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Graphical functions in even dimensions
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Graphical functions are special position space Feynman integrals,
which can be used to calculate Feynman periods and one- or two-
scale processes at high loop orders. With graphical functions, renor-
malization constants have been calculated to loop orders seven
and eight in four-dimensional φ4 theory and to order five in six-
dimensional φ3 theory. In this article we present the theory of
graphical functions in even dimensions ≥ 4 with detailed reviews
of known properties and full proofs whenever possible.
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81T99.

1. Introduction

1.1. Motivation

Graphical functions are massless position space Feynman integrals in quan-
tum field theory (QFT) which depend on three vectors z0, z1, z2 in D-
dimensional Euclidean space. They are a powerful tool to perform calcula-
tions in perturbative QFT. Graphical functions were first defined in [33] but
also play a prominent role in four-dimensional conformal QFTs where they
were independently introduced (see e.g. [19]).

The theory of graphical functions has successfully been applied to four-
dimensional φ4 theory (see e.g. [15, 33, 35]). Calculations of Feynman periods
in φ4 theory led to the discovery of the coaction conjectures in [30] and the
coaction principle (see e.g. [12, 13, 36]).

In this article, we provide an extension of graphical functions to even
dimensions ≥ 4. This extension made six dimensional φ3 theory accessible
to higher loop orders (the loop order is the number of independent cycles in
the underlying Feynman graph). Without the theory of graphical functions
φ3 is a notoriously hard subject. The authors calculated all primitive periods
in φ3 theory up to loop order six [6, 37]. At loop order seven, 561 of the 607
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primitive Feynman periods were computed. At loop orders eight and nine
many sporadic results exist [6, 37]. These period calculations were the basis
for a recent computation of the renormalization constants in φ3 theory up
to loop order five with applications to percolation theory [5] (see [26] for the
independent classical calculation). Recently, higher dimensional graphical
functions also found applications in the context of graph complexes [14].

Graphical functions also exist in odd dimensions≥ 3. Their theory differs
from the even dimensional case and is much less explored. The case of two
dimensions is singular and needs special treatment [33]. For the physical
QFTs in the standard model, graphical functions in even dimensions ≥ 4
seem to suffice.

Graphical functions also led to the seven loop results for the renormal-
ization constants in φ4 theory [35, 39]. Recently, the eight loop calculation
of the gamma function was finalized [37]. Renormalization demands an ex-
tension to non-integer dimensions as a regularization mechanism, see e.g.
[21, 23]. In the context of graphical functions this dimensional regulariza-
tion is very convenient for calculations. A precise definition of dimensional
regularization, however, requires the use of the parametric representation
which can be unwieldy for mathematical proofs. Therefore, the theory of di-
mensionally regularized graphical functions mostly relies on a series of (well
tested) conjectures.

In this article, we focus on graphical functions in even integer dimension
D ≥ 4, where most results can be proved:

(1) D = 2λ+ 2, λ ∈ {1, 2, 3, . . .}.

We also restrict ourselves to scalar graphical functions. Graphical func-
tions with positive spin can be expressed as tuples of scalar graphical func-
tions. By a dimension shift mechanism, calculations of graphical functions
representing Feynman integrals of particles with positive spin demand the
handling of scalar graphical functions in higher even dimensions. Hence, this
article also paves the ground for future calculations in QFTs with spin (such
as Yang-Mills theories).

1.2. The graphical function method

Let G be a graph with edge set EG and vertex set VG which splits into inter-
nal vertices V int

G and external vertices Vext
G . We assume that G has exactly

three external vertices and label the vertices by vectors in D-dimensional
Euclidean space, Vext

G = {z0, z1, z2} ⊂ RD. The internal labels are xi ∈ RD,
i = 1, 2, . . . , |V int

G |.
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Every edge e ∈ EG has a weight νe ∈ R. We often assume λνe ∈ Z.
Although Feynman graphs in scalar QFTs only have unit edge-weights, it is
convenient to allow general weights. Weights of multiple edges are additive:
if e, f ∈ EG with weights νe, νf have equal endpoints, the pair e, f can be
replaced by a single edge with the same endpoints and weight νe + νf . Zero
weight edges can be eliminated from the graph G. We do not allow G to
have self-loops.

To every edge e = uv ∈ EG we associate a quadric which is the square
of the distance between the labels of its endpoints u, v ∈ VG,

(2) Qe(u, v) = ‖u− v‖2 = (u1 − v1)2 + . . .+ (uD − vD)2.

With this data we write the position space three-point function AG as a
positive integral [23],

(3) AG(z0, z1, z2) =

⎛⎝|V int
G |∏

i=1

∫
RD

dDxi

πD/2

⎞⎠ 1∏
e∈EG

Qλνe
e

.

In this article we only consider graphs G for which the above integral con-
verges. This significantly restricts the set of admissible graphs, see Proposi-
tion 11.

The value of AG(z0, z1, z2) is invariant under simultaneous translations
and rotations of the vectors z0, z1, z2 ∈ RD and it is homogeneous under
scaling. An efficient parametrization is obtained by the identification of the
affine plane spanned by z0, z1, z2 in RD with C. We assume that z0 and
z1 coincide with 0 and 1 in C (setting the scale in C, see Figure 1). The
third vector z2 is associated with a variable z ∈ C in one of the two possible
ways (the ambiguity under complex conjugation leads to the symmetry (G1)
in Theorem 5). The graphical function fG(z) is the Feynman integral AG

evaluated on the complex plane C.
We obtain the following relations between z0, z1, z2 ∈ RD and z ∈ C:

(4) zz =
‖z2 − z0‖2
‖z1 − z0‖2

, (z − 1)(z − 1) =
‖z2 − z1‖2
‖z1 − z0‖2

,

where z is the complex conjugate of z. With these relations we get

(5) fG(z) = ‖z1 − z0‖(D−2)
∑

e νe−D|V int
G |AG(z0, z1, z2).

By power-counting the pre-factor on the right hand side compensates for
the scaling behavior of the Feynman integral AG.
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Figure 1: The vectors z0, z1, z2 ∈ RD span a plane that is identified with
the complex plane C by requiring z0, z1 to coincide with 0, 1 ∈ C. The
position of the vector z2 inside the plane determines the value z ∈ C (up
to conjugation). Comparing ratios of squared side lengths of the triangles
z0, z1, z2 ∈ RD and 0, 1, z ∈ C gives the relations in (4).

1.3. Statement of results

In Section 2 we define graphical functions and summarize their fundamental

properties in Theorem 5: Graphical functions are single-valued real-analytic

functions on C\{0, 1} (see [21]) which admit series expansions at their sin-

gular points 0, 1 and ∞ of log-Laurent type (17) and (19). The expansion

at infinity lifts graphical functions to objects on the (punctured) Riemann

sphere C ∪ {∞}.
Theorem 5, in spite of its technical nature, is a cornerstone of the theory

of graphical functions. The proof is based on the expansion (106) of graphical

functions into Gegenbauer polynomials (see [17]) using radial and angular

graphical functions (Sections 16–20). A full proof of (106) is only provided in

the classical case of four dimensions and unit edge-weights, see Theorems 80

and 84. The general case is well tested but formally relies on the validity of

interchanging the Gegenbauer expansion with the position space integrals,

see Conjecture 86.

Integration of z over the complex plane
∫
C
d2z converts graphical func-

tions into numbers: Feynman periods [33, 35]. The calculation of Feynman

periods is a classical subject in QFT (see e.g. [7, 34]). Feynman periods are

essential ingredients in the calculation of renormalization constants which, in

turn, allow one to calculate critical exponents for statistical models [44]. In
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Section 3 we describe how Feynman periods can be obtained from graphical
functions.

Note that graphical functions were originally devised in [33] for the pur-
pose of computing Feynman periods. Lists of Feynman periods in four-dim-
ensional φ4 theory up to loop order eight can be found in [34, 35]. A list of
periods in six-dimensional φ3 theory up to loop order nine is in [37] which
also extends the φ4 data to loop order eleven.

In Sections 5 to 15 we report on known identities for graphical functions.
The efficiency of the theory of graphical functions relies on the existence of
these identities as tools for their computation.

The most important technique to calculate graphical functions is ap-
pending a single edge e of weight νe = 1 to the vertex z (thus creating a
new internal vertex),

G

1

0

z

G1

1

0

z ,(6)

where we associate the labels 0, 1, z to the external vertices z0, z1, z2.
The main result of this article is the algorithm that performs the oper-

ation of appending an edge to a given graphical function in arbitrary even
dimensions ≥ 4 by taking single-valued primitives, see Section 25.

The three-point functions associated to G1 and G are related by an
inhomogeneous Laplace equation,

(7) Δz2AG1
(z0, z1, z2) = − 4

(λ− 1)!
AG(z0, z1, z2).

To verify (7), recall that for an edge e with weight νe = 1 the relevant factor
in the integrand of (3) is a Green’s functions of the D-dimensional Laplacian
[23],

(8) Δu
1

Qe(u, v)λ
= − 4πλ−1

(λ− 1)!
δ(D)(u− v),

where δ(D) is the D-dimensional Dirac delta distribution.
In Lemma 30 we derive from (7) the following relation between the

graphical functions fG(z) and fG1
(z),

(9)
1

(z − z)λ
Δλ−1(z − z)λfG1

(z) = − 1

(λ− 1)!
fG(z),
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where Δλ−1 is an effective Laplacian acting on complex functions

(10) Δλ−1 = ∂z∂z +
λ(λ− 1)

(z − z)2
.

Solving the partial differential equation (9) for fG1
(z) is one of the main

results of this article. We proceed in three steps: Firstly, a general solution

has to be found. This is trivial for D = 4, λ = 1, where the effective Lapla-

cian factors. The general solution in even dimensions ≥ 4 is constructed in

Theorem 34. The proof of Theorem 34 is in Sections 22 and 23.

As second step towards the solution of (9) we need to control the kernel

of (10). Remarkably, the kernel is trivial in the space of graphical functions:

Theorem 1. The differential equation (9) has a unique solution in the space

of graphical functions.

The general properties of graphical functions in Theorem 5 specify this

unique solution. Formally, Theorem 1 follows from Theorem 36 which will

be proved in Section 24.

With existence and uniqueness of the solution one obtains an algorithm

that allows one to calculate the graphical function fG1
(z) from the graphical

function fG(z). This algorithm is presented in Section 25 as the last step in

the solution of (9). It relies on the construction of single-valued primitives

in an underlying function space. In general, this is a difficult task. For many

practical calculations, however, the space of generalized single-valued hyper-

logarithms (GSVHs) suffices [38], see Section 4. Whenever fG(z) is a GSVH,

then fG1
(z) is a GSVH which can be computed (subject to mild constraints

from time and memory consumption). The algorithm of appending an edge

has been implemented by the second author in [37].

The surprising fact that (9) admits a closed solution may be related to

the interpretation of the effective Laplacian (10) in terms of the Casimir of

a representation of the Lie algebra sl(2,C) whose eigenvalue is related to the

dimension D, see Section 6.2.

The core of the article are proofs of the results in Sections 5 to 15.

Because the proofs require some preparations and rely on independent tech-

niques they are moved to Sections 16 to 24.

The article also contains a generalization of the Gegenbauer identity in

Section 3.6 of [33] to even dimensions ≥ 4, see Section 8. The proof of the

classical four-dimensional case is in Section 21.
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2. Graphical functions

2.1. Definition

It is convenient to define graphical functions as position space Feynman
integrals (3) evaluated at specific vectors.

Definition 2. Let z ∈ C\{0, 1} with real part Re z = (z+z)/2 and imaginary
part Im z = (z − z)/2i. Define the three vectors z0, z1, z2 ∈ RD as

(11) z0 = 0 =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , z1 = e1 =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , z2 =

⎛⎜⎜⎜⎜⎜⎝
Re z
Im z
0
...
0

⎞⎟⎟⎟⎟⎟⎠ .

Let λ ∈ {1, 2, 3, . . .} and G be a weighted graph with external vertices z0, z1, z2
such that the three-point function AG(z0, z1, z2) in (3) exists. Then (compare
(5) with ‖z1 − z0‖ = ‖e1‖ = 1)

(12) f
(λ)
G (z) = AG(0, e1, z2(z))

is the graphical function of G in D = 2λ+2 dimensions at the complex value
z. In the graph G we use labels 0, 1, z for z0, z1, z2 with the identification
illustrated in Figure 1. We drop the superscript (λ) if we do not need to refer
to the dimension of the ambient space.

Definition 2 provides an explicit formula for f
(λ)
G (z) which is equivalent

to (5).
A non-trivial graphical function is never holomorphic in z but a func-

tion of z and its complex conjugate z. Note that in some situations it can be
convenient to consider z and z as independent analytic variables. This per-
spective is essential in QFT for the transition from Euclidean to Minkowski
metric where z and z are independent real variables.

Occasionally we identify fG(z) with the graph G together with the ex-
ternal labels 0, 1, z. In this case we write G0,1,z for the graph G.

Example 3. Let ∅ be the empty graph (with no edges) and uv be the graph
with single edge uv of weight νuv between the external vertices u, v ∈ {0, 1, z}.
We get

f∅(z) = f01(z) = 1, f0z(z) = (zz)−λν0z , f1z(z) = [(z − 1)(z − 1)]−λν1z .
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Figure 2: The three-star and its completion (see Section 2.3) with
indicated weights.

The first non-trivial graphical function is associated to the three-star .

Example 4. Let z1 = (1, 0, . . . , 0)T , z2 = (Re z, Im z, 0, . . . , 0)T and

f
(λ)

(z) =

∫
RD

1

‖x‖2λ‖x− z1‖2λ‖x− z2‖2λ
dDx

πD/2

be the graphical function of the three-star in Figure 2 with unit weights in
D = 4, 6, 8 dimensions (λ = 1, 2, 3). We find (see [33], correcting a misprint

in f
(3)

(z))

f
(1)

(z) =
4iD(z)

z − z
, f

(2)
(z) =

1

zz(z − 1)(z − 1)
,

f
(3)

(z) =
2zz − z − z + 2

8[zz(z − 1)(z − 1)]2
,

where

(13) D(z) = Im(Li 2(z) + ln(1− z) ln |z|)

is the Bloch-Wigner dilogarithm (see e.g. [43]). The graphical function of
the three-star is rational in any even dimension ≥ 6. This can be seen by
using the integral representation (3.16) in [33],

f
(λ)

(z) =
1

(λ− 1)!(λ− 1)

∫ 1

0

(zz)1−λ − t2λ−2

(1− tz)λ(1− tz)λ
dt, if λ = 2, 3, . . . ,

and proving that the residues of the integrand at t = 1/z and at t = 1/z
vanish. We, e.g., get for the residue at t = 1/z

1

(−z)λ
∂λ−1
t

∣∣∣
t=z−1

(zz)1−λ − t2λ−2

(1− tz)λ
=

(−1)λ(2λ− 2)!(1− (tz)λ−1)

(λ− 1)!z2λ−1(1− tz)2λ−1

∣∣∣∣
t=z−1

= 0.



Graphical functions in even dimensions 523

2.2. Fundamental properties

We need the following generalization of the edge-weight to subgraphs: Let
g be a subgraph of G, then

(14) Ng =
( ∑

e∈Eg

νe

)
− λ+ 1

λ
|V int

g |

is the weight of the graph g. Note that Ng is related to the superficial degree
of divergence in QFT [23]. Equation (5) becomes

(15) AG(z0, z1, z2) = ‖z1 − z0‖−2λNGf
(λ)
G (z),

subject to the relation (4) between z and z0, z1, z2.
Following [38] we define SV{0,1,∞} as the space of functions on C\{0, 1}

which are analytic in z and z and have single-valued log-Laurent expansions
(17) and (19) at 0, 1, and ∞ (see Proposition 3.16 in [33] and Theorem 4.4 in
[35]). Graphical functions have the following three fundamental properties
(note that (G1) and (G2) also hold in odd dimensions):

Theorem 5. Let G be a weighted graph such that the graphical function
fG(z) exists in D = 2λ + 2 ≥ 3 (odd or even) dimensions. For any vertex
set V we define G[V] as the graph which is induced in G by V (i.e. G[V] has
the edges of G which have both endpoints in V). Then
(G1) fG(z) is a symmetric function, fG(z) = fG(z).
(G2) fG(z) is a single-valued positive real-analytic function on C \ {0, 1}.
(G3) fG(z) ∈ SV{0,1,∞}, i.e. it admits single-valued log-Laurent expansions

at 0, 1, and ∞, if

(16) D = 4 and νe = 1 for all e ∈ EG.

Explicitly, let νz (ν>z , ν
<
z ) be the sum of (positive, negative) weights

adjacent to the vertex z. At the singular points s = s = 0, 1 there exist
coefficients cs�,m,m ∈ R such that for all |z − s| < 1

(17) fG(z) =

|V int
G |∑

�=0

∞∑
m,m=Ms

cs�,m,m[log(z − s)(z − s)]�(z − s)m(z − s)m,

where

(18) Ms = − max
V⊆V int

G

λNG[V∪{s,z}] ≥ min{1− λν>z ,−λνsz}.
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At infinity there exist coefficients c∞�,m,m ∈ R such that

(19) fG(z) =

|V int
G |∑

�=0

M∞∑
m,m=−∞

c∞�,m,m(log zz)�zmzm if |z| > 1,

where

(20) M∞ = −λNG + max
V⊆V int

G

λNG[V∪{0,1}] ≤ max{−1− λν<z ,−λνz}.

Property (G1) is implied by (4) and (5). Property (G2) is proved in [21].
Property (G3) is proved in Sections 16–20 using Gegenbauer expansions and
the concept of radial and angular graphical functions.

Conjecture 6. Statement (G3) in Theorem 5 remains valid if Condition
(16) is weakened to

D = 2λ+ 2 ≥ 4 is even and λνe ∈ Z for all e ∈ EG.

It is proved in Section 20 that Conjecture 6 follows from Conjecture 86
which posits that one can interchange the sum in the Gegenbauer expansion
with the position space integrals.

Another strategy to prove Conjecture 6 is to shift the dimension D. It
is known that Feynman integrals in dimension D can be expressed as linear
combinations of Feynman integrals in dimension D−2 [41, 27]. This suggests
that the Conjecture might follow for all even dimensions from the result for
D = 4 in Theorem 5. Unfortunately, such arguments not only require the
existence of the Feynman integral in integer dimensions, but also the ex-
istence of Laurent expansions in a small parameter ε in the vicinity of an
integer dimension. The Laurent expansion of a Feynman integral in, for in-
stance, 6−2ε dimensions may be expressed in terms of a linear combination
(with ε-dependent coefficients) of 4− 2ε dimensional Feynman integrals. It
is possible to calculate the ε expansion of graphical functions in such non-
integer valued dimensions [35, 39]. Unfortunately, rigorous statements such
as Theorem 5 on these ε expansions are rare and the whole theory stands on
a much more conjectural basis. This strategy to prove Conjecture 6 would
therefore likely require further advances in this framework of dimension-
ally regularized graphical functions. An advantage of the dimensional shift
method would be that it is not limited to edge weights 1.

A positive answer to Question 83 also leads to a (possibly partial) proof
of the conjecture. In any case, a proof of Conjecture 6 requires methods
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in representation theory or in analysis which are beyond the scope of this
article. An alternative approach to a proof could be the parametric repre-
sentation in Section 2.5.

There also exist generalizations of (G3) to weights λνe /∈ Z and an analog
of (G3) for odd dimensions (with square roots).

Corollary 7. If a graphical function fG(z) exists in a neighborhood of one
value z ∈ C\{0, 1}, then it exists for all z ∈ C\{0, 1}.

Proof. This follows from (G2) by real-analytic continuation.

The existence of a log-Laurent expansion at infinity promotes graphi-
cal functions to objects on the punctured Riemann sphere. Although (G3)
is of technical nature it is an important property for the theory of graphi-
cal functions, see e.g. Section 24. Single-valued log-Laurent expansions are
also central in the theory of GSVHs which is vital for computations with
graphical functions [38].

2.3. Completion

The weighted analog of the vertex degree (the number of edges attached to
a given vertex) is the sum of the weights of all edges incident to the vertex
(the vertex weight).

On the Riemann sphere it is natural to consider conformal transforma-
tions. We prepare the use of conformal symmetry by adding a fourth external
vertex ∞ to the graph. This vertex ∞ connects to all internal vertices such
that their weights become 2(λ+ 1)/λ.

Definition 8. Let G be a graph with weighted edges and three external ver-
tices 0, 1, z. A completion G of G in D = 2λ+2 dimensions is a graph G with
an extra external vertex ∞ and weighted edges EG ∪ {01} ∪ {x∞ : x ∈ VG}
such that every internal vertex has weight 2(λ + 1)/λ and every external
vertex has weight zero.

Any graph which is completed up to edges between external vertices (i.e.
all internal vertices have weight 2(λ+ 1)/λ) is internally completed.

The de-completion of a completed graphical function G is G\{∞}. It
may differ from G by an extra edge between the external vertices 0 and 1.
Because this edge has quadric Qe = 1 in (2) it does not contribute to the
graphical function,

(21) fG(z) ≡ fG\{∞}(z) = fG(z).
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Because only completed graphs have a vertex ∞, we can use the same no-

tation for graphical functions of completed and uncompleted graphs.

Proposition 9 (Lemma 3.18 in [33]). Completion is always possible and

unique. If G has weights in 1
λZ, then G also has weights in 1

λZ. A completed

graph G has total weight NG = 0 (see (14)).

Proof. Most of the proof is in [33]. Because of the importance of completion

we reproduce the proof.

Firstly, we internally complete the graph G by adding ∞ and weighted

edges from ∞ to internal vertices such that all internal vertices have weight

2(λ + 1)/λ. We denote the internally completed graph with G′. It is clear

that internal completion is always possible. Let ν0, ν1, νz, ν∞ be the total

weights of the external vertices in G′.

Next, we add an edge z∞ of weight −νz to G′. This gives z the total

weight zero whereas the weight of ∞ becomes ν∞ − νz.

We are left with the triangle 01, 0∞, 1∞ to be added to the graph in

order to nullify the total weights of 0, 1,∞. The weights are given by the

unique solution of a linear system,

ν01 =
−ν0 − ν1 − νz + ν∞

2
, ν0∞ =

−ν0 + ν1 + νz − ν∞
2

,

ν1∞ =
ν0 − ν1 + νz − ν∞

2
.

