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On a class of non-simply connected
Calabi-Yau 3-folds with positive Euler

characteristic∗

Tolga Karayayla

In this work we obtain a class of non-simply connected Calabi-
Yau 3-folds with positive Euler characteristic as the quotient of
projective small resolutions of singular Schoen 3-folds under the
free action of finite groups. A Schoen 3-fold is a fiber product
X = B1 ×P1 B2 of two relatively minimal rational elliptic surfaces
with section βi : Bi → P

1, i = 1, 2. Schoen has shown that if X is
smooth, then X is a simply connected Calabi-Yau 3-fold, and if the
only singularities of X are on Ir×Is type fibers with r > 1 and s >
1, then there exists a projective small resolution X̂ ofX, and X̂ is a
simply connected Calabi-Yau 3-fold [7]. If G is a finite group which
acts freely on a smooth Schoen 3-fold X, then the quotient X/G is
a non-simply connected Calabi-Yau 3-fold with fundamental group
G, and all such group actions have been classified by Bouchard and
Donagi [2]. Bouchard and Donagi have proposed the open problem
of classifying all finite groups G which act freely on projective small
resolutions X̂ of singular Schoen 3-foldsX. In this case the quotient
X̂/G is again a Calabi-Yau 3-fold with fundamental group G. In
this paper we first classify the finite groups G which act freely on
singular Schoen 3-folds X where the only singularities of X are on
Ir×Is type fibers with r > 1 and s > 1 and the elements ofG act on
X as an automorphism τ1 × τ2 where each τi is an automorphism
of the elliptic surface Bi. A projective small resolution X̂ of X
is obtained by blowing up some components of the Ir × Is fibers
on X. We determine which of the free actions on the singular 3-
fold X lift to free actions on the Calabi-Yau 3-fold X̂. For the
non-simply connected Calabi-Yau 3-folds X̂/G obtained with this
construction, the distinct fundamental groups are Z3×Z3, Z4×Z2,
Z2 × Z2, and Zn for n = 6, 5, 4, 3, 2. These are the same groups
obtained by Bouchard and Donagi by working on free actions on
smooth Schoen 3-folds. While the Euler characteristic of each X/G
obtained by Bouchard and Donagi is 0, the Euler characteristics
of all non-simply connected Calabi-Yau 3-folds X̂/G we obtain in
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this paper are positive and they range in: 64, 54, 48, 40 and 2k
for 2 ≤ k ≤ 18. The given Euler characteristic values do not all

occur for each of the listed fundamental groups. The classification
of finite groups which act freely on singular Schoen 3-folds X whose
singularities are on Ir × Is type fibers with r > 1 and s > 1, the
classification of such group actions which lift to free actions on
projective small resolutions X̂ of X, and the fundamental groups
and Euler characteristic values of the non-simply connected Calabi-
Yau 3-folds X̂/G are displayed in several tables. The study of the
group actions on X which induce a non-trivial action on the base
curve P

1 and which induce a trivial action on P
1 is carried out

separately.

AMS 2000 subject classifications: Primary 14L30, 14J32, 14J30,
14J50; secondary 14J27.
Keywords and phrases: Calabi-Yau 3-folds, Schoen 3-folds, fiber prod-
uct of relatively minimal rational elliptic surfaces with section, non-
simply connected Calabi-Yau 3-folds, group actionss, automorphisms of
rational elliptic surfaces.

1. Introduction

A Schoen 3-fold X is a fiber product X = B1 ×P1 B2 = {(a, b) ∈ B1 ×
B2|β1(a) = β2(b)} of two relatively minimal rational elliptic surfaces with
section βi : Bi → P

1, i = 1, 2. The fiber product X is a smooth 3-fold if and
only if S = S1 ∩S2 = ∅ where Si = {p ∈ P

1|β−1
i (p) is a singular fiber of Bi}

for i = 1, 2. Schoen has shown that if X is smooth, then X is a simply
connected Calabi-Yau 3-fold [7]. Bouchard and Donagi have studied finite
abelian groups G which act on smooth fiber products X = B1 ×P1 B2 freely
(without fixed points) where each element g ∈ G acts on X as a product τ1×
τ2 ∈ Aut(B1)×Aut(B2) of automorphisms τ1 and τ2 of the relatively minimal
rational elliptic surfaces with section B1 and B2, respectively. Explicitly
τ1 × τ2 : X → X is defined by (a, b) �→ (τ1(a), τ2(b)) where τ1 and τ2 have
the same induced action on the base curve P

1 so that the map τ1 × τ2
is well-defined as a map on the fiber product X. For such a group action
on the smooth fiber product X which is a simply connected Calabi-Yau
3-fold, the quotient 3-fold X/G under the group action is a non-simply
connected Calabi-Yau 3-fold with fundamental group G as stated in [2] by
using Beauville’s argument in [1]. Bouchard and Donagi have constructed
and classified all finite abelian groupsG which act freely on smooth Schoen 3-
foldsX and which induce cyclic group actions on the base curve P1, and they
obtained a class of non-simply connected Calabi-Yau 3-folds as the quotient
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3-folds under the group action [2]. Using a classification of the automorphism
groups of relatively minimal rational elliptic surfaces with section developed
in [3, 4], the author has proved in [5] that if a finite group G acts freely
on a smooth Schoen 3-fold X as a subgroup of Aut(B1)×Aut(B2) (so that
elements of G are of the form τ1 × τ2 as above), then the action of G on X
induces a cyclic action on the base curve P

1, hence the list of non-simply
connected Calabi-Yau 3-folds obtained as quotients of smooth Schoen 3-folds
given in [2] is a complete list (no other fixed point free finite group action
on smooth Schoen 3-folds exists).

For singular Schoen 3-folds X, Schoen has shown that if all singularities
of X are ordinary double points, then under certain conditions X has a pro-
jective small resolution which is a simply connected Calabi-Yau 3-fold (see
§2 and Lemma 3.1 in [7]). The second open problem proposed in §8 of [2] asks
the classification of finite groups which act freely on such desingularizations
of singular Schoen 3-folds in order to construct a possibly larger family of
non-simply connected Calabi-Yau 3-folds than the family they obtained in
[2]. In this paper we solve this open problem for the singular Schoen 3-folds
X whose singularities are on Ir × Is type fibers with r > 1 and s > 1. For
such 3-folds X, a projective small resolution X̂ of X is obtained by succes-
sively blowing up some components of the Ir × Is fibers of X in order to
resolve the singularities by small resolutions (see §1 and Lemma 3.1 in [7]).
Note that in Lemma 3.1 in [7], it is also shown that if X is a singular Schoen
3-fold with only ordinary double point singularities and β1 = β2 (the two
elliptic surfaces of the fiber product are identical), then a projective small
resolution of X exists and is obtained by blowing up the diagonal Δ in X.
Such singular Schoen 3-folds X where β1 = β2 are not considered in this
paper.

In Theorem 13 in §5.2, we first classify the finite groups G which act
freely on singular Schoen 3-folds X whose singularities are on Ir × Is type
fibers with r > 1 and s > 1 such that the induced action on the base curve P1

is non-trivial and the elements of G act on X as products of automorphisms
of the two elliptic surfaces B1 and B2. In §6 we determine which of these
actions lift to free actions on projective small resolutions X̂ of X which
are obtained by successively blowing up some components of the Ir × Is
fibers of X. The same classification and lifting task for the free actions on
X where the induced action on P

1 is trivial is accomplished in §6.3. The
main result of the paper is stated in Theorem 18 in §7. For the non-simply
connected Calabi-Yau 3-folds X̂/G obtained as the quotient spaces under
these free actions, the distinct fundamental groups G are Z3 × Z3, Z4 × Z2,
Z2 × Z2 and Zn for n = 6, 5, 4, 3, 2. All of these 3-folds X̂/G have positive
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Euler characteristics and the distinct χ values we obtain are 64, 54, 48, 40
and 2k for 2 ≤ k ≤ 18. The Euler characteristic values achieved for each
fundamental group G are displayed in Table 13. Comparing the results we
obtain in this paper to the results of Bouchard and Donagi in [2] where
free actions on smooth Schoen 3-folds have been classified, the same finite
groups G act freely on smooth Schoen 3-folds X and on small projective
resolutions X̂ of the singular Schoen 3-folds studied in this paper. While
the Euler characteristic of the 3-folds X/G obtained in [2] is 0, the Euler
characteristics of all 3-folds X̂/G we obtain in this paper are positive.

As mentioned in the remarks 4.3.1 and 6.4 in [2], in their analysis
Bouchard and Donagi have considered suitable σ-pairs (B,α) and suitable
pairs (B, τ) where the fiber f∞ over ∞ ∈ P

1 of both the elliptic surface
B and the quotient surface B̂ is smooth. They have excluded the analysis
of the suitable σ-pairs and suitable pairs where the fiber f∞ is a singular
fiber of type Ir for some r ≥ 1. These excluded cases form a codimension 1
family for the moduli space of elliptic surfaces corresponding to the action
of a specific group G. In this paper, we make use of these suitable σ-pairs
and suitable pairs excluded in [2] (which we call suitable σ-pairs and suit-
able pairs of special type) in order to construct free actions on the singular
Schoen 3-folds under study. We also list the free actions on smooth Schoen
3-folds where the action on at least one of B1 and B2 is of special type in
§5.1.

2. Free actions on desingularizations of singular Schoen
3-folds by small resolutions

Let X = B1 ×P1 B2 = {(a, b) ∈ B1 ×B2|β1(a) = β2(b)} be the fiber product
of two relatively minimal rational elliptic surfaces βi : Bi → P

1, i = 1, 2
with section. Let Si = {p ∈ P

1|β−1
i (p) is a singular fiber of Bi} for i = 1, 2.

X is a smooth 3-fold if and only if S = ∅ where S = S1∩S2. A double point
q on a hypersurface 3-fold Y is called an ordinary double point (or a node)
if the projectivized tangent cone of Y at q is isomorphic to P

1 × P
1. The

fiber product X has only ordinary double point singularities if and only if
S �= ∅ and for every p ∈ S, β−1

1 (p) and β−1
2 (p) are singular fibers of type Ir

for r > 0 using Kodaira’s notation for singular fibers of elliptic surfaces. If
we define the projection map β : X → P

1 by β((a, b)) = β1(a) (which also
equals β2(b) by the definition of X), then X is singular with only ordinary
double point singularities if and only if S �= ∅ and β−1(p) is of the form
Ir × Is for some r > 0 and s > 0 for each p ∈ S. For such a singular fiber
product X, the ordinary double points are exactly the points (a, b) ∈ X
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such that a is a singular point of β−1
1 (p) = Ir and b is a singular point of

β−1
2 (p) = Is for each p ∈ S. There are rs ordinary double points in β−1(p) if

β−1(p) = Ir × Is. The singularity of X at each ordinary double point can be
resolved by a local operation called small resolution. In general if q ∈ Y is
an ordinary double point on a singular 3-fold Y , a small resolution of Y at
q is a 3-fold Ŷ with a map π : Ŷ → Y such that the exceptional locus at q is
Eq = π−1(q) = P

1 and π restricts to an isomorphism Ŷ −Eq → Y −p and Ŷ
has no singularities on Eq. Note that there are two small resolutions of Y at q
which are non-isomorphic over Y . Successively applying the small resolution
operation at all singularities of X, which are assumed to be ordinary double
points, we can obtain a desingularization of X by small resolutions which
we denote by X̂ and which we call a small resolution (or minimal resolution)
of X. The reader is referred to §2 in [7] for the construction of the small
resolution and general facts about small resolutions. Schoen has shown in
[7] (§2 and §3) that if X has only ordinary double points and if either (i)
for each p ∈ S neither β−1

1 (p) nor β−1
2 (p) is irreducible (singular fiber of

type I1), or (ii) β1 = β2 (the two elliptic surfaces of the fiber product are
identical), then there exists a small resolution X̂ of X which is a projective,
simply connected Calabi-Yau 3-fold. The projective 3-fold X̂ is obtained
by blowing up the diagonal Δ of the fiber product X in Case (ii), and by
successively blowing up some divisors of the form θi × Γj in Case (i) where
θi and Γj are components of the Ir and Is fibers of B1 and B2 for the Ir× Is
fibers of X which contain the singularities of X. For such a 3-fold X̂, if
G is a finite group which acts freely (without fixed points for each non-
identity element of G) on X̂, then the quotient 3-fold X̂/G is a non-simply
connected Calabi-Yau 3-fold with fundamental group G due to the same
reason as explained in §1.2 of [2] using Beauville’s argument in [1].

Bouchard and Donagi have proposed the open problem (see §8 in [2]) of
classifying finite groups G which act freely on projective small resolutions X̂
of singular Schoen 3-folds X with only ordinary double point singularities
where X satisfies the condition (i) or (ii) stated above. In this paper we
solve this open problem for the 3-folds X satisfying the condition (i) by
studying finite groups G acting on X where the action of G lifts to a free
action on X̂.

Lemma 1. If the action of a finite group G on X lifts to a free action on
a small resolution X̂, than the action of G on X is also free.

Proof. Otherwise, if a non-identity g ∈ G has a fixed point q ∈ X, then if q
is not a singular point of X, q will be a fixed point of g in the lifted action
of G. If q is a singular point of X, then in the lifted action on X̂, g maps
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the exceptional locus Eq = P
1 over q to itself, hence g has a fixed point on

Eq.

By this lemma, the problem reduces to studying finite groups G which
act freely on the singular Schoen 3-folds X which satisfy the conditions
stated above so that there is a small resolution X̂ which is a projective,
simply connected Calabi-Yau 3-fold. Once such group actions are classified,
we need to determine which of these actions lift to free actions on the small
resolution X̂.

Remark. The criterion we develop in Lemma 14 in §6 for lifting the action of
X to a projective small resolution X̂ only applies in the case that X satisfies
the condition (i) (the only singularities of X are on Ir × Is type fibers with
r > 1 and s > 1). In this paper we exclude the 3-folds X satisfying the
condition (ii) from the discussion.

3. Free actions on singular Schoen 3-folds

3.1. Preliminaries on automorphism groups of rational elliptic
surfaces

Before discussing the group actions on singular Schoen 3-folds, we give a brief
summary of the general facts on the automorphism group of a relatively
minimal rational elliptic surface B with section. The reader can consult
[3, 4] and [2] for details. Let σ ⊂ B be a section of the relatively minimal
rational elliptic surface β : B → P

1 with section. All sections of B form a
group MW (B) called the Mordell-Weil group of B with σ as the identity
of the group (we will call σ the zero section of B). The group operation on
MW (B) is performing the group law on each smooth fiber F which is an
elliptic curve with identity σ ∩ F . Mordell-Weil group MW (B) naturally
embeds in the automorphism group Aut(B) as the automorphisms acting
on B as translation by a section. More precisely, if ε ∈ MW (B) is a section,
then the translation by ε is the automorphism tε which acts on each smooth
fiber F which is an elliptic curve by x �→ (ε ∩ F ) + x where + denotes the
group operation on the elliptic curve F . This action extends to all of B as an
automorphism. We will identify ε and tε, hence we will identify the Mordell-
Weil group MW (B) with its isomorphic copy in the automorphism group
Aut(B) of the surface B throughout the paper. Oguiso and Shioda have
classified the Mordell-Weil groups and Mordell-Weil lattices of relatively
minimal rational elliptic surfaces with section in [6].
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If we define the subgroup Autσ(B) of Aut(B) by

Autσ(B) = {τ ∈ Aut(B)|τ(σ) = σ}

(the subgroup of automorphisms of B which preserve the zero section as a
set), then we can define a group epimorphism

ψ : Aut(B) → Autσ(B)

τ �→ t−τ(σ) ◦ τ

where ker(ψ) = MW (B). Hence Aut(B) is given as the semi-direct product

Aut(B) = MW (B)�Autσ(B).

For any α ∈ Autσ(B) and tε ∈ MW (B) we have α ◦ tε = tα(ε) ◦ α.
Since the canonical class of B is KB = −F where F is the fiber class of

the rational elliptic surface B with section and the linear system of F is a
pencil, every automorphism of B maps fibers to fibers. Thus, we get a group
homomorphism

φ : Aut(B) → Aut(P1)

τ �→ τP1

such that β◦τ = τP1◦β. We denote the image of φ by AutB(P
1) := φ(Aut(B))

(the group of induced automorphisms on P
1).

3.2. Conditions for free action on singular Schoen 3-folds

Let X = B1 ×P1 B2 be a singular Schoen 3-fold (S = S1 ∩ S2 �= ∅) where
the only singularities of X are on Ir × Is type fibers with r > 1 and s > 1
(for each p ∈ S we have β−1(p) = Ir × Is for some r > 1 and s > 1). Such
a singular Schoen 3-fold X has a projective small resolution X̂ which is a
simply connected Calabi-Yau 3-fold (see §2). We have reduced the problem
to the classification of finite groups G acting on X freely (without fixed
points). We consider the group G as a subgroup of Aut(B1) × Aut(B2) so
that each element of G is of the form τ1 × τ2 where τi ∈ Aut(Bi) (i =
1, 2). Since every finite order automorphism of a relatively minimal rational
elliptic surface with section has a fixed point (see the appendix in [5] for a
proof and some comments), the group homomorphisms πi : G → Aut(Bi),
τ1×τ2 �→ τi (i = 1, 2) are injective if G acts freely on X (that is, non-identity
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elements of G have no fixed points). Thus, G is isomorphic to the subgroup
πi(G) of Aut(Bi) for i = 1, 2. This reduces the analysis to working in the
automorphism groups of the two rational elliptic surfaces B1 and B2.

The group G acts freely on X if and only if for every τ1 × τ2 ∈ G the
cyclic group 〈τ1 × τ2〉 acts freely on X. Bouchard and Donagi have worked
out the conditions for the free action of 〈τ1 × τ2〉 on a smooth Schoen 3-fold
X in [2]. We generalize and modify these conditions to the case of singular
X as follows (Note that the lemmas below are valid for any singular Schoen
3-fold X).

Let ni = ord(τi), αi = ψ(τi) ∈ Autσ(Bi), mi = ord(αi) and m̄i =
ord(φ(τi)) for i = 1, 2 where ord denotes the order of an element in a group.
Let di = ni/mi and ki = mi/m̄i for i = 1, 2. In order to have a well-defined
map τ1 × τ2 on the fiber product X, we need φ(τ1) = φ(τ2) which gives
m̄1 = m̄2.

Lemma 2 (Generalization of Lemma 3.5 in [2]). If 〈τ1 × τ2〉 acts freely on
X, then n1 = n2 and k1 = k2 = 1.

The proof is exactly the same as the proof given in [2]. Note that the
proof uses the fact that every finite order automorphism of Bi has a fixed
point, and if ki > 1, then τ m̄i

i has a fixed curve intersecting each smooth
fiber (Lemma 3.3 in [2]), hence the fixed locus of τ m̄i

i intersects all fibers of
Bi.

