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Modular parametrization as Polyakov
path integral: cases with CM elliptic

curves as target spaces

Satoshi Kondo and Taizan Watari

For an elliptic curve E over an abelian extension k/K with CM by
K of Shimura type, the L-functions of its [k : K] Galois represen-
tations are Mellin transforms of Hecke theta functions; a modular
parametrization (surjective map) from a modular curve to E pulls
back the 1-forms on E to give the Hecke theta functions. This ar-
ticle refines the study of our earlier work and shows that certain
class of chiral correlation functions in Type II string theory with
[E]C (E as real analytic manifold) as a target space yield the same
Hecke theta functions as objects on the modular curve. The Kähler
parameter of the target space [E]C in string theory plays the role of
the index (partially ordered) set in defining the projective/direct
limit of modular curves.

AMS 2000 subject classifications: Primary81T40, 81T30, 11G15,
11G05, 11G40.

1. Introduction

In this article, we address a question whether the theory of modular pa-
rameterization has its avatar stated in the language of string theory. Prior
to the ordinary Introduction in a paper in string theory starting in section
1.2, however, it is better to share the following pure mathematical facts in
section 1.1.

As is often the case in math papers, we allow ourselves to use notations
and jargon in the Introduction without enough explanations; we intend to
provide appropriate explanations or references in later sections at least to
the level minimally required by readers without background in arithmetic
geometry.
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1.1. The phenomenon that we are interested in, by way of

example

Consider two elliptic curves:

E32A2 : the closure of
{
(x, y) | y2 = x3 − x

}
,

E64A1 : the closure of
{
(x, y) | y2 = x3 − 4x

}
.

The j-invariants of the two elliptic curves are both equal to j = 1728,

and indeed the two curves are isomorphic under the map (x, y)E32A2
�→

(x, y)E64A1 = (
√
2
3
yE32A2

,
√
2
2
xE32A2

), when we allow arbitrary coefficients

in C such as
√
2 in relating (x, y)64A1 with (x, y)32A2. That is, [E32A2]C ∼=

[E64A1]C. In arithmetic geometry, however, the two elliptic curves may be

regarded different; in the category of algebraic varieties over the field Q, the

two elliptic curves are two different objects, in the sense that the Q-algebra

Q[x, y]/(x3 − x− y2) is not isomorphic to Q[x, y]/(x3 − 4x− y2).

The L-function is defined separately for E32A2 and for E64A1, either by

the Galois group action on the 1st cohomology groups of E32A2 ⊗Q Q and

E64A1 ⊗Q Q, or by counting the number of points in their reduction on the

finite fields Fp for rational primes1 p. They are2

L(E32A2/Q, s) = 1− 2

5s
− 3

9s
+

6

13s
+

2

17s
− 1

25s
+ · · · ,

L(E64A1/Q, s) = 1 +
2

5s
− 3

9s
− 6

13s
+

2

17s
− 1

25s
+ · · · .

They are Mellin transforms of the following power series

f32A2(τ) = q − 2q5 − 3q9 + 6q13 + 2q17 − q25 + · · · ,(1)

f64A1(τ) = q + 2q5 − 3q9 − 6q13 + 2q17 − q25 + · · · ,(2)

1A rational prime is a jargon in number theory that just means a prime integer
in Z such as p = 2, 3, 5, 7, · · · for people in all other fields. We will also use the word
prime integer for the same meaning in this manuscript.

2For a rational prime p (except p = 2 in the case of E32A2 and E64A1), the
coefficient ap of the p−s term in L(E/Q, s) is p+1−#(E⊗Q Fp), where #(E⊗Fp)
is the number of points in the reduction E ⊗ Fp including the (∞,∞) point. For
example, E32A2 ⊗ F5 consists of 8 points (x, y) = (0, 0), (±1, 0), (2,±1), (3,±2)
and (∞,∞), so ap=5 = (5 + 1) − 8 = −2, while E64A1 ⊗ F5 consists of 4 points
(x, y) = (0, 0), (2, 0), (3, 0) and (∞,∞), so ap=5 = (5 + 1)− 4 = +2.
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where q = e2πiτ , with τ in the upper half complex plane H; the Mellin
transformation is with respect to the imaginary part t ∈ R>0 of τ , τ = it.
Now, a highly non-trivial fact is that f32A2(τ) and f64A1(τ) are both modular
forms of weight-2 for the group Γ0(64) ⊂ SL(2;Z), where the group SL(2;Z)
acts on τ ∈ H through the linear fractional transformation.

The theory of modular parametrization attributes this non-trivial fact
to another non-trivial fact illustrated in the following. First, as explained
in many textbooks, the modular curve X0(64)—the compact Riemann sur-
face obtained as the closure of Γ0(64)\H—is regarded as a projective alge-
braic variety that uses only coefficients in Q in its defining equations. To be
very explicit, one may use three linearly independent weight-2 cusp forms
of Γ0(64),

X1(τ) = q − 3q9 + 2q17 − q25 + 10q41 − 7q49 − 12q65 + · · · ,
X2(τ) = q2 − 2q10 − 3q18 + 6q26 + 2q34 − q50 − 10q58 + · · · ,
X5(τ) = 2

(
q5 − 3q13 + 5q29 + q37 − 3q45 − 7q53 + 5q61 + · · ·

)
to construct a map

Φ|K| : X0(64) 
 Γ0(64) · τ �→ [X1 : X2 : X5]=[X1(τ) : X2(τ) : X5(τ)] ∈CP 2.

The image of this map is

C :=
{
[X1 : X2 : X5] ∈ P2 | X3

1X5 +X1X
3
5 − 2X4

2 = 0
}
;(3)

the algebraic variety C is defined over Q, and is regarded3 as an arithmetic
model of X0(64) over Q. Secondly, there exist surjective maps ν ′32A2 : C →
E32A2 and ν ′64A1 : C → E64A1 sending [X1 : X2 : X5] ∈ C to4

(x, y)32A2 =

(
(X1 +X5)

2

4X2
2

, −(X1 −X5)
2(X1 +X5)

8X3
2

)
,

(x, y)64A1 =

(
X2

1 +X2
5

X2
2

, −(X1 −X5)(X
2
1 +X2

5 )

X3
2

)
;

3The notion of an arithmetic model is explained in section 2.1.2. The map Φ|K|
being an isomorphism follows from the facts that (i) both X0(64) and C are curves
of genus 3, and (ii) C is non-singular.

4Note that (x32A2)
3−x32A2−(y32A2)

2 = 0 and (x64A1)
3−4x64A1−(y64A1)

2 = 0,
when one uses X3

1X5 +X1X
3
5 − 2X4

2 = 0.
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it should be noted that those maps involve only coefficients in Q (it is said
that such a map is defined over Q; such notations as C →/Q E or C/Q →/Q

E/Q are used to emphasize that aspect). It is now straightforward to see
that

ν ′32A2 ◦ Φ|K| : H 
 τ �−→ (x, y)32A2 ∈ [E32A2]C,{
x32A2 = q−2/4 + q2 + q6/2 + · · ·
y32A2 = −q−3/8 + q/4 + 7q5/8 + · · ·

1

2πi

(
ν ′32A2 ◦ Φ|K|

)∗ (
dx

4y

)
= dτf32A2(τ),

ν ′64A1 ◦ Φ|K| : H 
 τ �−→ (x, y)64A1 ∈ [E64A1]C,{
x64A1 = q−2 + 2q6 − q14 + · · ·
y64A1 = −q−3 + 2q − q5 + 2q9 + · · ·

1

2πi

(
ν ′64A1 ◦ Φ|K|

)∗ (
dx

2y

)
= dτf64A1(τ).

It is non-trivial that there exists a surjective map defined over Q from
modular curves to elliptic curves such as E32A2 and E64A1. Once such a map
is found,5 the Galois group Gal(Q/Q) acts on both sides of the pullback
(ν ′)∗ : H1

et(E⊗Q,Q�) → H1
et(C⊗Q,Q�) in a way that commutes with (ν ′)∗.

Now, the L-function of E is translated into the language of Galois group
action on H1

et(C ⊗ Q,Q�) ∼= H1(X0(64),C); the correspondence between
the L-function and a modular form is not a non-trivial phenomenon for
those with some training in arithmetic geometry then (the Eichler–Shimura
theory).

The presentation so far is an example of a theory by Deuring [8] for-
mulated in a more modern language of the Eichler–Shimura theory. Deur-
ing’s theory was for all elliptic curves with complex multiplications whose
j-invariants are in Q. Deuring’s theory has been generalized/extended in
multiple directions since then. One direction is for cases of elliptic curves not
necessarily with complex multiplication but still with rational j-invariants,
widely known for its relevance to Fermat’s theorem and the Shimura–Tani-
yama conjecture, now a theorem [1]. Another direction is to relax the condi-
tion j ∈ Q somewhat, while still restricting attention to those with complex
multiplication [26]; in this direction, a solid theory is available for a class of
elliptic curves, which we call elliptic curves of Shimura-type in this article.

5then there are infinitely many of them; (ν′ ◦ Φ|K|)
∗(dx/y) ∝ dτfE(τ) for all

those maps ν′ defined over Q.



Modular parametrization as Polyakov path integral 357

In this article, we will make an attempt at digesting the theory of modular
parametrization for elliptic curves of Shimura type by using the language of
string theory.

1.2. Questions to ask from string-theory perspectives

With a most naive look at the phenomenon described in section 1.1, one
finds that a modular form pops up when arithmetic data in a geometry are
organized in an appropriate way. Although mathematical proof has been es-
tablished for the phenomenon for certain class of cases, the origin of the mod-
ular transformation remains unclear, and the variable τ of the modular forms
such as the inverse Mellin transforms of L(E32A2/Q, s) and L(E64A1/Q, s)
are nothing more than a dummy variable to organize arithmetic data.6

Incidentally, when geometry is dealt with by a string theory, correlation
functions on genus-1 worldsheet have to have invariance/covariance under
the modular transformation on the complex structure parameter τws of the
genus-1 worldsheet. It is natural to wonder if there is any relation between
the modular forms that are dual to the L-functions and some correlation
functions in string theory. In this article, we follow the spirit of [23] [22] and
[16], and pursue this question.

If any relation of that kind is to be established, there has to be a clear
statement on the following two issues, hopefully three. First, L-functions
are defined for individual arithmetic models, whereas string theory deal with
geometry over C. For example, elliptic curves E32A2 and E64A1 have different
L-functions and corresponding modular forms, but both are regarded just
as one common complex analytic elliptic curve [Ez=i]C where j(z) = 1728.
How can string theory with the target space [Ez]C contain information of
data of multiple different arithmetic models of [Ez]C?

Secondly, string theory (worldsheet conformal field theory (CFT)) can
be specified only after fixing not just the complex structure of a target
space but also its complexified Kähler parameter. So, individual correlation
functions in string theory are for specific choices of a Kähler parameter; on
the other hand, the definition of L-functions only involve defining equations
of the geometry, not a metric. If there is a relation between the correlation
functions and the L-functions, how does the dependence on the choice of
Kähler metric in the former go away in the latter?

6The modular curve X0(N) may be regarded as a moduli space of an abstract
complex 1-dimensional torus T 2 with level-N structure, so the argument τ may
be interpreted as the modulus of the T 2 in this context. It is still hard to find a
motivation for probing such varieties as E32A2 and E64A1 with the modular curves.
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In this article, we find that the modular forms associated with certain
class of arithmetic models of [Ez]C are obtained as appropriate linear combi-
nations7 of the class of chiral correlation functions (see explanations around
(11) in section 2.2.2)

(11) f II
1Ω′(τws;β) :=

−i

2π

√
2

α′Tr
Rmnd
Vβ

[
FeπiF q

L0− c

24
ws (∂uX

C)(u)
]

in [Ez]C-target SCFT’s; the appropriate linear combination is given by the
formula (31). Infinitely many correlation functions are available in a family of
string theory with a given [Ez]C and varying choices of complexified Kähler
parameters, and those infinitely many correlation functions are organized to
obtain the L-functions of infinitely many arithmetic models of [Ez]C. So, the
two issues above are resolved simultaneously. The complexified Kähler pa-
rameter plays the role of the partially ordered set parametrizing worldsheet
CFT’s, their correlation functions, modular curves, and their cohomology
groups (see the Observation 4 in section 4.3).

The third issue is this: it is desirable if a systematic description of the
relation between the L-functions and string correlation functions include
(a) string theory interpretation of the argument τ , (b) clear formulas on the
level N of the modular groups such as Γ0(N), (c) relation to the theory of
modular parametrization.

Presentation in this article has a clear statement about the issues (a)
and (b), improving similar statements already made in [16]. The argument
τ corresponds to τws/NDΛ, where τws is the complex structure parameter
of the g = 1 worldsheet in string theory; the integer NDΛ is associated with
the conductor of arithmetic models on one hand (arithmetic geometry), and
with the Kähler metric on the other (string theory); see (8, 15, 30) for more.
So, the modular transformation is interpreted as that of the homology classes
of the g = 1 worldsheet in string theory. Let us comment on the issue (c) in
section 1.3.

1.3. Summary and discussions

Summary (continued) Already half of the take-away messages of this
article are contained in section 1.2. So, let us touch upon a few other obser-
vations in this article here.

