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We use the mixed-twist construction of Doran and Malmendier
to obtain a multi-parameter family of K3 surfaces of Picard rank
ρ ≥ 16. Upon identifying a particular Jacobian elliptic fibration
on its general member, we determine the lattice polarization and
the Picard-Fuchs system for the family. We construct a sequence
of restrictions that lead to extensions of the polarization by two-
elementary lattices. We show that the Picard-Fuchs operators for
the restricted families coincide with known resonant hypergeomet-
ric systems. Second, for the one-parameter mirror families of de-
formed Fermat hypersurfaces we show that the mixed-twist con-
struction produces a non-resonant GKZ system for which a basis
of solutions in the form of absolutely convergent Mellin-Barnes in-
tegrals exists whose monodromy we compute explicitly.
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1. Introduction

In [21], Doran and Malmendier introduced the mixed-twist construction,
which iteratively constructs families of Jacobian elliptic Calabi-Yau n-folds
Y (n) from a family of Jacobian elliptic Calabi-Yau (n − 1)-folds Y (n−1) for
all n ≥ 2. In fact, the new families are then fibered by the Calabi-Yau
(n − 1)-folds Y (n−1) in addition to being elliptically fibered. For example,
for n = 2 the procedure starts with a family of elliptic curves with rational
total space, and the mixed-twist construction returns families of Jacobian
elliptic K3 surfaces polarized by the lattice H ⊕ E8(−1)⊕ E8(−1)⊕ 〈−2k〉
for certain k ∈ N. The central tool of the construction, which is inspired
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by aspects of physics related to mirror symmetry and the embedding of F
theory into gauge theory, is an invariant for ramified covering maps P1 → P1,
called the generalized functional invariant.

Central to the mixed-twist construction is the incarnation of an iterative
relation between the period integrals of n-folds Y (n) and the periods of
Y (n−1). When applied to the family of mirror manifolds Y (n−1) of the family
of deformed Fermat hypersurfaces X(n−1) in Pn

Xn+1
0 + · · ·+Xn+1

n + nλX0X1 · · ·Xn = 0

obtained by the Greene-Plesser orbifolding construction [26], Doran and
Malmendier proved the existence of certain transcendental cycles Σn−1 ∈
Hn−1(Y

(n−1),Q) such that the period integral

ωn−1 =

∫
Σn−1

η(n−1)

can be computed iteratively from the Hadamard product of the hypergeo-
metric function nFn−1 and the period integral ωn−2 on Y (n−2) [21, Prop.
7.2]. Here, η(n−1) is a holomorphic trivializing section of the canonical bun-
dle KY (n−1) . We recall this result explicitly in Proposition 4.2. This result
matches well known results in the literature on the periods of the mirror
family Y (n−1), but elucidates the connection between the periods and the
iterative fibration structure.

In such a situation, of particular interest are the Picard-Fuchs opera-
tors that annihilate the periods ωn−1, and the monodromy behavior of the
periods as one encircles singular points in family of Calabi-Yau varieties
Y (n−1). In the context of mirror symmetry, the Picard-Fuchs operators are
often realized as resonant GKZ hypergeometric systems [33, 67] – named
after the seminal work by Gel’fand, Kapranov, and Zelevinsky [24] – a vast
generalization of the hypergeometric function nFn−1. Due to resonance of
these systems, the monodromy representations are reducible due to a result
of Schulze and Walther [65], which makes their explicit determination much
more challenging in general. In the case described above, the monodromy
group of the hypergeometric Fuchsian ODE annihilating nFn−1 is known,
going back to work of Levelt [44]. The mixed-twist construction offers an
alternative formulation to arrive at the same monodromy group (up to con-
jugacy) based off the iterative period relation.

This article aims to demonstrate that the mixed twist construction is a
suitable tool that allows for the computation of the monodromy group of
resonant GKZ systems that arise in mirror symmetry and other contexts in
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algebraic geometry. We apply the mixed-twist construction in two distinct
arenas, for constructing multi-parameter families of lattice polarized K3 sur-
faces, and the mirror family of Calabi-Yau n-folds Y (n) described above. Our
approach in each case differs in somewhat major ways.

In the former, we utilize the geometry of K3 surface constructed through
the mixed-twist construction to connect to some known results in the liter-
ature, allowing us to determine the monodromy group. In particular, since
the K3 surface is presented explicitly as a Jacobian elliptic fibration, the
mixed-twist construction that we apply to a certain family of elliptic curves
with rational total space coincides with the well known quadratic twist con-
struction in the theory of elliptic surfaces. From the perspective of lattice
polarizations, this construction is nontrivial. We prove that the new family
of K3 surfaces is birationally equivalent to a family of double-sextic K3 sur-
faces, obtained from the minimal resolution of a double cover of P2 branched
along six lines (for example, studied in [51, 52, 53, 12, 48]). From here, we
identify the lattice polarization L for the family, and determine the global
monodromy group, and the Picard-Fuchs system, the latter two being deter-
mined by the Aomoto-Gel’fand system E(3, 6), as studied in [51, 52, 53]. In
particular, this system is a multi-parameter resonant GKZ hypergeometric
system. We naturally determine the parameter space of this family from the
geometry of the fibration. Morevover, the structure of the fibration allows
us to consider natural sub-varieties of the parameter space of double-sextics
where the Picard-Fuchs system restricts to known lower-rank systems of
resonant hypergeometric type. In each case, the global monodromy group is
determined by connecting our family to known results in K3 geometry. We
then show that these restrictions lead to extensions of the lattice polariza-
tion in a chain of even, indefinite, two-elementary lattices. In this way, we
are able to unify central analytical aspects for resonant generalized hyper-
geometric functions with geometric and lattice theoretic investigations by
Hoyt [36, 37] and Hoyt and Schwarz [38].

In the second case, we look at an application of the mixed-twist construc-
tion in the context of the mirror families for the deformed Fermat pencils as
outlined above. In fact, in this context the mixed-twist construction returns
the mirror family of Calabi-Yau n-folds in Pn+1 fibered by mirror Calabi-Yau
(n−1)-folds. In this framework, the set of periods generates a set of resonant
GKZ data, which makes the analysis of the behavior of the family near regu-
lar singular points quite difficult [67]. However, we show that the mixed-twist
construction also generates a second set of non-resonant GKZ data associ-
ated with the holomorphic periods, which allows us to compute the explicit
monodromy matrices for the mirror families. This second part generalizes
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work of Chen et al. [8] where the authors constructed the monodromy group

of the Picard-Fuchs differential equations associated with the one-parameter

families of Calabi-Yau threefolds from Doran and Morgan [22].

We remark that the Picard-Fuchs operators for the families of mirror

Calabi-Yau n-folds have been known since at least the work of Corti &

Golyshev [15]. Our approach in this article is novel in the sense that it is

inpired by the physics – in particular, by connections between effective Yang-

Mills gauge theory (i.e., Seiberg-Witten theory) and string compactifications

on Calabi-Yau varieties. The mixed-twist construction offers a potential to

connect computations in these two realms, by geometrizing a link between

families of elliptic curves and their Picard-Fuchs operators, and families

of Calabi-Yau varieties and their Picard-Fuchs operators via the iterative

period relation described above. In addition, the mixed-twist construction

provides a mechanism by which to construct transcendental cycles on Calabi-

Yau varieties. This allows for the description of the period integrals in terms

of A-hypergeometric functions. This approach was utilized, for example, by

Clingher, Doran, & Malmendier in [9] to obtain a description of the periods

of so-called generalized Kummer surfaces in terms of Appell’s bivariate F2

hypergeometric function.

Our approach in this article is summarized as follows: in the first part

we construct and analyze a family that generalizes the family of K3 surfaces

whose polarizing lattice is H ⊕D16(−1)⊕A1(−1) and whose Picard-Fuchs

equation is the hypergeometric differential equation for 3F2(
1
2 ,

1
2 ,

1
2 ; 1, 1| · ).

The generalization considered is a four-dimensional family of K3 surfaces

whose polarizing lattice is H ⊕ D10(−1) ⊕ D4(−1) ⊕ A1(−1), and whose

Picard-Fuchs system is the Aomoto-Gel’fand system E(3, 6). In the second

part we compute the monodromy matrices for the families of Calabi-Yau

(n− 1)-folds that extend the family of K3 surface whose rank-19 polarizing

lattice is H ⊕ E8(−1) ⊕ E8(−1) ⊕ 〈−4〉 and whose Picard-Fuchs operator

is the hypergeometric differential equation for 3F2(
1
4 ,

1
2 ,

3
4 ; 1, 1| · ). The gen-

eralization considered are the one-dimensional mirror families of deformed

Fermat pencils whose Picard-Fuchs operator is the hypergeometric differen-

tial equation for nFn−1(
1

n+1 , . . . ,
n

n+1 ; 1, . . . , 1| · ). The main results of the

two parts are Theorem 3.26 and Theorem 4.22, respectively.

This article is organized as follows. In §2 we review relevant background

material, which includes multi-parameter Weierstrass models associated with

families of Jacobian elliptic fibrations and their multivariate Picard-Fuchs

operators. We also recall the fundamental definition of a generalized func-

tional invariant and its relation to the mixed twist construction. In §3 we use
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the mixed-twist construction to obtain a multi-parameter family of K3 sur-
faces of Picard rank ρ ≥ 16. Upon identifying a particular Jacobian elliptic
fibration on its general member, we find the corresponding lattice polar-
ization, the parameter space, and the Picard-Fuchs system for the family
with its global monodromy group. We construct a sequence of restrictions
that lead to extensions of the polarization keeping the polarizing lattice
two-elementary. We show that the Picard-Fuchs operators under these re-
strictions coincide with well-known hypergeometric systems, the Aomoto-
Gel’fand E(3, 6) system (for ρ = 17), Appell’s F2 system (for ρ = 18), and
Gauss’ hypergeometric functions of type 3F2 (for ρ = 19). This allows us
to determine the global monodromy groups of each family. Finally, we will
show in §4 that the mixed-twist construction produces for each mirror fam-
ily a non-resonant GKZ system for which a basis of solutions in the form
of absolutely convergent Mellin-Barnes integrals exists whose monodromy is
then computed explicitly.

2. Elliptic fibrations and the mixed-twist construction

In this section we give some well-known results on Weierstrass models and
their period integrals. We also review the generalized functional invariant.

2.1. Weierstrass models and their Picard-Fuchs operators

We begin by recalling some basic notions of elliptic fibrations and the associ-
ated Weierstrass models. Let X and S be normal complex algebraic varieties
and π : X → S an elliptic fibration, that is, π is proper surjective morphism
with connected fibers such that the general fiber is a nonsingular elliptic
curve. Moreover, we assume that π is smooth over an open subset S0 ⊂ S,
whose complement in S is a divisor with at worst normal crossings. Thus,
the local system H i

0 := Riπ∗ZX |S0
forms a variation of Hodge structure over

S0.
Elliptic fibrations possess the following canonical bundle formula: on S,

the fundamental line bundle denoted L := (R1π∗OX)−1 and the canonical
bundles ωX := ∧top T ∗(1,0)X, ωS := ∧top T ∗(1,0)S are related by

(2.1) ωX
∼= π∗(ωS ⊗ L)⊗OX(D),

where D is a certain effective divisor on X depending only on divisors on
S over which π has multiple fibers, and divisors on X giving (−1)-curves
of π. When π : X → S is a Jacobian elliptic fibration, that is, when there
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is a section σ : S → X, the case of multiple fibers is prevented. We may
avoid the presence of (−1)-curves in the following way: For X an elliptic
surface, we assume that the fibration is relatively minimal, meaning that
there are no (−1)-curves in the fibers of π. When X is an elliptic threefold,
we additionally assume that no contraction of a surface is compatible with
the fibration.

Assuming these minimality constraints, we have D = 0, thus the canon-
ical bundle formula (2.1) simplifies to ωX

∼= π∗(ωS ⊗ L). In particular, for
L ∼= ω−1

S we obtain ωX
∼= OX . Recall that X is a Calabi-Yau manifold if

ωX
∼= OX and hi(X,OX) = 0 for 0 < i < n = dim(X). In this article we

will be concerned with Jacobian elliptic fibrations on Calabi-Yau manifolds.
It is well known that for X an elliptic Calabi-Yau threefold, the base surface
can have at worst log-terminal orbifold singularities. We will take the base
surface S to be a Hirzebruch surface Fk (or its blowup).

It is well known that Jacobian elliptic fibrations admit Weierstrass mod-
els, i.e., given a Jacobian elliptic fibration π : X → S with section σ : S → X,
there is a complex algebraic variety W together with a proper, flat, surjec-
tive morphism π̂ : W → S with canonical section σ̂ : S → W whose fibers
are irreducible cubic plane curves, together with a birational map X ��� W
compatible with the sections σ and σ̂; see [54]. The map from X to W blows
down all components of the fibers that do not intersect the image σ(S). If
π : X → S is relatively minimal, the inverse map W ��� X is a resolution
of the singularities of W .

A Weierstrass model is constructed as follows: given a line bundle L → S,
and sections g2, g3 of L4, L6 such that the discriminant Δ = g32 − 27g23 as
a section of L12 does not vanish, define a P2-bundle p : P → S as P :=
P
(
OS ⊕ L2 ⊕ L3

)
with p the natural projection. Moreover, let OP(1) be the

tautological line bundle. Denoting x, y and z as the sections of OP(1)⊗L2,
OP (1) ⊗ L3 and OP(1) that correspond to the natural injections of L2, L3

and OS into π∗OP(1) = OS⊕L2⊕L3, the Weierstrass model W from above
is given by the subvariety of P defined by the equation

(2.2) y2z = 4x3 − g2xz
2 − g3z

3.

The canonical section σ : S → W is given by the point [x : y : z] = [0 : 1 : 0]
in each fiber, such that Σ := σ(S) ⊂ W is a Cartier divisor whose normal
bundle is isomorphic to the fundamental line bundle L via p∗OP(−Σ) ∼= L.
It follows that W inherits the properties of normality and Gorenstein if S
possesses these. Thus, the canonical bundle formula (2.1) reduces to

(2.3) ωW = π∗ (ωS ⊗ L) .
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The Jacobian elliptic fibration p : W → S then has a Calabi-Yau total space
if L ∼= ω−1

S = OS(−KS) (misusing notation slightly to denote the projection
map p the as the projection from the ambient P2-bundle).