As a result we obtain m1 = m2 = m̄1 = m̄2 and n1 = n2 if 〈τ1× τ2〉 acts
freely on X. In the below discussion in this section we assume that these
equations hold for τ1 and τ2. From now on we will drop the subscript and
write n, m and d in place of ni, mi and di, respectively. We have n = dm
where d is the order of τmi which is translation by a torsion section on Bi

(i = 1, 2).
For m = 1 case τi is in the torsion subgroup of MW (Bi) (τi is translation

by a torsion section of Bi). Any nonzero torsion section is disjoint from the
zero section σ (see Proposition 2.1 in [2]), hence translation by a nonzero
torsion section does not have fixed points on smooth fibers. If X is a smooth
fiber product, this implies that for m = 1 case 〈τ1×τ2〉 acts freely on X since
S = ∅ (singular fibers of B1 and B2 are not paired in the fiber product). But
if X is singular as we are examining in this discussion, then 〈τ1 × τ2〉 may
not act freely on X in the m = 1 case. This is one of the main differences
between the smooth X and singular X cases.

For the m > 1 case, φ(τ1) = φ(τ2) is an order m automorphism of
the base curve P

1. After a change of coordinates in P
1, the fixed points of

φ(τ1) = φ(τ2) are 0 and ∞, and the map is given by z �→ ωmz where ωm is
a primitive mth root of unity. With this convention:
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Lemma 3 (Generalization of Lemma 3.6 in [2]). Suppose that m > 1. If
〈τ1× τ2〉 acts freely on X, then 〈τ1〉 acts freely on the fiber f1∞ and 〈τ2〉 acts
freely on the fiber f20, or vice versa (〈τ1〉 acts freely on f10 and 〈τ2〉 acts
freely on f2∞). Here fij denotes the fiber of the elliptic surface Bi over the
point j ∈ P

1.

The converse is true in the m > 1 and d = 1 (n=m) case. For the m > 1
and d > 1 case, 〈τ1〉 acts freely on f1∞ and 〈τ2〉 acts freely on f20 (or vice
versa, interchanging 0 and ∞) and 〈τm1 × τm2 〉 acts freely on X implies that
〈τ1 × τ2〉 acts freely on X.

Note that in the generalization of Lemma 3.6 in [2] to the singular X
case, the last sentence in the original version is dropped since when X is
singular f10 and f20 both can be singular fibers (similarly for f1∞ and f2∞).
The statement is still an if and only if statement for the d = 1 case, but
for the d > 1 case we need an extra condition for the converse. This is due
to the main difference between the smooth X and singular X cases when
m = 1 as explained above. Here for 〈τm1 × τm2 〉 the action on P

1 is trivial
(ord(ψ(τmi )) = ord(φ(τmi )) = 1) which means that the elements in this cyclic
group are of the form tε1 × tε2 for torsion sections εi, hence the free action
on X is not guaranteed when X is singular. It must be checked. With these
remarks, the proof of the generalized lemma follows the same argument as
given in the proof of the original lemma in [2].

Lemma 4 (Lemma 3.7 in [2]). If m > 1 and d > 1 and 〈τ1〉 acts freely on
f1∞, then f10 is a singular fiber of B1.

This lemma is valid no matter X is smooth or singular.

We can define a suitable pair for the singular X case in a similar way as
it is defined for the smooth X case in [2]:

Definition 5. Let τ ∈ Aut(B) with integers (n,m, m̄, d, k). We say that
(B, τ) is a suitable pair if k = 1 (which means m = m̄) and one of the
following three conditions holds: (1) m = 1 (which means τ ∈ MWtors(B)).
(2) m > 1, d = 1 and 〈τ〉 acts freely on the fiber f∞ of B. (3) m > 1, d > 1
and 〈τ〉 acts freely on f∞ (in this case f0 is a singular fiber due to Lemma 4).

Note that the requirement that f∞ is a smooth fiber in condition (3) in
the original definition in [2] is dropped in this new definition for the singular
X case since this requirement is due to the fact that when m > 1 and d > 1,
f10 and f2∞ are singular fibers (assuming 〈τ1〉 acts freely on f1∞ and 〈τ2〉
acts freely on f20) by Lemma 4 and X is smooth. But, if X is singular then
f1∞ and f20 need not be smooth fibers.
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In the singular X case, if 〈τ1 × τ2〉 acts freely on X, then (B1, τ1) and
(B2, τ2) are both suitable pairs (Note that 0 and ∞ should be interchanged
for (B2, τ2) in order to call it a suitable pair according to the above defini-
tion). Conversely, using two suitable pairs (B1, τ1) and (B2, τ2) with common
m and n values (m1 = m2 and n1 = n2), one can first make a change of
coordinates on the base curve P

1 of B2 interchanging 0 and ∞, then con-
struct the fiber product X. There exists u relatively prime to m such that
φ(τ1) = φ(τu2 ), hence τ1 × τu2 is an automorphism of X. To conclude that
〈τ1 × τu2 〉 acts freely on X, due to Lemma 3 one needs to check that the
non-identity elements of the form tε1 × tε2 in this cyclic group have no fixed
points on X (this needs to be checked if m = 1 or if m > 1 and d > 1).

Note that in order for an automorphism tε1×tε2 not to have a fixed point
on an Ir × Is fiber of X, it should be checked that ε1 does not intersect the
neutral component (the component intersecting the zero section) of Ir, or ε2
does not intersect the neutral component of Is. Here εi is a torsion section of
Bi. This can be checked using the height pairing on the Mordell-Weil lattice
and its explicit formula given in [8] (see also §2 in [2]).

Lemma 6 (Generalization of Lemma 3.10 in [2]). Let (B, τ) be a suitable
pair with m > 1 (conditions (2) and (3) in the definition). Then f∞ is either
smooth or singular of type Inr for some integer r > 0.

This lemma follows from the fact that for an elliptic surface the only
singular fiber type which admits a free action of Zn is Inr. Here condition
3 is also included in the generalized lemma since in the singular X case f∞
need not be a smooth fiber even if m > 1 and d > 1, contrary to the smooth
X case.

Lemma 7 (Proposition 3.11 in [2]). Let (B, τ) be a suitable pair with m > 1
(conditions (2) and (3) in the definition). Then α = ψ(τ) ∈ Autσ(B) fixes
the neutral component (the component intersecting the zero section σ) of f∞
pointwise.

The proof of the lemma is the same as the proof given in [2].
For a suitable pair (B, τ), the pair (B,α) where α = ψ(τ) ∈ Autσ(B) is

a suitable σ-pair which is given by the same definition as in [2]:

Definition 8. A pair (B,α) where B is a relatively minimal rational elliptic
surface with section and α ∈ Autσ(B) is called a suitable σ-pair if m = m̄ >
1, the fiber f∞ of B is either smooth or singular of type Imr for some integer
r > 0, and α fixes the neutral component of f∞ pointwise.

Here m = ord(α) = ord(ψ(α)) (note that α = ψ(α) since α ∈ Autσ(B))
and m̄ = ord(φ(α)). The fiber f∞ of B is the fiber over ∞ ∈ P

1 which is one
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of the two fixed points of φ(α) ∈ Aut(P1). The neutral component of f∞ is
the component which intersects the zero section σ of B.

In §4 of [2], Bouchard and Donagi have classified all suitable σ-pairs.
They have shown that any suitable σ-pair (B,α) is obtained by a pull-back
of another relatively minimal rational elliptic surface B̂ with section via the
map gm : P1 → P

1, z �→ zm of degree m on the base curve P
1 where f̂0 of

B̂ is one of the singular fiber types as shown in Table 3 in [2] and f̂∞ of
B̂ is either a smooth fiber or a singular fiber of type Ir. Here, m = ord(α)
and the classification given by Bouchard and Donagi shows that m can be
2, 3, 4, 5 or 6. At this point, Bouchard and Donagi make a simplification in
their analysis by considering only the suitable σ-pairs with f∞ of B a smooth
fiber (hence f̂∞ of B̂ is also a smooth fiber) in the remaining of their work
[2]. It is noted in §4.3.1 in [2] that suitable σ-pairs (B,α) with f∞ of type
Imr are specializations of a one parameter family of suitable σ-pairs with
smooth f∞. Bouchard and Donagi then classified all suitable pairs (B, τ)
corresponding to suitable σ-pairs (B,α) with smooth f∞.

In this paper, we will make explicit use of the classification of the suitable
σ-pairs given by Bouchard and Donagi, and also classify suitable pairs (B, τ)
with f∞ of type Imr and include them in our analysis in order to obtain
free actions on singular Schoen 3-folds. Before proceeding to construct such
suitable pairs, we first show in the next section that for a finite group G
acting freely on a singular Schoen 3-fold X, the induced action on the base
curve P

1 is cyclic.

3.3. The induced action on the base curve P
1

Let G be a finite group which acts freely on a singular Schoen 3-fold X
where the elements of G act on X as the map τ1×τ2 for τi ∈ Aut(Bi), i = 1,
2. Then, for each such element of G the cyclic group 〈τ1 × τ2〉 acts freely
on X since it is a subgroup of G whose action on X is free. Therefore, each
element τ1 × τ2 of G satisfies the conditions given in the lemmas in §3.2.
The projections πi : G → Aut(Bi), τ1 × τ2 �→ τi for i = 1, 2 are injective
homomorphisms, hence G is isomorphic to each of Gi := πi(G) ⊂ Aut(Bi).
If we define φ̃ : G → Aut(P1) by φ̃ := φ ◦ π1 = φ ◦ π2 (second equality
holds since τ1 × τ2 ∈ G implies that φ(τ1) = φ(τ2) so that τ1 × τ2 is a well-
defined map on the fiber product X), then φ̃(G) ⊂ Aut(P1) is the subgroup
of induced automorphisms on P

1 by elements of G. We call the action of
φ̃(G) on P

1 the induced action of G. In the paper [5], the author has proved
that the induced action of G is a cyclic group if G is a finite group which
acts freely on a smooth Schoen 3-fold. We now show that the induced action
is again cyclic when G acts freely on a singular Schoen 3-fold X.
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Lemma 9 (Lemma 1 in [5]). If G is a finite group which acts freely on
a singular Schoen 3-fold X = B1 ×P1 B2 such that elements of G are of
the form τ1 × τ2 where τi ∈ Aut(Bi), then for each i = 1, 2, the restriction
of the homomorphism φ : Aut(Bi) → AutBi

(P1) to the subgroup ψ(Gi) ⊂
Autσ(Bi)

φ|ψ(Gi) : ψ(Gi) → φ̃(G)

is an isomorphism. Hence

(φ|Autσ(Bi))
−1(φ̃(G)) = ψ(Gi)× CM(Bi) ∼= φ̃(G)× CM(Bi)

as a subgroup of Autσ(Bi) where CM(Bi) is the complex multiplication sub-
group of Autσ(Bi).

The proof of this lemma is the same as the proof given in [5] once we
note that m1 = m2 = m̄1 = m̄2 is valid in the singular X case as stated in
Lemma 2 and the discussion following it.

The proof of Theorem 2 in [5] which states that φ̃(G) is cyclic is a case by
case analysis which depends on Lemma 1 in [5], the fact that for a suitable
pair (B, τ) where m > 1 the fiber f∞ is either smooth or singular of type
Imr, and the fact that for a suitable σ-pair (B,α) the neutral component
of f∞ is fixed pointwise by α. All of these are valid in the singular X case.
Therefore, the same proof given in [5] works for the following result:

Lemma 10. Let G be a finite group which acts freely on a singular Schoen
3-fold X as in Lemma 9. Then φ̃(G) is a cyclic group.

4. The lists

4.1. The list of suitable σ-pairs (B,α)

As we noted in §3.2, Bouchard and Donagi have shown that a suitable σ-pair
(B,α) is constructed by pulling back a relatively minimal rational elliptic
surface B̂ with section via the map gm : P1 → P

1, z �→ zm where the fiber
f̂0 of B̂ over 0 ∈ P

1 is as shown in Table 3 in [2] (note that m = ord(α)).
Bouchard and Donagi have given a list of such elliptic surfaces B̂ and the
corresponding pullback surfaces B where both f̂∞ and f∞ are smooth fibers
(fibers of B̂ and B over the point ∞ ∈ P

1) in Table 4 in [2]. Instead of
choosing the point ∞ ∈ P

1 so that f̂∞ is a smooth fiber, one can choose
∞ ∈ P

1 such that the fiber f̂∞ of B̂ over that point is a singular fiber of
type Ir. Then the pullback via the map gm produces a surface B where the
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fiber f∞ of B is of type Imr. We give a list of suitable σ-pairs (B,α) with
f∞ a singular fiber of type Imr in Table 1. In this table we use the same
surfaces B̂ as in Table 4 in [2], but we choose f̂∞ of B̂ as a singular fiber
of type Ir so that the pullback surface B via the map gm has f∞ a singular
fiber of type Imr. In Table 1 we indicate the fibers over 0 and ∞, the root
lattice of singular fibers, the Mordell-Weil lattice, and the torsion subgroup
of the Mordell-Weil group of both of the surfaces B̂ and B together with the
generic configuration of singular fibers on these surfaces. We consulted the
list given in [6] in order to provide the Mordell-Weil lattices and the torsion
subgroups of the Mordell-Weil lattices in our Table 1. We note two mistakes
in the list in [6] as indicated in pages 26 and 43 in [2]: For an elliptic surface
B whose root lattice of singular fibers is T = D4 ⊕ A2 the Mordell-Weil
lattice is 1

6

[
2 1
1 2

]
, and for a surface with T = A7 ⊕ A1 the torsion subgroup

of the Mordell-Weil group is Z4.
Such suitable σ-pairs where f∞ is not smooth have been excluded from

the analysis given in [2] as mentioned in §4.3.1 and Remark 6.4 in [2]. In
this paper we will use such suitable σ-pairs in order to construct singular
Schoen 3-folds X admitting a free action of a finite group G. As a second
goal of this paper, we will construct the smooth Schoen 3-folds X with a
free action of a finite group G using these suitable σ-pairs which were not
considered in the paper [2].

We will call suitable σ-pairs (B,α) with smooth f∞ general type suit-
able σ-pairs and the pairs with singular f∞ of type Imr special type suitable
σ-pairs due to the fact that these special type pairs are obtained as a spe-
cialization of the general type pairs forming a codimension 1 family in the
family of surfaces B admitting such automorphisms α (see §4.3.1 in [2] for
details).

4.2. The list of G ⊂ Aut(B) consisting of suitable automorphisms

For the elliptic surfaces B which admit an automorphism α ∈ Autσ(B) with
order m > 1 where (B,α) is a suitable σ-pair such that f∞ is a singular fiber
of type Imr, we will determine the subgroups G of Aut(B) such that (B, τ) is
a suitable pair and ψ(τ) ∈ 〈α〉 for each τ ∈ G. Note that such a pair (B,α)
is one of the cases listed in Table 1, and if G is a finite group which acts
freely on a singular Schoen 3-fold X = B1 ×P1 B2, then the induced action
φ̄(G) on the base curve P1 is a cyclic group which is isomorphic to ψ(Gi) for
each i = 1, 2 (see §3.3), hence if ψ(Gi) = 〈αi〉 we must have ψ(τ) ∈ 〈αi〉 for
each τ ∈ Gi = πi(G) ∼= G for each i = 1, 2. For such a group Gi, ker(ψ) ⊂ Gi

consists of translations by torsion sections (note that ψ : Gi → 〈αi〉). As a
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result, Gi is generated by an automorphism τ such that ψ(τ) = αi together
with possibly some translations by torsion sections of Bi.

Lemma 11. For each relatively minimal rational elliptic surface B with
section which admits an automorphism α ∈ Autσ(B) of order m > 1 such
that (B,α) is a suitable σ-pair where f∞ is a singular fiber of type Imr (that
is, for each of the cases listed in Table 1), the groups G ⊂ Aut(B) where
(B, τ) is a suitable pair and ψ(τ) ∈ 〈α〉 for each τ ∈ G are as listed in
Table 2. In this table we list m = ord(α), d = ord(τm) = ord(τ)/m for
elements τ ∈ G such that ψ(τ) = α and the dimension dim of the moduli
space of the elliptic surfaces B admitting such a group G ⊂ Aut(B).

Remark. For each case the dimension of the moduli space of the rational
elliptic surfaces B which admit an automorphism α of order m such that
(B,α) is a suitable σ-pair with f∞ a singular fiber of type Imr is one less
than the dimension of the moduli space of such surfaces where (B,α) is a
suitable σ-pair with smooth f∞ as explained in §4.3.1 in [2]. With this note
the dimensions dim in Table 2 are calculated as in Proposition 6.2 in [2].
The dim values for each group G in Table 2 are less than the dim values for
the same group G listed in Tables 8 and 9 in [2]. As a result the family of
the Schoen 3-folds X = B1×P1 B2 admitting a free action of a finite group G
with non-trivial action on P

1 where at least one of the actions on B1 and B2

is special type has smaller dimension than such a family where both actions
on B1 and B2 are general type.

Proof. We follow the same technique as in the paper [2] to list all such groups
G for each of the cases in Table 1. For the suitable σ-pair in each of these
cases, we determine whether allowed sections ε ∈ MW (B) exist such that
(B, τ) is a suitable pair where τ = tε ◦ α.

For α ∈ Autσ(B) of orderm and ε ∈ MW (B), the automorphism τ = tε◦
α has finite order n if and only if Pm(ε) is a torsion section of order d = n/m,
or equivalently Φm(ε) = 0 where Pm(ε) = αm−1(ε)+αm−2(ε)+ · · ·+α(ε)+ ε
and Φm(ε) = 〈Pm(ε),Pm(ε)〉 (see Lemma 3.4 in [2]). Here 〈−,−〉 denotes
the height pairing in the Mordell-Weil group of B (see [8] or §2.3 in [2]), and
+ denotes the group operation in MW (B). This fact simply follows from
the relation α ◦ tε = tα(ε) ◦ α for ε ∈ MW (B) and α ∈ Autσ(B) (see §3.1)
and ord(α) = m.

