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On a class of non-simply connected
Calabi-Yau 3-folds with positive Euler
characteristic”

ToLGA KARAYAYLA

In this work we obtain a class of non-simply connected Calabi-
Yau 3-folds with positive Euler characteristic as the quotient of
projective small resolutions of singular Schoen 3-folds under the
free action of finite groups. A Schoen 3-fold is a fiber product
X = B xXp1 By of two relatively minimal rational elliptic surfaces
with section 3; : B; — P!, i = 1,2. Schoen has shown that if X is
smooth, then X is a simply connected Calabi-Yau 3-fold, and if the
only singularities of X are on I,. X I type fibers with » > 1 and s >
1, then there exists a projective small resolution X of X , and Xisa
simply connected Calabi-Yau 3-fold [7]. If G is a finite group which
acts freely on a smooth Schoen 3-fold X, then the quotient X/G is
a non-simply connected Calabi-Yau 3-fold with fundamental group
G, and all such group actions have been classified by Bouchard and
Donagi [2]. Bouchard and Donagi have proposed the open problem
of classifying all finite groups G which act freely on projective small
resolutions X of singular Schoen 3-folds X . In this case the quotient
X /G is again a Calabi-Yau 3-fold with fundamental group G. In
this paper we first classify the finite groups G which act freely on
singular Schoen 3-folds X where the only singularities of X are on
I, x I type fibers with r > 1 and s > 1 and the elements of GG act on
X as an automorphism 71 X 79 where each 7; is an automorphism
of the elliptic surface B;. A projective small resolution X of X
is obtained by blowing up some components of the I, x I fibers
on X. We determine which of the free actions on the singular 3-
fold X lift to free actions on the Calabi-Yau 3-fold X. For the
non-simply connected Calabi-Yau 3-folds X /G obtained with this
construction, the distinct fundamental groups are Zs X Zs, Z4 X Z2,
Zo X 7o, and Z, for n = 6,5,4,3,2. These are the same groups
obtained by Bouchard and Donagi by working on free actions on
smooth Schoen 3-folds. While the Euler characteristic of each X/G
obtained by Bouchard and Donagi is 0, the Euler characteristics
of all non-simply connected Calabi-Yau 3-folds X /G we obtain in
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this paper are positive and they range in: 64, 54, 48, 40 and 2k
for 2 < k < 18. The given Euler characteristic values do not all
occur for each of the listed fundamental groups. The classification
of finite groups which act freely on singular Schoen 3-folds X whose
singularities are on I, x I, type fibers with » > 1 and s > 1, the
classification of such group actions which lift to free actions on
projective small resolutions X of X, and the fundamental groups
and Euler characteristic values of the non-simply connected Calabi-
Yau 3-folds X /G are displayed in several tables. The study of the
group actions on X which induce a non-trivial action on the base
curve P! and which induce a trivial action on P! is carried out
separately.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 14130, 14J32, 14J30,
14J50; secondary 14J27.
KEYWORDS AND PHRASES: Calabi-Yau 3-folds, Schoen 3-folds, fiber prod-
uct of relatively minimal rational elliptic surfaces with section, non-
simply connected Calabi-Yau 3-folds, group actionss, automorphisms of
rational elliptic surfaces.

1. Introduction

A Schoen 3-fold X is a fiber product X = B; xp By = {(a,b) € By X
Bs|B1(a) = [a2(b)} of two relatively minimal rational elliptic surfaces with
section f3; : B; — P!, i = 1,2. The fiber product X is a smooth 3-fold if and
only if S = 51 NSy = ) where S; = {p € P!|3; ' (p) is a singular fiber of B;}
for ¢ = 1,2. Schoen has shown that if X is smooth, then X is a simply
connected Calabi-Yau 3-fold [7]. Bouchard and Donagi have studied finite
abelian groups GG which act on smooth fiber products X = By xXp:1 By freely
(without fixed points) where each element g € G acts on X as a product 71 X
T9 € Aut(B1)x Aut(Bsg) of automorphisms 71 and 73 of the relatively minimal
rational elliptic surfaces with section By and Bs, respectively. Explicitly
71 X 179 : X — X is defined by (a,b) — (71(a),72(b)) where 71 and 75 have
the same induced action on the base curve P! so that the map 71 X 7
is well-defined as a map on the fiber product X. For such a group action
on the smooth fiber product X which is a simply connected Calabi-Yau
3-fold, the quotient 3-fold X/G under the group action is a non-simply
connected Calabi-Yau 3-fold with fundamental group G as stated in [2] by
using Beauville’s argument in [1]. Bouchard and Donagi have constructed
and classified all finite abelian groups G which act freely on smooth Schoen 3-
folds X and which induce cyclic group actions on the base curve P!, and they
obtained a class of non-simply connected Calabi-Yau 3-folds as the quotient
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3-folds under the group action [2]. Using a classification of the automorphism
groups of relatively minimal rational elliptic surfaces with section developed
in [3, 4], the author has proved in [5] that if a finite group G acts freely
on a smooth Schoen 3-fold X as a subgroup of Aut(B;1) x Aut(B2) (so that
elements of G are of the form 71 x 75 as above), then the action of G on X
induces a cyclic action on the base curve P!, hence the list of non-simply
connected Calabi-Yau 3-folds obtained as quotients of smooth Schoen 3-folds
given in [2] is a complete list (no other fixed point free finite group action
on smooth Schoen 3-folds exists).

For singular Schoen 3-folds X, Schoen has shown that if all singularities
of X are ordinary double points, then under certain conditions X has a pro-
jective small resolution which is a simply connected Calabi-Yau 3-fold (see
§2 and Lemma 3.1 in [7]). The second open problem proposed in §8 of [2] asks
the classification of finite groups which act freely on such desingularizations
of singular Schoen 3-folds in order to construct a possibly larger family of
non-simply connected Calabi-Yau 3-folds than the family they obtained in
[2]. In this paper we solve this open problem for the singular Schoen 3-folds
X whose singularities are on I, x I type fibers with » > 1 and s > 1. For
such 3-folds X, a projective small resolution X of X is obtained by succes-
sively blowing up some components of the I, x I fibers of X in order to
resolve the singularities by small resolutions (see §1 and Lemma 3.1 in [7]).
Note that in Lemma 3.1 in [7], it is also shown that if X is a singular Schoen
3-fold with only ordinary double point singularities and 81 = (5 (the two
elliptic surfaces of the fiber product are identical), then a projective small
resolution of X exists and is obtained by blowing up the diagonal A in X.
Such singular Schoen 3-folds X where 81 = P2 are not considered in this
paper.

In Theorem 13 in §5.2, we first classify the finite groups G which act
freely on singular Schoen 3-folds X whose singularities are on I, x I type
fibers with » > 1 and s > 1 such that the induced action on the base curve P!
is non-trivial and the elements of G act on X as products of automorphisms
of the two elliptic surfaces B; and Bs. In §6 we determine which of these
actions lift to free actions on projective small resolutions X of X which
are obtained by successively blowing up some components of the I, x I
fibers of X. The same classification and lifting task for the free actions on
X where the induced action on P! is trivial is accomplished in §6.3. The
main result of the paper is stated in Theorem 18 in §7. For the non-simply
connected Calabi-Yau 3-folds X /G obtained as the quotient spaces under
these free actions, the distinct fundamental groups G are Zs X Zs, Z4 X Zo,
Zo X Zo and Z, for n = 6,5,4,3,2. All of these 3-folds X/G have positive
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FEuler characteristics and the distinct y values we obtain are 64, 54, 48, 40
and 2k for 2 < k < 18. The Euler characteristic values achieved for each
fundamental group G are displayed in Table 13. Comparing the results we
obtain in this paper to the results of Bouchard and Donagi in [2] where
free actions on smooth Schoen 3-folds have been classified, the same finite
groups G act freely on smooth Schoen 3-folds X and on small projective
resolutions X of the singular Schoen 3-folds studied in this paper. While
the Euler characteristic of the 3-folds X/G obtained in [2] is 0, the Euler
characteristics of all 3-folds X /G we obtain in this paper are positive.

As mentioned in the remarks 4.3.1 and 6.4 in [2], in their analysis
Bouchard and Donagi have considered suitable o-pairs (B, «) and suitable
pairs (B,7) where the fiber fo, over co € P! of both the elliptic surface
B and the quotient surface B is smooth. They have excluded the analysis
of the suitable o-pairs and suitable pairs where the fiber f is a singular
fiber of type I, for some r > 1. These excluded cases form a codimension 1
family for the moduli space of elliptic surfaces corresponding to the action
of a specific group G. In this paper, we make use of these suitable o-pairs
and suitable pairs excluded in [2] (which we call suitable o-pairs and suit-
able pairs of special type) in order to construct free actions on the singular
Schoen 3-folds under study. We also list the free actions on smooth Schoen
3-folds where the action on at least one of By and Bs is of special type in
85.1.

2. Free actions on desingularizations of singular Schoen
3-folds by small resolutions

Let X = By xp1 By = {(a,b) € By x Ba|B1(a) = B2(b)} be the fiber product
of two relatively minimal rational elliptic surfaces 3; : B; — P!, i = 1,2
with section. Let S; = {p € P!|3;!(p) is a singular fiber of B;} for i = 1,2.
X is a smooth 3-fold if and only if S = () where S = S1N.S5. A double point
q on a hypersurface 3-fold Y is called an ordinary double point (or a node)
if the projectivized tangent cone of Y at ¢ is isomorphic to P! x P'. The
fiber product X has only ordinary double point singularities if and only if
S # () and for every p € S, ﬁl_l(p) and B;l(p) are singular fibers of type I,
for » > 0 using Kodaira’s notation for singular fibers of elliptic surfaces. If
we define the projection map 3 : X — P! by 8((a,b)) = B1(a) (which also
equals (2(b) by the definition of X), then X is singular with only ordinary
double point singularities if and only if S # () and B~!(p) is of the form
1. x I for some » > 0 and s > 0 for each p € S. For such a singular fiber
product X, the ordinary double points are exactly the points (a,b) € X



On a class of non-simply connected Calabi-Yau 3-folds with y > 0 163

such that a is a singular point of 3, 1(p) = I, and b is a singular point of
By L(p) = I, for each p € S. There are rs ordinary double points in 3~ (p) if
B~1(p) = I, x I,. The singularity of X at each ordinary double point can be
resolved by a local operation called small resolution. In general if ¢ € Y is
an ordinary double point on a singular 3-fold Y, a small resolution of ¥ at
q is a 3-fold Y with a map 7 : Y — Y such that the exceptlonal locus at ¢ is
E, =m"1(q) = P! and 7 restricts to an isomorphism Y — E;, =Y —pand Y
has no singularities on F,. Note that there are two small resolutions of Y at ¢
which are non-isomorphic over Y. Successively applying the small resolution
operation at all singularities of X, which are assumed to be ordinary double
points, we can obtain a desingularization of X by small resolutions which
we denote by X and which we call a small resolution (or minimal resolution)
of X. The reader is referred to §2 in [7] for the construction of the small
resolution and general facts about small resolutions. Schoen has shown in
[7] (§2 and §3) that if X has only ordinary double points and if either (i)
for each p € S neither 5, *(p) nor B, *(p) is irreducible (singular fiber of
type I1), or (i) 1 = B2 (the two elliptic surfaces of the fiber product are
identical), then there exists a small resolution X of X which is a projective,
simply connected Calabi-Yau 3-fold. The projective 3-fold X is obtained
by blowing up the diagonal A of the fiber product X in Case (ii), and by
successively blowing up some divisors of the form §; x I'; in Case (i) where
0; and I'; are components of the I, and I fibers of By and By for the I, x I
fibers of X which contain the singularities of X. For such a 3-fold X, if
G is a finite group which acts freely (without fixed points for each non-
identity element of G) on X, then the quotient 3-fold X /G is a non-simply
connected Calabi-Yau 3-fold with fundamental group G due to the same
reason as explained in §1.2 of [2] using Beauville’s argument in [1].

Bouchard and Donagi have proposed the open problem (see §8 in [2]) of
classifying finite groups G which act freely on projective small resolutions X
of singular Schoen 3-folds X with only ordinary double point singularities
where X satisfies the condition (i) or (ii) stated above. In this paper we
solve this open problem for the 3-folds X satisfying the condition (i) by
studying finite groups G acting on X where the action of G lifts to a free
action on X.

Lemma 1. If the action of a finite group G on X lifts to a free action on
a small resolution X, than the action of G on X is also free.

Proof. Otherwise, if a non-identity g € G has a fixed point ¢ € X, then if ¢
is not a singular point of X, ¢ will be a fixed point of g in the lifted action
of G. If ¢ is a singular point of X, then in the lifted action on X, g maps
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the exceptional locus F, = P! over ¢ to itself, hence g has a fixed point on
E,. O

By this lemma, the problem reduces to studying finite groups G which
act freely on the singular Schoen 3-folds X which satisfy the conditions
stated above so that there is a small resolution X which is a projective,
simply connected Calabi-Yau 3-fold. Once such group actions are classified,
we need to determine which of these actions lift to free actions on the small
resolution X.

Remark. The criterion we develop in Lemma 14 in §6 for lifting the action of
X to a projective small resolution X only applies in the case that X satisfies
the condition (i) (the only singularities of X are on I, x I, type fibers with
r > 1 and s > 1). In this paper we exclude the 3-folds X satisfying the
condition (i7) from the discussion.

3. Free actions on singular Schoen 3-folds

3.1. Preliminaries on automorphism groups of rational elliptic
surfaces

Before discussing the group actions on singular Schoen 3-folds, we give a brief
summary of the general facts on the automorphism group of a relatively
minimal rational elliptic surface B with section. The reader can consult
[3, 4] and [2] for details. Let o C B be a section of the relatively minimal
rational elliptic surface 3 : B — P! with section. All sections of B form a
group MW (B) called the Mordell-Weil group of B with o as the identity
of the group (we will call o the zero section of B). The group operation on
MW (B) is performing the group law on each smooth fiber F' which is an
elliptic curve with identity o N F. Mordell-Weil group MW (B) naturally
embeds in the automorphism group Aut(B) as the automorphisms acting
on B as translation by a section. More precisely, if e € MW (B) is a section,
then the translation by e is the automorphism t. which acts on each smooth
fiber F' which is an elliptic curve by « — (e N F') + = where + denotes the
group operation on the elliptic curve F'. This action extends to all of B as an
automorphism. We will identify € and ¢., hence we will identify the Mordell-
Weil group MW (B) with its isomorphic copy in the automorphism group
Aut(B) of the surface B throughout the paper. Oguiso and Shioda have
classified the Mordell-Weil groups and Mordell-Weil lattices of relatively
minimal rational elliptic surfaces with section in [6].
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If we define the subgroup Aut,(B) of Aut(B) by
Auty(B) = {7 € Aut(B)|r(0) = 0o}

(the subgroup of automorphisms of B which preserve the zero section as a
set), then we can define a group epimorphism

¥ Aut(B) — Aut,(B)
T — t_T(U) oT

where ker(i)) = MW (B). Hence Aut(B) is given as the semi-direct product
Aut(B) = MW (B) x Aut,(B).

For any a € Aut,(B) and t. € MW (B) we have a.ot. =ty o a.

Since the canonical class of B is K = —F where F' is the fiber class of
the rational elliptic surface B with section and the linear system of F'is a
pencil, every automorphism of B maps fibers to fibers. Thus, we get a group
homomorphism

¢ : Aut(B) — Aut(P')

T = Tp1

such that for = 7p103. We denote the image of ¢ by Autg(P!) := ¢(Aut(B))
(the group of induced automorphisms on P!).

3.2. Conditions for free action on singular Schoen 3-folds

Let X = By xp1 By be a singular Schoen 3-fold (S = S; N Sy # () where
the only singularities of X are on I, x I, type fibers with » > 1 and s > 1
(for each p € S we have 371(p) = I x I for some r > 1 and s > 1). Such
a singular Schoen 3-fold X has a projective small resolution X which is a
simply connected Calabi-Yau 3-fold (see §2). We have reduced the problem
to the classification of finite groups G acting on X freely (without fixed
points). We consider the group G as a subgroup of Aut(Bj) x Aut(B3) so
that each element of G is of the form 71 x 7o where 7; € Aut(B;) (i =
1,2). Since every finite order automorphism of a relatively minimal rational
elliptic surface with section has a fixed point (see the appendix in [5] for a
proof and some comments), the group homomorphisms m; : G — Aut(B;),
71 X7 +— 75 (i = 1,2) are injective if G acts freely on X (that is, non-identity
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elements of G have no fixed points). Thus, G is isomorphic to the subgroup
i (G) of Aut(B;) for i = 1,2. This reduces the analysis to working in the
automorphism groups of the two rational elliptic surfaces B and Bs.

The group G acts freely on X if and only if for every 7 X 75 € G the
cyclic group (11 X 72) acts freely on X. Bouchard and Donagi have worked
out the conditions for the free action of (11 x m) on a smooth Schoen 3-fold
X in [2]. We generalize and modify these conditions to the case of singular
X as follows (Note that the lemmas below are valid for any singular Schoen
3-fold X).