One of those observations is that a subgroup of the automorphism group
of the fusion algebra in the string theory (rational SCFT) in question has a

7by following [16], but in a more polished-up way
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role to play (see the Observation 2 in section 3.2 and the examples in section
3.3). We call it the CM group because the subgroup has an interpretation
as complex multiplication operations of the target space. The idea that we
should focus on this subgroup comes from perspectives in arithmetic geom-
etry, as we explain in the preprint version of this article [17, §3.1] (omitted
from this journal version). This observation may also be seen as an inspiring
idea on a more general question on structure of arithmetic characterizations
in the vector space of general chiral correlation functions of rational CFT’s
(e.g., [14]).

Another observation that deserves attention (the Observation 3) is that
correspondence with objects in arithmetic geometry is made possible in the
formula (31) after we allow ourselves to take linear combinations of chiral
correlation functions of multiple different target spaces. Here, we are not
talking of a set of target spaces for which there is no justification, but of
the set of target spaces between which there are Galois group action. This
is actually a very natural thing to do from the perspective in arithmetic
geometry, as we will explain in section 4.2 (and also section 2.1.4). This
observation can be seen as an example of getting a transparent picture by
occasionally relaxing ordinary norms in quantum field theory.

Discussion and Open Questions To what extent the mathematical re-
lation (31) between the correlation functions in string theory and L-functions
in arithmetic geometry is just an accidental agreement, or to what extent the
relation manages to grasp the phenomenon in section 1.1 at its core/essence
in the language of string theory? The issue (c) at the end of section 1.2
points to this question. That is not a well-defined question in the absence of
evaluation criteria, but is still an important question in guiding our thoughts.

There are two arguments in favor of thinking that the relation may be
something more than accidental agreement of two mathematical objects.
One is that both the modular forms characterized by the Galois representa-
tions of arithmetic models and the chiral correlation functions are regarded
as holomorphic 1-forms on the target space pulled back by maps that are
central to the theory of modular parametrization on one hand, and to the
Polyakov path-integral formulation on the other. The other argument is
that there are well-motivated and natural ways to think of those pulled
back objects as those on modular curves in both of the theory of modu-
lar parametrization and in the discussion developed in this article (see the
Observation 1 in sections 3.1). The triangle diagram (16) schematically de-
scribes that. The discussion in this article captures lot of structure in the
language of string theory of what is going on in the theory of modular
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parametrization of elliptic curves with complex multiplication. See also ♦
below.

Many questions also remain, which are beyond the scope of this article.
The first obvious question is whether the discussion can be applied to geom-
etry other than elliptic curves. Another question is whether there is a special
property in the worldsheet SCFT when the target space allows arithmetic
model. For example, it is known on the side of arithmetic geometry that an
elliptic curve defined over Q has an associated modular form of weight-2, re-
gardless of whether it has complex multiplication or not; if the story in this
article has a generalization to all the elliptic curves with arithmetic models,
then one has to find a special property in their stringy treatments (CFT’s) as
well, from which the appropriate modular form(s) can be extracted. Finally,
there is another question that may be related to the questions raised so far.
In the case of a CM elliptic curve as the target space, we presented the key
objects f II

1Ω′(τws;β) as chiral correlation functions in the rational SCFT; the
same objects are obtained also as open string correlation functions, when
β’s are identified with D0-type Cardy states [13]. Which interpretation al-
lows generalization to the cases with target space geometries other than CM
elliptic curves? We have not made an attempt at resolving these different
interpretations.

1.4. Reading guide

0. The core materials in this article are the Observations 1–4 and the
Formula (31) in section 4.1. It is an option to skip the math-heavy sections
2.1.3 and 2.1.4 at the first reading and visit there later when really necessary.
Not much is lost by not following the examples in detail; they are served
just for illustration purposes.

Notations and minimal list of facts on modular forms are collected in
the appendix.

1. We regard that this manuscript submitted to CNTP and the preprint
[17] are the same article; the same scientific achievements are presented in
different styles. We refer to this version as the journal version, while the
preprint [17] is called the preprint version. The primary achievement of this
article is to establish a string-theory language version of the phenomenon in
section 1.1 loosely referred to as theory of modular parametrization. That
achievement is seen as an output in string theory, rather than in arithmetic
geometry. So, we set string theorists as the primary audience in this journal
version. Some materials in the preprint version are omitted in this version,
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when they are too much or too distracting for ordinary string theorists,
while a little more expository materials on arithmetic geometry and algebraic
number theory are included here so that the expected audience do not have
to go through many literatures to follow this journal version.

Here is the list of major difference between the two versions, stated in
more concrete terms.

♠ The relation between the string-theory chiral correlation functions and
the L-functions of the arithmetic models of the target spaces is stated
in the preprint version more comprehensively (covering both newforms
and oldforms) along with the derivation ([17, §3.3]). In this journal
version, only just one key result for newforms is stated in the form of
a formula, and all the rest are omitted.

♣ The theory of modular parametrization for elliptic curves of Shimura-
type is presented in this journal version as a review in section 2.1.4. On
the other hand, the preprint version does not avoid using the language
and logic of arithmetic geometry at all to explain systematically how
the Galois representations associated with those curves correspond to
modular forms. The materials in the preprint version [17, §4.1.3, 4.1.4]
are close parallel of discussions in existing literatures [28] for a similar
(but not the same) class of curves; we still had to fully write up and
present the discussion at least once somewhere for the class of curves
we need to deal with in these two versions, so we did that in the
preprint version.

♦ There are two different sets of literatures in string theory that discuss
Galois group action in the context of string theory. One is to look for
relations between string-theory observables and L-functions of Galois
representations (e.g., [23], [22], [2], [16], [15]), and the other to study
how Galois group may act on the data of rational CFT/modular ten-
sor category (e.g., [5], [3], [10], [11], [6], [7], [4], [14]). The authors are
unaware of literatures trying to bring both into a unified framework.
The preprint version [17, §5] did it, which is made possible after man-
aging to tell the story of the observables–L-functions connection in
the language of modular curves (the Observation 1 in section 3.1). We
gave up including those materials in this journal version; an alternative
might have been to expand the 7 pages of [17, §5] to something more
than 20 pages to make it comprehensible to string theory community.8

8Already large fraction of the 7 pages in the preprint version was expository, and
only small fraction was necessary to add a new observation unifying both stories.
In a 20-page version, that ratio would only get worse.
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♥ The notion of arithmetic models, and classifications of elliptic curves
of Shimura-type over proper subfields of C are crucial elements in this
article. The preprint version does not have a review of the two subjects,
and just referred to the reviews that we wrote in an earlier publication
[16] and to literatures/textbooks. In this journal version, however, we
decided to include them, so it is easier for string theorists to read.

2. Theoretical developments in this article are built on our earlier publica-
tion [16]. The preprint version [17] is written as an ordinary journal article
in this respect, in that we explained there explicitly which parts are addi-
tional achievements beyond the earlier publication [16], and which are not.
Frequent remarks on such aspects, however, may also be distracting for au-
dience who wish to focus on the main story/idea. So, in this journal version,
we put down the main story/idea simply in the updated understanding of
ours without referring too much about the difference from [16].

3. Difference between the approach of [23] and that of [16], [17] is explained
already in [16, §4.3]. Readers interested more in the difference may also
contact the authors for more explanations.

2. Preliminaries

This section contains only expository materials.

2.1. Math preliminaries

It is like a typical style of math papers to collect all preliminary information
in an earlier section, but we could have explained various concepts and facts
in this section 2.1 one by one at places where they are used. It is an option
to skip section 2.1 (or sections 2.1.3–2.1.4) at the first reading, and come
back when necessary.

When a reader finds that the following explanations are not enough,9

appropriate resources to look at will be

• for sections 2.1.1 and 2.1.2, textbooks containing such key words as
elliptic curves, class field theory, complex multiplication.

• For section 2.1.3, see [16, §4.2] and references therein.
• For section 2.1.4, see the preprint version [17, §4.1].

9We admit that even sections 2.1.1 and 2.1.2 are written as a list of facts, not
as an explanation.
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2.1.1. CM elliptic curves as complex analytic manifolds An elliptic
curve as a complex analytic manifold is described as the quotient space
[Ez]C = C/(Z + zZ) with a parameter z ∈ H determining its complex
structure. To be more precise, it is the SL(2;Z) orbit, SL(2;Z) · z ⊂ H, that
specifies an elliptic curve as a complex analytic manifold. An elliptic curve
[Ez]C is said to have complex multiplication,10 when the ring End([Ez]C) of
holomorphic maps [Ez]C → [Ez]C compatible with the abelian group law on
C is strictly larger than the ring Z.

It is known, for an elliptic curve [Ez]C of CM type, that there is a set of
mutually prime integers (az, bz, cz) such that

azz
2 + bzz + cz = 0, az, cz > 0, b2z − 4azcz < 0;

the SL(2;Z) orbit of such a z corresponds to the SL(2;Z) orbit of the even
quadratic positive definite form given by the matrix[

2az bz
bz 2cz

]
.

The field of fractions of the ring End([Ez]C) is isomorphic to an imaginary
quadratic field K = Q(z). One may factor out the square of integers as much
as possible from the discriminant of the quadratic equation above into the
form of

b2z − 4azcz = f2
zDK , fz ∈ N>0,

so that DK < 0 is free of the square of an odd prime integer, and is either
(i) DK ≡ −3 mod 4 or (ii) 4|DK but 16/|DK (such as DK = −4, −8,
−20 etc.). The negative value DK determined this way is the discriminant
of the imaginary quadratic field K. The ring End([Ez]C) is isomorphic to
Ofz := Z ⊕ ZfzwK ⊂ K, where wK := (1 +

√
DK)/2 in the case (i) and

wK :=
√
DK/2 in the case (ii).

CM elliptic curves [Ez]C (as complex analytic manifolds, over C) are
therefore classified first by their imaginary quadratic fields K (equivalently
by the discriminant DK), and then by fz. The set of such CM elliptic curves
sharing K and fz (and hence the subring End([Ez]C) ∼= Ofz ⊂ K) is denoted

10One also says that [Ez]C is of CM-type, and such an elliptic curve is referred to
as a CM elliptic curve. We also sometimes include the information of the endomor-
phism ring End([Ez]C) or its field of fractions K, and say that [Ez]C has complex
multiplication by ( ring) or by (field).
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by E ll(Ofz) (where the choice of K is implicit). The cardinality of this set
is denoted by h(Ofz), and is called the class number. CM elliptic curves
[Eza ]C in E ll(Ofz), where a = 1, · · · , h(Ofz), are regarded as C/bza where
bza := Z+ Zza. The lattices azabza (a = 1, · · · , h(Ofz)) are invertible ideals
of the ring Ofz ; the set E ll(Ofz) is in one to one with an abelian group
ClK(Ofz) called the ideal class group,11 where [Eza ]C corresponds to the
ideal class represented by the ideal bza .

Example 2.1.1. For (K, fz) = (Q(
√
−4), 1), (Q(

√
−3), 1), (Q(

√
−8), 1) and

(Q(
√
−4, 2), the set E ll(Ofz) and the group ClK(Ofz) consist of just 1 ele-

ment. h(Ofz) = 1. We can choose z = i, (1 +
√
3i)/2,

√
2i and 2i for those

cases, respectively.
For (Q(

√
−20), 1), on the other hand, E ll(Ofz)

∼= ClK(Ofz) consists of
two elements.

[Ez0 ]C = C/(Z+ wKZ), and [Ez1 ]C = C/(Z+ 2−1(1 + wK)Z)(4)

are not mutually isomorphic as complex analytic manifolds, but are both
characterized by (K, fz) = (Q(

√
−20), 1). They correspond to the ideal

classes represented by bz0 = Ofz=1 = (1)Ofz=1
and 2bz1 = 〈2, 1 + wK〉 ⊂

Ofz=1 in the abelian group ClK(Ofz=1) ∼= Z/2Z, respectively, where ideals
in the latter class (the non-trivial element of the group Z/2Z) such as 2bz1
are not principal ideals (see also footnote 37).12 •

11In this journal version, it will be possible to follow the main ideas and obser-
vations without knowing the global class field theory; this version does not provide
precise definitions of such jargon as the ideal class group and ring class field, but is
probably readable for the most part by just knowing that they are some kind of a
group and a number field, respectively. It will be still easier to follow the discussion
by knowing the fact that there is a canonical one-to-one correspondence between
the set E ll(Ofz ) and the abelian group ClK(Ofz ) called the ideal class group; each
element of ClK(Ofz ) is a class of ideals of the ring Ofz represented by an ideal
of Ofz . We will also use a fact that there is a canonical isomorphism between the
abelian groups ClK(Ofz )

∼= Gal(Lfz/K).
An exception is section 4.2.1 in this version, but readers may just skip section

4.2.1. This section, especially footnote 37, intends to provide to stringy readers
with hands-on experience in the class field theory, while we explain how to use the
formula (31) in practice.

In the preprint version [17], on the other hand, we assume that readers do not
have troubles in following calculations involving algebraic number theory; so section
4.2.1 and footnote 37 may be useful when reading the preprint version §3.3 and 3.4
line by line.

12notations: For a ring R and its elements x, y, z, · · · ∈ R, (x)R denotes the ideal
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It is known that the j-invariant of a CM elliptic curve is always in the

field of algebraic numbers Q. For example,

j(z)|z=i = 1728, j(z)|z=(1+
√
3i)/2 = 0,

j(z)|z=√
2i = 8000, j(z)|z=2i = 287496,

(
j(z)|z=√

5i, j(z)|z=(1+
√
5i)/2

)
(5)

=
(
320(1975 + 884

√
5), 320(1975− 884

√
5)

)
.