It is shown in §5.1 of [2] that if (B,α) is a suitable σ-pair with ord(α) =
m where B is obtained as the pullback of an elliptic surface B̂ via the map
z �→ zm on P

1, then ker(Φm) = [MW (B)α]⊥ in MW (B) (Lemma 5.1 in [2])
where MW (B)α is the sections ε of B such that α(ε) = ε (sections preserved
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Table 2: Finite groups G ⊂ Aut(B) which consist of suitable automorphisms
where ψ(G) = 〈α〉 = Zm (m > 1) and f∞ is of type Imr (r > 0), special type
actions

 m d dim Sing. fibers T f0 f∞ Case
G = Z3 × Z3

1 3 1 0 I43 A4
2 I0 I3 11a

G = Z4 × Z2

2 4 1 0 I4I
4
2 A3 ⊕A⊕4

1 I0 I4 5a
3 2 2 0 I24I

2
2 A⊕2

3 ⊕A⊕2
1 I4 I4 22a

G = Z6

4 6 1 0 I6I
6
1 A5 I0 I6 1a

5 3 1 or 2 0 III I6I
3
1 A5 ⊕A1 III I6 8b

6 2 1 or 3 0 IV I6I
2
1 A5 ⊕A2 IV I6 17b

G = Z5

7 5 1 0 II I5I
5
1 A4 II I5 2a

G = Z4

8 4 1 1 I4I
8
1 A3 I0 I4 4a

9 4 1 0 IV I4I
4
1 A3 ⊕A2 IV I4 3a

10 4 1 0 I8I
4
1 A7 I0 I8 5b

11 2 2 1 I4I
3
2I

2
1 A3 ⊕A⊕3

1 I2 I4 26b
12 2 2 0 I∗0 I4I

2
1 D4 ⊕A3 I∗0 I4 14b

13 2 2 0 I8I2I
2
1 A7 ⊕A1 I2 I8 27b

G = Z3

14 3 1 2 I3I
9
1 A2 I0 I3 9a

15 3 1 1 III I3I
6
1 A2 ⊕A1 III I3 7a

16 3 1 1 I3I
3
2I

3
1 A2 ⊕A⊕3

1 I0 I3 10a
17 3 1 1 I6I

6
1 A5 I0 I6 10b

18 3 1 0 I∗0 I3I
3
1 D4 ⊕A2 I∗0 I3 6a

19 3 1 0 III I3I
3
2 A2 ⊕A⊕4

1 III I3 8a
20 3 1 0 I9I

3
1 A8 I0 I9 11b

G = Z2 × Z2

21 2 1 2 I52I
2
1 A⊕5

1 I0 I2 31a
22 2 1 1 I4I

3
2I

2
1 A3 ⊕A⊕3

1 I4 I2 21a
23 2 1 1 I62 A⊕6

1 I2 I2 26a
24 2 1 1 I4I

4
2 A3 ⊕A⊕4

1 I0 I4 32a
25 2 1 1 I24I2I

2
1 A⊕2

3 ⊕A1 I0 I2 33a
26 2 1 0 I∗0 I

3
2 D4 ⊕A⊕3

1 I∗0 I2 14a
27 2 1 0 I8I2I

2
1 A7 ⊕A1 I8 I2 18a

28 2 1 0 I24I
2
2 A⊕2

3 ⊕A⊕2
1 I4 I4 22a

29 2 1 0 I24I
2
2 A⊕2

3 ⊕A⊕2
1 I2 I2 27a

G = Z2

30 2 1 4 I2I
10
1 A1 I0 I2 28a
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Table 2: Continued

 m d dim Sing. fibers T f0 f∞ Case

31 2 1 3 I22I
8
1 A⊕2

1 I2 I2 23a
32 2 1 3 I32I

6
1 A⊕3

1 I0 I2 29a
33 2 1 3 I4I

8
1 A3 I0 I4 29b

34 2 1 2 IV I2I
6
1 A2 ⊕A1 IV I2 15a

35 2 1 2 I4I2I
6
1 A3 ⊕A1 I4 I2 20a

36 2 1 2 I42I
4
1 A⊕4

1 I2 I2 24a
37 2 1 2 I4I2I

6
1 A3 ⊕A1 I2 I4 24b

38 2 1 2 I23I2I
4
1 A⊕2

2 ⊕A1 I0 I2 30a
39 2 1 2 I6I

6
1 A5 I0 I6 30b

40 2 1 2 I4I
2
2I

4
1 A3 ⊕A⊕2

1 I0 I4 31b
41 2 1 1 I∗0 I2I

4
1 D4 ⊕A1 I∗0 I2 13a

42 2 1 1 IV I32I
2
1 A2 ⊕A⊕3

1 IV I2 16a
43 2 1 1 IV I4I

4
1 A3 ⊕A2 IV I4 16b

44 2 1 1 I6I2I
4
1 A5 ⊕A1 I6 I2 19a

45 2 1 1 I24I
4
1 A⊕2

3 I4 I4 21b
46 2 1 1 I23I

2
2I

2
1 A⊕2

2 ⊕A⊕2
1 I2 I2 25a

47 2 1 1 I6I2I
4
1 A5 ⊕A1 I2 I6 25b

48 2 1 1 I4I
3
2I

2
1 A3 ⊕A⊕3

1 I2 I4 26b
49 2 1 1 I8I

4
1 A7 I0 I8 33b

50 2 1 0 IV ∗I2I21 E6 ⊕A1 IV ∗ I2 12a
51 2 1 0 I∗0 I4I

2
1 D4 ⊕A3 I∗0 I4 14b

52 2 1 0 IV I23I2 A⊕3
2 ⊕A1 IV I2 17a

53 2 1 0 I8I2I
2
1 A7 ⊕A1 I2 I8 27b

by α as a set). The symbol ⊥ denotes the orthogonal complement with
respect to the height pairing 〈−,−〉 in the Mordell-Weil group. The Gram
matrix of MW (B)α is given by m ˆMW where ˆMW is the Gram matrix of
the Mordell-Weil lattice of B̂ (see the comment after Lemma 5.1 in [2]). This
makes it possible to calculate ker(Φm) for each case listed in Table 1.

Let (B,α) be a suitable σ-pair with ord(α) = m > 1 and let ε ∈ kerΦm

such that Pm(ε) is a torsion section of order d. In this case τ = tε◦α has order
n = md and we have (B, τ) is a suitable pair if and only if 〈τ〉 acts on f∞
freely. Let f∞ be a singular fiber of type Is and label the components of f∞
as θ0, θ1, ..., θs−1 where θ0 is the neutral component (the component which
intersects the zero section σ) and θi intersects each of θi±1 with multiplicity
1. If a section η intersects f∞ at the component θv, then the automorphism tη
maps each component θi to the component θi+v (subindices are considered
modulo s). With this notation, since α fixes the neutral component θ0 of
f∞ pointwise, we can conclude that 〈τ〉 acts on f∞ freely if and only if ε
intersects a component θsj/n where j is relatively prime to n (in other words
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ε intersects a component of order n of f∞ which is of type Is). In particular
n divides s if (B, τ) is a suitable pair.

Using these facts and the explicit formula of the height pairing in terms
of the intersection numbers of the sections given in Theorem 8.6 in [8], we
can determine the existence of the allowed sections ε ∈ MW (B) for each
case in Table 1 such that (B, τ) is a suitable pair where τ = tε ◦ α. We can
determine whether d > 1 is possible or not for each case. In each case, we
can also determine if there are one or more torsion sections η of B such that
τ and the automorphism(s) tη together generate a subgroup G ⊂ Aut(B)
such that (B, γ) is a suitable pair and ψ(γ) ∈ 〈α〉 for each γ ∈ G. This
analysis is carried out case by case through Table 1. We explicitly discuss
some cases below. The analysis of each case is done in a way similar to the
cases discussed below. The results are listed in Table 2.

Note that since α ∈ Autσ(B) it maps the zero of each smooth fiber
(which is an elliptic curve) of B to the zero of a smooth fiber, hence α
restricts to elliptic curve isomorphisms between the smooth fibers of B. As
a result the map ε �→ α(ε) is an automorphism of the group MW (B). In
particular, α maps torsion sections to torsion sections.

We first consider the cases in Table 1 where MWtors(B) = 0. In these
cases d = 1 for any suitable pair (B, τ) since there is no torsion section on
B. We have G = Zm once we show the existence of allowed sections (if a
suitable pair exists n = m and there is no torsion section to generate a larger
group together with τ).
• Cases 1a, 2a, 3a, 6a and 12a: In all of these cases MW (B̂) = 0, hence
kerΦm = MW (B). In Case 3a, there exists ε ∈ kerΦ4 with 〈ε, ε〉 = 7/12.
Using the explicit formulation of the height pairing given in [8], we obtain
〈ε, ε〉 = 2 + 2εσ − Σcontrν = 7/12. In this formula the contribution at the
singular fiber IV of B is either 0 or 2/3 and the contribution at the fiber
I4 is 0, 3/4 or 1. We can conclude that ε is disjoint from the zero section σ
and the contribution at IV is 2/3 and the contribution at I4 is 3/4. Thus, ε
intersects I4 at the component θ1 or θ3. As a result, ε is an allowed section.
A similar argument gives the existence of allowed sections in the Cases 1a,
2a, 6a and 12a if we consider ε ∈ kerΦm = MW (B) where 〈ε, ε〉 = 7/6, 6/5,
1/3 and 1/6, respectively.
• Cases 10a, 10b, 19a, 25a, 25b, 30a and 30b: In all of these cases MW (B)α

whose Gram matrix is m ˆMW is a direct summand of MWlat(B) (note
that ˆMW is the Gram matrix of MWlat(B̂)). Thus, kerΦm = [MW (B)α]⊥

in MW (B) is easily computed. In Case 10a, we have m = 3, kerΦ3 =
[3〈1/6〉]⊥ = [A∗

1]
⊥ in MW (B) which equals 1

6

[
2 1
1 2

]
. There exists ε ∈ kerΦ3

such that 〈ε, ε〉 = 1/3. Using the explicit formula of the height pairing we
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can conclude that the contribution at I3 fiber in this formula is 2/3, hence

ε intersects f∞ = I3 at the component θ1 or θ2 (an order 3 component).

Thus, ε is an allowed section. Similarly in Cases 10b, 19a, 25a, 25b, 30a

and 30b, we can show the existence of ε ∈ kerΦm with 〈ε, ε〉 = 2/3, 1/6,

1/6, 1/2, 1/6 and 1/2, respectively. In all of these cases we can show that

ε intersects f∞ at an order m component, hence ε is an allowed section.

This follows directly using the explicit formula of the height pairing except

for Case 25a for which the following analysis yields the result: In Case 25a,

kerΦ2 = [MW (B)α]⊥ = [〈1/6〉]⊥ in MW (B) which equals 〈1/6〉. There are

ε ∈ kerΦ2 and δ ∈ MW (B)α such that 〈ε, ε〉 = 〈δ, δ〉 = 1/6 and 〈ε, δ〉 = 0.

The first two equalities imply that both ε and δ are disjoint from the zero

section σ and each of them intersect two of the I3 fibers (or the two fibers

corresponding to A⊕2
2 in the root lattice T ) at non-neutral components and

only one of the two I2 fibers (f0 and f∞) at a non-neutral component. As a

result of the facts α(δ) = δ, α has two fixed points on the neutral component

Γ0 of f0 = I2 one of which is Γ0∩σ, and δ is disjoint from σ, we can conclude

that if δ intersects Γ0, then both δ and −δ intersect Γ0 at the second fixed

point of α on Γ0. If δ and −δ intersect, 〈δ,−δ〉 = −1/6 is a contradiction

(this can be seen using the explicit formula of the height pairing). There-

fore, δ intersects f0 at the non-neutral component Γ1 of f0. The equality

〈ε, δ〉 = 0 then implies that ε intersects f∞ = I2 at the component θ1 (a

degree 2 component), hence ε is an allowed section.

• Cases 13a, 16a, 16b, 20a, 24a and 24b: In Case 13a we have kerΦ2 =

[〈1〉]⊥ in (A∗
1)

⊕3 which gives kerΦ2 = 〈1〉 ⊕ A∗
1 (we can embed 〈1〉 as the

subspace generated by e1 + e2 in (A∗
1)

⊕3 whose orthogonal complement is

then generated by e1 − e2 and e3 where ei are the standard basis vectors).

Thus, there is ε ∈ kerΦ2 with height 1/2, i.e., 〈ε, ε〉 = 1/2. This section

ε intersects f∞ = I2 at the order 2 component θ1, hence ε is an allowed

section. In Cases 16a and 16b, we have kerΦ2 = [〈1/3〉]⊥ in MW (B) and

we can show the existence of ε ∈ kerΦ2 with height 1/2 and 1 in these two

cases, respectively. This section ε is an allowed section in each case since ε

intersects f∞ at an order 2 component. In Cases 20a, 24a and 24b, using

simple linear algebra we can show that kerΦ2 = 〈1〉 ⊕ A∗
1, 〈1〉 ⊕ A∗

1 and

〈1〉 ⊕ 〈1〉, respectively. The section ε ∈ kerΦ2 with height 1/2, 1/2 and 1

in these three cases are allowed sections. This directly follows for Cases 20a

and 24b using the explicit formula of the height pairing (ε intersects f∞
at the order 2 component). For Case 24a we need the following argument:

There exists δ ∈ MW (B)α with height 1/2. We can show that δ intersects

f0 = I2 at the non-neutral component Γ1 by using the same discussion we
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gave for Case 25a above. The equations 〈ε, ε〉 = 〈δ, δ〉 = 1/2 and 〈ε, δ〉 = 0
imply that ε intersects f∞ = I2 at θ1, hence ε is an allowed section.

• Case 29a: There exists ε ∈ kerΦ2 = [〈1〉⊕3]⊥ in D∗
4 ⊕A∗

1 with height 1/2.
This section ε is an allowed section since it intersects f∞ = I2 at the order
2 component θ1.

• Case 29b: There exists ε ∈ kerΦ2 = [〈1〉⊕3]⊥ in D∗
5 with height 1. This

section ε is an allowed section since it intersects f∞ = I4 at the order 2
component θ2.

• Case 4a: There exists ε ∈ kerΦ4 = [〈2〉]⊥ in D∗
5 with height 5/4. This

section ε intersects f∞ = I4 at an order 4 component θ1 or θ3, hence ε is an
allowed section.

• Cases 7a and 9a: We have kerΦ3 is given by [〈3/2〉]⊥ in A∗
5 and [3A∗

2]
⊥ in

E∗
6 in these two cases, respectively. We can show the existence of ε ∈ kerΦ3

with height 4/3 in both cases. This ε intersects f∞ = I3 at an order 3
component θ1 or θ2, hence ε is an allowed section.

• Case 15a: We have kerΦ2 = [2A∗
2]
⊥ in A∗

5 and we can show the existence
of ε ∈ kerΦ2 with height 3/2. This section ε intersects f∞ = I2 at the order
2 component θ1, hence ε is an allowed section.

• Case 28a: We have kerΦ2 = [2D∗
4]

⊥ = [D4]
⊥ in E∗

7 . Using the result
[2A∗

3]
⊥ in E∗

7 equals D4 which is proved in Lemma 5.2 in [2] as Case 23, we
can conclude that kerΦ2 = [D4]

⊥ in E∗
7 contains 2A∗

3 as a sublattice. Thus,
there exists ε ∈ kerΦ2 with height 3/2. This section ε is an allowed section
since it intersects f∞ = I2 at θ1.

• Case 23a: We have kerΦ2 = [2A∗
3]
⊥ in D∗

6 is the lattice given by the Gram

matrix 1
2

[ 4 0 2
0 4 2
2 2 3

]
. Thus, there exists ε1 and ε2 in kerΦ2 such that 〈ε1, ε1〉 = 2,

〈ε2, ε2〉 = 3/2 and 〈ε1, ε2〉 = 1. First two equalities imply that both ε1 and
ε2 are disjoint from the zero section σ, ε1 intersects the neutral components
of f0 and f∞, and ε2 intersects exactly one of f0 and f∞ at the neutral
component. If ε2 intersects f∞ = I2 at the component θ1, then ε2 is an
allowed section and we are done. If ε2 intersects f∞ = I2 at the neutral
component θ0, then we get a contradiction as follows: The equality 〈ε1, ε2〉 =
1 implies that the intersection number ε1ε2 is 0. Since ε1, ε2 ∈ kerΦ2 we have
εi+α(εi) = 0 for each i = 1, 2 sinceMWtors(B) = 0. Since α fixes the neutral
component θ0 (which is P

1) pointwise and both εi are disjoint from σ, we
can conclude that in order to have εi + α(εi) = 0, both εi must intersect
θ0 = P

1 at −1 (after choosing coordinates on θ0 such that σ ∩ θ0 is 1 and
the two intersection points of θ0 and θ1 are 0 and ∞. Note here that 0 and
∞ are fixed by tε if ε intersects θ0, and if ε∩ θ0 = ω, then tε acts on θ0 = P

1

by z �→ ωz). This implies ε1ε2 ≥ 1 contradicting ε1ε2 = 0.
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In the rest of the proof we consider the cases in Table 1 where MW (B)
has a non-trivial torsion subgroup. After determining kerΦm, we determine
whether there are allowed sections ε ∈ kerΦm where Pm(ε) is a torsion
section of order d > 1 or not. Here d divides the order of MWtors(B) and
since we require that 〈tε ◦ α〉 acts freely on f∞ which is a singular fiber
of type Is, dm divides s. For some allowed sections in kerΦm we may have
d = 1 while d > 1 for other allowed sections. This way we can obtain different
groups G for the same case in Table 1. Finally, we determine whether such an
automorphism tε ◦α where ε is an allowed section and translations by other
torsion sections together generate a larger group G (order of G is greater
than md) consisting of suitable automorphisms (τ ∈ G implies (B, τ) is a
suitable pair). Note that by Lemma 4, d > 1 is not possible if f0 is a smooth
fiber (which is denoted as I0).
• Case 5a: We have kerΦ4 = [0⊕Z2]

⊥ in MW (B) which equals MW (B) =
〈1/4〉 ⊕ (Z2 × Z2). There is ε ∈ kerΦ4 with height 1/4 and this section
ε intersects f∞ = I4 at an order 4 component θ1 or θ3, hence it is an
allowed section. Since f0 is I0 (a smooth fiber), we have d = 1 by Lemma 4.
Let τ = tε ◦ α, then (B, τ) is a suitable pair with m = 4 and d = 1. Is
it possible to form a group G generated by τ and some translations by
torsion sections such that every element of G is a suitable automorphism?
MWtor(B) = Z2 × Z2. Let η1, η2 and η1 + η2 be the order 2 sections of
B. Note that α maps torsion sections to torsion sections. Without loss of
generality, η1 and η2 intersect f∞ = I4 at the component θ2 and two of
the four I2 fibers at non-neutral components. The section η1 + η2 intersects
f∞ = I4 at the neutral component θ0 and all four I2 fibers at non-neutral
components. G cannot contain tη1

or tη2
since otherwise tηi

◦τ2 ∈ G, but it is
not a suitable automorphism for i = 1, 2 (they have fixed points on f∞, their
action on f∞ is not free). We can form the group G = 〈τ, tη1+η2

〉 = Z4 × Z2

such that all elements of G are suitable automorphisms. Note that in Table 2
we do not list the subgroups of G = Z4 × Z2 for Case 5a as separate items,
only G = Z4 × Z2 is displayed in this table.
• Case 5b: In this case kerΦ4 = A∗