For a Jacobian elliptic fibration X the canonical bundle ωX is deter-
mined by the discriminant Δ = g32 − 27g23. For example, if π : X → S is a
Jacobian elliptic fibration for a smooth algebraic surface X and S = P1 with
homogeneous coordinates [t : s], then X is a rational elliptic surface if the Δ
is a homogeneous polynomial of degree 12 (meaning that L = O(1)), and X
is a K3 surface when Δ is a homogeneous polynomial of degree 24 (meaning
that L = O(2)); these results follow readily from adjunction and Noether’s
formula. The nature of the singular fibers and their effect on the canonical
bundle was established by the seminal work of Kodaira [41, 42, 40].

Of particular interest in this article are multi-parameter families of ellip-
tic Calabi-Yau n-folds over a base B, a quasi-projective variety of dimension
r, denoted by π : X → B. Hence, each Xp = π−1(p) is a compact, complex
n-fold with trivial canonical bundle. Moreover, each Xp is elliptically fibered
with section over a fixed normal variety S. This means that we have a multi-
parameter family of minimal Weierstrass models pb : Wb → S representing a
family of Jacobian elliptic fibrations πb : Xb → S. We denote the collective
family of Weierstrass models as p : W → B.

Working within affine coordinates forB and S we set u=(u1, . . . , un−1)∈
Cn−1 ⊂ S and b = (b1, . . . , br) ∈ Cr ⊂ B. We then may write the Weierstrass
model Wb in the form

(2.4) y2 = 4x3 − g2(u, b)x− g3(u, b),

where for each fiber we have chosen the affine chart of Wb given by z = 1 in
Equation (2.2).

Part of the utility of a Weierstrass model is the explicit construction
of the holomorphic n-form on each Xb, up to fiberwise scale, allowing for
the detailed study of the Picard-Fuchs operators underlying a variation of
Hodge structure. In fact, consider the holomorphic sub-system H → B of
the local system V = Rnπ∗CX → B, whose fibers are given as the line
H0(ωXb

) ⊂ Hn(Xb,C). Here, C → X is the constant sheaf whose stalks
are C. Griffiths showed [27, 28, 29, 30] that V = V ⊗C OB is a vector
bundle carrying a canonical flat connection ∇, the Gauss-Manin connection.
A meromorphic section of H = H ⊗C OB ⊂ V is given fiberwise by the
holomorphic n-form ηb ∈ H0(ωXb

) ⊂ Hn(Xb,C)

(2.5) ηb = du1 ∧ · · · ∧ dun−1 ∧
dx

y
,
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where we denote the collective section as η ∈ Γ(V, B). It is natural to con-

sider local parallel sections of the dual bundle H∗ = H∗ ⊗C OB, where H∗

is the local system dual to H; these are generated by transcendental cycles

Σb ∈ Hn(Xb,R) that vary continuously with b ∈ B, writing the collective

section as Σ ∈ Γ(V∗, B). The sections are covariantly constant since the local

system V = Rnπ∗CX is locally topologically trivial, and thus local sections

of the dual V ∗ are as well. Utilizing the natural fiberwise de Rham pairing

〈Σb, ηb〉 =
∮
Σb

ηb,

we obtain the period sheaf Π → B, whose stalks are given by the local

analytic function b → ω(b) = 〈Σb, ηb〉. The function ω(b) is called a period

integral (over Σb) and satisfies a system of coupled linear PDEs in the vari-

ables b1, . . . , br – the so called Picard-Fuchs system – whose rank is that

of the period sheaf Π → B, or the number of linearly independent period

integrals of the family.

Given the affine local coordinates (b1, . . . , br) ∈ Cr ⊂ B, fix the mero-

morphic vector fields ∂j = ∂/∂bj for j = 1, . . . , r. Then each ∂j induces a

covariant derivative operator ∇∂j
on V. Since ∇ is flat, the curvature tensor

Ω = Ω∇ vanishes, and hence, for all meromorphic vector fields U, V on B

we have

Ω(U, V ) = ∇U∇V −∇V ∇U −∇[U,V ] = 0.

Substituting in the commuting coordinate vector fields ∂i, ∂j , we conclude

∇∂i
∇∂j

= ∇∂j
∇∂i

.

This integrability condition is crucial in obtaining a system of PDEs from

the Gauss-Manin connection. Since V has rank m = dimHn(Xb,C), each
sequence of parallel sections ∇i1

∂k1
· · · ∇im̂

∂kr
η, for i1 + · · · + im̂ = 0, 1, . . . , m̂

and 1 ≤ k1, . . . , kr ≤ r form the linear dependence relations

m̂∑
i1+···+im̂=0

r∑
k1,...,kr=1

ak1···kr

i1···im̂ (b)∇i1
∂k1

· · · ∇im̂
∂kr

η = 0

for some integer 0 < m̂ ≤ m, where ak1···kr

i1···im̂ (b) are meromorphic. Here, it

is understood that ∇0 = id. As ∇ annihilates the transcendental cycle Σ

and is compatible with the pairing 〈Σ, η〉, we may “differentiate under the
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integral sign” to obtain

∂

∂bj
ω(b) =

∂

∂bj

∮
Σ
η =

∮
Σ
∇∂j

η.

It follows that the period integral ω(b) satisfies the system of linear PDEs
of rank r ≥ 1, given by

(2.6)

m̂∑
i1+···+im̂=0

r∑
k1,...,kr=1

ak1···kr

i1···im̂ (b)
∂i1+···+im̂

∂k1bk1
· · · ∂krbkr

ω(b) = 0.

Equation (2.6) is the Picard-Fuchs system of the multi-parameter family
π : X → B of Calabi-Yau n-folds. The resulting system is then known to be
a linear Fuchsian system, i.e., the system with at worst regular singularities.
This is due to analytical results of Griffiths [29] and Deligne [17] who utilized
Hironaka’s resolution of singularities [32] to estimate the growth of solutions
of the system.

The rank r and order m̂ of the system depends on the parameter space
B and algebro-geometric data of the generic fiber Xb. For example, let π :
X → B be a family of Jacobian elliptic K3 surfaces which is polarized by
a lattice1 L of rank ρ ≤ 18 such that B defines an n = 20 − ρ dimensional
family of L-polarized K3 surfaces. By results due to Dolgachev [19], there is
a coarse moduli space ML of all lattice polarized K3 surfaces of dimension
n; in this case, we are requiring that B be a top dimensional family of L-
polarized K3 surfaces. It then follows from the general program of Sasaki and
Yoshida [64] on orbifold uniformizing differential equations that the Picard-
Fuchs system (2.6) is a linear system of order m̂ = 2 and rank r = n + 2
in n variables, the latter coming from the local coordinates in B. Naturally,
there are sub-loci of such parameter spaces B where the lattice polarization
extends to higher Picard rank and the rank of the Picard-Fuchs system
drops accordingly. This behavior was studied, for example, by Doran et al. in
[23], and coined the differential rank-jump property therein. In the sequel,
we will analyze it by studying corresponding Weierstrass model p : W →
B. Moreover, we will see that the Picard-Fuchs system can be explicitly
computed from the geometry of the elliptic fibrations and the presentation
of the associated period integrals as generalized Euler integrals using GKZ
systems [24].

It is commonplace in the literature to study the Picard-Fuchs equations
of one parameter families of Calabi-Yau n-folds; in this case, the base B is

1For the definition of lattice polarized K3 surface, see §3.2.
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a punctured complex plane with local affine coordinate t ∈ C ⊂ B, and an
analogous construction leads to a regular Fuchsian ODE of order ≤ m with
m = dimHn(Xt,C) for the general fiber Xt. In the construction of Doran
and Malmendier [21], this is the central focus, with B = P1 − {0, 1,∞}
and B = P1 − {0, 1, p,∞}. We will show that the restriction of the multi-
parameter Picard-Fuchs system (2.6) above leads to the Picard-Fuchs ODE
operators and families of lattice polarized K3 surfaces of Picard rank ρ = 19,
for example the mirror partners of the classic deformed Fermat quartic K3.

2.2. The generalized functional invariant

We first recall the generalized functional invariant of the mixed-twist con-
struction studied by Doran and Malmendier [21], first introduced by Doran
[20]. A generalized functional invariant is a triple (i, j, α) with i, j ∈ N
and α ∈

{
1
2 , 1

}
such that 1 ≤ i, j ≤ 6. To this end, the generalized func-

tional invariant encodes a 1-parameter family of degree i+ j covering maps
P1 → P1, which is totally ramified over 0, ramified to degrees i and j over
∞, and simply ramified over another point t̃. For homogeneous coordinates
[v0 : v1] ∈ P1, this family of maps (parameterized by t̃ ∈ P1 − {0, 1,∞}) is
given by

(2.7) [v0, v1] → [cijv
i+j
1 t̃ : vi0(v0 + v1)

j ],

for some constant cij ∈ C×. For a family π : X → B with Weierstrass
models given by Equation (2.4) with complex n-dimensional fibers and a
generalized functional invariant (i, j, α) such that

(2.8) 0 ≤ degt(g2) ≤ min

(
4

i
,
4α

j

)
, 0 ≤ degt(g3) ≤ min

(
6

i
,
6α

j

)
,

Doran and Malmendier showed that a new family π̃ : X̃ → B can be con-
structed such that the general fiber X̃t̃ = π̃−1(t̃) is a compact, complex
(n + 1)-manifold equipped with a Jacobian elliptic fibration over P1 × S.
In the coordinate chart {[v0 : v1], (u1, . . . , un−1)} ∈ P1 × S the family of
Weierstrass models Wt̃ is given by

ỹ2 = 4x̃3 − g2

(
cij t̃v

i+j
1

vi0(v0 + v1)j
, u

)
v40v

4−4α
1 (v0 + v1)

4αx̃

− g3

(
cij t̃v

i+j
1

vi0(v0 + v1)j
, u

)
v60v

6−6α
1 (v0 + v1)

6α

(2.9)
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with cij = (−1)iiijj/(i + j)i+j . The new family is called the twisted family
with generalized functional invariant (i, j, α) of π : X → B. It follows that
conditions (2.8) guarantee that the twisted family is minimal and normal if
the original family is. Moreover, they showed that if the Calabi-Yau condi-
tion is satisfied for the fibers of the twisted family if it is satisfied for the
fibers of the original.

The twisting associated with the generalized functional invariant above
is referred to as the pure twist construction; we may extend this notion to
that of a mixed twist construction. This means that one combines a pure
twist from above with a rational map B → B, thus allowing one to change
locations of the singular fibers and ramification data. This was studied in
[21, Sec. 8] for linear and quadratic base changes. We may also perform a
multi-parameter version of the mixed twist construction for a generalized
functional invariant (i, j, α) = (1, 1, 1). For us, it will be enough to consider
the two-parameter family of ramified covering maps given by

(2.10) [v0 : v1] → [4av0(v0 + v1) + (a− b)v21 : 4v0(v0 + v1)],

such that for a, b ∈ P1 − {0, 1,∞} with a �= b the map in Equation (2.10) is
totally ramified over a and b. We will apply the mixed twist construction to
certain (families of) rational elliptic surfaces X → P1. In [21, Sec. 5.5] the
authors showed that the twisted family with generalized functional invariant
(1, 1, 1) in this case is birational to a quadratic twist family of X → P1. We
will explain the relationship in more detail and utilize it in the construction
of the associated Picard-Fuchs operators in the next section.

3. A multi-parameter family of K3 surfaces

In this section, we use the mixed-twist construction to obtain a multi-
parameter family of K3 surfaces of Picard rank ρ ≥ 16. Upon identifying
a particular Jacobian elliptic fibration on its general member, we find the
corresponding lattice polarization and the Picard-Fuchs system using the
results from §2.1. We construct a sequence of restrictions on the parameter
space that lead to extensions of the lattice polarization, while keeping the
polarizing lattice two-elementary.

Moreover, we show that the Picard-Fuchs operators under these re-
strictions coincide with well-known hypergeometric systems, the Aomoto-
Gel’fand E(3, 6) system (for ρ = 16, 17), Appell’s F2 system (for ρ = 18),
and Gauss’ hypergeometric functions of type 3F2 (for ρ = 19). Each such
Picard-Fuchs system forms a resonant GKZ hypergeometric system. We also
determine the corresponding monodromy group for each family.
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3.1. Quadratic twists and double-sextics

A two-parameter family of rational elliptic surfaces Sc,d → P1 is given by

the affine Weierstrass model

(3.1) y2 = 4x3 − g2(t)x− g3(t),

where g2(t) and g3(t) are the following polynomials of degree four and six,

respectively,

g2 =
4

3

(
t4 − (2c+ d+ 1)t3 + (c2 + cd+ d2 + 2c− d+ 1)t2

− c(c− d+ 2)t+ c2
)
,

g3 =
4

27

(
t2 − (c− d+ 2)t+ 2c

) (
t2 − (c+ 2d− 1)t− c

)
×

(
2t2 − (2c+ d+ 1)t+ c

)
,

where t is the affine coordinate on the base curve. Assuming general param-

eters c, d, Equation (3.1) defines a rational elliptic surface with 6 singular

fibers of Kodaira type I2 over t = 0, 1,∞, c, c + d, and c/(d − 1). We have

the following:

Lemma 3.1. The rational elliptic surface S = Sc,d in Equation (3.1) is

birationally equivalent to the twisted Legendre pencil

(3.2) ỹ2 = x̃(x̃− 1)(x̃− t)(t− c− dx̃).

Proof. By direct computation using the transformation:

x =
3t (t− c)

3x̃+ t2 + (d+ 1− c) t− c
, y =

3ỹt (t− c)

2 (3x̃+ t2 + (d+ 1− c) t− c)2
.

A quadratic twist applied to a rational elliptic surface can be identified

with Doran and Malmendier’s mixed-twist construction with generalized

functional invariant (i, j, α) = (1, 1, 1). The two-parameter family of ramified

covering maps in Equation (2.10) is totally ramified over a, b ∈ P1−{0, 1,∞}
with a �= b. We apply the mixed-twist construction to the rational elliptic

surface Sc,d:
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Proposition 3.2. The mixed-twist construction with generalized functional
invariant (i, j, α) = (1, 1, 1) applied to the rational elliptic surface in Equa-
tion (3.1) yields the family of Weierstrass models

(3.3) ŷ2 = 4x̂3 − (t− a)2(t− b)2g2(t)x̂− (t− a)3(t− b)3g3(t).

