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TT -deformed modular forms

John Cardy
∗

Certain objects of conformal field theory, for example partition
functions on the rectangle and the torus, and one-point functions
on the torus, are either invariant or transform simply under the
modular group, properties which should be preserved under the
TT deformation. The formulation and proof of this statement in
fact extents to more general functions such as TT deformed mod-
ular and Jacobi forms. We show that the deformation acts sim-
ply on their Mellin transform, multiplying it by a universal entire
function. Finally we show that Maass forms on the torus are eigen-
functions of the TT deformation.
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1. Introduction and statement of results

Holomorphic modular forms Modular forms and their cousins play an

essential role both in mathematics, for example elliptic curves and number

theory, and in mathematical physics, e.g. conformal field theory (CFT) and

integrable lattice models. In general, they are functions, defined in the upper

half τ -plane, of the form

(1) F1(τ) =

∞∑
n=0

anq
Δ+n,

where q ≡ e2πiτ , a0 �= 0, and the sum converges in |q| < 1. Moreover they

have simple transformation rules under the generators S : τ → −1/τ and
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T : τ → τ + 1 of the modular group Γ1 = SL(2,Z):

(2) F1(−1/τ) = (−iτ)kF1(τ) , F1(τ + 1) = e−2πiΔF1(τ) .

For Δ a positive integer or zero, and k an even integer, F1 is a modular
form of weight k, while for k = 0 and Δ a negative integer it is a modular
function, invariant under Γ1, but here we do not make such restrictions,
allowing, for example, arbitrary powers of the Dedekind function η(τ) =
q1/24

∏∞
n=1(1−qn). We also include Jacobi forms, which depend on a second

variable and which transform like theta functions.
More generally we may consider a vector space of such functions trans-

forming according to some representation of Γ1 (or a subgroup, not consid-
ered here), examples being the characters of a chiral algebra in a CFT.

In what follows, however it is more useful to regard these as functions of
δ ≡ −iτ , with q = e−2πδ and δ ∈ H ≡ {Re δ > 0}, so that F (1/δ) = δkF (δ).

For all such functions, we shall show that there is a family of deforma-
tions, denoted, for reasons explained in Sec. 2, by “TT”, and labeled by a
real parameter α > 0 which satisfies

Theorem 1 (deformed holomorphic forms). Given a form F1(δ) =∑∞
n=0 ane

−2π(Δ+n)δ with the property that F1(1/δ) = δkF1(δ), the deformed
function

(3) Fα
1 (δ) =

∞∑
n=0

an
(1 +

√
1 + 8π(Δ + n)αδ)1−k√
1 + 8π(Δ + n)αδ

e−(1/2α)(
√

1+8π(Δ+n)αδ−1)

also satisfies Fα
1 (1/δ) = δk Fα

1 (δ), as long as both sides converge, which, for
Δ < 0, restricts 8π|Δ|α < Re δ < (8π|Δ|α)−1.

The normalization is such that limα→0 F
α
1 = 21−kF1. It is instructive to

rewrite (3) in terms of β = 2παδ and δ, so that the exponential factor is
q(Δ+n)β , where we have introduced the β-deformed number

(4) xβ ≡ (1/2β)(
√

1 + 4βx− 1) .

Note that

(5) (βxβ)
2 + βxβ = βx ,

so that βxβ transforms according to a nonlinear representation of the addi-
tive semigroup on {β ∈ R+}, isomorphic to the semigroup T generated by
the TT flow.
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Dirichlet series and Mellin transform To every form (1) with Δ > 0

may be associated a Dirichlet series

(6) φ(s) =

∞∑
n=0

an
(Δ + n)s

,

which converges for Re s > k and can be continued outside this region to

obey a simple reflection relation under s → k − s. This also simply related

to the Mellin transform R(s) ≡
∫ ∞
0 δs−1F (δ)dδ by φ(s) = ((2π)s/Γ(s))R(s).

The modular property of F then implies that the integral converges for

Re s > k with a continuation having the reflection property R(s) = R(k−s).

One may then ask how the series associated to the deformed form is

related to that associated to the seed form (1). However, after the deforma-

tion, Fα as given in (3) no longer has the form of a series in powers of q when

expressed in terms of α and q, but rather in terms of β = αδ and q. Thus

the deformed Dirichlet series defined by the substitution Δ+ n → (Δ+ n)β
is no longer simply proportional to the Mellin transform of Fα.

It turns out that it is the latter which enjoys simple properties, given by

Theorem 1a (deformed Mellin transform). The Mellin transform Rα(s) of

the TT deformation of a modular form of degree k is related to that of the

undeformed form by

(7) Rα(s) = Iα(k, s)R0(s),

where Iα(k, s) is a universal entire function of s, satisfying Iα(k, s) = Iα(k,

k− s) so that Rα(s) inherits the reflexion property and the zeroes of R0(s).

Thus the Mellin transform effectively diagonalizes the TT deformation.

Real analytic forms Apart from the above singularities when Δ < 0,

Fα
1 (δ) is holomorphic in Re δ > 0, but clearly the periodicity under T : δ →

δ− i is lost due to the irrationality of the exponents. However, at the cost of

losing holomorphicity, there is a generalization to the full modular group:

Theorem 2 (deformed real analytic forms). Given a real form on the half-

plane

(8) F2(δ) =

∞∑
n=0

∑
p∈Z

an,pe
−2π(Δ+n)δ1+2πipδ2 ,
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with an,p = a∗n,−p, which satisfies F2(1/δ) = |δ|kF2(δ) and F2(δ+i) = F2(δ),
then

Fα
2 (δ) =

∞∑
n=0

∑
p∈Z

an,p
(1 +

√
1 + 8π(Δ + n)αδ1 + (4πpαδ1)2)

1−k√
1 + 8π(Δ + n)αδ1 + (4πpαδ1)2

(9)

× e−(1/2α)(
√

1+8π(Δ+n)αδ1+(4πpαδ1)2−1)+2πipδ2

satisfies

(10) Fα
2 (1/δ) = |δ|kFα

2 (δ) and Fα
2 (δ + i) = Fα

2 (δ) .