1⊕Z2. Since f0 = I0, d > 1 is not possible.
For ε ∈ kerΦ4 with height 1/2, ε intersects f∞ = I8 at an order 4 component
θ2 or θ6, hence τ = tε ◦ α is a suitable automorphism with m = 4, d = 1.
The order 2 section η of B intersects f∞ at the component θ4. G cannot
contain tη, otherwise tη ◦ τ2 ∈ G has a fixed point on f∞, hence tη ◦ τ2 is not
a suitable automorphism. Note that tη ◦ τ2 = tγ ◦α2 where γ = η+ ε+α(ε)
intersects f∞ = I8 at the neutral component θ0. This is why tη ◦ τ2 has a
fixed point on f∞ (note that α fixes the neutral component of f∞ pointwise).
As a result, we have G = 〈τ〉 = Z4.
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• Case 8a: There exists ε ∈ kerΦ3 with height 1/3 and ε is an allowed
section. d = 2 is not possible since Z6 cannot act freely on f∞ = I3. If η is
the order 2 section of B, G contains tη and a suitable automorphism τ with
m = 3 and d = 1 implies tη ◦ τ ∈ G is a suitable automorphism with m = 3
and d = 2, a contradiction. Thus, tη /∈ G, and G = Z3.
• Case 8b: There exists ε ∈ kerΦ3 with height 2/3 and ε intersects f∞ = I6
at an order 3 component θ2 or θ4. τ = tε ◦α is a suitable automorphism with
m = 3 and d = 1. If η is the order 2 section of B, η intersects f∞ = I6 at
the component θ3. Thus tη ◦ τ = tη+ε ◦ α is a suitable automorphism with
m = 3 and d = 2 (its action on f∞ = I6 is free since η + ε intersects I6 at
an order 6 component θ1 or θ5). We have G = 〈τ, tη〉 = Z6 in this case.
• Case 11a: We have kerΦ3 = Z3 × Z3. If we denote the four I3 fibers of B
as S1, S2, S3 and R = f∞, then without loss of generality α maps Si to Si+1

(considering the indices modulo 3) and maps R to itself. We can denote the
components of these I3 fibers by Si,j with i = 1, 2, 3 and j = 0, 1, 2 where Si,0

is the neutral component of Si and α maps Si,j to Si+1,j . We can similarly
denote the components of f∞ = R by Rj with j = 0, 1, 2 and α maps
Rj to itself. One can show that the components intersected by each of the
eight order 3 sections are given by (1, 2, 0, 1), (0, 1, 2, 1), (2, 0, 1, 1), (2, 1, 0, 2),
(0, 2, 1, 2), (1, 0, 2, 2), (1, 1, 1, 0) and (2, 2, 2, 0) (here (a, b, c, d) means that the
section intersects the components S1,a, S2,b, S3,c and Rd, and if necessary
we can interchange 1 and 2 in the labeling of Rj in order to obtain these
8 tuples). Let η1 be the section corresponding to the tuple (1, 1, 1, 0). The
order 3 sections which are preserved by α are η1 and η1 + η1. If η2 is any
of the first six sections in the given list, then τ = tη2

◦ α is a suitable
automorphism with m = 3 and d = 1. It is not possible to have a suitable
automorphism with d > 1 in this case since f0 = I0. Considering τ ∈ G, we
want to determine whether G can contain a translation by a torsion section
or not. If the translation by any of the first six torsion sections in the given
list is in G, then there is tγ ∈ G where γ and η2 intersect two distinct
non-neutral components of f∞ = R, hence tγ ◦ τ = tγ+η2

◦ α ∈ G is not a
suitable automorphism (there are fixed points on R since γ + η2 intersects
the neutral component R0). Thus, G may contain tη1

and tη1+η1
, but not

the translations by other six torsion sections. It can be checked that every
element in G = 〈τ, tη1

〉 = Z3 × Z3 is a suitable automorphism.
• Case 11b: We have kerΦ3 = Z3 = 〈η〉 where η intersects f∞ = I9 at θ3 or
θ6. Thus τ = tη ◦ α is a suitable automorphism with m = 3 and d = 1. It
is not possible to have d > 1 in this case since f0 = I0. Considering τ ∈ G
where τ is any suitable automorphism with m = 3 and d = 1, G cannot
contain tη (and tη+η) since otherwise tη ◦ τ or tη+η ◦ τ which is in G has a
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fixed point on f∞ and is not a suitable automorphism. Thus, G = 〈τ〉 = Z3

in this case.
• Case 14a: We have kerΦ2 = A∗

1 ⊕ (Z2 × Z2) and MWtors(B) = Z2 × Z2.
Let η1, η2 and η1 + η2 be the order 2 sections of B. Denote f0 = I∗0 by Q,
f∞ = I2 by R and the other two I2 fibers of B by Si, i = 1, 2. Let Rj and
Si,j where j = 0, 1 be the components of R, S1 and S2 such that j = 0 corre-
sponds to the neutral component. Denote the components of Q = I∗0 by Qj ,
0 ≤ j ≤ 4 such that Q0 is the neutral component and Q4 is the component
with multiplicity 2. The automorphism α maps Si,j to Si+1,j (considering i
modulo 2), Q1 to Q2 (see the discussion under Case 14 on page 34 in [2])
and maps the other components to themselves. Using the formula of the
height pairing and the facts that 〈η, ε〉 = 0 for any torsion section η, and
α maps torsion sections to torsion sections, we can determine the compo-
nents each torsion section intersects as follows. Without loss of generality,
η1 intersects the components (Q1, S1,1, R1), η2 intersects (Q2, S2,1, R1) and
η1+η2 intersects (Q3, S1,1, S2,1) (we only listed the non-neutral components
intersected). We get α(η1) = η2 and α(η1+η2) = η1+η2. Let now ε ∈ kerΦ2

with height 1/2. Then, either ε intersects all three I2 fibers at non-neutral
components, or it intersects Q = I∗0 at a non-neutral component and only
one of the three I2 fibers at a non-neutral component. In the former case
we have P2(ε) = ε + α(ε) = 0 and τ = tε ◦ α is a suitable automorphism
with m = 2 and d = 1. In the latter case, if ε intersects f∞ = R = I2 at R1,
then again τ is a suitable automorphism with m = 2 and d = 1. If ε inter-
sects S1,1 or S2,1, then P2(ε) which is a torsion section is η1+η2 and we have
P2(ε+ηi) = 0 for any i = 1, 2. Thus τi = tε+ηi

◦α is a suitable automorphism
with m = 2 and d = 1. In any case, there is a suitable automorphism τ̃ with
m = 2 and d = 1. Note that there is no suitable automorphism with d > 1
in this case since Z4 does not act freely on f∞ = I2. Considering τ̃ ∈ G, can
G contain a translation by a torsion section? Since tηi

◦ τ̃ has fixed points
on f∞, G cannot contain tηi

. Every element of G = 〈tη1+η2
, τ̃〉 = Z2 × Z2 is

a suitable automorphism. We list G as Z2 × Z2 in this case.
• Case 14b: We have kerΦ2 = 〈1/4〉 ⊕ Z2. If η is the order 2 section, η
intersects f∞ = I4 at the component θ2 and τ = tη ◦ α is a suitable auto-
morphism with m = 2 and d = 1. If such an automorphism τ is in G, then
tη /∈ G since tη ◦ τ ∈ G has a fixed point on f∞. Thus, G = Z2 = 〈τ〉 in
the case that d = 1 for τ . In this case d = 2 also occurs. Let ε ∈ kerΦ2

with height 1/4. Such a section ε intersects f∞ = I4 at θ1 or θ3, and we get
P2(ε) = ε + α(ε), which is a torsion section, equals η. Thus, τ̃ = tε ◦ α is a
suitable automorphism with m = d = 2 and G = 〈τ̃〉 = Z4 in this case (note
that G already contains tη = (τ̃)2).
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• Case 17a: We have kerΦ2 = 〈1/6〉 ⊕ Z3. Let η be an order 3 section of
B, then η intersects f∞ = I2 at θ0. Let ε ∈ kerΦ2 with height 1/6, then ε
intersects f∞ at θ1. We may have P2(ε) = ε+α(ε) as any of 0, η or η+ η. In
any case one of P2(ε), P2(ε+ η) or P2(ε+ η + η) is 0 (note that α(η) = η),
hence we get an allowed section for a suitable automorphism with m = 2
and d = 1. It is not possible to have a suitable automorphism with m = 2
and d = 3 since f∞ = I2 does not admit a free action of Z6. Considering
τ ∈ G with m = 2 and d = 1, if we also have tη ∈ G, then tη ◦ τ ∈ G has
m = 2 and d = 3, which is not possible. Therefore, G = Z2 in this case.
• Case 17b: We have kerΦ2 = A∗

1 ⊕ Z3. Let η be an order 3 section of B,
then η intersects f∞ = I6 at an order 3 component θ2 or θ4 and it intersects
f0 = IV at a non-neutral component. Let ε ∈ kerΦ2 with height 1/2, then
either it intersects f∞ = I6 at θ3 and f0 = IV at the neutral component, or
it intersects f∞ at θ1 or θ5 and f0 = IV at a non-neutral component. In the
former case, τ = tε ◦ α is a suitable automorphism with m = 2 and d = 1.
We have G = 〈tη, τ〉 = Z6 where tη ◦ τ is a suitable automorphism with
m = 2 and d = 3. In the latter case, τ = tε ◦ α is a suitable automorphism
with m = 2 and d = 3, hence G = 〈τ〉 = Z6 (here G already contains tη and
tη+η). In any case G = Z6 and G contains elements with both d = 1 and
d = 3.
• Case 18a: We have kerΦ2 = Z4 = 〈η〉 where the order 4 section η intersects
f0 = I8 at an order 4 component Γ2 or Γ6 and intersects f∞ = I2 at the
component θ1. The automorphism α maps Γi to Γ8−i (see the discussion
under Case 18 on page 36 in [2]). We get P2(η) = η + α(η) = 0, hence
τ = tη ◦ α is a suitable automorphism with m = 2 and d = 1. It is not
possible to have a suitable automorphism with m = d = 2 since f∞ = I2
does not admit a free action of Z4. Considering τ ∈ G, tη or tη+η+η cannot
be in G since tη ◦ τ and t3η ◦ τ have fixed points on f∞. But every element
of G = 〈tη+η, τ〉 = Z2 × Z2 is a suitable automorphism.
• Case 21a: We have kerΦ2 = [〈1〉 ⊕ Z2]

⊥ in A∗
1 ⊕ 〈1/4〉 ⊕ Z2 which equals

A∗
1 ⊕ Z2. Let η be the order 2 section of B, then α(η) = η and η intersects

f0 = I4 at the component Γ2, f∞ = I2 at the component θ0 and the other
two I2 fibers at non-neutral components. Let ε ∈ kerΦ2 with height 1/2, then
either ε intersects f0 at Γ0 and the three I2 fibers at non-neutral components
(hence intersects f∞ = I2 at θ1), or ε intersects f0 at Γ2 and one of the three
I2 fibers at a non-neutral component. In any case P2(ε) = ε+ α(ε) = 0 (the
zero section σ) since P2(ε) ∈ MWtors(B) = 〈η〉 and P2(ε) intersects f0 at the
component Γ0 whereas η intersects f0 at Γ2. In the former case, τ = tε ◦α is
a suitable automorphism with m = 2 and d = 1. In the latter case, P2(ε) = 0
implies that ε intersects f∞ = I2 at θ1 (otherwise, if ε intersects one of the
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other I2 fibers at a non-neutral component, then P2(ε) intersects these two
I2 fibers at non-neutral components, which contradicts P2(ε) = 0). Thus, in
this latter case τ = tε ◦ α is again a suitable automorphism with m = 2 and
d = 1. In any case G = 〈τ, tη〉 = Z2×Z2 consists of suitable automorphisms.
• Case 21b: We have kerΦ2 = [〈1〉 ⊕ Z2]

⊥ in (A∗
1)

⊕2 ⊕ Z2 which equals
〈1〉 ⊕ Z2. Let τ be the order 2 section of B, then η intersects f0 = I4 at the
component Γ2 and f∞ = I4 at the component θ2. Let ε ∈ kerΦ2 with height
1, then either ε intersects f0 at Γ2 or ε intersects f∞ at θ2. In the latter case
τ = tε ◦ α is a suitable automorphism with m = 2 and d = 1, and in the
former case τ = tη+ε ◦ α is such a suitable automorphism. It is not possible
to have a suitable automorphism with m = d = 2 since there is no section
γ ∈ kerΦ2 = 〈1〉⊕Z2 which intersects f∞ = I4 at θ1 or θ3 (since 〈γ, γ〉 is an
integer) so that P2(γ) = η. Considering τ ∈ G is a suitable automorphism
with m = 2 and d = 1, we cannot have tη ∈ G since tη ◦ τ ∈ G has a fixed
point on f∞. Thus, G = 〈τ〉 = Z2 in this case.
• Case 22a: We have kerΦ2 = Z4 × Z2. If we denote the fibers f0 and f∞
by Q and R, the two I2 fibers by S1 and S2, and their components by Qj ,
Rj , Si,k where i = 1, 2, j = 0, 1, 2, 3 and k = 0, 1 such that j = 0 and
k = 0 correspond to neutral components, then α maps Qj to Q4−j (see the
discussion under Case 22 on page 36 in [2]), Si,k to Si+1,k and maps Rj to
itself. We can describe the torsion sections of B by giving the intersection
tuples (a, b, c, d) of each as follows where the intersection tuple (a, b, c, d)
denotes that the torsion section intersects the components Qa, S1,b, S2,c and
Rd. The three order 2 sections of B are described by the intersection tuples
as η1 : (0, 1, 1, 2), η2 : (2, 1, 1, 0) and η1+η2 : (2, 0, 0, 2). The order 4 sections
of B are described as ω1 : (1, 1, 0, 1), ω2 : (3, 0, 1, 1), ω3 : (3, 1, 0, 3) and
ω4 : (1, 0, 1, 3). The order two automorphism α maps ω1 to ω2, ω3 to ω4 and
maps each order 2 section to itself. We have 2ωi = η1 + η2, −ω1 = ω3 and
−ω2 = ω4. Using this notation, the only suitable automorphisms with m = 2
and d = 1 are tη1

◦ α and tη1+η2
◦ α (note that tη2

◦ α is not suitable since if
has a fixed point on f∞ as η2 intersects f∞ at the neutral component R0). If
one of tη1

◦ α or tη1+η2
◦ α is in G then C cannot contain any translation by

a non-trivial torsion section except for tη2
since otherwise G contains α or

tη2
◦α which are not suitable automorphisms. In this case (for m = 2, d = 1)

we have G = 〈tη2
, tη1+η2

◦ α〉 = 〈tη2
, tη1

◦ α〉 = {1, tη2
, tη1

◦ α, tη1+η2
◦ α} =

Z2 × Z2. We have P2(ωi) = ωi + α(ωi) = η1 and ωi intersects f∞ = R at an
order 4 component R1 or R3, hence each of the automorphisms tωi

◦ α is a
suitable automorphism with m = d = 2. Considering tωi

◦α ∈ G, none of tωj

(j = 1, .., 4) is in G since otherwise we have α ∈ G, but α is not a suitable
automorphism. In this case (for m = d = 2) G = 〈tη2

, tω1
◦ α〉 = Z4 × Z2
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which contains all tωi
◦ α for i = 1, 2, 3, 4 and all tη where η is an order 2

section of B.
• Case 26a: We have MW (B)α = A∗

1 ⊕ Z2 and kerΦ2 = A∗
1 ⊕ (Z2 × Z2),

hence there exists δ ∈ MW (B)α and ε ∈ kerΦ2 which both have height
1/2 such that 〈δ, ε〉 = 0. We first determine the components of the six I2
fibers intersected by each torsion section in MWtors(B) = Z2 × Z2. Let η1,
η2 and η1 + η2 be the order 2 sections of B. If we denote f0 and f∞ by Q
and R and the other four I2 fibers by Si (i = 1, 2, 3, 4) and the components
of these singular fibers by Qj , Rj , Si,j where j = 0, 1, i = 1, 2, 3, 4 such that
j = 0 corresponds to neutral components, then without loss of generality
α maps S1,j to S2,j , S3,j to S4,j and maps each of the other components
to itself. Each of the order 2 sections intersects exactly four of the I2 fibers
at non-neutral components. Since α maps each torsion section to a torsion
section, we have two possibilities for the intersection tuples of the torsion
sections. If the tuple (a, b, c, d, e, f) means that the given section intersects
the components Qa, S1,b, ..., S4,e and Rf , then the first possibility is that the
intersection tuples of the torsion sections are given by η1 : (1, 1, 1, 0, 0, 1),
η2 : (1, 0, 0, 1, 1, 1) and η1+η2 : (0, 1, 1, 1, 1, 0). For the second possibility, we
have η1 : (1, 1, 0, 1, 0, 1), η2 : (1, 0, 1, 0, 1, 1) and η1 + η2 : (0, 1, 1, 1, 1, 0). The
first possibility does not occur as the following argument shows: For δ with
height 1/2 such that α(δ) = δ whose existence is shown above, δ has height
1/2 implies δ is disjoint from the zero section and it intersects exactly three
of the I2 fibers at non-neutral components. The same holds for the section
−δ. Assume that δ and −δ intersect f0 = Q at Q0. Since α has 2 fixed
points on Q0 one of which is σ ∩ Q and α(δ) = δ, we have δ and −δ both
intersect Q0 at the second fixed point of α on Q0 (note that δ and −δ are
disjoint from σ). The fact that δ and −δ intersect gives a contradiction when
we consider 〈δ,−δ〉 = −1/2. Thus, δ intersects f0 = Q at the component
Q1. Since α(δ) = δ, intersection tuple of δ must be one of (1, 1, 1, 0, 0, 0)
or (1, 0, 0, 1, 1, 0). The equalities 〈δ, η1〉 = 〈δ, η2〉 = 〈δ, η1 + η2〉 = 0 imply
that δ and each of the three order 2 sections have exactly two common
I2 fibers where they both intersect the non-neutral component. This is not
the case in the first possibility given above. Thus, the second possibility
occurs. As a result, we have α(η1) = η2 and α(η1 + η2) = η1 + η2. Let
ε ∈ kerΦ2 with height 1/2, then ε intersects three of the I2 fibers at non-
neutral components. The equalities 〈ε, η1〉 = 〈ε, η2〉 = 〈ε, η1 + η2〉 = 0 imply
that ε and each of the three order 2 sections have exactly two common
I2 fibers where they both intersect the non-neutral components. 〈δ, ε〉 = 0
implies δ and ε have 0 or 2 common I2 fibers where they both intersect the
non-neutral component. These conditions and P2(ε) = 0 or η1 + η2 reduce
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the possibilities for the intersection tuple of ε to the following four cases:
(0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 0, 1), (1, 1, 0, 0, 1, 0) and (1, 0, 1, 1, 0, 0). For the first
two cases, τ = tε ◦ α is a suitable automorphism with m = 2 and d = 1.
For the last two cases, τ = tε+η1

◦α is a suitable automorphism with m = 2
and d = 1. In any case we obtain the existence of τ ∈ G with m = 2 and
d = 1. It is not possible to have a suitable automorphism with m = d = 2
since f∞ = I2. Considering τ ∈ G, tη1

or tη2
cannot be in G since tηi

◦ τ
has a fixed point on f∞. But, G = 〈τ, tη1+η2

〉 = Z2 × Z2 consists of suitable
automorphisms.
• Case 26b: We have kerΦ2 = 〈1/4〉 ⊕ Z2. Let η be the order 2 section of
B, then α(η) = η and η intersects f∞ at the order 2 component θ2 and the
two I2 fibers different from f0 at the non-neutral components. τ = tη ◦ α is
a suitable automorphism with m = 2 and d = 1. Considering such a τ ∈ G
with m = 2 and d = 1, G cannot contain tη since tη ◦ τ has a fixed point
on f∞. Thus, for m = 2 and d = 1 case G = 〈τ〉 = Z2. We also have
m = d = 2 case. Let ε ∈ kerΦ2 with height 1/4, then ε intersects f∞ at an
order 4 component θ1 or θ3 and P2(ε) = η. Thus, τ̃ = tε ◦ α is a suitable
automorphism with m = d = 2. We get G = 〈τ̃〉 = Z4 (note that G already
contains tη).
• Case 27a: We have kerΦ2 = Z4×Z2. If we denote f0 = I2 and f∞ = I2 byQ
and R, the two I4 fibers by S1 and S2, and the components of these singular
fibers by Qj , Rj and Si,k where i = 1, 2, j = 0, 1 and k = 0, 1, 2, 3 such that
j = 0 and k = 0 correspond to neutral components, then without loss of
generality α maps Si,k to Si+1,k and α maps each of the other components to
itself. The intersection tuple (a, b, c, d) for a section means that this section
intersects the components Qa, S1,b, S2,c and Rd. The order 2 sections of B
are described by the intersection tuples as η1 : (1, 2, 0, 1), η2 : (1, 0, 2, 1) and
η1+η2 : (0, 2, 2, 0). The order 4 sections of B are described by the intersection
tuples as ω1 : (1, 1, 1, 0), ω2 : (1, 3, 3, 0), ω3 : (0, 3, 1, 1) and ω4 : (0, 1, 3, 1).
Here we can explain why we have a section with intersection tuple (1, 1, 1, 0)
instead of (0, 1, 1, 1) as follows: A torsion section ε which intersects S1,1

and S2,1 intersects either Q1 or R1, and satisfies α(ε) = ε. Assume that ε
intersects Q0 and R1. Choosing coordinates on Q0 = P

1 such that σ ∩ Q0

is 1 and the two intersection points of Q0 and Q1 are 0 and ∞, α maps z
to 1/z since α interchanges 0 and ∞ (α fixes 1 ∈ Q0 and does not fix Q0

pointwise, see the proof of Lemma 4.6 in [2]) and preserves the zero section
σ. Since α(ε) = ε, we get ε ∩ Q0 = −1 (note that non-zero torsion sections
are disjoint from the zero section σ, see Proposition 2.1 in [2]). This implies
that tε maps z to −z on Q0 and tε+ε is identity on Q0, hence (ε+ε)∩Q0 = 1.
But, ε+ ε is a non-trivial torsion section (it intersects S1,2 and S2,2), hence
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it is disjoint from the zero section σ, which contradicts (ε+ ε)∩Q0 = 1 ∈ σ.

