and w + 1. Accordingly, we collect all

Selberg vectors of weight w into a larger vector Sτ
w (z2):

(126) Sτ
w (z2) =

(
Sτ
(n3,n4,...,nL)

(z1 = 0, z2)
)
∑L

k=3 nk=w

and combine all those vectors Sτ
w (z2) into an infinitely large vector in order

of increasing w:

(127) Sτ (z2) =

⎛
⎜⎜⎜⎝
Sτ
0

Sτ
1

Sτ
2
...

⎞
⎟⎟⎟⎠ .

The vector Sτ (z2) is the genus-one analogue of the genus-zero Selberg vector

S(x3) defined in eq. (45), which satisfies the KZ eq. (46).

Theorem 2 (Elliptic KZB-system). Let Sτ (z2) be the vector of genus-one

Selberg integrals of type (2, L) with auxiliary point z2. The derivative with

respect to the auxiliary point z2 can be written in the form

∂

∂z2
Sτ (z2) =

∑
n≥0

g
(n)
21 x(n) Sτ (z2) ,(128)

which is a system of elliptic KZB-type. The non-vanishing entries of the

matrices x(n) are Z-linear combinations of the parameters sij.

Proof. The proof is constructive, that is, the derivative of any entry of Sτ (z2)

is explicitly brought in a form to fit eq. (128) by a combinatorial algorithm.

The algorithm consists of two parts: in the first part the expression is rewrit-

ten in a way such that the derivative acts on the Selberg seed exclusively,

which can be evaluated straighforwardly. This is achieved using integration

by parts. In the second part, Fay identities are used iteratively in order

to rewrite the result as linear combination of admissible Selberg integrals.

The coefficients are shown to consist of polynomials of degree one in the

parameters sij and a factor g
(n)
21 .

Due to the length of describing the combinatorial algorithm, we refrain

from providing the proof in the main text, rather we would like to ask the

reader to consult appendix C instead.
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Example. In order to illustrate the mechanism, let us consider the z2-
derivative of the Selberg vector Sτ

(0,1)(z1 = 0, z2):

∂

∂z2
Sτ
(0,1)

= g
(0)
21

(− s24 −s24 0 0 0 0 −s23 0 0 0 0
s14 s14+s34 s34 0 0 0 0 −s23−s34 s34 0 s34
0 −s24 −s24 0 0 0 0 s24 −s23−s24 0 −s24

)⎛⎝Sτ
(0,2)

Sτ
(1,1)

Sτ
(2,0)

⎞
⎠

+ g
(1)
21

(
s12+s24 −s24 0
−s14 s12+s14 0
0 0 s12

)
Sτ
(0,1) +g

(2)
21

(−s24
s14
0

)
Sτ
(0,0) .

(129)

An immediate observation is in place: considering the weight of the derivative

to be one, taking the weight n of each function g
(n)
21 into account and adding

the weight of the genus-one Selberg integrals, the total weight is conserved
in each term of the above equation.

Starting from the above equation, one can collect all occurring vectors
Sτ
(n3,n4)

of weight two into the weight-two-vector

(130) Sτ
2 =

⎛
⎜⎝Sτ

(0,2)

Sτ
(1,1)

Sτ
(2,0)

⎞
⎟⎠ ,

where the three subvectors are given by

Sτ
(0,2) =

⎛
⎜⎜⎜⎝
Sτ
[
0, 2
1, 1

]
(z1, z2)

Sτ
[
0, 2
1, 2

]
(z1, z2)

Sτ
[
0, 2
1, 3

]
(z1, z2)

⎞
⎟⎟⎟⎠

Sτ
(2,0) =

⎛
⎝Sτ

[
2, 0
1, 1

]
(z1, z2)

Sτ
[
2, 0
2, 1

]
(z1, z2)

⎞
⎠

Sτ
(1,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sτ
[
1, 1
1, 1

]
(z1, z2)

Sτ
[
1, 1
1, 2

]
(z1, z2)

Sτ
[
1, 1
1, 3

]
(z1, z2)

Sτ
[
1, 1
2, 1

]
(z1, z2)

Sτ
[
1, 1
2, 2

]
(z1, z2)

Sτ
[
1, 1
2, 3

]
(z1, z2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(131)
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So the 11-component vector Sτ
2 captures the combinatorics from distributing

weight two on the two slots (n3, n4) as well as the combinatorics of the labels

ik for each of those pairs. Neatly, the particular ordering does not play a

role in the formalism to be described, however, we will follow the sorting

convention in eq. (130).

Block structure of coefficient matrices x(n): Let us further investigate

the structure of the differential system (128) and in particular the matrices

x(n). As visible in example (129), taking a derivative of a Selberg integral will

increase the weight by one. Using the algorithm described in appendix C,

one can thus write the z2-derivative on Sτ
w as

∂

∂z2
Sτ
w(z2) =

w+1∑
n=0

g
(n)
21 x(n)w Sτ

w+1−n(z2) ,(132)

where the factor x(n) does not contribute to the weight, but g
(n)
21 does. From

counting the weights, one can thus deduce that the matrices x(n) in eq. (128)

ought to be block-(off-)diagonal, where the size of the blocks corresponds

the lengths of the Selberg vectors of weight w. Schematically, one finds

∂

∂z2
Sτ = g

(0)
21 x

(0) Sτ +g
(1)
21

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sτ
0(z2)

Sτ
1(z2)

Sτ
2(z2)

Sτ
3(z2)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Sτ

(133)

+ g
(2)
21 x

(2) Sτ + · · · ,

where only the blue blocks are non-vanishing. Given the blocks in the above
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equation, the other matrices will have the following structure:

x(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(0)
0

x
(0)
1

x
(0)
2

x
(0)
3
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ , x(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(1)
0

x
(1)
1

x
(1)
2

x
(1)
3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

x(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ , . . . ,

(134)

where the blocks of the individual matrices are labeled by x
(n)
w .

Truncation of the KZB system. In practice, the infinitely long vector

Sτ (z2) and the matrices x(n) of infinite dimension need to be truncated at

a certain maximal total weight wmax

(135) Sτ
≤wmax

(z2) =

⎛
⎜⎜⎜⎝

Sτ
0

Sτ
1
...

Sτ
wmax

⎞
⎟⎟⎟⎠ .

Taking the z2-derivative on the finite-length vector Sτ
≤wmax

(z2) leads to the

differential equation

∂

∂z2
Sτ
≤wmax

(z2) =

wmax+1∑
n=0

g
(n)
21 x

(n)
≤wmax

Sτ
≤wmax

(z2) + rwmax
Sτ
wmax+1(z2) ,(136)

where the remainder rwmax
prevents eq. (136) to be a complete KZB equation.

However, as will be discussed below, this remainder may be disregarded when

calculating one-loop configuration-space integrals up to a particular order

in α′.
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The matrices x
(n)
≤wmax

for 0 ≤ n ≤ wmax+1 correspond to the upper-left

(wmax+1)× (wmax+1) block matrices of the matrices x(n). Explicitly:

x
(0)
≤wmax

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(0)
0

x
(0)
1

. . .

x
(0)
wmax−1

⎞
⎟⎟⎟⎟⎟⎟⎠ , x

(1)
≤wmax

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(1)
0

x
(1)
1

x
(1)
2

. . .

x
(1)
wmax

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

(137)

x
(2)
≤wmax

=

⎛
⎜⎜⎜⎜⎜⎜⎝
x
(2)
1

x
(2)
2

. . .

x
(2)
wmax

⎞
⎟⎟⎟⎟⎟⎟⎠ , . . . , x

(wmax+1)
≤wmax

=

⎛
⎜⎜⎜⎜⎜⎝
x
(wmax+1)
wmax

⎞
⎟⎟⎟⎟⎟⎠ .

(138)

Moreover, the remainder rwmax
is the (wmax+1)×1 block submatrix of the

first wmax + 1 blocks of the (wmax + 2)-column of the matrix x
(0)
≤wmax+1:

x
(0)
≤wmax+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(0)
0

x
(0)
1

. . .

x
(0)
wmax−1

x
(0)
wmax

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, rwmax
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

x
(0)
wmax

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(139)

The value of wmax necessary for the calculation of the configuration-space
integrals up to a particular order in α′ is going to be determined in subsec-
tion 3.6.

3.5. Boundary values for the KZB equation

Having derived a (modified) KZB equation for the genus-one Selberg in-
tegrals, we would like to apply the genus-one associator equation (123) in
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order to evaluate genus-one configuration-space integrals from genus-zero

configuration-space integrals. This amounts to proving the following propo-

sition.

Proposition 3. The regularized boundary values

Cτ
1 = lim

z2→1
(−2πi(1−z2))

−x(1)

Sτ (z2) and Cτ
0 = lim

z2→0
(−2πiz2)

−x(1)

Sτ (z2)

(140)

are related by the A-cycle component Φ(x(0), x(1), x(2), ...) of the KZB asso-

ciator via

(141) Cτ
1 = Φ(x(0), x(1), x(2), ...)Cτ

0 .

The regularized boundary value Cτ
1 contains (L−1)-point configuration-space

integrals at genus one whereas Cτ
0 contains (L+1)-point configuration-space

integrals at genus zero.

Proof. While the statement in eq. (141) follows straightforwardly from the

discussion in subsection 3.3 and the form of the KZB equation in theorem 2,

the boundary values Cτ
0 and Cτ

1 will be explicitly constructed and shown to

contain the respective configuration-space integrals below. Following defini-

tion eq. (122), we will have to evaluate

Cτ
0 = lim

z2→0
(−2πiz2)

−x(1)

Sτ (z2)

= lim
z2→0

⎛
⎜⎝(−2πiz2)

−x
(1)
0 Sτ

0(z2)

(−2πiz2)
−x(1)

1 Sτ
1(z2)

...

⎞
⎟⎠ =

⎛
⎜⎝Cτ

0,0

Cτ
0,1
...

⎞
⎟⎠ ,

Cτ
1 = lim

z2→1
(−2πi(1− z2))

−x(1)

Sτ (z2)

= lim
z2→1

⎛
⎜⎝(−2πi(1− z2))

−x
(1)
0 Sτ

0(z2)

(−2πi(1− z2))
−x

(1)
1 Sτ

1(z2)
...

⎞
⎟⎠ =

⎛
⎜⎝Cτ

1,0

Cτ
1,1
...

⎞
⎟⎠ ,(142)

where Cτ
0,w and Cτ

1,w denote the regularized limits of the subvectors Sτ
w(z2)

of weight w and the second equality in the above equations follows from the

block-diagonal form of the matrix x(1). Switching to finite matrix size, we
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define

Cτ
0,≤wmax

= lim
z2→0

(−2πiz2)
−x

(1)
≤wmax Sτ

≤wmax
(z2) ,

Cτ
1,≤wmax

= lim
z2→1

(−2πi(1− z2))
−x(1)

≤wmax Sτ
≤wmax

(z2) .(143)

Boundary value Cτ
1: Considering the limit z2 → 1, we first determine

the behavior of the component integrals Sτ
[
n3, ..., nL

i3, ..., iL

]
(z2) and include the

regularization factor −2πi(1− z2)
−x(1)

afterwards.