The family is birationally equivalent to

(3.4) y2 = x(x− 1)(x− t)(t− a)(t− b)(t− c− dx).

Over the four-dimensional parameter space

(3.5) M =
{
(a, b, c, d) ∈ C4

∣∣∣ a �= b, (c, d) �= (a, 0), (b, 0), (0, 1)
}
,

Equation (3.4) defines a family of Jacobian elliptic K3 surfaces Xa,b,c,d →
P1.

Proof. In affine base coordinates [v : 1] ∈ P1, the map f : P1 → P1 from
the mixed-twist construction with generalized functional invariant (i, j, α) =
(1, 1, 1) in Equation (2.10) is given by

f(v) = a+
a− b

4v(v + 1)
.

The pullback of the Weierstrass model for the two-parameter family of the
rational elliptic surfaces in Equation (3.1) along the map t = f(v) is easily
checked to yield the four-parameter family in Equation (3.3). Equation (3.4)
follows from a direct computation, with the following transformation:

x̂ =
3t (t− a) (t− b) (t− c)

3x+ (t− a) (t− b) (t2 + (d+ 1− c) t− c)
,

ŷ =
3yt (t− a) (t− b) (t− c)

2 (3x+ (t− a) (t− b) (t2 + (d+ 1− c) t− c))2
.

One checks that for parameters in M the minimal resolution of Equa-
tion (3.3) defines a Jacobian elliptic K3 surfaces Xa,b,c,d → P1. In fact,
Equation (3.3) is a minimal Weierstrass equation of a K3 surface if and only
if a �= b and (c, d) �= (a, 0), (b, 0), (0, 1).

A direct computation for the Weierstrass model yields the following:

Lemma 3.3. Equation (3.3) defines a Jacobian elliptic fibration π : X → P1

on a general X = Xa,b,c,d with two singular fibers of Kodaira type I∗0 over
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t = a, b, six singular fibers of Kodaira type I2 over t = 0, 1,∞, c, c + d, and
c/(d− 1), and the Mordell Weil group MW(X, π) = (Z/2Z)2.

Equation (3.4) provides a model for the K3 surfaces X as double covers
of the projective plane branched on the union of six lines. In general, we call
a K3 surface X a double-sextic surface if it is the minimal resolution of a
double cover of the projective plane P2 branched along the union of six lines,
which we denote by � = {
1, . . . , 
6}. In weighted homogeneous coordinates
[t1 : t2 : t3 : z] ∈ P(1, 1, 1, 3) such a double-sextic is given by the equation

(3.6) z2 =

6∏
i=1

(ai1t1 + ai2t2 + ai3t3),

where the lines 
i = {[t1 : t2 : t3] | ai1t1 + ai2t2 + ai3t3 = 0} ⊂ P2 for pa-
rameters aij ∈ C, i = 1, . . . , 6, j = 1, 2, 3 are assumed to be general. Let
A = (aij) ∈ Mat(3, 6;C) be the matrix whose entries are the coefficients
encoding the six-line configuration �. Let M be the configuration space of
six lines � whose minimal resolution is a K3 surface. Then isomorphic K3
surfaces are obtained if we act on elements A ∈ M by matrices induced from
automorphisms of P2 on the left and overall scale changes of each line 
i ∈ �
on the right. Thus, we are led to consider the four-dimensional quotient
space

(3.7) M6 = SL(3,C)\M/(C∗)6,

and M in Equation (3.5) can be identified with the open subspace of M6,
given by elements [A] ∈ M6 of the form⎛⎝1 1 1 0 0 −d

0 1 0 −1 −1 −1
0 0 1 a b c

⎞⎠
with (a, b, c, d) ∈ M and t1 = x, t2 = −t, t3 = −1.

The family of double-sextics in Equation (3.6) has been studied in the
literature, for example by Matsumoto [50], and Matsumoto et al. [51, 52, 53].
One takeaway from their work is that the family of double sextic K3 surfaces
is, in many ways, analogous to the Legendre pencil of elliptic curves which
is realized as double covers of P1 branching over four points. More recently,
the double-sextic family X and closely related K3 surfaces have been studied
in the context of string dualities [46, 48, 12, 45, 10]. In Clingher et al.
[12], the authors showed that four different elliptic fibrations on X have
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interpretations in F-theory/heterotic string duality. Similar constructions
are relevant to anomaly cancellations [47], studied by the authors of the
present article. In [10], the authors classified all Jacobian elliptic fibrations
on the Shioda-Inose surface associated with X . Finally, Hosono et al. in [34,
34] constructed compactifications of M6 from GKZ data and toric geometry,
suitable for the study of the Type IIA/Type IIB string duality.

3.2. Determination of the lattice polarization and monodromy

In the following we will use the following standard notations for lattices:
L1 ⊕ L2 is orthogonal sum of the two lattices L1 and L2, L(λ) is obtained
from the lattice L by multiplication of its form by λ ∈ Z, 〈R〉 is a lattice with
the matrix R in some basis; An, Dm, and Ek are the positive definite root
lattices for the corresponding root systems, H is the unique even unimodular
hyperbolic rank-two lattice. A lattice L is two-elementary if its discriminant
group AL is a two-elementary abelian group, namely AL

∼= (Z/2Z)� with 

being the minimal number of generators of the discriminant group AL, also
called the length of the lattice L. Even, indefinite, two-elementary lattices L
are uniquely determined by the rank ρ, the length 
, and the parity δ – which
equals 1 unless the discriminant form qL(x) takes values in Z/2Z ⊂ Q/2Z for
all x ∈ AL in which case it is 0; this is a result by Nikulin [62, Thm. 4.3.2].

Let X be a smooth algebraic K3 surface over the field of complex num-
bers. Denote by NS(X) the Néron-Severi lattice of X. This is known to be an
even lattice of signature (1, ρX−1), where pX denotes the Picard number of
X, with 1 ≤ ρX ≤ 20. In this context, a lattice polarization [58, 59, 60, 61, 18]
on X is, by definition, a primitive lattice embedding i : L ↪→ NS(X), with
i(L) containing a pseudo-ample class, i.e., a numerically effective class of pos-
itive self-intersection in the Néron-Severi lattice NS(X). Here, L is a choice
of even lattice of signature (1, ρ), with 1 ≤ ρ ≤ 20 that admits a primitive
embeddings into the K3 lattice ΛK3

∼= H⊕3 ⊕ E8(−1)⊕2. Two L-polarized
K3 surfaces (X, i) and (X′, i′) are said to be isomorphic2, if there exists an
analytic isomorphism α : X → X′ and a lattice isometry β ∈ O(L), such
that α∗ ◦ i′ = i ◦ β, where α∗ is the appropriate morphism at cohomology
level. In general, L-polarized K3 surfaces are classified, up to isomorphism,
by a coarse moduli space ML, which is known [19] to be a quasi-projective
variety of dimension 20−ρ. A general L-polarized K3 surface (X, i) satisfies
i(L) = NS(X).

We have the following result:

2Our definition of isomorphic lattice polarizations coincides with the one used
by Vinberg [71, 72, 73]. It is slightly more general than the one used in [19, Sec. 1].
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Proposition 3.4. Over M in Equation (3.5) the family

(3.8) Xa,b,c,d : y2 = x(x− 1)(x− t)(t− a)(t− b)(t− c− dx).

is a 4-dimensional family of L-polarized K3 surfaces where L has rank 16

and the following isomorphic presentations:

L ∼= H ⊕ E8(−1)⊕A1(−1)⊕6 ∼= H ⊕ E7(−1)⊕D4(−1)⊕A1(−1)⊕3

∼= H ⊕D6(−1)⊕D4(−1)⊕2 ∼= H ⊕D6(−1)⊕2 ⊕A1(−1)⊕2

∼= H ⊕D10(−1)⊕A1(−1)⊕4 ∼= H ⊕D8(−1)⊕D4(−1)⊕A1(−1)⊕2.

(3.9)

In particular, L is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. The general member of the family in Equation (3.8) is a double-

sextic whose associated K3 surface has Picard number 16. A K3 surface X

obtained as the minimal resolution of the double-sextic associated with a six-

line configuration � in general position has the transcendental lattice T(X) ∼=
H(2) ⊕H(2) ⊕ 〈−2〉⊕2; see [38]. Accordingly, X has a Néron-Severi lattice

given by a two-elementary lattice L of rank ρ = 16 such that AL
∼= (Z/2Z)�

with 
 = 6. From general lattice theory, it follows that L is the unique two-

elementary lattice with ρ = 16, 
 = 6, δ = 1 (for ρ = 16 the two-elementary

lattice must have δ = 1; see [62]), and we obtain L ∼= H⊕E8(−1)⊕A1(−1)⊕6.

The family in Equation (3.3) is birationally equivalent to the family in

Equation (3.4). In turn, Lemma 3.1 identifies the family in Equation (3.4)

as a family of Jacobian elliptic K3 surfaces whose general member has the

singular fibers 2I∗0 + 6I2 and the Mordell-Weil group (Z/2Z)2. We then use

results in [39, Table 1] to conclude that the general member of such a K3

surfaceX has the Néron-Severi lattice isomorphic toH⊕E8(−1)⊕A1(−1)⊕6.

From [39, Table 1] we also read off the isomorphic presentations of L as

the Jacobian elliptic fibrations supported on X with trivial Mordell Weil

group. These elliptic fibrations prove that the lattice L has the isomorphic

presentations in Equation (3.9).

The Picard-Fuchs system for the family can also be determined:

Proposition 3.5. Let Σ ∈ T(X) be a transcendental cycle on a general K3

surface X = Xa,b,c,d, ηX the holomorphic two-form induced by dt ∧ dx/y

in Equation (3.8), and ω =
∮
Σ ηX a period. The Picard-Fuchs system for

Xa,b,c,d, annihilating ω′ =
√

b(b− c) ω, is the rank-six Aomoto-Gel’fand
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system E(3, 6) of [51, 52] and [53, §0.15] in the variables

(3.10) x1 =
a

b
, x2 =

a− c

b− c
, x3 =

1

b
, x4 =

d

b− c
.

In particular, the Picard-Fuchs system is a resonant GKZ hypergeometric
system.

Proof. In [51], a matrix A = (aij) ∈ Mat(3, 6;C) was considered whose
entries are the coefficients encoding a six-line configuration �. The authors
used the action of SL(3,C) and (C∗)6 to bring A into the standard form

(3.11)

⎛⎝1 0 0 1 1 1
0 1 0 1 x1 x2
0 0 1 1 x3 x4

⎞⎠ .

Equivalently, the associated K3 surface X is the minimal resolution of the
double-sextic

(3.12) z2 = t1t2t3
(
t1 + t2 + t3

)(
t1 + x1t2 + x3t3

)(
t1 + x2t2 + x4t3

)
.

In [63, §4] Sasaki showed that the period integral for the non-vanishing
holomorphic two-form ηX ∈ H0(ωX ) induced by dt2 ∧ dt3/z in Equation
(3.12) in the affine chart t1 = −1 over a transcendental cycle Σ′ ∈ T(X ),
given by

(3.13) ω′ = ω′(x1, x2, x3, x4) =

∮
Σ′

ηX ,

is a solution of the resonant rank-six Aomoto-Gel’fand system E(3, 6) in the
variables x1, x2, x3, x4. The construction of transcendental cycles Σ′ was
described in [51].

In the affine coordinate system t1 = −1, we consider the transformation
ϕ : X(μ) ��� X given by

t2 =
x3t− 1

x3t− x1
, t3 =

x(1− x1)

x3t− x1
, z =

x3(x1 − 1)2ỹ

(x3t− x1)3
,

together with the change of parameters in Equation (3.10). Here, X(μ) is the
twist of the K3 surface X and given by

(3.14) μỹ2 = x(x− 1)(x− t)(t− a)(t− b)(t− c− dx)
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with μ = b(b − c). The map ϕ : X(μ) ��� X extends to a birational map of
K3 surfaces such that

(3.15) ϕ∗ηX = dt ∧ dx

ỹ
.

It follows that periods of the two-form dt ∧ dx/ỹ for the family X(μ) satisfy
the same Picard-Fuchs system as the periods ω′ in Equation (3.13). In turn,
periods ω of the two-form dt ∧ dx/y for X in Equation (3.8) with y =

√
μỹ

are annihilated by the same Picard-Fuchs operator as ω′/
√
μ.

We now turn our attention to the determination of the monodromy
group of the period map of the family X of double sextic L-polarized K3
surfaces. As the Picard-Fuchs system E(3, 6) annihilating the (twisted) pe-
riod integral in Proposition 3.5 is a resonant GKZ system, the monodromy
representation is reducible [65], and so the determination of the monodromy
group is in general more complicated. Our strategy is to connect the family
X birationally to other families of K3 surfaces whose monodromy groups
are known, as we have done in Proposition 3.5 with the double sextic family
X studied by Matsumoto et al. [53].

We need to pay close attention to the twist factor
√
μ =

√
b(b− c),

which causes the period map for the family X to become multi-valued ; thus,
the monodromy representation does not coincide with the topological mon-
odromy of the family, i.e., the monodromy of the local systemR2π∗ZX → M.

Let Σ ∈ T(X) be a transcendental cycle, and ∇ the Gauss-Manin con-
nection from §2.1 associated to the system of Picard-Fuchs equations for X
– the Aomoto-Gel’fand E(3, 6) system – in Proposition 3.5. Let ηX be the
holomorphic two-form on the K3 surface X induced by dt ∧ dx/y. As we
parallel transport Σ under ∇ around the locus b = 0 in M, for an initial
point away from c = 0, we obtain a new cycle Σ′ that is related by the action
of the monodromy group of the Aomoto-Gel’fand system on T(X) and the
twist μ relating the families X and X; see proof of Proposition 3.5. Thus, as
we switch branches of the square root of the twisting factor, we obtain the
following action on a period integral:

(3.16)
√

b(b− c)

∮
Σ
ηX → −

√
b(b− c)

∮
Σ′

ηX .