It is further known that (a) the algebraic extension K(j(z)) over K is always

an abelian extension of degree [K(j(z)) : K] = h(Ofz), and (b) K(j(z)) ∼=
K(j(z′)) when both [Ez]C and [Ez′ ]C are in the same set E ll(Ofz). So, this

extension field is uniquely determined by K and fz and is called the ring

class field Lfz ; in the case of fz = 1, this field is called the Hilbert class field

and is denoted by HK . The abelian Galois group Gal(Lfz/K) is known to be

isomorphic to the abelian group ClK(Ofz), and acts on the set of algebraic

numbers {j(za) | [Eza ]C ∈ E ll(Ofz)} transitively.

The field extension Lfz/Q is always Galois; the exact sequence

1 −→ Gal(Lfz/K) −→ Gal(Lfz/Q) −→ Gal(K/Q) −→ 1

splits, where the generator of Gal(K/Q) lifts to the complex conjugation

operation on Lfz in Gal(Lfz/Q). It is also known that j(za) is real valued if

and only if [Eza ]C in the set E ll(Ofz) corresponds to a 2-torsion element13

in the abelian group ClK(Ofz).

2.1.2. Arithmetic models and the field of definitions Any elliptic

curve [Ez]C = C/(Z+ zZ) as a complex analytic manifold can be embedded

into P2 by using the Weierstrass ℘ function of [Ez]C, where the image is

given by a cubic defining equation in P2. The image, regarded as an algebraic

variety, is also denoted by [Ez]C.

of the ring R generated by one element x, while 〈y, z, · · · 〉 is an ideal generated
by the set of elements in 〈 〉. Sometimes the subscript R is omitted, when that is
obvious from the context.

13All the j-invariants in (5) are real valued. This is understood from the fact that
the group ClK(Ofz ) is either trivial {0} or Z/2Z for all of (K, fz) = (Q(

√
−4), 1),

(Q(
√
−3, 1), (Q(

√
−8), 1), (Q(

√
−4), 2) and (Q(

√
−20), 1) (see Example 2.1.1).
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In the following, let us introduce the notion of arithmetic models of an
algebraic variety. That notion looks absolutely irrelevant to string theory
as long as we focus on string theory in its formulation we know today, but
it is central in arithmetic geometry. Because the underlying theme in [16]
and this article is in exploring possibility for such notions in arithmetic
geometry to play some role in string theory in the future, we do not throw
away the notion of arithmetic models right away, but will review some of
basic concepts in arithmetic geometry in sections 2.1.2–2.1.4.

For an algebraic varietyXC in a complex projective space, it may happen
that one can choose all the coefficients of the defining equations in a number
field14 k. One may then think of a variety in the projective space with the
field k, which is denoted by Xk. In such a case, Xk is said to be an arithmetic
model of XC, and k the field of definition of the arithmetic model Xk. One
may write XC

∼= Xk ⊗k C or XC
∼= Xk ×k C to refer to the relation between

XC and Xk. One also says15 that Xk is defined over k, and XC is the base
change of Xk. When we wish to refer to an elliptic curve [Ez]C as an object
classified modulo isomorphisms over C (i.e., as a complex analytic manifold,
or as a complex algebraic variety), we sometimes call it an elliptic curve
(defined) over C.

A pair of arithmetic models Xk and X ′
k of a given XC with a common

field of definition k are regarded different when one cannot find an isomor-
phism between Xk and X ′

k without allowing maps that involve coefficients
outside of k. For example, two elliptic curves E32A2 and E64A1 are both
defined over Q, and are both arithmetic models of the same elliptic curve
[Ez=i]C = C/(Z+(z = i)Z) defined over C. The two arithmetic models over
Q are not the same model over Q. In general, XC does not necessarily have
an arithmetic model in a designated number field k ⊂ Q; even when there is
one for a given k, arithmetic models over k of a given XC are not necessarily
unique (as we have seen in an example).

For a CM elliptic curve [Ez]C, there is always an arithmetic model with
a field of definition k, if k contains the number field Q(j(z)); to see this, it
is enough to note that the elliptic curve16

14A subfield k of the complex number field C is said to be a number field, if it is
an extension of finite degree, [k : Q] = dimQ k < ∞. It follows automatically that
k ⊂ Q ⊂ C.

15For a variety Xk defined over a number field k, Xk(L) for an extension L/k
stands for the set of points where the coordinate values are in L.

16In the case j = 1728, E32A2 and E64A1 are examples of arithmetic models
defined defined over Q.
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y2 + xy = x3 − 36

j(z)− 1728
x− 1

j(z)− 1728

for j(z) �= 1728 has the j-invariant equal to j(z), so this is a model over
Q(j(z)). It is also known that, whenever [Ez]C has a model over a number
field k, there are infinitely many different models over k of [Ez]C. Those
different models Ek have their own L-functions L(Ek, s), which are defined
similarly to the case of models defined over k = Q (the product over rational
primes is replaced by the product over prime ideals of the ring of algebraic
integers of the field k).

There are just 13 pairs (K, fz) for which the set E ll(Ofz) consists of
just single element, and hence there are just 13 CM elliptic curves [Ez]C
defined over C that have j(z) ∈ Q; the four among the 13 have already
been presented explicitly in Example 2.1.1. For all other CM elliptic curves
defined over C, a model over k = Q is not available. For each one of the
13 CM elliptic curves [Ez]C with j(z) ∈ Q, there are infinitely many models
defined over Q; for the one with j = 1728, the two models E32A2 and E64A1

are only a small part of the models defined over Q.

2.1.3. Elliptic curves of Shimura-type: classification and examples
In the rest of this article, we will focus primarily on the cases with fz = 1.
We anticipate that the following theoretical development still holds true for
cases with fz > 1 after appropriate modifications, but we keep the story
simple here by restricting our attention (some additional information may
be found in [16], [17]). The ring Ofz is denoted by OK , and the abelian
group ClK(Ofz=1) by ClK when fz = 1.

We have stated a fact that there are only 13 CM elliptic curves de-
fined over C that have arithmetic models over Q; Deuring’s theory [8] in
combination of Eichler–Shimura theory work for all of their infinitely many
arithmetic models. Shimura [26] formulated a broader class of arithmetic
models of CM elliptic curves, which we call elliptic curves of Shimura type
or arithmetic models of Shimura type, where the theory of Deuring–Eichler–
Shimura can be generalized; we will explain in section 2.1.4 that a set of
weight-2 cuspforms are associated with an elliptic curve of Shimura-type.

There are such arithmetic models of Shimura type, infinitely many in
fact, for any one of CM elliptic curves defined over C with arbitrary (K, fz),
not just for the 13 of them with h(Ofz) = 1. Our goal in this article is to
find a relation between the weight-2 modular forms associated with those
arithmetic models of Shimura type and chiral correlation functions in string
theory whose target space is [Ez]C.
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More systematic and comprehensive expositions on the basic proper-
ties of elliptic curves of Shimura-type are given in the preprint version [17,
§4.1.3]. There are two kinds of arithmetic models of Shimura-type; one is
arithmetic models E defined over a number field k that is an abelian ex-
tension of K containing HK = Lfz=1, and the other is arithmetic models
E′ defined over a number field k that does not contain K but kK contains
HK = Lfz=1. In this journal version of this article, we only refer to arith-
metic models of the former kind;17 a little more comments on the arithmetic
models of the latter kind are also found in the preprint version [17].

Instead of giving a definition of the elliptic curves of Shimura type,
let us state the result of classification of models of this class here. Fix an
imaginary quadratic field K = Q(

√
DK) (and fz = 1 already implicitly).

For a given ideal18 cf of the ring OK , one may list up all the characters χ′
f

of the multiplicative group [OK/cf ]
× (the set of invertible elements of the

ring OK/cf with respect to multiplication) that satisfies

χ′
f (ω + cf ) = ω−1 ∀ω ∈ O×

K .(6)

For each χ′
f , it is known that each one of elliptic curves [Eza ]C over C in

E ll(OK) (where a = 1, · · · , h(OK)) has its arithmetic model of Shimura type
Eza . That is a non-trivial statement, which we do not explain further here;
we refer the reader to [16, §4.2] for the derivation.

The corresponding h(OK) elliptic curves of Shimura type Eza all have
the same field of definition k that is specified as follows. There must be a
subgroup of [OK/cf ]

×, denoted by [OK/cf ]
×
k , where the values of the char-

acter χ′
f are within O×

K . Because19 any subgroup of [OK/cf ]
× determines

a subgroup of the ray ideal class group ClK(cf ), an abelian extension k of
K is determined by the condition that Gal(k/K) ∼= ClK(cf )/[OK/cf ]

×
k ; the

number field k is contained in the ray class field Lcf (for more information,
see [16, §4.2]).

17The arithmetic models E32A2 and E64A1 of [Ez=i]C are of Shimura-type of the
latter kind with k = Q, but if we think of the coefficients in their defining equations
as those in K = Q(

√
−4) = HK (which just happen to be within Q ⊂ K), then

we are now seeing them as E32A2 ⊗Q K and E64A1 ⊗Q K, of Shimura-type of the
former kind with k = K = HK .

18Only an ideal cf with the following property is considered: x − 1/∈cf for any
x ∈ O×

K\{1}.
19The global class field theory is being used here, but it is enough to keep in mind

in order to follow the rest of the story that there is some widely accepted algorithm
that determines a finite abelian extension k/K from the data at our disposal (i.e.,
the character χ′

f of the group [OK/cf ]
×).
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Example 2.1.2. Think of a case K = Q(
√
−4), when the ring OK is Z+Zi.

When we choose the ideal cf to be (4)OK
= 4Z+4iZ ⊂ OK , then [OK/cf ]

× =

Z/2Z× Z/4Z, where we can choose the generator of Z/2Z and Z/4Z to be

3+2i+(4)OK
and i+(4)OK

, respectively.20 This group has two characters χ′
f

satisfying (6). One is χ′
f ;32A : i �→ −i and (3+2i) �→ 1, and the other χ′

f ;64A :

i �→ −i and (3+2i) �→ −1. All the values of the characters χ′
f ;32A and χ′

f ;64A

are in {±1,±i} = O×
K , so the subgroup [OK/cf ]

×
k is [OK/cf ]

× itself. For the

elliptic curve [Ez=i]C defined over C with (K, fz) = (Q(
√
−4), 1), there are at

least two elliptic curves of Shimura type corresponding to χ′
f ;32A and χ′

f ;64A,

whose field of definition k can be chosen as HK = K = Q(
√
−4) = Q(

√
−1)

itself.

It is known in fact that the two arithmetic models defined over K are

actually E32A2 ⊗Q K and E64A1 ⊗Q K, respectively.

Example 2.1.3. Think of a case K = Q(
√
−8), where the ring OK is

Z+Z
√
2i. When we choose the ideal cf to be (2

√
2i)OK

= 4Z+2
√
2iZ, then

[OK/cf ]
× ∼= Z/4Z generated by 1+

√
2i+ cf . There are two characters χ′

f of

the group [OK/cf ]
× satisfying (6). So, for the CM elliptic curve [Ez=

√
2i]C

defined over C with (K, fz) = (Q(
√
−8), 1), there are arithmetic models of

Shimura type for those characters χ′
f (see below, however). The subgroup

[OK/cf ]
×
k is Z/2Z ⊂ Z/4Z. So the field of definition k can be chosen as a

degree-2 extension over HK = K = Q(
√
−8) = Q(

√
−2) ramified over the

prime ideal (
√
2i)OK

of OK .

We note that the two characters agree, when they are restricted to the

subgroup [OK/cf ]
×
k of [OK/cf ]

×. This fact is used momentarily.

Example 2.1.4. Think of a case K = Q(
√
−20), when the ring OK is

Z +
√
5iZ. When we choose the ideal cf to be (2

√
5i)OK

= 10Z + 2
√
5iZ,

then [OK/cf ]
× ∼= Z/2Z×Z/4Z, where we can choose the generator of Z/2Z

and Z/4Z to be 4+
√
5i+cf and 3+cf , respectively. This multiplicative group

has four characters satisfying (6); they are χ′
f (a, b) : (4+

√
5i+ cf ) �→ (−1)a,

(3 + cf ) �→ ib, with ∀a ∈ {0, 1} and ∀b ∈ {1, 3} ⊂ {0, 1, 2, 3}. So, for each of

the CM elliptic curves [Ez0 ]C and [Ez1 ]C in (4) defined over C, there exist

four arithmetic models of Shimura type (see below, however). For all the

four characters, the subgroup [OK/cf ]
×
k is Z/2Z×Z/2Z ⊂ Z/2Z×Z/4Z, so

the field of definition k of the h(OK) × 4 arithmetic models can be chosen

as a degree-2 extension of HK = K(
√
5) = Q(

√
−5,

√
−1).

20(3+ 2i+ (4)OK
)2 = (3+ 2i)2 +(4)OK

= 1+ (4)OK
, so it is an element of order

2 in the group [OK/(4)OK
]×.



370 Satoshi Kondo and Taizan Watari

It is not hard to find out that the pair of characters χ′
f (0, 1) and χ′

f (0, 3)

coincide on the subgroup [OK/cf ]
×
k , and so do the pair χ′

f (1, 1) and χ′
f (1, 3).

This fact is used below. •

We have quoted the result that enables us to list up all the elliptic

curves of Shimura type, using the ideals cf and characters, but there are
some redundancy among those models. There are two kinds of redundancy,

in fact, so let us explain them in turn.