(144)

According to eq. (89) and using (87), the genus-one Selberg seed degenerates
as

lim
z2→1

(−2πi(1− z2))
−s12 Sτ =

∏
0=z1<zi<zj<z2

exp
(
sij Γ̃ji

)∏
j>2

exp
(
(s1j + s2j) Γ̃j1

)

= Sτ
∣∣∣s̃ij=sij+δi1s2j

(L−1)-point
.(145)

The term on the right-hand side of the above equation is the genus-one Sel-
berg seed for L−1 insertion points on the boundary of the annulus. Since the
insertion points z2 and z1 merge in the limit, effective Mandelstam variables
s̃ij = sij + δi1s2j for i, j ∈ {1, . . . , L} \ {2}, i < j have to be assigned to
the insertion points, such that s̃1j associated to z1 includes the contribution
from z2:

(146) s̃1j = s1j + s2j .

The behavior is the same as in the genus-zero case in eq. (60): the momentum
of the external state which corresponds to one of the fixed insertion points
receives two contributions, one coming from the state at z1 = 0 and the other
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from a state at the same position of the boundary of the annulus z2 = z1
mod Z due to the merged auxiliary insertion point z2.

Accordingly, the genus-one Selberg integral defined in eq. (111) as a
function on the configuration space of the A-cycle with two positions fixed,
degenerates at lowest order in (1− z2) to an integral with integrand defined
on Fτ

L−1,1

lim
z2→1

(−2πi(1− z2))
−s12 Sτ

[
n3, ..., nL

i3, ..., iL

]
(z1 = 0, z2)

=

∫
C(z2→1)

L∏
i=3

dzi S
τ
∣∣∣s̃1j=s1j+s2j

(L−1)-point

L∏
k=3

g
(nk)
k,ik

∣∣
z2≡z1=0

= Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2 = 1)

∣∣∣s̃1j=s1j+s2j

z2≡z1=0
.(147)

Similar to eq. (59), the relevant eigenvalues of the matrices x
(1)
w appearing in

the regularization factor −2πi(1−z2)
−x(1)

w in Cτ
1 from eq. (142) are s12, such

that the regularization factor contributes the factor (−2πi(1− z2))
−s12 from

eq. (147) and the entries ofCτ
1 are given by the degenerate genus-one Selberg

integrals in eq. (147). They are the (L−1)-point genus-one configuration-
space integrals [BMMS15]. This concludes the proof of the statement about
the boundary value Cτ

1 in proposition 3. In ref. [BKS20] this and the analo-
gous statement for the boundary valueCτ

0 below are proven using generating
series of the open-string configuration-space integrals.

Boundary value Cτ
0: The boundary value Cτ

0 is obtained by confining
the region of integration to an infinitesimal interval as z2 → 0 = z1. As
for the genus-zero calculation in eq. (64), the main tool to investigate this
degeneration and the corresponding behavior of genus-one Selberg integrals
is a change of variables zi = z2xi, where xi are points in the unit interval on
the real line whereas zi are located on the boundary of an annulus.

(148)
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According to the discussion below definition 1 in subsection 3.2 and as a
consequence of eq. (88), the genus-one Selberg seed Sτ degenerates at lowest
order in z2 for z2 → 0 up to a proportionality factor to the genus-zero
Selberg seed S for the L points 0 = x1 < xL < xL−1 < · · · < x2 = 1 on
the unit interval, which is (cf. eq. (71)) precisely the (L+1)-point genus-zero
Koba–Nielsen factor defined in eq. (70):

lim
z2→0

(−2πiz2)
−s12...L Sτ =

∏
0=x1<xi<xj<x2=1

x
sij
ji

= S |L-point
= KN |(L+1)-point .(149)

The discussion of the eigenvalues of x
(1)
w is similar to the genus-zero case

and thoroughly addressed in ref. [BKS20]. It turns out that the maximal and

therefore dominant eigenvalue of x
(1)
w is s12...L, such that the regularization

(−2πiz2)
−x(1)

w contributes the factor (−2πiz2)
−s12...L in eq. (149). Thus, the

entries of Cτ
0 are given by

lim
z2→0

(−2πiz2)
−s12...L Sτ

[
n3, ..., nL

i3, ..., iL

]
(z1 = 0, z2)

= lim
z2→0

zL−2
2

∫
C(x2=1)

L∏
i=3

dxi S |L-point
L∏

k=3

g(nk)(z2xk,ik , τ)

=

{∫
C(x2=1)

∏L
i=3 dxi S |L-point

∏L
k=3

1
xkik

if n1 = n2 = · · · = nk = 1 ,

0 otherwise .

(150)

The only non-vanishing entries are the ones for which all integration kernels
have weight one, i.e. nk = 1, since only their pole can compensate for the
zL−2
2 factor from the measure.

A similar behavior was observed for the genus-zero boundary value which
led to eq. (66). Moreover, these simple poles ensure that the only non-
vanishing integrals are exactly the degenerate genus-zero Selberg integrals
S[i3, i4, . . . , iL](0, 1, x2 = 1) found in the genus-zero regularized boundary
values C0 and C1 in eqs. (66) and (60), respectively. However, here we re-
cover integrals with integrands defined on FL+1,3 with the L+1 insertion
points 0 = x1 < xL < xL+1 < · · · < x2 = 1 < xL+1 = ∞ (cf. eq. (26)). As
discussed in subsection 2.5, these integrals are related to the (L+1)-point
genus-zero configuration-space integrals by a basis transformation. This con-
cludes the proof of proposition 3.
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Mandelstam variables: In contrast to both the genus-zero discussion and
the limiting situation Cτ

1 , in the boundary value Cτ
0 the Mandelstam vari-

ables s2j in eq. (149) associated to the auxiliary insertion point z2 are not

redundant: the auxiliary genus-one momentum k1-loop2 associated to z2 en-
codes the genus-zero momentum ktree2 associated to the tree-level insertion
point x2

(151) k1-loop2 = ktree2 .

In order to keep track of how this momentum contributes to the one-loop
momenta, two distinct processes have to be considered: first, the topological
change by the identification of x1 with xL+1 giving the genus-one inser-
tion point z1 depicted in figure (78) and second, the merging of z2 → 1 =
z1 mod Z shown in figure (144). In the first case, the momenta ktree1 and
ktreeL+1 associated to x1 and xL+1, respectively, yield the joint contribution to
the one-loop momentum associated to z1

(152) k1-loop1 = ktree1 + ktreeL+1 .

The second limit is the merging of z2 to z1, which adds the momentum
k1-loop2 associated to z2 to the momentum k1-loop1 and we expect to find the
effective momentum

(153) k̃1-loop1 = k1-loop1 + k1-loop2 = ktree1 + ktreeL+1 + ktree2

for the insertion point z1 = z2 mod Z of the (L−1)-point one-loop interac-
tion in the regularized boundary value Cτ

1 , where we denote the one-loop

momenta k1-loopi in the limit z2 → z1 = 1 mod Z by a tilde as depicted in
figure (158). However, from our calculations of Cτ

1 in eq. (145) we see that

the Mandelstam variables associated to k̃1-loop1 are

(154) s̃1j = s1j + s2j .

Therefore, the actual one-loop momentum associated to z1 = z2 mod Z

turns out to be

(155) k̃1-loop1 = ktree1 + ktree2 .

This is in agreement with simultaneous momentum conservation in the tree-
level and one-loop interaction if and only if

(156) ktreeL+1 = 0 ,
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which can be interpreted as follows: reversing the first procedure discussed

above (see figure (78)), that is, going in the direction from genus one to

genus zero, the momentum k1-loop1 associated to z1 is expected to split in a

certain way and to contribute to the two tree-level momenta ktree1 and ktreeL+1

accordingly. From eq. (156) follows that these two contributions are very

unequal: while the momentum associated to x1 obtains the full contribution

ktree1 = k1-loop1 , the momentum associated to xL+1 goes away empty-handed

ktreeL+1 = 0. Note that the momenta associated the remaining tree-level inser-

tion points xi for i = 3, 4, . . . , L are exactly the one-loop momenta associated

to the punctures zi for any 0 < z2 ≤ 1 = z1 mod Z:

k̃1-loopi = k1-loopi = ktreei for i = 3, 4, . . . , L .(157)

(158)

Summary of subsection: The regularized boundary value Cτ
0 is found to

only have finitely many non-vanishing entries which are degenerate genus-

zero Selberg integrals and hence linear combinations of (N+2)-point tree-

level configuration-space integrals, where N = L − 1. In turn, as will be

discussed in detail in the next subsection, the entries ofCτ
1 given by eq. (147)

contain the N -point one-loop configuration-space integrals.

Therefore, the genus-one Selberg vector Sτ (z2) indeed interpolates be-

tween the genus-zero and genus-one configuration-space integrals and the

corresponding associator equation

(159) Cτ
1 = Φτ Cτ

0

provides a link between genus-zero and genus-one integrals. Combining this

associator equation with the genus-zero recursion for the genus-zero config-

uration-space integrals from ref. [BSST14, Kad20] based on the genus-zero

associator equation (10) yields a recursion in genus and the number of ex-

ternal states to calculate the genus-one configuration-space integrals.
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The consideration about the contributions of the insertion points defin-
ing the genus-one Selberg integrals to the Mandelstam variables in the
configuration-space integrals appearing in the boundary values Cτ

0 and Cτ
1

leads to a geometric interpretation of the associator eq. (159): the N -point
one-loop worldsheet is obtained from the (N+2)-point tree-level worldsheet
by an effective gluing of the two legs corresponding to the insertion points
x1 = 0 and xL+1 = ∞ on the Riemann sphere. By momentum conservation
the Mandelstam variables associated to the insertion point z1 in the one-loop
configuration-space integrals of Cτ

1 are given by the sum s̃1j = s1j + s2j .

3.6. Open-string amplitudes at genus one

Let us finally employ the associator eq. (159) to calculate the α′-expansion of
N -point one-loop configuration-space integrals [GSB82, DG09, BMMS15] in
open string theory up to any desired order in α′ from (N+2)-point tree-level
configuration-space integrals.

While relating various entries of the regularized boundary values to
known representations of configuaration-space integrals at genus zero and
genus one, we will simultaneously single out the relevant parts of the matrix
equation (159).

The main goal is the calculation of the N -point one-loop configuration-
space integral up to a desired maximal order in α′ denoted by o1-loopmax . As ob-
served in the previous subsection, integrals with integrands defined on Fτ

N,1

for the N -point one-loop configuration-space integrals arise in the z2 → 1
limit of genus-one Selberg integrals with L = N+1 marked points. Simulta-
neously, (N+2)-point tree-level configuration-space integrals are encoded in
the z2 → 0 limit of the same genus-one Selberg integrals.

As pointed out at the end of subsection 3.4 above, for practical calcula-
tions the infinite genus-one Selberg vector has to be truncated to Sτ

≤wmax
(z2).

Given the target values N and o1-loopmax for the calculation, let us determine
wmax as well as various other parameters for the calculation.

Each of the objects on the right-hand side in eq. (159) has an expan-
sion in the parameter α′: since x(n) ∝ α′ (cf. eq. (2), the expansion in
word length of the elliptic KZB associator is exactly its α′-expansion. The
α′-expansion of the tree-level integrals in CE

0 can be obtained from the re-
cursions in refs. [MS17, BSST14]. Therefore, the maximal target α′-order
o1-loopmax of the one-loop configuration-space integrals on the right-hand side
is reached, when the KZB-associator is expanded up to α′-order

(160) lmax = o1-loopmax − otreemin
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where otreemin denotes the leading (e.g. minimal) order in the α′-expansion of
tree-level integrals in Cτ

0 . This order turns out to be given by [MSS13]

(161) otreemin = 2− L = 3−N .