In the case k = 0, when F2 is modular invariant, we have the alternative
and simpler

Theorem 2a. Given a real form as in Thm. 2 but satisfying F2(1/δ) =
F2(δ) = F2(δ + i), that is a modular invariant, then

(11) Fα
2a(δ) =

∞∑
n=0

∑
p∈Z

an,pe
−(1/2α)(

√
1+8π(Δ+n)αδ1+(4πpαδ1)2−1)+2πipδ2

is also modular invariant.

Again, Thms. 2 and 2a hold for α > 0 and, if Δ < 0, 8π|Δ|α < Re δ <
(8π|Δ|α)−1.

Maass forms Another genre of real-valued functions over H are Maass
(cusp) forms, whose main characteristic is that, in addition to being Γ1 in-
variant, they are eigenfunctions of the invariant Laplacian on the fundamen-
tal region F = H/Γ1. We shall show that there is a close relation between
the TT deformation and Maass forms, in fact we have

Theorem 3. Any Maass form is invariant (up to a multiplicative constant)
under the TT semigroup T.

Origins of this work Although we shall rigorously establish these results,
they are motivated by non-rigorous arguments based on examples drawn
from recent work in theoretical physics on the so-called TT deformation of
a two-dimensional CFT. This began with the paper of Zamolodchikov [1],
and since then differing but related explanations have been put forward for
its solvability: in terms of a coupling to random geometry [8], as a particular
form of quantum gravity [6], through its holographic interpretation [7], as a
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state-dependent diffeomorphism [10], or as a coupling to an elastic medium
[11]. Since it has an explicitly locally rotationally invariant form (in euclidean
signature) it is expected to preserve the modular properties of the original
theory defined in domains such as the torus, or, more simply, a rectangle.
However, the formalisms mentioned above tend to obscure this symmetry,
and it was in formulating a proof that it does in fact hold that the author
realized that the arguments apply to more general mathematical objects
beyond those which arise in CFTs, such as (1).

Other related work The deformations of modular forms discussed here
are quite different from those arising in string theory amplitudes in a gravita-
tional plane wave background, first computed in [2] and studied in generality
in [3]. From a world sheet perspective, the latter is a massive deformation,
relevant in the infrared, while TT is relevant in the ultraviolet. More explic-
itly, its effect, for example on the η-function is to make

(12)

∞∏
n=1

(1− qn) →
∞∏
n=1

(1− q
√
m2+n2

) ,

while the effect of TT is to modify the power of each term its series expansion

(13)

∞∏
n=1

(1− qn) =

∞∑
k=0

χkq
k →

∞∑
k=0

χβ
kq

(1/β)(
√
1+2βk−1) .

The recent physics literature on TT amounts to several hundred pa-
pers. Those most relevant to the present discussion are listed as Refs. ([5]–
[10], [12]) Recently Benjamin et al. [13] extensively treated CFT torus par-
tition functions from the point of view of harmonic analysis, emphasizing
the role of Maass forms, without, however, noting the connection to the TT
deformation.

Outline The outline of this paper is as follows. In Sec. 2 we briefly de-
scribe the TT deformation in a non-rigorous manner, re-interpreting it as a
coupling of the CFT to an elastic medium, and applying it first to the par-
tition function in a rectangle, then to a 1-point function on the torus. We
argue that these are most easily understood through their Laplace trans-
forms, which give a complexified version of the microcanonical ensemble.
(In a companion physics paper [11] we shall amplify this interpretation and
show that the resulting equations are those of a non-interacting fluid.) These
examples are sufficiently general as to give the basis for a rigorous definition
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of the deformation of modular forms on Γ1 in general. However, this section
is not necessary for the remainder of the mathematical discussion, which is
self-contained. In Secs. 3 and 4 we give proofs of Thms. (1,2,2a) by show-
ing that the above definitions are equivalent both to the series expansions
in the statement of the theorems, and also imply that Fα

1,2 are related to
their undeformed counterparts by integral transforms which preserve their
modular properties. In Secs. 3.1 and 3.2 we discuss Mellin transforms and
Dirichlet series, and in Sec. 5 the relation to Maass forms. Finally in Sec. 6
we discuss some examples.

2. Physics motivation

2.1. TT as a coupling to an elastic medium

Briefly, the TT deformation of a given CFT in flat space is a family of
non-local field theories T λ, parametrized by a real number λ, in which the
infinitesimal flow T λ → T λ+δλ is formally defined in the path integral rep-
resentation by adding a perturbation

(14) δλ

∫
detT λ(x)d2x = 1

2δλε
ikεεjl

∫
T λ
ij(x)T

λ
kl(x)d

2x

to the action, or, equivalently, inserting it into correlation functions. Here
T λ(x) is the local energy-momentum, or stress, tensor of the deformed the-
ory, assumed to exist. x = (x1, x2) are cartesian coordinates and we use the
summation convention. By definition this generates a semigroup action on
the space of deformed theories, isomorphic to the additive group on R+.