(22)

We now assume that all weights of G are in 1
λZ. Because the total weights

of internal vertices in G are in 1
λZ, all weights of G

′ are in 1
λZ. We also have

ν0, ν1, νz, ν∞ ∈ 1
λZ. Therefore νz∞ ∈ 1

λZ. To show that ν01, ν0∞, ν1∞ ∈ 1
λZ

we sum the weights of half-edges in G′ and obtain

(23)
2(λ+ 1)

λ
|V int

G′ |+ ν0 + ν1 + νz + ν∞ = 2
∑
e∈EG′

νe ∈
2

λ
Z.

Hence νext = ν0+ ν1+ νz + ν∞ ∈ 2
λZ and ν01 = ν∞− 1

2νext, ν0∞ = ν1+ νz −
1
2νext, ν1∞ = ν0 + νz − 1

2νext ∈
1
λZ.

With (22) the total weight of the completion is NG′ − νz + ν01 + ν0∞ +

ν1∞ = NG′ − 1
2νext which vanishes by (23).

Example 10. The completion of the three-star is depicted in Figure 2. In

Figure 3 the completions of the graphs Ga and Gb are depicted.
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By conformal symmetry a convergent Feynman integral of an (inter-

nally) completed graph G with four external vertices AG(z0, z1, z2, z3) can

be expressed in two cross-ratios (compare (4))

(24)
‖z2 − z0‖2‖z3 − z1‖2
‖z1 − z0‖2‖z3 − z2‖2

= zz,
‖z2 − z1‖2‖z3 − z0‖2
‖z1 − z0‖2‖z3 − z2‖2

= (z − 1)(z − 1).

Therefore the theory of graphical functions also covers convergent conformal

Feynman integrals which are prominent in super Yang-Mills Theories, see

e.g. [19].

We will see in Section 2.4 that a completed graphical function is invariant

under a transformation of external labels which stabilizes a certain cross-

ratio. We can also use completion to formulate a combinatorial criterion for

the existence of a graphical function.

Proposition 11 (Lemma 3.19 in [33]). The graphical function fG(z) exists

(for all z ∈ C\{0, 1}) if and only if (see (14))

(25) NG[V] < (|Vext| − 1)
λ+ 1

λ

for all V ⊂ VG with |V int| ≥ 1 internal and |Vext| ≤ 1 external vertices.

Proof. The proof is by power-counting [28]. It is the weighted analog of the

proof of Lemma 3.19 in [33] (the formulation of Lemma 3.19 in [33] is slightly

imprecise, see also [21]).

Note that it suffices to apply (25) to internally completed graphs. If G

fails to be convergent for some V, then G is ultraviolet divergent if ∞ /∈ V
(Example 12) and infrared divergent if ∞ ∈ V (Example 13).

Example 12. Let G be a graph with an edge e = uv of weight νe = (λ+1)/λ.

We assume that not both u and v are external and set V = {u, v} in (25).

If u or v is external, then NG[V] = 0. If both u and v are internal, then

NG[V] = −(λ + 1)/λ. In both cases we conclude that the graphical function

fG(z) is (ultraviolet) divergent.

Example 13. Let G be a graph with an internal vertex v of total weight

(λ + 1)/λ. In the completed graph G we have νv∞ = (λ + 1)/λ. With V =

{0,∞} the graphical function fG(z) is (infrared) divergent.
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2.4. Permutation of external vertices

By Theorem 5 graphical functions live on the Riemann sphere with punc-
tures at 0, 1,∞. Let

(26) M01∞ =
{
z �→ φ(z) ∈

{
z, 1− z,

z − 1

z
,

z

z − 1
,

1

1− z
,
1

z

}}
be the permutation group of these punctures by Möbius transformations.
Consider a graphical function fG(z) with external labels 0, 1, z and φ ∈
M01∞. We define the graphical function of the graph G′ with external labels
0, 1, φ(z) as fG′(z) = fG(φ(z)) and lift this definition to completed graphs.

Two completed graphical functions which differ only in external labels are
equal if the cross-ratios of the external vertices are equal. In other words,

a permutation of external vertices changes the argument of a completed
graphical function by a Möbius transformation in M01∞. Extending the

symmetry from the six-fold permutation of 0, 1, z to the 24-fold permutation
of 0, 1, z,∞ is the main benefit of completion.

Theorem 14 (Theorem 3.20 in [33]). Let G1 and G2 be two completed
graphical functions which differ only in their external labels zi0, z

i
1, z

i
2, z

i
3 ∈

Vext
Gi

, zij ∈ {0, 1, φi(z),∞}, φi ∈ M01∞. If the two sets of external labels have

equal cross-ratios of complex numbers

(27)
(z12 − z10)(z

1
3 − z11)

(z12 − z11)(z
1
3 − z10)

=
(z22 − z20)(z

2
3 − z21)

(z22 − z21)(z
2
3 − z20)

,

then

(28) fG1
(z) = fG2

(z).

In particular, every completed graphical function is invariant under a double
transposition of external labels.

Proof. The symmetry under permutation of 0, 1, z is evident from the def-

inition of graphical functions by invariants (4) and NG1
= NG2

= 0 by
Proposition 9. The general result follows from the conformal symmetry of
the integrand in (3). The proof is in [33].

Example 15 (Example 3.21 in [33]). Consider the four-dimensional graph-
ical function associated to Ga in Figure 3. The completion Ga becomes Gb
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0 1 z

Ga

0 1 z

∞
Ga

−3

−2

1 0 ∞

z

Gb

−3

−2

1 0

z

Gb

−3 1 0

Gc Gc = K5

Figure 3: The calculation of the four-dimensional graphical function Ga by
completion. Edge-weights = 1 are indicated. We complete to Ga, double
transpose the external vertices to Gb, de-complete to Gb, remove edges be-
tween external vertices to Gc, and period complete to Gc.

by a double transposition of external vertices. The graph Gb de-completes to

Gb. We obtain

fGa
(z) = fGa

(z) = fGb
(z) = fGb

(z).

The graphical function fGb
(z) can easily be calculated, see Examples 23

and 28.

Internally completed graphs with no edges between external labels and

no distinction of external labels are equivalence classes of graphical functions

with equal complexity. The graphs in Example 3 are all in the equivalence

class of the empty graph.

2.5. Parametric representation

The position space definition of a graphical function in (3) and (12) can

be replaced by a parametric representation. The virtue of the parametric

representation is that the dimension D enters only as a parameter so that

the generalization to D ∈ C is possible. Moreover, there exists the method

of parametric integration by F. Brown and E. Panzer [10, 11, 29], see Sec-

tion 14.

We follow [21] for the subsequent definition and theorem.
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Definition 16. Let P = {P1, . . . , PN} denote a partition of the external

vertices {0, 1, z} of a graph G. We write FP
G for the set of all spanning

forests T1 ∪ . . .∪TN consisting of exactly N (pairwise disjoint) trees Ti such

that Pi ⊆ Ti. The dual spanning forest polynomial associated to P is

(29) Ψ̃P
G(α) =

∑
F∈FP

G

∏
e∈F

αe.

We write Ψ̃G for Ψ̃0,1,z
G and define the polynomial

(30) Φ̃G(α, z) =
∑

abc∈{01z,0z1,1z0}
|a− b|2Ψ̃ab,c

G (α).

Example 17. The three-star in Figure 2 with edges 1, 2, 3 attached to ver-

tices 0, 1, z has

(31)

Ψ̃ (α) = α1 + α2 + α3, Φ̃ (α, z) = α1α2 + zzα1α3 + (z − 1)(z − 1)α2α3.

Theorem 18. Let G be a non-empty weighted graph such that the graphical

function fG(z) exists. We label the edges by 1, 2, . . . , |EG|. For any set of

non-negative integers ne such that ne + λνe > 0 for all edges e ∈ EG we

have the following dual parametric representation of fG(z) as the convergent

projective integral (Γ(x) =
∫∞
0 tx−1 exp(−t)dt is the gamma function)

(32) fG(z) =
(−1)

∑
ene Γ(λNG)∏

e Γ(ne + λνe)

∫
Δ
Ω
[∏

e

αne+λνe−1
e ∂ne

αe

] 1

Φ̃λNG

G Ψ̃λ+1−λNG

G

,

where

(33) Ω =

|EG|∑
e=1

(−1)e−1αedα1 ∧ . . . ∧ d̂αe ∧ . . . ∧ dα|EG|

is the projective volume form. The integration domain is given by the positive

coordinate simplex

(34)

Δ = {(α1 : α2 : . . . : α|EG|) : αe > 0 for all e ∈ {1, 2, . . . , |EG|}} ⊂ P|EG|−1R.

If all weights νe are positive, the parametric representation can be du-

alized by a Cremona transformation, see Corollary 1.8 in [21].
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3. Periods

Feynman periods are constant graphical functions. If a graph G has an
isolated vertex z, then the integrand in the corresponding integral (12) has
no dependence on z. The Feynman integral depends on the sole invariant
‖z1−z0‖ which is 1 in the context of graphical functions. A Feynman period
is hence given by a graph with two external vertices 0 and 1, see e.g. Gc in
Figure 3.

Feynman periods can be calculated by specializing graphical functions to
z = 0, z = 1, or z = ∞, see e.g. [15]. A more powerful method is to choose
a convenient internal vertex in a period graph G and promote it to the
external vertex z. If the corresponding graphical function can be calculated,
the period can be obtained by integration of z over C.

Definition 19. Let G be a graph with two external labels 0, 1. The Feynman
period PG is the constant graphical function fG∪{z} with an isolated external
vertex z.

A combinatorial criterion for convergence of the Feynman period PG can
be obtained from the corresponding result for the graphical function fG∪{z},
see Proposition 11.

Proposition 20 (Lemma 3.34 in [33]). Let G be a graph with two external
labels 0 and 1 such that the Feynman period PG exists. In G′ we promote one
internal vertex of G to the external vertex z. Then (d2z = dRe z ∧ d Im z)

(35) PG = (−1)λ
(λ− 1)!

(2λ− 1)!

∫
C

(z − z)2λfG′(z)
d2z

2π
.

Proof. The proof uses spherical coordinates (77). The volume form in these
coordinates ZD−1 sinD−2 φz

1dZdφz
1 translates into (−4)−λ(z−z)2λd2z/2. The

pre-factor originates from the volume of the (D − 2)-sphere, see [33].

For the evaluation of the integral over the complex plane we can take
advantage of the single-valuedness of graphical functions and use a residue
theorem in [33] (Theorem 2.29).

Like graphical functions, Feynman periods have a completion [34].

Definition 21. Let G be a graph with weighted edges and two external ver-
tices 0, 1. The period completion G of G is the graph obtained from the com-
pletion of the graphical function G∪{z} (with isolated vertex z, Definition 8)
and the additional triangle 01, 0∞, 1∞ with edge-weights (λ + 1)/λ. In G
we delete z and forget the labels 0, 1,∞ so that G is an unlabeled weighted
2(λ+ 1)/λ-regular graph.
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It is clear by Proposition 9 that the completed period has weights in 1
λZ

if the uncompleted graph has weights in 1
λZ. The period is invariant under

completion.

Theorem 22 (Theorem 2.7 in [34]). Let G1 and G2 be two graphs with
external vertices 0, 1 and equal period completion G. Then

(36) PG ≡ PG1
= PG2

.

Proof. The proof in [34] relies on conformal transformations.

Completion is a means to handle equivalence classes of graphs with equal
Feynman period. Note that completion of periods is more powerful than
completion of graphical functions. One has the freedom to remove any vertex
∞ from the completed graph and thereafter pick any two vertices 0 and 1
for the calculation of the period.

Example 23. The graph Gc in Figure 3 completes to K5, the complete graph
with five vertices. In four dimensions its period is [17]

PK5
= 6ζ(3),

where ζ is the Riemann zeta function.

Example 24 (Complete graphs Kn,D). We generalize Example 23 to com-
plete graphs Kn,D of uniform weight ν in D dimensions. By 2(λ + 1)/λ-
regularity the weight of all edges is

ν =
D

(n− 1)λ
.

The period of the graph K3,D is 1.
The period of the graph K4,D is given by (50),

PK4,D
=

Γ(D/6)3

Γ(D/3)3
.

It is rational for D ∈ 6Z where the weight is in 1
λZ.

For n ≥ 5 we impose the constraint (n−1)|D so that λν ∈ Z. The graph
K5,D is constructible (see Section 7). By Conjecture 46 we expect that the
period is a multiple zeta value (MZV) of weight ≤ 3, i.e. a rational linear
combination of 1 and ζ(3). With HyperlogProcedures [37] we get

PK5,4
= 6ζ(3) (see Example 23),
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PK5,8
=

3

5
ζ(3)− 7

10
,

PK5,12
=

1

80
ζ(3)− 173

11520
,

PK5,16
=

47

617760
ζ(3)− 73219

800616960
,

PK5,20
=

79

448081920
ζ(3)− 984571

4645713346560
.

Because the numerical evaluation of PK5,D
becomes very small for large D,

periods of complete graphs with five vertices provide a sequence of rational
approximations of ζ(3).

Beyond five vertices complete graphs are not constructible. For six ver-
tices, double use of unique triangle reductions, see Section 11 and Exam-
ple 59, gives [37]

PK6,10
=− 5

7
ζ(5) +

19

30
ζ(3)− 13

630
,

PK6,20
=

25

5444195328
ζ(5)− 3886573

1440534083788800
ζ(3)− 1417432087

933466086295142400
,

PK6,30
=− 109

3737370802913280000000
ζ(5)+

+
3035142067981

155555277863119316582400000000000
ζ(3)+

+
684204291515294677

100799820055301317145395200000000000000
.

For n ≥ 7 the computation of Kn,D is complicated. With [37] we get (see
Example 61)

PK7,6
= 360ζ(3, 5) + 690ζ(3)ζ(5)− 29

315
π8,

where ζ(3, 5) =
∑

0<k<� k
−3�−5 is an MZV of weight eight.

Example 25 (Wheels WSn,D). Another generalization of Example 23 is
given by the wheels with n spokes in Figure 4 where the spokes have weight
1/λ and the rim has weight 1. In their completion the edge 0∞ has weight
(D − n)/λ. The period is convergent if (D − n)/λ ≤ 1 ⇔ D ≤ 2n − 2 (see
Example 13). In Example 87 we will obtain a closed expression for the pe-
riod of WSn,D using radial and angular graphical functions (the Gegenbauer
method).
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Figure 4: The wheel with n spokes WSn,D in D = 2λ + 2 dimensions and
its completion WSn,D. The solid edges on the rim have weight 1, the
dashed spokes have weight 1/λ and the dotted edge between 0
and ∞ in WSn,D has weight (D − n)/λ.

For even D the result is a Q-linear combination of odd single zetas with

weights ranging from 2n−2λ−1 to 2n−3. The wheels WSn,D are constructible

by appending weight 1 edges, only. The wheel has n+ 1 vertices, so that the

maximum weight is consistent with Theorem 45.

For odd D the period of WSn,D is a polynomial in π2 of degree n− 1.

3.1. Parametric representation

In Section 2.5 we gave a (dual) parametric representation for graphical func-

tions. As a corollary we obtain an analogous result for periods. For an unla-

beled graph G we define the dual graph (Kirchhoff)-polynomial [25] as (see

(29))

(37) Ψ̃G = Ψ̃∅
G =

∑
T

∏
e∈T

αe

where the sum is over spanning trees.

Corollary 26 (Corollary of Theorem 18). Let G be a weighted 2(λ+ 1)/λ-

regular graph such that the Feynman period PG exists in D = 2λ + 2 ≥
3 dimensions. Let ∞ ∈ VG be a vertex in G and G = G\{∞} be a de-

completion of G. We label the edges of G by 1, 2, . . . , |EG|. For any set of

non-negative integers ne such that ne+λνe > 0 for all edges e ∈ EG we have

the following dual parametric representation of PG ≡ PG as the convergent
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projective integral

(38) PG =
(−1)

∑
ene Γ(λ+ 1)∏

e∈EG
Γ(ne + λνe)

∫
Δ
Ω
[ ∏
e∈EG

αne+λνe−1
e ∂ne

αe

] 1

Ψ̃λ+1
G

,

where Ω is defined in (33). The integration domain is given by the positive
coordinate simplex (34).

Proof. The theorem is trivial in the case that G is a single edge of weight
(λ + 1)/λ. We may assume that G has at least three vertices. Let 0, 1 be
two vertices in G such that the edge 01 has positive weight ν01 (such an
edge always exists). We define G0,1,z = G ∪ {z}\{01} as the graph which
is obtained from G by removing the edge 01 and adding an isolated vertex
z. The completion of G0,1,z has weight NG0,1,z

= 0, see Proposition 9. The

graph of the completed period G has the edges of G0,1,z plus three edges of
weight (λ + 1)/λ, see Definition 21. So, NG = (λ + 1)/λ if one considers 0
and 1 as external vertices in G = G\{∞}. We find

(39) NG0,1,z
=

λ+ 1

λ
− ν01.

Moreover, we obtain from Definition 16 that

Ψ̃G = α01Ψ̃G0,1,z
+ Φ̃G0,1,z

.

Using integration by parts it suffices to prove (38) for n01 = 0. In an affine
coordinate patch where some αe = 1 for e = 01 the integral over α01 in (38)
is ∫ ∞

0

αλν01−1
01 dα01

(α01Ψ̃G0,1,z
+ Φ̃G0,1,z

)λ+1
=

∫ ∞

0

xλν01−1dx

(x+ 1)λ+1
·
Φ̃λν01−λ−1
G0,1,z

Ψ̃λν01

G0,1,z

where we substituted α01 = Φ̃G0,1,z
x/Ψ̃G0,1,z

. We write the first factor on the

right hand side as projective integral
∫
xλν01−1yλ(1−ν01)/(x+ y)λ+1Ω with

coordinates (x : y). The affine patch x + y = 1 with Ω = dx gives the
definition of the Euler beta function. For the integral over α01 in (38) we
hence get

Γ(λν01)Γ(λ+ 1− λν01)

Γ(λ+ 1)

1

Φ̃λ+1−λν01

G0,1,z
Ψ̃λν01

G0,1,z

.

With this result and (39) Equation (38) reduces to (32) for G0,1,z.
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In the case of positive weights νe a Cremona transformation provides a

parametric representation of PG with integrand (
∏

e α
λ(1−νe)
e )/Ψλ+1

G where

ΨG =
∑

T

∏
e/∈T αe is the Kirchhoff polynomial.

Remark 27. Examples of parametrically represented Feynman periods in

various even dimensions are invariant differential forms on complexes of

graphs in [14].

4. Single-valued integration and generalized single-valued
hyperlogarithms

The theory of graphical functions reduces the calculation of corresponding

Feynman integrals to single-valued integrations.

For rational functions it suffices to know that a single-valued primitive of

1/(z− a) is log[(z− a)(z− a)] for any constant a ∈ C. Finding single-valued

primitives in general (or even proving their existence) is an open problem.

One expects that under rather mild conditions single-valued functions have

single-valued primitives. First advances are due to F. Brown in the context

of hyperlogarithms which generalize the above example to higher weights

[8, 9]. Brown’s approach was the mathematically appealing use of gener-

ating functions. It turned out that in the context of graphical functions,

generating functions are unwieldy because they carry the information of

all hyperlogarithms up to a certain weight while one is only interested in

a few very specific ones. In [33] the second author overcame the difficulty

by constructing a bootstrap algorithm. The essence of the algorithm is a

commutative hexagon which allows one to reduce the single-valued integra-

tion of hyperlogarithms to multi-valued (anti-)integrations and single-valued

integrations of lower weights [35].

The main problem for using single-valued integration in the context of

graphical function, however, was that the function space of single-valued

hyperlogarithms is too restrictive. Only the simplest graphical functions

can be expressed in terms of single-valued hyperlogarithms. It turned out

that it is necessary to generalize single-valued hyperlogarithms to include

primitives of differential forms dz/(azz+bz+cz+d), a, b, c, d ∈ C. Examples

are the primitives of log(zz)/(z − 1/z) or of D(z)/(z − z) (where D is the

Bloch-Wigner dilogarithm (13)). The latter example was already studied

in [16]. The construction of these generalized single-valued hyperlogarithms

(GSVHs) also relies on the commutative hexagon but the theory is much

more involved [38].
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In fact, the full theory of GSVHs is almost as comprehensive as the

theory of graphical functions. It became the second pillar in the framework

that uses graphical functions for calculations in QFT. (The third pillar is

the extension to non-integer dimensions in order to handle Feynman inte-

grals with divergences [39].) The main result of the theory of GSVHs is that

in the function space of GSVHs single-valued (anti-)primitives always exist

and that they can be constructed very efficiently (for suitable sets of singu-

larities). As it is not easy to summarize the theory in a few paragraphs we

refer the interested reader to [38].

There exist graphical functions which are not GSVHs (in four dimen-

sions, e.g., the graph G8 in Figure 5). For these graphical functions the

general theory is still valid but there presently exists no handle on their

computation. In Definition 31 we merely assume the existence of single-

valued primitives so that the theory of graphical function extends to any

future developments in the theory of single-valued integration.

5. Elementary identities for graphical functions

In many cases graphical functions can be calculated. A particularly tractable

case are graphical functions that emerge from the empty graph by a series

of combinatorial operations: adding edges between external vertices (Sec-

tion 5.2), products and factors (Sections 5.1 and 5.3), permutation of ex-

ternal vertices (Section 2.4), and appending an edge to the vertex z (Sec-

tion 6). In this case the graphical function is constructible (see Section 7)

and it can be computed in terms of GSVHs [38]. A Maple implementation

is in HyperlogProcedures [37].

5.1. Products

Assume the graph of an (internally) completed graphical function G dis-

connects upon the removal of its external vertices into G1 and G2 where

the removed edges (adjacent to the removed external vertices) are added to

corresponding graphs. Then the Feynman integral (3) factors into two dis-

joint sets of integration variables. Accordingly, the graphical function fG(z)

factors,

fG(z) = fG1
(z)fG2

(z),(40)
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which can be depicted diagrammatically as

0

1

z

∞

G1 G2

G

=

=

0

1

z

∞

0

1

z

∞

G1 G2× .