In order to determine wmax, we need to think about the positions of
the relevant information within the vectors Cτ

0 and Cτ
1 : on the one hand,

according to eq. (150) the non-vanishing subvector of Cτ
0 which includes the

tree-level configuration-space integrals is contained in the weight

(162) w0 = L− 2

subvector Cτ
0,w0

of Cτ
0 . On the other hand, the one-loop configuration-space

integrals are contained in the weight

(163) w1 = L− 5− d

subvector Cτ
1,w1

. The quantity d denotes the number of additional factors of

g(n) appearing in higher-point one-loop configuration-space integrals and is
given by d = 0 for L ≤ 8 and d ≥ 0 otherwise [BMMS15]. For all calculations
in this article, d = 0 holds. The relevant part of the elliptic KZB associator
is the submatrix Φτ

w1,w0
, which satisfies the equation

(164) Cτ
1,w1

= Φτ
w1,w0

Cτ
0,w0

.

Since for all amplitude situations we find w1 < w0, the submatrix Φτ
w1,w0

is
located above the diagonal of Φτ .

Here comes the block-(off-)diagonal form of the matrices x(n) depicted
in (134) into play, which ensures that for a certain word length l, only finitely
many words w = x(n1) . . . x(nl) contribute non-trivially to Φτ

w1,w0
. The non-

trivial contribution to Φτ
w1,w0

at each word length l, which is the order l in

the α′-expansion of the associator since x(n) ∝ α′, is a finite sum
∑

w wω(wt)

of products w = x
(n1)
≤wmax(l)

x
(n2)
≤wmax(l)

. . . x
(nl)
≤wmax(l)

, where

(165) wmax(l) = max(l + w1 − w0, w0)

and (n1, n2, . . . , nl) is a length-l, ordered partition of wmax(l), i.e. n1 +n2 +
· · · + nl = wmax(l), which satisfies for each r ∈ {1, 2, . . . , l} the additional
conditions

(166) 0 ≤ i−
r−1∑
s=1

(ns − 1) ≤ wmax(l) , 0 ≤ j + nl − 1 ≤ wmax(l) .
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Therefore, the α′-expansion of Φτ
w1,w0

up to some maximal order lmax in α′ or
maximal word length, respectively, can be calculated by finite-dimensional

submatrices of x(n), which are the matrices x
(n)
≤wmax

for the maximal weight

wmax(lmax):

(167) Φτ (x(n))w1,w0
= Φτ (x

(n)
≤wmax(lmax)

)w1,w0
+O

(
(α′)lmax+1

)
.

In other words, the associator submatrix Φτ (x(n))w1,w0
can be deduced from

a truncated associator, which is determined by evaluating the matrix prod-

ucts of truncated representations of letters, taking only words up to length

lmax and weight wmax into account. The truncated matrix representations

x
(n)
≤wmax

of the letters can be obtained from the modified KZB eq. (136). Since

word length lmax and maximal weight wmax(lmax) are finite quantities, all

sums consist of a finite number of terms and all matrices are of finite size.

The process yields the finite-dimensional, truncated associator equation

(168)

Cτ
1,≤wmax(lmax)

+O
(
(α′)o

1-loop
max +1

)
= Φτ

lmax
(x

(n)
≤wmax(lmax)

) Cτ
0,≤wmax(lmax)

,

where Φτ
lmax

is the truncation of Φτ at the maximal word length lmax. The

finite subvectors

Cτ
0,≤wmax(lmax)

= lim
z2→0

(−2πiz2)
−x

(1)

≤wmax(lmax) Sτ
≤wmax(lmax)

(z2) ,

Cτ
1,≤wmax(lmax)

= lim
z2→1

(−2πi(1− z2))
−x

(1)

≤wmax(lmax) Sτ
≤wmax(lmax)

(z2)(169)

of Cτ
0 and Cτ

1 , respectively, contain the (L+1)-point tree-level string cor-

rections at weight w0 = L − 2 ≤ wmax(lmax) and the (L−1)-point one-loop

corrections at w1 = L−5−d. Denoting by Φτ
lmax

(x
(n)
≤wmax(lmax)

)w1,w0
the weight-

(w1, w0) submatrix of the truncated KZB associator Φτ
lmax

(
x
(n)
≤wmax(lmax)

)
, the

relevant truncated vector equation which relates the string corrections to

each other is

(170) Cτ
1,w1

+O
(
(α′)o

1-loop
max +1

)
= Φτ

lmax
(x

(n)
≤wmax(lmax)

)w1,w0
Cτ

0,w0
,

where Φτ
lmax

(x
(n)
≤wmax(lmax)

)w1,w0
is the weight-(w1, w0) submatrix of the trun-

cated elliptic KZB associator Φτ
lmax

(x
(n)
≤wmax(lmax)

).
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3.7. Relating boundary values at genus zero and one

In this section, we briefly discuss how the regularized boundary value Cτ
0 of a

function satisfying a KZB equation is related to a corresponding genus-zero

limit C0 of a solution of a KZ equation. This provides an explanation of why

in the recursion described in the previous section, genus-zero configuration-

space integrals are obtained from genus-one Selberg integrals.

Before we focus on genus-one quantities, we determine the origin of the

regularization used for the regularized genus-zero boundary value

(171) C0 = lim
x→0

x−e0F (x)

of a solution F (x) of the KZ equation

(172)
d

dx
F (x) =

(
e0
x

+
e1

x− 1

)
F (x) .

For 0 < x � 1, the KZ equation can be written as

(173)
d

dx
F (x) =

(e0
x

− e1 +O(x)
)
F (x)

up to linear order in x. Using this differential equation and the fact that

[e0, e
xe1 ] = O(x), the function F (x) can be approximated by

(174) F (x) = e−xe1xe0f0 +O(x)

for some constant f0 in a neighborhood of zero. The regularization in C0

ensures that this constant is exactly the regularized boundary value

(175) C0 = f0 .

The genus-one calculation can be carried out analogously, which nat-

urally leads to a close relation to the constant f0. For a function F τ (z)

satisfying the KZB equation

∂

∂z
F τ (z) =

∑
n≥0

g(n)(z, τ)x(n)F τ (z) ,(176)
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letting 0 < z � 1 leads to a similar situation as above: from the q-expansion
of the integration kernels g(n)(z, τ), we find that [BMMS15]
(177)

g(n)(z, τ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if n = 0 ,
1
z +O(z) if n = 1 ,

−2ζ2m − 2 (−2πi)2m

(2m−1)!

∑
k,l>0

l2m−1qkl +O(z2) if n = 2m > 0 ,

O(z) if n = 2m+1 > 1 .

Therefore, we can assemble the even generators x(2m) and the corresponding
order-zero prefactors into

(178) x(e)(τ) = x(0) − 2
∑
m>0

⎛
⎝ζ2m +

(−2πi)2m

(2m− 1)!

∑
k,l>0

l2m−1qkl

⎞
⎠x(2m)

in order to write the KZB eq. (176) as

(179)
d

dz
F τ (z) =

(
x(1)

z
+ x(e)(τ) +O(z)

)
F τ (z) .

This is a differential equation of the form (173) of the KZ equation in the
same regime. In other words, for small z, the operator

(180) ∇KZB
(
x(n)

)
=
∑
n≥0

g(n)(z)x(n)

on the right-hand side in the KZB equation (176) degenerates to the operator

(181) ∇KZ(e0, e1) =
e0
z

+
e1

z − 1

in the KZ equation (172) with e0 = x(1) and e1 = x(e):

(182) ∇KZB
(
x(n)

)
= ∇KZ

(
x(1), x(e)

)
+O(z) .

Thus, as before for F (x), the function F τ (z) can be approximated by

(183) F τ (z) = ezx
(e)(τ)zx

(1)

f τ
0 +O(z) ,

where f τ
0 is some constant. Note that a similar degeneration to the genus-

zero framework occurs for the generating series Lτ (z) of elliptic multiple
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polylogarithms defined in eq. (115): according to eq. (117), for e0 = x(1) the
series has at lowest order the same behavior as the generating series L(z) of
the multiple polylogarithms

(184) Lτ (z) = (−2πiz)x
(1)

(1 +O(z)) = (−2πi)x
(1)

L(z)|e0=x(1)(1 +O(z)) .

We can conclude that the regularized boundary value

(185) Cτ
0 = lim

z→0
z−x(1)

F τ (z) = f τ
0

is indeed independent of τ and, upon comparing eq. (174) with eq. (183), it
is proportional (up to a constant matrix) to the corresponding genus-zero
boundary value C0 = f0 for a function F (x) satisfying a KZ equation with
e0 = x(1)

(186) Cτ
0 = lim

z→0
z−x(1)

F τ (z) = f τ
0 ∝ f0 = C0 .

Note that in the case of matrix Lie algebras with e0 	= x(1), but they have
the same maximal eigenvalue, then the above argument modifies slightly but
still applies analogously such that the elements of Cτ

0 turn out to be some
linear combinations of the elements of C0, which is exactly the situation
observed in the recursion described in the previous section.

4. Examples

4.1. Example: two points

As a first example, let us calculate the two-point one-loop string correc-
tion up to order o1-loopmax = 2 in α′. While all essential steps are noted in
this subsection, several lengthy details are outsourced to appendix D. The
two-loop correction is non-trivial only, if the Mandelstam variables sij are
treated as independent parameters of the integrals, which do not satisfy any
constraints like momentum conservation. The two-point configuration-space
integral reads [MS20b]

(187) S1-loop
2-point(s̃13) =

∫ 1

0
dz3 exp

(
s̃13 Γ̃31

)
=
∑
n≥0

s̃n13 ω(1, . . . , 1︸ ︷︷ ︸
n

, 0) ,

where s̃13 is the Mandelstam variable associated to the loop momentum.
Since the integral requires two vertex insertion points, the appropriate genus-
one Selberg integral with an extra insertion point z2 is of length L = 3 and
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the insertion points are ordered as

(188) 0 = z1 < z3 < z2 < 1 = z1 mod Z

on the boundary of the annulus. Indeed, in the limit z2 → 1, the punctures
z2 and z1 merge, leaving the two punctures relevant for the one-loop string
corrections. Thus, we consider the iterated integrals

Sτ
[
n3

i3

]
(0, z2) =

∫ z2

0
dz3 S

τ g
(n3)
3i3

, 1 ≤ i3 < 3 ,

Sτ = exp
(
s13 Γ̃31+s12 Γ̃21+s23 Γ̃23

)
.(189)

According to eq. (163), the two-point one-loop correction can be found in
the weight w1 = 0 entry Cτ

1,w1
, while the tree-level correction resides at

weight w0 = 1 (cf. eq. (162)). The α′-expansion of the four-point tree-level
correction turns out to start at order otreemin = −1, (cf. eq. (197)). Therefore,
consulting eqs. (160) and (165), it is sufficient to consider the truncated
Selberg vector at maximal weight wmax = 2 to calculate the one-loop string
corrections up to second order in α′, i.e. we only need to consider the vector

(190) Sτ
≤2(z2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Sτ
[
0
1

]
(0, z2)

Sτ
[
1
1

]
(0, z2)

Sτ
[
2
1

]
(0, z2)

Sτ
[
2
2

]
(0, z2)

⎞
⎟⎟⎟⎟⎟⎟⎠

where we use the reduced set of integrals Bτ
2 obtained from the relations

Sτ
[
0
1

]
(0, z2) = Sτ

[
0
2

]
(0, z2) ,

s13 S
τ
[
1
1

]
(0, z2) = −s23 S

τ
[
1
2

]
(0, z2)(191)

to exclude the integrals Sτ
[
0
2

]
(0, z2) and Sτ

[
1
2

]
(0, z2) from our analysis.