Therefore, ε has intersection tuple (1, 1, 1, 0) instead of (0, 1, 1, 1). Using

the above descriptions of the torsion sections of B in terms of intersection

tuples, we can now conclude that τ = tω3
◦ α is a suitable automorphism

with m = 2 and d = 1. Every element of G = 〈tη1+η2
, τ〉 = Z2 × Z2 is a

suitable automorphism. There is no suitable automorphism with m = d = 2

since f∞ = I2 does not admit a free action of Z4.

• Case 27b: We have kerΦ2 = Z4 = 〈η〉. The order 4 section η intersects

f0 = I2 at the non-neutral component and f∞ = I8 at an order 4 component

θ2 or θ6. We have α(η) = η, P2(η) = P2(3η) = 2η which is the order 2 section

of B, hence τ = tη ◦α (and also τ̃ = t3η ◦α) is a suitable automorphism with

m = d = 2. We get G = 〈τ〉 = 〈τ̃〉 = Z4. Considering τ ∈ G, tη or t3η cannot

be in G (otherwise there are elements in G which have fixed points on f∞)

and τ2 = t2η is already in G. τ̄ = t2η ◦ α is a suitable automorphism with

m = 2 and d = 1 since P2(2η) = 0. Considering τ̄ ∈ G, none of tγ where γ

is a torsion section can be in G (otherwise G has elements which have fixed

points on f∞). Thus, for d = 1 case we have G = 〈τ̄〉 = Z2.

• Case 31a: We have kerΦ2 = A∗
1 ⊕ Z2 and MW (B)α = 〈1〉⊕2 ⊕ Z2. Let

ε ∈ kerΦ2 with height 1/2 and δ ∈ MW (B)α with height 1. Let η be the

order 2 section of B. If we denote f∞ = I2 by R, the other four I2 fibers

by Si, i = 1, 2, 3, 4, and the components of these singular fibers by Rj and

Si,j , j = 0, 1 such that j = 0 corresponds to the neutral components, then

without loss of generality α maps S1,j to S2,j , S3,j to S4,j and maps Rj to

itself for any j = 0, 1. The order 2 section η intersects four of the five I2 fibers

at non-neutral components, and since α(η) = η, η intersects f∞ = I2 at the

neutral component R0. ε intersects three of the five I2 fibers at non-neutral

components. Since P2(ε) = η or σ (zero section), ε intersects R1. δ has

height 1 and α(δ) = δ implies that the non-neutral components δ intersects

are either (S1,1, S2,1) or (S3,1, S4,1). Using the explicit formula of the height

pairing in 〈ε, δ〉 = 0, we can conclude that there are 0 or 2 common I2 fibers

where both ε and δ intersect these fibers at non-neutral components. As

a result, ε intersects the components (S1,1, S2,1, R1) or (S3,1, S4,1, R1), and

in any case P2(ε) = σ. Thus, τ = tε ◦ α is a suitable automorphism with

m = 2 and d = 1. There is no suitable automorphism with m = d = 2 since

f∞ = I2. Every element of G = 〈tη, τ〉 = Z2×Z2 is a suitable automorphism.

• Case 31b: Let η be the order 2 section of B, then η intersects f∞ = I4
at the order 2 component θ2 and P2(η) = 0. Thus τ = tη ◦ α is a suitable

automorphism with m = 2 and d = 1. Since f0 = I0 (a smooth fiber), it

is not possible to have any suitable automorphism with m = d = 2 (see
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Lemma 4). Considering τ̃ ∈ G with m = 2 and d = 1, G cannot contain tη
since tη ◦ τ̃ has a fixed point on f∞. Therefore, G = 〈τ〉 = Z2 in this case.
• Case 32a: We have kerΦ2 = Z2×Z2. Two of the three order 2 sections, η1
and η2, intersect f∞ = I4 at the order 2 component θ2, and η1+η2 intersects
f∞ at θ0. Note that α maps each torsion section to itself since B is obtained
by pull-back of the elliptic surface B̂ via the map g2 (see §4 in [2]) and
MWtors(B̂) = Z2 × Z2. We have τ = tηi

◦ α is a suitable automorphism
with m = 2 and d = 1 for each i = 1, 2. Since f0 = I0, there is no suitable
automorphism with m = d = 2. We have G = 〈tη1+η2

, tη1
◦ α〉 = Z2 × Z2 in

this case.
• Case 33a: We have kerΦ2 = Z4. Let η be an order 4 section of B. If we
denote f∞ = I2 by R, the two I4 fibers by S1 and S2, and the components
of these singular fibers by R0, R1, Si,j where i = 1, 2 and j = 0, 1, 2, 3 where
subindex 0 corresponds to neutral components, then without loss of general-
ity α maps S1,j to S2,j for all j, and α maps Ri to itself for all i. η intersects
f∞ = I2 = R at the non-neutral component R1, S1 = I4 at S1,1 or S1,3 and
S2 at S2,1 or S2,3. We first show that η intersects (S1,1, S2,3) or (S1,3, S2,1) by
considering δ ∈ MW (B)α with height 1/2. α(δ) = δ and 〈δ, δ〉 = 1/2 implies
that δ intersects (S1,1, S2,1) or (S1,3, S2,3). In any case 〈η, δ〉 = 0 implies the
contributions at the two I4 fibers in the explicit formula of the height pairing
must add up to an integer, hence η intersects (S1,1, S2,3) or (S1,3, S2,1) as
claimed. Thus, α(η) �= η, hence α(η) = 3η. We have P2(η) = η + α(η) = 0.
Since η intersects f∞ = I2 at R1, τ = tη ◦α is a suitable automorphism with
m = 2 and d = 1. Since f0 = I0, a suitable automorphism with m = d = 2
is not possible (see Lemma 4). We get G = 〈t2η, τ〉 = Z2 × Z2 in this case.
• Case 33b: We have kerΦ2 = Z2. If η is the order 2 section of B, then
η intersects f∞ = I8 at the order 2 component θ4 and P2(η) = 0. Thus,
τ = tη ◦ α is a suitable automorphism with m = 2 and d = 1. Considering
τ ∈ G, C cannot contain tη since tη ◦ τ has a fixed point on f∞. Thus, we
have G = 〈τ〉 = Z2 in this case. Note that since f0 = I0, there is no suitable
automorphism with m = d = 2.

5. Construction of free actions on Schoen 3-folds with
non-trivial induced action on P

1

In this section we use the information obtained in the previous section and
construct the smooth or singular Schoen 3-folds X = B1×P1 B2 which admit
a free action of a finite group G with non-trivial induced action on the base
curve P

1 (m > 1 case) where for the singular 3-folds X we require that the
singularities of X are on Ir × Is type fibers with r > 1 and s > 1 so that
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the small resolution of X is a projective Calabi-Yau 3-fold. In the paper [2],
Bouchard and Donagi have produced the list of groups G which act on a
rational elliptic surface B with section such that (B, τ) is a suitable pair for
each τ ∈ G, ψ(G) is a cyclic subgroup of Autσ(B), and f∞ is a smooth fiber
of B in Table 8 and Table 9 (pages 47–49 in [2]). For easy reference in the
proceeding discussion, we include a copy of this list in Table 3 in this paper.
We will call these group actions general type group actions. In Table 2 in the
previous section we listed such group actions where f∞ of B is a singular
fiber of type Imr (m > 1 and r ≥ 1) (see Lemma 11), and we will call
these group actions special type group actions. Bouchard and Donagi have
classified the free actions on smooth Schoen 3-folds X = B1 ×P1 B2 where
both actions on B1 and B2 are general type. We now construct smooth or
singular Schoen 3-folds X which admit a free action by a finite group G with
non-trivial induced action on P

1 (where in the smooth X case at least one
of the actions on B1 and B2 is special type). Note that for such an action,
the induced action is cyclic, hence ψ(G) ⊂ Autσ(Bi) is cyclic (see §3.3).
Furthermore, for each τ1× τ2 ∈ G, each (Bi, τi) is a suitable pair, hence G is
isomorphic to a subgroup of Aut(Bi) consisting of suitable automorphisms
(see §3.2). As a result, in order to construct such group actions, we choose
B1 and B2 from Table 3 (Tables 8 and 9 in [2]) or Table 2 (where at least one
is chosen from Table 2 if X is smooth) which admit the action of the same
group G. That is, if Bi is listed under the group Gi in these tables, then G is
a subgroup of Gi for each i = 1, 2. We also require that the induced actions
of G on the base curve P

1 are isomorphic for B1 and B2. We form the fiber
product X = B1 ×P1 B2 after changing the coordinates in the base curve P

1

of B2 by interchanging 0 and ∞ and then identifying the two base curves by
an automorphism z �→ μz of P1 which fixes 0 and ∞. After this change of
coordinates, the fiber of X over 0 ∈ P

1 is f10 × f20 and the fiber of X over
∞ ∈ P

1 is f1∞ × f2∞ (Here the f0 and f∞ fibers of B2 are denoted by f2∞
and f20, respectively, due to the change of coordinates on P

1 while f0 and
f∞ fibers of B1 are denoted by f10 and f1∞, respectively). We determine if
there exists an isomorphism Δ : G → G such that τ and Δ(τ) have the same
m and d values and φ(τ) = φ(Δ(τ)) for all τ ∈ G (This is a simple task since
G is abelian with at most two generators). Here we consider the domain of Δ
as G ⊂ Aut(B1) and the image of Δ as G ⊂ Aut(B2). By definition, (B1, τ)
and (B2,Δ(τ)) are suitable pairs for each τ ∈ G. For every τ ∈ G with
m > 1, 〈τ〉 acts freely on f1∞ and 〈Δ(τ)〉 acts freely on f20. The isomorphic
copy {(τ,Δ(τ)) ∈ G × G|τ ∈ G} ⊂ Aut(B1) × Aut(B2) of G acts on X
where (τ,Δ(τ)) is the automorphism τ × Δ(τ) of X using our notation in
the previous sections. If X is smooth, then the action of G on X is free by
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definition of suitable pairs (see §3 in [2]). If X is singular, to conclude that
this action of G on X is free, we only need to check that the non-identity
automorphisms of the form tε1 × tε2 in this group G ⊂ Aut(B1) × Aut(B2)
have no fixed points on X (see Lemma 3). With these guidelines to construct
free actions on Schoen 3-folds, we can prove the following two theorems by
examining the cases in Table 2 and Table 3.

5.1. Free action on smooth Schoen 3-folds

Theorem 12. The smooth Schoen 3-folds X = B1 ×P1 B2 which admit a
free action by a finite group G such that the induced action on P

1 is non-
trivial and at least one of the actions of G on B1 and B2 is special type
(f∞ fiber is a singular fiber of type Imr) are as listed in Table 4. In Table 4
the numbers in brackets refer to the case numbers in Table 3 (general type
actions), and the numbers not in brackets in the columns B1 and B2 refer
to the case numbers in Table 2 (special type actions).

Proof. The general strategy of the proof is as explained above. We consider
elliptic surfaces B1 and B2 admitting the action of the same group G where
the action on P

1 is non-trivial and there is an isomorphism Δ : G → G as
mentioned above. At least one of B1 and B2 is chosen from Table 2. To have
a smooth fiber product X, at least one of f10 and f20, and at least one of f1∞
and f2∞ must be a smooth fiber (fiber of type I0), and the automorphism
z �→ μz of P1 mentioned in the above construction must be chosen such that
the singular fibers of B1 and B2 are not paired over the same point in the
fiber product B1 ×P1 B2. With these remarks, the proof is completed by a
case by case analysis through the Tables 2 and 3.

Remark. The suitable pairs (B, τ) with m > 1 where f∞ is not a smooth
fiber were excluded from the analysis in the paper [2]. Theorem 12 displays
the results when such cases are included in the analysis. When Table 4 is
examined, the same groups G (except for Z5) appear as in the results listed
in Table 11 in [2]. For each group G in Table 4, the dimension of the moduli
space of the Schoen 3-folds X admitting the free action by G is strictly
smaller than the dimension of the corresponding moduli space obtained in
Table 11 in [2].

5.2. Free action on singular Schoen 3-folds

Theorem 13. All singular Schoen 3-folds X = B1×P1 B2 with singularities
on Ir×Is type fibers (r > 1, s > 1) which admit a free action by a finite group
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Table 3: Finite groups G ⊂ Aut(B) which consist of suitable automorphisms
where ψ(G) = 〈α〉 = Zm (m > 1) and f∞ is of type I0 (smooth fiber), general
type actions. (A copy of Tables 8 and 9 in [2] with less details)

G  m d dim Sing. fibers T f0
Z3 × Z3 [9] 3 1 1 I33I

3
1 A⊕3

2 I0
Z4 × Z2 [10] 4 1 1 I42I

4
1 A⊕4

1 I0
[11] 2 2 or 1 1 I24I2I

2
1 A⊕2

3 ⊕A1 I2
[12] 2 2 1 I4I

4
2 A3 ⊕A⊕4

1 I4
Z6 [13] 6 1 1 I121 0 I0

[14] 3 2 or 1 1 III I32I
3
1 A⊕4

1 III
[15] 2 3 or 1 1 IV I23I

2
1 A⊕3

2 IV
Z5 [16] 5 1 1 II I101 0 II
Z4 [17] 4 1 2 I121 0 I0

[18] 4 1 1 IV I81 A2 IV
[19] 2 2 2 I52I

2
1 A⊕5

1 I2
[20] 2 2 1 I∗0 I

2
2I

2
1 D4 ⊕A⊕2

1 I∗0
Z2 × Z2 [21] 2 1 3 I42I

4
1 A⊕4

1 I0
[22] 2 1 2 I62 A⊕6

1 I0
[23] 2 1 2 I24I

4
1 A⊕2

3 I0
[24] 2 1 2 I52I

2
1 A⊕5

1 I2
[25] 2 1 2 I4I

2
2I

4
1 A3 ⊕A⊕2

1 I4
[26] 2 1 1 I4I

4
2 A3 ⊕A⊕4

1 I4
[27] 2 1 1 I8I

4
1 A7 I8

[28] 2 1 1 I∗0 I
2
2I

2
1 D4 ⊕A⊕2

1 I∗0
[29] 2 1 0 I∗0 I

∗
0 D⊕2

4 I0
Z3 [30] 3 1 3 I121 0 I0

[31] 3 1 2 I32I
6
1 A⊕3

1 I0
[32] 3 1 2 III I91 A1 III
[33] 3 1 1 I∗0 I

6
1 D4 I∗0

Z2 [34] 2 1 5 I121 0 I0
[35] 2 1 4 I22I

8
1 A⊕2

1 I0
[36] 2 1 4 I2I

10
1 A1 I2

[37] 2 1 3 I23I
6
1 A⊕2

2 I0
[38] 2 1 3 I32I

6
1 A⊕3

1 I2
[39] 2 1 3 I4I

8
1 A3 I4

[40] 2 1 3 IV I81 A2 IV
[41] 2 1 2 I23I2I

4
1 A⊕2

2 ⊕A1 I2
[42] 2 1 2 I6I

6
1 A5 I6

[43] 2 1 2 IV I22I
4
1 A2 ⊕A⊕2

1 IV
[44] 2 1 2 I∗0 I

6
1 D4 I∗0

[45] 2 1 1 IV ∗I41 E6 IV ∗



192 Tolga Karayayla

Table 4: Groups G which act on a smooth Schoen 3-fold X = B1 ×P1 B2

freely where the induced action on P
1 is non-trivial and at least one of the

actions on B1 and B2 is special type

G B1 B2

Z3 × Z3 1 [9],1.
Z4 × Z2 2 [10],2.
Z6 4 [13],4.
Z4 2,8,9,10. [10],[17].

2,8,10. 2,8,10.
Z3 1,4,5,14–20. [9],[13],[30],[31].

1,4,14,16,17,20. 1,4,14,16,17,20.
Z2 × Z2 2,21–29. [10],[21],[22],[23],[29].

2,21,24,25. 2,21,24,25.
Z2 2,4,6,8–10,21–53. [10],[13],[17],[21]–[23],

[29],[34],[35],[37].
2,4,8,10,21,24,25, 2,4,8,10,21,24,25,
30,32,33,38–40,49. 30,32,33,38–40,49.

Table 5: Finite groups G which act freely on singular Schoen 3-folds X =
B1 ×P1 B2 with non-trivial induced action on P

1 such that the singularities
of X are on Ir × Is type fibers over points different from 0 and ∞ ∈ P

1

G B1 B2

Z3 × Z3 1,[9]. 1,[9].
Z4 × Z2 2,[10]. 2,[10].

[11] [11]
[12] [12]

Z6 [14] [14]
[15] [15]

Z4 2,[10]. 2,[10].
[11],[12],[19],[20]. [11],[12],[19],[20].

Z3 1,16. 1,16.
[9],[14],[31]. [9],[14],[31].
1,16,19. [9],[31].