The effect of this quadratic perturbation in the path integral may be
written as an integral over a symmetric tensor field ε:

(15) ∝
∫

[dεij ]e
∫
εijTλ

ijd
2x+(1/2δλ)εikεjl

∫
εij(x)εkl(x)d2x ,

which, being gaussian, is given by the value of the exponent at the saddle
εij = −(δλ)εikεjlT λ

kl. The fact that T λ
kl is conserved and symmetric then

implies that εij may be written as 1
2(∂iuj + ∂jui).

We may interpret the field uj(x) as the displacement of a particle, ini-
tially at x, in an elastic solid, with εij(x) being the strain and the second
term in (15) the elastic energy.

Integrating along a contour C[X,x] from a fixed point X to x,

(16) ∂λui(x) = −εikεjl
∫ x

X
T λ
kl(x

′)dx′j ,
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where the integral may be recognized as the flux Nλ
k of the stress current

T λ
k., that is the total force acting across C[X,x], and is independent of the

contour since the current is conserved. Thus the separation Rλ(a, b) between
two points initially at xa and xb satisfies

(17) ∂λR
λ
i (a, b) = −εikN

λ
k (a, b) .

This interpretation of u(x) as a dynamical field in a fixed frame avoids the
paradoxes which may arise in thinking of x → x+ u(x) as a field-dependent
diffeomorphism [10] in the quantized theory, and there is no requirement of
general covariance.

In general (17) relates two fluctuating quantities, but in some situa-
tions C is macroscopic and we may consider a statistical ensemble in which
Nλ

k (a, b) is fixed, and moreover a protocol in which it is independent of λ. In
that case Rλ

i (a, b) evolves linearly with λ. We now consider a simple example.

2.2. Rectangular geometry

Consider a sample of this elastic material coupled to a CFT in the initial
shape of an R1×R2 rectangle, oriented with its sides parallel to the cartesian
axes. Thinking of x2 as imaginary time, the undeformed partition function
has a spectral decomposition

(18) Z0(R1, R2) =

∫
e−N2R2ρ0(R1, N2)dN2,

where the force N2 is the energy in the microcanonical ensemble, and, if
we imposed periodic boundary conditions in x2, R2 would be the inverse
temperature. Here ρ0 is the density of energy eigenstates, weighted by matrix
elements to the initial and final boundary states at x2 = 0 and R2, and is a
sum of delta functions.

Now take a and b in (17) to be the ends of an interval spanning the rect-
angle along x2 = constant. This gives the change in the width at this height.
If T12 = 0, that is there is no shear force at the boundaries, conservation
implies that the width change is independent of the height, so the sample
remains rectangular. Thus at fixed N2, R

λ
1 = R0

1−λN2, so we may write, at
least formally1

(19) Zλ(R1, R2) =

∫
e−N2R2ρ0(R1 + λN2, N2)dN2 .

1The change of sign in front of λ is due to ρ0 being a density.
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There are several problems with (19), one being that R1+λN2 may become

negative. The other is that although, as a consequence of the symmetry

of the action under (x1, x2) → (x2, x1). we would expect Zλ(R1, R2) to be

invariant under S : R1 ↔ R2, this is obscured in (19).

However, again at least formally, it implies that Zλ obeys the PDE

(20) ∂λZ
λ(R1, R2) = −∂R1

∂R2
Zλ(R1, R2)

which is symmetric, although this does not imply that its solution must be

even if the initial data are, since the operator on the right hand side is not

elliptic.

It is necessary to give mathematical meaning to (18, 19) and the sub-

sequent manipulations. The connection between this example and the more

general form in (1) is that the undeformed partition function Z0 in a rect-

angle with boundary conditions T12 = 0 in fact takes the form [14]:

(21) Z0(R1, R2) = R
c/4
1 η(iR2/R1)

−c/2,

for any CFT of central charge c. Here η(τ) = q1/24
∏∞

m=1(1 − qm) with

q = e2πiτ is Dedekind’s function. This is of the form (1) with k = −c/4 and

Δ = −c/48, but we keep these parameters more general in the following

discussion.

In (18) Z0(R1, R2) is the Laplace transform of ρ0(R1, N2). However, for

our purposes it is better to do the reverse, that is define

(22) ω0(R1, s) =

∫ ∞

0
e−sR′

2Z0(R1, R
′
2)dR

′
2 .

Since Z0 ∼ e−2πΔR′
2/R1 as R′

2 → ∞, and ∼ e−2πΔR1/R′
2 as R′

2 → 0, conver-

gence in these limits is is uniform in any closed subset of R1 ∈ R+ as long as

Δ > 0 (c < 0): ω0 is then a complex analytic function of s apart from poles

along the negative real axis. The case when Δ < 0 will be discussed later.

The inverse transform is then

(23) Z0(R1, R2) =

∫ i∞

−i∞
esR2ω0(R1, s)(ds/2πi) ,

and, on pulling back the contour to wrap around the poles, gives ρ0(R1, N2)

as twice the imaginary part of ω0(R1, s) at s = −N2.
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Comparing with (19), we therefore have

(24) Zλ(R1, R2) =

∫ i∞

−i∞
esR2ω0(R1 − λs, s)(ds/2πi) ,

which still requires a definition of ω0(R1, s) for R1 ∈ C. However, for a
CFT, Z0(R1, R

′
2) = R−k

1 F 0
1 (δ

′) where δ′ = R′
2/R1 giving

(25) ω0(R1, s) =

∫ ∞

0
R1−k

1 e−sδ′R1F 0
1 (δ

′)dδ′ ,

which may be analytically continued in R1.

Thus
(26)

Zλ(R1, R2) =

∫ i∞

−i∞
esR2

∫ ∞

0
(R1 − λs)1−ke−sδ′(R1−λs)F 0

1 (δ
′)dδ′(ds/2πi) .