First, for a common ideal cf , two characters χ′
f(1) and χ′

f(2) correspond

to the same arithmetic model over k (i.e., there is an isomorphism defined
over k between the two corresponding models) when the characters χ′

f(1) and

χ′
f(2) of the group [OK/cf ]

× are identical when restricted upon the subgroup

[OK/cf ]
×
k . For example, it sounds as if Example 2.1.3 talks of two arithmetic

models corresponding to two characters, in fact there is just one model
defined over the degree-2 extension field k of HK . Similarly, in Example

2.1.4, there are just h(OK)× 2 arithmetic models modulo isomorphism over
k, corresponding to the characters {χ′

f (0,±1)} and {χ′
f (1,±1)}. To one k-

isomorphism class of an elliptic curve of Shimura-type, E/k, with [E]C ∈
E ll(OK), correspond

#[OK/cf ]
×

#[OK/cf ]
×
k

= #Gal(k/HK)

distinct characters {χ′
f} of [OK/cf ]

×.
Secondly, let the ideal cf vary. For two ideals cf and cf ′ of the ring

OK , suppose that cf |cf ′ . Suppose further that a character χ′
f ′ of the group

[OK/cf ′ ]× is induced from a character χ′
f of [OK/cf ]

× through the projection

[OK/cf ′ ]× → [OK/cf ]
×. Then the elliptic curve of Shimura type for χ′

f and
χ′
f ′ are isomorphic over the field of definition k.

For example, in Example 2.1.2, the character χ′
f ;32A we introduced for

cf = (4)OK
can actually be induced from a character for cf = (2 + 2i)OK

.
Similarly, in Example 2.1.4, the characters {χ′

f (1,±1)} can be induced from

a pair of characters for cf = (
√
5i)OK

. The minimal choice of ideals cf of
OK for an arithmetic model E/k is called the conductor.

We have now quoted all the statements on the classification of elliptic

curves of Shimura type. Despite the redundancy referred to above, for a given
imaginary quadratic field K and fz = 1, each one C-isomorphism class [Ez]C
of E ll(OK) has infinitely many distinct arithmetic models of Shimura type,
with varying field of definition k that is an abelian extension of K.
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2.1.4. Elliptic curves of Shimura-type: modular parametrization

A theory of modular parametrization can be developed for all the elliptic

curves of Shimura-type, similarly to the cases of arithmetic models of CM

elliptic curves defined over Q (as illustrated by examples in section 1.1).

Reference [28] wrote down such a theory of modular parametrization for the

class of elliptic curves E′ defined over a number field F that does not contain

the imaginary quadratic field K; we referred to this class of arithmetic mod-

els as Shimura-type of latter kind early in section 2.1.3. We still need such

a theory for arithmetic models of the former kind. So, the preprint version

of this article [17, §4.1.3 and §4.1.4] did that task (almost parallel to [28]),

by exploiting [12] and [21]. In this journal version, however, we just quote

the results from there, which will be a sequence of highly non-trivial state-

ments for large fraction of string theorists; readers with more familiarity in

arithmetic geometry are referred to [17, §4.1.3 and §4.1.4].
Let E be an elliptic curve of Shimura type, defined over a number field

k that is an abelian extension over K. An abelian variety B is defined by

B :=
∏

σ∈Gal(k/K)

(σE),

which is of dimension [k : K]. It is known that the abelian variety B has

an arithmetic model defined over the field K rather than k. In cases of CM

elliptic curves E′ defined over Q, E := E′ ⊗Q K are of Shimura-type, with

k = K, so the abelian variety B is nothing more than E.

It turns out that there is a map21 from Jac(X1(N))⊗Q K to B defined

over K,

ν : Jac(X1(N))⊗Q K −→/K B,(7)

21As explained in textbooks, modular curves—the closure of the Riemann sur-

faces Γ0(N)\H and Γ1(N)\H—have arithmetic models defined over Q (except for

small number of N ’s which are irrelevant in the context of this article). From here

on in this journal version of this article, X1(N) and X0(N) stand for such a model

over Q (so, C andX0(64) in section 1.1 should be denoted byX0(64) andX0(64)⊗C

now). We may sometimes use a notation X0(N)C and X1(N)C instead of X0(N)⊗C

and X1(N)⊗ C.

When a curve C is defined over a number field, then its Jacobian variety is also

defined over the same number field.
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when we choose22

N divisible by |DK |NmK/Q(cf ).(8)

By combining the Abel–Jacobi map μ : X1(N) →/Q Jac(X1(N)) with this
map, we also have a map ν ′ := (ν ◦ μ) : X1(N)⊗Q K →/K B.

In section 1.1, we illustrated by examples the theory of modular parame-
terization for arithmetic models overQ of CM elliptic curves. There, a surjec-
tive map ν ′ : X0(64) → E/Q and (ν ′)∗ : H1([E]C,C) → H1(X0(64)C,C) ∼=
H1(Jac(X0(64))C,C) played a major role. Here, we have a surjective map
ν : Jac(X1(N)) ⊗ K →/K B/K instead; H1([E]C,C) is generalized to
H1(BC,C), and H1(Jac(X0(64))C,C) to H1(Jac(X1(N))C,C).

Let us digress here for a moment to explain why the theory of modular
parametrization is generalized in that way. It is an option for readers to
skip this part until the end of this section 2.1.4 in the first reading, if the
following materials are too much.

First, for an arithmetic model E defined over Q, one may construct
a representation of the Galois group Gal(Q/Q), as follows. To start off,
think of �-power torsion points E[�n] for some prime integer � ∈ N and
some n ∈ N; they may be identified with automorphisms—translation by
�n-torsion points in the fiber—of the covering (�n×) : E → E. The collection
of such automorphisms of the coverings with a fixed � and varying n’s form
Tate�(E/Q) := Z� ⊕ Z� := lim←−

n∈N
(Z/�nZ + Z/�nZ). The coordinate values of

those torsion points in E are algebraic numbers, so the Galois group acts on
them; this is how we obtain ρ�(E/Q) : Gal(Q/Q) → M2×2(Z�) represented
on the space Tate�(E/Q). The vector spaceH1

et(E⊗Q,Q�) is known to be the
dual vector space of Tate�(E/Q) ⊗Z�

Q�, so we have a dual representation
ρ∨� (E/Q) on this vector space; ρ∨� (E/Q)(σ) = [ρ�(E/Q)(σ−1)]T for σ ∈
Gal(Q/Q). The L-function23 L(E/Q, s) is defined by the product of the

22For an integral ideal q of a ring OL of all the algebraic integers in a number
field L, NmL/Q(q) := [OL : q].

23An easier example of L-functions is for a 1-dimensional Affine variety Gm :=
{x | x �= 0}. One may consider �-power torsion points in Gm(Q), x = e2πia/�

n

=: za
with a ∈ Z/�nZ; one may further see them as automorphisms (za×) : Gm(Q) 
 x �→
zax ∈ Gm(Q) on the fibers of the �n-fold covering π�n : Gm(Q) 
 x �→ x�n ∈ Gm(Q).
The collection of those automorphisms of the coverings forms Z� = lim←−

n∈N

Z/�nZ,

which is the prototype of the Tate module of an elliptic curve. The Galois group
Gal(Q/Q) acts on this set of fiber automorphisms as (za×) �→ σp · (za×) · σ−1

p =:
(zaσp×), where σp is the arithmetic Frobenius; to be more explicit, σp is a map
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characteristic polynomials of ρ∨� (E/Q)(σ) labeled by a certain set {σ} of
elements—called Frobenii—of the group Gal(Q/Q).

It is then easy to imagine that an abelian variety B defined over K
[resp. an elliptic curve E of Shimura type defined over k], its Tate mod-
ule Tate�(B/K) ∼= (Z�)

⊕2[k:K] and its dual space H1
et(B ⊗K Q,Q�) [resp.

Tate�(E/k) ∼= (Z�)
⊕2 and H1

et(E ⊗k Q,Q�)] can be used to introduce the
representations ρ�(B/K) and ρ∨� (B/K) [resp. ρ�(E/k) and ρ∨� (E/k)] of the
group Gal(Q/K) [resp. Gal(Q/k)]. The representation ρ∨� (B/K) is the in-
duced representation of ρ∨� (E/k) for the inclusion Gal(Q/k) ⊂ Gal(Q/K),
and the representation ρ�(B/K) that of ρ�(E/k).

The representation ρ�(B/K) of Gal(Q/K) would usually take values
in Q�-valued 2[k : K] × 2[k : K] matrices. In the case E/k is an elliptic
curve of Shimura type, however, the representation can be diagonalized in
fact, and is split into 2[k : K] 1-dimensional Q�-valued representations.
This property is almost the defining property of elliptic curves of Shimura-
type. The fact that there is a surjective map ν : Jac(X1(N)) ⊗ K →/K B
defined over K—a fact that we have already stated at (7)—implies that the
representation space H1

et(B ⊗K Q,Q�) has a copy under the pull back in
H1

et(Jac(X1(N)) ⊗ Q,Q�), so the latter vector space also supports 2[k : K]
1-dimensional representations of the group Gal(Q/K). Furthermore, [k : K]
of those 1-dimensional representations are generated by appropriate linear
combinations of the holomorphic 1-forms24 dx/y of

H1(B ⊗ C,C) ∼= ⊕σ∈Gal(k/K)H
1(σE ⊗ C,C).(9)

Those [k : K] 1-forms are pulled back by ν∗ to become the generators of
the [k : K] distinct 1-dimensional representations within H1

et(Jac(X1(N))⊗
Q,Q�).

We may think of the induced representations of the group Gal(Q/Q)
from the 2[k : K] representations of Gal(Q/K), but actually the 2[k : K]
representations form [k : K] pairs so that actually only [k : K] distinct repre-
sentations of Gal(Q/Q) are constructed in this way (for more explanations,

σp : G̃mp(Fp) 
 x �→ (x)1/p ∈ G̃mp(Fp) on the reduction of Gm over the prime (p),

denoted by G̃mp. By fixing one identification between the �n-th roots of unity in Q

and those in Fp (assuming � �= p), we obtain Z/�nZ 
 a �→ aσp = p′ · a ∈ Z/�nZ,
where pp′ ≡ 1 ∈ Z/�nZ; in other words, ρ�(Gm)(σp) = (p′×). Under the dual
representation, ρ∨� (Gm)(σp) = (p×). So, the L-function of the Galois representation
on H1

et(Gm ⊗ Q,Q�) is then L(Gm/Q, s) :=
∏

p[1 − ρ∨� (σp)p
−s]−1 =

∏
p[1 − p ·

p−s]−1 = ζ(s− 1).
24We make use of H1

et(B ⊗K Q,Q�) ∼= H1(B ⊗ C,C) etc.
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see [17, §4.1.4]). Those [k : K] representations of Gal(Q/Q) are therefore
in one-to-one with the linear combinations of holomorphic 1-forms pulled
back from the Galois conjugates of E/k; furthermore, those 1-forms are also
regarded as elements of H1(X1(N)C,C), or put differently,

25 as elements of
weight-2 cusp forms of Γ1(N).

2.2. Physics preliminaries

Materials in section 2.2 are well-known to string theorists. They are only
for the purpose of setting notations and also helping readers refresh mem-
ory without going through detailed calculations. See [18] and [13] for more
information.

2.2.1. T 2-target rational N = (2, 2) SCFT Bosonic string theory
with a T 2 target space becomes a rational CFT if and only if the target
T 2 is regarded as a CM elliptic curve [Ez]C under the complex structure in
which the metric is Hermitian and constant (so, [Ez]C ∈ E ll(Ofz) for some
(K, fz)), and the complexified Kähler parameter

ρ :=
1

(2π)2α′

(∫
T 2

B + i

∫
T 2

J

)
takes value in the imaginary quadratic field K; here, B and J are the B-field
and Kähler form, and α′ the squared string length as in standard conventions
in string theory. The CFT is diagonal if and only if there is a representative
z′ from the SL(2;Z) orbit of the complex structure parameter z so that

ρ = fρz
′, ∃fρ ∈ N>0.(10)

So, for an elliptic curve with complex multiplication [Ez]C, its treatment
in bosonic string theory can be a diagonal rational CFT in infinitely many
different ways labeled by positive integers fρ. The same can be said about
its treatment in Type II string theory.

In such a diagonal rational CFT, the holomorphic chiral algebra and the
anti-holomorphic chiral algebra are isomorphic, by definition, and are given
by the lattice vertex operator algebra of an even rank-2 positive definite
lattice Λ, which is the kernel of the right-moving momenta

pR : H1(T 2;Z)⊕H1(T
2;Z) ∼= II2,2 −→ R2.

25Weight-2 cuspforms of a congruence subgroup Γ are regarded as holomorphic
1-forms on the corresponding modular curve (XΓ)C, and vice versa. So, those two
notions are treated interchangeably.
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Its intersection form is given by the following matrix

fρ

[
2az bz
bz 2cz

]
;

the set of irreducible representations of the chiral algebra is

iReps = GΛ := Λ∨/Λ, #(iReps) = f2
ρf

2
z |DK |.

The fusion algebra is the group ring Z[GΛ] of the finite abelian group GΛ.