5.2. Edges between external vertices

Edges between external vertices provide rational factors by the product re-
duction from the previous subsection and Example 3.

Example 28. For the graphical function fGb
(z) in Figure 3 we obtain in

four dimensions

fGb
(z) =

fGc
(z)

zz(z − 1)(z − 1)
=

PK5

zz(z − 1)(z − 1)
=

6ζ(3)

zz(z − 1)(z − 1)
.

Note that fGc
(z) is a constant graphical function, see Section 3. It equals

the Feynman period of the completed graph K5, see Example 23.

5.3. Period factors

We can interpret Example 28 in the following way: An (internally) com-
pleted graphical function with isolated vertex ∞ evaluates to a Feynman
period times a weighted triangle between the external vertices 0, 1, z. This
generalizes to the following proposition.
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Proposition 29. Let G be an (internally) completed graphical function with
a three-vertex-split into G1 and G2. We include the split vertices a, b, c to-
gether with their corresponding edges to G1 or G2 (respectively) and assume
that G1\{a, b, c} has only internal vertices. We add (unique) weighted trian-

gles (ab, ac, bc) to G1 and to G2 to obtain the (unlabeled) completed period
G1 and the (internally) completed graph G2. Then

fG(z) = PG1
fG2

(z),(41)

which can be depicted diagrammatically as

G1 G2

G

0
1

z
∞

= G1 G2

0
1

z
∞

× .

Proof. We may add to G a pair of edges ab with total weight zero without
changing the graphical function fG(z). We move one edge of the pair to G1

whereas the other one goes to G2. Likewise we generate pairs of edges ac
and bc. We can adjust the weights of these pairs such that the vertices a, b,
c have total weight zero in G1. This procedure does not affect completion
so that the right hand side of (41) is insensitive to the extra edges.

We thus may assume without restriction that the total weights of the
vertices a, b, c in G1 are zero. Hence, the total weights of a, b, c in G2 equal

the total weights of a, b, c in the (internally) completed graph G. Therefore,
G2 is (internally) completed.

Completion adds an isolated vertex ∞ to G1. By Proposition 9 we have
NG1

= NG1
= 0 and by (15) the Feynman integral AG1

with external ver-
tices a, b, c equals the graphical function fG1

(z) with invariants(4). By The-
orem 14 we can simultaneously swap the external vertices 0, 1 and z,∞
without changing the graphical function. Now z is an isolated vertex. This
implies that the Feynman integral of G1 is constant and factors from the
integral. By Theorem 22 we have fG1

(z) = PG1
yielding (41).

If, after the removal of three vertices, a graphical function has a bridge
of negative weight −k/λ, k = 1, 2, . . ., (and one part is fully internal), then a
period factorization is still possible with a technique that is a straightforward
generalization of the method in Section 6.4.
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6. Appending an edge

In this section we consider graphs which have a single edge e with weight
λνe ∈ Z connecting the external vertex z to an internal vertex. By Theo-
rem 14 this also covers the case that any other external vertex has a single
edge. By convergence we have νe ≤ 1 (see Example 12). We distinguish the
cases νe = 1 (the main case, Section 6.1), 0 < νe < 1 (Section 6.3), and
νe < 0 (Section 6.4).

6.1. Weight νe = 1

If a graph G1 has a single edge e of weight νe = 1 connecting the vertex z
to an internal vertex of G1, then the effective Laplace equation (9) gives a
relation between the graphical functions fG1

(z) and fG(z) in (6).

Lemma 30 (Proposition 3.22 in [33]). In the situation of (6) where the
edge e that is attached to z in G1 has weight νe = 1 we have

(42) Δλ−1(z − z)λfG1
(z) = − 1

(λ− 1)!
(z − z)λfG(z)

with the effective Laplacian Δλ−1 = ∂z∂z + λ(λ− 1)/(z − z)2.

Proof. The proof uses spherical coordinates (77), see [33].

We solve the differential equation in three steps: Firstly, we construct a
general solution in the space of single-valued functions (Theorem 34). Then,
we prove in Theorem 36 that the solution is unique in the space of functions
with general property (G3) of graphical functions (Theorem 5). Finally, we
give an algorithm in Section 25 that picks the unique graphical function in
the general solution of (42).

With the solution of (42) we construct the graphical function G1 from
G. In practice, we need to work in a function space where single-valued
primitives can be computed. A good such function space are generalized
single-valued hyperlogarithms (GSVHs) [38]. If fG(z) is a GSVH, then also
fG1

(z) is a GSVH, so that the algorithm can be iterated.
The algorithm of appending an edge is the essence of the theory of graph-

ical functions. It is this highly non-trivial construction that makes so many
graphical functions calculable. With the rare exception of the Gegenbauer
method in Section 8, appending an edge is the only situation where actual
computations in terms of single-valued integrations are performed. All other
identities in Sections 9 to 12 have the purpose to reduce the calculation of a
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graphical function to a situation where an edge can be appended to a simpler
graph. Note that the algorithm of appending an edge extends to non-integer
dimensions in the context of dimensional regularization [35, 39].

Definition 31. The single-valued integral
∫
sv dz (or

∫
sv dz) with respect

to z (or z) is a fixed vector space endomorphism of SV{0,1,∞} such that
∂z

∫
sv dz = ∂z

∫
sv dz = idSV{0,1,∞}. If single-valued integrals do not exist on

the whole space SV{0,1,∞}, we restrict ourselves to a maximum subspace
on which single-valued integrals exist, see Section 4. Such a function space
always contains the space of GSVHs [38]. If a restriction is necessary, the
subsequent results inherit this restriction.

Remark 32.

1. Definition 31 does not uniquely specify
∫
sv. Single-valued integration

with respect to z, e.g., is only defined up to the addition of rational
functions in z with poles at 0 and 1. For solving (42) we can use any
version of

∫
sv.

2. In [38] efficient algorithms for single-valued integration of GSVHs with
respect to z and z are presented.

3. The single-valued integration of GSVHs in [37] can produce anti-holo-
morphic poles in C[(z − s)−1] for s = 0, 1. These poles need to be
subtracted to obtain an endomorphism of SV{0,1,∞}.

4. It is natural to assume that single-valued integration in the sense of
Definition 31 always exist. However, it is unclear how to construct
single-valued primitives for functions which are not GSVHs. By lack
of a general construction, solving (42) (and hence appending edges) is
practically limited to GSVHs.

For λ− 1 = n = 0, 1, 2, . . . we define the following integral operators

I+n : (z − z)nSV{0,1,∞} → SV{0,1,∞},

I−n : SV{0,1,∞} → (z − z)−nSV{0,1,∞},

f(z) �→ I±n f(z) =

n∑
k=0

(−1)n−k (n+ k)!

(n− k)!k!2
(z − z)±k

∫
sv
(z − z)∓kf(z)dz.

(43)

Moreover, we define the differential operators D0 = 0,

Dn =

n∑
k=1

(−1)k−1 (n− k)!

(n+ k)!
(z − z)k(∂z∂z)

k−1(z − z)k, n ≥ 1,
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dn =

n∑
k=0

(−1)k
(n+ k)!

(n− k)!k!

1

(z − z)k
∂n−k
z .(44)

The complex conjugate of dn is dn. Because (anti-)differentiation lowers the
degree in z − z by one, we have for any � ∈ Z

Dn : (z − z)�SV{0,1,∞} → (z − z)�+2SV{0,1,∞},

dn (dn) : (z − z)�SV{0,1,∞} → (z − z)�−nSV{0,1,∞}.
(45)

With these definitions we obtain the following theorems.

Theorem 33. The kernel of Δn on C\R is dnh(z) + dnh(z) for arbitrary
(anti-)holomorphic functions h(z) and h(z).

In the above theorem h is not (necessarily) the complex conjugate of h.
The proof of Theorem 33 is in Section 22.

Theorem 34. Let n = 0, 1, 2, . . . and
(46)

In : (z−z)nSV{0,1,∞} → (z−z)−nSV{0,1,∞}, Inf(z) = I−n

∫
sv
∂zI

+
n f(z)dz.

Assume f ∈ (z − z)nSV{0,1,∞} such that Inf exists. For any F ∈ (z −
z)−nSV{0,1,∞} with ΔnF (z) = f(z) there exist (anti-)meromorphic functions

φ ∈ C[z, z−1, (z − 1)−1], φ ∈ C[z, z−1, (z − 1)−1] and polynomials p0, p1 of
degrees ≤ 2n such that

(47) F (z) = [In +Dn(1−ΔnIn)]f(z) + dnh(z) + dnh(z),

where
(48)

h(z) = φ(z)+
∑
s=0,1

ps(z) log(z−s), h(z) = φ(z)+(−1)n
∑
s=0,1

ps(z) log(z−s).

The proof of Theorem 34 is in Section 23.

Example 35. For n = 0 the differential operator Δ0 = ∂z∂z factors. We
get I±0 =

∫
sv dz, D0 = 0, d0 = d0 = 1, and I0 =

∫
sv dz

∫
sv dz. Equations

(47) and (48) become

F (z) =

∫
sv

∫
sv
f(z)dzdz + φ(z) + φ(z) + p0 log(zz) + p1 log[(z − 1)(z − 1)]
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with constants p0, p1. We see that F (z) is single-valued and that the branch

of the logarithms in (48) is insignificant. The structure of φ, φ, p0, p1 is de-

termined by the condition F ∈ SV{0,1,∞}.

Theorem 36 (The case n = 0 is Lemma 4.5 in [35]). Let fG(z) be a graphical

function in even dimensions ≥ 4. Then there exists exactly one function

fG1
(z) in SV{0,1,∞} with (G3) of Theorem 5 such that (42) holds.

The proof of uniqueness is in Section 24. If the general solution (47) can

be calculated, then the above uniqueness result provides an algorithm to

calculate fG1
(z) from fG(z). This algorithm is detailed in Section 25.

6.2. Representation theory and hyperbolic space

We define the differential operators

Lk = zk∂z + zk∂z.

With these operators we define an sl(2,C) Lie algebra representation on

SV{0,1,∞} by

(49) X = −L2, Y = L0, H = 2L1

with commutation relations [H,X] = 2X, [H,Y ] = −2Y , [X,Y ] = H. The

Casimir operator of this representation is

C = (H − 1)2 + 4XY = −4(z − z)2∂z∂z + 1

so that the effective Laplace operator (10) in D = 2λ+2 dimensions becomes

Δλ−1 = −C − (D − 3)2

4(z − z)2

Homogeneous solutions of (9) for fixedD are (sub-)representations of sl(2,C)

on SV{0,1,∞}. It is possible that the connection to representation theory

underlies the existence of an explicit solution in Theorem 34.

Remark 37. In physics it is more common to use the operators L+ = X,

L− = Y , Lz = H/2 with commutation relations [Lz, L±] = ±L±, [L+, L−] =
2Lz and Casimir operator Cph = L2

z − Lz + L+L− = −(z − z)2∂z∂z. In this

notation we get Δλ−1 = −[Cph − λ(λ− 1)]/(z − z)2.
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In Cartesian coordinates z = x+iy we get Cph = (C−1)/4 = y2(∂2
x+∂2

y)
which is the Laplacian of the hyperbolic space with constant curvature −1
in the Poincaré model on the half plane H = {z ∈ C : Im z > 0}. Because of
reflection symmetry (Theorem 5 (G1)) we can restrict graphical functions
to H without loss of information. So, graphical functions can be viewed as
functions on the Poincaré half plane where (9) is related to a Klein-Gordon
equation in two-dimensional hyperbolic space with mass-square λ(λ − 1).
Single-valuedness of graphical functions, however, is obscured in this picture.

6.3. Weight 0 < νe < 1

A chain of λ + 1 − k edges of weight 1 is (up to a factor) equivalent to an
edge of weight νe = k/λ (for k = 1, 2, . . . , λ, see (52)). Iterated use of the
algorithm in the previous subsection hence allows one to append edges of
weights 0 < νe < 1, νe ∈ 1

λZ.

Lemma 38 (see ‘Rule 2’ in [24]). An internal two-valent vertex can be
eliminated by a convolution product: For x ∈ RD and ν1, ν2 ∈ R we have
diagrammatically,

ν1 ν2
= c(λ)ν1,ν2

ν1 + ν2 − λ+1
λ

(50)

where c(λ)ν1,ν2
=

Γ(λ(1− ν1) + 1)Γ(λ(1− ν2) + 1)Γ(λ(ν1 + ν2 − 1)− 1)

Γ(λν1)Γ(λν2)Γ(λ(2− ν1 − ν2) + 2)
,

provided that the integral on the left hand side of (50) converges.

Proof. An elementary calculation using spherical coordinates gives the fol-
lowing Fourier transform

(51)

∫
RD

eix·p

‖x‖α
dDx

πD/2
=

2D−α

‖p‖D−α

Γ((D − α)/2)

Γ(α/2)
for 0 < α < D.

The lemma follows from a commutative diagram that translates the convo-
lution product into a pointwise product after Fourier transformation.

Proposition 39. For k = 1, 2, . . . , λ we have

k
λ

=
(λ− 1)!λ+1−k(λ− k)!

(k − 1)!
· · ·1 1 1︸ ︷︷ ︸

λ+1−k

.

(52)
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Proof. The proof is by induction from k = λ down to k = 1. The case k = λ

is trivial. Fix k in 1, . . . , λ−1. By induction an edge of weight ν1 = (k+1)/λ

is (λ− 1)!λ−k(λ− k − 1)!/k! times a sequence of λ− k edges. We attach an

edge of weight ν2 = 1 which, by Lemma 38, lowers ν1 by 1/λ and divides by

(λ− 1)!(λν1 − 1)(λ− λν1 + 1). We obtain the result from

(λ− 1)!λ−k(λ− k − 1)!

k!
(λ− 1)![(k + 1)− 1][λ− (k + 1) + 1] =

=
(λ− 1)!λ+1−k(λ− k)!

(k − 1)!
.

Upon completion (Section 2.3) the above lemma becomes a special case

of the factor identity in Section 5.3.

6.4. Weight νe < 0

If we append an edge of negative weight νe < 0, the graphical function

fG1
(z) in (6) is a polynomial in z and z.

The vector z2 = (Re z, Im z, 0, . . . , 0)T in (12) is attached to an internal

vertex x. If νe = −k/λ for k = 1, 2, . . ., then the edge xz2 contributes to the

integrand with the numerator

‖x− z2‖2k = (‖x‖2 − 2x · z2 + ‖z2‖2)k =

=
∑

k0+k1+k2=k

k!

k0!k1!k2!
‖x‖2k0(−2x · z2)k1‖z2‖2k2 ,

(53)

where x · z2 is the Euclidean scalar product between x and z2. The sum on

the right hand side is over all partitions of k into three non-negative integers.

Lemma 40. Let z1, z2 ∈ RD with ‖z1‖ = 1 and AG(0, z1, x) be the Feynman

integral (3) with external vectors 0, z1, x ∈ RD. Then

(54)

∫
RD

(x ·z2)kAG(0, z1, x)
dDx

πD/2
= (z1 ·z2)k

∫
RD

(x ·z1)kAG(0, z1, x)
dDx

πD/2
.

Proof. We expand the scalar product

(x · z2)k =
∑

μ1,...,μk

( k∏
�=1

zμ�

2

)( k∏
�=1

xμ�

)
.
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The first factor is constant and can be extracted from the integral. The

second factor gives a tensor of rank k. The remaining integral solely depends

on the unit vector z1. Hence

∫
RD

( k∏
�=1

xμ�

)
AG(0, z1, x)

dDx

πD/2
= P

k∏
�=1

zμ�

1

for some constant P ∈ R. We multiply both sides with
∏k

�=1 z
μ�

1 and sum

over the indices μ� to find that P is equal to

∑
μ1,...,μk

∫
RD

( k∏
�=1

xμ�zμ�

1

)
AG(0, z1, x)

dDx

πD/2
=

∫
RD

(x · z1)kAG(0, z1, x)
dDx

πD/2
.

This gives the desired result.

The integral on the right hand side of (54) is a real number which can

be expressed in terms of periods (see Section 3) by the identity

(55) x · z1 =
1 + ‖x‖2 − ‖x− z1‖2

2
.

Theorem 41. Consider a graphical function fG1(k)(z) whose external vertex

z is attached to a single internal vertex x by an edge of weight νxz = −k/λ,

k = 1, 2, . . . (see picture below). Let PG(k0,k1) be the period (see Section 3)

of the graph G(k0, k1) = G1(k)\{xz} ∪ {x0, x1} where the edges x0 and

x1 have weights νx0 = −k0/λ and νx1 = −k1/λ. Then PG(k0,k1) exists for

k0, k1 ∈ Z≥0, k0 + k1 ≤ k and

fG1(k)(z) =
∑

k0+k1+k2=k

0≤k0,k1,k2

pkk0,k1,k2
(z, z) PG(k0,k1),(56)

with polynomials

pkk0,k1,k2
(z, z) =

k!(2− z − z)k0(z + z)k1(2zz − z − z)k2

2kk0!k1!k2!
.
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Diagrammatically,

1

0

x
z

− k
λ

︸ ︷︷ ︸
G1(k)

=
∑

k0+k1+k2=k

0≤k0,k1,k2

pkk0,k1,k2
(z, z)

1

0

x

−k0

λ

−k1

λ

︸ ︷︷ ︸
G(k0,k1)

.

Proof. We first prove the existence of the periods PG(k0,k1). To use Propo-

sition 11 we internally complete G1(k) to G1(k) and G(k0, k1) to G(k0, k1)
(with isolated vertex z). We identify corresponding vertices of G1(k) and
G(k0, k1) and set k2 = k − k0 − k1. We find that G(k0, k1) can be obtained
from G1(k) by adding edges x0, x1, x∞, xz with weights νx0 = −k0/λ,
νx1 = −k1/λ, νx∞ = −k2/λ, and νxz = k/λ (killing the edge xz in G1(k)).

Assume PG(k0,k1) were divergent. Then there exists a vertex subset V
with |Vext| ≤ 1 such thatNG(k0,k1)[V] ≥ (|Vext|−1)(λ+1)/λ. Because (by con-

vergence) NG1(k)[V] < (|Vext| − 1)(λ+ 1)/λ we need NG(k0,k1)[V] > NG1(k)[V].
The only extra edge with positive weight is xz which implies that the ver-
tices x and z need to be in V. By |Vext| ≤ 1, the set V has no external
vertices 0, 1, ∞. Hence

NG(k0,k1)[V] = NG1(k)[V\{z}] < −λ+ 1

λ

by (25) for G1(k) and V\{z}. This contradicts the divergence of the PG(k0,k1).
Let G = G1(k)\{z}. The internal vertex x in G1(k) becomes external in

G. With (53) and Lemma 40 we get from (12), that fG1(k)(z) is equal to∑
k0+k1+k2=k

k!

k0!k1!k2!
(z1 ·z2)k1‖z2‖2k2

∫
RD

‖x‖2k0(−2x ·z1)k1AG(0, z1, x)
dDx

πD/2
.

We substitute (55) into the integrand and expand the term (‖x−z1‖2−‖x‖2−
1)k1 . This amounts to partitioning k1 into three non-negative integers k′1, k3,
k4, corresponding to powers of ‖x− z1‖2, ‖x‖2, and 1, respectively. Powers
of ‖x − z1‖2 and ‖x‖2 are edges of negative weights in (12). We rename k′1
back to k1 and get that fG1(k)(z) is equal to∑

k0+k1+k2+k3+k4=k

(−1)k3+k4k!

k0!k1!k2!k3!k4!
(z1 · z2)k1+k3+k4‖z2‖2k2PG(k0+k3,k1).
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Now, we shift k0 �→ k0− k3 and perform the binomial sum over k3 to obtain

∑
k0+k1+k2+k4=k

(−1)k4k!

k0!k1!k2!k4!
(1− z1 · z2)k0(z1 · z2)k1+k4‖z2‖2k2PG(k0,k1).

Likewise, we shift k2 �→ k2 − k4 and perform the binomial sum over k4
yielding∑

k0+k1+k2=k

k!

k0!k1!k2!
(1− z1 · z2)k0(z1 · z2)k1(‖z2‖2 − z1 · z2)k2PG(k0,k1).

From (11) we get ‖z2‖2 = zz and z1 · z2 = (z + z)/2. This gives (56).

7. Constructible graphical functions

A graphical function in even dimensions ≥ 4 can always be computed (sub-
ject to mild constraints from time and memory consumption) if it is con-
structible in the sense of the following definition:

Definition 42 (An extension of Section 3.7 in [33]). We consider the fol-
lowing set of commuting reduction steps for (internally) completed graphical
functions in even dimensions ≥ 4:

(R1) Deletion of edges between external vertices, Section 5.2,
(R2) Product factorization, Section 5.1,
(R3) Period factorization, Section 5.3,
(R4) Contraction of single edges with weights in 1

λZ attached to external
vertices, Sections 2.4 and 6.

A graphical function is irreducible if it cannot be reduced by any of these
steps. Maximum use of the reduction steps maps a graph G to a set of
Feynman periods and irreducible graphical functions. The kernel of G is
the unique [34] representation of this set in terms of completed Feynman
periods and internally completed graphical functions with no edges between
external vertices (and no distinction of external vertices).

We inductively define constructible completed graphical functions and
periods by

1. A completed graphical function is constructible if its kernel consists of
the empty graphical function and constructible periods.

2. A completed Feynman period with three vertices is constructible. Its
value is 1.
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Figure 5: Two irreducible internally completed graphical functions in four
dimensions with all edges of weight 1: While fG7

(z) can be calculated by
Gegenbauer factorization, the graphical function fG8

(z) is conjecturally el-
liptic.

3. A completed Feynman period PG with |VG| ≥ 4 vertices is constructible
if there exist four vertices a, b, c, d ∈ VG such that the graphical function
G|abcd=01z∞ is constructible.

Uncompleted graphical functions and periods are constructible if their com-
pletions are constructible.

Example 43. The graphical function Ga in Figure 3 is constructible, see
Examples 15, 23, 28.

Example 44. The internally completed graphical functions G7 (see Exam-
ple 48) and G8 in Figure 5 are irreducible. An analysis with HyperInt [29]
suggests that G8 is elliptic in D = 4.