Finally, writing Zλ(R1, R2) = R−k
1 Fα

1 (δ) in terms of dimensionless quantities
α = λ/(R1R2) and δ = R2/R1, and rescaling R1s → s,

(27) Fα
1 (δ) =

∫ i∞

−i∞
esδ

∫ ∞

0
(1− αδs)1−ke−sδ′(1−αδs)F 0

1 (δ
′)dδ′(ds/2πi) .

So far the discussion has lacked rigor. The idea is now to use (27) as the
definition of the deformed modular form Fα

1 , and to prove both that it yields
the expansion in (3) and that it has the same transformation law as F 0

1 under
S : δ → 1/δ.

2.3. 1-point function on the torus

In order to motivate Theorem 2, consider the TT deformation of the one-
point function of a local operator on the torus, which has a natural action
of Γ1 = SL(2,Z). A 2-torus may be thought of as R2/(ZRa + ZRb), where
Ra, Rb ∈ R2, such that the area Ra ∧ Rb > 0. The generators of Γ1 are
S : (Ra, Rb) → (Rb,−Ra) and T : (Ra, Rb) → (Ra, Rb + Ra). Rotating to a
basis where Ra = (|Ra|, 0), we can write Rb = |Ra|(−δ2, δ1), where the usual
modulus is τ = iδ where δ = δ1 + iδ2 with δ1 > 0.

In a translationally invariant field theory, the 1-point function 〈Φ(x)〉
of a scalar operator Φ(x) on the torus is independent of x, and in a CFT
has the form |Ra|−kF 0

2 (δ), where now k is the scaling dimension of Φ. The
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symmetry under Γ1 implies that F 0
2 (1/δ) = |δ|kF 0

2 (δ) and F 0
2 (δ+i) = F 0

2 (δ).
Moreover, in a CFT, F 0

2 (δ) has a Fourier expansion as in (8).2

Paralleling the discussion in the previous section, we define the double
Laplace transform

Ω0(Ra, s) =

∫
Ra∧R′

b>0
e−s.R′

b〈Φ〉0(Ra, R
′
b)d

2R′
b .(28)

〈Φ〉0(Ra, Rb) =

∫
es.RbΩ0(Ra, s)(d

2s/(2πi)2) .(29)

Choosing x = X, and running the contour C in (16) from X toX around
an a cycle, the effect of the TT deformation is to send Ra → Ra − λ ∧Na,
where Na ∼ −s is the force acting across C. Thus

(30) 〈Φ〉λ(Ra, Rb) =

∫
es.RbΩ0(Ra − λ ∧ s, s)(d2s/(2πi)2) .

We note in passing that, at least formally, this implies the PDE

(31) ∂λ〈Φ〉λ(Ra, Rb) = −(∂Ra
∧ ∂Rb

)〈Φ〉λ(Ra, Rb),

which is Γ1 invariant.
In a CFT,

(32) Ω0(Ra, s) =

∫
e−s.d′.Ra |Ra|−k+2F 0(d′)d2d′,

where R′
b = d′.Ra, i.e.

(33)

(
R1

b

R2
b

)
=

(
δ2 −δ1
δ1 δ2

)(
R1

a

R2
a

)

and similarly Rb = d.Ra. Then
(34)

〈Φ〉λ(Ra,d.Ra) =

∫
es.d.Ra

∫
e−s.d′.(Ra−λ∧s)|Ra−λ∧s|−k+2F (d′))d2d′ d2s

(2πi)2
.

In terms of components, in a frame where R2
a = 0, this is

(35)∫∫
[(|Ra| − λs1)

2 + λ2s22]
−k/2+1eλδ

′
1(s

2
1+s22)+s1|Ra|(δ1−δ′1)+s2|Ra|(δ2−δ′2)F 0(δ′)d2d′

d2s

(2πi)2
,

2More generally, a sum over several Δs.
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which should be compared to (26). Defining α = λ/(area) = λ/(δ1|Ra|2),
and rescaling s, we find
(36)

Fα
2 (δ) =

∫
C

∫
H

[(1−αδ1s1)
2+α2δ21s

2
2]
−k/2+1eαδ1δ

′
1s

2+s.(δ−δ′)F 0
2 (δ

′)d2δ′
d2s

(2πi)2
,

where the s1,2 contours C lie up the imaginary axis, and δ′ is integrated over
the right half plane. As before, if Δ > 0 this converges uniformly for δ in
any closed subset of H, and although the arguments leading up to this lack
rigor, we may now take it as a definition of the deformed F2, and thence the
deformed one-point functions.

2.3.1. Partition function The CFT torus partition function Z(Ra, Rb)
has the form (8), but is modular invariant. However, its deformed version is
not given by (9) with k = 0, because the deformation should be applied to
the partition function with a marked point X where u(X) = 0, that is Z
divided by the area Ra ∧Rb = δ1|Ra|2.

As a result the above arguments are slightly modified: (26) becomes
(37)

δ1
−1Zλ(Ra,d.Ra) =

∫
es.d.Ra

∫
e−s.d′.(Ra−λ∧s)δ′1

−1
F (d′))d2d′ d2s

(2πi)2
,

so that

(38) Zα(δ) =

∫ ∫
eαδ1δ

′
1s

2+s.(δ−δ′)(δ1/δ
′
1)Z

0(δ′)d2δ′
d2s

(2πi)2

which again may be used as a definition of the deformed partition function.