Let n; = ord(m), oy = (1) € Auty(B;), m; = ord(c;) and m; =
ord(¢p(m;)) for i = 1,2 where ord denotes the order of an element in a group.
Let d; = n;/m; and k; = m;/m; for i = 1,2. In order to have a well-defined
map 71 X 72 on the fiber product X, we need ¢(m1) = ¢(72) which gives
mi = Mmo.

Lemma 2 (Generalization of Lemma 3.5 in [2]). If (11 X T2) acts freely on
X, thenny =ng and k1 = ky = 1.

The proof is exactly the same as the proof given in [2]. Note that the
proof uses the fact that every finite order automorphism of B; has a fixed
point, and if k; > 1, then sz has a fixed curve intersecting each smooth
fiber (Lemma 3.3 in [2]), hence the fixed locus of 7" intersects all fibers of
B;.

As a result we obtain m; = mg = m1 = mgy and n; = ng if (11 X 72) acts
freely on X. In the below discussion in this section we assume that these
equations hold for 7 and 7». From now on we will drop the subscript and
write n, m and d in place of n;, m; and d;, respectively. We have n = dm
where d is the order of 7/" which is translation by a torsion section on B;
(i=1,2).

For m = 1 case 7; is in the torsion subgroup of MW (B;) (7; is translation
by a torsion section of B;). Any nonzero torsion section is disjoint from the
zero section o (see Proposition 2.1 in [2]), hence translation by a nonzero
torsion section does not have fixed points on smooth fibers. If X is a smooth
fiber product, this implies that for m = 1 case (11 X 72) acts freely on X since
S = () (singular fibers of By and Bj are not paired in the fiber product). But
if X is singular as we are examining in this discussion, then (77 x 75) may
not act freely on X in the m = 1 case. This is one of the main differences
between the smooth X and singular X cases.

For the m > 1 case, ¢(11) = ¢(72) is an order m automorphism of
the base curve P!. After a change of coordinates in P!, the fixed points of
o(11) = ¢(12) are 0 and oo, and the map is given by z — wy,z where wy, is
a primitive mth root of unity. With this convention:
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Lemma 3 (Generalization of Lemma 3.6 in [2]). Suppose that m > 1. If
(11 X T9) acts freely on X, then (11) acts freely on the fiber fis and (1) acts
freely on the fiber faoo, or vice versa ({11) acts freely on fio and (o) acts
freely on foso). Here fi; denotes the fiber of the elliptic surface B; over the
point j € PL.

The converse is true in the m > 1 and d = 1 (n=m) case. For the m > 1
and d > 1 case, (11) acts freely on fioo and (T2) acts freely on fan (or vice
versa, interchanging 0 and co) and (" x 74*) acts freely on X implies that
(11 X T2) acts freely on X.

Note that in the generalization of Lemma 3.6 in [2] to the singular X
case, the last sentence in the original version is dropped since when X is
singular f1p and fao both can be singular fibers (similarly for fio, and fooo).
The statement is still an if and only if statement for the d = 1 case, but
for the d > 1 case we need an extra condition for the converse. This is due
to the main difference between the smooth X and singular X cases when
m = 1 as explained above. Here for (7" x 73") the action on P! is trivial
(ord(p(1]™)) = ord(¢(7]™)) = 1) which means that the elements in this cyclic
group are of the form ¢, x t., for torsion sections ¢;, hence the free action
on X is not guaranteed when X is singular. It must be checked. With these
remarks, the proof of the generalized lemma follows the same argument as
given in the proof of the original lemma in [2].

Lemma 4 (Lemma 3.7 in [2]). If m > 1 and d > 1 and (11) acts freely on
fico, then f1g is a singular fiber of Bj.

This lemma is valid no matter X is smooth or singular.
We can define a suitable pair for the singular X case in a similar way as
it is defined for the smooth X case in [2]:

Definition 5. Let 7 € Aut(B) with integers (n,m,m,d, k). We say that
(B,T) is a suitable pair if & = 1 (which means m = m) and one of the
following three conditions holds: (1) m = 1 (which means 7 € MW;,,5(B)).
(2) m>1,d =1 and () acts freely on the fiber foo of B. (3) m >1,d > 1
and (1) acts freely on fo, (in this case fj is a singular fiber due to Lemma 4).

Note that the requirement that fs is a smooth fiber in condition (3) in
the original definition in [2] is dropped in this new definition for the singular
X case since this requirement is due to the fact that when m > 1 and d > 1,
fi0 and faso are singular fibers (assuming (71) acts freely on f1o, and (79)
acts freely on fog) by Lemma 4 and X is smooth. But, if X is singular then
f10o and foq need not be smooth fibers.
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In the singular X case, if (71 x 72) acts freely on X, then (By,7) and
(B2, ) are both suitable pairs (Note that 0 and oo should be interchanged
for (Ba,T2) in order to call it a suitable pair according to the above defini-
tion). Conversely, using two suitable pairs (B1, 1) and (Ba, 72) with common
m and n values (m; = mg and n; = ng), one can first make a change of
coordinates on the base curve P! of By interchanging 0 and oo, then con-
struct the fiber product X. There exists u relatively prime to m such that
(1) = ¢(13), hence 71 x 74 is an automorphism of X. To conclude that
(11 x 74') acts freely on X, due to Lemma 3 one needs to check that the
non-identity elements of the form ¢., x ., in this cyclic group have no fixed
points on X (this needs to be checked if m =1 or if m > 1 and d > 1).

Note that in order for an automorphism t¢, x ¢, not to have a fixed point
on an I, X I fiber of X, it should be checked that e; does not intersect the
neutral component (the component intersecting the zero section) of I, or €5
does not intersect the neutral component of I;. Here ¢; is a torsion section of
B;. This can be checked using the height pairing on the Mordell-Weil lattice
and its explicit formula given in [8] (see also §2 in [2]).

Lemma 6 (Generalization of Lemma 3.10 in [2]). Let (B,7) be a suitable
pair with m > 1 (conditions (2) and (3) in the definition). Then foo is either
smooth or singular of type L, for some integer r > 0.

This lemma follows from the fact that for an elliptic surface the only
singular fiber type which admits a free action of Z, is I,,. Here condition
3 is also included in the generalized lemma since in the singular X case fo
need not be a smooth fiber even if m > 1 and d > 1, contrary to the smooth
X case.

Lemma 7 (Proposition 3.11 in [2]). Let (B, T) be a suitable pair with m > 1
(conditions (2) and (3) in the definition). Then o = (1) € Aut,(B) fizes
the neutral component (the component intersecting the zero section o) of fx
pointwise.

The proof of the lemma is the same as the proof given in [2].
For a suitable pair (B, 7), the pair (B, «) where o = ¢(7) € Aut,(B) is
a suitable o-pair which is given by the same definition as in [2]:

Definition 8. A pair (B, a) where B is a relatively minimal rational elliptic
surface with section and a € Aut,(B) is called a suitable o-pair if m = m >
1, the fiber fo of B is either smooth or singular of type I,,, for some integer
r > 0, and « fixes the neutral component of f., pointwise.

Here m = ord(a) = ord(¢(a)) (note that a = ¢ (a) since o € Aut,(B))
and m = ord(¢(c)). The fiber f., of B is the fiber over oo € P! which is one
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of the two fixed points of ¢(a) € Aut(P'). The neutral component of fu, is
the component which intersects the zero section o of B.

In §4 of [2], Bouchard and Donagi have classified all suitable o-pairs.
They have shown that any suitable o-pair (B, «) is obtained by a pull-back
of another relatively minimal rational elliptic surface B with section via the
map g, : P! — P!, 2z +— 2™ of degree m on the base curve P! where fo of
B is one of the singular fiber types as shown in Table 3 in [2] and fs of
B is either a smooth fiber or a singular fiber of type I,. Here, m = ord(«)
and the classification given by Bouchard and Donagi shows that m can be
2,3,4,5 or 6. At this point, Bouchard and Donagi make a simplification in
their analysis by considering only the suitable o-pairs with fo of B a smooth
fiber (hence fs of B is also a smooth fiber) in the remaining of their work
[2]. Tt is noted in §4.3.1 in [2] that suitable o-pairs (B, «) with fo of type
L, are specializations of a one parameter family of suitable o-pairs with
smooth fo. Bouchard and Donagi then classified all suitable pairs (B, )
corresponding to suitable o-pairs (B, ) with smooth fu.

In this paper, we will make explicit use of the classification of the suitable
o-pairs given by Bouchard and Donagi, and also classify suitable pairs (B, 7)
with fo of type I, and include them in our analysis in order to obtain
free actions on singular Schoen 3-folds. Before proceeding to construct such
suitable pairs, we first show in the next section that for a finite group G
acting freely on a singular Schoen 3-fold X, the induced action on the base
curve P! is cyclic.

3.3. The induced action on the base curve P!

Let G be a finite group which acts freely on a singular Schoen 3-fold X
where the elements of G act on X as the map 7 x 7 for 7; € Aut(B;), i = 1,
2. Then, for each such element of G the cyclic group (11 X 72) acts freely
on X since it is a subgroup of G whose action on X is free. Therefore, each
element 7 x 9 of GG satisfies the conditions given in the lemmas in §3.2.
The projections m; : G — Aut(B;), 71 X T2 — 7; for i = 1, 2 are injective
homomorphisms, hence G' is isomorphic to each of G; := m;(G) C Aut(B;).
If we define ¢ : G — Aut(P!) by ¢ := ¢ om = ¢ omy (second equality
holds since 71 X 7 € G implies that ¢(71) = ¢(72) so that 71 x 73 is a well-
defined map on the fiber product X), then ¢(G) C Aut(P!) is the subgroup
of induced automorphisms on P! by elements of G. We call the action of
#(G) on P! the induced action of G. In the paper [5], the author has proved
that the induced action of G is a cyclic group if G is a finite group which
acts freely on a smooth Schoen 3-fold. We now show that the induced action
is again cyclic when G acts freely on a singular Schoen 3-fold X.
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Lemma 9 (Lemma 1 in [5]). If G is a finite group which acts freely on
a singular Schoen 3-fold X = Bj Xp1 By such that elements of G are of
the form 1 X 7o where 7; € Aut(B;), then for each i = 1,2, the restriction
of the homomorphism ¢ : Aut(B;) — Autpg,(P) to the subgroup (G;) C
AutU(Bi)

Plycy = Y(Gi) = 9(G)
is an isomorphism. Hence

(@l aur, (8) " (S(G)) = ¥(Gi) x CM(B;) = §(G) x CM(B;)

as a subgroup of Aut,(B;) where CM (B;) is the complex multiplication sub-
group of Auty(B;).

The proof of this lemma is the same as the proof given in [5] once we
note that mi; = mo = m1 = Mo is valid in the singular X case as stated in
Lemma 2 and the discussion following it.

The proof of Theorem 2 in [5] which states that ¢(G) is cyclic is a case by
case analysis which depends on Lemma 1 in [5], the fact that for a suitable
pair (B,7) where m > 1 the fiber f. is either smooth or singular of type
Iy, and the fact that for a suitable o-pair (B, «) the neutral component
of foo is fixed pointwise by «. All of these are valid in the singular X case.
Therefore, the same proof given in [5] works for the following result:

Lemma 10. Let G be a finite group which acts freely on a singular Schoen
3-fold X as in Lemma 9. Then ¢(G) is a cyclic group.

4. The lists
4.1. The list of suitable o-pairs (B, «)

As we noted in §3.2, Bouchard and Donagi have shown that a suitable o-pair
(B, «) is constructed by pulling back a relatively minimal rational elliptic
surface B with section via the map Gm : P' = P! 2 — 2™ where the fiber
fo of B over 0 € P! is as shown in Table 3 in [2] (note that m = ord(a)).
Bouchard and Donagi have given a list of such elliptic surfaces B and the
corresponding pullback surfaces B where both foo and fo are smooth fibers
(fibers of B and B over the point oo € P!) in Table 4 in [2]. Instead of
choosing the point co € P! so that foo is a smooth fiber, one can choose
oo € P! such that the fiber foo of B over that point is a singular fiber of
type I.. Then the pullback via the map g,, produces a surface B where the
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fiber fo of B is of type I,,.. We give a list of suitable o-pairs (B, «) with
foo a singular fiber of type I, in Table 1. In this table we use the same
surfaces B as in Table 4 in [2], but we choose foo of B as a singular fiber
of type I so that the pullback surface B via the map g,, has fo, a singular
fiber of type I,,,. In Table 1 we indicate the fibers over 0 and oo, the root
lattice of singular fibers, the Mordell-Weil lattice, and the torsion subgroup
of the Mordell-Weil group of both of the surfaces B and B together with the
generic configuration of singular fibers on these surfaces. We consulted the
list given in [6] in order to provide the Mordell-Weil lattices and the torsion
subgroups of the Mordell-Weil lattices in our Table 1. We note two mistakes
in the list in [6] as indicated in pages 26 and 43 in [2]: For an elliptic surface
B whose root lattice of singular fibers is T = Dy @& Ay the Mordell-Weil
lattice is § [2 1] and for a surface with T'= A7 & A; the torsion subgroup
of the Mordell-Weil group is Zj.

Such suitable o-pairs where f, is not smooth have been excluded from
the analysis given in [2] as mentioned in §4.3.1 and Remark 6.4 in [2]. In
this paper we will use such suitable o-pairs in order to construct singular
Schoen 3-folds X admitting a free action of a finite group G. As a second
goal of this paper, we will construct the smooth Schoen 3-folds X with a
free action of a finite group G using these suitable o-pairs which were not
considered in the paper [2].

We will call suitable o-pairs (B, «) with smooth fo general type suit-
able o-pairs and the pairs with singular f. of type I, special type suitable
o-pairs due to the fact that these special type pairs are obtained as a spe-
cialization of the general type pairs forming a codimension 1 family in the
family of surfaces B admitting such automorphisms « (see §4.3.1 in [2] for
details).

4.2. The list of G C Aut(B) consisting of suitable automorphisms

For the elliptic surfaces B which admit an automorphism a € Aut,(B) with
order m > 1 where (B, «) is a suitable o-pair such that f is a singular fiber
of type I, we will determine the subgroups G of Aut(B) such that (B, 1) is
a suitable pair and ¢(7) € (a) for each 7 € G. Note that such a pair (B, a)
is one of the cases listed in Table 1, and if G is a finite group which acts
freely on a singular Schoen 3-fold X = By xp1 By, then the induced action
#(G) on the base curve P! is a cyclic group which is isomorphic to ¥(G;) for
each i = 1,2 (see §3.3), hence if ¥/(G;) = (o) we must have (1) € (o) for
each 7 € G; = m;(G) = G for each i = 1, 2. For such a group G;, ker(¢)) C G;
consists of translations by torsion sections (note that ¢ : G; — (a;)). As a
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result, G; is generated by an automorphism 7 such that ¥ (7) = «; together
with possibly some translations by torsion sections of B;.

Lemma 11. For each relatively minimal rational elliptic surface B with
section which admits an automorphism o € Auty(B) of order m > 1 such
that (B, «) is a suitable o-pair where fo is a singular fiber of type Ip,, (that
is, for each of the cases listed in Table 1), the groups G C Aut(B) where
(B,7) is a suitable pair and ¥(7) € (a) for each T € G are as listed in
Table 2. In this table we list m = ord(«), d = ord(t™) = ord(T)/m for
elements T € G such that ¥ (1) = a and the dimension dim of the moduli
space of the elliptic surfaces B admitting such a group G C Aut(B).

Remark. For each case the dimension of the moduli space of the rational
elliptic surfaces B which admit an automorphism « of order m such that
(B, «) is a suitable o-pair with f, a singular fiber of type I, is one less
than the dimension of the moduli space of such surfaces where (B, «a) is a
suitable o-pair with smooth f. as explained in §4.3.1 in [2]. With this note
the dimensions dim in Table 2 are calculated as in Proposition 6.2 in [2].
The dim values for each group G in Table 2 are less than the dim values for
the same group G listed in Tables 8 and 9 in [2]. As a result the family of
the Schoen 3-folds X = B xp1 By admitting a free action of a finite group G
with non-trivial action on P! where at least one of the actions on B; and Bsy
is special type has smaller dimension than such a family where both actions
on By and By are general type.

Proof. We follow the same technique as in the paper [2] to list all such groups
G for each of the cases in Table 1. For the suitable o-pair in each of these
cases, we determine whether allowed sections ¢ € MW (B) exist such that
(B,T) is a suitable pair where 7 = ¢, o a.

For o € Aut,(B) of order m and e € MW (B), the automorphism 7 = .0
a has finite order n if and only if P, (€) is a torsion section of order d = n/m,
or equivalently ®,,(¢) = 0 where Pp,(€) = o™ L(e) +a™ 2(e) +- -+ afe) +e
and @,,(e) = (Pm(€),Pm(€)) (see Lemma 3.4 in [2]). Here (—, —) denotes
the height pairing in the Mordell-Weil group of B (see [8] or §2.3 in [2]), and
+ denotes the group operation in MW (B). This fact simply follows from
the relation avot. =t o a for e € MW (B) and o € Aut,(B) (see §3.1)
and ord(a) = m.