Z2 × Z2 2,21,24,25. 2,21,24,25.
[10],[11],[21]–[26],[28]. [10],[11],[21]–[26],[28].
2,21–26,28,29. [10],[21],[22],[23].

Z2 2,21,24,25,32,38,40. 2,21,24,25,32,38,40.
2,21–26,28,29,32,36, [10],[21],[22],[23],[35],[37].
38,40,42,46,48,52.
[10],[11],[15],[21]–[26], [10],[11],[15],[21]–[26],
[28],[35],[37],[38],[41],[43]. [28],[35],[37],[38],[41],[43].
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Table 6: Finite groups G which act freely on singular Schoen 3-folds X =
B1 ×P1 B2 with non-trivial induced action on P

1 such that the singularities
of X are on Ir × Is type fibers over 0 and/or ∞ ∈ P

1

G B1 B2

Z4 × Z2 3 3,[12].
Z4 3,11,13. 3,11,13.

3,11,12,13. [11],[12],[19].
Z2 × Z2 2,21,22,24,25,27,28. 22,27,28.

2,21–29. [25],[26],[27].
Z2 2,4,8,10,21–25, 22,23,27–29,31,

27–33,35–40,44–49,53. 35–37,44–48,53.
2,4,6,8–10,21–53. [11],[24]–[27],[36],

[38],[39],[41],[42].

Table 7: Finite groups G which act freely on singular Schoen 3-folds X =
B1 ×P1 B2 with non-trivial induced action on P

1 such that the singularities
of X are on Ir × Is type fibers over 0 and/or ∞, and some other points
p ∈ P

1

G B1 B2

Z4 × Z2 3 3,[12].
Z4 3,11. 3,11,[11],[12],[19].

Z2 × Z2 2,21,22,24,25,28. 22,28.
2,21–26,28,29. [25],[26].

Z2 2,21–25,28,29,32,36,38,40,46,48. 22,23,28,29,36,46,48.
2,21–26,28,29,32,36,38,40,42,46,48,52. [11],[24]–[26],[38],[41].

G such that the induced action on P
1 is non-trivial are listed in Tables 5, 6

and 7.
If we denote the two fixed points of the induced automorphisms in φ̃(G)

by 0 ∈ P
1 and ∞ ∈ P

1, Table 5 lists the cases where the singularities of
X are not on the fibers over 0 and ∞, Table 6 lists the cases where X has
singularities only on the fibers over 0 or ∞, and Table 7 lists the cases where
X has singularities on fibers over 0 or ∞ and also on other fibers.

Proof. We consider the elliptic surfaces B1 and B2 chosen from Tables 2
and 3 admitting the action of the same group G where the induced action
on P

1 is non-trivial, there is an isomorphism Δ : G → G as mentioned in
the general construction given in the beginning of §5, and the fiber product
X = B1 ×P1 B2 is singular such that all singularities are on fibers of type
Ir × Is (r > 1, s > 1). We group the results in three categories according
to whether the singularities of X occur on fibers over 0 and/or ∞ ∈ P

1, or
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over other points on P
1, or both. For pairs (B1, B2) where the fiber product

X does not have singularities over 0 and ∞, depending on the choice of the
automorphism z �→ μz of P1 mentioned in the general construction, X may
have singularities over points different from 0 and ∞. We search for the pairs
(B1, B2) for which the singularities of X are only on fibers of type Ir × Is
with r > 1 and s > 1. For the pairs (B1, B2) where X has singularities on
such Ir × Is fibers over 0 or ∞, we can choose the automorphism z �→ μz of
P
1 such that X does not have other singularities.

These are the pairs to be considered for Table 6. But, we may also choose
the automorphism z �→ μz such that X has singularities on fibers of type
Ir × Is (r > 1 and s > 1) over points different from 0 and ∞ ∈ P

1, and
these are the cases to be considered for Table 7. In all of these cases under
consideration, to conclude that the action of G on the singular 3-fold X is
free, we need to check that the non-identity automorphisms of type tε × tδ
of X in G do not have fixed points on X. Note that the singularities of the
3-folds X under consideration are only on fibers of type Ir × Is (r > 1 and
s > 1), and tε × tδ has a fixed point on X iff ε intersects Ir and δ intersects
Is at neutral components on one of such Ir × Is fibers of X. With these
remarks, the proof is completed by a careful case by case analysis through
Tables 2 and 3 (consulting the proof of Lemma 11 for a detailed description
of the elements of G if necessary). The only subtle point worth noting is the
following: For the action of Z2 × Z2 where X has singularities over 0 or ∞
(Table 6), and possibly over other points on P

1 (Table 7), the choice of B1

or B2 as Case 23 or 29 from Table 2, or Case [11] or [24] from Table 3 does
not result in a free action of Z2 × Z2 on X if the other surface (B1 or B2)
is chosen from Table 2. Suppose without loss of generality that B1 is one
of these four cases and B2 is chosen from Table 2 such that Z2 × Z2 acts
on B1 ×P1 B2. In this case, there is one non-identity automorphism of type
tε×tδ and it has a fixed point on the fiber f10×f20 (since ε intersects f10 and
δ intersects f20 at neutral components. Note that here f20 is the fiber of B2

which is denoted as f∞ in Table 2 as explained in the general construction
in the beginning of §5).

6. Lifting the free action to a projective small resolution of
X

In Theorem 13 in the previous section we classified all finite groups G which
act freely on a singular Schoen 3-fold X = B1 ×P1 B2 such that the induced
action on P

1 is non-trivial and the singularities of X are on Ir × Is fibers
with r > 1 and s > 1. Such singular Schoen 3-folds X have projective small
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resolutions X̂ which are simply connected Calabi-Yau 3-folds. In this section
we determine which of the free group actions classified in Theorem 13 can
be lifted to a free action on a desingularization X̂ of X by small resolutions.
Note that in the case where β−1(p) is a fiber of type Ir × Is with r > 1
and s > 1 for all p ∈ S (see §2), the small resolutions of X are obtained
by blowing up X along a sequence of divisors of the form θi × Γj where θi
and Γj are components of the singular fibers Ir and Is so that the resulting
3-fold is projective (see Lemma 3.1 in [7]). There are two non-isomorphic
small resolutions over Y at an ordinary double point singularity on a 3-fold
Y (see §1 in [7]). For an ordinary double point (a, b) on a fiber Ir × Is of X
where a is on the components θi and θi+1 of the singular fiber Ir of B1 and b
is on the components Γj and Γj+1 of the fiber Is on B2, the small resolution
at (a, b) performed by blowing up the divisor θi × Γj or blowing up the
divisor θi+1 × Γj+1 are isomorphic over X. Similarly the small resolution
performed by blowing up the divisor θi × Γj+1 or blowing up the divisor
θi+1 × Γj are isomorphic to each other over X. But, the small resolution
obtained by blowing up θi × Γj or blowing up θi+1 × Γj are non-isomorphic
over X. Schoen has discussed the problem of lifting an involution τ1 × τ2
which acts on a singular Schoen 3-fold X = B1 ×P1 B2 to an automorphism
of the desingularization of X by small resolutions in §6 in [7]. Generalizing
the argument given by Schoen, we obtain the following criterion for lifting
an automorphism τ1 × τ2 of X to an automorphism of the small resolution
X̂ of X.

Lemma 14. Let 〈τ1×τ2〉 act freely on a singular Schoen 3-fold X = B1×P1

B2 where the singularities of X are on fibers of type Ir × Is such that r >
1 and s > 1. If the orders of τ1 and τ2 are n and there is a component
θi × Γj of an Ir × Is fiber of X such that the blow up of the divisors θi × Γj,
τ1(θi)×τ2(Γj), τ

2
1 (θi)×τ22 (Γj), ..., τ

n−1
1 (θi)×τn−1

2 (Γj) in any order results in
isomorphic partial resolutions X̃ over X, then 〈τ1× τ2〉 lifts to a free action
on X̃.

The action of 〈τ1 × τ2〉 on X lifts to a free action on a desingulariza-
tion X̂ of X by small resolutions if there is a sequence of partial resolu-
tions X̃k of X ending with X̂ such that X̃k+1 is isomorphic to the blow up
of X̃k at the proper transforms in X̃k of the divisors θik × Γjk , τ1(θik) ×
τ2(Γjk), ..., τ

n−1
1 (θik)× τn−1

2 (Γjk) in any order for some component θik ×Γjk

of a fiber Ir× Is of X (so that the action lifts to a free action on each partial
resolution X̃k+1 step by step).

Proof. Note that when the action on X is free, the lifted action on X̂ is
free since the lift of a non-trivial automorphism maps an exceptional P1 of
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the small resolution to a different exceptional P1 (if a singular point Q1 is
mapped to a singular point Q2, the exceptional P

1 over Q1 is mapped to the
exceptional P1 over Q2 in the resolution).

For a 3-fold Y and an ordinary double point Q ∈ Y there are two small
resolutions of Y at Q which are non-isomorphic over Y . The projectivized
tangent cone of Y atQ is isomorphic to P1×P

1. Let S1 and S2 be two surfaces
on Y which contain Q. If the tangent planes of S1 and S2 at Q correspond
to P

1 in the same ruling of the projectivized tangent cone P
1 ×P

1, then the
small resolution of Y at Q along the surfaces S1 and S2 are isomorphic over
Y , and if they correspond to P

1 in different rulings of P1 × P
1, the small

resolutions at Q are not isomorphic over Y (see §1 in [7]). Small resolution
is a local operation. If there is an isomorphism between a neighborhood U
of an ordinary double point Q of a 3-fold Y and a neighborhood U ′ of an
ordinary double point Q′ of a 3-fold Y ′ which maps a surface S containing Q
to a surface S′ containing Q′, then the isomorphism lifts to an isomorphism
from the small resolution of U along S to the small resolution of U ′ along S′.
But if the small resolution of U ′ is along another surface which yields a non-
isomorphic small resolution over U ′, then the given isomorphism between U
and U ′ does not lift to the small resolutions.

In this lemma, we consider small resolutions of a Schoen 3-fold X ob-
tained by blowing up X along a sequence of divisors so that the resolution
is projective. Assume that blowing up the divisors in the orbit of the divisor
θi×Γj under the group action in any order results in isomorphic partial reso-
lutions of X. Let X̄ be such a partial resolution of X. Consider any ordinary
double point Q1 of X on one of the given divisors Dk = τk1 (θi) × τk2 (Γj).
The small resolution at Q1 is isomorphic over X to the small resolution at
Q1 obtained by blowing up Dk (even if the singularity at Q1 is resolved
by blowing up another divisor before Dk, the order of blow ups does not
change the isomorphism class of the resolutions). Let τ1× τ2 map Q1 to Q2.
Similarly the small resolution of X at Q2 is isomorphic over X to the reso-
lution obtained by blowing up Dk+1. Since τ1× τ2 maps Dk to Dk+1, by the
above argument we can conclude that the birational isomorphism τ1 × τ2 of
X̄ extends to a rational map mapping EQ1

(the exceptional P1 of the small
resolution over Q1) to EQ2

. This way, τ1 × τ2 extends to an isomorphism of
X̄. This completes the proof of the first statement of the lemma. The second
statement is a direct consequence of the first statement.

The groups which act on a singular Schoen 3-fold listed in Theorem 13
are cyclic or abelian with two generators. In the former case, Lemma 14
directly applies in order to check the lifting to a free action on the resolution.
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In the latter case, in order to conclude that the whole group action lifts to
a free action on the resolution, it suffices to check that the action of each
of the two generators separately lifts to a free action on the same resolution
since the commutator of the lifted automorphisms is the lift of the identity,
hence the lifted automorphisms commute.

6.1. Lifting the actions listed in Table 6

For the cases listed in Table 6, the only singularities of X are on the fibers
over 0 or ∞ ∈ P

1, i.e., the fiber over 0 or ∞ (or both) is of the form Ir × Is
with r > 1 and s > 1. One of the Ir and Is fibers is f0 of the surfaces
B1 or B2 and the other fiber is the f∞ of the other surface (recall that
in X = B1 ×P1 B2 the fiber f0 and f∞ of B2 is denoted as f2∞ and f20
respectively as fibers over ∞ and 0 due to the change of coordinates on the
base curve P

1 of B2 as explained in §5). To simplify the notation in the
discussion, we will always consider the first fiber Ir in Ir × Is fiber as the
f0 fiber of one of the surfaces B1 and B2, and the second fiber Is as the
f∞ fiber of the other surface (that is, for the fiber f1∞ × f2∞ we will abuse
the notation and denote it by f2∞ × f1∞ interchanging the positions of the
fibers so that the one on the left is f0 fiber of one of the surfaces). We will
denote the components of Ir by θi, 0 ≤ i < r and the components of Is by
Γj , 0 ≤ j < s.
• Lifting the Z4 action: Let τ = tε ◦ α be a generator of Z4. In any of
the cases, ε intersects f∞ at an order 4 component. Hence, after renaming
the components of f∞ = Is if necessary, τ maps Γi to Γi+1 if f∞ = I4 and
maps Γi to Γi+2 if f∞ = I8. For the cases f0 = I2, τ maps θi to θi+1 (since
ε intersects f0 at θ1). For the cases f0 = I4, τ interchanges θ0 and θ1, and
interchanges θ2 and θ3. If Ir × Is = I2 × I8, the orbit of the divisor θ0 × Γ0

under the Z4 action is θ0×Γ0 → θ1×Γ2 → θ0×Γ4 → θ1×Γ6, and the action
lifts to a free action on the resolution of X obtained by blowing up all of
these divisors by Lemma 14 (Note that blowing up the given four divisors
resolves all singularities on this I2× I8 fiber). Similarly, for Ir × Is = I2× I4
blowing up the divisors in the orbit θ0 × Γ0 → θ1 × Γ1 → θ0 × Γ2 → θ1 × Γ3

resolves all singularities on I2 × I4 fiber and the action lifts to this partial
resolution by Lemma 14. For Ir × Is = I4 × I4 we need to blow up the
divisors in the two orbits θ0 × Γ0 → θ1 × Γ1 → θ0 × Γ2 → θ1 × Γ3 and
θ2×Γ0 → θ3×Γ1 → θ2×Γ2 → θ3×Γ3. And lastly, for Ir×Is = I4×I8, we need
to blow up the divisors in the orbits θ0×Γ0 → θ1×Γ2 → θ0×Γ4 → θ1×Γ6

and θ2×Γ0 → θ3×Γ2 → θ2×Γ4 → θ3×Γ6. In all cases the resulting partial
resolutions are isomorphic no matter in which order the divisors are blown up
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in each orbit. The blow up of all the listed divisors resolves all singularities on
the given Ir×Is fiber and the action lifts to the partial resolutions obtained.
Since in all cases the action lifts to the partial resolutions, the action lifts
to the full resolution when singularities on both fibers over 0 and ∞ are
resolved.

In the remaining cases, the arguments will be similar to the discussion
in the above paragraph. We will only give the orbits of divisors that need
to be blown up to resolve the singularities on the given Ir × Is fiber so that
the action lifts to the partial resolution for this fiber.
• Lifting the Z4 × Z2 action: For this action we consider the cases 3 × 3
and 3× [12] from Table 6. In any of these cases, we have Ir×Is = I4×I4. We
have shown above that Z4 action lifts to a free action on the full resolution
of X if we blow up the following divisors in the two orbits for each Ir × Is
fiber: θ0 × Γ0 → θ1 × Γ1 → θ0 × Γ2 → θ1 × Γ3 and θ2 × Γ0 → θ3 × Γ1 →
θ2 × Γ2 → θ3 × Γ3. The second generator of Z4 × Z2 is an automorphism
of the form tη where η is an order 2 section of Bi. This generator tη sends
each component Γi of f∞ = I4 to itself or to Γi+2 in Case 3 depending on
whether η intersects f∞ at the component Γ0 or Γ2. In both of the Cases 3
and [12], tη acts on f0 = Ir = I4 by mapping θi to θi+2. The 8 divisors listed
above are permuted under the action by tη1

×tη2
on X. Since the blow ups of

the 8 listed divisors in any order result in isomorphic resolutions, the second
generator of the Z4 × Z2 also lifts to the same resolution X̂. Therefore, the
Z4 × Z2 action lifts to a free action on X̂.
• Lifting the Z2 action: For all cases in Table 6, r and s are both even
whenever X has a fiber of the form Ir × Is over 0 or ∞ ∈ P

1. Let r = 2a
and s = 2b. If τ is the order two automorphism of B1 or B2, then τ acts
on f∞ = Is = I2b by mapping the component Γj to Γj+b. The action of τ
on the components of f0 = Ir = I2a is one of two types. Type 1 action is
by mapping two components θc and θc+a to themselves for some c and by
interchanging θc+i and θc−i for each 1 ≤ i < a (the subindices are considered
modulo r = 2a for components θj of f0). Type 2 action on f0 = I2a is by
interchanging the components θc+i and θc−1−i for each 0 ≤ i < a for some
c. Note that τ = tε ◦α and α maps θi to θ−i, and tε maps θi to θi+d for each
0 ≤ i < r = 2a where the section ε intersects the fiber f0 at the component
θd. Whether the action of τ on f0 is of type 1 or type 2 depends on d being
even or odd.

Let Ir × Is = I2a × I2 where a > 1. If we resolve all singularities on
this Ir × Is fiber by blowing up the divisors in the sequence of Z2 orbits
θc+i × Γ0 → θc−i × Γ1 where 1 ≤ i < a in the type 1 action case, then
the Z2 action lifts to this partial resolution. Similarly, for type 2 action
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case, we need to blow up the divisors in the sequence of Z2 orbits given by

θc+i×Γ0 → θc−1−i×Γ1 for 0 ≤ i < a so that the Z2 action lifts to this partial

resolution. Note that the order of divisors chosen in any of these orbits does

not change the resolution obtained.

Let now Ir×Is = I2a×I2b where a ≥ 1 and b > 1. No matter the action on

f0 is of type 1 or type 2, the Z2 = 〈τ1×τ2〉 action lifts to the partial resolution

obtained by blowing up the divisors in the following sequence of Z2 orbits:

θ0×Γ0 → τ1(θ0)×Γb, θ2×Γ0 → τ1(θ2)×Γb, ..., θ2a−2×Γ0 → τ1(θ2a−2)×Γb,

θ0 × Γ1 → τ1(θ0)× Γb+1, ..., θ2a−2 × Γ1 → τ1(θ2a−2)× Γb+1, ..., θ0 × Γb−2 →
τ1(θ0)×Γ2b−2, ..., θ2a−2×Γb−2 → τ1(θ2a−2)×Γ2b−2. In short we blow up the

divisors in the Z2 orbits containing the divisors θ2i × Γj where 0 ≤ i < a

and 0 ≤ j ≤ b− 2. The blow up of these divisors resolve all singularities on

this Ir × Is fiber.