3. Proof of Theorem 1

Motivated by the above discussion, given a function F 0(δ) =
∑∞

n=0 anq
Δ+n

where q = e−2πδ with Re δ > 0, which satisfies F 0(1/δ) = δkF 0(δ), we define
its TT deformation by the limit as ε → 0, if it exists, of

(39) Fα
ε (δ) =

∫ i∞

−i∞
esδ

∫ 1/ε

ε
(1− αδs)1−ke−sδ′(1−αδs)F 0(δ′)dδ′

ds

2πi
,

where the branch cut of z1−k is taken to lie along the negative real z axis.
As long as α > 0 and Re δ > 0, the integral is uniformly convergent and it
is permissible to interchange the orders of integration.
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Inserting the uniformly convergent expansion of F 0(δ′), we may inter-
change the orders of summation and integration to find

(40) Fα
ε (δ) =

∞∑
n=0

an

∫ i∞

−i∞

∫ 1/ε

ε
(1−αδs)1−kes(δ−δ′)+αδδ′s2−2π(Δ+n)δ′dδ′

ds

2πi
.

As long as Δ > 0 we can take the limit ε → 0 term by term, giving

(41)

∞∑
n=0

an

∫ i∞

−i∞

esδ(1− αδs)1−k

2π(Δ + n) + s− αδs2
ds

2πi
.

The integrand has simple poles at s = s± = (1/2αδ)(1±
√

1 + 8π(Δ + n)αδ)
and a branch cut from s = (αδ)−1 to +∞. For Δ > 0 only s− lies to the
left of the s integration contour, and we may pull it back and evaluate the
residue to obtain the expression in (3).

On the other hand, we may first perform the s integral by completing the
square in the exponent, writing it as αδδ′(s−(δ′−δ)/2δδ′)2−(δ′−δ)2/4αδδ′.
Setting s = (δ′ − δ)/2δδ′ + i(δδ′)−1/2t and shifting the contour so that t is
real, we find, after some algebra,

(42) Fα
ε (δ) =

∫ ε

−ε
Kα(δ, δ′)(δ/δ′)k/2F 0(δ′)(dδ′/δ′) ,

where

(43) Kα(δ, δ′) = e−(δ′−δ)2/4αδδ′
∫ ∞

−∞

(
(δ + δ′)/2(δδ′)1/2 − it

)1−k
e−αt2dt .

If Δ > 0 we may remove the ε cutoff in (42). The theorem now follows on
recognizing that both Kα(δ, δ′) and the measure dδ′/δ′ are invariant under
(δ, δ′) → (1/δ, 1/δ′), which implies that if δ−k/2F 0

1 (δ) is invariant so also is
δ−k/2Fα

1 (δ).

Remarks

• If Δ < 0 then (3) converges for real δ as long as (4αδ)−1 > 2π|Δ| and
(4α/δ)−1 > 2π|Δ|, that is (8πΔα)−1 < δ < 8πΔα. As long as this
holds, s− and s+ are both real and we may shift the contour in (41) so
as to lie between them. Thus the theorem still holds in this restricted
domain. Fα(δ) has square root singularities at the end points, which
in the physics literature are called Hagedorn singularities.
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• the proof of S-invariance depends only on the invariance of the kernel
Kα(δ, δ′). Thus we could use some other such kernel. However this will
not in general lead to a point power spectrum in (3) for α > 0.

• If α < 0 we can still define Fα by wrapping the contour in (39) to
lie just above and below the real axis so as to include all the poles
at s = −2π(Δ + n) when α = 0. Then for α < 0 it includes the
finite number of poles s± on the real axis, as well as the branch cut
which now runs from −∞ to −(|α|δ)−1, but none of the infinity of
poles with a non-zero imaginary part. Thus the spectrum of powers
of q has a continuum as well as a finite discrete part. The proof of
S-invariance of δ−k/2Fα

1 (δ) then proceeds as before, picking up only
the real spectrum. However the partition function has a square root
singularity every time a pair of roots s± meet and become complex.

3.1. Deformed Mellin transform

The simplest and most interesting definition is through the Mellin transform

φα(s) = (2π)s

Γ(s) R
α(s) where Rα(s) =

∫ ∞
0 δs−1Fα(δ)dδ.

We now outline the elements of the proof of Thm. 1a. By definition,
(44)

Rα(s) =

∫ ∞

0
δs−1

∫ i∞

−i∞
et

′δ

∫
(1−αδt′)1−ke−t′δ′(1−αδt′)F 0(δ′)dδ′(dt′/2πi)dδ .

This looks complicated, but on substituting δ = uδ′ and rescaling t′ → t′/δ′,

Rα(s) =

∫ ∞

0

(uδ′)s−1

∫ i∞

−i∞
et

′u
∫

(1− αut′)1−ke−t′(1−αut′)F 0(δ′)dδ′(dt′/2πi)du(45)

= Iα(k; s)R0(s) ,(46)

where

(47) Iα(k; s) =

∫ ∞

0
us−1

∫ i∞

−i∞
(1− αut)1−ketu−t(1−αut)(dt/2πi) du

Now we follow the same method as in the proof of Thm. 1, completing the
square in the exponent, to find, after some algebra,
(48)

Iα(k; s) =

∫ ∞

0

us−k/2−1e−(u−1)2/4αu

∫ ∞

−∞
(iαt+ (u1/2 + u−1/2)/2)1−ke−αt2(dt/2π)du .

The integrals are absolutely uniformly convergent and define an entire func-
tion of s. Under u → 1/u, us−k/2−1du → u−s+k/2−1du = uk−s−k/2−1du, so
Iα(k; s) = Iα(k; k − s).
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In fact Iα(k; s) is proportional to a confluent hypergeometric function.