In four dimensions (and in six dimensions, see Examples 58 and 60), all
completed graphical functions with ≤ 7 vertices are expressible in terms of
GSVHs [38]. So, G8 is a minimal example of a four-dimensional graphical
function which conjecturally is not a GSVH.

A key benefit of graphical functions (and their analogs at non-integer
dimensions [5, 35, 39]) is the reduction to kernels. At modest loop orders
kernels are rare and have significantly less vertices than the original graph.

By Proposition 39 we can replace any edge of weight k/λ, k = 1, . . . , λ−1
by a chain of λ + 1− k edges of weight 1. So, we may alter a constructible
graph such that the reduction uses appending of an edge (R4) only for
weights in {1} ∪ Z<0/λ. In this case the weight of the graphical function or
period is constrained by Theorem 45. All constructible periods are MZVs
whereas all constructible graphical functions are GSVHs in the alphabet 0,
1, z (see Section 8.3 in [38]).
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In the following theorem we consider the weight as a filtration where

the weight of MZV constants is added to the weight of hyperlogarithms.

Alternatively one may choose to lift the notion of weight to the motivic

setup [13].

Theorem 45. Let G be the graph of a constructible graphical function in

even dimensions ≥ 4 whose reduction in Definition 42 uses (R4) only for

edge-weights in {1} ∪ 1
λZ<0. Then fG(z) is a GSVH of weight ≤ 2|V int

G | in
the letters 0, 1, z.

Let G be the uncompleted graph of a constructible period in even dimen-

sions ≥ 4 whose reduction uses (R4) only for edge-weights in {1} ∪ 1
λZ<0.

If G has |VG| ≥ 3 vertices, then PG is an MZV of weight ≤ 2|VG| − 5.

Proof. We first prove that the result for periods follows from the statement

about graphical functions: PG is the integral (35) of a constructible graphical

function with |VG| − 3 internal vertices. After a single-valued integration of

the integrand the integral is given by residues, see Theorem 2.28 in [33]. The

graphical function is a GSVH of weight ≤ 2|VG|−6 in 0, 1, z. Multiplication

by (z − z)2λ and integration preserves the alphabet 0, 1, z while it brings

the weight up to ≤ 2|VG| − 5. It is proved in Section 8.3 of [38] that GSVHs

in 0, 1, z evaluate to MZVs.

Now we prove the result for graphical functions by induction over the

number of internal vertices. If |V int
G | = 0, then fG(z) is a rational GSVH in

the letters 0 and 1. It has weight zero.

For general |V int
G | we have a reduction chain by cases (R1) to (R4) in Def-

inition 42 which leads to a graphical function with fewer internal vertices.

Reduction step (R1) is an endomorphism on GSVHs in the letters 0, 1, z

which does not change the weight. The alphabet 0, 1, z is stable under prod-

uct factorization (R2) while the weight is additive. The number of internal

vertices also adds, so that the condition on the weight stays intact. In case

of a factorization (R3) by a completed period PG with |VG| ≥ 4 vertices the

graphical function loses |VG|−3 internal vertices. By induction the graphical

function has weight ≤ 2(|V int
G | − |VG| + 3) + 2(|VG| − 1) − 5 = 2|V int

G | − 1

(graphical functions with period factors have weight drop).

The crucial step is appending an edge e in (R4). If e has weight νe = 1,

then the algorithm in Section 25 may be used with the integral operator I ′
n

in Lemma 97 instead of In. In this case appending e amounts to a double

integration within the alphabet 0, 1, z. The weight is increased by two [38]

while one new internal vertex is created.
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If νe < 0, we use Theorem 41 to express the graphical function as

a polynomial in z and z whose coefficients are given by periods of the

graphs G(k0, k1). The graphs G(k0, k1) may have edges of weights k/λ,

k = 1, . . . , λ − 1 between x and 0 or 1. So, we cannot directly use induc-

tion. However, by (R4) we know that the graphical function we obtain by

setting x = z in G(k0, k1) is constructible. In this graphical function the

edges between x and 0 or 1 become external edges between z and 0 or 1.

Removal of these edges by (R1) does not affect the weight or the alphabet

of the result. Hence PG(k0,k1) has weight ≤ 2|VG(k0,k1)| − 5 by induction. Be-

cause |V int
G | = |VG(k0,k1)| − 2 the original graph has weight ≤ 2|V int

G | − 1 (it

has weight drop). The graphical function is a polynomial in z, z and hence

trivially a GSVH in any alphabet.

The resolution of edges of weight k/λ, k = 1, . . . , λ − 1 into chains

of weight 1 edges increases the number of internal vertices. Nonetheless, we

expect that any reduction (R4) increases the weight of the graphical function

at most by two.

Conjecture 46. Theorem 45 holds for all constructible graphs and periods

in even dimensions ≥ 4.

8. Gegenbauer factorization

Let G be an (internally) completed graphical function with a three-vertex

split a, b, c into G1 and G2. We include the split vertices together with their

corresponding edges to G1 or G2, respectively. In Section 5.3 we saw that

fG(z) has a period factor if G1\{a, b, c} or G2\{a, b, c} have no external

vertices. If on the other hand one of these graphs has two external ver-

tices (say z,∞), factorization involves (after the removal of ∞ by conformal

symmetry) the Feynman integrals of G1 or G2 with four external vertices

a, b, c, z. In general, Feynman integrals with four external vertices cannot

be expressed in terms of two complex variables: The four vectors span a

three-dimensional space.

A special case arises if both G1\{a, b, c} and G2\{a, b, c} have exactly

one external vertex. By permutation symmetry (Section 2.4) the labels of

the two external vertices are insignificant. We assume that 1 is in G1\{a, b, c}
and z in G2\{a, b, c}. The other two external labels 0 and ∞ must be in the

split vertices a, b, c. In this case there exists a factorization formula which

is based on a convolution product in C, see Theorem 49. This factorization
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can be depicted diagrammatically as

0

x

∞

G1 G2

G

1 z →

0

z

∞

0

1

∞

G1 G21 z� ,

(57)

where the � indicates the convolution of the graphical functions fG1
(z) and

fG2
(z).
The factorization is an adaption of the Gegenbauer technique to graph-

ical functions [17].

Definition 47. Assume the edges of the (internally) completed graphical
function G split into G1 and G2 with three common vertices 0, x,∞ where
x ∈ V int

G . If VG1
� 1 /∈ VG2

and VG1
� z ∈ VG2

, then the pair G1 with x = z

and G2 with x = 1 is a Gegenbauer split of G.

Note that edges between 0, x, ∞ can be either moved to G1 or G2 which
are both internally completed graphical functions.

Example 48 (Example 3.33 in [33]). The graph G7 in Figure 5 has a Gegen-
bauer split along 0, ∞ and the central internal vertex. In four dimensions
the graphical function fG7

(z) can be calculated by the subsequent theorem.
The result is a single-valued multiple polylogarithm of weight six, divided by
(z − z)(1− zz) [37].

Theorem 49 (The four-dimensional case is the unproved Remark 3.32 in
[33]. The general case assumes Conjecture 86). For every graphical func-
tion fG(z) in even D = 2λ + 2 ≥ 4 dimensions there exists a unique anti-
symmetric (under z ↔ z) function 2fG(z) with
(58)∫ 2π

0

2fG(Zeiφ) sin kφ dφ = 0 for all k = 1, 2, . . . , λ− 1 and all 1 = Z ∈ R+

such that

(59) fG(z) =
[ 1

z − z
(z∂z − z∂z)

]λ−1 2fG(z)

z − z
.

For an (internally) completed graph G we define 2fG(z) =
2fG\{∞}(z).
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If G has a Gegenbauer split into G1 and G2, then

(60) (z∂z − z∂z)
2fG(z) =

∫
C

2fG1
(x) 2fG2

(z
x

)
(xx)λ(1−NG2\{∞})

d2x

π
,

where d2x = dRe(x) ∧ d Im(x). Equation (60) uniquely determines 2fG(z).

The proof of Theorem 49 in Section 21 uses radial and angular graphical
functions which are defined in Sections 16 and 17. It relies on Conjecture 86
which is only proved in the classical case of four dimensions and unit edge-
weights, see Theorems 80 and 84. One may consider 2fG(z) as the two-
dimensional avatar of fG(z) (hence the superscript 2).

Example 50. In four dimensions condition (58) is empty and 2fG(z) =
(z − z)fG(z) ∈ SV{0,1,∞} (which is anti-symmetric by (G1) in Theorem 5).

We have 2fG(z)/(z − z) ∈ SV{0,1,∞} and therefore 2fG(z) ∈ SV{0,1,∞} in
all even dimensions ≥ 4. We will not need this result, so we prove it under
the assumption that 2fG(z)/(z − z) has a real-analytic point ( = 1) on the
unit circle, see Remark 52 (1).

Proposition 51. Assume 2fG(z)/(z − z) is real-analytic at some point on
the unit circle. Then 2fG(z)/(z − z) ∈ SV{0,1,∞}.

The proof of Proposition 51 is in Section 21.

Remark 52.

1. One can derive an explicit parametric representation for 2fG(z)/(z −
z), see Section 2.5. To see this we write the differential operator Dz =
(z − z)−1(z∂z − z∂z) in terms of the invariants s0 = zz and s1 =
(z−1)(z−1), see (4) and (30). We obtain Dz = −∂s1, so that inverting
Dz is equivalent to integration with respect to s1. In the right hand side
of (32) integration is elementary because Φ̃G is linear in s1 while Ψ̃G is
constant. Compatibility with (58) can be enforced by subtraction, see
Section 21. By the parametric representation 2fG(z)/(z − z) is real-
analytic on C\{0, 1}.

2. In (115) we provide an explicit formula for 2fG(z) in terms of radial
and angular graphical functions.

3. The map (59) from 2fG to fG can be inverted in polar coordinates z =
Zẑ, z = Z/ẑ with ẑ = eiφ (one can alternatively use the coordinates z
and Z): In these coordinates the differential operator z∂z−z∂z becomes
ẑ∂ẑ (see (113)) and inversion is (multiple) integration with respect to
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ẑ. This provides a candidate f(z) for 2fG(z). Condition (58) becomes

−1

2

∫
∂E

2fG(Zẑ)(ẑk − ẑ−k)
dẑ

ẑ
= 0,

where the integration is along the boundary of the unit disc E. With
the residue theorem in the complex ẑ-plane one can calculate the left
hand side for f(Zẑ) instead of 2fG(Zẑ). This gives functions gk(Z) for
k ∈ {1, 2, . . . , λ− 1}. We get (see (116))

2fG(Zẑ) = f(Zẑ)−
λ−1∑
k=1

ẑk − ẑ−k

2πi
gk(Z).

Proposition 90 states that the subtraction is in the kernel of the differ-
ential operator on the right hand side of (59).

4. It is unclear in which cases the transformation from fG(z) to 2fG(z)
maps GSVHs to GSVHs: The transformation from Z, ẑ back to z, z
requires taking square roots which, in general, does not close in the
space of GSVHs. Conversely, it can be proved that fG is a GSVH if
2fG(z) is a GSVH (Section 8 in [38]). By experiment, we find that
2fG(z) often is a GSVH. The authors are not aware of an example
where fG is a GSVH but 2fG(z) is not.

5. The convolution product in (60) can be calculated by a residue theorem
on SV{0,1,∞} (Theorem 2.29 in [33]). One, however, needs two sets
of complex conjugated variables x, x and z, z which slows down the
calculation and potentially leads out of the space of GSVHs.

Even if it closes in GSVHs, Gegenbauer factorization is time and memory
consuming. In [37] it is only implemented for special cases in four dimen-
sions. Although Gegenbauer splits are rare, Theorem 49 is a powerful tool
to calculated some irreducible graphical functions.

9. Four vertex splits

Assume an (internally) completed graphical function G has a four-vertex
split a, b, c, d such that G1\{a, b, c, d} has only internal vertices in G (see the
left hand side of (62)). Then the edges of G split into two parts G1 and G2

which meet in the vertices a, b, c, d. The split vertices may be internal or ex-
ternal (see Sections 5.3 and 8 for a similar situation with a three-vertex cut).

We can interpret G1 with external vertices a, b, c, d as an internally com-
pleted graphical function which is nested into G. We obtain an identity for
fG(z) if we are able to replace G1 by a different graph G

′
1 which evaluates
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to the same graphical function. The two known identities on graphical func-
tions in this context are the twist identity in Section 9.1 and the Fourier
identity in Section 9.2.

It is also possible to replace G1 by a sum of (internally) completed graph-
ical functions which evaluates to fG1

(z). An example for such identities is the
integration by parts technique in Section 10. This technique is not restricted
to four vertex cuts.

9.1. Twist

A completed graphical function is invariant under a double transposition of
external labels, see Theorem 14. This identity lifts to the twist identity for
graphical functions with an internal four-vertex split. The twist identity was
first found and proved in the context of periods, see Theorem 2.11 in [34].

Proposition 53. Assume the edges of the (internally) completed graphical
function G split into G1 and G2 with four common vertices a, b, c, d. If all
vertices of G1\{a, b, c, d} are internal in G, then we obtain the twisted graph

G
′
by gluing the vertices b, a, d, c of G1 to the vertices a, b, c, d of G2 and

thereafter (uniquely) moving weighted edges along opposite sides of the four-

cycle acbd in such a way that G
′
becomes (internally) completed. We have

fG(z) = fG′(z).(61)

Diagrammatically,

a

b

c

d

G1 G2

G

0

1

z

∞

=

=

a

b

c

d

G1 G2

G
′

0

1

z

∞

,

(62)



556 Michael Borinsky and Oliver Schnetz

where the dashed lines indicate the four-cycle acbd.

Proof. The proof is analogous to the twist identity for periods, Theorem 2.11

in [34]. By solving a linear system it is clear that there exists a unique way

to move weights along opposite sides of the four-cycle acbd such that the

twisted graph becomes (internally) completed.

Like in the proof of Proposition 29 we add pairs of edges with total

weight 0 to the four-cycle acbd and move one set of edges to G1 whereas

the other set goes to G2. A pair of edges ac (cb, bd, da) becomes a pair of

edges bd (da, ac, cb) and ac (cb, bd, da) in the twisted graph. These edges

are on opposite sides of the four-cycle acbd and thus insignificant in the

construction of G
′
.

We use this technique to nullify the weights of a, b, c, d in G1. Now,

G1 is completed and the result follows from the invariance of the graphi-

cal function fG1
(z) under the double transposition of external vertices, see

Theorem 14.

Example 54. The magic identities in [20] are twist identities.

9.2. Planar duality

Planar duality was already used in [7] to prove identities between periods.

This duality of periods was systematically studied as Fourier identity in Sec-

tion 2.7 of [34]. The name Fourier reflects that the identity can be proved by

Fourier transforming Feynman integrals. The situation translates to graph-

ical functions in the following way.

Theorem 55 (Theorem 1.9 in [21]). An uncompleted graphical function

fG(z) has a planar dual if it is externally planar, i.e. if G ∪ {01, 0z, 1z} is

planar. In the planar dual of G∪{01, 0z, 1z} we delete the vertex of the face

01z and define the external edges 0, 1, z to be in the faces that are bounded

by G and 1z, 0z, 01, respectively. The edges of the resulting graph G	 are in

one-to-one correspondence to the edges of G. If the edge-weights fulfill

νe(G) > 0 and λνe(G) + λνe(G
	) = λNG = λ+ 1 for all e ∈ EG ≡ EG� ,

(see (14)), then the graphical function fG�(z) of G	 is convergent and fulfills

(63)
[ ∏
e∈EG

Γ(λνe)
]
fG(z) =

[ ∏
e∈EG�

Γ(λνe)
]
fG�(z).
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With this theorem one can construct an identity between graphical func-

tions in a way which is analogous to the twist identity in the previous section.

One has to keep in mind that, before applying planar duality, one needs to

choose a vertex ∞ in the split vertices to de-complete the split graph G1.

After dualizing, the graph G	
1 needs to be completed before it can be glued

back into G.

Like the twist identity, planar duality in split graphs was first studied in

the context of periods, see Theorem 2.8 in [22]. Because the right (passive)

split graph has all external vertices the result for periods trivially translates

to graphical functions.

Example 56. Consider the pair of graphs

1

0 z

G 1

0
z

G	

,(64)

with edge-weights 1. The graphs G and G	 are planar duals and NG = 2 in

four dimensions. By completion we obtain fG�(z) = 80ζ(5)iD(z)/(z − z),

where the Bloch-Wigner dilogarithm D(z) is defined in (13). Planar duality

gives fG(z) = fG�(z).

Non-trivial transformations of graphical functions by planar duality in

split graphs are relatively rare (compared to the twist).

10. Integration by parts

Integration by parts in position space follows the same idea as in momentum

space [18]. The difference is that in position space the Feynman rules are

unambiguous and the graphical interpretation is simpler. Position space in-

tegration by parts provides a local graph identity which substitutes a vertex

of a certain structure with a sum over vertices of different structures. The
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general formula is

0 = (2−ν1−
N∑
i=1

νi)
ν1+

1
λ

ν2
ν3

+ ν2
ν1+

1
λ

ν2+
1
λ ν3

− 1
λ

+

− ν2

ν1

ν2+
1
λ ν3

+ ν3
ν1+

1
λ

ν2
ν3+

1
λ

− 1
λ

− ν3

ν1

ν2
ν3+

1
λ

+ . . .

(65)

which follows from Lemma 57. The gray cones indicate where each term has

to be substituted into the same ambient graph. The dots indicate further

terms corresponding to edges 4, . . . , N (two terms for each edge). The possi-

ble existence of these edges is indicated by the three small lines right to the

central vertex. An important locally completed example in six dimensions is

+ + + =

= + + ,

(66)

where solid edges have weight 1, dashed edges have weight 1
2 and

dotted edges have weight −1
2 .

Consider the integration over an internal vertex x in the Feynman in-

tegral (3). Because the integration domain has no boundary we get from

Stokes’ theorem that the integral over a closed differential form vanishes. In

particular, we get the following lemma.

Lemma 57. Let � be the N -star with N ≥ 3 edges 1, . . . , N of weights

νi < 1 attached to the internal vertex x ∈ RD. The external vertices are

z = z1, . . . , zN so that the integrand in (3) is I	(x, z) =
∏N

i=1 ‖x− zi‖−2λνi .
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Then

D∑
μ=1

∂

∂xμ
(xμ − zμ1 )I	(x, z)

‖x− z1‖2
=

= λ

(
2− ν1 −

N∑
i=1

νi +

N∑
i=2

νi
‖z1 − zi‖2 − ‖x− z1‖2

‖x− zi‖2

)
I	(x, z)

‖x− z1‖2
.

(67)

Proof. The proof is a straightforward calculation using (55) to eliminate
scalar products in the numerator.

If
∑N

i=1 νi > 1, the integral over x is convergent, see Example 13. The
left hand side vanishes upon integration, providing the identity in (65). The
restrictions on the weights νi ensure that each individual Feynman integral
is convergent.

It is convenient to internally complete the graphs in (65) so that the
identity can be substituted for internal stars in completed graphs. To do this
we add edges x∞ to the individual graphs such that x has weight 2(λ+1)/λ.
The completed graphs also need edges between ∞ and the zi to ensure that
the individual graphs have equal weights at corresponding external vertices
(see (66)).

After completion (65) has a very simple structure. We define the graph
fij as the internally completed (N +1)-star with weights ν1, . . . , νN , ν∞ and
additional edges xzi, xzj with weight 1/λ plus edge zizj with weight −1/λ.
All fij have equal weights at all vertices. The weight ν∞ is fixed by internal

completeness to ν∞ = 2 −
∑N

i=1 νi. Because a self-loop of negative weight
nullifies the integrand of a graphical function, it is natural to define fii = 0.
We identify the indexN+1 with∞ and get (65) as the special case i = N+1,
j = 1 of

(68)

N+1∑
k=1

νk(fik − fjk) = 0, with

N+1∑
k=1

νk = 2.

Eq. (68) is equivalent to the statement that
∑

k νkfik is independent of i:
For completed graphs

νi+1

νi+
1
λ

νi+1+
1
λ νi+2

− 1
λ

+ νi+2

νi+
1
λ

νi+1
νi+2+

1
λ

− 1
λ

+ . . .
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does not depend on i.
Accordingly, the system of equations (68) for all i, j has rank N .
It is non-trivial to efficiently use integration by parts. In QFT (68) is par-

ticularly useful if all internally completed graphs have edge-weights λνi ∈ Z,
with 0 ≤ νi < 1 for i = 1, . . . , N + 1. In four dimensions we get no such
configuration with convergent individual terms (one may use dimensional
regularization [35, 39] to derive non-trivial identities). In six dimensions we
want to look at νi ∈ {0, 1/2} where we can ignore cases with more than two
νi = 0. We get three cases with edge-weights (12 ,

1
2 ,

1
2 ,

1
2), (0,

1
2 ,

1
2 ,

1
2 ,

1
2), and

(0, 0, 12 ,
1
2 ,

1
2 ,

1
2). The first case reduces to a twist identity, see Section 9.1,

whereas the second and the third case are equivalent. The unique new for-
mula is depicted in (66). Insertions of graphs on the right hand side of (66)
typically lead to simpler graphical functions (compared to the left hand
side). Moreover, a twist identity acts on the right hand side, so that one
effectively obtains five independent equations by cyclically permuting the
external labels. Regretfully, the five equations cannot be solved for one of
the five possible internal configurations on the left hand side without gener-
ating denominators which are not propagators. With no systematic way to
use this integration by parts formula one needs to try a plethora configura-
tions. This makes the use of integration by parts tedious. Moreover—because
in subgraphs the external vertices may become internal—one has to check
convergence of each individual term. Only relations with convergent indi-
vidual terms can be used without regularization. Still, integration by parts
is a powerful technique in six dimensions. It allowed the authors to compute
all primitive Feynman periods in φ3 up to loop order six (and many beyond
six loops) [6, 37].

In general, integration by parts becomes more powerful (but harder to
handle) in higher dimensions.