Let Ir × Is = I2 × I2. In all cases in Table 6 with G = Z2 and f0 = I2,

the action of τ on f0 = I2 is by mapping θi to itself for i = 0, 1. Then the

Z2 orbits we obtain are θ0 × Γ0 → θ0 × Γ1 and θ1 × Γ0 → θ1 × Γ1, and in

any of these two orbits the blow ups of the divisors in different orders result

in non-isomorphic partial resolutions. Blowing up any of these four divisors

resolves all singularities on the I2× I2 fiber. If we blow up θ0×Γ0 to resolve

all singularities on I2 × I2, then for an ordinary double point Q1 on I2 × I2
which is mapped to Q2 by τ1×τ2 this map extends locally to a map from the

small resolution of X at Q1 along θ0×Γ0 to the small resolution of X at Q2

along θ0 × Γ1. But, the singularity at Q2 has already been resolved by the

blow up of θ0 × Γ0 which gives a small resolution at Q2 non-isomorphic to

the small resolution at Q2 along θ0×Γ1. This means that the map does not

lift to the given partial resolution obtained by blowing up θ0×Γ0. A similar

argument works if we blow up a different divisor to resolve the singularities

on I2 × I2. Therefore, the Z2 action does not lift to the resolution of X if X

contains a fiber of type I2 × I2 over 0 or ∞.

• Lifting the Z2 × Z2 action: In the singular Schoen 3-folds X listed in

Table 6 for G = Z2 × Z2, for the Ir × Is fibers over 0 or ∞ ∈ P
1 we have

f0 = Ir is either I4 or I8 and f∞ = Is is either I2 or I4. G = Z2 × Z2 has

two order 2 generators τ and tη where m = 2 for τ and m = 1 for tη. The

action of τ on f∞ = Is is by mapping Γi to Γi+s/2 and the action of tη on Is
is by mapping Γi to itself for all i. The action of tη on f0 = Ir is by mapping

θi to θi+r/2 for all i. In all the cases we consider, we can choose the order

2 generator τ of Z2 × Z2 such that its action on f0 = Ir is as follows (τ

or the other automorphism with m = 2, namely tη ◦ τ has the given action

on Ir): For Ir = I4, θ0 and θ2 are interchanged, θ1 and θ3 are mapped to
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themselves, and for Ir = I8 θ1 and θ5 are mapped to themselves and θ5+i

and θ5−i are interchanged for i = 1, 2, 3.

Let Ir × Is = I4 × I4. Blowing up the divisors in the following orbits of
〈τ1 × τ2〉 resolves all singularities on Ir × Is: θ0 × Γ0 → θ2 × Γ2, θ0 × Γ2 →
θ2×Γ0. The action of tη1

×tη2
permutes these divisors and blowing up all four

divisors in any order results in the same partial resolution. Thus, Z2 × Z2

action lifts to this partial resolution.

Using the same argument as above, we can lift the action to the partial
resolution of singularities in I8×I2 and I8×I4 cases blowing up the following
divisors (in any order): For I8× I2 blow up θ0×Γ0, θ2×Γ1, θ4×Γ0, θ6×Γ1,
and for I8× I4 we blow up θ0×Γ0, θ2×Γ2, θ0×Γ2, θ2×Γ0, θ4×Γ0, θ6×Γ2,
θ4 × Γ2, θ6 × Γ0.

For Ir × Is = I4 × I2, in order to lift the action of 〈τ1 × τ2〉, the divisor
blown up first must be one of θ0 × Γi and θ2 × Γi, i = 1, 2 (Assume on the
contrary that the divisor blown up first is θ1 × Γi. τ1 × τ2 maps θ1 × Γi

to θ1 × Γi+1, hence permutes the four ordinary double points on θ1 × Γi.
The small resolutions at these four points are along θ1 × Γi, but in order
to lift τ1 × τ2 to the resolution, the small resolution at the image points
should be along θ1 × Γi+1 which is a non-isomorphic small resolution to the
small resolution along θ1 × Γi, contradiction. A similar argument works if
the divisor blown up first is θ3×Γi). Assume that the divisor blown up first
is θ0 × Γi (a similar argument works for θ2 × Γi). If τ1 × τ2 lifts to a partial
resolution, then the small resolution of X at the four ordinary double points
on the divisor θ2×Γi+1 (which are the images of the other 4 ordinary double
points on θ0 × Γi) are isomorphic to the small resolutions along θ2 × Γi+1

since τ1 × τ2 maps θ0 × Γi to θ2 × Γi+1. By the same reasoning, if tη1
× tη2

also lifts to the same partial resolution of X, this time the small resolutions
at the four ordinary double points on the divisor θ2 × Γi+1 (or equivalently
on θ2×Γi) are isomorphic to the small resolutions along θ2×Γi, which gives
a contradiction since such small resolutions are not isomorphic to the small
resolutions along θ2 ×Γi+1 at these four points. Therefore, if X contains an
I4× I2 fiber over 0 or ∞ ∈ P

1, then the Z2×Z2 action does not lift to a free
action on its resolution.

We can combine the information obtained in this section in the following
lemma:

Lemma 15. For the cases listed in Table 6 the free action of G = Z2 on X
does not lift to a free action on a projective small resolution of X if there
exists an I2 × I2 fiber over 0 or ∞ ∈ P

1. The free action of Z2 × Z2 on X
does not lift to a free action on a projective small resolution of X if there



On a class of non-simply connected Calabi-Yau 3-folds with χ > 0 201

Table 8: The cases in Table 6 where the action does not lift

G B1 B2

Z2 × Z2 21–23,25–27,29. [25],[26].
22,28. 27
21,22,25,27,28. 22
21,22,25,27. 28

Z2 21–23,25–27,29–32,34–36, [11],[24],[36],[38],[41].
38,41,42,44,46,50,52.
21–23,25,27,29–32,35,36, 23,29,31,36,37,46,47,
38,44,46. 48,53.
37,47,48,53. 23,29,31,36,46.
23,29,31,36,37,46,47,48,53. 22,27,35,44.

exists an I4 × I2 or I2 × I4 fiber over 0 or ∞ ∈ P
1. In all other cases in

Table 6 such a lifting exists. The cases in Table 6 where the action does not

lift are listed in Table 8.

6.2. Lifting the action listed in Tables 5 and 7

The singular Schoen 3-folds X listed in Table 5 have singularities on fibers

of type Ir × Is (r > 1 and s > 1 throughout this section) over points p ∈ P
1

where p is different from 0 and ∞ ∈ P
1. The singular Schoen 3-folds X

listed in Table 7 have Ir × Is fibers over 0 or ∞ ∈ P
1 as well as over other

points p ∈ P
1. For X = B1×P1 B2 in Table 7, the pair (B1, B2) also appears

in Table 6. For such a pair, we identify the base curves P
1 of the elliptic

surfaces B1 and B2 by an automorphism of P1 (which interchanges 0 and ∞
as explained in §5) in order to form the fiber product X. If the only Ir × Is
fibers occur over 0 or ∞, then X is listed in Table 6. If the fiber product X

also has Ir × Is fibers over points p ∈ P
1 different from 0 and ∞, then X

is listed in Table 7. In the previous section, we checked whether the action

lifts to a resolution of the 3-folds X in Table 6 or not. For a pair (B1, B2)

in Table 7, the action lifts to a partial resolution of the singularities where

all singularities over 0 and ∞ are resolved if the action lifts for the 3-fold X

in Table 6 corresponding to the same pair (B1, B2) (it suffices to blow up

the same divisors as indicated in §6.1). If the action does not lift for X in

Table 6 corresponding to the pair (B1, B2), then the action does not lift for

X in Table 7 due to the same reason as indicated in §6.1. In this section we

check whether the action lifts when the singularities on Ir × Is fibers over

p ∈ P
1 different from 0 and ∞ are resolved.
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• Lifting the Zm action: Let G = Zm = 〈τ〉 where m = ord(ψ(τ)) =
ord(α), that is, d = 1 for the generator τ of G. For an Ir × Is fiber of X
over a point different from 0 or ∞, X has m distinct copies of Ir × Is fibers
permuted by the action of G. Choose divisors Di = θai

× Γbi on one of the
Ir × Is fibers such that blowing up all divisors Di resolves the singularities
on this Ir × Is fiber. If Ki consists of the divisors in the orbit of Di under
the G action, then blowing up the divisors in Ki in any order will result in
the same partial resolution (each divisor in Ki is on a distinct fiber), hence
we can lift the G action to the partial resolution obtained by blowing up the
divisors in Ki. Therefore, the G action lifts to the partial resolution where
all singularities on the m copies of Ir × Is are resolved if we complete the
sequence of partial resolutions where in the ith step the divisors in Ki are
blown up. This argument covers Z2, Z3 actions and m = 4 cases for the Z4

action in the Tables 5 and 7.
• Lifting the Z4 action for m = 2 case: The Ir × Is fibers over points
different from 0 and ∞ we need to consider for this action are I2×I2, I2×I4
and I4 × I4. If G = Z4 = 〈τ〉, then τ2 = tη for an order 2 section η. The
action of tη on an I2 fiber is by mapping θi to θi+1 if there is an I2 fiber over
a point different from 0 and ∞. Similarly, if there is an I4 fiber over such
a point, then the action of tη is by mapping θi to θi+2. If X has an I4 × I4
fiber over a point different from 0 and ∞, to lift the Z4 action to a partial
resolution where the singularities of the two I4 × I4 fibers in the same orbit
are resolved, we need to blow up the divisors in the two orbits of θ0×Γ0 and
θ0 × Γ2. These orbits are θ0 × Γ0 → θ̃i × Γ̃j → θ2 × Γ2 → θ̃i+2 × Γ̃j+2 and
θ0 × Γ2 → θ̃i × Γ̃j+2 → θ2 × Γ0 → θ̃i+2 × Γ̃j . Note that the blow up of these
divisors in any order results in the same resolution and all singularities on
the two I4× I4 fibers are resolved (here θ̃i and Γ̃j denote the components of
the I4 fibers in the second I4 × I4 in the orbit). Similarly we can lift the Z4

action in the case of an I2 × I4 or I2 × I2 by blowing up the divisors in the
orbit of θ0 × Γ0.
• Lifting the Z6 action: For the [14]× [14] case we have m = 3 and for a
generator τ of G = Z6, τ

3 = tη for an order 2 section η. The action of tη on
the I2 fibers is by mapping θi to θi+1. For the [15]× [15] case we have m = 2
and τ2 = tη where η is an order 3 section. The action of tη on the I3 fibers
is by mapping θi to θi+1 or to θi+2. In both cases, the action lifts if we blow
up the divisors in the orbit of θ0 × Γ0 (the same argument as given for Z4

action above works).
• Lifting the Z3 × Z3 action: Without loss of generality, we can choose
generators τ1 × τ2 and tη1

× tη2
of G = Z3 ×Z3 such that for an appropriate

labeling of the components of the I3 fibers the action of these generators
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on the components of the three I3 × I3 fibers is as follows: τ1 × τ2 orbits
are θi × Γj → θ̃i+2 × Γ̃j+2 → θ̄i+2 × Γ̄j+2 for 0 ≤ i, j ≤ 2 (here subindex 0
corresponds to neutral components, θi, θ̃i and θ̄i denote the components of
I3 fibers of B1 over the first, second and third points on P

1). The action of
tη1

× tη2
on the first I3 × I3 is by mapping θi × Γj to θi+1 × Γj+1 (similarly

for the second and third I3× I3). With this notation, it can be checked that
blowing up the 9 divisors in the Z3×Z3 orbit of θ0×Γ0 in any order results
in the same resolution and all singularities are resolved. The action lifts to
this resolution.
• Lifting the Z4 × Z2 action: For the cases 2× 2, 2× [10] and [10]× [10],
we have m = 4 and X has four I2 × I2 fibers. The action of the order two
generator tη1

× tη2
on the first I2 × I2 is by mapping θi × Γj to θi+1 × Γj+1

and the action on the other 3 I2 × I2 is similar. The Z4 × Z2 action lifts to
the resolution obtained by blowing up the divisors in the orbit of θ0 × Γ0.

For the three cases 3 × 3, 3 × [12] and [12] × [12], we have m = 2,
hence there is a Z2 × Z2 subgroup consisting of automorphisms of the form
tηi

×tηj
where ηi and ηj are torsion sections of B1 and B2. If the action is free,

then one of such automorphisms acts on the first I2 × I2 fiber by mapping
θi × Γj to θi × Γj+1 for each 0 ≤ i, j ≤ 1. The two orbits of the action of
this order 2 automorphism are θ0 × Γ0 → θ0 × Γ1 and θ1 × Γ0 → θ1 × Γ1,
and no matter which orbit is chosen, the blow ups of the divisors in the
orbit in different orders result in non-isomorphic partial resolutions. The
order 2 automorphism under question does not lift to any partial resolution
resolving the singularities of this I2 × I2 fiber (by the notation of §6.3, this
automorphism has intersection numbers (0, 1), hence it does not lift. See
§6.3 for a detailed explanation). Therefore, the action in these three cases
does not lift to a resolution of X.

For the case [11] × [11], we have m = 2 and one of the order four gen-
erators is of the form tη1

× tη2
whose action on the first I4 × I4 fiber is by

mapping θi×Γj to θi+1×Γj+1 for each 0 ≤ i, j ≤ 3 and the action is similar
on the second I4 × I4. Z4 × Z2 is generated by tη1

× tη2
and τ1 × τ2 where

m = 2 and d = 1 for each of the automorphisms τ1 and τ2. It can be checked
that the Z4 × Z2 action lifts to the resolution obtained by blowing up the
8 divisors in the orbit of θ0 × Γ0 under this action. Note that the order in
which these 8 divisors are blown up does not change the resolution obtained.
• Lifting the Z2×Z2 action: For Ir× Is = I2× I2, if the action of tη1

× tη2

on the components of I2 × I2 is by mapping θi ×Γj to θi+1 ×Γj+1, then the
Z2 × Z2 action lifts to the partial resolution obtained by blowing up the 4
divisors in the orbit of θ0 × Γ0. Note that in the cases [22] and [26], tη acts
on some of the I2 fibers by mapping θi to itself. If one of the I2 fibers of



204 Tolga Karayayla

Table 9: Torsion subgroups G of Mordell-Weil groups of rational elliptic
surfaces with section

G T Sing. fibers G T Sing. fibers

Z3 × Z3 A⊕4
2 I43 Z2 A⊕4

1 I42I
4
1

Z4 × Z2 A⊕2
3 ⊕A⊕2

1 I24I
2
2 A3 ⊕A⊕2

1 I4I
2
2I

4
1

Z6 A5 ⊕A2 ⊕A1 I6I3I2I1 A⊕5
1 I52I

2
1

Z5 A⊕2
4 I25I

2
1 A5 ⊕A1 I6I2I

4
1

Z4 A⊕2
3 ⊕A1 I24I2I

2
1 D4 ⊕A⊕2

1 I∗0 I
2
2I

2
1

A7 ⊕A1 I8I2I
2
1 A⊕2

3 I24I
4
1

D5 ⊕A3 I∗1 I4I1 A3 ⊕A⊕3
1 I4I

3
2I

2
1

Z3 A⊕3
2 I33I

3
1 A2 ⊕A⊕4

1 I3I
4
2I1

A5 ⊕A2 I6I3I
3
1 A7 I8I

4
1

A⊕3
2 ⊕A1 I33I2I1 D6 ⊕A1 I∗2 I2I

2
1

A8 I9I
3
1 D5 ⊕A⊕2

1 I∗1 I
2
2I1

E6 ⊕A2 IV ∗I3I1 A5 ⊕A⊕2
1 I6I

2
2I

2
1

Z2 × Z2 A⊕6
1 I62 D4 ⊕A3 I∗0 I4I

2
1

D4 ⊕A⊕3
1 I∗0 I

3
2 A3 ⊕A2 ⊕A⊕2

1 I4I3I
2
2I1

A3 ⊕A⊕4
1 I4I

4
2 D8 I∗4 I

2
1

D6 ⊕A⊕2
1 I∗2 I

2
2 E7 ⊕A1 III∗I2I1

D⊕2
4 I∗0 I

∗
0

I2 × I2 has such an action by tη (if tη1
× tη2

has intersection numbers (0, 1)

or (1, 0) in the notation of §6.3), then the action does not lift (see §6.3 for

a detailed explanation). In all cases where Ir × Is = I2 × I4, the action lifts

to the partial resolution obtained by blowing up the divisors in the orbit of

θ0 × Γ0. In all cases where Ir × Is = I4 × I4, the action lifts to the partial

resolution if the divisors in the orbits of θ0 × Γ0 and θ0 × Γ2 are blown up.

Combining the information obtained in this section we have proved the

following lemma:

Lemma 16. For the cases listed in Table 7, if the pair (B1, B2) correspond-

ing to a group G also appears in Table 8, then the free action of G on X

does not lift to a free action on a projective small resolution of X. For the

cases listed in Table 5 and Table 7 the free action of Z2 ×Z2 on X does not

lift to a projective small resolution of X in the cases where B1 or B2 is one

of the cases [22] and [26] and X has an I2 × I2 fiber on which the action of

the non-trivial automorphism of the form tη1
× tη2

is not by mapping θi×Γj

to θi+1 × Γj+1. The Z4 × Z2 action does not lift in the cases 3× 3, 3× [12]

and [12] × [12]. In all other cases in Table 5 and Table 7 the free action of

G on X lifts to a free action on a projective small resolution of X.
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6.3. Lifting the free action in the trivial induced action case

Up to now we considered the free action of a finite group G on a singular
Schoen 3-fold where the induced action of G on the base curve P

1 is non-
trivial or equivalently the induced automorphism group φ̃(G) is Zm for some
m > 1. In this section we consider the groups G acting freely on a singular
Schoen 3-foldX = B1×P1B2 such that the induced action on P

1 is trivial and
the singularities of X are on fibers of type Ir×Is where r > 1 and s > 1. The
elements of such a group G are of the form tη1

×tη2
where ηi ∈ MW (Bi), i =

1, 2 (recall that t−ηi is the automorphism of Bi which acts as the translation
by the section ηi). The rational elliptic surfaces for which the Mordell-Weil
group has non-trivial torsion subgroups can be listed by scanning through
the table of Mordell-Weil lattices given in [6]. For completeness we include
the table of non-trivial torsion subgroups of Mordell-Weil groups of rational
elliptic surfaces here as Table 9. In this table we indicate the root lattice T
corresponding to the singular fibers of the elliptic surface and the generic
configuration of singular fibers for surfaces with the given root lattice T .