It is shown in §5.1 of [2] that if (B, «) is a suitable o-pair with ord(a) =
m where B is obtained as the pullback of an elliptic surface B via the map
z 2™ on P!, then ker(®,,) = [MW (B)®]* in MW (B) (Lemma 5.1 in [2])
where MW (B)“ is the sections € of B such that a(e) = € (sections preserved
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Table 2: Finite groups G C Aut(B) which consist of suitable automorphisms
where ¢¥(G) = (@) = Zy, (m > 1) and f is of type I, (r > 0), special type
actions

g m d dim Sing. fibers T fo feo Case
G= Z3 X Z3
1 3 1 0 I3 Al Iy I3 1la
G= Z4 X ZQ
2 4 1 0 INE; Az AP I, I, 5a
3 2 2 0 313 AP @ AP I, I, 22a
G =Zg
4 6 1 0 16[16 A5 IO I6 la
5 3 lor2 0 IIT I3 As @ Ay IIT Is 8b
6 2 lor3 0 IVIGI? As ® Ay IV Is 17
G =17s
7 5 1 0 I 1517 Ay II I 2a
G=174
8 4 1 1 14118 Ag IO I4 4a
9 4 1 0 VI, A3 ® Ay IV I, 3a
10 4 1 0 IgI} Az Iy Is 5b
11 2 2 1 L3I} As@ AP® I, I, 26b
12 2 2 0 IS} Dy @ Ag I I, 14b
13 2 2 0 I I, I? A7 @ A, I, Is 27b
G =173
14 3 1 2 131? A2 IO 13 9a
15 3 1 1 IIT 319 Ay @ Ay IIT I3 Ta
16 3 1 1 L3I} Ay AP I, I3 10a
17 3 1 1 II¢ As Iy Is 10b
18 3 1 0 LT3 Dy @ Ay I I; 6a
19 3 1 0 IIT 1313 Ay AP* IIT I3 8a
20 3 1 0 IyI} Ag Iy I, 11b
G= Lo X Lo
21 2 1 2 I3 AP Iy I, 3la
22 2 1 1 L3I} Az AP I, I, 2la
23 2 1 1 I8 APE I, I, 26a
24 2 1 1 LI Az AP* I, I, 32a
25 2 1 1 LI, 1} A2 A Iy, L, 33a
26 2 1 0 I3 Dy AP IF I, l4a
27 2 1 0 IgIQIlz A7 @Al Ig I2 18a
28 2 1 0 1212 AP AP? I, I, 22a
29 2 1 0 I2I2 AP AP I, I, 27a
G =17,
30 2 1 4 LI{° Ay Iy I, 28a
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Table 2: Continued

i m d dim Sing. fibers T fo fso Case
31 2 1 3 213 AT? I, I, 23a
32 2 1 3 I A3 Iy, I, 29
33 2 1 3 LI} Az Iy, I, 29b
34 2 1 2 IVIQI? A2 @Al v .[2 15a
35 2 1 2 L I8 Az @ Ay 1, I, 20a
36 2 1 2 I APY I, I, 24a
37 2 1 2 LI I¢ Az Ay I, I, 24b
38 2 1 2 2L, 1% A?@ A, Iy I, 30a
39 2 1 2 IsIY As Iy, Is 30b
40 2 1 2 L3I} Az @ AP? I I, 31b
41 2 1 1 IS IE Dy @ Ay I I, 13a
42 2 1 1 IVI3I? Ay @ AY® IV I,  16a
43 2 1 1 VI I} Az ® Ay IV Iy 16b
44 2 1 1 I6I2Iil A5 S5 Al I6 12 19a
45 2 1 1 21 AF? I, I 21b
46 2 1 1 21217 AP @ AP? I, I,  25a
47 2 1 1 Il I} As & Ay I, Is 25b
48 2 1 1 L3I} Az @ AP I I, 26b
49 2 1 1 Il Ay I, Iy 33b
50 2 1 0 IV* LI} Ee Ay v I, 12a
502 1 0 IS 1,01} Dy & As I; I, 14b
52 2 1 0 IVIZI, APPoA, IV L, 17a
53 2 1 0 LRI A& Ay I, Iy 27b

by a as a set). The symbol L denotes the orthogonal complement with
respect to the height pairing (—, —) in the Mordell-Weil group. The Gram
matrix of MW (B)® is given by mMW where MW is the Gram matrix of
the Mordell-Weil lattice of B (see the comment after Lemma 5.1 in [2]). This
makes it possible to calculate ker(®,,) for each case listed in Table 1.

Let (B, «) be a suitable o-pair with ord(a) = m > 1 and let € € ker @,
such that P, (€) is a torsion section of order d. In this case 7 = t.oa has order
n = md and we have (B, T) is a suitable pair if and only if (1) acts on fu
freely. Let fo be a singular fiber of type I, and label the components of fo,
as 0p, 01, ...,05,_1 where 6y is the neutral component (the component which
intersects the zero section o) and 6; intersects each of ;11 with multiplicity
1. If a section 7 intersects fo at the component 0, then the automorphism ¢,
maps each component #; to the component 6;,, (subindices are considered
modulo s). With this notation, since « fixes the neutral component 6y of
foo pointwise, we can conclude that (7) acts on foo freely if and only if €

intersects a component 0,;/,, where j is relatively prime to n (in other words
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e intersects a component of order n of fo, which is of type I). In particular
n divides s if (B, 7) is a suitable pair.

Using these facts and the explicit formula of the height pairing in terms
of the intersection numbers of the sections given in Theorem 8.6 in [8], we
can determine the existence of the allowed sections ¢ € MW (B) for each
case in Table 1 such that (B, 7) is a suitable pair where 7 = t. o . We can
determine whether d > 1 is possible or not for each case. In each case, we
can also determine if there are one or more torsion sections 7 of B such that
7 and the automorphism(s) ¢, together generate a subgroup G C Aut(B)
such that (B,~) is a suitable pair and 1(v) € (a) for each v € G. This
analysis is carried out case by case through Table 1. We explicitly discuss
some cases below. The analysis of each case is done in a way similar to the
cases discussed below. The results are listed in Table 2.

Note that since a € Aut,(B) it maps the zero of each smooth fiber
(which is an elliptic curve) of B to the zero of a smooth fiber, hence «
restricts to elliptic curve isomorphisms between the smooth fibers of B. As
a result the map e — «a(e) is an automorphism of the group MW (B). In
particular, o maps torsion sections to torsion sections.

We first consider the cases in Table 1 where MW,,.(B) = 0. In these
cases d = 1 for any suitable pair (B, 7) since there is no torsion section on
B. We have G = Z,, once we show the existence of allowed sections (if a
suitable pair exists n = m and there is no torsion section to generate a larger
group together with 7).

e Cases la, 2a, 3a, 6a and 12a: In all of these cases MW(B) = 0, hence
ker @, = MW (B). In Case 3a, there exists € € ker &, with (¢,¢) = 7/12.
Using the explicit formulation of the height pairing given in [8], we obtain
(e,€) = 24 2e0 — Xcontr, = 7/12. In this formula the contribution at the
singular fiber IV of B is either 0 or 2/3 and the contribution at the fiber
I, is 0, 3/4 or 1. We can conclude that € is disjoint from the zero section o
and the contribution at I'V is 2/3 and the contribution at I4 is 3/4. Thus, €
intersects I, at the component 0, or f3. As a result, € is an allowed section.
A similar argument gives the existence of allowed sections in the Cases 1la,
2a, 6a and 12a if we consider € € ker ®,,, = MW (B) where (e,e) = 7/6, 6/5,
1/3 and 1/6, respectively.

e Cases 10a, 10b, 19a, 25a, 25b, 30a and 30b: In all of these cases MW (B)“
whose Gram matrix is mMW is a direct summand of MWy (B) (note
that MW is the Gram matrix of MWu(B)). Thus, ker &, = [MW (B)*]*
in MW (B) is easily computed. In Case 10a, we have m = 3, ker 3 =
[3(1/6)]* = [Aj]* in MW (B) which equals £[? 1]. There exists € € ker ®3
such that (e,e) = 1/3. Using the explicit formula of the height pairing we
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can conclude that the contribution at I3 fiber in this formula is 2/3, hence
€ intersects foo = I3 at the component 6 or 2 (an order 3 component).
Thus, € is an allowed section. Similarly in Cases 10b, 19a, 25a, 25b, 30a
and 30b, we can show the existence of € € ker ®,, with (e,e) = 2/3, 1/6,
1/6, 1/2, 1/6 and 1/2, respectively. In all of these cases we can show that
€ intersects foo at an order m component, hence € is an allowed section.
This follows directly using the explicit formula of the height pairing except
for Case 25a for which the following analysis yields the result: In Case 25a,
ker &g = [MW (B)*]*+ = [(1/6)]* in MW (B) which equals (1/6). There are
€ € ker @y and § € MW (B)® such that (e,¢) = (4,0) = 1/6 and (e, d) = 0.
The first two equalities imply that both ¢ and § are disjoint from the zero
section o and each of them intersect two of the I3 fibers (or the two fibers
corresponding to Agﬂ in the root lattice T') at non-neutral components and
only one of the two I fibers (fy and fo) at a non-neutral component. As a
result of the facts a(d) = 0, « has two fixed points on the neutral component
g of fo = Is one of which is 'gyNo, and 9§ is disjoint from o, we can conclude
that if § intersects I'g, then both § and —d intersect I'y at the second fixed
point of a on T'g. If 6 and —§ intersect, (§, —J) = —1/6 is a contradiction
(this can be seen using the explicit formula of the height pairing). There-
fore,  intersects fp at the non-neutral component I'y of fy. The equality
(€,0) = 0 then implies that € intersects foo = Iy at the component 6; (a
degree 2 component), hence ¢ is an allowed section.

o Cases 13a, 16a, 16b, 20a, 24a and 24b: In Case 13a we have ker &9 =
[(1)]* in (AD)®3 which gives ker &5 = (1) @ A% (we can embed (1) as the
subspace generated by e; + ez in (A})®3 whose orthogonal complement is
then generated by e; — ea and e3 where e; are the standard basis vectors).
Thus, there is € € ker &5 with height 1/2, i.e., (¢,€) = 1/2. This section
€ intersects foo = I at the order 2 component 61, hence € is an allowed
section. In Cases 16a and 16b, we have ker 3 = [(1/3)]* in MW (B) and
we can show the existence of € € ker 5 with height 1/2 and 1 in these two
cases, respectively. This section € is an allowed section in each case since €
intersects foo at an order 2 component. In Cases 20a, 24a and 24b, using
simple linear algebra we can show that ker @3 = (1) @ A}, (1) & A} and
(1) & (1), respectively. The section € € ker @9 with height 1/2, 1/2 and 1
in these three cases are allowed sections. This directly follows for Cases 20a
and 24b using the explicit formula of the height pairing (e intersects foo
at the order 2 component). For Case 24a we need the following argument:
There exists § € MW (B)® with height 1/2. We can show that ¢ intersects
fo = I> at the non-neutral component I'y by using the same discussion we
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gave for Case 25a above. The equations (e,e) = (0,d) = 1/2 and (¢,) = 0
imply that € intersects fo, = I2 at 01, hence € is an allowed section.

e Case 29a: There exists € € ker &y = [(1)®3]+ in D} @ A} with height 1/2.
This section € is an allowed section since it intersects foo = Io at the order
2 component 6.

e Case 29b: There exists ¢ € ker ® = [(1)®3]* in D with height 1. This
section € is an allowed section since it intersects f., = I4 at the order 2
component 5.

e Case 4a: There exists ¢ € ker ®; = [(2)]* in D} with height 5/4. This
section € intersects fo, = I4 at an order 4 component 61 or 03, hence € is an
allowed section.

e Cases 7a and 9a: We have ker ®3 is given by [(3/2)]* in A% and [3A3]* in
E§ in these two cases, respectively. We can show the existence of € € ker ®3
with height 4/3 in both cases. This € intersects fo = I3 at an order 3
component 01 or 6, hence € is an allowed section.

e Case 15a: We have ker &3 = [2A43]* in A% and we can show the existence
of € € ker & with height 3/2. This section € intersects fo = I at the order
2 component #1, hence € is an allowed section.

e Case 28a: We have ker &y = [2D}]* = [D4]* in E%. Using the result
[2A%]+ in EZX equals D4 which is proved in Lemma 5.2 in [2] as Case 23, we
can conclude that ker &5 = [D4]L in E7 contains 2A3 as a sublattice. Thus,
there exists € € ker 5 with height 3/2. This section € is an allowed section
since it intersects foo = Io at 0.

e Case 23a: We have ker &5 = [2A%] in D is the lattice given by the Gram

. 402 . .
matrix %[g % %] Thus, there exists €; and € in ker @9 such that (e1,€1) = 2,

(€2,€2) = 3/2 and (€1, €2) = 1. First two equalities imply that both € and
€9 are disjoint from the zero section o, €] intersects the neutral components
of fy and fo, and €9 intersects exactly one of fy and fo at the neutral
component. If ey intersects fo, = I» at the component #;, then €5 is an
allowed section and we are done. If ey intersects fo, = Iy at the neutral
component 6y, then we get a contradiction as follows: The equality (e, e5) =
1 implies that the intersection number €;¢5 is 0. Since €7, €5 € ker @ we have
e;+a(e) = 0foreach i = 1,2 since MWior5(B) = 0. Since « fixes the neutral
component #y (which is P!) pointwise and both ¢; are disjoint from o, we
can conclude that in order to have ¢; + a(e;) = 0, both €; must intersect
0y = P! at —1 (after choosing coordinates on 6y such that o N6y is 1 and
the two intersection points of 8y and #; are 0 and oco. Note here that 0 and
oo are fixed by ¢, if € intersects g, and if eNfy = w, then t. acts on §y = P!
by z + wz). This implies €1€5 > 1 contradicting €€ = 0.
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In the rest of the proof we consider the cases in Table 1 where MW (B)
has a non-trivial torsion subgroup. After determining ker ®,,, we determine
whether there are allowed sections € € ker ®,, where P,,(¢) is a torsion
section of order d > 1 or not. Here d divides the order of MW;,.s(B) and
since we require that (. o @) acts freely on f which is a singular fiber
of type I, dm divides s. For some allowed sections in ker ®,,, we may have
d = 1 while d > 1 for other allowed sections. This way we can obtain different
groups G for the same case in Table 1. Finally, we determine whether such an
automorphism ¢, o & where € is an allowed section and translations by other
torsion sections together generate a larger group G (order of G is greater
than md) consisting of suitable automorphisms (7 € G implies (B, 7) is a
suitable pair). Note that by Lemma 4, d > 1 is not possible if fj is a smooth
fiber (which is denoted as Ip).

e Case 5a: We have ker &4 = [0 @ Zy]* in MW (B) which equals MW (B) =
(1/4) ® (Za X Zs). There is € € ker &, with height 1/4 and this section
€ intersects fo, = I at an order 4 component 61 or 63, hence it is an
allowed section. Since fj is Iy (a smooth fiber), we have d = 1 by Lemma 4.
Let 7 = te o o, then (B, 7) is a suitable pair with m = 4 and d = 1. Is
it possible to form a group G generated by 7 and some translations by
torsion sections such that every element of G is a suitable automorphism?
MWior(B) = Zg X Zg. Let m1, n2 and 11 + 12 be the order 2 sections of
B. Note that o maps torsion sections to torsion sections. Without loss of
generality, 71 and 7y intersect foo = Ij at the component 03 and two of
the four I fibers at non-neutral components. The section 71 4 72 intersects
foo = 14 at the neutral component 6y and all four Is fibers at non-neutral
components. G cannot contain t,, or t,, since otherwise t,, 072 € G, but it is
not a suitable automorphism for i = 1,2 (they have fixed points on f., their
action on fu is not free). We can form the group G = (7,t,,4y,) = Zs X Zo
such that all elements of G are suitable automorphisms. Note that in Table 2
we do not list the subgroups of G = Z4 x Zo for Case ba as separate items,
only G = Z4 X Zs is displayed in this table.

e Case 5b: In this case ker &4 = A} & Zsy. Since fy = Iy, d > 1 is not possible.
For e € ker &4 with height 1/2, € intersects fo, = Ig at an order 4 component
0> or g, hence 7 = t. o « is a suitable automorphism with m = 4, d = 1.
The order 2 section n of B intersects foo at the component 6;. G cannot
contain t,, otherwise ¢, o7? € G has a fixed point on f., hence ty o7? is not
a suitable automorphism. Note that ¢, o 72 = t, 0 a® where v = 1+ ¢ + a(e)
intersects fo, = Ig at the neutral component 6. This is why ¢, o 72 has a
fixed point on f (note that « fixes the neutral component of f, pointwise).
As a result, we have G = (1) = Zy.
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e Case 8a: There exists € € ker &3 with height 1/3 and € is an allowed
section. d = 2 is not possible since Zg cannot act freely on foo = I3. If 1 is
the order 2 section of B, G contains ¢, and a suitable automorphism 7 with
m = 3 and d = 1 implies t,, o 7 € G is a suitable automorphism with m = 3
and d = 2, a contradiction. Thus, ¢, ¢ G, and G = Zs.