11. Unique triangles

A unique three-star is a star with three edges whose weights sum up to
2(λ+1)/λ (the notion of uniqueness was introduced in [24]). One can elim-
inate an insertion of a unique three-star with internal central vertex by
the factor identity in Section 5.3. The three-star is replaced by a unique
triangle between its external vertices (which may be internal in the ambi-
ent graph) times a completed period of K4 topology which is a product of
gamma functions, see (50). The unique triangle has edge-weights that sum
up to (λ+1)/λ. In some situations it can be beneficial to reverse the process
and replace a unique triangle by a unique three-star. This is evident if the
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unique triangle has an external vertex and weights in 1
λZ. Then the unique

three-star has a single external edge. By Section 6 the three-star can be
calculated from the graph with contracted external edge. Diagrammatically,
this amounts to the local operation

ν1+ν2

ν1+ν3

ν2+ν3

ν2+ν3

ν1+ν2

ν1+ν3

×

z

ν1

ν3

ν2 =

=

z

ν1+ν2

ν1+ν3

ν2+ν3

←→
(append edge)

z

ν1+ν3 ν2+ν3

,

(69)

where ν1+ν2+ν3 = (λ+1)/λ. Effectively, the ν3 edge in the unique triangle
on the left is deleted on the right graph while the weights of the other edges
change to preserve the weights on the bottom vertices.

Unique triangles can be generated between any three vertices by adding
pairs of edges with zero total weights. In general, this makes graphs more
complicated. It is however possible that a graph simplifies (with other tech-
niques) if one completes two connected edges ab, bc to a unique triangle abc.
If b is external, one can use this technique to effectively reduce the weight
of the edge ac.

We can also reverse the process in (69) to increase the weight of the edge
opposite to the external vertex z. This is useful if the weight of this edge is
negative.

Note that unique three-stars and triangles with weights in 1
λZ only exist

in ≥ 6 dimensions.

Example 58. Consider the generic internally completed graphical function
with two internal vertices

0 1

z ∞
ν6 ν7

ν2 ν3

ν5 ν8

ν9

ν1 ν4

.
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We assume that 1 ≥ νi ∈ 1
λZ for all i. In four dimensions the internal

vertices have total weight four. Therefore all νi ∈ {0, 1} with at least one

νi = 0. If one νi = 0, the graphical function is constructible in any even

dimension ≥ 4, see Section 7.

In six dimensions the internal vertices have total weight three. Assume

that νi ∈ {1
2 , 1} for all external edges 1, 2, . . . , 8 (see Example 60). Unique

triangles or stars give the following reductions of the weights (ν1, ν2, . . . , ν9):

(12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1) → (1, 1, 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2),

(1, 1, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2) → (1, 1, 1, 1, 1

2 ,
1
2 ,

1
2 ,

1
2 , 0),

(1, 1
2 ,

1
2 , 1, 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2) → (1, 1

2 ,
1
2 , 1, 1, 1, 1

2 ,
1
2 , 0),

(1, 1, 1, 1, 1, 1, 1
2 ,

1
2 , −

1
2) ← (1, 1, 1, 1, 1

2 ,
1
2 ,

1
2 ,

1
2 , 0),

(1, 1, 1, 1, 1, 1
2 ,

1
2 , 1, −1

2) ← (1, 1, 1
2 ,

1
2 , 1, 1

2 ,
1
2 , 1, 0),

(1, 1, 1, 1, 1, 1, 1, 1, −1) ← (1, 1, 1, 1, 1, 1, 1
2 ,

1
2 , −

1
2),

where the orientation of the arrows indicates the direction in which we

use (69). Note that by permutation symmetry, Section 2.4, we can use

uniqueness reductions at any external vertex. Every configuration of weights

thus reduces to a constructible product.

Example 59. The calculation of the period of the complete graph K6,D with

six vertices in D dimensions leads to the generic graphical function with two

internal vertices. It corresponds to the case ν1 = . . . = ν9 = 2(λ+ 1)/5λ in

the previous example, see Example 24. We may consider the internal edge as

two edges of weight (λ+ 1)/5λ belonging to two unique triangles with (any)

two external vertices. Reduction of the two unique triangles internally dis-

connects the graph. The result is the square of a star with two edges of weight

3(λ+ 1)/5λ and two edges of weight 2(λ+ 1)/5λ (which is constructible).

12. External differentiation

In this section we derive an external version of the integration by parts

method in Section 10. Consider the situation in Lemma 57 with x replaced

by the external vertex z ∈ RD. We set z1 = 0 and ν1 = −1/λ in (67).

Because
∑

μ z
μ ∂
∂zμ = −D +

∑
μ

∂
∂zμ zμ we obtain

(70)

D∑
μ=1

zμ
∂

∂zμ
I	(z, z) =

(
−

N∑
i=1

λνi +

N∑
i=1

λνi
‖zi‖2 − ‖z‖2
‖z − zi‖2

)
I	(z, z),
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where we relabeled the external vertices so that they are z1, . . . , zN again.
We consider z1, . . . , zN as internal vertices in some ambient graph. The dif-
ferential operator

∑
μ z

μ ∂
∂zμ translates to z∂z + z∂z. To see this it suffices

to check that the operators have corresponding actions on the invariants
‖z‖2 ∼= zz and ‖z − 1‖2 ∼= (z − 1)(z − 1)—see (4)—where on the left hand
sides z is in RD whereas on the right hand sides z ∈ C. After internal
completion we obtain the identity,

N∑
i=1

λνi

z

0 ∞

... ...

ν1

νi+
1
λ

νN

− 1
λ

=

=
(
z∂z + z∂z +

N∑
i=1

λνi

)
z

0 ∞

...

ν1
ν2

νN

+ zz

N∑
i=1

λνi

z

0 ∞

... ...

ν1

νi+
1
λ

νN

− 1
λ

,

(71)

where the graphs have to be considered as subgraph insertions into a larger
ambient graph which may have extra edges attached to 0, ∞, or the N
unlabeled internal vertices.

Note that in polar coordinates z = Zeiφ the differential operator z∂z +
z∂z+Λ = Z∂Z+Λ can be inverted (Λ =

∑
i λνi). In fact, one best changes the

coordinate z to zy. In the new coordinates (z, y) the differential operator is
z∂z +Λ with an inverse z−Λ

∫
dzzΛ−1. The ubiquitous denominator z− z =

z(1 − y) remains linear and the inverse transformation is y → z/z. The
solution is unique in the space of symmetric (under z ↔ z) functions and
often maps GSVHs to GSVHs if Λ ∈ Z (see Section 21 for the analogous
angular case).

Example 60. Consider the generic graph in six dimensions with two inter-
nal vertices in Example 58. Here, we assume there exists an external edge
with negative weight. Because a triangle with three weight one edges is di-
vergent, see (25), we are left with the following five cases:

(ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9) : (−1, 12 , 1,
1
2 , 1,

1
2 , 1,

1
2 , 1),

(−1
2 ,

1
2 ,

1
2 ,

1
2 , 1,

1
2 , 1,

1
2 , 1), (−1

2 , 1, 1,−
1
2 , 1, 1, 1, 1,

1
2),
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(−1
2 ,

1
2 , 1,

1
2 , 1,

1
2 , 1, 1,

1
2), (−1

2 , 1, 1,
1
2 , 1,

1
2 , 1,

1
2 ,

1
2).

There always exists a (sequence of) reduction(s) by external differentiation

into constructible graphical functions (i.e. graphs with an external edge of

weight zero). The reduction may produce pairs of graphs with triangles of

weight one edges where only the sums of the pairs are finite. The divergent

graphical functions can be dimensionally regularized [35, 39] and calculated

in terms of GSVHs [37]. We find that in six dimensions every graphical

function with two internal vertices is a GSVH.

Example 61. Consider the complete graph K7,6 with seven vertices and

edge-weights 1/2 in six dimensions (see Example 24). Choose any four ver-

tices as external vertices 0, 1, z,∞ and delete the edges between the external

vertices to obtain the graph

z 1

∞ 0

.

One can use external differentiation for N = 3 in various ways to reduce the

number of edges. The most symmetric way is to set ν1 = ν2 = ν3 = 1/2 and

invert the differential operator z∂z+z∂z+3. It is also possible to set ν1 = 0,

ν2 = ν3 = 1/2 and solve for the first summand on the left hand side of (71).

Together with other identities it is possible to calculate fK7,6
(z). The result

is a GSVH of weight seven divided by zz(z − 1)(z − 1)(z − z)3 [37].

In four and six dimensions all graphical functions with ≤ 3 internal

vertices are GSVHs.

Example 62. Particularly useful is the case N = 2 if the edge between 0

and the internal vertex i has weight −1/λ. Using (71) eliminates that edge

and the external vertex 0 connects to a single internal vertex. We can use the

method of appending an edge to reduce the graphical function, see Section 6.

The case k = λ, however, is singular because it refers to ν1 = 0 in

(71). To handle this case we need to regularize the integrals by shifting λ to

λε = λ−ε. With the (mostly conjectural) theory of dimensionally regularized
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graphical functions [35, 39] we obtain

z

0

1−ε
λε

m
λε

�−ε
λε

− 1
λε

=
m

ε

z

0

− ε
λε m+1

λε

�−1−ε
λε

− z∂z + z∂z +m− ε

ε

z

0

− ε
λε m

ε

�−ε
λε

+

+zz

z

0

1−ε
λε

m
λε

�−ε
λε

− mzz

ε

z

0

− ε
λε m+1

λε

�−ε
λε

.

(72)

All graphical functions on the right hand side emerge from the residual
graph z 0 by appending edges (Sections 2.4 and 6) and adding edges
between external vertices (Section 5.2). It is shown in [39] that one can
append edges of weights (k − ε)/λε, λ ≥ k ∈ Z in dimensionally regularized
graphical functions.

Note that the reduction can be iterated in the case that the edge between
0 and i has weight −k/λ for k = 2, 3, . . ..

13. Algebraic identities

By linear dependence of the D + 1 vectors x1, . . . , xD+1 in D dimensions
the Gram determinant vanishes,

det(xi · xj)1≤i,j≤D+1 = 0.

With xi · xj = (‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2)/2 (see (55)) the above identity
can be used to derive equations between graphical functions. The number
of terms in the resulting equations, however, seems too large for any prac-
tical use. In a future extension of graphical functions which incorporates
numerators xi · xj , algebraic identities may play a more prominent role.

14. Parametric integration

If a graphical function with not too many edges is ‘linearly reducible’, see
[10, 11], parametric integration can be used to perform one integral after the
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other. The method has been implemented in Maple by E. Panzer (HyperInt
[29]). It works best in four dimensions or with numerator edges of weight
−1/λ. Sometimes parametric integration allows one to calculate a graphical
function which is not amenable to any other method. Still, the method has
a brute-force character which makes it time-consuming. There is room for
speed improvements in the implementation by using faster computer algebra
systems or by parallelization. But even the way it is now, it is a very valuable
last resort if all other methods fail.

15. Fishnets

The fishnet graph Gm,n is a square lattice with external edges attached [2],

0

1 z

∞

Gm,n

• • •

••
•

• • •

••
•

n columns

m
ro
w
s

.(73)

For all m,n ≥ 1 the fishnets are convergent graphical functions in four
dimensions. By permutation symmetry (Theorem 14) it is sufficient to study
the case m ≤ n. The case m = 1 is constructible, see Section 7. It was first
calculated by N. Ussyukina and A. Davydychev in 1993 (the case m = n = 1
is f (z) in Figure 2, Example 4):

Proposition 63 (N. Ussyukina, A. Davydychev [42]). In four dimensions
we have

(74) fG1,n
(z) =

n∑
k=0

(
n+ k

k

)
(− log zz)n−k

(n− k)!

Li n+k(z)− Li n+k(z)

z − z
,

where Li n(z) =
∑∞

k=1 z
k/nk is the polylogarithm.
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Proof. A proof using graphical functions is in Example 3.31 of [33].

For n ≥ m ≥ 2 the only known relation for fishnets is planar duality,
Section 9.2, which is insufficient to solve the fishnets. (The graph G2,2 can be
computed using parametric integration in Section 14.) Nevertheless, there
exists a conjecture for all fGm,n

(z), n ≥ m ≥ 2 in terms of Hankel deter-
minants. The result was found by B. Basso and L. J. Dixon in 2017 in the
context of super Yang-Mills theory.

Theorem 64 (B. Basso, L. J. Dixon [2] with a proof in [3]). For n ≥ m ≥ 2
define the Hankel matrix H = (Hi,j)i,j=1,...,m by

(75) Hi,j(z) = (n−m+ i+ j − 2)!(n−m+ i+ j − 1)!fG1,n−m+i+j−1
(z).

Then

(76) fGm,n
(z) =

detH(z)∏n+m−1
k=n−m k!

.

Example 65. For m = 2 we obtain

fG2,n
(z) = fG1,n−1

(z)fG1,n+1
(z)− n− 1

n+ 1
fG1,n

(z)2.

Note that only very few graphical functions can be expressed in terms of
simple polylogarithms. This simplicity seems in conflict with the complexity
of the fishnet graphs. The proof of the Fishnet Theorem in [3] uses a detour
over relations that are derived within the context of super Yang-Mills theory.
It would be desirable to have a proof which is closer to the technologies used
in this article.

It is unclear if the Fishnet Theorem generalizes in some way. Experi-
ments show that there exist further unknown relations between graphical
functions.

16. Radial graphical functions

With this section we begin the second part of the article which contains
detailed proofs.

In the next sections we revisit a classical method in perturbative QFT,
the Gegenbauer expansion [17]. In our framework the Gegenbauer method
is a decomposition of graphical functions into radial and angular parts, see
Theorem 84 and Conjecture 86.
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In any (odd or even) dimension D = 2λ+ 2 ≥ 3 we define the spherical

coordinates of a vector x ∈ RD as

(77) x =

⎛⎜⎜⎜⎜⎜⎝
X cos(φx

1)
X sin(φx

1) cos(φ
x
2)

...
X sin(φx

1) · · · sin(φx
D−2) cos(φ

x
D−1)

X sin(φx
1) · · · sin(φx

D−2) sin(φ
x
D−1)

⎞⎟⎟⎟⎟⎟⎠ ,

where φx
1 , . . . , φ

x
D−2 ∈ [0, π) and φx

D−1 ∈ [0, 2π). We use capitals for the

moduli, i.e. X = ‖x‖ ∈ [0,∞). In this section we only work with the moduli.

Consider a graph G that has a pair of weights (νe, ne) with νe ∈ R,

ne ∈ Z≥0 at every edge e ∈ EG. The additional weights ne refer to the labels

used in the expansion of the propagators into Gegenbauer polynomials, see

e.g. (107).

The vertices of G split into three external vertices 0, 1, Z ≥ 0 and in-

ternal vertices Xi ≥ 0, i = 1, . . . , |V int
G | (we identify labels with numbers or

variables). Every edge e that is adjacent to the external label 0 has ne = 0.

To every edge e = XY we associate the propagator

(78) pRXY =
1

(XY )λνXY

(
X

Y

)nXY +λνXY

<

,

where (x)< = x if x < 1 and x−1 otherwise. It is convenient to initially

consider the dimension D = 2λ + 2 as a complex parameter. In the end

we will set D to the wanted integer value. For X = 0 the propagator is

pR0Y = Y −2λν0Y (the weighted position space Feynman propagator from 0 to

Y ).

We define the radial graphical function of G as

(79) fR
G (Z) =

( |V int
G |∏

i=1

∫ ∞

0
XD−1

i dXi

) ∏
e∈EG

pRe ,

whenever the integral converges.

Example 66. Consider the wheel with n spokes WSn,D in Figure 4. The

hub has label 0 and the first vertex on the rim has label 1. We assign the

label Z to the last label on the rim (label n in Figure 4). The spokes have

propagators X−2
i where X1 = 1 and Xn = Z. The edge i, i+1 on the rim has
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the propagators (XiXi+1)
−λ(Xi/Xi+1)

ni,i+1+λ
< where we set Xn+1 = X1 = 1.

We get

(80) fR
WSn,D

(Z) =
(Z)n1Z+λ

<

Z2λ+2

( n−1∏
i=2

∫ ∞

0

dXi

Xi

) n−1∏
i=1

(
Xi

Xi+1

)ni,i+1+λ

<

.

Lemma 67. We write fR
GZ0,Z1,Z2

for the radial graphical function fR
G (Z) of

the graph G with external labels Z0, Z1, Z2. Then

(81) fR
G0,1,Z−1

= Z2λNGfR
G0,Z,1

,

where the weight NG of the graphical function G is defined in (14).

Proof. We scale all integration variables in fR
G0,Z,1

by Z to obtain the result

from the definition of the radial graphical function.

Now, we assume Z < 1. With the previous lemma we can translate

the results to the case Z > 1. Let SZ1 be the set of orderings of 1, Z,Xi,

i = 1, . . . , |V int
G | which preserve Z < 1, i.e. SZ1 = {σ : {1, 2, . . . , |V int

G |+2} →
{1, Z,Xi}, with σ−1(Z) < σ−1(1)}. Note that SZ1 depends on the internal

vertices X1, . . . , X|V int
G |.

Example 68. For |V int
G | = 1 the set SZ1 consists of the three elements that

map 1, 2, 3 to X1, Z, 1, to Z,X1, 1, or to Z, 1, X1.

In general, SZ1 has (|V int
G | + 2)!/2 elements. The domain of integration

{Xi > 0} partitions into the |SZ1| sectors 0 < σ(1) < . . . < σ(|V int
G | + 2).

Accordingly, the radial graphical function decomposes as

fR
G (Z) =

∑
σ∈SZ1

fσ(Z),

fσ(Z) =

∫
0<σ(1)<...<σ(|V int

G |+2)

( |V int
G |∏

i=1

XD−1
i dXi

) ∏
e∈EG

pRe .

We fix σ ∈ SZ1 and use (without restriction) labels with {0 < σ(1) <

. . . < σ(|V int
G | + 2)} = {0 < X1 < . . . < Xs < Z < Xs+1 < . . . < Xt < 1 <

Xt+1 < . . . < X|V int
G |} = Σ for 0 ≤ s < t ≤ |V int

G |. The propagator is additive

in the weights so that we can replace multiple edges by single edges with

added weights. For vanishing weights νe = ne = 0 the propagator pRe is one.
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To simplify the notation we may hence assume that G is the complete graph

(with zero weights at unwanted edges). From (78) we get

fσ(Z) =

∫
Σ

∏
X∈{Z,X1,...,X|Vint

G
|}
ωX ,

with

ωX = XD−1−(
∑

Y <X nXY +2λνXY )+
∑

Y >X nXY dX, for X = X1, . . . , X|V int
G |,

ωZ = Z−(
∑

Y <Z nY Z+2λνY Z)+
∑

Y >Z nY Z .

The path of the iterated integral over Σ splits at Z and 1. Therefore

fσ(Z) factors,

fσ(Z) = f0Z
σ (Z)ωZf

Z1
σ (Z)f1∞

σ ,

where the fXY
σ are iterated integrals from X to Y . Note that f1∞

σ does not

depend on Z.

For f0Z
σ we re-scale all variables X1, . . . , Xs by Z and obtain

f0Z
σ (Z) = f0Z

σ (1)Zαs ,

where we used the notation

αk = kD −
( ∑

X<Y≤Xk

nXY + 2λνXY

)
+

∑
Y >X≤Xk

nXY =

= kD −
∑

X<Y≤Xk

2λνXY +
∑

X≤Xk<Y

nXY

(82)

for k = 1, . . . , |V int
G |. In the above formula the sums are over X and Y . The

second equation holds because the contributions of the weights nXY cancel

if both X,Y ≤ Xk.

The factor f0Z
σ (1) can be calculated by integrating over X1, X2, . . . , Xs.

Each integration provides the reciprocal of a linear form in D and in the

weights.

More complicated is the term fZ1
σ (Z): For generic D we are allowed to

split the iterated integral from Z to 1 at 0 (i.e. we integrate from Z to 0

and then from 0 to 1). We reverse the orientation of the path from Z to

0 and obtain by path concatenation and path reversal of iterated integrals
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(see e.g. [33])

fZ1
σ (Z) =

t∑
k=s

(−1)k−sf0Z
k (Z)f01

k , with

f0Z
k (Z) =

∫
0<Xk<Xk−1<...<Xs+1<Z

k∏
i=s+1

ωXi
,

f01
k =

∫
0<Xk+1<...<Xt<1

t∏
i=k+1

ωXi
,

where empty integrals are 1. We have

f0Z
k (Z) = f0Z

k (1)Zβk , with

βk = (k − s)D −
( ∑

X<Y ;Xs<Y≤Xk

nXY + 2λνXY

)
+

∑
Y >X;Xs<X≤Xk

nXY .

The term f0Z
k (1)f01

k gives t − s reciprocals of linear forms. With (82) we

obtain (including ωZ)

fσ(Z) =

t∑
k=s

Zαk

Pk(D)
,

where Pk is a polynomial inD of degree |V int
G | which factors into linear forms.

Consider the induced subgraph Gk = G[{0, Z,X1, . . . , Xk}]. The first

sum in (82) is over edges of Gk whereas the second sum is over edges that

cut G into Gk and the graph G[{1, Xk+1, . . . , X|V int
G |}] which is induced by

VG\VGk
. Summing over σ ∈ SZ1 the graph Gk can contain any subset of

V int
G . Using (14) we obtain the generic result

(83) fR
G (Z) =

∑
V⊆V int

G

cVZ
−2λNG[V∪{0,z}]+

∑
u∈V∪{0,z}

v∈Vint
G

∪{1}\V
nuv

,

where cV is a finite sum over reciprocals of products of |V int
G | linear forms

in D and the weights. It is possible to give a formula for cV . Here, we only

need its general shape.

Theorem 69. Let G be the graph of a radial graphical function in D = 2λ+2
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dimensions with external vertices 0, 1, Z < 1. Then

(84) fR
G (Z) =

|V int
G |∑

�=0

∑
V⊆V int

G

c�,V(logZ)�Z
−2λNG[V∪{0,z}]+

∑
e∈CG

V∪{0,z}
ne

,

where c�,V ∈ R are constants (which depend on λ, νe, ne) and CG
V = EG\

(EG[V] ∪ EG[VG\V]) is the set of edges which connect the induced subgraph

G[V] to the induced subgraph of the complement VG\V.

Proof. We use the generic result (83). If we approach D from generic val-

ues, we may encounter vanishing denominators in cV . We use l’Hospital to

calculate the limit. The coefficient becomes a polynomial in logZ of degree

≤ |V int
G | (the maximum number of factors which can vanish in the denomi-

nators).