In the below discussion when we say that tη1
× tη2

has intersection num-
bers (a, b), we mean that η1 intersects Ir at the component θa and η2 inter-
sects the fiber Is at the component Γb. In this case the action of tη1

× tη2
on

Ir×Is is by mapping the component θi×Γj to θi+a×Γj+b. For a free action
on Ir × Is, every element of G should have distinct intersection numbers,
otherwise a non-trivial element has intersection numbers (0, 0) which implies
that this element has a fixed point, contradicting the action being free. As a
result we obtain |G| ≤ rs. If G contains elements with intersection numbers
(0, 1), (1, 0), (0, s− 1) or (r− 1, 0), then the action of G does not lift to any
partial resolution where the singularities on this fiber Ir× Is are resolved by
blowing up some components of Ir × Is. We explain why such an automor-
phism with intersection numbers (0, 1) does not lift, and a similar argument
works for the other three intersection numbers. Assume that tη1

× tη2
has

intersection numbers (0, 1) on an Ir × Is fiber and assume that it lifts to
an automorphism of a partial resolution X̄ of X by small resolutions where
the singularities on Ir × Is are resolved by blowing up some components of
Ir × Is. Assume that to obtain the partial resolution X̄, the divisor which
is blown up first is θi × Γj . Let a1 and a2 be the singular points of Ir on
the component θi and let b1 and b2 be the singular points of Is on the com-
ponent Γj such that b2 is on the component Γj+1. Since by assumption the
intersection numbers is (0, 1), tη1

× tη2
maps θi×Γj to θi×Γj+1, and it maps

the point Q1 = (a1, b1) on θi × Γj to the point Q2 = (a1, b2) which is also
on θi × Γj . Thus, blowing up the divisor θi × Γj resolves the singularities at
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Q1 and Q2, and the small resolutions at Q1 and Q2 are isomorphic to the
small resolutions along θi × Γj . On the other hand, if tη1

× tη2
lifts to an

automorphism of X̄, then since it maps θi × Γj to θi × Γj+1 and Q1 to Q2,
we can conclude that the small resolution at Q2 is also isomorphic to the
small resolution at Q2 along θi × Γj+1, which is a contradiction.

Using these criteria we analyze below which Ir × Is fibers (r > 1, s > 1)
X can have so that a free action of G on X (with trivial action on P

1) lifts
to a free action on a projective small resolution of X.
• Lifting the Z3×Z3 action: In this case Ir×Is = I3×I3 and if the action
is free, one element of G must have intersection numbers (0, 1), hence the
action does not lift by the above argument.
• Lifting the Z4 × Z2 action: We have |G| = 8 > 4, hence G cannot act
freely on I2 × I2. If the action is free on I4 × I2, then one element must
have intersection numbers (0, 1), hence the action does not lift. For I4 × I4,
X can have one or two I4 × I4 fibers and we can construct the action such
that without loss of generality an order 4 generator has intersection numbers
(1, 1) on both I4 × I4 fibers and the second generator, which has order 2,
has intersection numbers (2, 0) and (0, 2) on the first and the second I4 × I4
fibers, respectively. The action lifts to the resolution obtained by blowing
up the eight divisors in the orbit of θ0 ×Γ0 in each I4 × I4 fiber. The action
lifts in any case, whether there are one or two I4 × I4 fibers.
• Lifting the Z2 × Z2 action: If the action is free on I2 × I2, then one
element has intersection numbers (0, 1), hence the action does not lift. For
all cases in Table 9 for which MWtors(B) has a Z2 × Z2 subgroup, each I4
fiber is intersected at the component θ2 by two of the elements of Z2 × Z2,
and intersected at the component θ0 by the other two elements including the
identity (zero section). Similarly in all of these cases, each I2 is intersected
at the component θ1 by two of the elements of Z2 × Z2, and intersected at
θ0 by the other two elements. Thus, if the action on an I4 × I2 fiber is free,
then one element of Z2 × Z2 should have intersection numbers (0, 1), hence
the action does not lift. For I4 × I4 fibers (X can have one or two such
fibers), we can construct the action of Z2 × Z2 such that the intersection
numbers of the four elements are (0, 0) (for the identity), (0, 2), (2, 0) and
(2, 2). The action lifts to the resolution obtained by blowing up the divisors
in the orbits of θ0 × Γ0 in all I4 × I4 fibers. For the 3-folds X where the
action lifts to a resolution, the only Ir × I2 type fibers X has are one or two
I4 × I4 fibers.
• Lifting the Zk action for k = 6, 5, 4, 3, 2: For the action of a cyclic group
G on X if the intersection numbers of each element of G are distinct for a
fiber Ir × Is, then the action is free on Ir × Is. If none of the intersection
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numbers for Ir × Is is (0, 1), (1, 0), (0, s− 1) or (r− 1, 0), then the action of
G lifts to a partial resolution of X where all singularities on this Ir×Is fiber
are resolved as follows: Choose a divisor θi × Γj and blow up all divisors
in the orbit of this divisor under the G action. By Lemma 14 the action
lifts to this partial resolution. If all singularities on Ir × Is are not resolved,
repeat the same process by blowing up the divisors in the orbit of the proper
transform of another divisor θp × Γq until all singularities are resolved. We
list the allowed Ir × Is fibers on X below so that the G = Zk action lifts to
a partial resolution of X where all singularities on this Ir × Is is resolved:

For Z6, the allowed fibers are I6 × I6, I6 × I3 and I6 × I2 (The order 6
section on B intersects each of the I6, I3 and I2 at the component θ1,
hence for the G action on X, the intersection numbers of the generator
of the cyclic action are (1, 1), and the only Ir × Is fibers satisfying the
above conditions for allowed fibers are as listed). In this case X can
have one I6 × I6, or one or two I6 × I3, or one or two I6 × I2, or one
I6 × I3 and one I6 × I2.
For G = Z5, the only allowed Ir × Is fiber is I5 × I5. X can have one
or two I5 × I5 fibers.
For G = Z4, the allowed Ir × Is fibers are I4 × I2 (if the generator has
intersection numbers (1, 1) or (3, 1)), I4×I4, I8×I2, I8×I4 and I8×I8
(note that except for one of the I2 fibers in the elliptic surface with
singular fiber configuration I24I

2
2 listed under G = Z4 ×Z2, an order 4

section intersects the I2 fibers at θ1). The configurations of all allowed
cases can be listed by inspecting through Table 9.
For G = Z3, the allowed Ir × Is fibers are I9 × I9, I9 × I6, I9 × I3,
I9 × I2, I6 × I6, I6 × I3, I6 × I2 and I3 × I3 (note that if the generator
of the Z3 action has intersection numbers (1, 0), (2, 0), (0, 1) or (0, 2),
then I3 × I3 is not allowed. The only case where an order 3 section
intersects an I3 fiber at the component θ0 is the elliptic surface with
singular fiber configuration I43 and such an order 3 section intersects
only one of the four I3 fibers at θ0). The order 3 sections all intersect
the I2 fibers at θ0, hence by a similar reasoning as above, we can show
that I3 × I2 and I2 × I2 fibers are not allowed.
For G = Z2, the allowed fibers are Ir × Is where r ∈ {2, 4, 6, 8} and
s ∈ {2, 3, 4, 6, 8} such that the intersection numbers of the generator
of G are not (0, 0), (1, 0) or (0, 1). Note that except for some elliptic
surfaces where an order 2 section intersects an I4 fiber, an I3 fiber, or
one or two I2 fibers at the component θ0, in all other cases an order 2
section intersects I8 at θ4, I6 at θ3, I4 at θ2 and I2 at θ1.



208 Tolga Karayayla

We present the results of this section in the following theorem:

Theorem 17. For singular Schoen 3-folds X = B1 ×P1 B2 whose singu-
larities are on fibers of type Ir × Is with r > 1 and s > 1, the only finite
groups G which act freely on X such that the induced action on P

1 is trivial
and the action lifts to a free action on a projective small resolution of X
are Z4 × Z2, Z2 × Z2 and Zk for 2 ≤ k ≤ 6. For each such pair (G,X),
B1 and B2 are surfaces which appear in Table 9 such that G is a subgroup
of MWtors(Bi). For each G, the allowed Ir × Is type fibers of X so that the
action may lift to a free action are listed in Table 10. For the 3-folds X all
of whose Ir × Is fibers are allowed, the action of G on X is free iff at each
Ir × Is fiber the intersection numbers of the elements of G are all distinct,
and the action of G lifts to a free action on a projective small resolution iff
none of these intersection numbers is (1, 0), (0, 1), (r − 1, 0) or (0, s − 1).
In Table 11 we list all existing cases for G = Z4 × Z2, Z2 × Z2 and Zk for
4 ≤ k ≤ 6 where the action lifts to a free action. Table 11 lists only some
sample cases for G = Z2 and Z3 (due to the large number of all cases) cov-
ering all possibilities for the configuration of Ir × Is type fibers of X for the
given group G. Each line of Table 11 represents several different cases where
the configuration of Ir × Is fibers of X is a non-empty subset of the specified
configuration on that line of the table (the fiber product can be formed with
fewer Ir × Is type fibers where the lifting criteria for the action of G still
hold).

Remark. For each choice of B1 and B2 given in Table 11 the fiber product
B1 ×P1 B2 can be obtained in different ways giving rise to different config-
urations of Ir × Is fibers. For a configuration of Ir × Is type fibers given in
Table 11 the action of G lifts to a free action on a resolution of the 3-fold X
with this configuration. Since the lifting criteria are required to hold at each
Ir×Is, the criteria also hold for a fiber product whose configuration of Ir×Is
fibers is a subset of the first configuration. Each possible configuration of
X where the action of G lifts is a subset of one of the configurations listed
in Table 11. For some specified pairs (B1, B2) for G = Z2 in this table, we
did not write down some allowed configurations if these configurations are
subsets of a configuration already given in the table. Table 11 can be used
to verify the χ values for m = 1 case in Table 13.

7. Non-simply connected Calabi-Yau 3-folds with positive
Euler characteristic

We completed our analysis of the finite groups G which act freely on a
singular Schoen 3-fold X whose singularities are on fibers of type Ir × Is
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Table 10: Allowed Ir × Is type fibers of X for lifting G to a free action in
the trivial induced action case

C Allowed Ir × Is type fibers of X
Z4 × Z2 I4 × I4
Z2 × Z2 I4 × I4

Z6 I6 × Is for s = 2, 3, 6.
Z5 I5 × I5
Z4 Ir × Is for r ∈ {4, 8} and s ∈ {2, 4, 8}.
Z3 I3 × I3 and Ir × Is for r ∈ {6, 9} and s ∈ {2, 3, 6, 9}.
Z2 I3 × It for t ∈ {4, 6, 8} and Ir × Is for r, s ∈ {2, 4, 6, 8}.

with r > 1 and s > 1. We determined when the action of G on X lifts

to a free action on a projective small resolution X̂ of X. Such a 3-fold X̂

is a simply connected Calabi-Yau 3-fold (see [7]) and the quotient 3-fold

X̂/G under the group action is a non-simply connected Calabi-Yau 3-fold

(see [2] and [1]) with fundamental group G. The Euler characteristic of X is

e =
∑N

i=1 risi where the Ir × Is type fibers of X are Iri × Isi for i = 1, .., N .

The projective small resolution X̂ of X has Euler characteristic 2e and

the quotient 3-fold X̂/G has Euler characteristic 2e/|G|. The non-simply

connected Calabi-Yau 3-folds obtained as quotients of smooth Schoen 3-folds

by Bouchard and Donagi in [2] all have Euler characteristic 0 since a smooth

Schoen 3-fold has Euler characteristic 0. The non-simply connected Calabi-

Yau 3-folds obtained in this paper (in the singular X case) all have positive

Euler characteristic. We summarize our results in the following theorem:

Theorem 18. Let X = B1×P1 B2 be a singular Schoen 3-fold such that the

only singularities of X are on fibers of type Ir × Is with r > 1 and s > 1.

The finite groups G which act freely on X and induce a non-trivial action

on the base curve P
1 (φ̃(G) = Zm where m > 1) such that the action of G

lifts to a free action on a projective small resolution X̂ of X are as listed in

Table 12. For a finite group G whose action on X induces a trivial action on

P
1 (m = 1 case), the conditions under which the action of G lifts to a free

action on a projective small resolution of X are given in Theorem 17 and

the results are listed in Table 11.

For these groups G which act freely on the simply connected Calabi-Yau

3-fold X̂, the quotient 3-fold X̂/G is a non-simply connected Calabi-Yau

3-fold with fundamental group G. All distinct Euler characteristic values of

the non-simply connected Calabi-Yau 3-folds obtained with this construction

are listed in Table 13.
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Table 11: Table of Schoen 3-folds X and maximal configurations of Ir × Is
type fibers of X (cf. Remark following Theorem 17) for which the action of
G lifts to a free action (trivial induced action case, m = 1)

G Fib. of B1 Fib. of B2 Fibers of X (are a subset of)
Z4 × Z2 I24I

2
2 I24I

2
2 2(I4 × I4)

Z2 × Z2 I24I
2
2 I24I

2
2 2(I4 × I4)

I24I
2
2 , I4I

4
2 I4I

4
2 I4 × I4

Z6 I6I3I2I1 I6I3I2I1 I6 × I6 or 2(I6 × I3) or 2(I6 × I2)
or I6 × I3 + I6 × I2

Z5 I25I
2
1 I25I

2
1 2(I5 × I5)

Z4 I8I2I
2
1 I8I2I

2
1 I8 × I8 or 2(I8 × I2)

I8I2I
2
1 I24I

2
2 , I

2
4I2I

2
1 I8 × I4 + I4 × I2 or I8 × I2 + I4 × I2

I8I2I
2
1 I∗1 I4I1 I8 × I4 or I4 × I2

I24I
2
2 , I

2
4I2I

2
1 I24I

2
2 , I

2
4I2I

2
1 2(I4 × I4) or I4 × I4 + 2(I4 × I2)

I24I
2
2 , I

2
4I2I

2
1 I∗1 I4I1 I4 × I4 or I4 × I2

I∗1 I4I1 I∗1 I4I1 I4 × I4
Z3 I9I

3
1 I9I

3
1 I9 × I9

I9I
3
1 I6I3I2I1 I9 × I6 or I9 × I3 or I9 × I2

I6I3I2I1 I6I3I2I1 I6 × I6 + I3 × I3 or I6 × I3 + I6 × I2
or 2(I6 × I2) + I3 × I3 or 2(I6 × I3)

I6I3I2I1 I33I
3
1 I6 × I3 + I3 × I3

I33I
3
1 I33I

3
1 3(I3 × I3)

Z2 I8I2I
2
1 I8I2I

2
1 I8 × I8 or 2(I8 × I2)

I8I2I
2
1 I6I3I2I1 I8 × I3 + I6 × I2 or I8 × I2 + I6 × I2

or I8 × I6
I8I2I

2
1 I24I2I

2
1 I8 × I4 + I4 × I2 or I8 × I2 + I4 × I2

I8I2I
2
1 I4I3I

2
2I1 I8 × I3 + I4 × I2

I6I3I2I1 I6I3I2I1 2(I6 × I3) + I2 × I2 or I6 × I6 + I2 × I2
I6I3I2I1 I6I

2
2I

2
1 I6 × I3 + I6 × I2 + I2 × I2

I6I
2
2I

2
1 I6I

2
2I

2
1 2(I6 × I2) + I2 × I2

I6I3I2I1 I24I
2
2 I6 × I4 + I4 × I3 + I2 × I2

or I6 × I2 + I4 × I3 + I4 × I2
I6I

2
2I

2
1 I24I

2
2 I6 × I4 + I4 × I2 + I2 × I2

or I6 × I2 + 2(I4 × I2)
I6I3I2I1 I4I3I

2
2I1 I6 × I3 + I4 × I3 + I2 × I2

or I6 × I2 + I4 × I3 + I2 × I2
I6I

2
2I

2
1 I4I3I

2
2I1 I6 × I3 + I4 × I2 + I2 × I2

or I6 × I2 + I4 × I2 + I2 × I2
I24I

2
2 I24I

2
2 4(I4 × I2) or I4 × I4 + 2(I4 × I2)

or 2(I4 × I4) + 2(I2 × I2)
I4I

4
2 I4I

4
2 2(I4 × I2) + 2(I2 × I2) or 4(I2 × I2)

I24I
2
2 I4I

4
2 I4 × I4 + I4 × I2 + 2(I2 × I2)

I24I
2
2 I4I3I

2
2I1 I4 × I4 + I4 × I3 + 2(I2 × I2)

or I4 × I3 + 2(I4 × I2)
I4I3I

2
2I1 I4I3I

2
2I1 2(I4 × I3) + 2(I2 × I2)

or I4 × I3 + I4 × I2 + I2 × I2
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Table 12: Finite groups G which act freely on a singular X = B1 ×P1 B2

with non-trivial induced action on P
1 where the action lifts to a free action

on a projective small resolution of X

Cases from Table 5

G B1 B2

Z3 × Z3 1,[9]. 1,[9].
Z4 × Z2 2,[10]. 2,[10].

[11] [11]
Z6 [14] [14]

[15] [15]
Z4 2,[10]. 2,[10].

[11],[12],[19],[20]. [11],[12],[19],[20].
Z3 1,16. 1,16.

[9],[14],[31]. [9],[14],[31].
1,16,19. [9],[31].

Z2 × Z2 2,21,24,25. 2,21,24,25.
[10],[11],[21]–[26],[28]. [10],[11],[21]–[26],[28].
2,21–26,28,29. [10],[21],[22],[23].

Z2 2,21,24,25,32,38,40. 2,21,24,25,32,38,40.
2,21–26,28,29,32,36,38,40,42,46,48,52. [10],[21],[22],[23],[35],[37]
[10],[11],[15],[21]–[26], [10],[11],[15],[21]–[26],
[28],[35],[37],[38],[41],[43]. [28],[35],[37],[38],[41],[43].

Cases from Table 6

Z4 × Z2 3 3,[12].
Z4 3,11,13. 3,11,13.

3,11,12,13. [11],[12],[19].
Z2 × Z2 2,24,28. 28,[25],[26].

2,24. 22
2,21,24,25,27. 27
2,21–29. [27]

Z2 2,4,6,8–10,21–53. [25]–[27],[39],[42].
2,4,6,8–10,24,28,33,37,39,40,43,45, [11],[24],[36],[38],[41].
47–49,51,53.
2,4,8,10,21–25,27–33,35–40,44–49,53. 28,45.
2,4,8,10,21,22,24,25,27,28,30,32,33, 22,27,35,44.
35,38–40,44,45,49.
2,4,8,10,24,28,33,39,40,45,49. 23,29,31,36,46.
2,4,8,10,24,28,33,37,39,40,45,47–49,53. 37,47,48,53.

Cases from Table 7

Z4 3,11. 3,11,[11],[12],[19].
Z2 × Z2 2,24. 22

2,24,28. 28,[25],[26].
Z2 2,21–25,28,29,32,36,38,40,46,48. 28

2,21,22,24,25,28,32,38,40. 22
2,24,28,40 23,29,36,46.
2,24,28,40,48. 48,[11],[24],[38],[41].
2,21–26,28,29,32,36,38,40,42,46,48,52. [25],[26].
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Table 13: Fundamental groups and Euler characteristics of the Calabi-Yau 3-
folds obtained as quotients of projective small resolutions of singular Schoen
3-folds (m > 1 case refers to non-trivial action on P

1 and m = 1 case refers
to trivial action on P

1)

π1 χ values in the m > 1 case χ values in the m = 1 case

Z3 × Z3 6 –
Z4 × Z2 4,8. 4,8.

Z6 4,6. 4,6,8,10,12.
Z5 – 10,20.
Z4 4,8,12,16,20. 4,8,12,16,20,32.
Z3 8,12,18. 6,8,12,14,16,18,20,22,24,30,36,54.

Z2 × Z2 4,8,12,16,20. 8,16.
Z2 8,12,16,18,20,24,28,32,36, 4,8,12,16,18,20,22,24,26,28,

40,48,64. 30,32,34,36,40,48,64.
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