The situation can be described as follows: let Π → M be the period sheaf
of the family X described in §2.1, that is the rank six complex local system
whose stalks are generated by linearly independent period integrals for X.
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Moreover, we define a rank one integral local system S → C4−Z(μ), with the

monodromy group Z2 around the divisor μ = 0. Here, Z(μ) is the vanishing

locus of μ in C4. The monodromy representation of the family X acts on the

tensor product S⊗ZM
Π, with Z2 acting nontrivially as multiplication by −I,

the negative of the identity matrix, as the vanishing locus of μ is encircled

away from the singular locus of the family. Here, we are identifying S with

its restriction to M.

Let p : M → P be the period mapping

p : (a, b, c, d) → [ω1(a, b, c, d) : · · · : ω6(a, b, c, d)] ,(3.17)

ωi(a, b, c, d) =

∮
Σi

ηX , i = 1, . . . , 6

with Σ1, . . . ,Σ6 ∈ T(X) a basis, and P ⊂ P5 the period domain of six

linearly independent period integrals of the family X in Equation (3.4).

Similarly, for the family X in Equation (3.12) let p̃ : M6 → P be the period

map as defined by Matsumoto [53, §7]. Let A be the Gram matrix of the

lattice H(2) ⊕ H(2) ⊕ 〈−2〉⊕2, and let GX ⊂ GL(6,Z) be the subgroup of

the isometry group O(A,Z) given by

(3.18)

GX =
{
M ∈ GL(6,Z) | MTAM = A, M ≡ I mod 2

}
⊂ O(A,Z) .

We have the following:

Proposition 3.6. The global monodromy group GX ⊂ GL(6,Z) of the pe-

riod map p : M → P for the family X in Equation (3.4) is, up to conjugacy,

the group GX .

Proof. In [53, §7], Matsumoto et al. showed that the monodromy group of

the period map p̃ : M6 → P for the family X coincides with that of the

monodromy group for the Aomoto-Gel’fand E(3, 6) system, and is given

by the group GX ⊂ O(A,Z) in Equation (3.18). They showed this group

is the topological monodromy group of X , i.e., the monodromy group of

the local system R2π∗ZX → M6. It then follows from Proposition 3.5 that

GX ⊆ GX. For μ = b(b− c), the multi-valued functions
√
μω were shown to

be solutions to Aomoto-Gel’fand E(3, 6) system. Hence, the tensor product

of local systems S⊗ZM
Π is the span of solutions to the Picard-Fuchs system

for the family X, where S is the rank one integral local system defined above.

The order-two monodromy group Z2 is generated by the monodromy around

the vanishing locus of μ, and Π is the rank six period sheaf.
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Let Λ be subset of the parameter space corresponding to singular mem-
bers of the family X . Let gγ be the monodromy operator acting on the
cohomology of X for any loop γ in C4\

(
Λ∪Z(μ)

)
. The corresponding mon-

odromy operator hγ attached to the same loop applied to the cohomology
of X satisfies hγ = ±gγ by Equation (3.16). Since −I ∈ GX it follows that
hγ ∈ GX and GX · {±I} = GX . Since Z(μ) �⊂ Λ, it follows that −I ∈ GX. In
fact, for a loop in M ∩ Z(μ) away from the singular locus of X, the mon-
odromy operator acts nontrivial on the first factor of S⊗ZM

Π alone. Hence,
we have the equality GX = GX .

Remark 3.7. The proof of Proposition 3.6 shows that the monodromy group
of the family X is the same as that of X while the monodromy representa-
tions are different. Similar statements hold about the monodromy groups in
Corollary 3.16, Corollary 3.20, and Corollary 3.25.

3.3. Extensions of the lattice polarization

Using the four-parameter family of K3 surfaces in Proposition 3.4, we can
efficiently study certain extensions of the lattice polarization and identify the
corresponding lattice polarizations, monodromy groups, and Picard-Fuchs
operators.

3.3.1. Picard rank ρ = 17 We consider the extension of the lattice
polarization for d = 0. In this case, the surface X′

a,b,c = Xa,b,c,0 becomes the
twisted Legendre Pencil :

(3.19) y2 = x(x− 1)(x− t)(t− a)(t− b)(t− c).

The minimal resolution of a general member has Picard number 17 and was
studied by Hoyt [37]. We have the following:

Lemma 3.8. Equation (3.19) defines a Jacobian elliptic fibration
π : X′ → P1 on a general X′ = X′

a,b,c with three singular fibers of Ko-
daira type I∗0 over t = a, b, c, three singular fibers of Kodaira type I2, and
the Mordell Weil group MW(X′, π) = (Z/2Z)2.

Proof. The proof is similar to the ones given in the preceding section. The
statement about Picard rank and the Mordell Weil group can be found in
Hoyt [37].

In particular, X′ is birational to the two-parameter quadratic twist fam-
ily of the one parameter family of rational elliptic surfaces Sc,d=0 from
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Lemma 3.1, and hence, X′ is equivalently described by the mixed-twist con-
struction with generalized functional invariant (i, j, α) = (1, 1, 1). We have
the following:

Proposition 3.9. Over M′ = M|d=0 the family X′
a,b,c in Equation (3.19)

is a 3-dimensional family of L′-polarized K3 surfaces X′ where L′ has rank
17 and the following isomorphic presentations:

L′ ∼= H ⊕ E8(−1)⊕D4(−1)⊕A1(−1)⊕3 ∼= H ⊕ E7(−1)⊕D4(−1)⊕2

∼= H ⊕D12(−1)⊕A1(−1)⊕3 ∼= H ⊕D10(−1)⊕D4(−1)⊕A1(−1)
∼= H ⊕D8(−1)⊕D6(−1)⊕A1(−1).

(3.20)

In particular, L′ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We use the same strategy as in the proof of Proposition 3.5. Using
Lemma 3.8 it follows that the two-elementary lattice L′ must have ρ = 17
and 
 = 5. Applying Nikulin’s classification [62] it follows that there is only
one such lattice admitting a primitive lattice embedding into ΛK3, and it
must have δ = 1. We then go through the list in [66] to find the isomorphic
presentations.

Remark 3.10. In [14] it was shown that the configuration of six lines �
associated with X′ has three lines intersecting in one point. The pencil of
lines through the intersection point induces precisely the elliptic fibration
of Lemma 3.8. In particular, the general K3 surface X′ is not a Jacobian
Kummer surface. It is the relative Jacobian fibration of an elliptic Kummer
surface associated to an abelian surface with a polarization of type (1, 2);
this was proved in [14, 13].

Setting d = 0 in Proposition 3.5 we immediately obtain the following:

Corollary 3.11. Let Σ ∈ T(X′) be a transcendental cycle on a general K3
surface X′ = X′

a,b,c, ηX′ the holomorphic two-form induced by dt ∧ dx/y

in Equation (3.19), and ω =
∮
Σ ηX′ a period. The Picard-Fuchs system for

X′
a,b,c, annihilating ω′ =

√
b(b− c)ω, is the restricted rank-five Aomoto-

Gel’fand system E(3, 6) of [51, 52, 53] with x4 = 0.

To determine the global monodromy group of the period map for the
twisted Legendre pencil, we utilize the relation of X′ to the Kummer surface
Kum(A) of a principally polarized abelian surface A. This is equivalent to
determining which configurations of six lines � yield total spaces that are
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Kummer surfaces; in particular, the lines must be mutually tangent to a
common conic. In [5] the authors gave geometric characterizations of such
six-line configurations. We have the following:

Proposition 3.12. The minimal resolution of a general member in Equa-
tion (3.4) is a Jacobian Kummer surface, i.e., the Kummer surface as-
sociated with the Jacobian of a general genus-two curve, if and only if
d(ab− b) = (a− c)(b− c).

Proof. Using the methods of [12] we compute the square of the degree-two
Dolgachev-Ortland invariant R2. It vanishes if and only if the six lines are
tangent to a common conic. It is well known that this is a necessary and suf-
ficient criterion for the total space to be a Jacobian Kummer surface; see for
example [11]. A direct computation of R2 for the six lines in Equation (3.4)
yields the result.

We also have the following:

Lemma 3.13. For general parameters a, b, c and d = (a− c)(b− c)/(ab− c)
Equation (3.4) defines a Jacobian elliptic fibration π : X̃ → P1 with the
singular fibers 2I∗0+6I2 and the Mordell Weil group MW(X̃, π) = (Z/2Z)2⊕
〈1〉.

The connection between the parameters a, b, c and the moduli of genus-
two curves was exploited in [49, 3]. We have the following:

Proposition 3.14. Over the subspace M̃, given as d = (a− c)(b− c)/(ab−
c) in M, the family in Equation (3.1) is a three-dimensional family of L̃-
polarized K3 surfaces X̃ where L̃ has the following isomorphic presentations:

(3.21) L̃ ∼= H⊕D8(−1)⊕D4(−1)⊕A3(−1) ∼= H⊕D7(−1)⊕D4(−1)⊕2 .

In particular, L̃ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We established in Proposition 3.12 that the K3 surface obtained from
the Weierstrass model in Equation (3.4) is a Jacobian Kummer surface if and
only if the parameters a, b, c, d satisfy a certain relation. In [43] Kumar clas-
sified all Jacobian elliptic fibrations on a generic Kummer surface. Among
them are exactly two fibrations that have a trivial Mordell Weil group, called
(15) and (17). The types of reducible fibers in the two fibrations then yield
isomorphic presentations for the polarizing lattice.

Remark 3.15. It was shown in [14] that the general K3 surface X̃ in Propo-
sition 3.14 arises as the rational double cover of a general K3 surface in
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Proposition 3.8. The double cover X̃ ��� X′ is branched along the even eight
on X′ composed of the non-central components of the two reducible fibers of
type D̃4.

We now determine the monodromy group for the period map of the
twisted Legendre pencil X′ in Equation (3.19). Notice that the period map
for this family is the restriction p |M′ toM′ of the period map from Equation
(3.17). We define a rank-one integral local system S′ → C3 − Z(μ), by
restricting the local system S defined above as S′ = S|d=0. The monodromy
around the locus μ = 0 obtained by switching branches of the square root
function and is again Z2.

In the following, for a matrix group G ⊆ GL(n,Z), identified with its
standard representation acting on Zn, let ∧2G ⊆ GL(r,Z) be the exterior
square representation acting on Zr, with r =

(
n
2

)
. In the following result, the

exterior square representation of the group G turns out to be reducible on
Zr, but irreducible on Zr−1. Let Γ2(2) ⊂ Sp(4,Z) be the Siegel congruence
subgroup of level two. Hara et al. showed in [31] that the exterior square
representation ∧2 Γ2(2) ⊂ GL(6,Z) of the Siegel congruence subgroup of
level two Γ2(2) ⊂ Sp(4,Z) is reducible on Z6, but irreducible on Z5. Hence,
we have ∧2 Γ2(2) ⊂ GL(5,Z).

Corollary 3.16. The global monodromy group GX′ ⊂ GL(5,Z) of the period
map p |M′ is, up to conjugacy, the exterior square GX′ = ∧2 Γ2(2).

Proof. The period map p |M′ of the twisted Legendre pencil in Equation
(3.19) was originally investigated by Hoyt in [37], where a partial analysis
of its behavior for generic parameter values a, b, c was made. There, Hoyt
showed [37, §5, statements (iv′), (iv′′)] that X′ was related the Kummer
surface X̃ = Kum(Jac(C)) of a Jacobian of a general genus-two curve C. In
Braeger et al. [6, Theorem 3.12], the authors produced a dominant rational
rational map ψ : X̃ ��� X′ of degree two that explicitly related the twisted
Legendre parameters a, b, c to the Rosenhain roots λ1, λ2, λ3 of the genus
two curve C that pulls back the holomorphic two-form ηX′ determined by
dt ∧ dx/y to a holomorphic two-form η

˜X on the Kummer surface X̃. In

particular, the induced map on homology ψ∗ : H2(X̃,C) → H2 (X
′,C) is

compatible with the associated lattice polarizations L′ on X′ and L̃ on X̃.
Thus, the Picard-Fuchs systems for X′ and X̃ are equivalent. Hara et al.
showed in [31] showed that the global monodromy group of the Picard-Fuchs
system for X̃ is precisely this exterior square representation ∧2 Γ2(2). Hence,
we have that ∧2 Γ2(2) ⊆ GX′ . Let Π′ → M′ is the rank five period sheaf of
the family X′, and S′ the rank one integral local system defined above. Then
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the argument in Proposition 3.6 applies to the tensor product S′ ⊗ZM′ Π
′

generated by solutions to the Picard-Fuchs equations in Corollary 3.11, and
it follows that the full monodromy group is GX′ = ∧2 Γ2(2), as desired.

3.3.2. Picard rank ρ = 18 We consider the extension of the lattice
polarization for c = d = 0. In this case, the surface X′′

a,b = Xa,b,0,0 becomes
the two-parameter twisted Legendre pencil:

(3.22) y2 = x(x− 1)(x− t)t(t− a)(t− b).

The minimal resolution of a general member of this family has Picard num-
ber 18. We have the following:

Lemma 3.17. Equation (3.22) defines a Jacobian elliptic fibration π :
X′′ → P1 on a general X′′ = X′′

a,b with the singular fibers I∗2 + 2I∗0 + 2I2
and the Mordell Weil group MW(X′′, π) = (Z/2Z)2.

We then have the following:

Proposition 3.18. Over M′′ = M|c=d=0 the family X′′
a,b in Equation (3.27)

is a 2-dimensional family of L′′-polarized K3 surfaces X′′ where L′′ has rank
18 and the following isomorphic presentations:

L′′ ∼= H ⊕ E8(−1)⊕D6(−1)⊕A1(−1)⊕2 ∼= H ⊕ E7(−1)⊕2 ⊕A1(−1)⊕2

∼= H ⊕ E7(−1)⊕D8(−1)⊕A1(−1) ∼= H ⊕D14(−1)⊕A1(−1)⊕2

∼= H ⊕D10(−1)⊕D6(−1).

(3.23)

In particular, L′′ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We use the same strategy as in the proof of Proposition 3.5. Using
Lemma 3.17 it follows that the two-elementary lattice L′′ must have ρ = 18
and 
 = 4. Applying Nikulin’s classification [62] it follows that there are two
such lattices admitting a primitive lattice embedding into ΛK3, namely the
ones with δ = 0, 1. A standard lattice computation shows that we have δ = 1.
We then go through the list in [66] to find the isomorphic presentations.