2.2.2. The class of chiral correlation functions of interest In Type

II string theory, with the target space being a CM elliptic curve [Ez]C and

the complexified Kähler parameter ρ = fzz, one may think of the following

class of observables:26 for β ∈ iReps,

f II
1Ω′(τws;β) :=

−i

2π

√
2

α′Tr
Rmnd
Vβ

[
FeπiF q

L0− c

24
ws (∂uX

C)(u)
]
.(11)

Here, we use a genus-1 worldsheet Σws = {u ∈ C | u ∼ u+ 1, u ∼ u+ τws},
where τws ∈ H is the complex structure parameter of the g = 1 worldsheet,

and qws := e2πiτws . A trace is taken over a Ramond-type irreducible represen-

tation β ∈ iReps ∼= Λ∨/Λ of the holomorphic chiral algebra. The operators

L0 and F are the zero modes of the holomorphic energy-momentum tensor

and the holomorphic fermion number U(1) current, respectively. The oper-

ator XC(u) is the chiral bosons corresponding to the complex coordinate of

the target space [Ez]C
For later use in this article, let us write down well-understood facts that

one can reproduce by simple computations. The complexified left-moving

momentum27 maps the U(1) charges in II2,2 as

Ω′ :=

√
α′

2
pCL : II2,2 −→ Ω′(II2,2) = −i

√
2azfρ
#(GΛ)

bz ⊂ C,

26Strictly speaking, string S-matrix elements are directly observable in physical
processes, and the S-matrix elements are given by products of holomorphic chiral
correlation functions like f II here and anti-holomorphic ones integrated over the
moduli space of the worldsheet (≈ over τws).

27The normalization convention is that |Ω′|2/2 is the partial contribution to the
conformal weight.
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where Ω′(Λ) =
√

2azfρbz ⊂ C. We will find it useful also to introduce a
rescaled version of the map Ω′:

Ω := i

√
#(GΛ)

2azfρ
Ω′,

when

Λ∨ ∼= Ω(II2,2) = bz, Ω(Λ) = fρfz
√

DKbz.(12)

The one-to-one correspondence between iReps ∼= Λ∨/Λ and the D0 Cardy
states can be through

(fρfz
√

DK)−1× : iReps ∼= Ω(II2,2)/Ω(Λ) −→ (fρfz
√

DK)−1bz/bz ⊂ [Ez]C.

(13)

The chiral correlation functions (11) can be easily computed.

f II
1Ω′(τws;β) = ϑ1Ω′

Λ (τws;β),(14)

where

ϑ1ω
L (τ ;x) :=

∑
y∈L,y+L=x

ω(y)e2πiτ
〈y,y〉L

2

for an even lattice L, x ∈ L∨/L, τ ∈ H, and a linear map ω : L∨ → C.
In the case of T 2-target string theory, the correlation functions f II

1Ω′ have
contributions from Kaluza–Klein and winding states on worldsheet, while
stringy oscillator excitations cancel due to the eπiFF insertions.

3. Main ideas and the easiest example

Choose a target space of Type II string by fixing the data ([Ez]C, fρ); in
the rest of this article, [Ez]C always stands for a CM elliptic curve modulo
isomorphisms over C and fρ ∈ N>0 for the parameter in (10) effectively
governing the complexified Kähler parameter ρ. The set of chiral correlation
functions {f II

1Ω′(β)}β∈iReps forms a vector-valued modular form of weight-
2 for the group SL(2;Z)ws, which acts on the complex structure parameter
τws of worldsheet through the ordinary linear fractional transformation. The
characters (without the F∂XC insertion) are of weight-0 and are under the
Weil representation of SL(2;Z)ws associated with the lattice Λ, and {f II

1Ω′}
is under the same representation, but of a different weight because of the
insertions F∂XC.
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3.1. Observation 1: lift to modular curves

The kernel of the Weil representation of SL(2;Z) contains a principal con-
gruence subgroup Γ(NDΛ) [27],

28 where NDΛ is the level29 of the quadratic
discriminant form (GΛ, qΛ) of the lattice Λ; the formula for the level NDΛ

in the cases of our interest (where Λ is an even positive definite rank-2 lat-
tice) is found in (15). This means that individual f II

1Ω′(τws, β)’s are regarded
as scalar-valued weight-2 cuspforms for Γ(NDΛ) ⊂ SL(2;Z)ws. Equivalently,
dτwsf

II
1Ω′(τws, β) for each β ∈ iReps is a holomorphic 1-form well-defined over

the modular curveX(NDΛ)C, the closure of the Riemann surface Γ(NDΛ)\H.

The level NDΛ of the discriminant form is30

NDΛ = fρf
2
z |DK |(15)

when the target space is ([Ez]C, fρ); a proof is elementary, and is found in
the preprint version [17, Lemma 2.4.3]. Note that this level NDΛ, and hence
the modular curve X(NDΛ)C depends only on E ll(Ofz) and fρ, common to
all of h(Ofz) isomorphism classes [Ez]C in E ll(Ofz).

For any N ∈ N>0, there is a natural inclusion

π∗
N : S2(Γ(N)) 
 f(τ) �−→ π∗

N (f)(τ) := f(Nτ) ∈ S2(Γ1(N
2)),

which is the pull-back of 1-forms by the projection map

πN : X1(N
2)C −→ X(N)C.

For string theorists, it will be most natural to think of the chiral corre-
lation functions {f II

1Ω′(τws;β)}β∈iReps either as a vector-valued local section
on PSL(2;Z)ws\H, or a set of scalar-valued functions on H; as a reminder,
τws ∈ H. It is not the first idea to come up with to lift the g = 1 chi-
ral correlation functions only partially to the modular curves Γ(NDΛ)\H
or Γ1(N

2
DΛ)\H from PSL(2;Z)ws\H, not all the way to H. Motivations to

deal with the chiral correlation functions f II
1Ω′(τws;β) as objects on modular

curves entirely come from the side of arithmetic geometry.

28Additional explanations in [17, §2.4] and references therein may also provide
useful information.

29For a finite quadratic form (G, q) with the convention that q is Q/2Z-valued,
its level is the GCD of integers N such that Nq(x) = 0 ∈ Q/2Z for all x ∈ G.

30This (15) holds true for any fz ∈ N>0, although we will focus on the fz = 1
cases in this journal version.
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From the perspective of arithmetic geometry, there is a clear difference

between H and the modular curves (XΓ)C = Γ\H. One is the fact [9, §7.6]
that the modular curves (XΓ)C can be regarded as closed algebraic vari-

eties, and moreover, have arithmetic models XΓ defined over number fields

kmod ⊂ Q; we have already illustrated this in section 1.1, where X0(64) was

regarded as a variety with a model defined over kmod = Q. One may then

think of action of the Galois group Gal(Q/kmod) on function fields and co-

homology groups of XΓ. On the other hand, H as a whole does not have

that property.

The other difference is that the space of all the modular forms of a fixed

weight (for some congruence subgroup ∃Γ ⊂ SL(2;Z)) is horribly compli-

cated. On the other hand, the vector space of modular forms for a given

congruence subgroup Γ forms a finite dimensional vector space, and more-

over, one can derive a lot more knowledge on the substructure in this finite

dimensional vector space (see such textbooks as [9] and [19], or a review

in the appendix A.1 for a shortcut) by exploiting the action of the Hecke

algebra.

As one can easily imagine, the chiral correlation functions f II
1Ω′(τws;β)

can be regarded as 1-forms not just on the curves X(NDΛ)C and X1(N
2
DΛ)C,

but also on any one of the curves X(M)C and X1(M
′)C such that NDΛ|M

and N2
DΛ|M ′. There must be some identification among the 1-forms31 on

those modular curves, and the direct limit is the right language to deal

with this identification; the level M (and M ′) plays the role of the directed

partially ordered set, with the ordering with respect to divisibility among

them. The same argument can be made from the perspective of arithmetic

geometry. The use of inverse/direct limit becomes all the more vital, when

we discuss the effect of freedom in the choice of the target space parameter

fρ in string theory; see Observation 4 in section 4.3.

It is one of central questions in this article how general the relation

between the CFT correlation functions and the arithmetic modular forms

is. Here is an observation that makes us feel that the relation is not just

outright coincidence. As we have illustrated / explained in sections 1.1 and

2.1.4, the weight-2 modular forms f that are associated with the L-functions

of the Galois representations of the arithmetic models are obtained as pull-

backs of the 1-forms of the target space E/k by the map ν ◦ μ : XΓ → E.

31Relevant discussion in the preprint version [17, §3.5] says a little more on a

variety of ways to identify them.
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The upper-right edge of the triangle diagram below refers to that fact:

f II
1Ω′(τws;β) ∈ S2(Γ) X0(N) or XΓ

ν◦μ

dτf(τ) =

∝ Tr[qL0−c/24eπiFFφ∗(ωE)]. (ν ◦ μ)∗(ωE).

Map(Σws, ([E]C, fρ)) 
 φ : Σws E/Q or E/k

(16)

The chiral correlation functions f II
1Ω′ of our interest are the sum of the oper-

ator du(∂uX
C) matrix elements weighted by the factor qL0−c/24eπiFF . This

dXC is the holomorphic (1,0)-form of the target space [E]C, so it is ωE . The

N = (2, 2) SCFT in consideration is formulated (roughly speaking) by us-

ing path-integration over the space Map(Σws, ([E]C, fρ)), and the operator

(du∂uX
C) is equivalent to

P (1,0)
(
φ∗(dXC)

)
∝ P (1,0) (φ∗(ωE)) ;(17)

here, P (1,0) is the projection H1(Σws;C) → H1,0(Σws;C), and φ is the map

from the worldsheet Σws to the target space ([E]C, fρ)). Now, we lift the

correlation functions f II
1Ω′(β) to 1-forms on the modular curve X1(N

2
DΛ) (the

upper left edge of the triangle diagram above). We have two ways to obtain

1-forms on the modular curves; one is to pull-back ωE on the target space

E/k by maps XΓ → E/k in the theory of modular parametrization, and the

other is to pull-back ωE ∝ dXC by the path-integral in string theory. Both

the arithmetic modular forms for the Galois representations and the chiral

correlation functions f II
1Ω′ are obtained as a consequence of probing the same

thing (1-form on the elliptic curves), by using maps in those two different

theoretical framework. The relations between them may not be just a sheer

coincidence, but may have a bit of substance.

3.2. Observation 2: the CM group

The chiral correlation functions f II
1Ω′(τws;β) are now regarded as 1-forms

on X(NDΛ)C. They generate a vector space of 1-forms F ([z], fρ) within
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S2(Γ(NDΛ)) ∼= H1,0(X(NDΛ)C;C); they are not linearly independent within

F ([z], fρ), in fact; furthermore, one could think of choosing a basis of the

vector space F ([z], fρ) from {f II
1Ω′(β)}β∈iReps, which one may call a VOA

basis, but there may be other choices of basis of F ([z], fρ) that is more

suitable for certain purposes. That is indeed the case in the context of the

theory of modular parametrization for CM elliptic curves, as we see in the

following. So, we introduce an idea that is also natural in rational CFT that

leads to another choice of basis of the vector space F ([z], fρ).

Let us begin with the following observation. Given the identification

(13), any complex multiplication α ∈ Ofz of [Ez]C induces a map from

iReps ⊂ [Ez]C to itself. Now, we define a subset of Ofz ,

c([Ez]C, fρ) := {α ∈ Ofz | (1 + α) = id : iReps → iReps}

=
{
α ∈ Ofz | αΩ′(Λ∨) ⊂ Ω′(Λ)

}
,

which is an integral ideal of Ofz . Two complex multiplications α1, α2 ∈ Ofz

induce an identical map from iReps ⊂ [Ez]C to itself, if and only if α1 − α2

is in the ideal c. So, a map from iReps to itself is defined for individual

elements of Ofz/c. Such a map iReps → iReps is not necessarily injective

or surjective for an arbitrary element of the ring [Ofz/c]. For an element

in [Ofz/c]
×, however, there is an inverse in the multiplication law of Ofz/c,

and forms a multiplicative group. We call this finite abelian group the CM

group of the rational CFT for ([Ez], fρ).

One can verify through calculations faithful to the definition above that

c =
(
fρfz

√
DK

)
Ofz

.(18)

Readers might refer to the preprint version [17, §3.1.1] for a little more

information on the proof of this statement. It follows immediately that the

CM group is identical for all the rational CFTs corresponding to the set

of target spaces ([Ez]C, fρ) with a common fρ, K and fz but with different

[Ez]C’s in a common E ll(Ofz). We will use this fact in section 4.2 (and also

implicitly in sections 4.1 and 4.3).

The CM group [Ofz/c]
× contains the automorphism group O×

fz
of the

target space [Ez]C. Each one of elements of the CM group induces an au-

tomorphism of the fusion algebra Z[iReps], and hence the CM group is
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contained32 in Aut(Z[iReps]) as a subgroup.33

Now, let us discuss choices of basis of the vector space F ([z], fρ) once
again. Let G∗

Λ ⊂ GΛ be where f II
1Ω′(β) is not trivially zero; β’s in G∗

Λ form-
ing an orbit of the automorphism group O×

fz
= Aut([Ez]C) =: G0 of the

target space give rise to just one linear independent one, f II
1Ω′(τws; g

−1
0 ·β) =

f II
1Ω′(τws;β)(ρ

1)−1(g0),
∀g0 ∈ O×

fz
, where ρ1 is the embedding K → C that

maps
√
DK into the upper complex half plane. On the vector space

F ([z], fρ)

(19)

= SpanC

{
f II
1Ω′(τws;β0) | choose a repr′tive β0 ∈ [β], ∀[β] ∈ G∗

Λ/G0

}
,

one may now think of the CM group G ∼= [Ofz/c]
× action where the VOA

basis elements above are mapped by g ∈ G as f II
1Ω′(β) �−→ f II

1Ω′(g−1 ·β). Then
it makes sense to reorganize the chiral correlation functions under the action
of the subgroup G of the automorphism groups of the fusion algebra; this
is indeed sensible thing to do from the perspective of arithmetic geometry
(as we explain at the beginning of the preprint version [17, §3.1]). Because
the CM group [Ofz/c]

× is abelian, the representation space F ([z], fρ) can be
decomposed into subspaces

F ([z], fρ) ∼= ⊕χ−1
f ∈Char([Ofz/c]

×)F ([z], fρ)
χ−1

f(20)

where each subspace is the representation space (allowing multiplicity larger
than 1) of a character χ−1

f of the group [Ofz/c]
×.