e Case 8b: There exists € € ker &3 with height 2/3 and e intersects foo = I
at an order 3 component 6 or 84. T = t. o« is a suitable automorphism with
m = 3 and d = 1. If n is the order 2 section of B, n intersects fo, = Ig at
the component 63. Thus t,, o 7 = #, . o a is a suitable automorphism with
m = 3 and d = 2 (its action on fo, = I is free since 1 + € intersects I at
an order 6 component ¢, or 65). We have G = (7,t,) = Zg in this case.

e Case 11a: We have ker $3 = Z3 x Zs. If we denote the four I3 fibers of B
as S1, 52, S3 and R = f., then without loss of generality o maps .S; to S;41
(considering the indices modulo 3) and maps R to itself. We can denote the
components of these I3 fibers by S; ; with ¢ = 1,2,3 and j = 0,1, 2 where S; o
is the neutral component of S; and a maps S;; to Si;1,;. We can similarly
denote the components of fo, = R by R; with j = 0,1,2 and o maps
R; to itself. One can show that the components intersected by each of the
eight order 3 sections are given by (1,2,0,1), (0,1,2,1), (2,0,1,1), (2,1,0,2),
0,2,1,2),(1,0,2,2), (1,1,1,0) and (2, 2,2,0) (here (a, b, ¢, d) means that the
section intersects the components S1 4, Sap, S3. and Ry, and if necessary
we can interchange 1 and 2 in the labeling of R; in order to obtain these
8 tuples). Let n; be the section corresponding to the tuple (1,1,1,0). The
order 3 sections which are preserved by « are n; and n; + n;. If 72 is any
of the first six sections in the given list, then 7 = t,, o a is a suitable
automorphism with m = 3 and d = 1. It is not possible to have a suitable
automorphism with d > 1 in this case since fy = Iy. Considering 7 € G, we
want to determine whether G' can contain a translation by a torsion section
or not. If the translation by any of the first six torsion sections in the given
list is in G, then there is t, € G where v and 7 intersect two distinct
non-neutral components of fo, = R, hence t, o7 =t,,,, oca € G is not a
suitable automorphism (there are fixed points on R since 7 + 72 intersects
the neutral component Ry). Thus, G may contain t,, and t,, 4,,, but not
the translations by other six torsion sections. It can be checked that every
element in G = (7,t,,) = Z3 X Z3 is a suitable automorphism.

e Case 11b: We have ker @3 = Z3 = (n) where 7 intersects fo, = Iy at 03 or
g. Thus 7 = t,, o o is a suitable automorphism with m = 3 and d = 1. It
is not possible to have d > 1 in this case since fy = Iy. Considering 7 € G
where 7 is any suitable automorphism with m = 3 and d = 1, G cannot
contain t, (and t,4,) since otherwise ¢, o 7 or t,4, o 7 which is in G has a
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fixed point on f and is not a suitable automorphism. Thus, G = (1) = Z3
in this case.

e Case 14a: We have ker @y = A} & (Za x Zg) and MWiors(B) = Za X Zo.
Let 71, n2 and 71 + 12 be the order 2 sections of B. Denote fy = I by @,
foo = I2 by R and the other two I fibers of B by S;, i = 1,2. Let R; and
S;,; where j = 0,1 be the components of R, S1 and S such that j = 0 corre-
sponds to the neutral component. Denote the components of @ = I by @,
0 < j <4 such that @ is the neutral component and 4 is the component
with multiplicity 2. The automorphism a maps S; j to Sj;1; (considering i
modulo 2), @1 to Q2 (see the discussion under Case 14 on page 34 in [2])
and maps the other components to themselves. Using the formula of the
height pairing and the facts that (n,e) = 0 for any torsion section 7, and
« maps torsion sections to torsion sections, we can determine the compo-
nents each torsion section intersects as follows. Without loss of generality,
n1 intersects the components (Q1,51.1, R1), 12 intersects (Q2, 52,1, R1) and
n1 + 12 intersects (@3, 51,1, 52,1) (we only listed the non-neutral components
intersected). We get a(n1) = n2 and a(n1 +n2) = n1 + 2. Let now € € ker ®q
with height 1/2. Then, either € intersects all three I5 fibers at non-neutral
components, or it intersects () = I at a non-neutral component and only
one of the three Iy fibers at a non-neutral component. In the former case
we have Pa(e) = e + a(e) = 0 and 7 = t. o « is a suitable automorphism
with m = 2 and d = 1. In the latter case, if € intersects foo = R = I at Ry,
then again 7 is a suitable automorphism with m = 2 and d = 1. If € inter-
sects St or Sz 1, then Py (e) which is a torsion section is 7y + 12 and we have
Pa(e+mn;) = 0 for any i = 1, 2. Thus 7; = teiy, o is a suitable automorphism
with m = 2 and d = 1. In any case, there is a suitable automorphism 7 with
m = 2 and d = 1. Note that there is no suitable automorphism with d > 1
in this case since Z4 does not act freely on fo, = I>. Considering 7 € GG, can
G contain a translation by a torsion section? Since t,, o 7 has fixed points
on fo, G cannot contain t,,. Every element of G = (ty,y,,T) = Zo X Zo is
a suitable automorphism. We list G as Zsy X Zs in this case.

o Case 14b: We have ker @9 = (1/4) & Zs. If n is the order 2 section, 71
intersects fo, = I4 at the component 63 and 7 = ¢, o v is a suitable auto-
morphism with m = 2 and d = 1. If such an automorphism 7 is in G, then
ty ¢ G since t, o7 € G has a fixed point on f.. Thus, G = Zy = (7) in
the case that d = 1 for 7. In this case d = 2 also occurs. Let ¢ € ker ®q
with height 1/4. Such a section e intersects foo, = I4 at 61 or 03, and we get
Pa(€) = € + a(e), which is a torsion section, equals 1. Thus, 7 =t o« is a
suitable automorphism with m = d = 2 and G = (7) = Z4 in this case (note
that G already contains t,, = (7)?).
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e Case 17a: We have ker @9 = (1/6) @ Zs. Let n be an order 3 section of
B, then 7 intersects foo = I2 at 6. Let € € ker &5 with height 1/6, then e
intersects foo at 1. We may have Pa(€) = e+ a(e) as any of 0, n or n+n. In
any case one of Pa(€), Pa(e + 1) or Pa(e +n+n) is 0 (note that a(n) = n),
hence we get an allowed section for a suitable automorphism with m = 2
and d = 1. It is not possible to have a suitable automorphism with m = 2
and d = 3 since foo = Iy does not admit a free action of Zg. Considering
7 € G with m = 2 and d = 1, if we also have ¢, € G, then ¢, 07 € G has
m = 2 and d = 3, which is not possible. Therefore, G = Z5 in this case.

o Case 17b: We have ker &9 = A] @ Zs3. Let n be an order 3 section of B,
then 7 intersects foo = I at an order 3 component 62 or 64 and it intersects
fo = IV at a non-neutral component. Let e € ker o with height 1/2, then
either it intersects foo = Ig at 03 and fy = I'V at the neutral component, or
it intersects fo, at 01 or 05 and fy = I'V at a non-neutral component. In the
former case, 7 = t. o ¢ is a suitable automorphism with m = 2 and d = 1.
We have G = (t,,7) = Zg where t, o 7 is a suitable automorphism with
m = 2 and d = 3. In the latter case, 7 = t. o o is a suitable automorphism
with m = 2 and d = 3, hence G = (1) = Zg (here G already contains t,, and
tn+n). In any case G = Zg and G contains elements with both d = 1 and
d=3.

e Case 18a: We have ker &5 = Z, = (1) where the order 4 section 7 intersects
fo = Ig at an order 4 component I's or I'g and intersects foo = Is at the
component 6. The automorphism « maps I'; to I's_; (see the discussion
under Case 18 on page 36 in [2]). We get P2(n) = n + a(n) = 0, hence
T = t, o« is a suitable automorphism with m = 2 and d = 1. It is not
possible to have a suitable automorphism with m = d = 2 since foo = Io
does not admit a free action of Z4. Considering 7 € G, t, or t, 4,4, cannot
be in G since ¢, o 7 and t3, o 7 have fixed points on f. But every element
of G = (ty4s, T) = Za x Zs is a suitable automorphism.

e Case 21a: We have ker &3 = [(1) @ Zo]* in A} © (1/4) @ Zy which equals
A} @ Zs. Let n be the order 2 section of B, then a(n) = n and 7 intersects
fo = I4 at the component I's, foo = Io at the component 6y and the other
two I fibers at non-neutral components. Let € € ker ®5 with height 1/2, then
either € intersects fy at I'g and the three I fibers at non-neutral components
(hence intersects fo, = I3 at 0), or € intersects fy at I'y and one of the three
I, fibers at a non-neutral component. In any case Pa(€) = € + a(e) = 0 (the
zero section o) since Pa(e) € MWiors(B) = (1) and Pa(e€) intersects fy at the
component I'g whereas 7 intersects fo at I'o. In the former case, 7 = tco v is
a suitable automorphism with m = 2 and d = 1. In the latter case, Pa(e) = 0
implies that € intersects foo = Iy at 01 (otherwise, if € intersects one of the
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other I fibers at a non-neutral component, then Ps(€) intersects these two
I, fibers at non-neutral components, which contradicts Pz2(€) = 0). Thus, in
this latter case 7 = t. o v is again a suitable automorphism with m = 2 and
d=1.1In any case G = (7,t,) = Zy x Zy consists of suitable automorphisms.
e Case 21b: We have ker &3 = [(1) @ Zo]* in (A})®? @ Zy which equals
(1) ® Zs. Let 7 be the order 2 section of B, then 7 intersects fy = I4 at the
component I's and fo, = I4 at the component 0s. Let € € ker @5 with height
1, then either € intersects fo at I's or € intersects f at 5. In the latter case
T = t. o v is a suitable automorphism with m = 2 and d = 1, and in the
former case 7 = t, 4. o a is such a suitable automorphism. It is not possible
to have a suitable automorphism with m = d = 2 since there is no section
v € ker @9 = (1) ® Za which intersects foo = I4 at 01 or 03 (since (v,7) is an
integer) so that P2(y) = n. Considering 7 € G is a suitable automorphism
with m = 2 and d = 1, we cannot have t,, € G since ¢, o7 € G has a fixed
point on fo. Thus, G = (1) = Zy in this case.

o Case 22a: We have ker &y = Zy x Zo. If we denote the fibers fy and f
by @ and R, the two I fibers by S7 and S, and their components by @,
Rj, Sij where ¢« = 1,2, j = 0,1,2,3 and k£ = 0,1 such that j = 0 and
k = 0 correspond to neutral components, then o maps @Q; to Q4—; (see the
discussion under Case 22 on page 36 in [2]), S;; to S;41, and maps R; to
itself. We can describe the torsion sections of B by giving the intersection
tuples (a,b,c,d) of each as follows where the intersection tuple (a,b,c,d)
denotes that the torsion section intersects the components @4, S1, S2, and
Rg. The three order 2 sections of B are described by the intersection tuples
asmp :(0,1,1,2), m2 : (2,1,1,0) and 1y +1n2 : (2,0,0,2). The order 4 sections
of B are described as wy : (1,1,0,1), we : (3,0,1,1), w3 : (3,1,0,3) and
wy : (1,0,1,3). The order two automorphism « maps wy to we, w3 to wy and
maps each order 2 section to itself. We have 2w; = m + 12, —w; = w3 and
—wy = wy. Using this notation, the only suitable automorphisms with m = 2
and d = 1 are t,, o a and t,, 1, o & (note that ¢,, o o is not suitable since if
has a fixed point on f4 as 7y intersects foo at the neutral component Rp). If
one of ¢, o« or t,, 4y, o is in G then C' cannot contain any translation by
a non-trivial torsion section except for ,, since otherwise G contains a or
tn, o which are not suitable automorphisms. In this case (form =2, d = 1)
we have G = <tT]27t771+T]2 © O£> = <t7)27t771 0 OZ> = {1?tn27t771 © a’tn1+772 © Oé} =
Zo X L. We have Ps(w;) = w; + a(w;) = m and w; intersects foo = R at an
order 4 component R; or Rj3, hence each of the automorphisms ¢,,, o v is a
suitable automorphism with m = d = 2. Considering t,,, o € G, none of £,
(j =1,..,4) is in G since otherwise we have oo € G, but « is not a suitable
automorphism. In this case (for m = d = 2) G = (ty,,tw, 0 @) = Zy X Zo

1
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which contains all ¢, o o for i = 1,2, 3,4 and all ¢, where 1 is an order 2
section of B.

e Case 26a: We have MW (B)* = A} @ Zy and ker &3 = A} @ (Z2 x Zsg),
hence there exists § € MW (B)* and € € ker @3 which both have height
1/2 such that (d,e) = 0. We first determine the components of the six I
fibers intersected by each torsion section in MWyys(B) = Za X Zsy. Let 1,
12 and 71 + 12 be the order 2 sections of B. If we denote fy and fo by @
and R and the other four I, fibers by S; (i = 1,2,3,4) and the components
of these singular fibers by Q;, R;, S; j where j = 0,1, 7 = 1,2, 3,4 such that
j = 0 corresponds to neutral components, then without loss of generality
a maps Si; to Sz, S3; to S4; and maps each of the other components
to itself. Each of the order 2 sections intersects exactly four of the I fibers
at non-neutral components. Since o maps each torsion section to a torsion
section, we have two possibilities for the intersection tuples of the torsion
sections. If the tuple (a,b,c,d, e, f) means that the given section intersects
the components Qq, 51, ..., Sa,e and Ry, then the first possibility is that the
intersection tuples of the torsion sections are given by 7y : (1,1,1,0,0,1),
n2:(1,0,0,1,1,1) and 9y +n2 : (0,1,1,1,1,0). For the second possibility, we
have n; : (1,1,0,1,0,1), 2 : (1,0,1,0,1,1) and n; +n2 : (0,1,1,1,1,0). The
first possibility does not occur as the following argument shows: For § with
height 1/2 such that «(d) = § whose existence is shown above, ¢ has height
1/2 implies § is disjoint from the zero section and it intersects exactly three
of the I fibers at non-neutral components. The same holds for the section
—0. Assume that 0 and —0 intersect fy = @Q at QQg. Since « has 2 fixed
points on @y one of which is 0 N Q and «(d) = §, we have § and —9 both
intersect Qo at the second fixed point of o on @y (note that § and —4§ are
disjoint from o). The fact that ¢ and —J intersect gives a contradiction when
we consider (0, —9) = —1/2. Thus, § intersects fo = @ at the component
Q1. Since «(d) = ¢, intersection tuple of § must be one of (1,1,1,0,0,0)
or (1,0,0,1,1,0). The equalities (0,7m1) = (§,m2) = (§,m1 + 12) = 0 imply
that 0 and each of the three order 2 sections have exactly two common
I5 fibers where they both intersect the non-neutral component. This is not
the case in the first possibility given above. Thus, the second possibility
occurs. As a result, we have a(n) = n2 and a(m + n2) = m + n2. Let
e € ker @5 with height 1/2, then e intersects three of the I fibers at non-
neutral components. The equalities (e,11) = (e, 12) = (e, m1 + n2) = 0 imply
that € and each of the three order 2 sections have exactly two common
I, fibers where they both intersect the non-neutral components. (J,¢) = 0
implies d and € have 0 or 2 common 5 fibers where they both intersect the
non-neutral component. These conditions and Py(e) = 0 or 71 + 12 reduce
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the possibilities for the intersection tuple of € to the following four cases:
(0,0,0,1,1,1), (0,1,1,0,0,1), (1,1,0,0,1,0) and (1,0,1,1,0,0). For the first
two cases, T = t. o « is a suitable automorphism with m = 2 and d = 1.
For the last two cases, T = tc4y, © @ is a suitable automorphism with m = 2
and d = 1. In any case we obtain the existence of 7 € G with m = 2 and
d = 1. It is not possible to have a suitable automorphism with m = d = 2
since foo = I5. Considering 7 € G, t,, or t,, cannot be in G since t,, o T
has a fixed point on f. But, G = (7,t,,4y,) = Zz x Zy consists of suitable
automorphisms.

e Case 26b: We have ker @9 = (1/4) @ Zo. Let n be the order 2 section of
B, then «a(n) = n and 7 intersects f at the order 2 component 65 and the
two I fibers different from fy at the non-neutral components. 7 = t, o « is
a suitable automorphism with m = 2 and d = 1. Considering such a 7 € G
with m = 2 and d = 1, G cannot contain ¢, since t, o 7 has a fixed point
on foo. Thus, for m = 2 and d = 1 case G = (1) = Zs. We also have
m = d = 2 case. Let € € ker &3 with height 1/4, then € intersects fo, at an
order 4 component 61 or 03 and Py(e) = n. Thus, 7 = t. o « is a suitable
automorphism with m = d = 2. We get G = (7) = Z4 (note that G already
contains t,).