From [9, Corollary 2.2], the Picard-Fuchs system can now be determined
explicitly:

Proposition 3.19. Let Σ ∈ T(X′′) be a transcendental cycle on a general
K3 surface X′′, ηX′′ the holomorphic two-form induced by dt∧dx/y in Equa-
tion (3.22), and ω =

∮
Σ ηX′′ a period. The Picard-Fuchs system for X′′

a,b,
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annihilating ω′ = ω/
√
a, is the Appell’s rank four hypergeometric system

F2(
1
2 ,

1
2 ,

1
2 ; 1, 1|1−

b
a , b).

Proof. We consider the transformation ϕ : X(μ) ��� X′′ given by

t =
ab

a+ (b− a)T
, x =

1

X
, y =

ab(b− a)Ỹ

(a+ (b− a)T )2X2
.

Here, X(μ) is the twisted Legendre pencil

(3.24) μ Ỹ 2 = X(1−X)T (1− T )(1− a′T − bX) ,

with a′ = 1−b/a and μ = (1−a′)/b = 1/a. The map ϕ : X(μ) ��� X′′ induces
a birational equivalence extending to a birational map of K3 surfaces such

that

(3.25) ϕ∗ dt ∧ dx

y
=

dT ∧ dX

Ỹ
.

It is known that periods ω′ of the two-form dT ∧ dX/Y for the (untwisted)

family with Y =
√
μ Ỹ and

(3.26) Y 2 = X(1−X)T (1− T )(a′T + bX − 1)

satisfy the Appell’s hypergeometric system of F2(
1
2 ,

1
2 ,

1
2 ; 1, 1|a′, b). Thus,

periods ω of dt∧ dx/y for X′′ satisfy the same differential system as ω′/
√
μ.

We now determine the monodromy group for the period map for the

family X′′ in Equation (3.22). In this case, the period map coincides with

the restriction of the period map p |M′′ from Equation (3.17). Again, we

introduce a rank-one integral local system S′′ → C2−Z(1/μ), with μ = 1/a,

to record the monodromy around the locus μ = 0 obtained by switching

branches of the square root function.

For a matrix group G ⊆ GL(n,Z), identified with its standard represen-

tation acting on Zn, let G � G ⊆ GL(2n,Z) be the outer tensor product

representation of G acting on Z2n. Let Γ(2) ⊂ SL(2,Z) the principal con-

gruence subgroup of level two.

Corollary 3.20. The global monodromy group GX′′ of the period map p |M′′

is, up to conjugacy, the outer tensor product GX′′ = Γ(2)� Γ(2).
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Proof. In [9, Theorem 2.5], Clingher et al. showed that the period integral of
the twisted Legendre pencil in Equation (3.22) of Picard rank ρ ≥ 18 factor-
izes holomorphically into two copies of the Gauss hypergeometric function

2F1(
1
2 ,

1
2 , 1 | · ). At the level of Picard-Fuchs systems, this is realized as the

decoupling of the rank four Fuchsian system annihilating Appell’s F2 func-
tion from Proposition 3.19 into two copies of the rank two Fuchsian ODE
annihilating 2F1(

1
2 ,

1
2 , 1 | · ). The monodromy group of each ODE is known

to be the principal congruence subgroup of level two Γ(2) ⊂ SL(2,Z). It fol-
lows that Γ(2)�Γ(2) ⊆ GX′′ . Let Π′′ → M′′ be the rank four period sheaf of
the family X′′, and S′′ the rank one integral local system defined above. We
apply the argument from the proof of Proposition 3.6 to the tensor product
S′′⊗ZM′′ Π

′′ generated by solutions to the Picard-Fuchs equations in Propo-
sition 3.19, and obtain the full monodromy group GX′′ = Γ(2) � Γ(2), as
desired.

3.3.3. Picard rank ρ = 19 We consider the extension of the lattice
polarization for c = d = 0 and b = 1. In this case, the surface X′′′

a = Xa,1,0,0

becomes the one-parameter twisted Legendre pencil:

(3.27) y2 = x(x− 1)(x− t)t(t− 1)(t− a).

This family was studied in detail by Hoyt [35]; the general member has
Picard number ρ = 19. We have the following:

Lemma 3.21. Equation (3.27) defines a Jacobian elliptic fibration π :
X′′′ → P1 on a general X′′′ = X′′′

a with the singular fibers 2I∗2 + I∗0 + 2I2
and the Mordell Weil group MW(X′′′, π) = (Z/2Z)2.

We then have the following:

Proposition 3.22. Over M′′′ = M|b=1,c=d=0 the family X′′′
a in Equa-

tion (3.27) is a 1-dimensional family of L′′′-polarized K3 surfaces X′′′ where
L′′′ has rank 19 and the following isomorphic presentations:

L′′′ ∼= H ⊕ E8(−1)⊕ E7(−1)⊕A1(−1)⊕2 ∼= H ⊕ E7(−1)⊕D10(−1)
∼= H ⊕ E8(−1)⊕D8(−1)⊕A1(−1) ∼= H ⊕D16(−1)⊕A1(−1).

(3.28)

In particular, L′′′ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We use the same strategy as in the proof of Proposition 3.5. Using
Lemma 3.21 it follows that the two-elementary lattice L′′′ must have ρ = 19
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and 
 = 3. Applying Nikulin’s classification [62] it follows that there is only
one such lattice admitting a primitive lattice embedding into ΛK3, and it
must have δ = 1. We then go through the list in [66] to find the isomorphic
presentations.

We have the following:

Proposition 3.23. Let Σ ∈ T(X′′′) be a transcendental cycle on a general
K3 surface X′′′ = X′′′

a , ηX′′′ the holomorphic two-form induced by dt ∧ dx/y
in Equation (3.27), and ω =

∮
Σ ηX′′′ a period. The Picard-Fuchs operator for

X′′′
a , annihilating ω′ = ω/

√
a, is the rank three ordinary differential operator

annihilating the generalized hypergeometric function 3F2(
1
2 ,

1
2 ,

1
2 ; 1, 1|1−

1
a).

Remark 3.24. The results in Propositions 3.23 and 3.19 are in agreement
with [70, Thm. 2.1] and [9] where it was shown that the two restrictions

(3.29) 3F2

(
α, β1, 1 + α− γ2
γ1, 1 + α− γ2 + β2

∣∣∣∣ z1) and F2

(
α; β1, β2
γ1, γ2

∣∣∣∣ z1, 1)
satisfy the same ordinary differential equation.

Proof. We consider the transformation ϕ : X(μ) ��� X′′′ given by

t =
a

a+ (1− a)T
, x = − a(1−X)

(a+ (1− a)T )X
, y = − (1− a)a2Ỹ

(a+ (1− a)T )3X2
,

Here, X(μ) is the twisted Legendre pencil

(3.30) μ Ỹ 2 = X(1−X)T (1− T )(1− a′TX) ,

with a′ = 1 − 1/a and μ = 1 − a′. The map ϕ : X(μ) ��� X′′′ induces a
birational equivalence extending to a birational map of K3 surfaces such
that

(3.31) ϕ∗ dt ∧ dx

y
=

dT ∧ dX

Ỹ
.

It is known that periods ω′ of the two-form dT ∧ dX/Y for the (untwisted)
family with Y =

√
μ Ỹ and

(3.32) Y 2 = X(1−X)T (1− T )(1− a′TX)

satisfy the differential equation of 3F2(
1
2 ,

1
2 ,

1
2 ; 1, 1|a′). Thus, periods ω of

dt ∧ dx/y for X′′′ satisfy the same differential equation as ω′/
√
μ.
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We determine the monodromy group for the period map for the family
X′′′ in Equation (3.27). The period map coincides with the restriction of the
period map p |M′′′ from Equation (3.17). We again define here a rank-one
integral local system S′′′ → C − Z(1/μ) by restricting the local system S′′

in Corollary 3.20 and the preceding discussion there as S′′′ = S′′|b=1, as to
record the monodromy around the locus 1/μ = 0 obtained by switching
branches of the square root

√
μ with μ = 1/a.

In the following, for a matrix group G ⊆ GL(n,Q), identified with its
standard representation acting on Qn, let G�G ⊆ GL(r,Q) be the symmet-
ric square representation acting on Zr, with r = n(n+1)/2. We also denote

by Γ(2)∗ := 〈Γ(2), w〉 with w =
(
0 − 1

2

2 0

)
the Fricke involution.

Corollary 3.25. The global monodromy group GX′′′ ⊂ GL(3,Z) of the pe-
riod map p |M′′′ is, up to conjugacy, the direct product GX′′′ = Γ(2)∗�Γ(2)∗.

Proof. Equation (3.31) proves that the monodromy group of the ODE an-
nihilating 3F2(

1
2 ,

1
2 ,

1
2 ; 1, 1| · ) is the symmetric square representation in

GL(3,Z) of the monodromy group for the ODE annihilating 2F1(
1
2 ,

1
2 ; 1| · ),

after adjoining the involution that is generated by the monodromy operator
for loops around the singular fiber at t = a or, equivalently, t = 0. One
checks that in terms of the modular parameter the action is conjugate to
the action of the Fricke involution w. Hence, we have Γ(2)∗�Γ(2)∗ ⊆ GX′′′ .
Let Π′′′ → M′′′ be the rank three period sheaf of the family X′′′, and S′′′ the
rank one integral local system defined above. Applying the argument from
the proof of Proposition 3.6 to the tensor product S′′′ ⊗ZM′′′ Π

′′′ generated
by solutions to the Picard-Fuchs equations in Proposition 3.23, we obtain
the full monodromy group GX′′′ = Γ(2)∗ � Γ(2)∗, as desired.

In general, if L � L′ � ΛK3 are lattices primitively embedded in the K3
lattice, then there is a map ML′ → ML of moduli spaces which depends
on the particular choice of the lattice embeddings. In particular, the map
may have degree greater than one. We have constructed a family of K3
surfaces Xa,b,c,d such that the period map (from the base of the family)
to the coarse moduli space ML of L-polarized K3 surfaces is birational.
We then showed that the restriction of the Weierstrass model for Xa,b,c,d

to a suitable subspace M′ ⊂ M with dimM′ = dimML′ determines an
extension of the lattice polarization L′ = H⊕K ′ of L = H⊕K as extension
of the associated root lattices Kroot ↪→ (K ′)root in the Weierstrass model.
We have the following main result:

Theorem 3.26. Over the subspaces, obtained by restriction and given by

(3.33) M ⊃ M′ = M
∣∣∣
d=0

⊃ M′′ = M
∣∣∣
c=d=0

⊃ M′′′ = M
∣∣∣
b=1,c=d=0

,
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the polarization of the family Xa,b,c,d extends in a chain of even, indefinite,
two-elementary lattices, given by

(3.34) L � L′ � L′′ � L′′′ ,

where the lattices are uniquely determined by (rank, length, parity) with
(ρ, 
, δ) = (16+k, 6−k, 1) for k = 0, 1, 2, 3 such that dimM(k) = dimML(k) =
4−k. Their Picard-Fuchs systems are determined in Proposition 3.5, Corol-
lary 3.11, and Propositions 3.19, 3.23, and the global monodromy groups in
Proposition 3.6, and Corollaries 3.16, 3.20, 3.25.

Proof. Restricting (i) d = 0, (ii) c = d = 0, (iii) b = 1, c = d = 0 in the
family of K3 surfaces in Equation (3.4), the theorem collect statements from
Propositions 3.4, 3.9, 3.18, 3.22 and their respective proofs, as well as from
Proposition 3.5, Corollary 3.11, Propositions 3.19, 3.23 and Proposition 3.6,
Corollaries 3.16, 3.20, 3.25.

4. GKZ description of the univariate mirror families

In this section we will show that the generalized functional invariant of
the mixed-twist construction captures all key features of the one-parameter
mirror families for the Fermat pencils. In particular, we will show that the
mixed-twist construction allows us to obtain a non-resonant GKZ system for
which a basis of solutions in the form of absolutely convergent Mellin-Barnes
integrals exists whose monodromy is computed explicitly.

4.1. The mirror families

Let us briefly review the construction of the mirror family for the deformed
Fermat hypersurface. Let Pn(n + 1) be the general family of hypersurfaces
of degree (n + 1) in Pn. The general member of Pn(n + 1) is a smooth
hypersurface Calabi-Yau (n−1)-fold. Let [X0 : · · · : Xn] be the homogeneous
coordinates on Pn. The following family

(4.1) Xn+1
0 + · · ·+Xn+1

n + nλX0X1 · · ·Xn = 0

determines a one-parameter single-monomial deformationX
(n−1)
λ of the clas-

sical Fermat hypersurface in Pn(n+1). Cox and Katz determined [16] what
deformations of Calabi-Yau hypersurfaces remain Calabi-Yau. For example,
for n = 5 there are 101 parameters for the complex structure, which deter-
mine the coefficients of additional terms in the quintic polynomials. Starting
with a Fermat-type hypersurfaces V in Pn, Yui [75, 74, 69] and Goto [25]
classified all discrete symmetries G such that the quotients V/G are singular
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Calabi-Yau varieties with at worst Abelian quotient singularities. A theorem
by Greene, Roan, and Yau [26] guarantees that there are crepant resolutions
of V/G. This is known as the Greene-Plesser orbifolding construction.

For the family (4.1), the discrete group of symmetries needed for the
Greene-Plesser orbifolding is readily constructed: it is generated by the ac-
tion (X0, Xj) → (ζnn+1X0, ζn+1Xj) for 1 ≤ j ≤ n and the root of unity
ζn+1 = exp ( 2πi

n+1). Since the product of all generators multiplies the homo-
geneous coordinates by a common phase, the symmetry group is Gn−1 =
(Z/(n+ 1)Z)n−1. One checks that the affine variables

t =
(−1)n+1

λn+1
, x1 =

Xn
1

(n+ 1)X0 ·X2 · · ·Xn λ
,

x2 =
Xn

2

(n+ 1)X0 ·X1 ·X3 · · ·Xn λ
, . . . , xn =

Xn
2

(n+ 1)X0 ·X1 ·X2 · · ·Xn−1λ

are invariant under the action of Gn−1, hence coordinates on the quotient

X
(n−1)
λ /Gn−1. A family of special hypersurfaces Y

(n−1)
t is then given by the

remaining relation between x1, . . . , xn, namely the equation

(4.2) fn(x1, . . . , xn, t) = x1 · · ·xn
(
x1 + · · ·+ xn + 1

)
+

(−1)n+1 t

(n+ 1)n+1
= 0 .