Example 70. We continue Example 66. The integral in (80) is a multiple

convolution which can be solved by Fourier transformation (this trick was

used in Equation (81) of [31] to calculate the period of WS3,4). With the

residue theorem we get for any positive number x,

μ

π

∫ ∞

−∞

xiPdP

P 2 + μ2
= (x)μ<.

Substitution of the right hand side into (80) gives that fR
WSn,D

(Z) is equal to

2n−1(Z)n1Z+λ
<

2πZ2λ+2

( n−1∏
i=1

∫ ∞

−∞

Z−iPn−1(ni,i+1 + λ)dPi

P 2
i + (ni,i+1 + λ)2

)
·
n−1∏
i=2

∫ ∞

0

X
i(Pi−Pi−1)
i dXi

2πXi
.

The integrals over the Xi identify all Pis (substitute Xi = exp ξi) and

(85) fR
WSn,D

(Z) =
2n−1(Z)n1Z+λ

<

Z2λ+2

∫ ∞

−∞

Z−iPdP

2π

n−1∏
i=1

ni,i+1 + λ

P 2 + (ni,i+1 + λ)2
.

Using the residue theorem again we close the contour in the upper half-plane

and obtain in the special case of mutually distinct weights ni,i+1 and Z < 1,

fR
WSn,D

(Z) = 2n−1Zn1Z−λ−2i

n−1∑
j=1

resP=i(nj,j+1+λ)Z
−iP

n−1∏
i=1

ni,i+1 + λ

P 2 + (ni,i+1 + λ)2
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= 2n−2Zn1Z−2
n−1∑
j=1

Znj,j+1

n−1∏
1=i �=j

ni,i+1 + λ

(ni,i+1 + λ)2 − (nj,j+1 + λ)2
.(86)

To compare the result with Theorem 69 we consider the vertex set V =

{0, Z,Xj+1, . . . , Xn−1}. The induced subgraph has n− j+1 spokes of weight

1/λ, n− j edges on the rim with weight 1 and n− j internal vertices. Hence

NG[V] = 1/λ. The spokes in the cut CV have ne = 0. Only the two edges

1Z and j, j + 1 contribute to the sum in the exponent, yielding the term

c0,VZ−2+n1Z+nj,j+1 which we find in (86). Note that most constants c�,V in

(84) are zero.

17. Angular graphical functions

In this section we focus on the angular part (X = 1) of the spherical coor-

dinates defined in (77).

We consider a graph G with a pair of edge-weights (νe, ne) where νe ∈ R,

ne ∈ Z≥0 for every edge e ∈ EG. In general, the Feynman propagator between

two vectors in RD depends on their relative angle. If, however, an edge 0x

of G is adjacent to 0, the propagator ‖x‖−2λν0x has no angular dependence.

So, in the angular graph G we will have no external vertex 0. In this section

we generalize to any number of external vertices z1, . . . , z|Vext
G |. Because only

angles matter we assume that internal and external vertices are unit vectors.

In the context of standard graphical functions we will have z1 = 1 and

z2 = z/|z| ∈ C.

We normalize the integral over the unit sphere SD−1 in (odd or even) D

dimensions, i.e.
∫
SD−1

Ωx
D−1 = 1,

(87)∫
SD−1

Ωx
D−1 =

Γ(λ+ 1)

2πλ+1

∫ π

0
dφx

1 · · ·
∫ π

0
dφx

D−2

∫ 2π

0
dφx

D−1

D−1∏
i=1

sinD−i−1 φx
i .

For α ∈ R the Gegenbauer polynomials Cα
k (x) are defined by the gener-

ating function (see e.g. [1, Chapter 22])

(88)
1

(1− 2tx+ t2)α
=

∞∑
k=0

Cα
k (x)t

k, for t < 1.

Every Gegenbauer polynomial Cα
k (x) is a polynomial of degree k in x. If

k is even, then Cα
k (x) is symmetric, otherwise it is antisymmetric. In the
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coordinate x = (eiφ+e−iφ)/2 the generating function factors and one obtains

(89) Cα
k (cosφ) =

k∑
�=0

(
α+ k − �− 1

α− 1

)(
α+ �− 1

α− 1

)
e(k−2�)iφ.

This identity implies

(90) |Cα
k (cosφ)| ≤ Cα

k (1) =

(
k + 2α− 1

k

)
.

Gegenbauer polynomials are orthogonal with respect to the measure ΩD−1

(see e.g. [40]),

(91)

∫
SD−1

dΩy
D−1C

λ
k (cosφxy)C

λ
� (cosφyz) =

λδk,�
λ+ k

Cλ
k (cosφxz),

where x, y, z ∈ RD and φxy is the angle between x and y.

Example 71. We have

Cα
0 (x) = 1, Cα

1 (x) = 2αx, Cα
2 (x) = 2α(α+ 1)x2 − α,

Cα
3 (x) =

4(α+ 2)!

3(α− 1)!
x3 − 2(α+ 1)!

3(α− 1)!
x.

(92)

To every edge e ∈ EG of the graph G we associate the angle φe between

its vertices. The angular propagator is (note that p∠e is not additive in the

weights)

(93) p∠e = Cλνe
ne

(cosφe).

The angular graphical function of G is defined as

(94) f∠
G (z1, . . . , z|Vext

G |) =
( |V int

G |∏
i=1

∫
SD−1

Ωxi

D−1

) ∏
e∈EG

p∠e .

Example 72. Let Cn be the cycle with n vertices 1, . . . , n and edge-weights

(1, ni,i+1) where we identify the labels n + 1 and 1. We set 1 = z1 and

n = z2 as the two external labels of Cn. All other labels are internal. By
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orthogonality we get

f∠
Cn

(z1, z2) =
( n−1∏

i=2

∫
SD−1

Ωxi

D−1

) n∏
i=1

Cλ
ni,i+1

(cosφi,i+1) =

=
( λ

λ+ nz1,2

)n−2( n−1∏
i=2

δni−1,i,ni,i+1

)
Cλ
nz1,2

(cosφz1,z2)C
λ
nz1,z2

(cosφz1,z2).

(95)

To express the connection between degree and symmetry of Gegenbauer
polynomials we introduce the relation ≤2 according to

(96) a ≤2 b ⇔ (a ≤ b and a ≡ b mod 2) for a, b ∈ Z.

With this notation we get

(97) p∠e =
∑

k≤2ne

ck cos
k φe with ck ∈ R.

Using (92) we interpret cosφe as angular propagator of an edge with weights
(νe, ne) = (1/2λ, 1). The propagator p∠e becomes an R-linear-combination of
propagators for multiple edges of this type. Therefore it suffices to consider
angular graphs with multiple edges where each edge e has weights νe = 1/2λ
and ne = 1.

The general result for angular graphical functions can be derived from
the N -star �k = �k1,...,kN

where a single internal vertex x1 = x connects to
the external vertex zi, i = 1, . . . , N with ki parallel edges of weight (1/2λ, 1).
We calculate the generating function of f∠

	k
in the variables t = t1, . . . , tN ,

f	(t) =
∑
k

(
∑N

i=1 ki)!∏N
i=1 ki!

f∠
	k
(z1, . . . , zN )

N∏
i=1

tki

i =

∫
SD−1

Ωx
D−1

1−
∑N

i=1(x · zi)ti
.

The denominator of the integrand is

1− x · zt = 1− cos(φ)Zt, with zt =

N∑
i=1

ziti and φ = φxzt , Zt = |zt|.

We orient the coordinate system such that zt points into the 1-direction and
obtain

f	(t) =
Γ(λ+ 1)√
πΓ(λ+ 1

2)

∫ π

0

sin2λ φ dφ

1− cosφZt
,
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where we performed the integral over the SD−2 sphere. For sufficiently small
ti the integral convergences absolutely and the integrand can be expanded in
Zt. Consider the integral transformation φ �→ π − φ. Because cosφ changes
sign whereas sinφ does not, only even powers in the expansion give non-zero
results. We obtain

f	(t) =
Γ(λ+ 1)√
πΓ(λ+ 1

2)

∞∑
m=0

∫ π

0
sin2λ φ cos2m φ dφZ2m

t =

=

∞∑
m=0

Γ(λ+ 1)Γ(m+ 1
2)

Γ(λ+m+ 1)Γ(12)

( N∑
i,j=1

zi · zjtitj
)m

.

(98)

We have zi · zi = 1 whereas zi · zj = cosφe for the edge e = zizj between
the external vertices zi and zj . Note that the coefficients of the generating
series are rational functions in λ.

Example 73. For the three-star �k1,k2,k3
in D = 2λ+ 2 ≥ 3 dimensions we

get

f∠
	0,0,0

= 1, f∠
	2,0,0

=
1

2(λ+ 1)
, f∠

	4,0,0
=

3

4(λ+ 1)(λ+ 2)
,

f∠
	1,1,0

=
z1 · z2

2(λ+ 1)
, f∠

	3,1,0
=

3z1 · z2
4(λ+ 1)(λ+ 2)

,

f∠
	2,2,0

=
2(z1 · z2)2 + 1

4(λ+ 1)(λ+ 2)
, f∠

	2,1,1
=

2(z1 · z2)(z1 · z3) + (z2 · z3)
4(λ+ 1)(λ+ 2)

.

Up to permutations these are the only non-zero 3-stars with k1+k2+k3 ≤ 4.

Example 74. Consider the angular graphical function of the three-star
in Figure 2 with external vertices z1, z2, z3. We assign the weights (ν1, n1),
(ν2, n2), (ν3, n3) to the edges attached to z1, z2, z3, respectively. In D =
2λ + 2 ≥ 3 dimensions we get the following values for f∠(z1, z2, z3) with
(n1, n2, n3) =

(0, 0, 0) : 1, (2, 0, 0) : −λ2ν1(1−ν1)
λ+1 , (4, 0, 0) : λ2ν1(λν1+1)(1−ν1)(λ(1−ν1)−1)

2(λ+1)(λ+2) ,

(1, 1, 0) : λν1ν2

λ+1 Cλ
1 (z1 · z2), (3, 1, 0) : −λ2ν1ν2(λν1+1)(1−ν1)

(λ+1)(λ+2) Cλ
1 (z1 · z2),

(2, 2, 0) : λν1ν2(λν1+1)(λν2+1)
(λ+1)2(λ+2) Cλ

2 (z1 · z2) +
λ4ν1ν2(1−ν1)(1−ν2)

(λ+1)2 ,

(2, 1, 1) : λν1ν2ν3(λν1+1)
(λ+1)(λ+2) Cλ

1 (z1 · z2)Cλ
1 (z1 · z3)−

λ2ν1ν2ν3(λ(1−ν1)+1)
(λ+1)(λ+2) Cλ

1 (z2 · z3).

Up to permutations these are the only non-zero 3-stars with n1+n2+n3 ≤ 4.
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Theorem 75. Let G be the graph of an angular graphical function with

external vertices Vext
G = {z1, . . ., z|Vext

G |} and edge-weights (νe(G), ne(G)),

e ∈ EG. Let G be the set of purely external subgraphs g—i.e. Vg = Vext
g ⊆

Vext
G —whose weights ne(g), e ∈ Eg, have the property that for every V ⊆ VG

(99)
∑
e∈Cg

V

ne(g) ≤2

∑
e∈CG

V

ne(G) (see Theorem 69 and (96)).

Then the angular graphical function f∠
G has a (non-unique) representation

as

(100) f∠
G (z1, . . . , z|Vext

G |) =
∑
g∈G

cgf
∠
g (z1, . . . , z|Vext

G |),

where the sum has a finite number of non-zero constants cg ∈ R. The empty

sum is zero.

Example 76. Consider the three-star of Example 74. If G has an iso-

lated vertex z3, then V = {1, 2} in (99) gives n13(g) + n23(g) ≤2 0. We get

n13(g) = n23(g) = 0. The result depends on z1 · z2 only (as is inferred by the

orthogonality of the Gegenbauer polynomials).

If (n1, n2, n3) = (2, 1, 1), then (99) gives the three conditions n12(g) +

n13(g) ≤2 2, n12(g)+n23(g) ≤2 1, and n13(g)+n23(g) ≤2 1. These conditions

have the two solutions n12(g) = n13(g) = 1, n23(g) = 0 and n12(g) =

n13(g) = 0, n23(g) = 1.

Example 77. For the cycle Cn in Example 72 the sum in (100) can be

represented by a single term which corresponds to a graph g with two edges

e1, e2 between z1 and z2. The edge e1 has weights (1, nz1,z2) and is also an

edge in G. The edge e2 has weights (1, nz1,2). We want to verify that (99)

holds for g.

We bi-partition the vertices of Cn into V ⊆ {1, . . . , n} and its comple-

ment in Cn. The partitions are connected by the even number of edges in

C ≡ CCn

V . If z1z2 ∈ C (i.e. V has exactly one of the vertices z1, z2), then (99)

becomes nz1,z2 + nz1,2 ≤2 nz1,z2 +
∑

e∈C\{z1z2} ne. This holds true because

the product of Kronecker deltas in (95) ensures that all ne in the sum equal

nz1,2. If z1z2 /∈ C, then (99) becomes 0 ≤2
∑

e∈C ne which is true for the

same reason.

It is clear that (99) is not strong enough to deduce that f∠
Cn

= 0 unless

all edges weights ni,i+1, 1 ≤ i ≤ n− 1, are equal.
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Proof of Theorem 75. We prove the theorem by induction over |V int
G | and

start with |V int
G | = 0. In this case, (100) is true for cG = 1 and cg = 0,

otherwise.

Next, we assume that G is the N -star �k. In (98) we interpret the scalar

products zi · zj as edges zizj with weights (1/2λ, 1) in some (multi-)graph g.

So, �k has a finite expansion (100). We have to prove (99) for �k.

We may assume that V = {zi : i ∈ I}, I ⊆ {1, . . . , N}, has only external

vertices (otherwise we replace V by its complement V	k
\V). The vertices in V

contribute with the monomial MV(t) =
∏

i∈I t
ki

i to the generating function

f	(t). The edges in Cg
V have exactly one vertex zi in V and contribute with

a factor of ti to MV(t). Edges of g with no vertices in V do not contribute

to MV(t) whereas edges of g with both vertices zi, zj in V contribute with a

factor of titj . The scalar products zi · zi = 1, i ∈ I in (98) contribute with a

factor of t2i to MV(t). Because every edge in g has weight ne(g) = 1 we get∑
e∈Cg

V

ne(g) ≤2

∑
e∈Cg

V

1 +
∑

zizj∈g; i,j∈I
2 ≤2

∑
e∈C�k

V

ne(�k).

By transitivity of ≤2 the inequality (99) follows.

If G has a single internal vertex x and no edges between external vertices,

we use (97) to expand f∠
G into a finite sum over N -stars with multiple edges

of weight (λνe, ne) = (1/2, 1). The multiplicity ki of an edge xzi in any such

N -star fulfills

ki ≤2

∑
e=xzi∈EG

ne(G),

where the sum takes into account that G may have multiple edges between

x and zi. We expand the N -stars according to (100) and get from (99) for

any N -star,∑
e∈Cg

V

ne(g) ≤2

∑
e∈C�k

V

ne(�k) =
∑

xzi∈C�k
V

ki ≤2

∑
e∈C�k

V

ne(G).

Finally we observe that (99) and (100) are trivially stable under adding

edges between external vertices. This establishes the case |V int
G | = 1.

For |V int
G | ≥ 2 we integrate over one vertex x ∈ V int

G , i.e. we consider

all other vertices as external and evaluate the integral over Sx
D−1 using the

result for |V int
G | = 1. We obtain a sum over graphs gx with no vertex x.

For these gx we use induction providing an expansion in terms of external
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graphs g with ∑
e∈Cg

V

ne(g) ≤2

∑
e∈Cgx

V

ne(gx) ≤2

∑
e∈CG

V

ne(G).

The inequality (99) follows for every intermediate graph gx.

Remark 78.

1. The proof of Theorem 75 is constructive. It establishes an algorithm
to calculate angular graphical functions.

2. By rotational invariance the cases |Vext
G | = 0 and |Vext

G | = 1 are identi-
cal, see Section 18. If Vext

G = {z1, z2}, then f∠
G (z1, z2) is a polynomial

in z1 · z2.
3. We are allowed to restrict the expansion (100) to simple graphs with

weights νe(g) = 1 (or any other weight). In this case the coefficients
cg are well defined rational functions in the weights νe(G), see Exam-
ple 74.

4. It is possible to derive constraints on the weights ne for non-vanishing
angular graphical functions. For example, one may consider an inter-
nal edge cut C (i.e. one of the cut subgraphs has only internal vertices).
Then f∠

G = 0 unless for every edge e ∈ C

ne ≤2

∑
e �=f∈C

nf .

We do not need this generalized triangle identity here and therefore
leave it unproved.

18. Angular periods

If the graph G has no external vertices, VG = V int
G , (or G has one external

vertex), its angular graphical function is a constant angular period,

(101) P∠
G = f∠

G (∅).

By the previous section it is clear that for fixed ne, e ∈ E , angular periods
in dimension D = 2λ+ 2 ≥ 3 are rational functions in λ and νe.

Example 79. Consider the tetrahedron with vertices 1, 2, 3, 4. For tuples
of integer edge-weights (n12, n13, n14, n34, n24, n23) we get the angular periods
(compare Example 74)

(0, 0, 0, 0, 0, 0) : 1,
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(2, 0, 0, 0, 0, 0) : −λ2ν12(1− ν12)

λ+ 1
,

(4, 0, 0, 0, 0, 0) :
λ2ν12(λν12 + 1)(1− ν12)(λ(1− ν12)− 1)

2(λ+ 1)(λ+ 2)
,

(2, 2, 0, 0, 0, 0) :
λ2ν12ν13(1− ν12)(1− ν13)

(λ+ 1)2
,

(1, 1, 0, 0, 0, 1) :
2λ3ν12ν13ν23
(λ+ 1)2

,

(1, 1, 0, 1, 1, 0) :
2λ4ν12ν13ν34ν24

(λ+ 1)3
.

These are the only non-zero tetrahedra periods with
∑

e ne ≤ 4 up to permu-
tations.

In the above example we see that for general weights νe angular periods
can be negative. If D = 4 and νe = 1 for all e ∈ EG, this is not the case.

Theorem 80. Let P∠
G be the angular period of a graph G with edge-weights

νe = 1 for all e ∈ EG in D = 4 dimensions. Then P∠
G ≥ 0.

Proof. We use that a unit vector x in R4 can be identified with an SU(2)
group element via

x ∼
( x1 x2

−x2 x1

)
, where x1, x2 ∈ C and x = (Rex1, Imx1,Rex2, Imx2)

T .

We obtain the relation

Trxy−1 = 2Re (x1y1 + x2y2) = 2 cosφxy = C1
1 (cosφxy),

where y1 and y2 are the complex coordinates of y. The matrix of x is the two-
dimensional representation R(2)(x) of the SU(2) element x with character
TrR(2)(x) = χ2(x). The group SU(2) has one irreducible representation
R(n+1) in each finite dimension n + 1 ≥ 1. Tensor products of irreducible
SU(2) representations reduce to irreducible representations according to

R(n1+1)(x)⊗R(n2+1)(x) =
∑

|n1−n2|≤2n3≤2n1+n2

SR(n3+1)(x)S−1

for some invertible matrix S. By unitarity of the representations we can
choose S to be unitary, S−1 = S† (in fact one can choose S to be orthogonal).
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Using indices this gives

R
(n1+1)
m1,m′

1
(x)R

(n2+1)
m2,m′

2
(x) =

=
∑

|n1−n2|≤2n3≤2n1+n2

n3+1∑
m3,m′

3=1

Sn1,n2,n3
m1,m2,m3

R
(n3+1)
m3,m′

3
(x)S

n1,n2,n3

m′
1,m

′
2,m

′
3
,

(102)

where we made the dependence of S on n1, n2, n3 explicit. The matrix index

of S is the bi-label m1,m2 and the label m3. The S
n1,n2,n3
m1,m2,m3 are related to the

3-j symbols in quantum mechanics (see e.g. [32] and the references therein).

By taking traces on both sides we obtain the addition formula for the SU(2)

characters

χn1+1(x)χn2+1(x) =
∑

|n1−n2|≤2n3≤2n1+n2

χn3+1(x).

This formula mirrors the addition formula for the Gegenbauer polynomials

C1
n,

C1
n1
(x)C1

n2
(x) =

∑
|n1−n2|≤2n3≤2n1+n2

C1
n3
(x),

which follows from (89). Moreover, we have χ1(xy
−1) = C1

0 (cosφxy) = 1.

With the initial conditions for the first two cases the addition formulae fully

determine the characters and Gegenbauer polynomials for higher indices.

We get

C1
n(cosφxy) = χn+1(xy

−1) =

n+1∑
m,m′=1

R
(n+1)
m,m′ (x)R

(n+1)
m,m′ (y).

The left hand side is the angular propagator (93) for weights (νe, ne) = (1, n).

To handle the formal asymmetry in x and y we orient the edges of the angular

graph G by the convention that ij is the edge from i to j. From the definition

(94), (101) of the angular period we get

P∠
G =

( |VG|∏
i=1

∫
SD−1

Ωxi

D−1

) ∏
e=ij∈EG

ne+1∑
m,m′=1

R
(ne+1)
m,m′ (xi)R

(ne+1)
m,m′ (xj).
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We interchange the finite sums with the integral and obtain

(103)

P∠
G =

∑ |VG|∏
i=1

∫
SD−1

Ωxi

D−1

( ∏
j:ij∈EG

R
(nij+1)
mij ,m′

ij
(xi)

)( ∏
j:ji∈EG

R
(nji+1)
mji,m′

ji
(xi)

)
,

where we sum over m1,m
′
1 ∈ {1, . . . , n1 +1}, over m2,m

′
2 ∈ {1, . . . , n2 +1},

. . ., over m|EG|,m
′
|EG| ∈ {1, n|EG|+1} and where the empty product is 1. Note

that we label the edges by 1, . . . , |EG| and also by the directed pairs of their

adjacent vertices. Iterated use of (102) gives∏
j:ij∈EG

R
(nij+1)
mij ,m′

ij
(xi) =

∑
M,M ′,N

S
(nij)j ,N
(mij)j ,M

R
(N+1)
M,M ′ (xi)S

(nij)j ,N
(m′

ij)j ,M
′ ,

where we have defined multi-j-type symbols S, see [32]. If on the left hand

side the product over j is empty, the right hand side is defined as 1 = R
(1)
1,1

whereas in the case of a single factor the formula is trivial. Otherwise we

explicitly have

S
(nij)j ,N
(mij)j ,M

=
∑

M1,...,Mk

∑
N1,...,Nk

Sn1,n2,N2

m1,m2,M2
SN2,n3,N3

M2,m3,M3
· · ·SNk−1,nk,N

Mk−1,mk,M
,

where we assumed that the edges in the product are labeled from 1 to k.