Before we can explicitly check that the regularized boundary values in-
deed reproduce the tree-level and one-loop string corrections and apply the

associator eq. (170), we have to determine the matrices x
(0)
≤2, x

(1)
≤2 and x

(2)
≤2

appearing in the modified KZB equation satisfied by Sτ
≤2(z2). Following the

general algorithm in appendix C and performing the corresponding calcula-
tions shown in appendix D, the partial differential equation can indeed be
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written in the form (136):

(192)
∂

∂z2
Sτ
≤2(z2) =

(
g
(0)
21 x

(0)
≤2 + g

(1)
21 x

(1)
≤2 + g

(2)
21 x

(2)
≤2

)
Sτ
≤2(z2) + r2 S

τ
3(z2) ,

where Sτ
3(z2) =

(
Sτ
[
3
1

]
(0, z2), S

τ
[
3
2

]
(0, z2)

)T
and the matrices are given by

(193)

x
(0)
≤2 =

⎛
⎜⎜⎝
0 s13 0 0
0 0 −s23 −s23
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , x

(1)
≤2 =

⎛
⎜⎜⎝
s12 0 0 0
0 s123 0 0
0 0 s12 + s23 −s23
0 0 −s13 s12 + s13

⎞
⎟⎟⎠

and

x
(2)
≤2 =

⎛
⎜⎜⎝

0 0 0 0
−s23 0 0 0
0 s13 0 0
0 s13 0 0

⎞
⎟⎟⎠ , r2 =

⎛
⎜⎜⎝

0 0
0 0

−2s23 −s23
−s13 2s13

⎞
⎟⎟⎠ .(194)

Now, we can evaluate the relevant entries of the regularized boundary val-
ues Cτ

0,w0=1 and Cτ
1,w1=0 explicitly: the latter involves the weight w1 = 0

eigenvalue x
(1)
0 = s12 of x

(1)
≤2 in the regularization factor (−2πi(1− z2))

−x
(1)
≤2 ,

which leads to the boundary value

(195) Cτ
1,0 = lim

z2→1
(−2πi(1− z2))

−s12 Sτ
[
0
1

]
(0, z2) = S1-loop

2-point(s̃13) ,

given by the one-loop string correction S1-loop
2-point(s̃13) with effective Mandel-

stam variable

(196) s̃13 = s13 + s23 ,

which is in agreement with our general considerations in eq. (145). On the

other hand, the relevant eigenvalue of x
(1)
≤2 for the boundary value Cτ

0,1 is

x
(1)
1 = s123, such that

Cτ
0,1 = lim

z2→0
(−2πiz2)

−s123 Sτ
[
1
1

]
(0, z2) =

1

s13

Γ(1 + s13)Γ(1 + s23)

Γ(1 + s13 + s23)
(197)

yields indeed the well-known Veneziano amplitude for the four-point am-
plitude of open strings at tree-level. Since each Mandelstam variable comes
with a factor of α′, we find the leading order to be otreemin = −1.
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Since according to eq. (160), the maximal order in α′ or, equivalently,
the maximal word length in the KZB associator is lmax = 3, the truncated

associator eq. (168) reads

(198)

⎛
⎜⎜⎝
S1-loop
2-point(s̃13)

∗
∗
∗

⎞
⎟⎟⎠+O

(
(α′)3

)
= Φτ

3(x
(n)
≤2 )

⎛
⎜⎜⎜⎝

0
1
s13

Γ(1+s13)Γ(1+s23)
Γ(1+s13+s23)

0
0

⎞
⎟⎟⎟⎠ .

From the matrices given in eqs. (193) and (194) and the truncation Φτ
3 of the

associator Φτ given by the generating series of eMZVs in eq. (120), we find

that the only words contributing to the relevant (w1, w0) = (0, 1)-submatrix

Φτ
3(x

(n)
≤2 )0,1 are at

• word length 1: x
(0)
≤2

• word length 2: the commutator

[x
(1)
≤2, x

(0)
≤2] =

⎛
⎜⎜⎝
0 −s13(s13 + s23) 0 0
0 0 −2s13s23 −2s223
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

• word length 3: the nested commutator

[x
(1)
≤2, [x

(1)
≤2, x

(0)
≤2]] =

⎛
⎜⎜⎝
0 s13(s13+s23)

2 0 0
0 0 −2s13s23(s13+s23) 2s

2
23(s13+s23)

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

and the products

x
(0)
≤2x

(0)
≤2x

(2)
≤2 =

⎛
⎜⎜⎝
0 −2s213s23 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

x
(0)
≤2x

(2)
≤2x

(0)
≤2 =

⎛
⎜⎜⎝
0 −s213s23 0 0
0 0 2s13s

2
23 2s13s

2
23

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .
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The above list of contributions can be easily obtained from our general
analysis in eqs. (165) and (166).

Evaluating all matrix products, the relevant (w1, w0)-submatrix of the
truncated KZB associator is explicitly given by the entry

Φτ
3

(
x
(n)
≤2

)
0,1

= s13
(
ω(0) + (s13 + s23)ω(1, 0) + (s13 + s23)

2ω(1, 1, 0)

− s13s23(ω(0, 2, 0) + 2ω(2, 0, 0))
)
.(199)

The α′-expansion of the Veneziano amplitude can be obtained from the
identity

Γ(1 + s13)Γ(1 + s23)

Γ(1 + s13 + s23)
= exp

⎛
⎝∑

n≥2

(−1)n
ζn
n
(sn13 + sn23 − (s13 + s23)

n)

⎞
⎠

= 1− ζ2s13s23 +O
(
(α′)3

)
.(200)

Using these two α′-expansions, the right-hand side of the relevant part of
the truncated associator eq. (198) is given by

S1-loop
2-point(s̃13) +O

(
(α′)3

)
= Φτ

3

(
x
(n)
≤2

)
0,1

1

s13

Γ(1 + s13)Γ(1 + s23)

Γ(1 + s13 + s23)

= 1 + (s13 + s23)ω(1, 0) + (s13 + s23)
2ω(1, 1, 0) +O

(
(α′)3

)
,

(201)

where we have used the identity ω(0, 2, 0) = −ζ2 − 2ω(2, 0, 0) for the regu-
larized eMZVs [BMS]. This reproduces indeed the two-point one-loop string

correction S1-loop
2-point(s̃13) given in eq. (187) with the effective Mandelstam vari-

able s̃13 = s13+ s23 up to second order in α′. Simultaneously, this result ap-
proves the validity of the (relevant part) of the truncated associator eq. (201).

We have performed the calculation up to order o1-loopmax = 4 in α′. In order
to compare our result with the literature, in particular with ref. [MS20b],
we translate our result into iterated integrals of Eisenstein series11 γ0 and
use the one-loop open Green’s function

(202) Gij = Γ̃( 10 ; |zij |, τ) + ω(0, 1)

11The conversion from the ω-form of eMZVs to their representation in terms of
iterated integrals of Eisenstein series γ0 is thoroughly explained in ref. [BMS16].
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in the definition (103) of the Selberg seed Sτ and in the one-loop string

corrections S1-loop
N-point(s̃ij) rather than just Γ̃ij . The additional term ω(0, 1)

vanishes in the sum
∑

i<j sij

(
Γ̃( 10 ; |zij |, τ) + ω(0, 1)

)
if momentum conser-

vation is imposed and is, thus, physically irrelevant. Using these two adjust-

ments, we find that the relevant part of the right-hand side of the associator

eq. (198) up to order (α′)4 is given by

S1-loop
2-point(s̃13)

∣∣∣
Gij

= 1 + s̃213

(
1

4
ζ2 − 3γ0(4, 0)

)

+ s̃313

(
10γ0(6, 0, 0)− 24ζ2γ0(4, 0, 0)− 1

4
ζ3

)
+ s̃413

(
9γ0(4, 0, 4, 0)− 18γ(4, 4, 0, 0)− 126γ0(8, 0, 0, 0)

− 3

4
ζ2γ0(4, 0)− 144ζ4γ0(4, 0, 0, 0)

+ 240ζ2γ0(6, 0, 0, 0) +
19

64
ζ4

)
+O

(
(α′)5

)
.(203)

Note that eqs. (201) and (203) show nicely on a simple example, how using

the associator eq. (159) relating the (L+1)-point tree-level to (L−1)-point

one-loop string corrections may geometrically be interpreted in terms of a

gluing mechanism of worldsheets as discussed at the end of subsection 3.5:

starting with the four-point Veneziano amplitude, gluing together the exter-

nal legs of the string worldsheet which correspond to the two external states

labelled by the positions x1 = 0 and x4 = ∞ on the Riemann sphere yields a

two-point genus-one worldsheet with punctures z1 = z2 mod Z and z3. The

effective momentum propagating between z1 = z2 mod Z and z3 yields the

Mandelstam variable s̃13 = s13 + s23 of the two-point one-loop interaction.

4.2. Example: three points

The calculation for three points proceeds in analogy to the two-point exam-

ple without structural difficulties and complications. Naturally, the dimen-

sionality of the relevant matrices and vectors is larger, such that we do not

write them down explicitly but rather provide the results of the computa-

tion.

The recursive algorithm requires one extra point on top of the three

insertion points present in three-point one-loop string correction integrals.

Correspondingly, we are going to consider the class of genus-one Selberg



132 Johannes Broedel and Andre Kaderli

integrals with L = 4. The relevant integral is of the form

(204) S1-loop
3-point(s̃ij) =

∫ 1

0
dz3

∫ z3

0
dz4 exp

(
s̃13 Γ̃31+s̃14 Γ̃41+s̃34 Γ̃34

)
.

The above integral resides in the weight w1 = 0 subvector of Cτ
1 . We are

going to perform the calculation up to order o1-loopmax = 3 in α′. Since the

corresponding five-point tree-level integrals start at order otreemin = −2 and

appear at weight w0 = 2 in Cτ
0 , the required maximal weight for the trunca-

tion of the genus-one Selberg vector is wmax = 3 according to eq. (165). The

relevant finite-dimensional matrices x
(n)
≤3 for n = 0, 1, 2, 3 are obtained from

the algorithm in appendix C, which leads to the modified KZB equation

∂

∂z2
Sτ
≤3(z2) =

4∑
n=0

g
(n)
21 x

(n)
≤3 S

τ
≤3(z2) + r3 S

τ
4(z2) .(205)

Regularized boundary values can be calculated from the x
(1)
w0=2 and x

(1)
w1=0

submatrices of x
(1)
≤3, which results in the expected subvectors

(206) Cτ
0,2 = lim

z2→0
(−2πiz2)

−x(1)
2 Sτ

2(z2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

S[1, 1](0, 1, x2 = 1)
...