Moreover, it was proved by Batyrev and Borisov in [1] that the family of

special Calabi-Yau hypersurfaces Y
(n−1)
t of degree (n + 1) in Pn given by

Equation (4.2) is mirror to a general hypersurface Pn(n+1) of degree (n+1)
and co-dimension one in Pn, in the sense that the Hodge diamonds are
mirror images, hi,j(Xn−1

λ ) = hj,i(Y n−1
t ) for all n ≥ 2 and appropriate λ, t.

For n = 2, 3, 4 the mirror family is a family of elliptic curves, K3 surfaces,
and Calabi-Yau threefolds, respectively.

Each mirror family can be realized as a fibration of Calabi-Yau (n− 2)-
folds associated with a generalized functional invariant. The following was
proved by Doran and Malmendier:

Proposition 4.1. For n ≥ 2 the family of hypersurfaces Y
(n−1)
t in Equa-

tion (4.2) is a fibration over P1 by hypersurfaces Y
(n−2)

t̃
constructed as

mixed-twist with the generalized functional invariant (1, n, 1).

Proof. For each xn �= 0,−1 substituting x̃i = xi/(xn + 1) for 1 ≤ i ≤
n − 1 and t̃ = −nn t/((n + 1)n+1xn (xn + 1)n) defines a fibration of the
hypersurface (4.2) by fn−1(x̃1, . . . , x̃n−1t̃) = 0 since

(4.3) fn(x1, . . . , xn, t) = xn (xn + 1)n fn−1(x̃1, . . . , x̃n−1, t̃ ) = 0 .
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This is the mixed-twist construction with generalized functional invariant
(1, n, 1).

4.2. GKZ data of the mirror family

In the GKZ formalism, the construction of the family Y
(n−1)
t is described as

follows: from the homogeneous degrees of the defining Equation (4.1) and

the coordinates of the ambient projective space for the family X
(n−1)
λ we

obtain the lattice L′ = Z(−(n + 1), 1, 1, . . . , 1) ⊂ Zn+2. We define a matrix
A′ ∈ Mat(n+1, n+2;Z) as a matrix row equivalent to the (n+1)× (n+2)
matrix with columns of the (n + 1) × (n + 1) identity matrix as the first
(n+ 1) columns, followed by the generator of L′:
(4.4)⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . (n+ 1)
0 1 0 . . . −1

0
. . .

. . .
. . . −1

...
...

0 0 . . . 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ∼ A′ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
0 1 0 . . . −1

0
. . .

. . .
. . . −1

...
...

0 0 . . . 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and let A′ = {�a′1, . . . ,�a′n+2} denote the columns of the right-handed matrix
obtained by a basis transformation in Zn+1 from the matrix on the left
hand side. The finite subset A′ ⊂ Zn+1 generates Zn+1 as an abelian group
and can be equipped with a group homomorphism h′ : Zn+1 → Z, in this
case the projection onto the first coordinate, such that h′(A′) = 1. This
means that A′ lies in an affine hyperplane in Zn+1. The lattice of linear
relations between the vectors in A′ is easily checked to be precisely L′ =
Z(−(n+ 1), 1, 1, . . . , 1) ⊂ Zn+2. From A′ we form the Laurent polynomial

PA′(z1, . . . , zn+1) =
∑
�a′∈A′

c�a z
a1

1 · za2

2 · · · zan+1

n+1

= c1 z1 + c2 z1 z2 + c3 z1 z3 + · · ·+ cn+2z1 z
−1
2 · · · z−1

n+1 ,

and observe that the dehomogenized Laurent polynomial yields

x1 · · ·xn
c1

PA′

(
1,

c1x1
c2

,
c1x2
c3

, . . . ,
c1xn
cn+1

)
= fn

(
x1, . . . , xn, t = (−1)n+1 (n+ 1)n+1 c2 · · · cn+2

cn+1
1

)
.

In the context of toric geometry, this is interpreted as follows: a sec-
ondary fan is constructed from the data (A′,L′). This secondary fan is
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a complete fan of strongly convex polyhedral cones in L′∨
R

= Hom(L′,R)
which are generated by vectors in the lattice L′∨

Z
= Hom(L′,Z). As the co-

efficients c1, . . . , cn+2 – or effectively t – vary, the zero locus of PA′ sweeps

out the family of hypersurfaces Y
(n−1)
t in (C∗)n+1/C∗ = (C∗)n. Both (C∗)n

and the hypersurfaces can then be compactified. The members of the family

Y
(n−1)
t are Calabi-Yau varieties since the original Calabi-Yau varieties had

codimension one in the ambient space; see Batyrev and van Straten [2].

4.3. Recurrence relation between holomorphic periods

We now describe the construction of the period integrals. A result of Doran

and Malmendier – referenced below as Lemma 4.2 – shows that the fibration

on Y
(n−1)
t → P1 by Calabi-Yau hypersurfaces Y

(n−2)

t̃
allows for a recursive

construction of the period integrals for Y
(n−1)
t by integrating a twisted pe-

riod integral over a transcendental homology cycle. It turns out that the

result can be obtained explicitly as the Hadamard product of certain gener-

alized hypergeometric functions. Recall that the Hadamard of two analytic

functions f(t) =
∑

k≥0 fkt
k, g(t) =

∑
k≥0 gkt

k is the analytic function f � g

given by

(f � g)(t) =

∞∑
k=0

fkgkt
k.

The unique holomorphic (n− 1)-form on Y
(n−1)
t is given by

(4.5) η
(n−1)
t =

dx2 ∧ dx3 ∧ · · · ∧ dxn
∂x1

fn(x1, . . . , xn, t)
.

The formula is obtained from the Griffiths-Dwork technique (see, for exam-

ple, Morrison [55]). One then defines an (n− 1)-cycle Σn−1 on Y
(n−1)
t by re-

quiring that the period integral of η
(n−1)
t over Σn−1 corresponds by a residue

computation in x1 to the integral over the middle dimensional torus cycle

Tn−1(�r) := S1
r1 × · · · × S1

rn−1
∈ Hn−1(Y

n−1
t ,Q) with S1

rj = {|x| = rj} ⊂ C

and �rn−1 = (r1, . . . , rn−1) ∈ Rn−1
+ , i.e.,

(4.6)

∫
. . .

∫
︸ ︷︷ ︸
Σn−1

dx2 ∧ · · · ∧ dxn
∂x1

fn(x1, . . . , xn, t)
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=
c1
2πi

∫
. . .

∫
︸ ︷︷ ︸
Tn−1(r)

PA

(
1,

c1x1
c2

,
c1x2
c3

, . . . ,
c1xn
cn+1

)−1 dx2
x2

∧ · · · ∧ dxn
xn

.

The right hand side of Equation (4.6) is a resonant A-hypergeometric inte-

gral in the sense of [24, Thm. 2.7] derived from the data (A′,L′) and

(4.7) �α′ = 〈α′
1,−β′

1 − 1, . . . ,−β′
n − 1〉t = 〈−1, 0, . . . , 0〉t =

n+2∑
i=1

γ′i �a
′
i

with γ′0 = (γ′1, . . . , γ
′
n+2) = (−1, 0, . . . , 0). We will denote the period integral

by ωn−1(t) =
∮
Σn−1

η
(n−1)
t .

We recall the following result, which connects the GKZ data above to

the iterative twist construction of Doran and Malmendier:

Proposition 4.2 ([21, Prop. 7.2]). For n ≥ 1 and |t| ≤ 1, there is a family

of transcendental (n− 1)-cycles Σn−1 on Y
(n−1)
t such that

(4.8) ωn−1(t) =

∮
Σn−1

η
(n−1)
t = (2πi)n−1

nFn−1

( 1
n+1 . . . n

n+1

1 . . . 1

∣∣∣∣ t) .

The iterative structure in Proposition 4.1 induces the iterative period relation

ωn−1(t) = (2πi) nFn−1

(
1

n+1 . . . n
n+1

1
n . . . n−1

n

∣∣∣∣∣ t
)

� ωn−2(t) for n ≥ 2.(4.9)

Here, the symbol � denotes the Hadamard product. The cycles Σn−1 are

determined by T̃n−1(�rn−1) := n
n+1 ·

(
Tn−2(�rn−2)× S1

rn−2

)
as in (4.6), with

rj = 1 − j
j+1 , and

n
n+1 ·

(
Tn−2(�rn−2)× S1

rn−1

)
indicates that coordinates

are scaled by a factor of n
n+1 .

Hence, the iterative structure in Proposition 4.1, namely, the generalized

functional invariant (1, n, 1), determines the iterative period relations of the

mirror family and the corresponding A-hypergeometric data (A′,L′,γ ′
0) in

the GKZ formalism.

4.3.1. The mirror family of K3 surfaces Narumiya and Shiga [57]

showed that the mirror family of K3 surfaces in Equation (4.2) with n = 3
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is birationally equivalent to a family of Weierstrass model. In fact, if we set

x1 = −
(
4u2λ2 + 3Xλ2 + u3 + u

) (
4u2λ2 + 3Xλ2 + u3 − 2u

)
6λ2u (16u3λ2 − 3 iY λ2 + 12Xuλ2 + 4u4 + 4u2)

,

x2 = − 16u3λ2 − 3 iY λ2 + 12Xuλ2 + 4u4 + 4u2

8u (4u2λ2 + 3Xλ2 + u3 − 2u)
,

x3 =
u2

(
4u2λ2 + 3Xλ2 + u3 − 2u

)
2λ2 (16u3λ2 − 3 iY λ2 + 12Xuλ2 + 4u4 + 4u2)

,

(4.10)

in Equation (4.2), we obtain the Weierstrass equation

(4.11) Y 2 = 4X3 − g2(u)X − g3(u) ,

with coefficients

g2 =
4

3λ4
u2

(
u4 + 8λ2u3 + (4λ2 − 1)(4λ2 + 1)u2 + 8λ2u+ 1

)
,

g3 =
4

27λ6
u3

(
u2 + 4λ2u+ 1

) (
2u4 + 16λ2u3 + (32λ4 − 5)u2 + 16λ2u+ 2

)
.

(4.12)

For generic parameter λ, Equation (4.11) defines a Jacobian elliptic fibra-
tion with the singular fibers 2I∗4+4I1 and the Mordell-Weil group Z/2Z⊕〈1〉,
generated by a two-torsion section and an infinite-order section of height
pairing one; see [57, 6]. Using the Jacobian elliptic fibration one has the
following:

Proposition 4.3 ([57]). The family in Equation (4.11) is a family of M2-
polarized K3 surfaces with M2

∼= H⊕E8(−1)⊕E8(−1)⊕〈−4〉 such that the
image of the period map is birational with MM2

.

Proposition 4.3 shows why the family (4.11) can be called the mirror
family of K3 surfaces. Dolgachev’s mirror symmetry for K3 surfaces identifies
marked deformations of K3 surfaces with given Picard lattice N with a
complexified Kähler cone K(M) = {x+ iy : 〈y, y〉 > 0, x, y ∈ MR} for some
mirror lattice M ; see [19]. In the case of the rank-one lattice Nk = 〈2k〉,
one can construct the mirror lattice explicitly by taking a copy of H out of
the orthogonal complement N⊥

k in the K3 lattice ΛK3. It turns out that the
mirror latticeMk

∼= H⊕E8(−1)⊕E8(−1)⊕〈−2k〉 is unique if k has no square
divisor. In our situation, the general quartic hypersurfaces in Equation (4.1)
with n = 3 have a Néron-Severi lattice isomorphic to N2 = 〈4〉, and the
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mirror family in Equation (4.11) is polarized by the lattice M2 such that
N⊥

2
∼= H ⊕M2.
It turns out that the holomorphic solution of the Picard-Fuchs equation

governing the family of K3 surfaces in Equation (4.11) equals

(4.13) ω2 =

(
2F1

( 1
8 ,

3
8

1

∣∣∣∣ 1

λ4

))2

= 3F2

( 1
4 ,

1
2 ,

3
4

1, 1

∣∣∣∣ t) .

The first equality was proved by Narumiya and Shiga, and the second equal-
ity is Clausen’s formula, found by Thomas Clausen, expressing the square
of a Gaussian hypergeometric series as a generalized hypergeometric series.

4.4. Monodromy of the mirror family

We will now show how the monodromy representations for the mirror fam-
ilies for general n are computed using the iterative period relations. The
results of this section are consistent with the original work of Levelt [44] up
to conjugacy.

The Picard-Fuchs operators of the periods given in Proposition 4.2 are the
associated rank n-hypergeometric differential operators annihilating nFn−1.
But yet more is afforded by pursuing the GKZ description of the period in-
tegrals. In fact, the Euler-integral formula for the hypergeometric functions

nFn−1 generates a second set of non-resonant GKZ data (A,L, γ0) from the
resonant GKZ data (A′,L′, γ′0) by integration. The GKZ data (A,L, γ0) de-
termines local Frobenius bases of solutions around t = 0 and t = ∞. Their
Mellin-Barnes integral representation determines the transition matrix be-
tween them by analytic continuation.

We will always assume that we have n rational parameters, namely
ρ1, . . . , ρn ∈ (0, 1)∩Q, and consider the generalized hypergeometric function

nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) ,

which include all periods from Propositions 4.2 and 3.23. The Euler-integral
formula then specializes to the identity

(4.14)

[
n−1∏
i=1

Γ(ρi) Γ(1− ρi)

]
nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t)
=

[
n−1∏
i=1

∫ 1

0

dzi

z1−ρi

i (1− zi)ρi

]
(1− t z1 · · · zn−1)

−ρn .
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The rank-n hypergeometric differential equation satisfied by nFn−1 is given
by

(4.15)
[
θn − t (θ + ρ1) · · · (θ + ρn)

]
F (t) = 0

with θ = t d
dt , and it has the Riemann symbol

(4.16) P

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 ∞
0 0 ρ1
0 1 ρ2
...

...
...

0 n− 2 ρn−1

0 n− 1−
∑n

j=1 ρj ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣
t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, we read from the Riemann symbol that for each n ≥ 1, the pe-
riods from Proposition 4.2 have a point of maximally unipotent monodromy
at t = 0. This is well known to be consistent with basic considerations for
mirror symmetry [56].

From the Euler-integral (4.14), using the GKZ formalism, we imme-
diately read off the left hand side matrix, and convert to the A-matrix
A ∈ Mat(2n− 1, 2n;Z) given by
(4.17)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
...