32The fusion algebra here is the group algebra Z[iReps] of iReps over Z where
iReps ∼= Λ∨/Λ is an abelian group. We know (cf. [25, p.198, Prop 36.1]) that the
automorphism group of the fusion algebra is isomorphic to the automorphism group
of the abelian group iReps. Thus, the CM group can be regarded as a subgroup
of the automorphism group of the fusion algebra. It is in general merely a proper
subgroup; not all automorphisms of the fusion algebra can be regarded as elements
of the CM group.

33Reference [10] identifies a subgroup of Aut(Z[iReps]) of a model of rational
CFT in the following way. The Galois action on the monodromy representation
matrices ([5], [3]) induces permutation on iReps where 0 ∈ iReps (the vacuum
repr) is mapped to itself. Such a Galois action is a symmetry of the fusion algebra
and the charge conjugation combined [10]. The authors of the present article are
not ready to state the relation between this subgroup of Aut(Z[iReps]) and the CM
group in the case of T 2-target models.
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The vector space F ([z], fρ)
χ−1

f is generated by the linear combinations
of the chiral correlation functions of the form

f II
1Ω′(τws; [β0];χf ) :=

(21)

1

#(Aut([Ez]C))#([Ofz/c]
×
β0
)

∑
g′∈[Ofz/c]

×

χf (g
′) f II

1Ω′(τws; (g
′)−1 · β0)

for the CM group orbits [β0]’s (where an orbit [β0] is represented by β0 in
G∗

Λ); here, [Ofz/c]
×
β0

is the isotropy subgroup of the CM group at β0 ∈ iReps.
To see this, one just has to note that

g · f II
1Ω′([β0];χf )

=
1

#(Aut([Ez]C))#([Ofz/c]
×
β0
)

∑
g′∈[Ofz/c]

×

χf (g
′) f II

1Ω′(g−1 · (g′)−1 · β0)

=
χ−1
f (g)

#(Aut([Ez]C))#([Ofz/c]
×
β0
)

∑
g′∈[Ofz/c]

×

χf (g
′g) f II

1Ω′(g−1 · (g′)−1 · β0)

= χ−1
f (g) f II

1Ω′([β0];χf ).

The action of g ∈ [Ofz/c]
× on f II

1Ω′ ’s is the one introduced just below (19).

3.3. The example [Ez]C with z = i: j = 1728

Take an example of a CM elliptic curve [Ez]C with z = i, the elliptic curve
with the j-invariant j(z) = 1728; as a reminder, K = Q(

√
−1), OK = Z[i],

DK = −4, and h(OK) = 1 then. Now,

GΛ
∼= Z/2fρZ⊕ Z/2fρZ, NDΛ = |DK |f2

z fρ = 4fρ.(22)

In the rational SCFT corresponding to the target space ([z], fρ) = ([i], 1),
i.e., fρ = 1, GΛ−

∼= Z/2Z⊕Z/2Z consists only of 2-torsion elements, and the
chiral correlation function f II

1Ω′(τws;β) vanishes for any one of β ∈ GΛ. This
observation fits very well with the fact that the kernel of ρWeil

DΛ for fρ = 1
contains Γ(4fρ) = Γ(4), and the vector space S2(Γ(4)) is known to be empty.

In the rational SCFT corresponding to the target space ([z], fρ) = ([i], 2),
the vector space F ([i], 2) of the chiral correlation functions f II

1Ω′ ’s is of 3-
dimensions over C. One way to see it is to write down their CM-group-
diagonal linear combinations (21) explicitly and check their linearly inde-
pendence. To be more explicit, note first that the CM group in this case is
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[OK/c]× = [OK/(4)OK
]× ∼= Z/2Z×Z/4Z, where the first factor is generated

by an order-2 element (3 + 2i) + c, and the second factor by an order-4 el-
ement i+ c; the Aut([Ez]C) ∼= Z/4Z subgroup of the CM group [OK/c]× is
precisely the second factor Z/4Z generated by [(i)×], the multiplication of
i.

We know that the CM group [OK/c]× acts on the vector space F ([z], fρ)
so that the restriction of the characters χ−1

f on Aut([Ez]C) ⊂ [OK/c]× is

(ρ1)−1 (see just above (19)). So, there are two such characters;34 for a ∈
Z/2Z, χf (a, 1) : [(3 + 2i)×] �→ (−1)a and [i×] �→ i.

The set G∗
Λ consists of 42 − 22 = 12 elements, and is decomposed into

two orbits of the CM group:

orbq=OK
= {1, i, 3, 3i, 3 + 2i, 2 + 3i, 1 + 2i, 2 + i},(23)

orbq=(1+i) = {1 + i, 3 + i, 3 + 3i, 1 + 3i}.(24)

The irreducible representations, β’s in Λ∨/Λ ∼= GΛ, are referred to above by
the complex value (mod Ω(Λ)) of their linear map Ω; we will use the same
convention in expressing the argument β in f II

1Ω′ and ϑ1Ω
Λ in the following.

Now it is straightforward to compute the combinations (21) explicitly,
by using what we know about the chiral correlation functions, that is, (14).

fρfz
√
DK√

2fρ
f II
1Ω′([1], χf (1, 1))(25)

=
fρfz

√
DK√

2fρ

(
f II
1Ω′(τws; 1)− f II

1Ω′(τws; 3 + 2i)
)
,

=
√
az

(
ϑ1Ω
Λ (τws, 1)− ϑ1Ω

Λ (τws, 3 + 2i)
)
,

= (q − 3q9 + 2q17 + · · · ) + 2(q5 − q13 + · · · ),
fρfz

√
DK√

2fρ
f II
1Ω′([1], χf (0, 1))(26)

=
fρfz

√
DK√

2fρ

(
f II
1Ω′(τws; 1) + f II

1Ω′(τws; 3 + 2i)
)
,

=
√
az

(
ϑ1Ω
Λ (τws, 1) + ϑ1Ω

Λ (τws, 3 + 2i)
)
,

= (q − 3q9 + 2q17 + · · · )− 2(q5 − q13 + · · · ),
fρfz

√
DK√

2fρ
f II
1Ω′([1 + i], χf (1, 1)) = 0,(27)

34The conductor is cf = (4)OK
if a = 1 ∈ Z/2Z, and cf = (2 + 2i)OK

if a = 0 ∈
Z/2Z.
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fρfz
√
DK√

2fρ
f II
1Ω′([1 + i], χf (0, 1))(28)

=
fρfz

√
DK√

2fρ
f II
1Ω′(1 + i)

= (1 + i)
(
q2 − 2q10 − 3q18 + · · ·

)
;

we have used q := e2πiτ and τws =: NDΛτ . Obviously they are linearly
independent over C, and hence F ([i], 2) is of 3-dimensions indeed.

As we have explained already in section 3.1, those chiral correlation
functions must be weight-2 modular forms for Γ(NDΛ) when we see them
as functions of τws, and be those for Γ1(N

2
DΛ) when we see them as func-

tions of τ . In the present case of the rational SCFT for the target space
([z], fρ) = ([i], 2), NDΛ = 8. The three linear combinations (25, 26, 28) in-
deed correspond/are proportional to X1 + X5, X1 − X5 and X2 in section
1.1 that generate the 3-dimensional vector space S2(Γ0(64)) ⊂ S2(Γ1(64))
of weight-2 cuspforms for Γ0(64).

The specific choice (25, 26, 28) as a basis of the 3-dimensional vector
space F ([i], 2) was motivated in section 3.2 as the diagonalization basis of
the action of the CM group. This is also a good choice of a basis from
the perspective of arithmetic geometry, although we do not explain in this
journal version (found in the preprint version [17, §3.1]). One may still find
it reasonable to accept that that is so, by noting that the combination (25)
of the chiral correlation functions agrees with the modular form f64A1 of the
arithmetic model E64A1 of the target space [Ez=i]C, and the combination
(26) with the modular form f32A2 of the arithmetic model E32A2 of the same
target space; see (2, 1). One will also find that the remaining combination
(28) of the chiral correlation functions of the rational SCFT for ([z], fρ) =
([i], 2) is proportional to f32A2=(26) with τ replaced by 2τ ; this is called an
oldform of f32A2 in the jargon of modular forms.

For the two arithmetic models E32A2 ⊗ K and E64A1 ⊗ K of [Ez=i]C,
their modular forms f32A2 and f64A1 are expected—in the theory of modular
parametrization—to be regarded as objects in S2(Γ1(M)) with 64|M ; this
is because their conductors35 cf = (2+ 2i)OK

and (4)OK
divide indicate the

levels divisible by |DK |NmK/Q((4)OK
) = 4×42 = 64 (see the condition (8)).

In the language of string theory, on the other hand, the chiral correlation
functions f II

1Ω′(τws;β) are modular forms of Γ(NDΛ), and f II
1Ω′(NDΛτ ;β) of

Γ1(N
2
DΛ); when we choose fρ = 2, N2

DΛ = 82 = 64 now. So, we have seen
that both perspectives along the upper-right edge and along the upper-left
edge in the diagram (16) yield the same modular form.

35the ideals that appear in Example 2.1.2 and at the end of section 2.1.3
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3.4. The example [Ez]C with z =
√
2i: j = 8000

The vector space S2(Γ(8)) of weight-2 cuspforms for Γ(8) is of 5-dimensions
(e.g., [20]); the remaining 2-dimensional vector space is generated by 2 mod-
ular forms that correspond to the arithmetic model of [Ez=

√
2i]C that we

explained in Example 2.1.3 (the field of definition k is a degree-2 extension
over K = Q(

√
−2)). In the language of string theory, on the other hand, we

can think of the vector space F ([z], fρ) of the chiral correlation functions
for the target space with ([z], fρ) = ([

√
2i], 1); the level of the quadratic

form NDΛ is 8 in this case, so the vector space F ([
√
2i], 1) is also iden-

tified within S2(Γ(8)). We have seen that a story holds for the remaining
2-dimensional subspace of S2(Γ(8)) in complete parallel to the 3-dimensional
subspace S2(Γ0(64)) of S2(Γ(8)) ∼= S2(Γ1(64)) in section 3.3. More details of
this story is written down in the preprint version [17, Example 2.4.17 and
§3.2.1].

4. Newforms from the chiral correlation functions

4.1. The formula for newforms

Let us fix a pair of Ofz=1 = OK and fρ. On one hand, in Type II string
theory, we have h(OK) rational SCFT’s, and the vector space of their chiral
correlation functions

⊕a=1,··· ,h(OK)F ([za], fρ) =: F (E ll(OK), fρ).(29)

We have seen that this vector space is a part of

S2(Γ(NDΛ)) ⊂ S2(Γ1(N
2
DΛ)).

On the other hand, let c = (fρ
√
DK)OK

be the ideal of OK common to all
the h(OK) rational SCFT’s (see section 3.2). For ideals cf that divides c,
one may list up all the elliptic curves of Shimura type of [Eza ]C’s in E ll(OK),
as we have explained in section 2.1.3; there are only finite number of such
arithmetic models. The weight-2 modular forms that correspond to those
arithmetic models, as in section 2.1.4, are found in

S2(Γ1(|DK |NmK/Q(c))).

They are the same vector space, because (see (15) and (18))

N2
DΛ = (fρ|DK |)2,(30)
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|DK |NmK/Q(c) = |DK |NmK/Q((fρ
√

DK)OK
) = |DK |f2

ρ |DK |.

The route through the upper-left edge of the diagram (16) in the language
of string theory systematically yields objects in the same vector space as the
theory of modular parametrization (the upper-right edge of (16)) does.

For all those elliptic curves of Shimura-type, we have found a formula for
their modular forms expressed in terms of the chiral correlation functions.
The proof involves frequent use of basic algebraic number theory, so we omit
the proof in this journal version here, as we set string theorists as primary
audience. Interested readers might refer to the preprint version [17, §3.3 and
§3.4] for more information. Here, only the formula is written down in the
following.

Let [Eza ]C ∈ E ll(OK), and E its arithmetic model of Shimura type de-
fined over k, where k is an abelian extension of K containing HK . Let {χ′

f}
be the set of [k : HK ] characters of [OK/cf ]

× that correspond to the model
E/k (see section 2.1.3). The theory of modular parametrization for such an
E/k in section 2.1.4 assigns [k : K] weight-2 modular forms. It is possible
to express them by using the chiral correlation functions f II

1Ω′(τws;β) of the
rational SCFT’s with the set of target spaces (E ll(OK), fρ), when the ideal
cf divides c = (fρ

√
DK)OK

. They are given by

h(OK)∑
a=1

c′a
√
aza

ϕ(b′za)

∑
[β∗]∈iRepsa/[OK/c]×

#([OK/c]×β∗
) χ′

f (c
′
aazaΩ(β∗))(31)

f II
1Ω′(τws; [β∗]; (χ

′
f )

−1)(za,fρ)
fρ
√
DK√
2fρ

.