S[2, 3](0, 1, x2 = 1)
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

containing the five-point, genus-zero Selberg integrals for z2 → 0 at weight

w0 = 2 and the three-point one-loop string correction for z2 → 1 at weight

w1 = 0:

(207) Cτ
1,0 = lim

z2→1
(−2πi(1− z2))

−x
(1)
0 Sτ

0(z2) =
(
S1-loop
3-point(s̃ij)

)
with the effective Mandelstam variables

(208) s̃1j = s1j + s2j , s̃ij = sij
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for i, j ∈ {3, 4}. The truncation of the KZB associator at lmax = 5 (cf.
eq. (160)), is required in order to use the finite associator eq. (170)

(209) Cτ
1,0+O

(
(α′)4

)
= Φτ

5

(
x
(n)
≤3

)
0,2

Cτ
0,2 .

The words contributing to the weight-(0, 2) submatrix Φτ
5(x

(n)
≤3 )0,2 of this

truncation are determined with the mechanism described in subsection 3.6.
The resulting α′-expansion of the right-hand side of eq. (209) up to order

o1-loopmax = 3 reads in terms of iterated integrals of Eisenstein series and the
redefinition Γ̃ij �→ Γ̃( 10 ; |zij |, τ)+ω(0, 1) = Gij in the Selberg seed as follows:

S1-loop
3-point(s̃ij)

∣∣∣
Gij

=
1

2
+

1

8

(
s̃213 + s̃214 + s̃234

) (
ζ2 − 12γ0(4, 0)

)
+

1

8

(
− s̃13s̃34s̃14

(− 240γ0(6, 0, 0) + 144ζ2γ0(4, 0, 0) + ζ3
)

− (
s̃313 + s̃314 + s̃334

)
(−40γ0(6, 0, 0) + 96ζ2γ0(4, 0, 0) + ζ3)

)
+O

(
(α′)4

)
,(210)

which agrees with the known α′-expansion of the three-point string correc-
tion.

4.3. Example: four points

If momentum conservation is imposed at the one-loop level, the first non-
trivial example is the four-point one-loop string correction. It is given by
the integral [GSB82]

S1-loop
4-point(s̃ij) =

∫ 1

0
dz3

∫ z3

0
dz4

∫ z4

0
dz5

∏
0≤zi<zj≤z3

exp
(
s̃ij Γ̃ji

)
,(211)

where i, j ∈ {1, 3, 4, 5}. The calculation of the α′-expansion is exactly the
same as for the previous integrals: the one-loop integral is found in the weight
w1 = 0 subvector of Cτ

1 and the six-point tree-level integrals at the weight
w0 = 3 with otreemin = −3. Hence, in order to obtain the expansion up to

order o1-loopmax = 2, the KZB associator can be truncated at the maximal word
length lmax = 5 and eq. (165) requires the maximal weight wmax = w0 = 3.
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The matrices x
(n)
≤3 for n = 0, 1, 2, 3 are obtained by forming the modified

KZB eq. (136)

∂

∂z2
Sτ
≤3(z2) =

4∑
n=0

g
(n)
21 x

(n)
≤3 S

τ
≤3(z2) + r3 S

τ
4(z2) .(212)

As before, the subvectors of the regularized boundary values which contain
the six-point, three-level Selberg integrals for z2 → 0 at weight w0 = 3 and
the four-point one-loop string correction for z2 → 1 at weight w1 = 0 can

be calculated using the appropriate submatrices of x
(1)
≤3 and read

(213) Cτ
0,3 = lim

z2→0
(−2πiz2)

−x
(1)
3 Sτ

3(z2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

S[1, 1, 1](0, 1, x2 = 1)
...

S[2, 3, 4](0, 1, x2 = 1)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

(214) Cτ
1,0 = lim

z2→1
(−2πi(1− z2))

−x(1)
0 Sτ

0(z2) =
(
S1-loop
4-point(s̃ij)

)
,

respectively, with the effective Mandelstam variables

(215) s̃1j = s1j + s2j , s̃ij = sij

for i, j ∈ {3, 4, 5}. The truncated elliptic KZB associator at the maximal
length lmax = 5, with the contributing words calculated as usually, leads to
the finite associator eq. (170)

(216) Cτ
1,0+O

(
(α′)3

)
= Φτ

5

(
x
(n)
≤3

)
0,3

Cτ
0,3 .

Expressed in terms of iterated integrals of Eisenstein series and using the
redefinition Γ̃ij �→ Γ̃( 10 ; |zij |, τ) + ω(0, 1) = Gij

S1-loop
4-point(s̃ij)

∣∣∣
Gij

=
1

6
− ζ(3)

4π2
(s̃1,2 − 2s̃1,3 + s̃1,4 + s̃2,3 − 2s̃2,4 + s̃3,4)
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− 6γ0(4, 0, 0) (s̃1,2 − 2s̃1,3 + s̃1,4 + s̃2,3 − 2s̃2,4 + s̃3,4)

+O
(
(α′)2

)
,(217)

which agrees up to order (α′)2 with the α′-expansion of the four-point
configuration-space integral.

5. Summary and outlook

In this article, we have generalized the recursive formalism for the evaluation
of genus-zero Selberg integrals by Aomoto and Terasoma to genus one. After
establishing and discussing the genus-one formalism, we have put it to work
to evaluate several one-loop open-string scattering amplitudes.

The original construction at genus zero is based on relating two bound-
ary values of a Knizhnik–Zamolodchikov equation by the Drinfeld associator.
The boundary values arise as two different limits of Selberg integrals and
can be shown to contain integrals constituting the N -point and (N−1)-point
open-string tree-level amplitudes respectively. Accordingly, the method al-
lows to determine all tree-level string corrections at arbitrary order in α′

recursively using a suitable representation of the Drinfeld associator.
Our genus-one formalism is based on canonical generalizations of the

above construction: at the heart there is now the elliptic Knizhnik–Za-
molodchikov–Bernard equation, whose boundary values are related by the
genus-one analogue of the Drinfeld associator, the elliptic KZB associator.
The boundary values arise as limits of genus-one Selberg integrals and can
be shown to contain the one-loop N -point and the tree-level (N+2)-point
open-string configuration-space integrals. Thus all one-loop open-string cor-
rections can be calculated using the elliptic associator equation (159) to any
desired order in α′. Our results obtained match the known expressions at
multiplicity two, three and four.

The original recursion at genus zero as well as our recursion at genus
one have clear geometrical interpretations in terms of degenerations of the
worldsheets: the extra marked point serves as variable in the KZ and KZB
equations and thereby simultaneously parametrizes the degeneration of the
worldsheets in the limits, which in turn define the boundary values. The
class of iterated integrals leading to the Selberg integrals as well as the
respective integration domains are very naturally defined in terms of the de
Rham cohomology of the configuration spaces in question: at genus zero,
the twisted forms appearing in the Selberg integrals give rise to a basis of
the twisted de Rham cohomology of the configuration space of punctured
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Riemann spheres with fixed points on the real line. Similarly, the forms in the
genus-one Selberg integrals form a closed system with respect to integration
by parts, the Fay identity and taking derivatives.

The following points deserve further investigation:

• Very likely, recursions with an extra marked point can not only be
constructed for corrections to open-string amplitudes as done in this
article. Rather, it seems the formalism is extendable to a wide range
of string- and quantum field theories. An application or translation to
the calculation of scattering amplitudes in N = 4 super-Yang–Mills
theory in the multi-Regge limit might be a first testing ground: several
recursive structures as well as numerous formal similarities are already
visible in refs. [DDDD+16, DDDD+20]. Another environment for am-
plitude recurrences, similar to our current construction, is discussed
and applied in refs. [PS16b, PS16a]. It would be very interesting to
understand the relation between the two approaches.

• Considering the step from genus zero to genus one, all generalizations
have been completely canonical. We do not see any structural obstruc-
tions for establishing a similar recursion for higher genera. Given the
algebraic complexity of the genus-one construction already, combina-
torics will not only cause large matrix sizes, but also originate from
considering three geometric parameters in the period matrix at genus
two.

• Our construction makes use of several genus-zero tools developed in the
context of [Miz19], the most prominent example being the matching
of dimensions of the respective matrices, which correspond to a basis
of Selberg vectors w.r.t. partial fraction and integration by parts: the
respective dimensions are exactly as predicted by twisted de Rham
theory.

• A substantial part in establishing our genus-one recursion was devoted
to finding a useful and feasible way to single out a basis for Selberg
vectors. For higher orders in α′ as well as for higher multiplicity, a
formulation of genus-one Selberg integrals in terms of weighted graphs
and Fay identities using weighted adjacency matrices analogous to the
genus-zero description in [Kad20] might be the correct computational
framework.

• Most importantly, a formalism for calculating one-loop open-string
scattering amplitudes from a differential equation has been put forward
in refs. [MS20a, MS20b]. The constructions are formally rather similar:
both rely on an elliptic KZB equation. While we are using an extra in-
sertion point as differentiation variable, Mafra and Schlotterer employ
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the modular parameter τ for this purpose. Our formulation employs

iterated integrals for the insertion points and the ω-representations of

eMZVs, while in refs. [MS20a, MS20b] iterated τ -integrals, Eisenstein

series and the γ0-representation of eMZVs is employed. There is little

doubt that the formalisms can be shown to finally be equivalent: at an

algebraic level, several steps have been undertaken in ref. [BKS20].

• Our genus-one recursion is tailored to the calculation of planar open-

string corrections, where vertex insertions are allowed on only one of

the boundaries of the annulus. An extension to non-planar open-string

amplitudes is expected to be straightforward: in particular one ought

to use doubly-periodic integration kernels instead of the functions g(n).

A construction for non-planar one-loop string corrections already ex-

ists in refs. [MS20a, MS20b].

Appendix A. Generating function for polylogarithms and
the Drinfeld associator

Let us introduce the general strategy to relate two regularized boundary

values of a KZ equation such as (46) by considering a representation of some

Lie algebra generators e0 and e1, as well as a function F(x) with x ∈ (0, 1)

and values in the vector space the representations e0 and e1 act upon and

which satisfies the KZ equation

(218)
d

dx
F(x) =

(
e0
x

+
e1

x− 1

)
F(x) .

Given this situation, one is often interested in calculating the limit of F(x)

for x → 1 while knowing the boundary value as x → 0. As will be re-

viewed in this section, there is an operator, the Drinfeld associator Φ(e0, e1)

[Dri89, Dri91], which parallel transports the (regularized) boundary value

of F(x) at x → 0 to its (regularized) value at x → 1. It turns out that the

Drinfeld associator is the generating series of the regularized MZVs, which

was originally shown in ref. [LM96] and which is reviewed in this paragraph

following the lines of ref. [Bro13].

In order to construct the Drinfeld associator, we first investigate the

following generating function of multiple polylogarithms

L(x) =
∑

w∈{e0,e1}×

wGw(x) .(219)
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The iterative definition (20) and the corresponding regularization prescrip-
tion of the multiple polylogarithms implies that the series L(x) satisfies the
KZ equation

d

dx
L(x) =

(
e0
x

+
e1

x− 1

)
L(x) ,(220)

with the asymptotic behavior as x → 0

(221) L(x) ∼ xe0 .