e Case 27a: We have ker ©9 = Z4xZs. If we denote fo = Iy and foo = I5 by Q
and R, the two I, fibers by S1 and S5, and the components of these singular
fibers by Q;, R; and S; ;, where i = 1,2, j = 0,1 and k = 0,1, 2, 3 such that
j = 0 and k = 0 correspond to neutral components, then without loss of
generality o maps S; ;. to Siy1 x and o maps each of the other components to
itself. The intersection tuple (a,b, ¢, d) for a section means that this section
intersects the components @4, 51, S2, and Rq. The order 2 sections of B
are described by the intersection tuples as 7y : (1,2,0,1), 72 : (1,0,2,1) and
m+n2 :(0,2,2,0). The order 4 sections of B are described by the intersection
tuples as wy : (1,1,1,0), we : (1,3,3,0), w3 : (0,3,1,1) and wy : (0,1,3,1).
Here we can explain why we have a section with intersection tuple (1,1, 1,0)
instead of (0,1,1,1) as follows: A torsion section e which intersects Sj;
and S intersects either Q1 or Rj, and satisfies a(e) = e. Assume that e
intersects Qg and R;. Choosing coordinates on Qo = P! such that o N Qo
is 1 and the two intersection points of Qg and @) are 0 and oo, o maps z
to 1/z since « interchanges 0 and oo (« fixes 1 € Qo and does not fix Qg
pointwise, see the proof of Lemma 4.6 in [2]) and preserves the zero section
o. Since a(e) = €, we get € N1 Qp = —1 (note that non-zero torsion sections
are disjoint from the zero section o, see Proposition 2.1 in [2]). This implies
that te maps z to —z on Qo and t. is identity on Qq, hence (e+€)NQy = 1.
But, € + € is a non-trivial torsion section (it intersects S; 2 and Sp2), hence
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it is disjoint from the zero section o, which contradicts (e+¢€)NQy =1 € 0.
Therefore, € has intersection tuple (1,1,1,0) instead of (0,1,1,1). Using
the above descriptions of the torsion sections of B in terms of intersection
tuples, we can now conclude that 7 = ?,, o a is a suitable automorphism
with m = 2 and d = 1. Every element of G = (t, 4n,,7) = Zy X Zy is a
suitable automorphism. There is no suitable automorphism with m = d = 2
since fo, = Is does not admit a free action of Zy.

e Case 27b: We have ker @3 = Z4 = (n). The order 4 section 7 intersects
fo = I at the non-neutral component and fo, = Ig at an order 4 component
05 or Og. We have a(n) = n, Pa(n) = P2(3n) = 2n which is the order 2 section
of B, hence 7 = t, 0o« (and also 7 = t3, o) is a suitable automorphism with
m =d = 2. We get G = (1) = (7) = Z4. Considering 7 € G, t, or t3, cannot
be in G (otherwise there are elements in G which have fixed points on fo.)
and 72 = tay is already in G. T = 19, o v is a suitable automorphism with
m = 2 and d = 1 since P2(21) = 0. Considering 7 € G, none of t, where ~
is a torsion section can be in G (otherwise G has elements which have fixed
points on fy). Thus, for d = 1 case we have G = (T) = Zo.

e Case 31a: We have ker &y = A% @ Zy and MW (B)® = (1)%2 @ Zs. Let
€ € ker @9 with height 1/2 and § € MW (B)® with height 1. Let n be the
order 2 section of B. If we denote f., = I by R, the other four Iy fibers
by Si, 7 = 1,2,3,4, and the components of these singular fibers by R; and
Sij, 7 = 0,1 such that j = 0 corresponds to the neutral components, then
without loss of generality o maps S1; to Sz ;, S3; to S ; and maps R; to
itself for any j = 0, 1. The order 2 section 7 intersects four of the five I5 fibers
at non-neutral components, and since «(n) = 7, 1 intersects foo = I2 at the
neutral component Ry. € intersects three of the five I» fibers at non-neutral
components. Since Pa(€) = n or o (zero section), € intersects Rj. d has
height 1 and «(d) = § implies that the non-neutral components § intersects
are either (S1,1,52,1) or (53,1, 54,1). Using the explicit formula of the height
pairing in (¢, 0) = 0, we can conclude that there are 0 or 2 common I fibers
where both € and J intersect these fibers at non-neutral components. As
a result, € intersects the components (51,1, 52,1, R1) or (531,541, R1), and
in any case Pa(e) = 0. Thus, 7 = t. o « is a suitable automorphism with
m = 2 and d = 1. There is no suitable automorphism with m = d = 2 since
foo = I2. Every element of G = (t,), 7) = Zy X Zs is a suitable automorphism.
e Clase 31b: Let 1 be the order 2 section of B, then 7 intersects foo = Iy
at the order 2 component #y and Pa(n) = 0. Thus 7 = ¢, o «v is a suitable
automorphism with m = 2 and d = 1. Since fy = Ip (a smooth fiber), it
is not possible to have any suitable automorphism with m = d = 2 (see
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Lemma 4). Considering 7 € G with m = 2 and d = 1, G cannot contain t,
since t, o 7 has a fixed point on fs. Therefore, G = (1) = Zs in this case.
e Case 32a: We have ker &9 = Zo X Zs. Two of the three order 2 sections, 7;
and 79, intersect foo = Iy at the order 2 component 6, and 71 + 172 intersects
fso at By. Note that o maps each torsion section to itself since B is obtained
by pull-back of the elliptic surface B via the map g¢o (see §4 in [2]) and
M Wtom(é) = Za X Zy. We have 7 = t,, o o is a suitable automorphism
with m = 2 and d = 1 for each ¢ = 1,2. Since fy = Iy, there is no suitable
automorphism with m = d = 2. We have G = (t;, 44,y © @) = Z X Zo in
this case.

e Case 33a: We have ker &5 = Z4. Let 1 be an order 4 section of B. If we
denote fo, = Is by R, the two I fibers by S7 and S, and the components
of these singular fibers by Ry, R1, S; j where i = 1,2 and j = 0,1, 2,3 where
subindex 0 corresponds to neutral components, then without loss of general-
ity a maps S1j to Sq j for all j, and o maps R; to itself for all ¢. 1 intersects
foo = I2 = R at the non-neutral component Ry, S1 = I4 at S11 or 51,3 and
S at Sa1 or Sz 3. We first show that 7 intersects (51,1, S2,3) or (S1,3,52,1) by
considering 6 € MW (B)* with height 1/2. a(d) = ¢ and (4, ) = 1/2 implies
that ¢ intersects (S1,1,52,1) or (S1,3,523). In any case (n,d) = 0 implies the
contributions at the two I fibers in the explicit formula of the height pairing
must add up to an integer, hence n intersects (S1,1,523) or (S13,52.1) as
claimed. Thus, «(n) # n, hence a(n) = 3n. We have Pa(n) = n + a(n) = 0.
Since 7 intersects foo = I2 at Ry, 7 = t, 0 v is a suitable automorphism with
m = 2 and d = 1. Since fy = Iy, a suitable automorphism with m = d = 2
is not possible (see Lemma 4). We get G = (ta,, 7) = Z x Zs in this case.
o (Case 33b: We have ker @3 = Zo. If 1 is the order 2 section of B, then
7 intersects fo = Ig at the order 2 component 64 and P2(n) = 0. Thus,
T = t, o a is a suitable automorphism with m = 2 and d = 1. Considering
7 € G, C cannot contain ¢, since ¢, o 7 has a fixed point on f. Thus, we
have G = (1) = Zo in this case. Note that since fy = Iy, there is no suitable
automorphism with m = d = 2. O

5. Construction of free actions on Schoen 3-folds with
non-trivial induced action on P!

In this section we use the information obtained in the previous section and
construct the smooth or singular Schoen 3-folds X = By Xp: By which admit
a free action of a finite group G with non-trivial induced action on the base
curve P! (m > 1 case) where for the singular 3-folds X we require that the
singularities of X are on I, x I type fibers with » > 1 and s > 1 so that
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the small resolution of X is a projective Calabi-Yau 3-fold. In the paper [2],
Bouchard and Donagi have produced the list of groups G which act on a
rational elliptic surface B with section such that (B, 7) is a suitable pair for
each 7 € G, ¢¥(G) is a cyclic subgroup of Aut,(B), and fs is a smooth fiber
of B in Table 8 and Table 9 (pages 47-49 in [2]). For easy reference in the
proceeding discussion, we include a copy of this list in Table 3 in this paper.
We will call these group actions general type group actions. In Table 2 in the
previous section we listed such group actions where fo, of B is a singular
fiber of type I, (m > 1 and r > 1) (see Lemma 11), and we will call
these group actions special type group actions. Bouchard and Donagi have
classified the free actions on smooth Schoen 3-folds X = By xp1 By where
both actions on B; and Bs are general type. We now construct smooth or
singular Schoen 3-folds X which admit a free action by a finite group G with
non-trivial induced action on P! (where in the smooth X case at least one
of the actions on By and Bs is special type). Note that for such an action,
the induced action is cyclic, hence ¥(G) C Aut,(B;) is cyclic (see §3.3).
Furthermore, for each 71 X 79 € G, each (B;, ;) is a suitable pair, hence G is
isomorphic to a subgroup of Aut(B;) consisting of suitable automorphisms
(see §3.2). As a result, in order to construct such group actions, we choose
B and Bj from Table 3 (Tables 8 and 9 in [2]) or Table 2 (where at least one
is chosen from Table 2 if X is smooth) which admit the action of the same
group G. That is, if B; is listed under the group G; in these tables, then G is
a subgroup of G; for each i = 1,2. We also require that the induced actions
of G on the base curve P! are isomorphic for B; and Bs. We form the fiber
product X = B xp1 By after changing the coordinates in the base curve P!
of By by interchanging 0 and co and then identifying the two base curves by
an automorphism z — puz of P! which fixes 0 and oco. After this change of
coordinates, the fiber of X over 0 € P! is fig x foo and the fiber of X over
00 € Pl is fio X foso (Here the fy and fo fibers of By are denoted by fase
and fap, respectively, due to the change of coordinates on P! while fy and
foo fibers of By are denoted by fip and fi1~, respectively). We determine if
there exists an isomorphism A : G — G such that 7 and A(7) have the same
m and d values and ¢(7) = ¢(A(7)) for all 7 € G (This is a simple task since
G is abelian with at most two generators). Here we consider the domain of A
as G C Aut(B;) and the image of A as G C Aut(Bs). By definition, (B, 7)
and (Ba, A(7)) are suitable pairs for each 7 € G. For every 7 € G with
m > 1, (1) acts freely on fio, and (A(7)) acts freely on fao. The isomorphic
copy {(1,A(7)) € G x G|t € G} C Aut(By) x Aut(Bz) of G acts on X
where (7, A(7)) is the automorphism 7 x A(7) of X using our notation in
the previous sections. If X is smooth, then the action of G on X is free by
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definition of suitable pairs (see §3 in [2]). If X is singular, to conclude that
this action of G on X is free, we only need to check that the non-identity
automorphisms of the form t., x t., in this group G C Aut(By) x Aut(Bsg)
have no fixed points on X (see Lemma 3). With these guidelines to construct
free actions on Schoen 3-folds, we can prove the following two theorems by
examining the cases in Table 2 and Table 3.

5.1. Free action on smooth Schoen 3-folds

Theorem 12. The smooth Schoen 3-folds X = By xXp1 By which admit a
free action by a finite group G such that the induced action on P! is non-
trivial and at least one of the actions of G on By and By is special type
(foo fiber is a singular fiber of type I,) are as listed in Table 4. In Table 4
the numbers in brackets refer to the case numbers in Table 3 (general type
actions), and the numbers not in brackets in the columns By and Bs refer
to the case numbers in Table 2 (special type actions).

Proof. The general strategy of the proof is as explained above. We consider
elliptic surfaces By and By admitting the action of the same group G where
the action on P! is non-trivial and there is an isomorphism A : G — G as
mentioned above. At least one of B; and Bs is chosen from Table 2. To have
a smooth fiber product X, at least one of f19 and fog, and at least one of f1,
and fao, must be a smooth fiber (fiber of type Iy), and the automorphism
2+ pz of P! mentioned in the above construction must be chosen such that
the singular fibers of By and Bs are not paired over the same point in the
fiber product By xp: By. With these remarks, the proof is completed by a
case by case analysis through the Tables 2 and 3. U

Remark. The suitable pairs (B, 7) with m > 1 where f is not a smooth
fiber were excluded from the analysis in the paper [2]. Theorem 12 displays
the results when such cases are included in the analysis. When Table 4 is
examined, the same groups G (except for Zs) appear as in the results listed
in Table 11 in [2]. For each group G in Table 4, the dimension of the moduli
space of the Schoen 3-folds X admitting the free action by G is strictly
smaller than the dimension of the corresponding moduli space obtained in
Table 11 in [2].

5.2. Free action on singular Schoen 3-folds

Theorem 13. All singular Schoen 3-folds X = By xp1 By with singularities
on I, x I type fibers (r > 1, s > 1) which admit a free action by a finite group
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Table 3: Finite groups G C Aut(B) which consist of suitable automorphisms
where (G) = () = Zy, (m > 1) and fo is of type Iy (smooth fiber), general
type actions. (A copy of Tables 8 and 9 in [2] with less details)

G i m d dim Sing. fibers T fo
ZzxZs [9) 3 1 1 LI} AP I
ZyxZy [10] 4 1 1 31} APH I
[11] 2 2orl 1 21,137 AP0 A, I
121 2 2 1 1,1} Az @ AP I
Zs 13 6 1 1 2 0 Iy
[14] 3 2orl 1 131} AP I
[15] 2 3orl 1 IV I21? A3 A%
Zs, 6] 5 1 1 IT1{0 0 11
Z4 7] 4 1 2 2 0 Iy
[18] 4 1 1 IV I§ Ay v
9] 2 2 2 I3 AP I
200 2 2 1 L1317 Dy@® AP? I
ZyxZy [21] 2 1 3 31} APY I
22] 2 1 2 I8 APO I
23] 2 1 2 2 AS? I
24] 2 1 2 B AP I
[25] 2 1 2 LI21} Az @ AP? I,
[26] 2 1 1 LI Az @ AY* I,
271 2 1 1 Il Ay I
28] 2 1 1 IEE Dy @ AY? I
29] 2 1 0 LI D? I
Zs 0] 3 1 3 2 0 Iy
31] 3 1 2 LY A3 I
32] 3 1 2 Irn A I1I
33] 3 1 1 II¢ D, I
Zs B4 2 1 5 12 0 Iy
35] 2 1 4 1218 A2 I
36] 2 1 4 I,1}° A I
377 2 1 3 219 AS? I
38 2 1 3 LY AP? I
39] 2 1 3 LI} As I
[40] 2 1 3 IV I§ Ay v
41 2 1 2 121, 1% AP @ Ay I
[42] 2 1 2 I I As I
[43] 2 1 2 IV 31} Ay @ AP? IV
[44] 2 1 2 II¢ Dy I
45 2 1 1 IV*I FEg v+
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Table 4: Groups G which act on a smooth Schoen 3-fold X = By xp1 By
freely where the induced action on P! is non-trivial and at least one of the

Tolga Karayayla

actions on By and Bs is special type

G By B

Zg X Zg 1 9],1.

Z4 X ZQ 2 10],2

Zs 1 13] 4.

Zs 2,8,9,10. 10],[17].
2,8,10. 2,8,10.

Zs 1,4,5,14-20. [9],[13],[30],[31].
1,4,14,16,17,20. 1,4,14,16,17,20.

7o x Ty | 2,21-29. [10],[21],[22],[23],[29].
2,21,24,25. 2,21,24,25.

Zs 2.4,6,8-10,21-53. | [10],[13],[17],[21]-[23],

[29],[34],[35],[37].

2,4,8,10,21,24,25, | 2,4,8,10,21,24,25,
30,32,33,38-40,49. | 30,32,33,38-40,49.

Table 5: Finite groups G which act freely on singular Schoen 3-folds X =
B xp1 By with non-trivial induced action on P! such that the singularities
of X are on I, x I, type fibers over points different from 0 and oo € P!

G By By
Zg ><Z3 1,9] 1,9]
74 x Ly | 2,[10]. 2,[10].

11 11
12 12

7o 14 14
[15] [15]

Zi | 2,[10]. 2.[10].

(11T, [ 121, [19L,[20]. [L1],[ 2], [19],[20].
Zs 1,16. 1,16.
[O],[14],[31]. o, [14],31].
1,16,19. 91,131
Zo x Ty | 2,21,24,25. 2,21,24,25.
[10],[11],[21]-[26],[28]. 10],[11],[21]-[26],[28].
2,21-26,28,29. 10],[21],[22],]23].

Zeo 2.21,24,25,32,38,40. 2.21,24,25,32,38,40.
2,21-26,28,29,32,36, [10],[21],122],[23].[35],[37]-
38,40,42,46,48,52.

[10],[11], 15, [21][26], | [10],[11], 5], 21126,
[28],[351,[37],(38],[41],[43]. | [28],[35],[37],[38],[41],[43]
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Table 6: Finite groups G which act freely on singular Schoen 3-folds X =
By xp1 By with non-trivial induced action on P! such that the singularities
of X are on I, x I, type fibers over 0 and/or oo € P!

G B B
Z4 X Z2 3 3,[12].

Za 3,11,13. 3,11,13.
3,11,12,13. [11],[12],[19].

Zo X Ly | 2,21,22,24,25,27,28. 22,27,28.
2,21-29. [25],[26],127].