We should explain notations used in the formula (31). Remember that
there is one-to-one correspondence between the set E ll(OK) and ClK as
explained in 2.1.1; [Eza ]C = C/bza ∈ E ll(OK) is assigned to the ideal class
[bza ] =: K−1

a ∈ ClK . The first sum over the ideal classes K−1
a ∈ ClK is also

a sum of the chiral correlation functions f II
1Ω′ of rational SCFT’s of h(OK)

distinct choices of the target space, ([Eza ]C, fρ) with [Eza ]C ∈ E ll(OK). For
each a ∈ {1, · · · , h(OK)}, one chooses an element c′a ∈ K arbitrarily so
that the ideal c′aazabza =: b′za is integral and prime to the ideal cf (if this
is too abstract, see the Example in section 4.2.1). Finally, ϕ is such36 that

36ϕ is a Hecke character of K of type [−1/2; 1, 0] with the conductor cf , if we
allow ourselves to use a bit of jargon. The Example in section 4.2.1 will illustrate
what ϕ is like, but interested readers might also have a look at textbooks in algebraic
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assigns a complex number ϕ(a) to an ideal a of OK prime to cf so that
ϕ(a1a2) = ϕ(a1)ϕ(a2) and ϕ((α)) = χ′

f (α)ρ
1(α) for an ideal a = (α)OK

.

We have started out with [k : HK ] characters χ′
f , and there are [HK : K]

choices of ϕ for each χ′
f (see section 4.2.1 (or [16, §4.2]) for more expla-

nation), so there are [k : K] linear combinations of the chiral correla-
tion functions of the form (31). They are the [k : K] weight-2 modular
forms associated with the arithmetic models of Shimura-type {Eza/k | a =
1, · · · , h(OK)} of {[Eza ]C} = E ll(OK) associated with the set of [k : HK ]
characters {χ′

f}.
The formula above reduces to (26, 25) for the two arithmetic models

E32A2⊗K and E64A1⊗K in Example 2.1.2. That is because h(OK) = 1 for
K = Q(

√
−1), we can choose c′a = az = 1, bz = b′z = OK , and ϕ(b′z) = 1,

first of all. The second sum in the formula (31) is over the CM group orbits
(23, 24), but χ′

f ;32A/64A(1 + i) = 0, so only the orbit orbq=OK
represented

by Ω(β∗) = 1 contributes, where χ′
f ;32A/64A(1) = 1. The CM group [OK/c]×

acts on this orbit faithfully, so the isotropy group is trivial. So, the formula
(31) is a generalization of what we have done in (26, 25).

4.2. Observation 3: summing over target spaces in Ell(OK)

The formula (31) for the [k : K] weight-2 modular forms for an arithmetic
model of Shimura type E/k requires summing the chiral correlation func-
tions f II

1Ω′(τ ;β)(za,fρ) of rational SCFT’s with h(OK) distinct target spaces,
{([Eza ], fρ) | [Eza ]C ∈ E ll(OK)}. It is certainly not the most natural thing for
physicists to do in a quantum field theory; we do not often sum up scatter-
ing amplitudes of QFT’s with different Lagrangians. The formula (31) says,
however, that we should better sum them up to get the modular forms asso-
ciated with the L-functions of the Galois representations of the arithmetic
models.

Back in the argument in section 2.1.4, however, the [k : K] weight-2
modular forms are introduced in association with the [k : K] representations
of Gal(Q/Q); those representations in turn were introduced on the vector
space (9) and its pull-back by ν∗. Those modular forms and representations
are not just for one arithmetic model E/k of [E]C ∈ E ll(OK), but for [HK :
K] arithmetic models {σE |σ ∈ Gal(k/K)/Gal(k/HK) ∼= Gal(HK/K)}.

number theory, or a review in [16, §4.2] for a shortcut.
Arbitrariness in the choice of c′a ∈ K cancels in the expression (31), because

changing c′a to c′aα ∈ K by α ∈ OK results in changing the factor ϕ(b′za) in the
denominator to ϕ(b′za)αχ

′
f (α).
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So, the [k : K] modular forms being associated with arithmetic models of
h(OK) distinct CM elliptic curves over C, σE⊗C, it is a natural thing than
strange thing that their formula exploits rational SCFT correlation functions
of h(OK) distinct target spaces.

4.2.1. An example with K = Q(
√
−5) Let us illustrate the formula

(31) here, especially in the aspect of summing over different target spaces,
by a few examples. No non-trivial information is added on top of the formula
(31), so busy readers lose nothing by skipping this section 4.2.1.

Let us choose the parameter fρ = 1, and think of two target spaces
([Ez]C, fρ) = ([Ez0 ]C, 1) and ([Ez1 ]C, 1), where [Eza ]C with a = 0, 1 constitute
E ll(OK) with K = Q(

√
−20), as in (4). Then the ideal c of OK for the

corresponding set of h(OK) = 2 rational SCFT’s is (
√
−20)OK

. Now, the
formula (31) ensures that the vector space (29) contains the h(OK) × [k :
HK ] = 2 × 2-plet of weight-2 modular forms for each one of the two of
the h(OK)-plet of k-isomorphism classes of arithmetic models of Shimura
type illustrated in Example 2.1.4; this is because the conductor of the two
h(OK)-plet of models, (2

√
5i)OK

and (
√
5i)OK

, both divide c.
The expression (31) is just a linear combination of the chiral correla-

tion functions, but their coefficients cannot be worked out while avoiding
algebraic number theory altogether. So, here is a pedagogical explanation of
how to use the formula (31) for readers with little familiarity on algebraic
number theory. First, note that z0 = wK :=

√
5i and z1 = (1 + wK)/2,

which means that (aza , bza , cza) is (1, 0, 5) and (2,−2, 3) for a = 0 and 1,
respectively. Second, the ideal azabza is OK for a = 0 and 〈2, 1 + wK〉 =: p2
for a = 1; more background material is found in this footnote.37 We may
choose c′a ∈ K× as c′0 = 1 and c′1 = (1 + wK)/2, so that b′z0 = OK and
b′z1 = p3+ are both prime to the ideal c = (2wK)OK

= p22p5.

37 Here is a bit of technical details of the prime ideal decomposition of the ring
OK = Z+ZwK , where wK =

√
5i. Such ideals as (p)OK

=: pp with p = 11, 13, 17, 19
are prime in the ring OK , and are principal ideals. On the other hand, the ideals
(2)OK

, (5)OK
, and (p)OK

with p = 3, 7 are not prime in the ring OK . Their prime
ideal decomposition is as follows: (2)OK

= p22, where p2 := 〈2, 1 + wK〉; (5)OK
= p25,

where p5 := (wK)OK
; (p)OK

= pp+pp− for p = 3, 7, where ppε := 〈p, rp + εwK〉 with
r3 = 1 and r7 = 3. The ideal p5 is principal. The ideals p2 and ppε with p = 3, 7
and ε = ± are not principal, but any product of even number of them is principal.
For example, p2p3+ = (1 + wK)OK

, which we used in the main text.
The ideal class group ClK ∼= Z/2Z consists of two ideal classes; the trivial element
K0 of Z/2Z is the class of principal ideal, represented e.g., by OK = az0bz0 ; the
non-trivial element K1 of Z/2Z is the class of ideals of the form of p2 × (α)OK

for
α ∈ K×, represented by any one of p2 = az1bz1 and ppε with p = 3, 7 and ε = ±.
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Now, let us work out the coefficients in (31), not for all the 4h(OK) mod-
ular forms corresponding to the four characters {χ′

f (0,±1)} and {χ′
f (1,±1)},

but only for h(OK) of them corresponding to χ′
f (0, 1) in the following. All

the three omitted ones can be worked out in just as elementary procedures,
and the results are found in the preprint version [17, §3.4].

The first thing to work out is the values of ϕ(b′za). For b
′
z0 = OK = (1)OK

,
which is a principal ideal, ϕ(b′z0) = ρ1(1)χ′

f (0, 1)(1) = 1. For b′z1 = p3+,

we use the fact that p23+ = (−2 + wK)OK
; the square of ϕ(p3+) should

be ϕ((−2 + wK)OK
) = ρ1(−2 + wK)χ′

f (0, 1)(−2 + wK), which is equal38

to
√
5 + 2i; therefore, the h(OK) = 2 choices of the value of ϕ(b′z1) are

±e−πi/4(1 + wK)/
√
2.

In the case of the character χ′
f = χ′

f (0, 1), the CM-group diagonal combi-
nations of the chiral correlation functions (21) are non-zero only for just one
orbit from each rational SCFT, the CM-group orbit of Ω(β) = 1 in the the-
ory with the target space ([Ez0 ]C, 1), and that of Ω(β) = (7+wK)/2 for the
target space ([Ez1 ]C, 1); more systematic account for which orbits contribute
and which do not is found in the preprint version [17, Thm. 3.3.10]. For those
orbits, the CM group acts faithfully, so #(OK/c]×β ) = 1. To compute the co-

efficient χ′
f (c

′
aazaΩ(β)) for those two orbits, note that c′0a0Ω(β)∈iReps0 = 1,

and c′1az1Ω(β)∈iReps1 = (1+wK)/2× 2× (7 +wK)/2 = (1 + 4wK) ≡ 1 mod
c. So, χ′

f (c
′
aazaΩ(β)∈iRepsa) = 1 for both a = 0, 1. Therefore, the formula

(31) for the h(OK) = 2 modular forms in question is read as(
f II
1Ω′([1];χf (0,−1))([z0],1) ± eπi/4f II

1Ω′([(7 + wK)/2];χf (0,−1))([z1],1)

)
fρ
√
DK√
2fρ

.

It is straightforward to write down f II
1Ω′ ∼ ϑ1Ω′

Λ as a power series of q,
so we do not do that in this journal version. Interested readers might have
a look at the preprint version [17, §3.4] for the concrete expressions of the
modular forms for those arithmetic models.

All those derivations are nothing more than elementary computations
faithful to introductory textbooks on algebraic number theory, so we did
not include all those details in the preprint version [17, §3.4]. The preprint
version (§3.4) and this journal version (section 4.2.1) are complementary
in their presentation, and we wish both versions are useful to readers with
different background.

38The value of the character χ′
f (0, 1) is determined by noting that (−2+wK) is

equal to (4 + wK) · 33 in the ring [OK/c], so χ′
f (0, 1)(−2 + wK) = (−1)0(i)3 = −i.
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4.3. Observation 4: direct limits along the Kähler parameters

The discussion so far focused on one modular curve at a time, and also one
choice of fρ for the target space metric in string theory at a time. In this
section 4.3, however, we let them scan; that will make it possible to state
the theory of modular parametrization and its string-theory counter part
for infinitely many arithmetic models of Shimura type all at once.

Let us begin with the following observation. Think of an arithmetic
model E/Q as in section 1.1, or an arithmetic model E/k of Shimura type
as in section 2.1.4. Whenever there is a surjective map ν ′N : X0(N) →/Q

E/Q or ν ′N : X1(N) ⊗ K →/K B/K, there is also a surjective map ν ′M :
X0(M) →/Q E/Q and ν ′M : X1(M) ⊗ K →/K B/K for any M divisible
by N , so that they are compatible with a map πM |N : X0(M) →/Q X0(N)
and πM |N : X1(M) →/Q X1(N), respectively. This situation is described as
existence of a map

ν ′ : lim←−
N∈N

X0(N) →/Q E/Q, ν ′ : lim←−
N∈N

(X1(N)⊗K) →/K B/K

defined over Q and K, respectively. Here, the set of integers {N ∈ N} forms
a directed partially ordered set, with the ordering N ≤ M introduced if and
only if N |M .

The 1-forms on E/Q and B/K supporting the Galois representations
may be pulled back to individual modular curves, but they can also be
pulled back all the way to the projective limit of the curves:

ν
′∗ : H1,0(B ⊗K C;C) → lim−→

N∈N
H1,0(X1(N)⊗ C;C) ∼= lim−→

N∈N
S2(Γ1(N)).(32)

So far, this is just a story in mathematics that adds little to what we have
stated in section 2.1.4.

Now, how does this story look like in the language of string theory?
First, for a fixed parameter fρ of the metric of the target space, the vector
space F (E ll(OK), fρ) is regarded as a fixed subspace

F (E ll(OK), fρ) ↪→ S2(Γ1(N
2
DΛ)) ↪→ lim−→

N∈N
S2(Γ1(N)).

Furthermore, one may realize that both the two vector spaces

lim−→
N∈N

S2(Γ1(N))(33)
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and

lim−→
fρ∈N

F (E ll(OK), fρ)(34)

have a similar structure, where the level of modular forms Mf and the
parameter fρ play a similar role (correspondence between them is more like
Mf ∼ |DK |2f2

ρ than Mf ∝ fρ); in the vector space (34), the parameters
fρ governing the target space metric and B-field are regarded as a directed
partially ordered set, with the partial ordering fρ ≤ f ′

ρ introduced if and
only if fρ|f ′

ρ. One may think that

lim−→
fρ∈N

F (E ll(OK), fρ) ⊂ lim−→
N∈N

S2(Γ1(N))

is the vector space of the chiral correlation functions f II
1Ω′(β), with the h(OK)

target spaces E ll(OK) with all kinds of complexified Kähler parameters la-
beled by fρ ∈ N. By letting the Kähler parameter scan, we obtain a set of
observables that does not depend on the choice of metric, but depends only
on the complex structure of the target space(s).