. . .
...

0 0 0 0
. . . 1 1

0 1 0 0 . . . 0 1
0 0 0 1 . . . 0 1
...

. . .
...

0 0 0 0
. . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 1 0 . . . 0 0
0 1 0 0 0 1 0 0
...

. . .
...

...
...

. . .
...

...
0 0 . . . 1 0 0 0 . . . 1 0

0 0 . . . 0 1 0 0 . . . 0 1

0 0 . . . 0 1 1 0 . . . 0 0
0 0 0 1 0 1 0 0
...

. . .
...

...
...

. . .
...

...
0 0 . . . 0 1 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

using elementary row operations, as in §4.2. Let A = {�a1, . . . ,�a2n} denote
the columns of the matrix A. The entries for the matrix on the left hand
side of (4.17) are determined as follows: the first n entries in each column
label which of the n terms (1−zi)

ρi or (1− t z1 · · · zn−1)
−ρn in the integrand

of the Euler-integral (4.14) is specified. For each term, two column vectors
are needed and the entries in rows n + 1, . . . , 2n − 1 label the exponents
of variables zi appearing. For example, the last two columns determine the
term (1−t z1 · · · zn−1)

−ρn . The finite subsetA ⊂ Z2n−1 generates Z2n−1 as an
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abelian group and is equipped with a group homomorphism h : Z2n−1 → Z,
in this case the sum of the first n coordinates such that h(A) = 1. The
lattice of linear relations between the vectors in A is easily checked to be
L = Z(1, . . . , 1,−1, . . . ,−1) ⊂ Z2n. The toric data (A,L) has an associated
GKZ system of differential equations which is equivalent to the differential
equation (4.15). Equivalently, the right hand side of Equation (4.14) is the
A-hypergeometric integral in the sense of [24, Thm. 2.7] derived from the
data (A,L) and the additional vector

�α = 〈α1, . . . , αn−1,−β1 − 1, . . . ,−βn − 1〉t

= 〈−ρ1, . . . ,−ρn,−ρ1, . . . ,−ρn−1〉t =

2n∑
i=1

γi �ai,

where we have set γ0 = (γ1, . . . , γ2n) = (0, . . . , 0,−ρ1, . . . ,−ρn) ⊂ Z2n. We
always have the freedom to shift γ0 by elements in L ⊗ R while leaving �α
and any A-hypergeometric integral unchanged. Thus we have the following:

Proposition 4.4. The GKZ data (A,L, γ0) is non-resonant.

Proof. We observe that αi, βj �∈ Z for i = 1, . . . , n− 1 and j = 1, . . . , n and∑
i αi +

∑
j βj ≡ −ρn mod 1 �∈ Z. It was proved in [24, Ex. 2.17] that this

is equivalent to the non-resonance of the GKZ system.

4.4.1. Construction of convergent period integrals In this section,
we show how from the toric data of the GKZ system convergent period
integrals can be constructed. We are following the standard notation for
GKZ systems; see, for example, Beukers [4].

Let us define the B-matrix of the lattice relations L for A as the matrix
containing its integral generating set as the rows. Since the rank of L is 1, we
simply have B = (1, . . . , 1,−1, . . . ,−1) ∈ Mat(1, 2n;Z) ∼= HomZ(Z2n,Z). Of
course, the B-matrix then satisfies A ·Bt = 0, as this is the defining property
of the lattice L. The space L⊗R ⊂ R2n is clearly a line, and is parameterized
by the tuple (s, . . . , s,−s, . . . ,−s) ∈ R2n with s ∈ R. To be used later in this
subsection, the polytope ΔA defined as convex hull of the vectors contained
in A is the primary polytope associated with A. Also for later, we may also
write B =

∑
biêi in terms of the standard basis {êi}2ni=1 ⊂ Z2n.

We can obtain a short exact sequence

0 −→ L −→ Z2n −→ Z2n−1 → 0

by mapping each vector 
 =
∑

liêi ∈ Z2n to the vector
∑

li �ai ∈ Z2n−1.
As the linear relations between vectors in A are given by the lattice L, this
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sequence is exact. The corresponding dual short exact sequence (over R) is
given by

0 −→ R2n−1 −→ R2n π−→ L∨
R
∼= R −→ 0,

with π(u1, . . . , u2n) = u1 + · · ·+ un − un+1 − · · · − u2n. Restricting π to the

positive orthant in R2n and calling it π̂, we observe that for each s ∈ R the

set π̂−1(s) is a convex polyhedron. For s ∈ L∨
R
, there are two maximal cones

C+ and C− in the secondary fan of A for positive and negative real value
s, respectively. The lists of vanishing components for the vertex vectors in

each π̂−1(s) are given by

TC+
=

n⋃
k=1

{
{1, . . . , k̂, . . . , n, n+ 1, . . . 2n}︸ ︷︷ ︸

=:Ik

}
,

TC− =

n⋃
k=1

{
{1, . . . , n, n+ 1, k̂ + n, . . . . . . 2n}︸ ︷︷ ︸

=:Ik+n

}
.

The symbol k̂ indicates that the entry k has been suppressed. For each

member I of TC± , we define γI = γ0 − μIB such that γIi = 0 for i �∈ I. We

then have

γI =

⎧⎪⎪⎨⎪⎪⎩
γ0 for I ∈ TC+

,
μI = 0,

(−ρk, . . . ,−ρk, ρk − ρ1, . . . , 0, . . . , ρk − ρn) for I = In+k ∈ TC− ,
μIn+k = ρk.

Then for Ik ∈ TC± we denote the convergence direction by

(4.18) νIk = (ν1, . . . , ν2p) = (δki )
2p
i=1 ∈ L⊗ R,

where δki is the Kronecker delta, such that π̂(νIk) = ±1.

Using the B-matrix, one defines the zonotope

ZB =

{
1

4

2n∑
i=1

μi bi

∣∣∣∣∣μi ∈ (−1, 1)

}
=

(
−n

2
,
n

2

)
⊂ L∨

R
∼= R.

The zonotope contains crucial data about the nature and form of the solu-

tions to the GKZ system above. A crucial result of Beukers [4, Cor. 4.2] can

then be phrased as follows:
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Proposition 4.5 ([4, Cor. 4.2]). Let u, τ be the vector with u = (u1, . . . , u2n),
uj = |uj | exp (2πiτj), and τ = (τ1, . . . , τ2n). For any u with τ such that∑

biτi ∈ ZB and any γ equivalent to γ0 up to elements in L ⊗ R with
γn+i < σ < −γi for all i = 1, . . . , n, the Mellin-Barnes integral given by

Mτ (u1, . . . , u2n) =

∫
σ+iR

[
2n∏
i=1

Γ(−γi − bis) u
γi+bis
i

]
ds ,(4.19)

is absolutely convergent and satisfies the GKZ differential system for (A,L).

A toric variety VA can be associated with the secondary fan by gluing
together certain affine schemes, one scheme for every maximal cone in the
secondary fan. Details can be found in [68]. In the situation of the hyper-
geometric differential equation (4.15), the secondary fan has two maximal
cones C+ and C−, and one can easily see that the toric variety VA is the pro-
jective line VA = P1 which is the the domain of definition for the variable
t in Equation (4.14). Each member in the list for a maximal cone contains
2n − 1 integers and define a subdivision of the primary polytope ΔA by
polytopes generated by the subdivision, called regular triangulations. In our
case, these regular triangulations are unimodular, i.e.,

for all Ik ∈ TC± :
∣∣∣ det (�ai)i∈Ik ∣∣∣ = ∣∣∣ bk∣∣∣ = 1 .

Given A and its secondary fan, we define a ring RA by dividing the
free polynomial ring in 2n variables by the ideal IA generated by the linear
relations of A and the ideal IC± generated by the regular triangulations. In
our situation, we obtain RA from the list of generators given by

ε = (ε1, . . . , ε2n) = ε (1, . . . , 1,−1, . . . ,−1) ∈ RA

with relation εn = 0, i.e., RA = Z[ε]/(εn) is a free Z-module of rank n. Thus,
we have the following:

Corollary 4.6. A solution for the hypergeometric differential equation (4.15)
is given by restricting to u2 = · · · = u2n = 1 and u1 = (−1)nt in Equa-
tion (4.19).

Remark 4.7. In the case of the hypergeometric differential equation (4.15),
it follows crucially from Beukers [4, Prop. 4.6] that there is a basis of Mellin-
Barnes integrals since the zonotope ZB contains n distinct points {−n−1

2 +

k}n−1
k=0 whose coordinates differ by integers.
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4.4.2. A basis of solutions around zero Using the toric data, we may
now derive a local basis of solutions of the differential equation (4.15) around
the point t = 0 [68]. For the convergence direction νI1 in TC+

, the Γ-series is
a series solutions of the GKZ system for (L, γ0) and given by

(4.20) ΦL,γ0
(u1, . . . , u2n) =

∑
�∈L

uγ1+�1
1 · · ·uγ2n+�2n

2n

Γ(γ1 + 
1 + 1) · · ·Γ(γ2n + 
2n + 1)
.

We have the following:

Lemma 4.8. For the convergence direction νI1 in TC+
, the Γ-series for

(L, γ0) equals

(4.21) ΦL,γ0
(u1, . . . , u2n) =

[
n∏

i=1

1

Γ(1− ρi)u
ρi

n+i

]
nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t)
for t = (−1)nu1 · · ·un/(un+1 · · ·u2n) > 0. Moreover, convergence of Equa-
tion (4.21) in the convergence direction νI1 = (ν1, . . . , ν2p) is guaranteed for
all u1, . . . , u2n with |ui| = tνi and 0 ≤ t < 1.

Proof. We observe that

ΦL,γ0
(u1, . . . , u2n)

∑
k≥0

uk1 · · ·ukn · u−ρ1−k
n+1 · · ·u−ρn−k

2n

(k!)n Γ(−ρ1 − k + 1) · · ·Γ(−ρn − k + 1)

=

[
n∏

i=1

1

Γ(1− ρi)u
ρi

n+i

]∑
k≥0

(ρ1)k · · · (ρn)k
(k!)n

tk .

(4.22)

The summation over L reduces to non-negative integers as the other terms
vanish when 1/Γ(k + 1) = 0 for k < 0. Using the identities

(4.23) (ρ)k = (−1)k
Γ(1− ρ)

Γ(1− k − ρ)
, Γ(z) Γ(1− z) =

π

sin (πz)
,

we obtain Equation (4.21). Equation (4.20) shows that restricting the vari-
ables u2 = · · · = u2n = 1 to a base point, the convergence of the Γ-series
ΦL,γ0

((−1)nt, 1 . . . , 1) is guaranteed for |u1| = t with t sufficiently small.

Remark 4.9. We obtain the same Γ-series for all convergence directions
νIr with 1 ≤ r ≤ n in TC+

. This is due to the fact that in the Riemann
symbol (4.16) at t = 0 the critical exponent 0 has multiplicity n.
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However, from the maximal cone C+ of the secondary fan of A, we can
still construct a local basis of solutions of the GKZ system around t = 0 by
expanding the twisted power series ΦL,γ0+ε(u1, . . . , u2n) over RA; see [68].
Similarly, a twisted hypergeometric series can be introduced, for example,
by defining the following renormalized generating function:

(4.24) f(ε, t) = tεnF
(ε)
n−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) =
∑
k≥0

(ρ1 + ε)k · · · (ρn + ε)k
(1 + ε)nk

tk+ε.

We have the following:

Lemma 4.10. For |t| < 1, choosing the principal branch of tε = exp (ε ln t)
the twisted power series over RA is given by

ΦL,γ0+ε(u1, . . . , u2n)

=
e2πiε

Γ(1 + ε)n

[
n∏

i=1

1

Γ(1− ρi − ε)uρi

n+i

]
tε nF

(ε)
n−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) .
(4.25)

Proof. The proof uses 1/(1 + ε)nk = O(εn) = 0 for k < 0, where (a)k is the
Pochammer symbol, because for k ∈ Z we have

1

(1 + ε)k
=

Γ(1 + ε)

Γ(k + 1 + ε)
=

⎧⎪⎨⎪⎩
ε(ε− 1) · · · (ε+ k + 1) if k < 0,
1 if k = 0,

1

(1 + ε)(2 + ε) · · · (m+ ε)
if k > 0.

For r = 0, . . . , n− 1, we also introduce the functions

yr(t) =
1

r!

∂r

∂εr

∣∣∣∣
ε=0

nF
(ε)
n−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) ,

y0(t) = f(0, t) = nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) .

We have the following:

Lemma 4.11. For |t| < 1, the following identity holds
(4.26)

f(ε, t) =

n−1∑
m=0

(
2πiε

)m
fm(t) =

n−1∑
m=0

(
2πiε

)m
m∑
r=0

1

r!

(
ln t

2πi

)r ym−r(t)

(2πi)m−r
,

where fm(t) = 1
(2πi)mm!

∂m

∂εm |ε=0f(ε, t) for m = 0, . . . , n− 1.
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As proved in [68], the functions {fr}n−1
r=0 form a local basis of solutions

around t = 0, and the functions yr(t) with r = 0, . . . n − 1 are holomor-
phic in a neighborhood of t = 0. The local monodromy group is generated
by the cycle (u1, . . . , u2n) = (R1 exp (iϕ), R2, . . . , R2n) based at the point
(R1, . . . , R2n) for ϕ ∈ [0, 2π]. Equivalently, we consider the local monodromy
of the hypergeometric differential equation generated by t = t0 exp (iϕ) for
0 < t0 < 1 and ϕ ∈ [0, 2π] (by setting |u2| = · · · = |u2n| = 1 and |u1| = t).
The monodromy of the functions {fr}n−1

r=0 can be read off Equation (4.26)
immediately. We have the following:

Proposition 4.12. The local monodromy of the basis f t = 〈fn−1, . . . , f0〉t
of solutions to the differential equation (4.15) at t = 0 is given by

(4.27) m0 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1
2 . . . 1

(n−2)!

0 1 1 . . . 1
(n−3)!

...
. . .

. . .
...

...
. . .

. . . 1
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Proof. Lemma 4.11 proves that

fm(t) =

m∑
r=0

1

r!

(
ln t

2πi

)r ym−r(t)

(2πi)m−r
.