Zs 2,4,8.10,21-25, 22.23.27-29,31,
27-33,35-40,44-49,53. | 35-37,44-48,53.
2,4,6,8 10,21 53. [11],[24][27],[36],

[38],[39],[41],[42].

Table 7: Finite groups G which act freely on singular Schoen 3-folds X =
By xp1 By with non-trivial induced action on P! such that the singularities
of X are on I, x I type fibers over 0 and/or oo, and some other points
peP!

G By By
Z4 X Z2 3 3,[12 .
Zy | 3,11 3,11, [11],[12],[19].
Zo x Zs | 2,21,22,24,25,28. 22,28.
2,21-26,28,29. [25],126].
Zs 2,21-25,28,29,32,36,38,40,46,48. 22.23,28,29,36,46,48.
2,21-26,28,29,32,36,38,40,42,46 48,52 | [L1],[24][26],[38],[41].

G such that the induced action on P! is non-trivial are listed in Tables 5, 6
and 7.

If we denote the two fixed points of the induced automorphisms in qB(G)
by 0 € P! and co € P, Table 5 lists the cases where the singularities of
X are not on the fibers over 0 and oo, Table 6 lists the cases where X has
singularities only on the fibers over 0 or oo, and Table 7 lists the cases where
X has singularities on fibers over 0 or oo and also on other fibers.

Proof. We consider the elliptic surfaces By and By chosen from Tables 2
and 3 admitting the action of the same group G where the induced action
on P! is non-trivial, there is an isomorphism A : G — G as mentioned in
the general construction given in the beginning of §5, and the fiber product
X = By xXp1 By is singular such that all singularities are on fibers of type
I. x Iy (r > 1, s > 1). We group the results in three categories according
to whether the singularities of X occur on fibers over 0 and/or co € P!, or
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over other points on P!, or both. For pairs (B1, Bz) where the fiber product
X does not have singularities over 0 and oo, depending on the choice of the
automorphism z — pz of P! mentioned in the general construction, X may
have singularities over points different from 0 and co. We search for the pairs
(B1, By) for which the singularities of X are only on fibers of type I, x I
with 7 > 1 and s > 1. For the pairs (Bj, Ba) where X has singularities on
such I, x I fibers over 0 or co, we can choose the automorphism z +— pz of
P! such that X does not have other singularities.

These are the pairs to be considered for Table 6. But, we may also choose
the automorphism z — pz such that X has singularities on fibers of type
I, x Iy (r > 1 and s > 1) over points different from 0 and oo € P!, and
these are the cases to be considered for Table 7. In all of these cases under
consideration, to conclude that the action of G on the singular 3-fold X is
free, we need to check that the non-identity automorphisms of type t. x t4
of X in G do not have fixed points on X. Note that the singularities of the
3-folds X under consideration are only on fibers of type I, x I (r > 1 and
s> 1), and t¢ X ts has a fixed point on X iff € intersects I, and § intersects
Is at neutral components on one of such I, x I, fibers of X. With these
remarks, the proof is completed by a careful case by case analysis through
Tables 2 and 3 (consulting the proof of Lemma 11 for a detailed description
of the elements of G if necessary). The only subtle point worth noting is the
following: For the action of Zy x Zo where X has singularities over 0 or oo
(Table 6), and possibly over other points on P! (Table 7), the choice of By
or By as Case 23 or 29 from Table 2, or Case [11] or [24] from Table 3 does
not result in a free action of Zg x Zy on X if the other surface (B or Ba)
is chosen from Table 2. Suppose without loss of generality that B; is one
of these four cases and By is chosen from Table 2 such that Zy x Zy acts
on By Xp: Bs. In this case, there is one non-identity automorphism of type
te X ts and it has a fixed point on the fiber fi9 X fao (since € intersects f1p and
¢ intersects foo at neutral components. Note that here fog is the fiber of By
which is denoted as fo, in Table 2 as explained in the general construction
in the beginning of §5). O

6. Lifting the free action to a projective small resolution of
X

In Theorem 13 in the previous section we classified all finite groups G which
act freely on a singular Schoen 3-fold X = By xp:1 B such that the induced
action on P! is non-trivial and the singularities of X are on I, x I, fibers
with » > 1 and s > 1. Such singular Schoen 3-folds X have projective small
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resolutions X which are simply connected Calabi-Yau 3-folds. In this section
we determine which of the free group actions classified in Theorem 13 can
be lifted to a free action on a desingularization X of X by small resolutions.
Note that in the case where 871(p) is a fiber of type I, x I with r > 1
and s > 1 for all p € S (see §2), the small resolutions of X are obtained
by blowing up X along a sequence of divisors of the form 6; x I'; where 0;
and I'; are components of the singular fibers I, and I so that the resulting
3-fold is projective (see Lemma 3.1 in [7]). There are two non-isomorphic
small resolutions over Y at an ordinary double point singularity on a 3-fold
Y (see §1 in [7]). For an ordinary double point (a,b) on a fiber I, x I of X
where a is on the components 0; and ;1 of the singular fiber I, of B; and b
is on the components I'; and I'; 1 of the fiber I on Bs, the small resolution
at (a,b) performed by blowing up the divisor §; x I'; or blowing up the
divisor 0;41 x I'j41 are isomorphic over X. Similarly the small resolution
performed by blowing up the divisor ¢; x I'j41 or blowing up the divisor
0i+1 x I'; are isomorphic to each other over X. But, the small resolution
obtained by blowing up 6; x I'; or blowing up ¢;11 x I'; are non-isomorphic
over X. Schoen has discussed the problem of lifting an involution 71 X 7
which acts on a singular Schoen 3-fold X = By Xp: By to an automorphism
of the desingularization of X by small resolutions in §6 in [7]. Generalizing
the argument given by Schoen, we obtain the following criterion for lifting
an automorphism 71 X 7o of X to an automorphism of the small resolution
X of X.

Lemma 14. Let (11 X 12) act freely on a singular Schoen 3-fold X = By Xp
By where the singularities of X are on fibers of type I, x I such that r >
1 and s > 1. If the orders of 71 and 1o are n and there is a component
0; x I'j of an I, x I fiber of X such that the blow up of the divisors 0; x I';,
71(0:) x 19(T;), 72(0;) X 73(T;), ..o, T/ 1(0;) x 73 H(T;) in any order results in
isomorphic partial resolutions X over X, then (11 X ) lifts to a free action
on X.

The action of (11 X T2) on X lifts to a free action on a desingulariza-
tion X of X by small resolutions if there is a sequence of partial resolu-
tions Xk of X ending with X such that Xk-+1 18 1somorphic to the blow up
of Xy at the proper transforms in Xy of the divisors 0;, x T, 11(6;,) X
79(T5 ), ey 711 (0,) x 7971 (Ty,) in any order for some component 0;, x T'j,
of a fiber I. x I of X (so that the action lifts to a free action on each partial
resolution Xk+1 step by step).

Proof. Note that when the action on X is free, the lifted action on X is
free since the lift of a non-trivial automorphism maps an exceptional P! of
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the small resolution to a different exceptional P! (if a singular point Q1 is
mapped to a singular point Qs, the exceptional P! over @ is mapped to the
exceptional P! over @2 in the resolution).

For a 3-fold Y and an ordinary double point () € Y there are two small
resolutions of Y at ) which are non-isomorphic over Y. The projectivized
tangent cone of Y at Q is isomorphic to P! xP!. Let S and Sy be two surfaces
on Y which contain Q. If the tangent planes of S and S at @) correspond
to P! in the same ruling of the projectivized tangent cone P! x P!, then the
small resolution of Y at @ along the surfaces S1 and Sy are isomorphic over
Y, and if they correspond to P! in different rulings of P' x P!, the small
resolutions at @ are not isomorphic over Y (see §1 in [7]). Small resolution
is a local operation. If there is an isomorphism between a neighborhood U
of an ordinary double point @ of a 3-fold Y and a neighborhood U’ of an
ordinary double point @’ of a 3-fold Y’ which maps a surface S containing @
to a surface S containing )’, then the isomorphism lifts to an isomorphism
from the small resolution of U along S to the small resolution of U’ along S’.
But if the small resolution of U’ is along another surface which yields a non-
isomorphic small resolution over U’, then the given isomorphism between U
and U’ does not lift to the small resolutions.

In this lemma, we consider small resolutions of a Schoen 3-fold X ob-
tained by blowing up X along a sequence of divisors so that the resolution
is projective. Assume that blowing up the divisors in the orbit of the divisor
0; xI'; under the group action in any order results in isomorphic partial reso-
lutions of X. Let X be such a partial resolution of X. Consider any ordinary
double point @1 of X on one of the given divisors Dy = 75(6;) x 75(L;).
The small resolution at @1 is isomorphic over X to the small resolution at
()1 obtained by blowing up Dy (even if the singularity at (q is resolved
by blowing up another divisor before Dy, the order of blow ups does not
change the isomorphism class of the resolutions). Let 71 X 72 map Q1 to Q2.
Similarly the small resolution of X at )2 is isomorphic over X to the reso-
lution obtained by blowing up Djy1. Since 71 X 72 maps Dy, to Dy 1, by the
above argument we can conclude that the birational isomorphism 7 X 79 of
X extends to a rational map mapping Eq, (the exceptional P! of the small
resolution over Q1) to Eg,. This way, 71 X 7 extends to an isomorphism of
X . This completes the proof of the first statement of the lemma. The second
statement is a direct consequence of the first statement. ]

The groups which act on a singular Schoen 3-fold listed in Theorem 13
are cyclic or abelian with two generators. In the former case, Lemma 14
directly applies in order to check the lifting to a free action on the resolution.
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In the latter case, in order to conclude that the whole group action lifts to
a free action on the resolution, it suffices to check that the action of each
of the two generators separately lifts to a free action on the same resolution
since the commutator of the lifted automorphisms is the lift of the identity,
hence the lifted automorphisms commute.

6.1. Lifting the actions listed in Table 6

For the cases listed in Table 6, the only singularities of X are on the fibers
over 0 or oo € P!, i.e., the fiber over 0 or co (or both) is of the form I, x I
with 7 > 1 and s > 1. One of the I, and I, fibers is fy of the surfaces
B; or By and the other fiber is the f,, of the other surface (recall that
in X = By xp: By the fiber fy and fo of By is denoted as foo, and foq
respectively as fibers over co and 0 due to the change of coordinates on the
base curve P! of By as explained in §5). To simplify the notation in the
discussion, we will always consider the first fiber I, in I, x I, fiber as the
fo fiber of one of the surfaces B; and Bs, and the second fiber I, as the
foo fiber of the other surface (that is, for the fiber fio X foco we will abuse
the notation and denote it by fos, X fieo interchanging the positions of the
fibers so that the one on the left is fy fiber of one of the surfaces). We will
denote the components of I, by 6;, 0 < i < r and the components of I by
[,0<7<s.

e Lifting the Z, action: Let 7 = t. o « be a generator of Z4. In any of
the cases, € intersects fo at an order 4 component. Hence, after renaming
the components of foo = I if necessary, 7 maps I'; to I';1 if foo = I4 and
maps I'; to I'j1o if foo = Ig. For the cases fo = Iy, 7 maps 6; to 6;41 (since
€ intersects fy at 01). For the cases fy = I, 7 interchanges 6y and 67, and
interchanges 0 and 6s. If I, x Iy = I x Ig, the orbit of the divisor 6y x I'y
under the Z,4 action is 0y xI'g — 01 xI'y — 0y xI'y — 01 x g, and the action
lifts to a free action on the resolution of X obtained by blowing up all of
these divisors by Lemma 14 (Note that blowing up the given four divisors
resolves all singularities on this Iy x Ig fiber). Similarly, for I, x Iy = Iy x I4
blowing up the divisors in the orbit 6y x I'g — 61 x I'1 = 0y x I's — 01 x I'g
resolves all singularities on Iy x I4 fiber and the action lifts to this partial
resolution by Lemma 14. For I, x Iy = I x Iy we need to blow up the
divisors in the two orbits 0y x I'g — 61 x I'1 — 0y x 'y — 61 x I'3 and
02 XFO — 93XF1 — 92XF2 — 93XF3. And lastly, for ITXIS = I4><Ig, we need
to blow up the divisors in the orbits 6y x I'g — 01 xI's — 0y x 'y — 01 x L'
and o x 'g — 03 x 'y — 05 x 'y — 03 x I's. In all cases the resulting partial
resolutions are isomorphic no matter in which order the divisors are blown up
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in each orbit. The blow up of all the listed divisors resolves all singularities on
the given I, x I fiber and the action lifts to the partial resolutions obtained.
Since in all cases the action lifts to the partial resolutions, the action lifts
to the full resolution when singularities on both fibers over 0 and oo are
resolved.

In the remaining cases, the arguments will be similar to the discussion
in the above paragraph. We will only give the orbits of divisors that need
to be blown up to resolve the singularities on the given I, x I fiber so that
the action lifts to the partial resolution for this fiber.

e Lifting the Z, x Zo action: For this action we consider the cases 3 x 3
and 3 x [12] from Table 6. In any of these cases, we have I, x Iy = Iy x Iy. We
have shown above that Z, action lifts to a free action on the full resolution
of X if we blow up the following divisors in the two orbits for each I, x I
fiber: g x I'g — 01 xI'1 = 0g xT'y — 01 xI's and O x I'g — 03 x I'y —
0y x I'y — 603 x I's. The second generator of Z4 X Zo is an automorphism
of the form ¢, where 7 is an order 2 section of B;. This generator ¢, sends
each component I'; of foo = I to itself or to I';;19 in Case 3 depending on
whether 7 intersects f at the component I'g or I's. In both of the Cases 3
and [12], ¢, acts on fo = I, = I4 by mapping 6; to ;12. The 8 divisors listed
above are permuted under the action by ¢,, xt,, on X. Since the blow ups of
the 8 listed divisors in any order result in isomorphic resolutions, the second
generator of the Z, x Zs also lifts to the same resolution X. Therefore, the
Z4 X Zs action lifts to a free action on X.

e Lifting the Zs action: For all cases in Table 6, r» and s are both even
whenever X has a fiber of the form I, x I over 0 or oo € PL. Let r = 2a
and s = 2b. If 7 is the order two automorphism of By or Bs, then 7 acts
on foo = Iy = Iy, by mapping the component I'; to I'j ;. The action of 7
on the components of fy = I, = Iy, is one of two types. Type 1 action is
by mapping two components 8, and .., to themselves for some ¢ and by
interchanging 0.; and 6._; for each 1 < i < a (the subindices are considered
modulo r = 2a for components 0; of fy). Type 2 action on fo = I, is by
interchanging the components .,; and 6._1_; for each 0 < ¢ < a for some
c. Note that 7 = tc o and o« maps 6; to 6_;, and t. maps 6; to 6,14 for each
0 <i < r = 2a where the section € intersects the fiber fy at the component
04. Whether the action of 7 on fj is of type 1 or type 2 depends on d being
even or odd.

Let I, x Iy = Iy x I where a > 1. If we resolve all singularities on
this I, x I fiber by blowing up the divisors in the sequence of Zjy orbits
Ocri X g — 0.—; x I'y where 1 < ¢ < a in the type 1 action case, then
the Zs action lifts to this partial resolution. Similarly, for type 2 action
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case, we need to blow up the divisors in the sequence of Zs orbits given by
OctrixTg — O.1-;xT'1 for 0 < i < a so that the Zy action lifts to this partial
resolution. Note that the order of divisors chosen in any of these orbits does
not change the resolution obtained.

Let now I, x I3 = Iy, X Iy, where a > 1 and b > 1. No matter the action on
fois of type 1 or type 2, the Zs = (71 X72) action lifts to the partial resolution
obtained by blowing up the divisors in the following sequence of Zsy orbits:
90 X FD — 7’1(90) X Fb, 92 X FO — 7'1(02) X Fb, vy ‘92a—2 X FO — Tl(ega_z) X Fb,
00 xI'y — 7'1(90) X Fb+1, ...,Qza,Q xI'y — 7'1((92(1,2) X Fb+1a ...,00 X Fb_g —
1 (00) X ng,Q, cens an_g X Fb72 — T1 ((92,1_2) X ng,Q. In short we blow up the
divisors in the Zsg orbits containing the divisors fo; x I'; where 0 < i < a
and 0 < j < b — 2. The blow up of these divisors resolve all singularities on
this I, x I, fiber.