With the orthogonality relation of representations (see e.g. [40])∫
SD−1

Ωx
D−1R

(n1+1)
m1,m′

1
(x)R

(n2+1)
m2,m′

2
(x) =

δn1,n2
δm1,m2

δm′
1,m

′
2

n1 + 1

the integral over xi in (103) gives

∑
M,M ′,N

S
(nij)j ,N
(mij)j ,M

S
(nij)j ,N
(m′

ij)j ,M
′S

(nji)j ,N
(mji)j ,M

S
(nji)j ,N
(m′

ji)j ,M
′

N + 1
.

With this result the terms with unprimed and primed indices factor in (103)

and we get the non-negative expression for P∠
G :

1∏|VG|
i=1 (Ni + 1)

∑
N1,...,N|VG|

∣∣∣ ∑
m1,...,m|EG|

∑
M1,...,M|VG|

|VG|∏
i=1

S
(nij)j ,Ni

(mij)j ,Mi
S
(nji)j ,Ni

(mji)j ,Mi

∣∣∣2.
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Example 81. For the n-cycle Cn with only internal vertices (and edge-

weights (1, ni,i+1)) we get the angular period from integrating (95) in Ex-

ample 72 over z2. By orthogonality (91) of the Gegenbauer polynomials we

get

P∠
Cn

=
( λ

λ+ nz1,2

)n−1( n∏
i=2

δni−1,i,ni,i+1

)
Cλ
nz1,2

(1) =

=

(
nz1,2 + 2λ− 1

nz1,2

)( λ

λ+ nz1,2

)n−1( n∏
i=2

δni−1,i,ni,i+1

)
,

(104)

where we have used (90).

Example 82. Consider the tetrahedron with vertices 1, 2, 3, 4 and νe = 1

for all edges e. For integer edge-weights (n12, n13, n14, n34, n24, n23) we get

the angular periods (compare Example 79)

(0, 0, 0, 0, 0, 0) : 1, (1, 1, 0, 0, 0, 1) :
2λ3

(λ+ 1)2
, (1, 1, 0, 1, 1, 0) :

2λ4

(λ+ 1)3
.

Up to permutations these are the only non-zero tetrahedra periods with νe = 1

and
∑

e ne ≤ 4. For ne = 2 we get

(2, 2, 2, 2, 2, 2) :
8λ7(2λ+ 1)(λ2 + 4λ− 3)

(λ+ 2)3(λ+ 3)3

which is − 6
42875 in three dimensions. For D ≥ 4 the angular period of the

tetrahedron with ne = 2 is positive.

The proof of Theorem 80 explicitly uses the group structure of the unit-

sphere in four dimensions. It does not generalize to higher dimensions. Still,

angular periods may be positive for D > 4.

Question 83. Does Theorem 80 hold for (some) dimensions D > 4?

Example 82 admits the possibility that Theorem 80 holds for all D ≥ 4

and, in particular, for even D ≥ 4. So, non-negativity of angular periods may

still be a viable path to extend the validity of (G3) in Theorem 5. Note that

Theorem 5 has been excessively tested by the calculation of many Feynman

periods with graphical functions.
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19. Gegenbauer expansion

We want to prove that it is possible to express graphical functions as mul-
tiple sums over radial and angular graphical functions [17]. The obstacle
is to legitimate interchanging the Gegenbauer sum with the position space
integrals. We expect that this is always possible but we only prove a special
case with a positivity condition on angular periods, see Theorem 80 and
Question 83.

Theorem 84. Let G be a graph such that the graphical function fG(z) exists
in D = 2λ + 2 ≥ 3 (odd or even) dimensions. Let G(n) be the graph G
with additional non-negative integer edge-weights n = n1, . . . , n|EG| which
vanish for every edge that is incident to the external vertex 0. Moreover, for
n1z ∈ Z≥0 we define G(n, n1z) as the graph that is obtained from G(n)\{0}
by adding an edge 1z with weights ν1z = 1 and n1z. We assume that the
angular period (101) fulfills

(105) P∠
G(n,n1z)

≥ 0 for all n, n1z ∈ Z≥0.

Then the graphical function fG(z) admits an absolutely convergent Gegen-
bauer expansion for z = Zeiφ, Z = 1,

(106) fG(z) =
( 2

Γ(λ+ 1)

)|V int
G | ∑

n

fR
G(n)(Z)f∠

G(n)\{0}(cosφ).

The radial and angular graphical functions fR
G(n) and f∠

G(n)\{0} are defined
in Sections 16 and 17.

Proof. We use spherical coordinates (77). From (11) we get z1 = (1, 0, . . . , 0)T

and z2 = (Z cosφ, Z sinφ, 0, . . . , 0)T . Propagators in (3) which are not at-
tached to 0 expand into Gegenbauer polynomials, see (88),

(107)
1

‖x− y‖2λνxy
=

1

(XY )λνxy

∞∑
nxy=0

(
X

Y

)nxy+λνxy

<

Cλνxy
nxy

(cosφxy),

where φxy is the angle between x and y and (x)< = x if x < 1 and x−1

otherwise. Propagators of edges which are attached to 0 equal their radial
propagators (78).

The integration measure splits into radial and angular coordinates ac-
cording to (see (87))∫

RD

dDxi

πD/2
=

volSD−1

πD/2

∫ ∞

0
dXXD−1

∫
SD−1

Ωx
D−1 =
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=
2

Γ(λ+ 1)

∫ ∞

0
dXXD−1

∫
SD−1

Ωx
D−1.

By Fubini we can do all angular integrals first. The domain of integration
is compact and the integral is absolutely convergent because by (90) we get
for X = Y ,

1

(XY )λνxy

∞∑
nxy=0

(
X

Y

)nxy+λνxy

<

|Cλνxy
nxy

(cosφxy)| ≤
1

|X − Y |2λνxy
< ∞.

The angular integration over the Gegenbauer polynomials gives the angular
graphical function f∠

G(n)\{0}(cosφ). It admits an expansion into Gegenbauer
polynomials

(108) f∠
G(n)\{0}(cosφ) =

∑
k≥0

f∠
G(n)\{0},kC

λ
k (cosφ).

If we multiply f∠
G(n)\{0} with Cλ

n1z
(cosφ) and integrate over

∫
SD−1

Ωz
D−1,

orthogonality (91) of Gegenbauer polynomials provides an expansion into
angular periods,

f∠
G(n)\{0}(cosφ) =

∑
n1z≥0

λ+ n1z

λCλ
n1z

(1)
P∠
G(n,n1z)

Cλ
n1z

(cosφ).

Because P∠
G(n,n1z)

≥ 0 we get from (90) the estimate

|f∠
G(n)\{0}(cosφ)| ≤

∑
n1z≥0

λ+ n1z

λ
P∠
G(n,n1z)

= f∠
G(n)\{0}(1).

The integral over the radial variables is absolutely convergent,

( |V int
G |∏

i=1

∫ ∞

0
dXiX

D−1
i

)∣∣∣( ∏
e∈EG

pRe

)
f∠
G(n)\{0}(cosφ)

∣∣∣ ≤ fG(Z) < ∞

for 1 = Z > 0. In the above estimate we reversed the interchange of the sum
and the angular integral to obtain fG(Zeiφ) for φ = 0. Finiteness follows
from (G2) in Theorem 5.

By absolute convergence we can interchange the sum with the radial
integrals which gives (106) for Z = 1.
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Corollary 85. Let G be an uncompleted graph such that the Feynman period
PG exists in D = 2λ + 2 ≥ 3 dimensions (see Section 3). Let G(n) ∪ {Z}
be the graph of the corresponding constant radial graphical function with
isolated external vertex Z. If the angular period P∠

G(n)\{0} ≥ 0 for all n, then

(109) PG =
( 2

Γ(λ+ 1)

)|VG|−2 ∑
n

fR
G(n)∪{Z}P

∠
G(n)\{0}.

Proof. Let G0,1,z be the constant graphical function which arises from the
period G by identifying any two vertices with 0 and 1 and adding an isolated
vertex z. We add an edge 1z with weight (1, n1z) and consider the period
P∠
G(n,n1z)

as in Theorem 84. By orthogonality (91) the integration over the
vertex z gives zero unless n1z = 0. In this case the edge 1z is absent and
P∠
G(n,n1z)

≥ 0 follows from P∠
G(n)\{0} ≥ 0. Theorem 84 gives the result.

Conjecture 86. The Gegenbauer expansion (106) is valid for all graphical
functions.

In physics the Gegenbauer x-space technique is considered a well estab-
lished tool [17]. It tacitly assumes that the Gegenbauer expansion in the
integrand interchanges with the x-space integrion as in Conjecture 86.

Example 87. Consider the wheel with n spokes WSn,D in Figure 4 and as-
sume that the (odd or even) dimension D ≤ 2n−2 for convergence. We want
to calculate the period PWSn,D

. The hub has label 0 so that WSn,D\{0} = Cn

whose angular period is calculated in Example 81. The result (104) is non-
negative. The radial period can be derived from Example 70 by integrating
(85) over Z with the measure Z2λ+1dZ. Alternatively one can consider the
wheel with n+1 spokes at Z = 1 (the triangle 01Z contributes with a trivial
factor 1 to the radial graphical function for Z = 1). We get

fR
WSn,D∪{Z} = 2n

∫ ∞

−∞

dP

2π

n∏
i=1

ni,i+1 + λ

P 2 + (ni,i+1 + λ)2
.

With (104) all the ni,i+1 are identified and we obtain for PWSn,D
,

22n−1

Γ(λ+ 1)n−1

∞∑
k=0

(
k + 2λ− 1

k

)( λ

λ+ k

)n−1
∫ ∞

−∞

dP

2π

( k + λ

P 2 + (k + λ)2

)n

=
22n−1

Γ(λ)n−1

∫ ∞

−∞

dP

2π(P 2 + 1)n

∞∑
k=0

(
k+2λ−1

k

)
(k + λ)2n−2

,
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where we scaled the integration variable P with k+λ. By the residue theorem∫ ∞

−∞

dP

2π(P 2 + 1)n
= i resi

1

(P 2 + 1)n
=

i

(n− 1)!

∂

∂n−1
P

∣∣∣
i

1

(P + i)n
=

=
1

22n−1

(
2n− 2

n− 1

)
.

We obtain the following expression for PWSn,D(
2n−2
n−1

)
(2λ− 1)!Γ(λ)n−1

∞∑
k=λ

(k + λ− 1)(k + λ− 2) · · · (k − λ+ 2)(k − λ+ 1)

k2n−2
.

For even D we extend the sum to k = 1 (the surplus terms have zero nu-
merator). We find that a factor of k cancels and get by pairing the factors
in the numerator
(110)

PWSn,D
=

(
2n−2
n−1

)
(2λ− 1)!(λ− 1)!n−1

∞∑
k=1

∏λ−1
�=1 (k

2 − �2)

k2n−3
, if D ≤ 2n− 2 is even.

For odd D the sum over k ranges over half-integers from λ to infinity. We
are free to extend the sum to k = 1/2. If we add and subtract the sum over
the integers from 1 to infinity, we get

PWSn,D
=

(
2n−2
n−1

)
(2λ− 1)!(λ− 1)!n−1

×

×
∞∑
k=1

22n−2λ−1
∏λ−1/2

�=1 (k2 − (2�− 1)2)−
∏λ−1/2

�=1 (k2 − �2)

k2n−2
,

if D ≤ 2n− 3 is odd.

(111)

The products on the right hand sides expand to Q-linear combinations of
single zetas of odd weights for even D and even weights for odd D.

20. Proof of Theorem 5

In this section we prove (G3) in Theorem 5. The main task will be to prove
the case s = 0 in (17) with the identity in (18). We will keep the dimension
and the weights general when possible to show that Conjecture 6 follows
from Conjecture 86.
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We start proving that the case s = 1 in (17) follows from the case
s = 0. We use (15) for the graph G with external vertices a, b, c which
we first interpret as a = z0, b = z1, c = z2 yielding the function of the
graph G0,1,z (indexed by the external labels). Then we interpret a, b, c as
z1, z0, z2 interchanging the role of z and 1 − z in (4). We hence obtain the
graph G1,0,1−z. From (15) we get (alternatively one can use completion, see
Sections 2.3 and 2.4)

‖z1 − z0‖−2λNGfG0,1,z
= ‖z0 − z1‖−2λNGfG1,0,1−z

.

This implies fG1,0,1−z
= fG0,1,z

and (17) follows for s = 1 by swapping 0 ↔ 1
and z ↔ 1− z.

Next we interpret a, b, c as z0, z2, z1 which is equivalent to swapping
z ↔ z−1 in (4). From (15) we get

‖z1 − z0‖−2λNGfG0,1,z
= ‖z2 − z0‖−2λNGfG0,z−1,1

.

With (4) this implies fG0,z−1,1
= (zz)λNGfG0,1,z

(see (81)). We expand fG0,1,z

at s = 0 and substitute z �→ z−1 to get for |z| > 1,

fG0,z,1
=

|V int
G |∑

�=0

∞∑
m,m=M0(G0,1,z)

(−1)�c0�,m,m(G0,1,z)(log zz)
�z−m−λNGz−m−λNG .

With the new summation indices m′ = −m−λNG, m
′ = −m−λNG we get

(19) where

M∞(G0,z,1) = −M0(G0,1,z)− λNG.

This gives the identity in (20) from (18) for s = 0 by interchanging 1 and z.
We now prove the inequality in (18). For s = 0, 1 and any ∅ = V ⊆ V int

G

let Gs = G[V ∪ {s, z}]. Let νz(Gs) be the sum of weights adjacent to z in
Gs. Because Gs is a subgraph of G we have νz(Gs) ≤ ν>z . We consider the
graph G[V ∪ {s}] = Gs\{z}. Note that G[V ∪ {s}] has at least one internal
vertex. By convergence (25) we get NG[V∪{s}] < 0. Integrality of the weights
(λνe ∈ Z) implies λNG[V∪{s}] ≤ −1. We multiply∑

e∈Gs

νe =
∑

e∈G[V∪{s}]
νe + νz(Gs) ≤

∑
e∈G[V∪{s}]

νe + ν>z

with λ and subtract (λ+ 1)|V| to obtain

λNGs
≤ λNG[V∪{s}] + λν>z ≤ −1 + λν>z .
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This implies −max∅�=V⊆V int
G

λNGs
≥ 1−λν>z . For V = ∅ we get Gs = sz and

the inequality in (18) follows.
To prove the inequality in (20) we choose any proper subset V of V int

G .
Depending on the number of vertices in V int

G \V we split the edges of G\G[V∪
{0, 1}] into the three sets E2 = G[V int

G \V], E1 = {uv, u ∈ V int
G \V, v ∈ V ∪

{0, 1, z}}, and E0 = {vz, v ∈ V ∪ {0, 1}}. We get

λNG − λNG[V∪{0,1}] + (λ+ 1)(|V int
G | − |V|) =

=
∑

e∈G\G[V∪{0,1}]
λνe ≥

∑
e∈E1∪E2

λνe + λν<z .
(112)

We consider the graph G[V int
G ∪ {∞}\V] which has at least one internal

vertex. Convergence (25) gives∑
e∈G[V int

G ∪{∞}\V]

νe −
λ+ 1

λ
(|V int

G | − |V|) < 0.

Edges in G[V int
G ∪ {∞}\V] are either in E2 or they have one vertex ∞. By

completion, see Definition 8, we have λνv∞ = D−λνv where νv is the sum of
all weights adjacent in G to the vertex v ∈ V int

G \V. Altogether, convergence
implies ∑

v∈V int
G \V

(2λ+ 2− λνv) +
∑
e∈E2

λνe − (λ+ 1)(|V int
G | − |V|) < 0.

Because
∑

v∈V int
G \V νv = 2

∑
e∈E2

νe +
∑

e∈E1
νe we have

(λ+ 1)(|V int
G | − |V|)−

∑
e∈E1∪E2

λνe < 0.

With integrality of the weights and (112) we obtain

−λNG + λNG[V∪{0,1}] ≤ −1− λν<z .

For V = V int
G we get −λNG+λNG[V∪{0,1}] = −λνz and the inequality in (20)

follows.
We are left with the task to prove (G3) for s = 0. We assume Z < 1 and

use the Gegenbauer expansion into radial and angular graphical functions
in Theorem 84. Here, we have to specialize to D = 4 and νe = 1 in (16)
because we need Theorem 80 to establish condition (105).
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In (84) we have logZ = log(zz)/2. We split the power of Z into two
parts: One part is

Z−2λNG[V∪{0,z}] = (zz)−λNG[V∪{0,z}] = (zz)M with M ≥ M0,

where M0 is defined in (18). Because λνe ∈ Z for all edges e we get M ∈ Z.
We combine the second part with the angular graphical function in (100)

which specializes to

f∠
G (1, z) =

∑
g∈G

cgf
∠
g (1, z).

The vertices of the external graph g are a subset of {1, z}. If g has the
vertices 1 and z, then f∠

g (1, z) is a polynomial in cos(φ) of degree
∑

e ne(g)
which is symmetric if

∑
e ne(g) is even and anti-symmetric otherwise. We

have Z cos(φ) = (z + z)/2 and Z2 = zz. From (99) for V ∪ {0, z} ⊆ VG we
get with the second part of the power of Z in (84),

Z

∑
e∈CG

V∪{0,z}
ne

f∠
g (1, z) = P (z, z), with P ∈ R[z, z].

If g has one or zero vertices, then f∠
g (1, z) is constant and

∑
e∈CG

V∪{0,z}
ne(G)

is even. In this case P ∈ R[zz] ⊂ R[z, z].
Altogether we get sums of the three factors

log�(zz)(zz)MP (z, z)

for � = 0, 1, . . . , |V int
G |, M0 ≤ M ∈ Z and P ∈ R[z, z]. This gives (17) and

completes the proof of (G3) in Theorem 5.

Remark 88. With a cutoff in the weights n (like
∑

e ne ≤ N) one can use
(106) to obtain approximations of graphical functions (or Feynman periods).
Particularly efficient is the case when G\{0} is series-parallel. With accel-
erated convergence this gives an algorithm to approximate Feynman periods
to many digits. This method was used by Broadhurst and Kreimer in [7]
and later by the second author in [34] to determine some Feynman periods
with an exact numerical approach. For general graphs there exists the new
method of tropical Monte Carlo quadrature by the first author to obtain good
approximations [4].

21. Proof of Theorem 49

Lemma 89. In polar coordinates z = Zeiφ we have

Dz ≡
1

z − z
(z∂z − z∂z) = − 1

2Z sinφ
∂φ =

1

Z
∂2cosφ,
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1

(λ− 1)!
∂λ−1
2cosφ

sin(k + λ)φ

sinφ
= Cλ

k (cosφ),(113)

where λ = 1, 2, 3, . . ., k = 0, 1, 2, . . ., and Cλ
k are the Gegenbauer polynomials

(88).

Proof. The first identity follows from z − z = 2iZ sinφ and ∂φ = ∂z
∂φ∂z +

∂z
∂φ∂z = i(z∂z − z∂z).

We prove the second identity with generating functions. We multiply
both sides with tk+λ and sum over k. It is convenient to extend the sum to
negative values of k. To do this we define Cλ

k = 0 for k < 0. The left hand
side gives

1

(λ− 1)!
∂λ−1
2cosφ

∞∑
k=−λ

(eiφt)k+λ − (e−iφt)k+λ

eiφ − e−iφ
.

The geometric series is t/(1−(2 cosφ)t+t2). Differentiation with ∂λ−1
2cosφ gives

(λ − 1)!tλ/(1 − (2 cosφ)t + t2)λ. The factor (λ − 1)! cancels and we obtain
the generating function of Gegenbauer polynomials (88).

Proposition 90. The kernel of the differential operator Dλ−1
z is

(114) kerDλ−1
z =

λ−2∑
k=0

hk(zz)(z
k + zk)

for arbitrary functions hk(zz). In particular, every function in the kernel is
symmetric under z ↔ z.

Proof. From 2Z cosφ = z + z and the first identity in (113) we obtain that
the kernel are polynomials in z + z of degree ≤ λ − 2 with zz-dependent
coefficients. A linear basis change gives (114).

Proof of Theorem 49 assuming Conjecture 86. We start by constructing the
two-dimensional avatar 2fG(z). We do this in spherical coordinates and use
the representation (106) of fG(z) in terms of radial and angular graphical
functions. The angular graphical function f∠

G(n)\{0} is a polynomial in cosφ

which can be expanded into Gegenbauer polynomials by (108) where the
sum is finite for fixed values of the weights n. We get (for Z = 1 we have
absolute convergence)

fG(z) =
( 2

λ!

)|V int
G | ∞∑

k=0

∑
n

fR
G(n)(Z)f∠

G(n)\{0},kC
λ
k (cosφ).
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We use this expansion to define

(115) 2fG(z) =
( 2

λ!

)|V int
G | 2iZλ

(λ− 1)!

∞∑
k=0

∑
n

fR
G(n)(Z)f∠

G(n)\{0},k sin(k + λ)φ.

Anti-symmetry is provided by anti-symmetry in φ. Equation (58) is fulfilled
by the orthogonality of the sine,

(116)

∫ 2π

0
sin kφ sin �(θ − φ)dφ = −πδk,� cos θ for k, � = 1, 2, 3, . . . ,

where we set θ = 0. To check that 2fG(z) fulfills the differential equation
(59) we divide (115) by z − z = 2iZ sinφ and use (113).