By the symmetry x �→ 1 − x of the KZ equation, there is another solution
L1 of (220) with the asymptotic behavior

(222) L1(x) ∼ (1− x)e1

as x → 1. Now, let F(x) be an arbitrary solution of the KZ equation (220).
For this solution, regularized boundary values are defined via

C0 = lim
x→0

x−e0 F(x) , C1 = lim
x→1

(1− x)−e1 F(x) .(223)

For two functions F0(x) and F1(x) satisfying the KZ equation (218) the
product (F1)

−1 F0 is independent of x, and by the asymptotics (221), (222)
of L(x) and L1(x), respectively, the calculation

(224) (L1(x))
−1 L(x)C0 = lim

x→0
(L1(x))

−1 F(x) = lim
x→1

(L1(x))
−1 F(x) = C1

shows that the product

Φ(e0, e1) = (L1(x))
−1 L(x)(225)

maps the regularized boundary value C0 to the regularized boundary value
C1

C1 = Φ(e0, e1)C0 .(226)

The operator Φ(e0, e1) is the Drinfeld associator which is defined in terms of
the generating series of multiple polylogarithms L(x) and the corresponding
solution L1(x). In order to write it as a generating series of MZVs, its defini-
tion (225) can be evaluated in the limit x → 1, since Φ(e0, e1) is independent
of x: it is a product of a function satisfying the KZ equation and an inverse
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of such a function. This leads to the relation of the Drinfeld associator to

the MZVs discovered in ref. [LM96],

Φ(e0, e1) = lim
x→1

(1− x)−e1 L(x)

=
∑

w∈{e0,e1}×

wζw

= 1− ζ2[e0, e1]− ζ3[e0 + e1, [e0, e1]]

+ ζ4([e1, [e1, [e1, e0]]] +
1
4 [e1, [e0, [e1, e0]]]

− [e0, [e0, [e0, e1]]] +
5
4 [e0, e1]

2) + . . . ,(227)

i.e. the Drinfeld associator is a generating series for the (regularized) MZVs

ζw defined in and below eq. (23). The limit x → 1 is chosen to correspond

to taking the tangential base point in negative direction at 1, such that the

contributions from (1 − x)−e1 lead to the discussed regularization ζe1 = 0

of the divergent terms in L(x) by cancelling the positive integer powers of

log(1− x) in the divergent multiple polylogarithms Gw(x).

Appendix B. Regularization of elliptic multiple zeta values

In this section, we give a brief description how eMZVs may be regularized

analogously to the regularization of the (genus-zero) MZVs.

The reversal of the ordering in the definition (94) and the regularization

of the iterated integrals Γ̃ implies that only the eMZVs

(228) ω(nk, . . . , n1; τ) = ω(wt; τ) = lim
z→1

Γ̃w(z, τ) = lim
z→1

Γ̃( n1 ... nk

0 ... 0 ; z, τ) ,

labelled by the word w = x(n1) . . . x(nk) ∈ X with n1 = 1 inherit the end

point divergence at the upper integration boundary due to the 1/(z−1)

asymptotics of g(1)(z, τ) in the limit z → 1. For example the definition (85)

and the asymptotic behavior (89) imply that if we would allow for n1 = 1

in the definition of the eMZVs, then

ω(1; τ) = lim
z→1

Γ̃( 10 ; z, τ) = lim
z→1

log(−2πi(1− z))(229)

ω(1, . . . , 1︸ ︷︷ ︸
n

; τ) =
1

n!
ω(1; τ)n(230)
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are divergent and the q-expansion of g(1) implies

ω(0, 1; τ) = lim
z→1

Γ̃( 1 0
0 0 ; z, τ)(231)

= lim
z→1

∫ z

0
dz′ g(1)(z′, τ)z′

= lim
z→1

log(−2πi(1− z))− iπ

2
− 2

∑
k,l>0

qkl

k
,(232)

such that

ω(1, 0; τ) = lim
z→1

Γ̃( 0 1
0 0 ; z, τ)

= lim
z→1

(
Γ̃( 00 ; z, τ) Γ̃(

1
0 ; z, τ)− Γ̃( 1 0

0 0 ; z, τ)
)

= ω(1; τ)− ω(0, 1; τ)

=
iπ

2
+ 2

∑
k,l>0

qkl

k
(233)

is free of any logarithmic divergence. Using the shuffle algebra, any (diver-

gent) elliptic multiple zeta value can be expanded in powers of ω(1; τ), such

that the regularized eMZVs ωreg can be defined as being the convergent co-

efficient (of 1) in this expansion. For example from above, we find at depth

one

ωreg(1; τ) = 0 ,(234)

at depth two

(235) ω(0, 1; τ) = −ω(1, 0; τ) + ω(0)ω(1; τ)

such that

(236) ωreg(0, 1; τ) = −ω(1, 0; τ) = −ωreg(1, 0; τ)

and further examples of divergent eMZVs are at depth three and weight one

ω(0, 0, 1; τ) = −ω(0, 1, 0; τ)− ω(1, 0, 0; τ) + ω(0, 0; τ)ω(1; τ)

= −ω(1, 0, 0; τ) + ω(0, 0; τ)ω(1; τ)(237)
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and at weight 2

ω(1, 0, 1; τ) = −2ω(1, 1, 0; τ) + ω(1, 0; τ)ω(1; τ) ,(238)

as well as

ω(0, 1, 1; τ) = −ω(1, 1, 0; τ)− ω(1, 0, 1; τ) + ω(0; τ)ω(1, 1; τ)

= ω(1, 1, 0; τ)− ω(1, 0; τ)ω(1; τ) + ω(0; τ)ω(1, 1; τ) ,(239)

such that

ωreg(0, 0, 1; τ) = −ωreg(1, 0, 0; τ) ,

ωreg(1, 0, 1; τ) = −2ωreg(1, 1, 0; τ) ,

ωreg(0, 1, 1; τ) = ωreg(1, 1, 0; τ) .(240)

As for the regularized elliptic multiple polylogarithms, we generally omit the

subscript in ωreg and always refer to the regularized versions when we write

an elliptic multiple zeta value ω.

Appendix C. Proof of theorem 2

Proof. It is to be shown, that the z2-derivative of a genus-one (k=2)-Selberg

integral (cf. eq. (111)) is expressible as linear combination of admissible

Selberg integrals with coefficients composed from g
(n)
21 and Z-linear com-

binations of Mandelstam variables in order to recover the (matrix) KZB

equation (128) for the Selberg vector Sτ (z2).

In order to prove the statement, we provide a constructive algorithm in-

volving two steps: the first one is based on integration by parts such that any

partial derivative in the integrand of ∂
∂z2

Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2) only acts on the

Selberg seed Sτ =
∏

0≤zi<zj≤z2
exp

(
sij Γ̃ji

)
. The second step is an iterative

application of the Fay identity to recover admissible products
∏L

k=3 g
(nk)
k,ik

in

the integrand, such that the integral can be written as a linear combination

of genus-one Selberg integrals.

Step 1: In order to conveniently describe the evaluation of

∂

∂z2
Sτ
[
n3, ..., nN

i3, ..., iN

]
(0, z2)
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let us start with a couple of definitions, which are reminiscent to the graph-
ical notation in ref. [Kad20]. A product of the form

(241)

r−1∏
i=1

g
(nki+1

)

ki+1,ki
, where ki+1 > ki ,

is called a g-chain from k1 to kr with weights (nk2
, nk3

, . . . , nkr
). Further-

more, a g-chain with a branch at kj is a product of the form

(242)

( j−1∏
i=1

g
(nki+1

)

ki+1,ki

)
g
(nl1 )
l1,kj

s−1∏
i=1

g
(nli+1

)

li+1,li
g
(nm1 )
m1,kj

t−1∏
i=1

g
(nmi+1

)
mi+1,mi ,

with the g-subchains from k1 to kj , from kj to ls and from kj to mt. If

there exists a g-chain in the product
∏L

k=3 g
(nk)
k,ik

from k1 to ks, ks is said
to be g-chain connected to k1. In order to formulate the first step in the
algorithm, we define for 1 ≤ k ≤ L the set of all the integers which are
g-chain connected to k

(243) U�n,�i
k = {k ≤ k′ ≤ L|k′ is g-chain connected to k in

L∏
k=3

g
(nk)
k,ik

} ,

which, as indicated by the superscripts 
n = (n3, . . . , nL) and
i = (i3, . . . , iL),

depends on the product
∏L

k=3 g
(nk)
k,ik

and is the genus-one analogue of the set
defined in eq. (40). Similarly, we define the set of all the integers to which k
is g-connected

(244) D�n,�i
k = {3 ≤ k′ ≤ k|k is g-chain connected to k′ in

L∏
k=3

g
(nk)
k,ik

} .

Thus, the set U�n,�i
k goes up the g-chain with possible branches beginning at

k and the set D�n,�i
k goes down the g-chain beginning at k.

Using the above notions, the derivative of Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2) with re-

spect to z2 can be expressed as

∂

∂z2
Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2) =

∫
C(z2)

L∏
i=3

dzi

⎛
⎜⎝ ∑

l∈U�n,�i
2

∂

∂zl
Sτ

⎞
⎟⎠ L∏

l=3

g
(nk)
k,ik
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=

∫
C(z2)

L∏
i=3

dzi S
τ

⎛
⎜⎝ ∑

l∈U�n,�i
2

∑
j∈U�n,�i

1

sljg
(1)
lj

⎞
⎟⎠ L∏

k=3

g
(nk)
k,ik

,(245)

where in the first line the derivative has been rewritten to act on the Sel-

berg seed only and in the second line those derivatives have been performed

explicitly using (110).

The validity of the manipulations can be seen as follows: the admissibility

condition 1 ≤ ik < k implies that the product of differential forms in the

integrand of the Selberg integral is a product of g-chains starting at 1 and

g-chains starting at 2

L∏
k=3

g
(nk)
k,ik

=
∏

k∈U�n,�i
1 ,k≥3

g
(nk)
k,ik

∏
k∈U�n,�i

2 ,k≥3

g
(nk)
k,ik

.(246)

The z2-derivative of the integrand of Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2) acts on Sτ and the

g-chains starting at 2 only:

∂

∂z2

(
Sτ

L∏
k=3

g
(nk)
k,ik

)

=

(
∂

∂z2
Sτ
) L∏

k=3

g
(nk)
k,ik

+ Sτ
∏

k∈U�n,�i
1 ,k≥3

g
(nk)
k,ik

⎛
⎜⎝ ∂

∂z2

∏
k∈U�n,�i

2 ,k≥3

g
(nk)
k,ik

⎞
⎟⎠ .(247)

Moreover, the first product in the last term of the above equation can be

split into a product of all the (disjoint) g-chains (possibly with branches)

starting at 2 and ending at some k ∈ U�n,�i
2 (or several such terminal val-

ues in case of branches). If we consider one such g-chain without a branch

gnk

k,kr

∏r−1
i=1 g

(nki+1
)

ki+1,ki
g
nk1

k1,2
for k > ki+1 > ki > 2, the partial derivative with

respect to z2 acts as follows

Sτ

(
∂

∂z2
gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki
g
nk1

k1,2

)

= Sτ gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki

∂

∂z2
g
nk1

k1,2
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= Sτ gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki

(
− ∂

∂zk1

g
nk1

k1,2

)

=

(
∂

∂zk1

Sτ
)
gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki
g
nk1

k1,2
+ Sτ gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki

( ∂

∂zk1

g
nk2

k2,k1

)
gnk

k1,2

=

(
∂

∂zk1

Sτ
)
gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki
g
nk1

k1,2
+ Sτ gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki

(
− ∂

∂zk2

g
nk2

k2,k1

)
gnk

k1,2

(248)

where we have used integration by parts for the second-to-last equation

and omitted the boundary terms, since they vanish in the iterated integral

Sτ
[
n3, ..., nL

i3, ..., iL

]
(0, z2). The above manipulation can iteratively be repeated un-

til any partial derivative only acts on the factor Sτ , such that due to the

product rule of the derivative we obtain

Sτ

(
∂

∂z2
gnk

k,kr

r−1∏
i=1

g
(nki+1

)

ki+1,ki
g
nk1

k1,2

)
=

((
r∑

i=1

∂

∂zki

+
∂

∂zk

)
Sτ

)
r−1∏
i=1

g
(nki+1

)

ki+1,ki
g
nk1

k1,2
.