Let I, x Iy = I5 x I5. In all cases in Table 6 with G = Zo and fy = I,
the action of 7 on fy = I is by mapping 6; to itself for ¢ = 0,1. Then the
Zs orbits we obtain are 0y x I'g — 6y x I'y and 61 x 'y — 01 x I'y, and in
any of these two orbits the blow ups of the divisors in different orders result
in non-isomorphic partial resolutions. Blowing up any of these four divisors
resolves all singularities on the Iy X I fiber. If we blow up 6y x I'g to resolve
all singularities on I x I, then for an ordinary double point @1 on Iy x Iy
which is mapped to Q)2 by 71 X 19 this map extends locally to a map from the
small resolution of X at )1 along 0y x I'y to the small resolution of X at Qo
along 0y x I'1. But, the singularity at ()2 has already been resolved by the
blow up of 0y x I'g which gives a small resolution at Qs non-isomorphic to
the small resolution at Q)2 along 6y x I'y. This means that the map does not
lift to the given partial resolution obtained by blowing up 6y x I'g. A similar
argument, works if we blow up a different divisor to resolve the singularities
on Iy x Is. Therefore, the Zs action does not lift to the resolution of X if X
contains a fiber of type I x Is over 0 or oc.

e Lifting the Zs x Zs action: In the singular Schoen 3-folds X listed in
Table 6 for G = Zy x Zs, for the I, x I, fibers over 0 or co € P! we have
fo = I, is either Iy or Iy and fo, = I is either Iy or Iy. G = Zo X Zs has
two order 2 generators 7 and ¢, where m = 2 for 7 and m = 1 for ¢,,. The
action of 7 on fs = I is by mapping I'; to I'; /o and the action of ¢, on I
is by mapping I'; to itself for all . The action of ¢,, on fo = I, is by mapping
0i to 0;4,/ for all 7. In all the cases we consider, we can choose the order
2 generator T of Zy X Zg such that its action on fo = I, is as follows (7
or the other automorphism with m = 2, namely ¢, o 7 has the given action
on I,.): For I, = I, 6y and 0 are interchanged, #; and 03 are mapped to
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themselves, and for I, = I3 6; and 05 are mapped to themselves and 054;
and 05_; are interchanged for i =1, 2, 3.

Let I, x Iy = Iy x I4. Blowing up the divisors in the following orbits of
(11 X T2) resolves all singularities on I, x Is: 0y x T'g — 0 x I'y, Oy x T’y —
02 xI'g. The action of ¢,, xt,, permutes these divisors and blowing up all four
divisors in any order results in the same partial resolution. Thus, Zg X Zo
action lifts to this partial resolution.

Using the same argument as above, we can lift the action to the partial
resolution of singularities in Ig x Is and Ig x I cases blowing up the following
divisors (in any order): For Ig x I3 blow up 0y x I'g, 02 x I'1, 04 x Ty, 0 X I'1,
and for Ig X I4 we blow up 90 X FQ, 92 X FQ, 90 X Fg, 92 X Fo, 94 X Fo, 96 X Fg,
(94 X FQ, 06 X FO-

For I, x Iy = I; x I3, in order to lift the action of (7] X 79), the divisor
blown up first must be one of 6y x I'; and 0 x I';, i = 1,2 (Assume on the
contrary that the divisor blown up first is 67 x I';. 71 X 70 maps 61 x I';
to 01 x [';+1, hence permutes the four ordinary double points on 67 x I';.
The small resolutions at these four points are along 6; x I';, but in order
to lift 7 X 7 to the resolution, the small resolution at the image points
should be along 6 x I';41 which is a non-isomorphic small resolution to the
small resolution along #; x I';, contradiction. A similar argument works if
the divisor blown up first is 63 x I';). Assume that the divisor blown up first
is 0y x I'; (a similar argument works for 0y x I';). If 71 x 7 lifts to a partial
resolution, then the small resolution of X at the four ordinary double points
on the divisor 02 x I';11 (which are the images of the other 4 ordinary double
points on 0y x I';) are isomorphic to the small resolutions along 0 x I';41
since 71 X 72 maps 0y X I'; to 03 x I';;1. By the same reasoning, if ¢,, x t;,
also lifts to the same partial resolution of X, this time the small resolutions
at the four ordinary double points on the divisor 2 x I'; 1 (or equivalently
on 69 x I';) are isomorphic to the small resolutions along 05 x I';, which gives
a contradiction since such small resolutions are not isomorphic to the small
resolutions along 6y x I';41 at these four points. Therefore, if X contains an
I, x I, fiber over 0 or oo € P!, then the Zs x Zy action does not lift to a free
action on its resolution.

We can combine the information obtained in this section in the following
lemma:

Lemma 15. For the cases listed in Table 6 the free action of G = Zo on X
does not lift to a free action on a projective small resolution of X if there
exists an I x I fiber over 0 or oo € P'. The free action of Zg X Zo on X
does not lift to a free action on a projective small resolution of X if there
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Table &: The cases in Table 6 where the action does not lift

G B B,
7o X Ly | 21-23,25-27,29. [25],[26].

22,28 27

21,22,25,27,28. 22

21,22,25,27. 28
Zs 21-23,25-27,20-32,34-36, | [L11],[24],[36],[38],[41]-

38,41,42,44,46,50,52.
21-23,25,27,29-32,35.36, | 23,29,31,36,37,46 47,
38,44,46. 48,53.

37,47,48,53. 23,29,31,36,46.
23,29,31,36,37,46,47,48,53. | 22,27,35,44.

exists an Iy x Iy or Iy x I fiber over 0 or co € PY. In all other cases in
Table 6 such a lifting exists. The cases in Table 6 where the action does not
lift are listed in Table 8.

6.2. Lifting the action listed in Tables 5 and 7

The singular Schoen 3-folds X listed in Table 5 have singularities on fibers
of type I x Iy (r > 1 and s > 1 throughout this section) over points p € P!
where p is different from 0 and oo € P!. The singular Schoen 3-folds X
listed in Table 7 have I, x I fibers over 0 or oo € P! as well as over other
points p € P'. For X = By xp1 By in Table 7, the pair (By, By) also appears
in Table 6. For such a pair, we identify the base curves P! of the elliptic
surfaces By and Bs by an automorphism of P (which interchanges 0 and oo
as explained in §5) in order to form the fiber product X. If the only I, x I
fibers occur over 0 or oo, then X is listed in Table 6. If the fiber product X
also has I, x I, fibers over points p € P! different from 0 and oo, then X
is listed in Table 7. In the previous section, we checked whether the action
lifts to a resolution of the 3-folds X in Table 6 or not. For a pair (Bi, B2)
in Table 7, the action lifts to a partial resolution of the singularities where
all singularities over 0 and oo are resolved if the action lifts for the 3-fold X
in Table 6 corresponding to the same pair (Bi, Bg) (it suffices to blow up
the same divisors as indicated in §6.1). If the action does not lift for X in
Table 6 corresponding to the pair (B, By), then the action does not lift for
X in Table 7 due to the same reason as indicated in §6.1. In this section we
check whether the action lifts when the singularities on I, x I fibers over
p € P! different from 0 and oo are resolved.
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e Lifting the Z,, action: Let G = Z,, = (7) where m = ord(¢(7)) =
ord(a), that is, d = 1 for the generator 7 of G. For an I, x I fiber of X
over a point different from 0 or oo, X has m distinct copies of I, x I fibers
permuted by the action of G. Choose divisors D; = 6,, x I';, on one of the
I, x I fibers such that blowing up all divisors D resolves the singularities
on this I, x I fiber. If K; consists of the divisors in the orbit of D; under
the G action, then blowing up the divisors in K; in any order will result in
the same partial resolution (each divisor in K; is on a distinct fiber), hence
we can lift the G action to the partial resolution obtained by blowing up the
divisors in K;. Therefore, the G action lifts to the partial resolution where
all singularities on the m copies of I, x I are resolved if we complete the
sequence of partial resolutions where in the ith step the divisors in K; are
blown up. This argument covers Zs, Zs actions and m = 4 cases for the Z4
action in the Tables 5 and 7.

e Lifting the Z, action for m = 2 case: The I, x I, fibers over points
different from 0 and oo we need to consider for this action are Is X Iy, Is X Iy
and Iy x I. If G = Zy = (1), then 72 = t,, for an order 2 section 7. The
action of ¢,, on an I fiber is by mapping 6; to 0;,1 if there is an I fiber over
a point different from 0 and oco. Similarly, if there is an I fiber over such
a point, then the action of ¢, is by mapping 0; to 0; 2. If X has an Iy x I4
fiber over a point different from 0 and oo, to lift the Z4 action to a partial
resolution where the singularities of the two Iy x 14 fibers in the same orbit
are resolved, we need to blow up the divisors in the two orbits of g x I'g and
0y x T'y. These orbits are 0y x T'g — 6; x F — 0y xT'y — 91+2 X FJ+2 and
Oy x Ty — 6; x F]+2 — 0y x Ty — 02+2 X F Note that the blow up of these
divisors in any order results in the same resolutlon and all singularities on
the two Iy x I fibers are resolved (here 01 and fj denote the components of
the I, fibers in the second Iy x I in the orbit). Similarly we can lift the Z,4
action in the case of an Iy x Iy or Iy x Iy by blowing up the divisors in the
orbit of 90 X Fo.

e Lifting the Zs action: For the [14] x [14] case we have m = 3 and for a
generator 7 of G = Zg, 73 = t, for an order 2 section 7. The action of ¢, on
the I5 fibers is by mapping 6; to 6;41. For the [15] x [15] case we have m = 2
and 72 = t, where 7 is an order 3 section. The action of ¢, on the I3 fibers
is by mapping 6; to 6;41 or to 6;,9. In both cases, the action lifts if we blow
up the divisors in the orbit of fy x I'g (the same argument as given for Z,4
action above works).

e Lifting the Z3s x Z3 action: Without loss of generality, we can choose
generators 7 X 72 and t,, X t,, of G = Z3 x Z3 such that for an appropriate
labeling of the components of the I3 fibers the action of these generators
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on the components of the three I3 x I3 fibers is as follows: 71 X 75 orbits
are 0; x T'j — G40 X Tjig — B X Ljio for 0 <4,j <2 (here subindex 0
corresponds to neutral components, 6;, 8; and 6; denote the components of
I3 fibers of By over the first, second and third points on P!). The action of
tn, X ty, on the first I3 x I3 is by mapping 0; x I'; to 6;11 x I'j 41 (similarly
for the second and third I3 x I3). With this notation, it can be checked that
blowing up the 9 divisors in the Z3 x Z3 orbit of 6y x I'g in any order results
in the same resolution and all singularities are resolved. The action lifts to
this resolution.

e Lifting the Z, x Zs action: For the cases 2 x 2, 2 x [10] and [10] x [10],
we have m = 4 and X has four Iy x I fibers. The action of the order two
generator t,, X t,, on the first Iy x I3 is by mapping 0; x I'; to 0,11 x I'j 1
and the action on the other 3 I5 x I is similar. The Z4 X Zsy action lifts to
the resolution obtained by blowing up the divisors in the orbit of 6y x ['g.

For the three cases 3 x 3, 3 x [12] and [12] x [12], we have m = 2,
hence there is a Zo X Zo subgroup consisting of automorphisms of the form
ty, Xt,, where n; and 7); are torsion sections of By and Bs. If the action is free,
then one of such automorphisms acts on the first Iy x I3 fiber by mapping
0; x I'; to 0; x I'j1 for each 0 < 4,7 < 1. The two orbits of the action of
this order 2 automorphism are 0y x I'g — 0y x I'y and 61 x I'g — 61 x I'q,
and no matter which orbit is chosen, the blow ups of the divisors in the
orbit in different orders result in non-isomorphic partial resolutions. The
order 2 automorphism under question does not lift to any partial resolution
resolving the singularities of this Iy x I fiber (by the notation of §6.3, this
automorphism has intersection numbers (0, 1), hence it does not lift. See
§6.3 for a detailed explanation). Therefore, the action in these three cases
does not lift to a resolution of X.

For the case [11] x [11], we have m = 2 and one of the order four gen-
erators is of the form ¢,, x t,, whose action on the first I x I4 fiber is by
mapping 6; x I'j to 0;11 x I'j 1 for each 0 < 7,5 < 3 and the action is similar
on the second Iy x Iy. Z4 X Z3 is generated by t,, X t,, and 71 X 72 where
m = 2 and d = 1 for each of the automorphisms 7 and 7. It can be checked
that the Z4 x Zs action lifts to the resolution obtained by blowing up the
8 divisors in the orbit of 3 x I'g under this action. Note that the order in
which these 8 divisors are blown up does not change the resolution obtained.
e Lifting the Zy x Zy action: For I, x I, = I x I, if the action of t,, x t,,
on the components of I x I is by mapping 6; x I'; to ;11 x I'j 11, then the
Zo x 7o action lifts to the partial resolution obtained by blowing up the 4
divisors in the orbit of §y x I'g. Note that in the cases [22] and [26], ¢, acts
on some of the Iy fibers by mapping 6; to itself. If one of the Iy fibers of
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Table 9: Torsion subgroups G of Mordell-Weil groups of rational elliptic
surfaces with section

G T Sing. fibers | G T Sing. fibers
Z3 x Ty AY? I3 Zy, AP? 31}
Zyx 7Ty AJ? @ AT? 212 Az @ AP? L3I}

Zs As® Ay d Ay Igls14 AP II?

Zs AT? 217 As & Ay Il I}

Zy ATT o A CILI7 Dy ® AP? I I3T7

Ar @ Ay Y AS? 21
Ds @ As I I, Az @ AP? L3I}
Zs AT3 JEIE Ay @ APH LI3T
A5 EBAQ I(;Ig[% A7 Ig[il
ASP @ Ay LI D @ Ay LT3
Ag LI} Ds @ AP? L3
Es @ Ay IV*I31, As @ AY? IgI3T7
Zg X Zg A?b Ig D4 &) A3 1514112
Dy® AP? I I3 A3 @ Ay @ AY? LT3
Az @ AP? LI} Dy I 13
Dg @ AT? 13 E,® Ay IIT* 1,14
DF? LI

I x I has such an action by ¢, (if ¢,, x t,, has intersection numbers (0, 1)
or (1,0) in the notation of §6.3), then the action does not lift (see §6.3 for
a detailed explanation). In all cases where I, x I; = I x I4, the action lifts
to the partial resolution obtained by blowing up the divisors in the orbit of
0y x T'p. In all cases where I, x Iy = Iy x I, the action lifts to the partial
resolution if the divisors in the orbits of y x I'g and 0y x I's are blown up.

Combining the information obtained in this section we have proved the
following lemma:

Lemma 16. For the cases listed in Table 7, if the pair (B, Ba) correspond-
ing to a group G also appears in Table 8, then the free action of G on X
does not lift to a free action on a projective small resolution of X. For the
cases listed in Table 5 and Table 7 the free action of Zo X Zo on X does not
lift to a projective small resolution of X in the cases where By or Bs is one
of the cases [22] and [26] and X has an Iy X Iy fiber on which the action of
the non-trivial automorphism of the form t,, xt,, is not by mapping 0; x I;
to Oi41 x I'jy1. The Zy x Zo action does not lift in the cases 3 x 3, 3 x [12]
and [12] x [12]. In all other cases in Table 5 and Table 7 the free action of
G on X lifts to a free action on a projective small resolution of X.
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6.3. Lifting the free action in the trivial induced action case

Up to now we considered the free action of a finite group G' on a singular
Schoen 3-fold where the induced action of G on the base curve P! is non-
trivial or equivalently the induced automorphism group ¢(G) is Zy, for some
m > 1. In this section we consider the groups G acting freely on a singular
Schoen 3-fold X = Bj xp1 By such that the induced action on P! is trivial and
the singularities of X are on fibers of type I x Iy where r > 1 and s > 1. The
elements of such a group G are of the form t,, xt,, where n; € MW (B;), i =
1,2 (recall that t—mn; is the automorphism of B; which acts as the translation
by the section 7;). The rational elliptic surfaces for which the Mordell-Weil
group has non-trivial torsion subgroups can be listed by scanning through
the table of Mordell-Weil lattices given in [6]. For completeness we include
the table of non-trivial torsion subgroups of Mordell-Weil groups of rational
elliptic surfaces here as Table 9. In this table we indicate the root lattice T’
corresponding to the singular fibers of the elliptic surface and the generic
configuration of singular fibers for surfaces with the given root lattice 7.
In the below discussion when we say that ¢,, xt,, has intersection num-
bers (a,b), we mean that 1, intersects I, at the component 6, and 7, inter-
sects the fiber I, at the component I',. In this case the action of t,, x t,, on
I, x I, is by mapping the component 8; x I'; to 0,1, x I'j 1. For a free action
on I, x I, every element of G should have distinct intersection numbers,
otherwise a non-trivial element has intersection numbers (0, 0) which implies
that this element has a fixed point, contradicting the action being free. As a
result we obtain |G| < rs. If G contains elements with intersection numbers
(0,1), (1,0), (0,s —1) or (r —1,0), then the action of G does not lift to any
partial resolution where the singularities on this fiber I,. x I are resolved by
blowing up some components of I,. x I,. We explain why such an automor-
phism with intersection numbers (0, 1) does not lift, and a similar argument
works for the other three intersection numbers. Assume that ¢,, x t,, has
intersection numbers (0,1) on an I, x I, fiber and assume that it lifts to
an automorphism of a partial resolution X of X by small resolutions where
the singularities on I, x I are resolved by blowing up some components of
I, x I,. Assume that to obtain the partial resolution X, the divisor which
is blown up first is ; x I';. Let a; and ag be the singular points of I, on
the component #; and let b; and by be the singular points of I, on the com-
ponent I'; such that by is on the component I'; ;. Since by assumption the
intersection numbers is (0, 1), t,, xt,, maps 6; xI'; to §; xI'j 1, and it maps
the point Q1 = (a1,b1) on 6; x I'; to the point Q2 = (a1, b2) which is also
on 0; x I';. Thus, blowing up the divisor 6; x I'; resolves the singularities at



206 Tolga Karayayla

Q1 and )9, and the small resolutions at ()1 and ()2 are isomorphic to the
small resolutions along 6; x I';. On the other hand, if ¢,, x t,, lifts to an
automorphism of X, then since it maps 6; x I'j to 0; x I'j41 and Q1 to @2,
we can conclude that the small resolution at ()9 is also isomorphic to the
small resolution at @2 along 6; x I'j1, which is a contradiction.