Going back to (47) and rescaling t → t/αu, then u → 1/u,

Iα(k; s) = α−1

∫ ∞

0
u−s

∫ i∞

−i∞
(1− t)1−ke(t/α)−u(t(1−t)/α)(dt/2πi) du(49)

= α−sΓ(1− s)

∫ i∞

−i∞
et/αts−1(1− t)s−k(dt/2πi)(50)

= α−sΓ(1− s)π−1 sinπ(s− k)

∫ 1

0
et/αts−1(1− t)s−kdt(51)

= α−s sinπ(s− k)Γ(s− k + 1)

sinπsΓ(2s− k + 1)
1F1(s, 2s− k + 1; 1/α) .(52)

3.2. Deformed Dirichlet series

Alternatively, we may define the TT -deformed Dirichlet series by

(53) φβ(s) =

∞∑
n=0

aβn(
(Δ + n)β

)s ,
where aβn and (Δ+ n)β are the deformed coefficients and exponents defined

in (3, 4), with α = β/δ. As before, we have φβ(s) = (2π)s

Γ(s) R
β(s) where

Rβ(s) =
∫ ∞
0 δs−1F β(δ)dδ, the only difference being that the integration is

performed at fixed β rather than fixed α. Thus

(54)

Rβ(s) =

∫ ∞

0
δs−1

∫ i∞

−i∞
et

′δ

∫
(1− βt′)1−ke−t′δ′(1−βt′)F 0(δ′)dδ′(dt′/2πi)dδ .

The δ integral is now immediate, and F 0 may be expressed in terms of R0

by an inverse Mellin transform.

Rβ(s) = Γ(s)

∫ i∞

−i∞

∫ ∞

0

∫ i∞

−i∞
t′

−s
(1− βt′)1−ke−t′δ′(1−βt′)δ′

−s′
R0(s′)

ds′

2πi
dδ′

dt′

2πi
(55)

= Γ(s)

∫ i∞

−i∞

∫ i∞

−i∞
t′

s′−s−1
(1− βt′)s

′−kΓ(1− s′)R0(s′)
ds′

2πi

dt′

2πi
.(56)

This has an asymptotic expansion in powers of β of the form

(57) Rβ(s) =

∞∑
r=0

crβ
rR0(s− r) ,
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which shows that reflection symmetry under s → k − s is lost once β �= 0,
as expected, since the δ → 1/δ symmetry of F holds only at fixed α.

4. Proof of Theorem 2

Motivated now by the discussion in Sec. (2.3), given a real function F 0
2 (δ) =∑∞

n=0

∑∞
n̄=0 an,n̄q

Δ+nq̄Δ+n̄ where q = e−2πδ with Re δ > 0, with an,n̄ = an̄,n,
which satisfies F 0

2 (1/δ) = |δ|kF 0
2 (δ) and F 0

2 (δ+ i) = F 0
2 (δ), we define its TT

deformation by
(58)

Fα
2 (δ) =

∫ ∫
[(1−αδ1s1)

2+α2δ21s
2
2]
−k/2+1eαδ1δ

′
1
s

2+
s.(
δ−
δ′)F 0
2 (δ

′)d2δ′
d2s

(2πi)2
,

where we again assume that Δ > 0 so the integrals converge uniformly.
Substituting the convergent expansion (8), in each term ∝ an,p integrating
on δ′2 sets s2 = 2πp, and then the δ′1 integral gives

(59)

∫
[(1− αδ1s1)

2 + 4π2α2δ21p
2]−k/2+1es1δ1

2π(Δ + n) + 4π2α2δ21p
2 + s1 − αδ1s21

ds1
2πi

,

now with simple poles at s1 = s± where

(60) s± = (1/2αδ1)(1±
√

1 + 8π(Δ + n)αδ1 + 16π2α2δ21p
2) .

Again evaluating the residue at s− then gives (9).
On the other hand, completing the square in the exponent and setting

�t = �s+ (�δ − �δ′)/2αδ1δ′1 we find, after some algebra,

(61) Fα
2 (δ) =

∫
H

Kα
2 (δ, δ

′)(δ′1/δ1)
k/2F 0

2 (δ)(d
2δ′/δ′1

2
) ,

where

Kα
2 (δ, δ

′) = α−1e−(
δ−
δ′)2/4αδ1δ′1×∫ [(
(δ1 + δ′1)

2(δ1δ′1)
1/2

− t2

)2

+

(
(δ2 − δ′2)

2(δ1δ′1)
1/2

− t1

)2
]−k/2+1

e−
t2d2t

(2πi)2
.(62)

Note that the exponent in the first line is the square of the hyperbolic
distance between δ and δ′. At this point we can invoke the reality of F 0

2 to
change the sign of δ′2 in the second term. The integrand and the measure are
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then invariant under SO(2) rotations, so we may rotate to a frame where
δ2 + δ′2 = 0. Thus the integral is equal to

(63)

∫ [(
|δ + δ′|

2(δ1δ′1)
1/2

− t2

)2

+ t21

]−k/2+1
e−
t2d2t

(2πi)2
.

We then have, as before, Kα
2 (1/δ, 1/δ

′) = Kα
2 (δ, δ

′). This is most easily seen
in terms of δ = δ1 + iδ2 and δ̄ = δ1 − iδ2, since
(64)

|�δ ± �δ′|2
δ1δ′1

=
(δ ± δ′)(δ̄ ± δ̄′)

δ1δ′1
→ ((δ′ ± δ)/δδ′)(δ̄′ ± δ̄)/δ̄δ̄′)

(δ1/δδ̄)(δ′1/δ
′δ̄′)

=
(δ′ ± δ)(δ̄′ ± δ̄)

δ1δ′1
.