(249)

The product rule ensures that the same holds for the g-chains with branches

as well. Therefore, we can continue with the calculation (247) and use the

above procedure such that all the partial derivatives only act on the Selberg

seed. The calculation is the following

∂

∂z2

(
Sτ

L∏
k=3

g
(nk)
k,ik

)

=

(
∂

∂z2
Sτ
) L∏

k=3

g
(nk)
k,ik

+ Sτ
∏

k∈U�n,�i
1 ,k≥3

g
(nk)
k,ik

⎛
⎜⎝ ∂

∂z2

∏
k∈U�n,�i

2 ,k≥3

g
(nk)
k,ik

⎞
⎟⎠

=

(
∂

∂z2
Sτ
) L∏

k=3

g
(nk)
k,ik

+

⎛
⎜⎝ ∑

l∈U�n,�i
2 ,l≥3

∂

∂zl
Sτ

⎞
⎟⎠ ∏

k∈U�n,�i
1 ,k≥3

g
(nk)
k,ik

∏
k∈U�n,�i

2 ,k≥3

g
(nk)
k,ik

=

⎛
⎜⎝ ∑

l∈U�n,�i
2

∂

∂zl
Sτ

⎞
⎟⎠ L∏

k=3

g
(nk)
k,ik
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= Sτ

⎛
⎜⎝ ∑

l∈U�n,�i
2

L∑
j=1,j �=l

sljg
(1)
lj

⎞
⎟⎠ L∏

k=3

g
(nk)
k,ik

= Sτ

⎛
⎜⎝ ∑

l∈U�n,�i
2

⎛
⎜⎝ ∑

j∈U�n,�i
2 \{l}

sljg
(1)
lj +

∑
j∈U�n,�i

1

sljg
(1)
lj

⎞
⎟⎠
⎞
⎟⎠ L∏

k=3

g
(nk)
k,ik

= Sτ

⎛
⎜⎝ ∑

l∈U�n,�i
2

∑
j∈U�n,�i

1

sljg
(1)
lj

⎞
⎟⎠ L∏

k=3

g
(nk)
k,ik

,

(250)

where we have used the antisymmetry g
(1)
lj = −g

(1)
jl for the last equality. This

completes the proof of eq. (245).

Step 2: The integrals in eq. (245) do not yet have the desired form, i.e.

a factor of g
(n)
21 times a product of the form g

(nk)
k,ik

with 1 ≤ ik < k for

all k ∈ {3, . . . , L}. This form can be obtained in a second step using the

Fay identity (108). Due to the decomposition in eq. (246), any term in

eq. (245) can be split into a product of a g-chain from 1 to j labeled by

D�n,�i
j = {j1 < j2 < · · · < js < j} and a g-chain from 2 to l labeled by

D�n,�i
l = {l1 < l2 < · · · < lr < l} and the remaining factors:

sljg
(1)
lj

L∏
k=3

g
(nk)
k,ik

= skjg
(1)
kj g

(nj)
j,js

s−1∏
i=1

g
(nji+1

)

ji+1ji
g
(nj1 )
j1,1

g
(nl)
l,lr

r−1∏
i=1

g
(nli+1

)

li+1li
g
(nl1 )
l1,2

L∏
k=3,k �∈D�n,�i

l ∪D�n,�i
j

g
(nk)
k,ik

.

(251)

The factor g
(1)
lj connects the two g-chains starting at 1 and 2, such that

applying the Fay identity iteratively, the product

g
(1)
lj g

(nj)
j,js

s−1∏
i=1

g
(nji+1

)

ji+1ji
g
(nj1 )
j1,1

g
(nl)
l,lr

r−1∏
i=1

g
(nli+1

)

li+1li
g
(nl1 )
l1,2

(252)
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can be written as a factor g
(n)
21 times a linear combination of admissible

factors. The complete procedure is the following:

• First, assume (without loss of generality, rename the labels otherwise)
that l < j, such that the subscript j in gnl

lj can be lowered to js using
the Fay identity as follows:

gnl

lj g
nj

j,js
= (−1)nlgnl

jl g
nj

j,js
= (−1)nlgl,j1

(
gj,js
gjl

)
nl,nj

,(253)

where the product on the right-hand side is defined to be the sum
obtained by the Fay identity (108). It is a Z-linear combination of

g
(nl+nj−i)
l,js

g
(i)
j,js

and g
(nl+nj−i)
l,js

g
(i)
jl for 0 ≤ i ≤ nk + nj with integer

coefficients. Importantly, it is a linear combination of admissible factors

and the index j in g
(nl)
lj has been lowered to js.

• If l < js, we repeat this step with the products g
(nl+nj−i)
l,js

g
(njs )
js,js−1

. Sim-

ilarly for lower indices jt, unless we arrive at g
(nj1)
j1,1

, where another
application of the Fay identity leaves us with a linear combination of

g
(n)
l,1 and admissible factors times the product g

(nl)
l,lr

∏r−1
i=1 g

(nli+1
)

li+1,li
g
(nl1 )
l1,2

.

The same procedure can be applied to g
(n)
l,1 g

(nl)
l,lr

∏r−1
i=1 g

(nli+1
)

li+1,li
g
(nl1 )
l1,2

such
that we are left with a linear combination of admissible factors times a
factor g

(n)
21 and some integer coefficients. However, if we arrive at some

jt such that l > jt, we have to apply the Fay identity earlier to the

product g
(nl)
l,lr

∏r−1
i=1 g

(nli+1
)

li+1,li
g
(nl1)
l1,2

in order to recover admissible factors.
• Thus, if we arrive at some jt with l > jt, we apply the above procedure

to the product g
(nl)
l,lr

∏r−1
i=1 g

(nli+1
)

li+1,li
g
(nl1 )
l1,2

beginning with the factor

(254) g
(n)
l,jt

g
(nl)
l,lr

= gjt,lr

(
gl,lr
gl,jt

)
n,nl

.

As above, this process can be applied to lower li unless we arrive either

at g
(nl1)
l1,2

or at li < jt. In the latter case, we again proceed with the
application of the Fay identity with respect to the jt index as in the
previous step. In the former case, we arrive at a linear combination of

g
(m)
jt,2

and we are left with applying the procedure to the jt index unless
we hit j1.

• The above procedure terminates once we could rewrite the product in

eq. (252) as a linear combination of g
(n)
21 times solely admissible factors

and some integer coefficients.
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After applying step 1 and step 2 to any z2-derivative of an admissible

genus-one Selberg integral, one will obtain the desired form, that is, one

component of the matrix equation (128).

Writing the weights of the genus-one Selberg vector as a sequence of

the form 
w = (w3, . . . , wL) ∈ NL−2, such that the total weight is given by

w = |
w| = w3 + . . . wL, and the admissible labelings 
i = (i3, . . . , iL) ∈ NL−2

with 1 ≤ ik < k, this algorithm converts the derivative of the genus-one

Selberg integral Sτ
[
w3, ..., wL

i3, ..., iL

]
(0, z2) = Sτ

[
�w
�i

]
(0, z2) given in eq. (245) to a

form similar to the KZB equation

∂

∂z2
Sτ
[

�w
�i

]
(0, z2) =

w+1∑
n=0

g
(n)
21

∑
�m∈NL−2:m=w+1−n

∑
�j adm

x�w,�i

�m,�j
Sτ
[

�m
�j

]
(0, z2) ,

(255)

where m = |
m| and the sum over 
j ∈ NL−2 runs over the admissible la-

belings, i.e. the vectors 
j such that 1 ≤ (
j)i = ji < 2 + i. Each coefficient

x�w,�i

�m,�j
∈ Z[sij ] either vanishes or is a Z-linear combination of the Mandel-

stam variables, determined by the above algorithm. Note that all the terms

g
(n)
21 Sτ

[
�m
�j

]
(0, z2) are of total weight w+1 = n+m, since m = w+1−n. This

is a consequence of the above algorithm: the partial derivatives in the last

line of eq. (245) only act on the Selberg seed Sτ , which effectively multiplies

Sτ with some g
(1)
lj . Hence, the integrand Sτ

∏L
k=3 g

(nk)
k,ik

is multiplied with g
(1)
lj

which increases the total weight by one. The application of the Fay identity

in the second step of the algorithm preserves this weight, which leads to the

differential eq. (255). This completes the proof.

Example for Step 1: As an example for step 1, let us consider L = 6 and

the following product p(z) with a branch at k = 3

(256) p(z) = Sτ g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32 .

Upon discarding boundary terms, the partial derivative of p(z) with respect

to z2 is

∂

∂z2
p(z) =

∂

∂z2

(
Sτ g

(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32

)
=

(
∂

∂z2
Sτ
)
g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32 + Sτ

(
∂

∂z2
g
(n6)
62

)
g
(n5)
53 g

(n4)
43 g

(n3)
32
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+ Sτ g
(n6)
62 g

(n5)
53 g

(n4)
43

(
∂

∂z2
g
(n3)
32

)

=

(
∂

∂z2
Sτ
)
g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32 + Sτ

(
− ∂

∂z6
g
(n6)
62

)
g
(n5)
53 g

(n4)
43 g

(n3)
32

+ Sτ g
(n6)
62 g

(n5)
53 g

(n4)
43

(
− ∂

∂z3
g
(n3)
32

)

=

((
∂

∂z2
+

∂

∂z6
+

∂

∂z3

)
Sτ
)
g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32

+ Sτ g
(n6)
62

(
∂

∂z3
g
(n5)
53

)
g
(n4)
43 g

(n3)
32 + Sτ g

(n6)
62 g

(n5)
53

(
∂

∂z3
g
(n4)
43

)
g
(n3)
32

=

((
∂

∂z2
+

∂

∂z6
+

∂

∂z3

)
Sτ
)
g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32

+ Sτ g
(n6)
62

(
− ∂

∂z5
g
(n5)
53

)
g
(n4)
43 g

(n3)
32 + Sτ g

(n6)
62 g

(n5)
53

(
− ∂

∂z4
g
(n4)
43

)
g
(n3)
32

=

((
∂

∂z2
+

∂

∂z6
+

∂

∂z3
+

∂

∂z5
+

∂

∂z4

)
Sτ
)
g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32

= Sτ

(
L∑

k=2

sk1g
(1)
k1

)
g
(n6)
62 g

(n5)
53 g

(n4)
43 g

(n3)
32 ,(257)

which is the result expected from eq. (245) since U
�n,(2,3,3,2)
2 = {2, 3, 4, 5, 6}.