Using these criteria we analyze below which I, x I fibers (r > 1,s > 1)
X can have so that a free action of G on X (with trivial action on P1) lifts
to a free action on a projective small resolution of X.
e Lifting the Z3 x Z3 action: In this case I, X Iy = I3 x I3 and if the action
is free, one element of G must have intersection numbers (0, 1), hence the
action does not lift by the above argument.
e Lifting the Z4 x Zs action: We have |G| = 8 > 4, hence G cannot act
freely on Iy x Io. If the action is free on I, X I, then one element must
have intersection numbers (0, 1), hence the action does not lift. For Iy x Iy,
X can have one or two Iy x I, fibers and we can construct the action such
that without loss of generality an order 4 generator has intersection numbers
(1,1) on both Iy x I fibers and the second generator, which has order 2,
has intersection numbers (2,0) and (0,2) on the first and the second Iy x I4
fibers, respectively. The action lifts to the resolution obtained by blowing
up the eight divisors in the orbit of y x I'g in each Iy x I fiber. The action
lifts in any case, whether there are one or two Iy x I fibers.
e Lifting the Zs x Zs action: If the action is free on Is x I, then one
element has intersection numbers (0, 1), hence the action does not lift. For
all cases in Table 9 for which MW,,,s(B) has a Zs X Zs subgroup, each I
fiber is intersected at the component 0 by two of the elements of Zs X Zo,
and intersected at the component 6y by the other two elements including the
identity (zero section). Similarly in all of these cases, each I is intersected
at the component 61 by two of the elements of Zy x Zs, and intersected at
0o by the other two elements. Thus, if the action on an Iy x Iy fiber is free,
then one element of Zy x Zg should have intersection numbers (0, 1), hence
the action does not lift. For Iy x I fibers (X can have one or two such
fibers), we can construct the action of Zy X Zy such that the intersection
numbers of the four elements are (0,0) (for the identity), (0,2), (2,0) and
(2,2). The action lifts to the resolution obtained by blowing up the divisors
in the orbits of 6y x I'g in all I, x I fibers. For the 3-folds X where the
action lifts to a resolution, the only I, x I type fibers X has are one or two
I x Iy fibers.
e Lifting the Z; action for k = 6, 5,4, 3, 2: For the action of a cyclic group
G on X if the intersection numbers of each element of G are distinct for a
fiber I, x I, then the action is free on I, x I5. If none of the intersection
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numbers for I, x I is (0,1), (1,0), (0,s —1) or (r — 1,0), then the action of
G lifts to a partial resolution of X where all singularities on this I, x I fiber
are resolved as follows: Choose a divisor 6; x I'; and blow up all divisors
in the orbit of this divisor under the G action. By Lemma 14 the action
lifts to this partial resolution. If all singularities on I, X I are not resolved,
repeat the same process by blowing up the divisors in the orbit of the proper
transform of another divisor ¢, x I'; until all singularities are resolved. We
list the allowed I, x I fibers on X below so that the G = Z;, action lifts to
a partial resolution of X where all singularities on this I, x I is resolved:

For Zg, the allowed fibers are I x Ig, I x I3 and I x Iy (The order 6
section on B intersects each of the Ig, I3 and I> at the component 6,
hence for the G action on X, the intersection numbers of the generator
of the cyclic action are (1,1), and the only I, x I fibers satisfying the
above conditions for allowed fibers are as listed). In this case X can
have one Ig x Ig, or one or two Ig X I3, or one or two Ig X I, or one
Ig x I3 and one Ig X Is.

For G = 7Zs5, the only allowed I, x I fiber is I5 x I5. X can have one
or two I5 x Iy fibers.

For G = Z4, the allowed I, x I, fibers are Iy x I (if the generator has
intersection numbers (1,1) or (3,1)), Iy X Iy, Is X I2, Is x I and I3 x I3
(note that except for one of the Iy fibers in the elliptic surface with
singular fiber configuration I212 listed under G = Z4 x Zs, an order 4
section intersects the I fibers at #1). The configurations of all allowed
cases can be listed by inspecting through Table 9.

For G = Z3, the allowed I, x I fibers are Iy x Ig, Ig X Ig, Ig X I3,
Iy x Iy, Ig x Ig, I x I3, I x I and I3 x I3 (note that if the generator
of the Zs action has intersection numbers (1,0), (2,0), (0,1) or (0, 2),
then I3 x I3 is not allowed. The only case where an order 3 section
intersects an I3 fiber at the component 6y is the elliptic surface with
singular fiber configuration 73 and such an order 3 section intersects
only one of the four I3 fibers at 6p). The order 3 sections all intersect
the I, fibers at 6y, hence by a similar reasoning as above, we can show
that I3 x Iy and Iy x I fibers are not allowed.

For G = Zs, the allowed fibers are I, x I; where r € {2,4,6,8} and
s € {2,3,4,6,8} such that the intersection numbers of the generator
of G are not (0,0), (1,0) or (0,1). Note that except for some elliptic
surfaces where an order 2 section intersects an I4 fiber, an I3 fiber, or
one or two I fibers at the component 6y, in all other cases an order 2
section intersects Ig at 04, I at 03, I at 6 and 15 at 6.
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We present the results of this section in the following theorem:

Theorem 17. For singular Schoen 3-folds X = By Xp1 By whose singu-
larities are on fibers of type I, X Is with v > 1 and s > 1, the only finite
groups G which act freely on X such that the induced action on P! is trivial
and the action lifts to a free action on a projective small resolution of X
are Ly x Lo, Lo X Lo and Zy for 2 < k < 6. For each such pair (G, X),
B1 and By are surfaces which appear in Table 9 such that G is a subgroup
of MWiors(Bi). For each G, the allowed I, x Is type fibers of X so that the
action may lift to a free action are listed in Table 10. For the 3-folds X all
of whose I, x I fibers are allowed, the action of G on X is free iff at each
I, x I fiber the intersection numbers of the elements of G are all distinct,
and the action of G lifts to a free action on a projective small resolution iff
none of these intersection numbers is (1,0), (0,1), (r —1,0) or (0,s — 1).
In Table 11 we list all existing cases for G = 7y X Lo, 7o X Lo and Zy, for
4 < k < 6 where the action lifts to a free action. Table 11 lists only some
sample cases for G = Zy and Zs (due to the large number of all cases) cov-
ering all possibilities for the configuration of I, x I type fibers of X for the
given group G. Fach line of Table 11 represents several different cases where
the configuration of I, x I fibers of X is a non-empty subset of the specified
configuration on that line of the table (the fiber product can be formed with
fewer I. x I type fibers where the lifting criteria for the action of G still
hold).

Remark. For each choice of By and By given in Table 11 the fiber product
By xp1 By can be obtained in different ways giving rise to different config-
urations of I, x I, fibers. For a configuration of I, x I type fibers given in
Table 11 the action of G lifts to a free action on a resolution of the 3-fold X
with this configuration. Since the lifting criteria are required to hold at each
I, x I, the criteria also hold for a fiber product whose configuration of I,. x I
fibers is a subset of the first configuration. Each possible configuration of
X where the action of G lifts is a subset of one of the configurations listed
in Table 11. For some specified pairs (Bj, Bs) for G = Zs in this table, we
did not write down some allowed configurations if these configurations are
subsets of a configuration already given in the table. Table 11 can be used
to verify the x values for m = 1 case in Table 13.

7. Non-simply connected Calabi-Yau 3-folds with positive
Euler characteristic

We completed our analysis of the finite groups G which act freely on a
singular Schoen 3-fold X whose singularities are on fibers of type I, x I



On a class of non-simply connected Calabi-Yau 3-folds with x > 0 209

Table 10: Allowed I, x I type fibers of X for lifting G to a free action in
the trivial induced action case

C Allowed I,. x I, type fibers of X
Z4 X ZQ [4 X 14
Zio X Ly | Iy x Iy
Z6 I@XIS fOI‘S:2,3,6.
Z5 I5 X I5
Zy I, x I for r € {4,8} and s € {2,4,8}.
7 I3 x Iy and I, x I, for r € {6,9} and s € {2,3,6,9}.
Zo I3 x I for t € {4,6,8} and I, x I, for r, s € {2,4,6,8}.

with 7 > 1 and s > 1. We determined when the action of G on X lifts
to a free action on a projective small resolution X of X. Such a 3-fold X
is a simply connected Calabi-Yau 3-fold (see [7]) and the quotient 3-fold
X /G under the group action is a non-simply connected Calabi-Yau 3-fold
(see [2] and [1]) with fundamental group G. The Euler characteristic of X is
e= Zf\il ris; where the I, X I type fibers of X are I, x I, fori=1,..,N.
The projective small resolution X of X has Euler characteristic 2e and
the quotient 3-fold X /G has Buler characteristic 2¢/|G|. The non-simply
connected Calabi-Yau 3-folds obtained as quotients of smooth Schoen 3-folds
by Bouchard and Donagi in [2] all have Euler characteristic 0 since a smooth
Schoen 3-fold has Euler characteristic 0. The non-simply connected Calabi-
Yau 3-folds obtained in this paper (in the singular X case) all have positive
Euler characteristic. We summarize our results in the following theorem:

Theorem 18. Let X = By Xp1 By be a singular Schoen 3-fold such that the
only singularities of X are on fibers of type I, X Iy with r > 1 and s > 1.
The finite groups G which act freely on X and induce a non-trivial action
on the base curve P* (¢(G) = Z,, where m > 1) such that the action of G
lifts to a free action on a projective small resolution X of X are as listed in
Table 12. For a finite group G whose action on X induces a trivial action on
PY (m =1 case), the conditions under which the action of G lifts to a free
action on a projective small resolution of X are given in Theorem 17 and
the results are listed in Table 11.

For these groups G which act freely on the simply connected Calabi-Yau
3-fold X, the quotient 3-fold X/G is a non-simply connected Calabi-Yau
3-fold with fundamental group G. All distinct Euler characteristic values of
the non-simply connected Calabi- Yau 3-folds obtained with this construction
are listed in Table 13.
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Table 11: Table of Schoen 3-folds X and maximal configurations of I, x I
type fibers of X (cf. Remark following Theorem 17) for which the action of
G lifts to a free action (trivial induced action case, m = 1)

G Fib. of By Fib. of By Fibers of X (are a subset of)
Tn % L | 1212 212 21y x 1)
ZQ X ZQ IZIQQ 12122 2([4 X I4>
LfIQZ, 14124 14151 I4 X I4
Zﬁ [613I211 1613[211 Iﬁ X IG or 2(16 X Ig) or 2(I6 X IQ)
OI‘Iﬁ XI3+16 X Iy
Z4 18[2112 1812112 Is X 18 or 2(18 X 12)
IgIQIf LfIQZ, LfIQIf IgXI4+I4XIQ or Ig XIQ+I4XIQ
IgIQIf ITI4.[1 Ig X I4 or I4 X IQ
212, TLI7 | 1212, P1I? | 2(In x Iy) or In x I1 + 2(1s % I5)
.[42.[227 IZIQI% If[4[1 I4><I4 or I4><IQ
If[4]1 If[4[1 I4 X I4
Zg Ig[? IQI? Ig X Ig
19[1‘5 161312[1 Ig X 16 or Ig X 13 or Ig X 12
1613I211 1613[2I1 IG X IG + I3 X 13 or I6 X 13 + IG X I2
or 2(16 X IQ) + I3 X Ig or 2(16 X Ig)
Iﬁ[3[2[1 Ig]f -[6 XIg—f—Ig XIg
IEIE, I3 3(I; x 1)
ZQ 181211 1812112 IS X Ig or 2(18 X IQ)
Ig[g]l 16131211 IS X I3 + Iﬁ X IQ or 18 X 12 + I6 X IQ
or Ig X 16
Ig[g[l Lf[g]f IsXI4+I4XIQ or Ig XIQ+I4XI2
Ig[g.[l I4I3I21I1 Ig X I3 + .[4 X IQ
I6I3.[211 I6I3I2I1 2(16 X Ig) + I, x I or IG X 16 + Iy x I
IGISIZIl I6I22_[12 IG X Ig + -[6 X IQ + IQ X .[2
16122112 16122112 2(16 X IQ) + Iy x I
16131211 15122 IG X I4 + I4 X ]3 + IQ X IQ
OI‘IG XIQ+I4 XIg—|—I4><IQ
[6122112 Lf[zz I X Iy + Iy X Io+ 15 X 1o
or 16 X 12 + 2([4 X 12)
16131211 14131‘22[1 16 X I3 + I4 X Ig + IQ X 12
OI'I(,' XIQ+I4 ><13+12 XIQ
IGIQZIf 1413.[22[1 I6 XIg+I4XIQ+IQ XIQ
OI‘Iﬁ XI2+I4XIQ+I2 XIQ
212 212 ATy x L) ot Iy x I + 2(Iz x Io)
or 2(]4 X .[4) + 2([2 X I2)
I4I§ 14151 2([4 X IQ) + 2([2 X IQ) or 4([2 X Ig)
Lf[; ]4[51 I4 X I4 + I4 X ]2 + 2(]2 X 12)
Lf[zz 141312211 I4 X I4 + 14 X 13 + 2(]2 X 12)
or 14 X I3 + 2([4 X 12)
141312211 14131‘22[1 2([4 X 13) + 2(]2 X IQ)

OI'I4><13+I4XIQ—|—IQ><IQ
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Table 12: Finite groups G which act freely on a singular X = By Xp1 By
with non-trivial induced action on P* where the action lifts to a free action
on a projective small resolution of X

Cases from Table 5

G By B
Zg XZg ].,9] 1,9]
Ty X 7o 2,[10]. 2,[10].
11 11
Ze 14 14
15 15
Za 2,[10]. 2,[10].
[{ [ 12 [9.[20] [{ [ 12 [9.[20]
Zs 1,16. 1,16.
[9],[14],[31]. 9],[14],[31].
1,16,19. 91,[31].

Lo X 7o 2,21,24,25. 2,21,24,25.
[10],[11],[21]-[26],[28]. 10],[11],[21]-]26],[28].
2,21-26,28,29. 10],[21],[22],[23].

Zo 2,21,24,25,32,38,40. 2,21,24,25,32,38,40.
2,21-26,28,29,32,36,38,40,42,46,48,52. 101,[21],[22],[23],[35],[37]
10],[11],[15],[21]-[26], 10],[11],[15],[21]-[26],
28],[35],[371,[38],[41],[43]. 28],[35],371,[38],[41],[43].
Cases from Table 6

Z4 X ZQ 3 3,[12]

Zy 3,11,13. 3,11,13.

3,11,12,13. [11],[12],[19].
Zio X Ui 2,24,28. 28,[25],[26].

2,24. 22
2,21,24,25,27. 27
2,21-29. 27

Zy 2,4,6,8-10,21-53. 25]-1271,[39],[42].
2,4,6,8-10,24,28,33,37,39,40,43,45, 11],[24],[36],[38],[41].
47-49,51,53.
2,4,8,10,21-25,27-33,35-40,44-49,53. 28.,45.
2,4,8,10,21,22,24,25,27,28,30,32,33, 22,27,35,44.
35,38-40,44,45,49.
2,4,8,10,24,28,33,39,40,45,49. 23,29,31,36,46.
2,4,8,10,24,28,33,37,39,40,45,47-49,53. 37,47,48,53.
Cases from Table 7

Zoa 3,11. 3,11,[11],[12],[19].

ZQ X ZQ 2,24 22
2,24,28. 28,[25],]26].

Zs 2,21-25,28,29,32,36,38,40,46,48. 28
2,21,22.24,25,28,32,38,40. 22
2,24,28.40 23,29,36,46.
2,24,28.40,48. 43,[11],[24],[38],[41].
2,21-26,28,29,32,36,38,40,42,46,48,52. [25],[26].
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Table 13: Fundamental groups and Euler characteristics of the Calabi-Yau 3-
folds obtained as quotients of projective small resolutions of singular Schoen
3-folds (m > 1 case refers to non-trivial action on P! and m = 1 case refers
to trivial action on P!)

| m | x values in the m > 1 case | x values in the m = 1 case |

Zg X Zg 6 -
Z4 X ZQ 478 4,8

Ze | 46 1,6,8,10.12,

/—— 10,20,

Za | 4.812,16.20. 1.8.12,16,20,32.

Zs | 8,12.18. 6.8,12,14,16,18,20,22,24.30.36 54
7o % 7 | 4,8.12,16,20. 8,16.

Zs | 8,12,16,18.20,24,28.32.36, | 4,8,12,16,18,20,22,24,26,28,

40,48 64. 30,32,34,36,40 48,64
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