Since the measure d2δ′/δ′1
2 is invariant we conclude that if δ

k/2
1 F 0(δ) is

invariant under δ → 1/δ, then so is δ
k/2
1 Fα(δ). This establishes Theorem 2,

since δ1 → δ1/|δ|2.
Again, the above argument is strictly valid only if Δ > 0: otherwise we

should restrict the range of δ as before.

4.1. Proof of Theorem 2a

As was discussed in Sec. 2.3.1, if k = 0, that is F 0
2 is Γ1 invariant, there is

an alternate version in which

(65) Fα
2 (δ)ε =

∫ ∫
ε
eαδ1δ

′
1s

2+s.(δ−δ′)(δ1/δ
′
1)F

0
2 (δ

′)d2δ′(d2s/(2πi)2) ,

where
∫
ε indicates that the δ′1 integration is over (ε, ε−1).

As compared with (59), after substituting the expansion (8), the δ′1 in-
tegration gives

log[(2π(Δ + n) + 4π2α2δ21p
2 + s1 − αδ1s

2
1)/ε] +O(1)(66)

= log(s1 − s−) + log(s+ − s1) +O(1) ,

where the O(1) remainder is either non-singular in s1 or vanishes as ε → 0.
There are now branch cuts along (−∞, s−) and (s+,+∞) and the contour
in s1 separates them. Wrapping this around the left hand cut then gives∫ s−
−∞ δ1e

s1δ1ds1 = es−δ1 , giving (11) with no prefactor.
On the other hand, the (s1, s2) integrations can now be performed ex-

plicitly, to give

(67) Fα
2 (δ)ε = (4πα)−1

∫
ε
e−|δ−δ′|2/4αδ1δ′1F 0

2 (δ
′)(d2δ′/δ′1

2
) ,
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which is equivalent to the result for the deformed CFT partition function
first obtained by Dubovsky, Gorbenko and Hernández-Chifflet [6]. Since the
kernel and the integration measure are Γ1 invariant, this establishes Theo-
rem 2a.

Remarks

• The theorem extends to a multiplet of functions {Fα
I } transforming

linearly according to some representation of Γ1, that is

(68) Fα
I (1/δ) =

∑
J

SIJF
α
I (δ) .

If the {F 0
I } satisfy this, so also do the {Fα

I }. An example is given the
characters χi(q)χī(q̄)+χi(q̄)χī(q) of the product V⊗V of two Virasoro
algebras arising in the decomposition of the torus partition function,
recently analyzed in detail in [12].

• It is tempting to try the same variant construction for the holomorphic
case of Theorem 1, for example the Virasoro characters {χi} them-
selves, maintaining the coefficients an with no prefactor. However, the
factors of δ′ do not arrange themselves as conveniently as in (65), and
as a consequence, if χ0

i (1/δ) =
∑

j S
i
jχ

0
j (δ), this no longer holds for the

deformed versions. [This would correspond to a deformed CFT parti-
tion function on an annulus, which has no reason to be invariant.]

• The situation when α < 0 is more tricky than in Thm. 1. There is
an infinite number of singularities s± with n ∼ |p| � 1 which remain
almost undeformed on the real axis, and any choice of the contour
which includes the undeformed singularities will necessarily include an
infinity of these. However, with such a contour, the above argument
for modular invariance of the deformed partition function at fixed α
still goes through, although it now has a dense set of singularities as
α is varied and the singularities at s± pinch and go into the complex
plane.

5. Deformed Maass forms

Recall that a Maass form for Γ1 = SL(2,Z) is a smooth function FM on H

satisfying the following three conditions:

(i) for all γ ∈ Γ1, FM (γ(δ)) = FM (δ);
(ii) FM is an eigenfunction of the invariant Laplacian on the fundamental

region ΔF = −δ21(∂
2
δ1
+ ∂2

δ2
);
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(iii) FM (δ1 + iδ2) is polynomially bounded as δ1 → ∞.
(iv) A Maass form is a Maass cusp form if also its Fourier coefficient f0 in

FM =
∑

p∈Z fp(δ1)e
2πipδ2 vanishes.

That Maass forms are defined in this somewhat abstract manner rather
than by a q-series makes it less obvious how to define their TT deformation.
However, we have the following

Lemma. If F (δ = −iRb/Ra) is a smooth function on the torus which de-
pends only on the modulus δ (not necessarily holomorphically), then

(69) A(∂Ra
∧ ∂Rb

)F = (1/4)ΔH F .

The proof is straightforward, using A = (i/2)(RaR
∗
b −R∗

aRb) and ∂Ra
∧

∂Rb
= −(i/2)(∂Ra

∂R∗
b
−∂R∗

a
∂Rb

). In Sec. 2.3 we argued that the TT variation
of any such function in a CFT is given by

(70) ∂λF = −(∂Ra
∧ ∂Rb

)F = −(1/4A)ΔH F ,

so that, writing λ = Aα, ∂αF = −1
4ΔH F . Thus any eigenfunction of the

Laplacian which depends only on the modulus, is multiplicatively trans-
ported by the TT flow. If F is also Γ1 invariant, we may restrict to the
fundamental domain F . Thus, for a Maass form of eigenvalue Λ,

(71) Fα
M = e−(Λ/4)α F 0

M .

This completes the proof of Thm. 3.
The L2(F) eigenfunctions and eigenvalues of ΔF are well characterized

[15]. Aside from the constant function a complete set is given by a contin-
uous spectrum, the real Eisenstein series Es (see below) with Re s = 1

2 and
Λ = s(1− s), which have power law decay as δ1 → ∞, and a discrete series
of somewhat intractable Maass cusp forms which decay exponentially with a
large gap. Thus the TT deformation of a generic function F ∈ L2(F), for ex-
ample Fα

2 in (9) with Δ > 0, should decay to a constant value exponentially
at a rate ∝ e−α/16.