Appendix D. Explicit calculation of the one-loop two-point
configuration-space integrals

In this appendix, detailed calculations for the two-point example in subsec-
tion 4.1 are provided. The configuration-space contribution to the two-point
amplitude is described by the L = 3 Selberg integrals in eq. (189). The
two-point one-loop amplitude with Mandelstam variable s = s13 + s23 is
reproduced for n = 0, i3 = 1 as the first entry of the boundary value

Cτ
1 = lim

z2→1
(−2πi(1− z2))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sτ
[
0
1

]
(0, z2)

Sτ
[
1
1

]
(0, z2)

Sτ
[
2
1

]
(0, z2)

Sτ
[
2
2

]
(0, z2)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(258)
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In order to evaluate the first entry of Cτ
1 we can use the block-diagonal

form of x(1) with the first block being x
(1)
0 = s12 as shown below. Thus, the

relevant entry of the regularization factor for z2 → 1 is (−2πi(1−z2))
−x(1)

1 ∼
e−s12 Γ̃21 and the integral is given by

lim
z2→1

(−2πi(1− z2))
−s12 Sτ

[
0
1

]
(0, z2)

= lim
z2→1

e−s12 Γ̃21

∫ z2

0
dz3 exp

(
s13 Γ̃31+s12 Γ̃21+s23 Γ̃23

)
=

∫ 1

0
dz3 exp

(
(s13 + s23) Γ̃31

)
=
∑
n≥0

(s13 + s23)
n

n!

∫ 1

0
dz3 Γ̃

n
31

=
∑
n≥0

(s13 + s23)
n

n!

∫ 1

0
dz3 n! Γ̃( 1 ... 1

0 ... 0︸ ︷︷ ︸
n

; z3, τ)

=
∑
n≥0

(s13 + s23)
n ω(1, . . . , 1︸ ︷︷ ︸

n

, 0) .(259)

The regularization of the above boundary value corresponds to the first
eigenvalue s12 of x(1), which can be determined by bringing the derivative

of Sτ
[
n3

i3

]
(0, z2) in KZB form

∂

∂z2
Sτ
[
0
1

]
(0, z2) =

∫ z2

0
dz3s21g

(1)
21 S +

∫ z2

0
dz3s23g

(1)
23 S

= s21g
(1)
21 Sτ

[
0
1

]
(0, z2) +

∫ z2

0
dz3s31g

(1)
31 S

= s21g
(1)
21 Sτ

[
0
1

]
(0, z2) + s31g

(0)
31 Sτ

[
1
1

]
(0, z2) ,(260)

such that the first columns of the matrices x(0) and x(1) are given by

(261) x(0) =

(
0 s31 0 0 . . .
...

)
, x(1) =

(
s21 0 0 0 . . .
...

)
.

Note that we have used the integration by parts identity

s23 S
τ
[
1
2

]
(0, z2) + s13 S

τ
[
1
1

]
(0, z2) = 0 .(262)
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The boundary value for z2 → 0 is more subtle. In this limit, the one-loop

propagator degenerates to the tree level propagator and, in particular, loses

its τ -dependence at the lowest order in z2

(263) Γ̃reg( 10 ; z2, τ) = log(−2πiz2) +O
(
z22

)
, g(1)(z2, τ) =

1

z2
+O(z2)

such that, using the change of variables zi = z2wi, the lowest order in z2 for

n3 = 1, i3 = 1 is given by

Sτ
[
1
1

]
(0, z2)

=

∫ z2

0
dz3 exp

(
s13 Γ̃31+s12 Γ̃21+s23 Γ̃23

)
g
(1)
31

=

∫ 1

0
dw3 z2(−2πiz2w3)

s13(−2πiz2)
s12(−2πiz2(1− w3))

s23 1

z2w3
(1 +O(z2))

= (−2πiz2)
s123

∫ 1

0
dw3w

s13
3 (1− w3)

s23 1

w3
(1 +O(z2))

= (−2πiz2)
s123

(
1

s13

Γ(1 + s13)Γ(1 + s23)

Γ(1 + s13 + s23)

)
(1 +O(z2)) .

(264)

Therefore, at the lowest order in z2, the integral S
τ
[
1
1

]
(0, z2) degenerates to

the four-point tree-level amplitude with Mandelstam variables s13 and s23.

Now, let us check that the regularization by the factor (−2πiz2)
−x(1)

projects

out that lowest-order coefficient of z2. In order to obtain the appropriate

eigenvalue of x(1), the differential equation satisfied by Sτ
[
1
1

]
(0, z2) has to

be brought in KZB form and the coefficient of Sτ
[
1
1

]
(0, z2) itself has to be

determined

∂

∂z2
Sτ
[
1
1

]
(0, z2)

=

∫ z2

0
dz3 exp

(
s13 Γ̃31+s12 Γ̃21+s23 Γ̃23

)
g
(1)
31

(
s12g

(1)
21 +s23g

(1)
23

)
= s12g

(1)
21 Sτ

[
1
1

]
(0, z2)− s23

∫ z2

0
dz3 Sτ g

(1)
31 g

(1)
32 .(265)
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In order to bring the second integral into the appropriate form, the Fay

identity

g
(1)
31 g

(1)
32 = g

(2)
21 + g

(2)
31 + g

(2)
32 + g

(1)
21 g

(1)
32 − g

(1)
21 g

(1)
31(266)

has to be used, followed by an application of eq. (262)

∂

∂z2
Sτ
[
1
1

]
(0, z2)

= −s23g
(2)
21 Sτ

[
0
1

]
(0, z2)− s23g

(0)
21 Sτ

[
2
1

]
(0, z2)− s23g

(0)
21 Sτ

[
2
2

]
(0, z2)

+ s12g
(1)
21 Sτ

[
1
1

]
(0, z2)− s23g

(1)
21 Sτ

[
1
2

]
(0, z2) + s23g

(1)
21 Sτ

[
1
1

]
(0, z2)

= −s23g
(2)
21 Sτ

[
0
1

]
(0, z2)− s23g

(0)
21 Sτ

[
2
1

]
(0, z2)− s23g

(0)
21 Sτ

[
2
2

]
(0, z2)

+ (s12 + s13 + s23) g
(1)
21 Sτ

[
1
1

]
(0, z2) .

(267)

Therefore, we find that the appropriate eigenvalue of x(1) is indeed s123 =

s12+s13+s23, such that according to eq. (264) the second, i.e. the weight-one,

entry of Cτ
0 is given by the four-point tree-level amplitude

(268) Cτ
0 = lim

z2→0
e−x(1) Γ̃21

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sτ
[
0
1

]
(0, z2)

Sτ
[
1
1

]
(0, z2)

Sτ
[
2
1

]
(0, z2)

Sτ
[
2
2

]
(0, z2)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

∗
1
s13

Γ(1+s13)Γ(1+s23)
Γ(1+s13+s23)

∗
∗
...

⎞
⎟⎟⎟⎟⎟⎠ .

As discussed in subsection 3.5, since the eigenvalue of x(1) can not be bigger

than s123 and we can only compensate the Jacobian z2 in eq. (264) from

the change of variables z3 = z2w3 by the singular asymptotic behavior of

g(1)(z3, τ) → 1
z2w3

for z2 → 0, if there would be another integration kernel

g(n3)(z3i3 , τ) with n3 	= 1 which is regular close to the origin, there would not

be such a compensation. Thus, all other entries of the boundary value Cτ
0

which do not correspond to a singular integration kernel g(1)(z3i3 , τ) vanish
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and we obtain

Cτ
0 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
s13

Γ(1+s13)Γ(1+s23)
Γ(1+s13+s23)

0
0
...

⎞
⎟⎟⎟⎟⎟⎠ .(269)

In order to check the consistency of the first entry of the vector equation

Cτ
1 = Φτ Cτ

0(270)

up to order (α′)2, we also need to calculate the derivative of Sτ
2(z2), which

includes the following two derivatives: the first one is

∂

∂z2
Sτ
[
2
1

]
(0, z2) =

∫ z2

0
dz3 Sτ g

(2)
31

(
s21g

(1)
21 + s23g

(1)
23

)
= s12g

(1)
21 Sτ

[
2
1

]
(0, z2)− s23

∫ z2

0
dz3 Sτ g

(2)
31 g

(1)
32 ,(271)

where we can apply again the Fay identity

g
(1)
32 g

(2)
31 = −(−1)2g

(3)
12 +

2∑
r=0

(
r

0

)
g
(2−r)
21 g

(1+r)
k2 +

1∑
r=0

(
r + 1

1

)
g
(1−r)
12 g

(2+r)
k1

= g
(3)
21 + g

(2)
21 g

(1)
32 + g

(1)
21 g

(2)
32 + g

(0)
21 g

(3)
32 − g

(1)
21 g

(2)
31 + 2g

(0)
12 g

(3)
31 .(272)

Therefore, we find

∂

∂z2
Sτ
[
2
1

]
= s12g

(1)
21 Sτ

[
2
1

]
− s23

(
g
(3)
21 Sτ

[
0
1

]
+ g

(2)
21 Sτ

[
1
2

]
+ g

(1)
21 Sτ

[
2
2

]
+ g

(0)
21 Sτ

[
3
2

]
− g

(1)
21 Sτ

[
2
1

]
+ 2g
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12 Sτ

[
3
1

])
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(0)
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(
−2s23 S

τ
[
3
1

]
− s23 S

τ
[
3
2
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(1)
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(
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τ
[
2
1

]
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τ
[
2
2
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(
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τ
[
1
2
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21

(
−s32 S

τ
[
0
1

])
= g
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(
−2s23 S

τ
[
3
1

]
− s23 S

τ
[
3
2
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+ g

(1)
21

(
(s12 + s23) S

τ
[
2
1

]
− s23 S

τ
[
2
2

])
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+ g
(2)
21

(
s13 S

τ
[
1
1

])
+ g

(3)
21

(
−s32 S

τ
[
0
1

])(273)

and similarly

∂

∂z2
Sτ
[
2
2

]
(0, z2)

=

∫ z2

0
dz3 Sτ g

(2)
32

(
s21g

(1)
21 + s23g

(1)
23

)
+

∫ z2

0
dz3 Sτ

∂

∂z2
g
(2)
32

= s21g
(1)
21 Sτ

[
2
2
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− s23
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(2)
32 g

(1)
32 −
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∂
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[
2
2

]
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0
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(2)
32 g

(1)
31 ,(274)

where we can again use

g
(1)
31 g

(2)
32 = g

(3)
21 + g

(2)
12 g

(1)
31 + g

(1)
12 g
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31 + g
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12 g

(3)
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(1)
12 g

(2)
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(0)
21 g

(3)
32

= −g
(3)
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(2)
21 g

(1)
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(1)
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(2)
31 + g

(0)
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(3)
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(1)
21 g

(2)
32 + 2g

(0)
21 g

(3)
32 ,(275)

such that

∂

∂z2
Sτ
[
2
2

]
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= g
(0)
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(
s13 S

τ
[
3
1

]
+ 2s13 S

τ
[
3
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(
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[
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2
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(2)
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(
s13 S

τ
[
1
1
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(
−s13 S

τ
[
0
1

])
.

(276)

The relevant 4× 4-submatrices x
(n)
≤2 of x(n) for n ∈ {0, 1, 2} appearing in

the differential eq. (192) of Sτ
≤2(z2), i.e.

(277)
∂

∂z2
Sτ
≤2(z2) =

(
g
(0)
21 x

(0)
≤2 + g

(1)
21 x

(1)
≤2 + g

(2)
21 x

(2)
≤2

)
Sτ
≤2(z2) + r2 S

τ
3(z2) ,

can now be read off from the differential equations (260), (267), (273) and
(276), which gives the matrices in eqs. (193) and (194).
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