The statement behind the formula presented in section 4.1 can be re-
stated as follows. For any arithmetic model E/k of Shimura type of a CM
elliptic curve [Ez]C over C, the 1-forms H1,0(B;C) pulled backed by the
surjective map over K (i.e., modular parametrization) are found within the
subspace (34) of (33), which is interpreted as string-theory observables with
the target space E ll(OK).

ν
′∗ (

H1,0(B;C)
)
⊂ lim−→

fρ∈N
F (E ll(OK), fρ).

Appendix

A.1. Minimum on modular forms and modular curves

A.1.1. Congruence subgroups There are a few series of subgroups of
SL(2;Z) that have a dedicated notation.

Definition A.1.1. Let N be a positive integer.

Γ(N) :=

{[
a b
c d

]
∈ SL(2;Z)

∣∣∣∣ b, c ≡ 0(N), a, d ≡ 1(N)

}
,(35)
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Γ1(N) :=

{[
a b
c d

]
∈ SL(2;Z)

∣∣∣∣ c ≡ 0(N), a, d ≡ 1(N)

}
,(36)

Γ0
0(N) :=

{[
a b
c d

]
∈ SL(2;Z)

∣∣∣∣ b, c ≡ 0(N), a, d ∈ [Z/(N)]×
}
,(37)

Γ0(N) :=

{[
a b
c d

]
∈ SL(2;Z)

∣∣∣∣ c ≡ 0(N), a, d ∈ [Z/(N)]×
}
,(38)

so Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) and Γ(N) ⊂ Γ0
0(N) ⊂ Γ0(N). Γ(N) is a normal

subgroup of SL(2;Z), and hence also that of any subgroup of SL(2;Z) that
contains Γ(N).

All those subgroups can be regarded as special cases of a more general
class of subgroups ([26, §3.3] and [19, §9.1])

Γ(H,N,M) :=

{[
a b
c d

]
∈ SL(2;Z)

∣∣∣∣ c ≡ 0(N), b ≡ 0(M), a, d ∈ H

}
where N and M are positive integers, and H is a subgroup of the multi-
plicative group [Z/(NM)]×. Γ(N) corresponds to the case of M = N and
H = HN , where

HN := {1, N + 1, 2N + 1, · · · , N2 −N + 1} ⊂ [Z/(N2)]×.(39)

The subgroup Γ1(N) is reproduced by setting M = 1 and H = {1}, Γ0
0(N)

by setting M = N and H = HN , and Γ0(N) by setting M = 1 and H =
[Z/(N)]×. •

Definition A.1.2. A subgroup Γ of SL(2;Z) is said to be a congruent
subgroup, if there exists a positive integer N so that Γ(N) ⊂ Γ.

Lemma A.1.3. There is an isomorphism from Γ(H,N,M) to Γ(H,NM, 1)
given by[

a b
c d

]
�−→

[
M−1

1

] [
a b
c d

] [
M

1

]
=

[
a b/M
cM d

]
.

In particular, this isomorphism identifies Γ(N) with Γ(HN , N2, 1).

A.1.2. The vector space of modular forms

Notation A.1.4. Let A = [a, b; c, d] be an element of GL(2;Z) with ad −
bc > 0, and k ∈ Z. Then |[A]k is an operator acting on the space of holomor-
phic functions on H as follows. For a holomorphic function f(τ) on τ ∈ H,
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f |[A]k is another holomorphic function on H given by

(f |[A]k)(τ) :=
[det(A)]k/2

(cτ + d)k
f(A · τ).

The operator |[A]k is linear on the vector space of holomorphic functions on
H.

Definition A.1.5. Let Γ be a congruence subgroup of SL(2;Z). When a
holomorphic function f(τ) on τ ∈ H satisfies f |[γ]k = f for γ ∈ Γ, it is
said to be a modular form of weight-k for Γ. When such a modular form f
vanishes at all the cusp points of Γ, it is called a cuspform. They form vector
spaces over C, and are denoted by Mk(Γ) and Sk(Γ), respectively.

Lemma A.1.6. The linear operator |[diag(N, 1)]k induces an isomorphism

Sk(Γ(N)) ∼= Sk(Γ(HN , N2, 1)).

This isomorphism is a special case of |[diag(M, 1)]k : Sk(Γ(H,N,M)) →
Sk(Γ(H,NM, 1)), or even a special case of |[diag(r, 1)]k : Sk(Γ(H,N,M)) →
Sk(Γ(H,Nr,M/r)) for any positive divisor r of M .

Lemma A.1.7. Let Γ and Γ′ be both congruent subgroups of SL(2;Z).
Suppose that Γ is a normal subgroup of Γ′. The group Γ acts trivially (=as
identity) on Sk(Γ) via the |[−]k operator; the fact that Γ is a normal sub-
group of Γ′ can be used to see that f |[γ]k ∈ Sk(Γ) for f ∈ Sk(Γ) and
γ ∈ Γ′, so the group Γ′ also acts on the vector space Sk(Γ) via |[−]k, but
non-trivially. The vector space Sk(Γ) can be decomposed under the action
of Γ′ into the form of

Sk(Γ) ∼= ⊕ρ∈iReps(Γ′/Γ)Sk(Γ
′, ρ),

where iReps(Γ′/Γ) is the set of irreducible representations of the finite group
Γ′/Γ; cusp forms in Sk(Γ

′, ρ) transform under γ ∈ Γ′ as

Sk(Γ
′, ρ) 
 f |[γ]k �−→ ρ(γ) · f ∈ Sk(Γ

′, ρ).

When a cuspform f belongs to the subspace Sk(Γ
′, ρ), we call the choice of

the representation ρ ∈ iReps(Γ′/Γ) the nebentypus of f .
Here are two examples of this decomposition. The first example is for

Γ = Γ1(N) and Γ′ = Γ0(N).

Sk(Γ1(N)) ∼= ⊕χN∈Char([Z/(N)]×)Sk(Γ0(N), χN ),(40)
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so χN is a Dirichlet character modulo N .
The other example is for Γ = Γ(N) ∼= Γ(HN , N2, 1) and Γ0

0(N
2). First,

Sk(Γ(N)) ∼= ⊕χN∈Char([Z/(N)]×) Sk(Γ
0
0(N), χN ).(41)

Due to the isomorphisms

Γ(N) ∼= Γ(HN , N2, 1),

Γ0
0(N) ∼= Γ0([Z/(N

2)]×, N2, 1) = Γ0(N
2),

we can also recycle the decomposition (40) and use it after replacing N with
N2 to make a statement equivalent to (41). Because the group HN fits into
the chain of subgroups of the multiplicative group {1} ⊂ HN ⊂ [Z/(N2)]×,
a cuspform for Γ1(N

2) = Γ({1}, N2, 1) is also a cuspform for Γ(HN , N2, 1)
if the nebentypus χ : [Z/(N2)]× → S1 of the cuspform vanishes on HN ⊂
[Z/(N2)]×. This idea is schematically written down as

Sk(Γ(HN , N2, 1)) ∼= ⊕χN∈iReps([Z/(N)]×) Sk(Γ0(N
2), χN ),(42)

which is equivalent to (41). SAGE [20] allows us to work out this decompo-
sition (42) explicitly, so we can just translate the result into the language of
(41) appropriately. •

A.1.8. We are not going to provide a review on such notions as (the subspace
of) oldforms, (the subspace of) newforms, and Hecke operators in this article.
Single page is not enough to review those materials for string theorists, while
they are quite standard for experts of number theory. We just refer the
readers to such textbooks and lecture notes as [9] and [19]. In the following,
we quote from those references a result that we refer to in the text, without
explaining the jargon.

We begin by stating structure within the vector space S2(Γ1(N)) for
positive integer N .

Theorem A.1.9. (e.g., Thm. 5.8.2 of [9]) For any positive integer N , there
is a vector subspace of Sk(Γ1(N)) called the space of newforms, whose defi-
nition is found in standard textbooks and lecture notes on modular forms.
This subspace is denoted by [Sk(Γ1(N))]newN , and the modular forms in this
subspace is said to be of level N . For any nebentypus χN , [Sk(Γ0(N), χN )]newN

is Sk(Γ0(N), χN ) ∩ [Sk(Γ1(N))]newN , so

[Sk(Γ1(N))]newN
∼= ⊕χN

[Sk(Γ0(N), χN )]newN .



Modular parametrization as Polyakov path integral 395

The Hecke algebra, an algebra over Z generated by Hecke operators, acts
on the individual components [Sk(Γ0(N), χN )]newN within Sk(Γ1(N)), and
all the operators in the algebra are diagonalized simultaneously. There is no
two simultaneous eigenvectors of the Hecke algebra in [Sk(Γ0(N), χN )]newN on
which the 1-dimensional representation of the Hecke algebra are identical,
except when the two eigenvectors are identical except the normalization,
so there is no ambiguity in eigenspace decomposition [Sk(Γ0(N), χN )]newN ;
this property is called the multiplicity one theorem. It is conventional to
choose each one of those eigenvectors so that its power series expansion in
q = e2πiτ begins with the term q (with the coefficient 1). Such eigenvectors
in [Sk(Γ0(N), χN )]newN are called weight-k, level-N newforms for Γ0(N) with
the nebentypus χN . Let NewForms(N,χN ) be the set of those eigenvectors
(newforms). •

Theorem A.1.10. (e.g., Thm. 5.8.3 of [9]) Let N be a positive integer.
The vector space Sk(Γ0(N), χN ) contains a subspace [Sk(Γ0(N), χN )]newN , as
stated in Thm. A.1.9; the whole space Sk(Γ0(N), χN ) has a structure that is
made up of subspaces associated with the vector spaces [Sk(Γ0(Mf ), χN )]newMf

labeled by all possible positive integers Mf that divide N . To be more con-
crete,

Sk(Γ0(N), χN ) ∼= ⊕Mf |N [Sk(Γ0(N), χN )]Mf
,

and the individual components associated with Mf |N are

[S2(Γ0(N), χN )]Mf

∼= ⊕r|(N/Mf )|[diag(r, 1)]k [Sk(Γ0(Mf ), χN )]newMf
,

= ⊕f∈NewForms(Mf ,χN ) ⊕r|(N/Mf ) Cf |[diag(r, 1)]k,(43)

=: ⊕f∈NewForms(Mf ,χN ) [f ]
N
Mf

.(44)

A newform f ∈ NewForms(Mf , χN ) mapped into Sk(Γ0(N), χN ) via the
|[diag(1, 1)]k operator is called a weight-k, level-Mf newform for Γ0(N) of
nebentypus χN .

The set NewForms(Mf , χN ) and the vector space [Sk(Γ0(Mf ), χN )]newMf

is empty, if the Dirichlet character χN : [Z/(N)]× → S1 cannot be induced
from a Dirichlet character of [Z/(Mf )]

×.
The dimension of the vector space [f ]NMf

is the number of divisors of the
integer N/Mf , including 1 and (N/Mf ).

dimC

(
[Sk(Γ0(N), χN )]Mf

)
(45)

= |NewForms(Mf , χN )| × |divisors of (N/Mf )|,
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dimC (Sk(Γ0(N), χN ))(46)

=
∑
Mf |N

|NewForms(Mf , χN )| × |divisors of (N/Mf )|.

•

Now, let us write down the statement on the structure of the vector
space Sk(Γ(H,N,M)).

Theorem A.1.11. [19, §9.1] Let N and M be positive integers, and H a
subgroup of the multiplicative group [Z/(NM)]×. In the decomposition and
the isomorphisms

Sk(Γ(H,N,M)) ∼= ⊕χNM
Sk(Γ([Z/(NM)]×, N,M), χNM ),

∼= Sk(Γ(H,NM, 1)) ∼= ⊕χNM
Sk(Γ([Z/(NM)]×, NM, 1), χNM ),(47)

we already have the notion of the subspace of newforms (introduced in Thm.
A.1.9)

[Sk(Γ([Z/(NM)]×, NM, 1), χNM )]newNM(48)

= [Sk(Γ0(NM), χNM )]newNM ⊂ Sk(Γ0(NM), χNM ),

so we can also introduce the notion of the subspace of newforms

[Sk(Γ(H,N,M))]newNM and [Sk(Γ([Z/(NM)]×, N,M), χNM )]newNM

through the identification (47). So long as the character χNM vanishes on
the subgroup H ⊂ [Z/(NM)]×, there is one to one correspondence

|[diag(M, 1)]k : NewForms(Γ([Z/(NM)]×, N,M), χNM )
∼= NewForms(Γ0(NM), χNM ).

The vector spaces Sk(Γ([Z/(NM)]×, N,M), χNM ) with the characters
χNM that vanish on a group H have a substructure precisely the same as
that of Sk(Γ0(NM), χNM ) stated in Thm. A.1.10; we can just translate the
substructure by using the isomorphism |[diag(M, 1)]k.

Of particular interest in this article is the case M = N and H = HN .
So, let us write down the result of the translation in the notation for this
particular M = N and H = HN case.

Sk(Γ
0
0(N), χN ) ∼= ⊕Mf |N2

[
Sk(Γ

0
0(N), χN )

]
Mf

,(49)
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and the individual components associated with Mf |N2 are

[Sk (Γ0
0(N), χN )]Mf

∼= ⊕r|(N2/Mf )|[diag(N−1, 1)]k · |[diag(r, 1)]k [Sk(Γ0(Mf ), χN )]newMf
,

= ⊕f∈NewForms(Mf ,χN ) ⊕r|(N2/Mf ) Cf |[diag(r/N, 1)]k,(50)

=: ⊕f∈NewForms(Mf ,χN ) [f ]
N2,N
Mf

.

•
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