5.1. Deformed non-holomorphic Eisenstein series

Important examples of Maass forms are the non-holomorphic Eisenstein se-
ries

(72) Es(δ) =
∑

(m,n)∈Z2\(0,0)

δs1
|imδ + n|2s ,
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which may be thought of as a uniform sum over Γ1 of images of the (0, 1)

term, so is automatically invariant under the group action. Also, since ΔH

is invariant, its action on each term in the sum is similar. On the (0, 1) term

we have simply −δ21∂
2
δ1
δs1 = s(1− s)δs1, so Λ = s(1− s).

On the other hand, we can think of Es as a form on a dimensionful torus

as

(73)

Es =
∑

(m,n)∈Z2\(0,0)

(A/|Ra|2)s
|im(Rb/Ra) + n|2s =

∑
(m,n)∈Z2\(0,0)

As

|imRb + nRa|2s
.

By rotational symmetry and scaling, the (m,n) term deforms into some

function

(74) fα
s

(
A

|imRb + nRa|2
)

= fα
s

(
Ra ∧Rb

|imRb + nRa|2
)

,

satisfying

(75) ∂αf
α
s = −A(∂Ra

∧ ∂Rb
)fα

s = −(1/4)ΔHf
α
s ,

using the Lemma. Again choosing the (0, 1) term as representative, this

becomes simply

(76) ∂αf
α
s (X) = −(1/4)X2fα

s
′′(X) ,

with the initial condition f0
s (X) = Xs, and the solution

(77) fα
s (X) ∝ e−(1/4)s(1−s)αXs ,

in agreement with Thm. 3.

6. Some examples

6.1. Deformed Jacobi theta functions

A simple example of Thm. 1 is that the well known identity

(78) ϑ3(0; δ) =
∑
n∈Z

e−πn2δ = δ−1/2
∑
n∈Z

e−πn2/δ = δ−1/2ϑ3(0; 1/δ)
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becomes a similar identity for

(79) ϑα
3 (0; δ) ≡

∑
n∈Z

√
(1 +

√
1 + 4παn2δ)/2

√
1 + 4παn2δ

e−(1/2α)(
√
1+4παn2δ−1) ,

which can readily be checked numerically.
More generally, the symmetrized version of the inversion relation for the

Jacobi theta function

(80) ϑ3(zδ
1/2; δ) ≡

∑
n

e−πn2δ+2πinzδ1/2 = δ−1/2e−πz2

ϑ3(iz/δ
1/2; 1/δ)

is also satisfied by its deformed version, given by substituting
√
1+4παn2δ→√

1 + 4παn2δ − 8πinzδ1/2 in (79).
Similarly, a Jacobi form of weight k and index m obeys

(81) φ(zδ1/2; δ) = δ−ke−πmz2

φ(iz/δ1/2; 1/δ) ,

as does its deformed version, defined by further modifying the power in the
numerator of the prefactor (79) in from 1

2 to (1− k)/2.

6.2. Deformed partition sums

Let P (n) be the number of distinct partitions of n ∈ N+ into positive inte-
gers. Since η(τ)−1 = q−1/24

∑∞
n=0 P (n)qn is a form with k = −1

2 , by Thm. 1

∞∑
n=0

P (n)
(1 +

√
1 + 8πα(n− 1/24)δ)3/2√
1 + 8πα(n− 1/24)δ

e−(1/2α)
√

1+8πα(n−1/24)δ

(82)

= δ1/2
∞∑
n=0

P (n)
(1 +

√
1 + 8πα(n− 1/24)/δ)3/2√
1 + 8πα(n− 1/24)/δ

e−(1/2α)
√

1+8πα(n−1/24)/δ .

In this case Δ < 0, and so this is valid only for πα/3 < δ < 3/πα. The
n = 0 term on the right hand side is singular at δ/α = π/3, dictating the
radius of convergence of the left hand side, and vice versa. The singularities
of the right hand side are of square root type rather than essential as in the
undeformed case, and should determine the Hardy-Ramanujan asymptotics
of P (n). It would be interesting to understand how these contrive to be
independent of α.
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6.3. Deformed Eisenstein series

The undeformed series

(83) Ek(δ) =
∑

(m,n) 	=(0,0)

1

(m+ inδ)k

gives an example of a modular form of weight k (strictly only if k is a positive
even integer). To use (39) is difficult. But if we consider

(84) Z(L1, L2) ≡ L−k
1 Ek(L2/L1) =

∑
(m,n) 	=(0,0)

1

(mL1 + inL2)k
,

it satisfies Z(L1, L2) = Z(L2, L1) and it can be shown that the scaling
solution of the PDE

(85) ∂λZ
λ(L1, L2) = −∂L1

∂L2
Zλ(L1, L2)

is Eα
k (δ) with α = λ/(L1L2) and δ = L2/L1. For each (m,n) we then look

for a solution of the form fλ(L = mL1 + inL2), so that ∂λf = −imn∂2
Lf ,

which can be solved by Green function. The final result is
(86)

Eα
k (δ) = (4πα)−1/2

∑
(m,n) 	=(0,0)

∫ ∞

−∞

e−�2m,n/4α

(�m,n(−imnδ)1/2 +m+ inδ)k
d�m,n ,

so that each lattice point gets an independent gaussian deformation, which
vanishes on the axes m = 0 and n = 0, and on the diagonals m = ±n
is purely transverse. This preserves the symmetry under S but not T , as
expected. (We showed in Sec. 5.1 that the non-holomorphic version, which
gives a Maass form, does not evolve, up to a multiplicative constant.)
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