The functions yk(t) are invariant for t = t0 exp (iϕ) for 0 < t0 < 1 and
ϕ → 2π. The result then follows.

Corollary 4.13. The monodromy matrix m0 is maximally unipotent.

4.4.3. A basis of solutions around infinity We assume 0 < ρ1 < · · · <
ρn < 1. Using the toric data we can derive a local basis of solutions of the
differential equation (4.15) around the point t = ∞. For the convergence
direction νIn+r in TC− , the Γ-series is a series solutions of the GKZ system
for (L, γIn+r) and given by

Φ
L,γIn+r (u1, . . . , u2n)

=
∑
�∈L

uγ1−μIr+n+�1
1 · · ·uγ2n+μIr+n+�2n

2n

Γ(γ1 − μIr+n + 
1 + 1) · · ·Γ(γ2n + μIr+n + 
2n + 1)
.

(4.28)

We have the following:
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Lemma 4.14. For the convergence direction νIn+r in TC− Equation (4.28)
is a series solution for (L, γIn+r). The following identity holds

Φ
L,γIn+r (u1, . . . , u2n) =

eπinρr

Γ(1− ρr)n

[
n∏

i=1

1

Γ(1 + ρr − ρi)u
ρi

n+i

]

× t−ρr
nFn−1

(
ρr . . . . . . ρr

1 + ρr − ρ1 . . . 1̂ . . . 1 + ρr − ρn

∣∣∣∣ 1t
)(4.29)

for t = (−1)nu1 · · ·un/(un+1 · · ·u2n) > 0. The symbol 1̂ indicates that the
entry 1 + ρr − ρi for i = r has been suppressed. In particular, restricting
variables u1 = · · · = ûn+r = · · · = u2n = 1 the convergence of the Γ-series
Φ

L,γIn+r (1, . . . , (−1)n/t, . . . , 1) is guaranteed for t > 1.

Proof. A direct computation shows that the Γ-series satisfies

Φ
L,γIn+r (u1, . . . , u2n)

=
eπinρr

Γ(1− ρr)n

[
n∏

i=1

1

Γ(1 + ρr − ρi)u
ρi

n+i

](
un+1 · · ·u2n

(−1)nu1 · · ·un

)ρr

×
∑
k≥0

(ρr)
n
k

(1 + ρr − ρ1)k · · · (1 + ρr − ρn + 1)k

(
un+1 · · ·u2n

(−1)nu1 · · ·un

)k

.

The result follows.

Based on the assumption that 0 < ρ1 < · · · < ρn < 1, we have the
following:

Lemma 4.15. There are n different Γ-series for the convergence directions
νIn+r with 1 ≤ r ≤ n in TC−.

The local monodromy group is generated by the cycle based at (R1, . . . ,
R2n) given by (u1, . . . , un+r, . . . , u2n) = (R1, . . . , Rn+r exp (−iϕ), . . . , R2n)
for ϕ ∈ [0, 2π] Equivalently, we consider the local monodromy generated by
t = t0 exp (iϕ) for t0 � 1 and ϕ ∈ [0, 2π] (by setting |u1| = · · · = |u2n| = 1
and |un+r| = 1/t). We have the following:

Proposition 4.16. The local monodromy of the basis Ft = 〈Fn, . . . , F1〉t of
solutions to the differential equation (4.15) at t = ∞ is given by

(4.30) M∞ =

⎛⎜⎝ e−2πiρn

. . .

e−2πiρ1

⎞⎟⎠ .



502 Andreas Malmendier and Michael T. Schultz

Proof. From the Riemann symbol (4.16), we observe that the functions

(4.31) Fr(t) = Ar t
−ρr

nFn−1

(
ρr . . . . . . ρr

1 + ρr − ρ1 . . . 1̂ . . . 1 + ρr − ρn

∣∣∣∣ 1t
)

for r = 1, . . . , n and any non-zero constants Ar, form a Frobenius basis of
solutions to the differential equation (4.15) at t = ∞. The claim follows.

4.4.4. The transition matrix The solution (4.24) has an integral rep-
resentation of Mellin-Barnes type [4] given by

f(ε, t) =
tε

2πi

Γ(1 + ε)n

Γ(ρ1 + ε) · · ·Γ(ρn + ε)
(4.32)

×
∫
σ+iR

ds
Γ(s+ ρ1 + ε) · · ·Γ(s+ ρn + ε)

Γ(s+ 1 + ε)n
· π (−t)s

sin (πs)
,

where σ ∈ (−ρ1, 0). For |t| < 1 the contour integral can be closed to the
right. We have the following:

Lemma 4.17. For |t| < 1, Equation (4.32) coincides with Equation (4.24).

Proof. For |t| < 1 the contour integral can be closed to the right, and the
Γ-series in Equation (4.24) is recovered as a sum over the enclosed residua
at r ∈ N0 where we have used

for all r ∈ N0 : Ress=r

(
π (−t)s

sin (πs)

)
= tr.

For |t| > 1 the contour integral must be closed to the left. The relation
to the local basis of solutions at t = ∞ can be explicitly computed:

Proposition 4.18. For |t| > 1, we obtain for f(ε, t) in Equation (4.32)

(4.33) f(ε, t) =

n∑
r=1

Br(ε)Fr(t)

where Fr(t) is given by

(4.34) Fr(t) = Ar t
−ρr

nFn−1

(
ρr . . . . . . ρr

1 + ρr − ρ1 . . . 1̂ . . . 1 + ρr − ρn

∣∣∣∣ 1t
)
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and

Ar = −e−πiρr

n∏
i=1
i �=r

Γ(ρi − ρr)

Γ(ρi) Γ(1− ρr)
,

(4.35)

Br(ε) = e−πiε

[
n∏

i=1

Γ(ρi) Γ(1 + ε)

Γ(ρi + ε)

]
sin (πρr)

sin (πρr + πε)
,

such that Br(0) = 1 for r = 1, . . . , n.

Proof. For |t| > 1 the contour integral in Equation (4.32) must be closed to
the left. Using 1/(1 + ε)nk = O(εn) = 0 for k < 0, we observe that the poles
are located at s = −ε− ρi − k for i = 1, . . . , n and k ∈ N0. Using

∀r ∈ N0 : Ress=−r

(
Γ(s) (−t)s

)
=

t−r

r!
.

and Equations (4.23) the result follows.

Equation (4.33) allows to compute the transition matrix between the
Frobenius basis 〈fn−1, . . . , f0〉t of solutions for the differential equation (4.15)
at t = 0 with local monodromy given by the matrix (4.27) and the Frobenius
basis 〈Fn, . . . , F1〉t of solutions at t = ∞ with local monodromy given by the
matrix (4.30). We obtain:

Corollary 4.19. The transition matrix P between the analytic continuations
of the bases f t = 〈fn−1, . . . , f0〉t at t = 0 and Ft = 〈Fn, . . . , F1〉t at t = ∞ is
given by

(4.36)

⎛⎜⎜⎜⎝
fn−1
...
f1
f0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
B(n−1)

n (0)
(2πi)n−1(n−1)! . . . B(n−1)

1 (0)
(2πi)n−1(n−1)!

...
. . .

...
B

′
n(0)
2πi . . . B

′
1(0)
2πi

1 . . . 1

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
Fn
...
F2

F1

⎞⎟⎟⎟⎠
with Br(ε) given in Equation (4.35).

Proof. The transition matrix P between the analytically continued Frobe-
nius basis of solutions f t = 〈fn−1, . . . , f0〉t at t = 0 and the analytic continu-
ation of the Frobenius basis Ft = 〈Fn, . . . , F1〉t at t = ∞ is obtained by first
comparing the expression of f(ε, t) from Equation (4.24) as a linear combi-
nation of the solutions F at t = ∞ from Equation (4.33), and subsequently



504 Andreas Malmendier and Michael T. Schultz

applying Lemma 4.11 to find the explicit linear relations between f and F.
By differentiation of the functions Br(ε) in Equation (4.35) and evaluating
at ε = 0, we recover the matrix (4.36).

We can now compute the monodromy of the analytic continuation of f
around any singular point:

Corollary 4.20. The monodromy of the analytic continuation of f around
t = 0, t = ∞, and t = 1 is given by m0 in (4.27), m∞ = P ·M∞ · P−1 for
M∞ in (4.30), and m1 = m∞ ·m−1

0 , respectively.

4.4.5. Monodromy after rescaling For C > 0 the rescaled hypergeo-
metric differential equation satisfied by F̃ (t) = nFn−1(Ct) is given by

(4.37)
[
θn − C t (θ + ρ1) · · · (θ + ρn)

]
F̃ (t) = 0 .

For |t| < 1/C we introduce f̃(ε, t) = C−εf(ε, Ct) such that
(4.38)

f̃(ε, t) =

n−1∑
m=0

(
2πiε

)m
f̃m(t) with f̃m(t) =

1

(2πi)mm!

∂m

∂εm

∣∣∣∣
ε=0

f(ε, Ct)

for j = 0, . . . , n − 1. The local monodromy around t = 0 with respect to
the Frobenius basis 〈f̃n−1, . . . , f̃0〉t is still given by the matrix m0 in (4.27).
Similarly, for |t| > 1/C we introduce F̃k(t) = Fk(Ct) for k = 1, . . . , n.
The local monodromy (around t = ∞) with respect to the Frobenius basis
〈F̃n, . . . , F̃1〉t is given by the matrix M∞ in (4.30). We obtain:

Proposition 4.21. The transition matrix P̃ between the analytic continua-
tion of f̃ and F̃ such that f̃ = P̃ · F̃ is given by
(4.39)

P̃ =
(
P̃n−j,n+1−k

)n−1,n

j=0,k=1
with P̃n−j,n+1−k =

1

(2πi)jj!

∂j

∂εj

∣∣∣∣
ε=0

[
C−εBk(ε)

]
.

The monodromy of the analytic continuation of f̃ around t = ∞ and t = 1/C
is given by m∞ = P̃ ·M∞ · P̃−1 and m1/C = m∞ ·m−1

0 , respectively.

Proof. One emulates the proof of Corollaries 4.19 and 4.20 directly with new
analytic continuations f̃ and F̃ around t = 0 and t = ∞, respectively. In
this case, one finds that the functions Br(ε) appearing in Equation (4.33)
acquire a factor of C−ε. The result then follows suit as claimed.

In summary, we obtained the monodromy matrices m0 in (4.27), m∞ =
P̃ ·M∞ · P̃−1 for M∞ in (4.30) and P̃ in Equation (4.39), and m1/C = m∞ ·
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Table 1: Monodromy matrices for the mirror families with 2 ≤ n ≤ 5
n Y

(n−1)
t m0 m1/C m∞

2 EC

(
1 1
0 1

) (
1 0

−3 1

) (
1 1
−3 −2

)

3 K3

⎛⎝ 1 1 1
2

0 1 1
0 0 1

⎞⎠ ⎛⎝ 0 0 −1
4

0 1 0
−4 0 0

⎞⎠ ⎛⎝ 0 0 −1
4

0 1 1
−4 −4 −2

⎞⎠

4 CY3

⎛⎜⎜⎝
1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 + κ4 0 5κ4

12
κ2
4

5

−25
12 1 −125

144 −5κ4

12
0 0 1 0

−5 0 −25
12 1− κ4

⎞⎟⎟⎠
⎛⎜⎜⎝

1 + κ4 1 + κ4
1
2 + 11κ4

12
1
6 + 7κ4

12 +
κ2
4

5

−25
12 −13

12 −131
144 −103

144 − 5κ4

12
0 0 1 1

−5 −5 −55
12 −23

12 − κ4

⎞⎟⎟⎠

5 CY4

⎛⎜⎜⎜⎜⎝
1 1 1

2
1
6

1
24

0 1 1 1
2

1
6

0 0 1 1 1
2

0 0 0 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

75
64 0 55

512 −11κ5

384 − 121
24576

−κ5 1 −5κ5

8
κ2
5

6
11κ5

384

−15
4 0 −43

32
5κ5

8
55
512

0 0 0 1 0
−6 0 −15

4 κ5
75
64

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

75
64

75
64

355
512 −11κ5

384 + 155
512 −11κ5

384 + 2399
24576

−κ5 −κ5 + 1 −9κ5

8 + 1 (4κ5−3)(κ5−4)
24

κ2
5

6 − 125κ5

384 + 1
6

−15
4 −15

4 −103
32

5κ5

8 − 63
32

5κ5

8 − 369
512

0 0 0 1 1
−6 −6 −27

4 κ5 − 19
4 κ5 − 61

64

⎞⎟⎟⎟⎟⎠

m−1
0 for the hypergeometric differential equation (4.37). Thus, we have the

following main result:

Theorem 4.22. For the family of hypersurfaces Y
(n−1)
t in Equation (4.2)

with n ≥ 2 the mixed-twist construction defines a non-resonant GKZ system.
Then a basis of solutions exists given as absolutely convergent Mellin-Barnes
integrals whose monodromy around t = 0, 1/C,∞ is, up to conjugation,
m0,m1/C ,m∞, respectively, for ρk = k/(n + 1) with k = 1, . . . , n and C =
(n+ 1)n+1.

Proof. The theorem combines the statements of Propositions 4.4, 4.5, 4.12,
4.16, 4.21 that were proven above.

We have the following:

Corollary 4.23. Set κ4 = −200 ζ(3)
(2πi)3 , and κ5 = 420 ζ(3)

(2πi)3 . The monodromy

matrices of Theorem 4.22 for 2 ≤ n ≤ 5 are given by Table 1.

Proof. We obtain from the multiplication formula for the Γ-function, i.e.,

m−1∏
k=0

Γ

(
z +

k

m

)
= (2π)

1

2
(m−1)m

1

2
−mz Γ(mz),

the identity

C−εBk(ε) =
Γ(1 + ε)n+1

Γ
(
1 + (n+ 1)ε

) sin (πρk)

sin (πρk + πε)
e−πiε .

We then compute the monodromy of the analytic continuation of f̃ around

t = 0, 1/C,∞ where we have set κ4 = −200 ζ(3)
(2πi)3 and κ5 = 420 ζ(3)

(2πi)3 . We

obtain the results listed in Table 1.
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The case n = 4, reproduces up to conjugation the monodromy matrices

for the quintic threefold case by Candelas et al. [7] and [8]. In particular, our

results are consistent with the original work of Levelt [44] up to conjugacy,

for any n > 2.
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