For uniqueness we observe that by Proposition 90 Equation (59) deter-

mines 2f
(λ)
G (z) up to a function

λ−2∑
k=0

hk(zz)(z
k + zk)(z − z) =

= 4ih0(Z
2)Z sinφ+ 2i

λ−2∑
k=1

hk(Z
2)Zk+1[sin(k + 1)φ− sin(k − 1)φ].

Condition (58) and orthogonality of the sine (116) gives

Zkhk−1(Z
2) = Zk+2hk+1(Z

2) for k = 2, . . . , λ− 1,

where we set hλ(Z
2) = hλ−1(Z

2) = 0. This gives hλ−2(Z
2) = . . . = h1(Z

2) =
0. Orthogonality for k = 1 gives h0(Z

2) = 0. This trivializes the kernel.
Now we prove (60). The graph G has a Gegenbauer split at an internal

vertex x, see Definition 47. The graphical function fG(z) is the Feynman
integral AG evaluated at special vertices z0 = 0, z1 and z2, see (11) and
(12). It factors in the following sense,

(117) AG(z0, z1, z2) =

∫
RD

dDx

πD/2
AG1

(z0, z1, x)AG2
(z0, x, z2),

where Gi = Gi\{∞}, i = 1, 2 are the de-completed split graphs. With
(15) we express the Feynman integrals AGi

in terms of graphical functions
evaluated at invariants (4):

AG1
(z0, z1, x) = fG1

(x1),
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with ‖x‖2 = x1x1 and ‖x− 1‖2 = (x1 − 1)(x1 − 1),

AG2
(z0, x, z2) = ‖x‖−2λNG2fG2

(x2),

with
zz

‖x‖2 = x2x2 and
‖z2 − x‖2

‖x‖2 = (x2 − 1)(x2 − 1).

We want to express fGi
(xi) in terms of radial and angular graphical func-

tions. To to this we need polar representations of x1 and x2. From the above
identities we find (up to an irrelevant sign ambiguity in the angle)

x1 = Xeiφx1 , and x2 =
Z

X
eiφxz ,

where φx1, φxz are the angles between x and z1, z2, respectively. From (106)
we get for fG(z) the expression( 2

λ!

)|V int
G |−1

∫
dDx

πλ+1

[∑
n1

fR
G1(n1)

(X)f∠
G1(n1)\{0}(cosφx1)

]
X−2λNG2×

×
[∑

n2

fR
G2(n2)

(Z
X

)
f∠
G2(n2)\{0}(cosφxz)

]
.

We expand the angular graphical functions into Gegenbauer polynomials, see
(108). With spherical coordinates for x we use orthogonality of Gegenbauer
polynomials (91) to simplify the expression for fG(z) to( 2

λ!

)|V int
G | ∞∑

k=0

λCλ
k (cosφ)

λ+ k

∫ ∞

0
dXXα×

×
∑
n1,n2

fR
G1(n1)

(X)f∠
G1(n1)\{0},kf

R
G2(n2)

(Z
X

)
f∠
G2(n2)\{0},k,

where α = 2λ + 1 − 2λNG2
and φ is the angle between z and 1. The two-

dimensional avatar (115) is obtained by replacing Cλ
k (cosφ) with [2iZλ sin(k+

λ)φ]/(λ−1)!. By z∂z−z∂z = −i∂φ from the first identity in (113) we obtain
for the left hand side of (60),

( 2

λ!

)|V int
G | ∞∑

k=0

2λZλ cos(k + λ)φ

(λ− 1)!

∫ ∞

0
dXXα×

×
∑
n1,n2

fR
G1(n1)

(X)f∠
G1(n1)\{0},kf

R
G2(n2)

(Z

X

)
f∠
G2(n2)\{0},k.

(118)
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Convergence of the right hand side of (60) is inherited from (117). We use
polar coordinates x = Xeiθ, d2x = 2XdX∧dθ, and evaluate the integral over
θ with (116) (and the role of φ and θ interchanged). The result reproduces
(118).

For uniqueness of 2fG(z) in (60) we observe that the kernel of z∂z − z∂z
are radial functions h(zz), see the case λ = 2 in Proposition 90. Asymmetry
of 2fG(z) therefore kills the kernel.

Proof of Proposition 51. From uniqueness of 2fG(z) and (115) it is clear that
2fG(z) is analytic in z and z for 1 = Z ∈ R+ with single-valued log-Laurent
expansions at 0 and ∞.

We fix a point a on the unit circle. We want to use (59) to determine
2fG(z) by (λ − 1) times inverting Dz. Assume g(z) = g(z) ∈ SV{0,1,∞}. We
show that in the neighborhood of z = a there exists a symmetric solution of
Dzf(z) = g(z) which is analytic in z and z if a = 1 or has a single-valued
log-Laurent expansion if a = 1. To do this we locally invert the differential
operator Dz = −(2Z sinφ)−1∂φ at z = a.

We first consider the case a = 1. By linearity it suffices to handle
the monomial (z − a)m(z − a)m. We multiply the monomial with i(z −
z) = −2Z sinφ and expand the expression. We obtain a sum of terms

iZk+kei(k−k)φ with k ≤ m + 1, k ≤ m + 1. To invert the differential op-
erator ∂φ we integrate over the variable φ. We get zkzk/(k − k) if k = k
and (zz)k log z otherwise (fix any branch of the logarithm). Both terms are
analytic in z and z at z = a, z = a. The symmetry of f(z) follows from the
symmetry of Dz (see (114) for λ = 2).

We are left with the case a = 1. By the symmetry of g(z) the expansion
(17) at z = 1 can be organized in terms of symmetric monomials

(119)
log�[(z − 1)(z − 1)]

[(z − 1)(z − 1)]−M1

[
(z − 1)k(z − 1)k + (z − 1)k(z − 1)k

]
for M1 ≤ 0 and k, k ≥ 0. The differential operator Dz lowers the total degree
of symmetric polynomials by 1:

(120) Dz(z
kzk + zkzk) = (k − k)

zkzk − zkzk

z − z
∈ Z[z, z],

which is of total degree k + k − 1. On functions of |z − 1|2 the operator Dz

is a negative derivative:

DzF ((z − 1)(z − 1)) = −F ′((z − 1)(z − 1)).
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We combine both facts to invert Dz on (119) using integration by parts.
The first factor is integrated whereas the second factor is differentiated.
We repeat integrating by parts until the second factor is zero. The result
provides the single-valued log-Laurent expansion of f(z) at z = 1.

By repeated application of this result and Proposition 90 we obtain that
2fG(z)/(z − z) differs from a function with good expansions at the unit
circle by a function h(z) =

∑λ−2
k=0 hk(zz)(z

k + zk). By real-analyticity of
2fG(z)/(z − z) at some point a = 1 on the unit circle we obtain that h(z)
is analytic in z and z at z = a, z = a. Hence, all hk(zz) are regular at 1.
Therefore h(z) is analytic in z and z on the whole unit circle and the result
follows.

22. Proof of Theorem 33

Let λ − 1 = n = 0, 1, 2, . . .. In this section we determine the kernel of
Δn = ∂z∂z + n(n+ 1)/(z − z)2 in (10).

Lemma 91. With

(121) Dn =

n∑
k=0

k∑
�=0

(−1)kn!(k + �)!

(n− k)!(k − �)!�!
(∂z∂z)

n−k(∂z − ∂z)
k−�(z − z)n−k−�

and

dn =

n∑
k=0

(−1)k
(n+ k)!

(n− k)!k!

1

(z − z)k
∂n−k
z

(see (44)) we get

DnΔn = (∂z∂z)
n+1(z − z)n,

Δndn = ∂zdn∂z.(122)

Proof. For the first identity in (122) we use

(123) (z−z)k∂z∂z = ∂z∂z(z−z)k+k(∂z−∂z)(z−z)k−1−k(k−1)(z−z)k−2,

which follows by applying the Leibniz rule to the right hand side.
Substituting the above equation into DnΔn gives three terms:

n−1∑
k=−1

k∑
�=−1

(−1)k+1n!(k+�+2)!
(n−k−1)!(k−�)!(�+1)!(∂z∂z)

n−k(∂z − ∂z)
k−�(z − z)n−k−�−2
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+

n∑
k=0

k−1∑
�=−1

(−1)kn!(k+�+1)!(n−k−�−1)
(n−k)!(k−�−1)!(�+1)! (∂z∂z)

n−k(∂z − ∂z)
k−�(z − z)n−k−�−2

+

n∑
k=0

k∑
�=0

(−1)kn!(k+�)!(2n−k−�)(k+�+1)
(n−k)!(k−�)!�! (∂z∂z)

n−k(∂z − ∂z)
k−�(z − z)n−k−�−2,

(124)

where in the first term we shifted k �→ k + 1, � �→ �+ 1, in the second term
we shifted � �→ � + 1, and in the last term we combined the third term on
the right hand side of (123) with the second term of Δn.

The three summands in (124) add up to zero. We are left with boundary
terms k, � = −1 and k = n, � = k. The boundary terms are

(∂z∂z)
n+1(z − z)n +

n∑
k=0

(−1)k+1n!

(n− k − 1)!
(∂z∂z)

n−k(∂z − ∂z)
k+1(z − z)n−k−1

+

n∑
k=0

(−1)kn!

(n− k − 1)!
(∂z∂z)

n−k(∂z − ∂z)
k+1(z − z)n−k−1 = (∂z∂z)

n+1(z − z)n

which proves the first identity in (122). For the second identity in (122) we
calculate

∂zdn =

n∑
k=1

(−1)k
(n+ k)!

(n− k)!(k − 1)!

1

(z − z)k+1
∂n−k
z + dn∂z.

Applying ∂z to the first term on the right hand side gives two terms, one
when ∂z hits z − z and the second one when ∂z commutes to the right. In
the second term we shift k to k + 1 and obtain for the sum of both terms

n∑
k=0

(−1)k+1 (n+k)![k(k+1)+(n+k+1)(n−k)]
(n−k)!k!

1

(z − z)k+2
∂n−k
z = −n(n+ 1)

(z − z)2
dn.

This term cancels the contribution from the second term in Δn. We obtain
the second identity in (122).

Proof of Theorem 33. From the second identity in (122) we get Δndnh(z) =
∂zdn∂zh(z) = 0. So, dnh(z) is in the kernel of Δn for any holomorphic
function h(z). By complex conjugation we get Δndnh(z) = 0.

We need to show that dnh(z) + dnh(z) exhausts the kernel of Δn. To
do this we use the first identity in (122) to see that any function F in the
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kernel of Δn fulfills the identity

(∂z∂z)
n+1(z − z)nF = 0.

By repeated integration the kernel of (∂z∂z)
n+1 are polynomials in z of

degree ≤ n with anti-holomorphic coefficients plus polynomials in z of degree
≤ n with holomorphic coefficients. Therefore, there are (independent) (anti-
)holomorphic functions hk(z) (hk(z)) such that

(z − z)nF (z, z) =

n∑
k=0

hk(z)z
k + hk(z)z

k.

By a linear transformation we equivalently have (anti-)holomorphic func-
tions fk(z) (fk(z)) with

(z − z)nF (z, z) =

n∑
k=0

(fn−k(z) + fn−k(z))(z − z)k.

We get

F (z, z) =

n∑
k=0

fk(z) + fk(z)

(z − z)k
.

With

h(z) =
(−1)nn!

(2n)!
fn(z) and h(z) =

n!

(2n)!
fn(z)

we obtain

F (z, z) = dnh(z) + dnh(z)+

+

n∑
k=0

fk(z) + fk(z)−
(n+k)!n!

(n−k)!k!(2n)! [(−1)n−k∂n−k
z fn(z) + ∂n−k

z fn(z)]

(z − z)k
.

The term k = n is zero. For n = 0 this proves the theorem, so we assume
n ≥ 1 in the following. Introducing new (anti-)homomorphic functions gk(z)
(gk(z)) we get that

F (z, z) = dnh(z) + dnh(z) +Gn−1

where

(125) Gm =

m∑
k=0

gk(z) + gk(z)

(z − z)k
.
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We have ΔnF = ΔnGn−1 = 0. We show by induction that ΔnGm = 0
implies Gm = 0 for all m = 0, . . . , n− 1.

From ΔnGm = 0 we get

m∑
k=0

(
k
g′k(z)− g′k(z)

(z − z)k+1
+ [n(n+ 1)− k(k + 1)]

gk(z) + gk(z)

(z − z)k+2

)
= 0,

with n(n+1)−k(k+1) = (n−k)(n+k+1). For m = 0 the above equation
implies G0 = 0. We assume m > 0 and multiply the above equation with
(z − z)2/(n−m)(n+m+ 1). In the first term we also shift the summation
index k to k + 1 and obtain

gm(z) + gm(z)

(z − z)m
=

= −
m−1∑
k=0

(k + 1)(g′k+1(z)− g′k+1(z)) + (n− k)(n+ k + 1)(gk(z) + gk(z))

(n−m)(n+m+ 1)(z − z)k
.

Substitution into (125) gives the expression for Gm

m−1∑
k=0

−(k + 1)(g′k+1(z)− g′k+1(z))− (m− k)(m+ k + 1)(gk(z) + gk(z))

(n−m)(n+m+ 1)(z − z)k
.

This is Gm−1 for new functions g̃k(z), g̃k(z) which vanishes by induction.

23. Proof of Theorem 34

Lemma 92. For non-negative integers a, b, c we have

c∑
k=0

(−1)k
(b+ k)!

(c− k)!k!(k + b− a)!
= (−1)c

a!b!

(a− c)!(b+ c− a)!c!
,

c∑
k=0

(−1)k
(b+ k)!

(c− k)!k!(k + b+ a)!
=

(a+ c− 1)!b!

(a− 1)!(a+ b+ c)!c!
,

(126)

where terms with negative factorials in the denominator vanish. For m ∈
{0, 1, . . . , n} we have

(127)

n∑
k=1

(−1)k
(n+ k)!

(n− k)!k!(k − 1)!(k +m)
= (−1)n − δm,0,
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where δk,� is the Kronecker delta.

Proof. For the first identity in (126) we calculate the xa-coefficient of

c∑
k=0

(−1)k
(
c

k

)
(1 + x)b+k = (1− (1 + x))c(1 + x)b = (−x)c(1 + x)b.

For the second identity in (126) we replace factorials which depend on a by
the gamma function according to x! = Γ(x + 1). We analytically continue
to negative a. The reflection formula Γ(x)Γ(1 − x) = π/ sin(πx) gives the
second identity because sinπ(a− c+ 1) = (−1)c sinπ(a+ 1).

For (127) we calculate∫ 1

0
xm

∂n+1

∂xn+1
xn(1− x)ndx =

n∑
k=0

(−1)k
(
n

k

)∫ 1

0
xm

∂n+1

∂xn+1
xn+kdx =

=

n∑
k=0

(−1)k
(
n

k

)
(n+ k)!

(k − 1)!(k +m)
.

The left hand side can also be calculated by using integration by parts n+1
times. Because n+ 1 > m the final integral is zero. Only the first boundary
term gives a non-zero result which is

xm
∂n

∂xn
xn(1− x)n

∣∣∣1
0
= (−1)nn!− δm,0 n!

Lemma 93. We have (see (43),
∑0

k=1 ≡ 0)

ΔnI
−
n = ∂zI

−
n ∂z +

−
n∑

k=1

(−1)n−k (n+ k)!

(n− k)!k!(k − 1)!

1

(z − z)k+1

[
∂z,

∫
sv
dz

]
(z − z)k

(128)

on SV{0,1,∞}. If n ≥ 1, there exist anti-holomorphic functions gk(z) on C\R
for k = 1, . . . , n such that

(129) ∂zI
−
n ∂zI

+
n = 1 +

n∑
k=1

gk(z)

(z − z)k+1
on (z − z)nSV{0,1,∞}.

Proof. Differentiation ∂z of I±n in (43) gives two terms. If ∂z hits
∫
sv dz, we

obtain 1 from the first identity in (126) for a = b = c = n. The second term
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comes from differentiating (z − z)±k. We get

(130) ∂zI
±
n = 1±

n∑
k=1

(−1)n−k (n+ k)!

(n− k)!k!(k − 1)!
(z−z)±k−1

∫
sv
dz (z−z)∓k

on the corresponding function spaces.
For (128) we commute ∂z with ∂zI

−
n . We obtain two contributions from

differentiating z − z before and after the integral
∫
sv dz. In the latter term

we shift the summation index k to k+1 to obtain for the sum of both terms

−
n∑

k=0

(−1)n−k (n+ k)![k(k + 1) + (n+ k + 1)(n− k)]

(n− k)!k!2
×

× 1

(z − z)k+2

∫
sv
dz (z − z)k = −n(n+ 1)

(z − z)2
I−n .

This gives the result.
For (129) we first note that I+n maps (z − z)nSV{0,1,∞} to SV{0,1,∞}

which is stable under ∂z. Hence the left hand side is well-defined. We use
(130) to express −(∂zI

−
n − 1)(∂zI

+
n − 1) as the double sum

n∑
k,�=1

(−1)k+� (n+ k)!

(n− k)!k!(k − 1)!

(n+ �)!

(n− �)!�!(�− 1)!
×

× 1

(z − z)k+1

∫
sv
dz (z − z)k+�−1

∫
sv
dz

1

(z − z)�
.

Integration by parts gives for k + � = 0,∫
sv
dz (z − z)k+�−1

∫
sv
dz

1

(z − z)�
=

=
1

k + �

[
(z − z)k+�,

∫
sv
dz

]
1

(z − z)�
+ hk+�(z)

with an anti-holomorphic function hk+�(z) on C\R. We substitute this into
the previous equation and use (127) for m = � ≥ 1 and m = k ≥ 1. With
(130) this gives

−(∂zI
−
n − 1)(∂zI

+
n − 1) = ∂zI

+ − 1 + ∂zI
− − 1+

+

n∑
k,�=1

(−1)k+� (n+ k)!

(n− k)!k!(k − 1)!

(n+ �)!

(n− �)!�!(�− 1)!

hk+�(z)

(z − z)k+1
.
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A linear transformation of the functions h•(z) leads to (129).

Lemma 94. Let f(z) ∈ (z − z)nSV{0,1,∞}. We have Δ0I0f(z) = f(z) (In
is defined in (46)). If n ≥ 1, there exist anti-holomorphic functions gk(z) on

C\R for k = 1, . . . , n such that

(131) ΔnInf(z) = f(z) +

n∑
k=1

gk(z)

(z − z)k+1
.

Proof. We have I0 =
∫
sv dz

∫
sv dz. Hence Δ0I0 = 1. Now, assume n ≥ 1.

Because ∂z[∂z,
∫
sv dz] = ∂z∂z

∫
sv dz − ∂z = 0 the commutator [∂z,

∫
sv dz]

projects onto anti-holomorphic functions. We define

hk(z) = (−1)n−k+1 (n+ k)!

(n− k)!k!(k − 1)!

[
∂z,

∫
sv
dz

]
(z − z)k

∫
sv
dz ∂zI

+
n f(z).

With (128) we obtain

ΔnInf(z) = ∂zI
−
n ∂z

∫
sv
dz ∂zI

+
n f(z) +

n∑
k=1

hk(z)

(z − z)k+1
.

The result follows from (129) after a re-definition of gk(z) + hk(z) as gk(z).

Lemma 95. For any anti-holomorphic function gk(z) on C\R and k =

1, . . . , n we have (see (44))

(132) ΔnDn
gk(z)

(z − z)k+1
=

gk(z)

(z − z)k+1
.

Proof. The differential operator ∂z in Dn can only act on z − z,

Dn
gk(z)

(z − z)k+1
=

n∑
�=1

(−1)�−1 (n− �)!

(n+ �)!
(z − z)�∂�−1

z gk(z)∂
�−1
z (z − z)�−k−1.

Terms with � ≥ k + 1 ≥ 2 are nullified by ∂�−1
z . This gives

(133) Dn
gk(z)

(z − z)k+1
=

k∑
�=1

(n− �)!(k − 1)!

(n+ �)!(k − �)!
(z − z)�∂�−1

z

gk(z)

(z − z)k
.
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We get

∂zDn
gk(z)

(z − z)k+1
=

=

k∑
�=1

(n− �)!(k − 1)!

(n+ �)!(k − �)!

[
�(z − z)�−1∂�−1

z (z − z)− k(z − z)�∂�−1
z

] gk(z)

(z − z)k+1
.

The square bracket equals −(k− �)(z− z)�∂�−1
z − �(�− 1)(z− z)�−1∂�−2

z . We
substitute this into the previous equation and shift � �→ � − 1 in the first
term. From the identity −(n+ �)(n− �+ 1)− �(�− 1) = −n(n+ 1) we get
(134)

∂zDn
gk(z)

(z − z)k+1
= −n(n+ 1)

k∑
�=2

(n− �)!(k − 1)!

(n+ �)!(k − �)!
(z − z)�−1∂�−2

z

gk(z)

(z − z)k+1
.

We have

∂z(z − z)�−1∂�−2
z = (z − z)�−2∂�−1

z (z − z)

because both sides equal −(� − 1)(z − z)�−2∂�−2
z + (z − z)�−1∂�−1

z . We use
this identity to calculate ∂z∂zDngk(z)(z − z)−k−1 from (134) and get with
(133)

∂z∂zDn
gk(z)

(z − z)k+1
= −n(n+ 1)

(z − z)2

[
Dn − (z − z)2

n(n+ 1)

]
gk(z)

(z − z)k+1
,

where the second term in the square bracket cancels the � = 1 summand in
(133). Equation (132) follows.

Lemma 96. For any (anti-)holomorphic functions h(z), h(z) on C\R we
have (see (44))

(135) ∂n
z ∂

n+1
z (z − z)n[dnh(z) + dnh(z)] = (−1)nn!∂2n+1

z h(z).

For m ∈ {0, 1, . . . , 2n} we have

(136) dnz
m = (−1)ndnz

m.

Let p ∈ C[z] be of degree ≤ 2n. Then (z − z)ndnp(z) is a symmetric polyno-
mial of degree ≤ n in z and z.

Proof. Because ∂n+1
z (z − z)n−k = 0 at least one derivative ∂z hits h(z),

nullifying it. So, we can assume h(z) = 0. Then, the only anti-holomorphic
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term in dk is (z − z)n−k and ∂n
z (z − z)n−k = (−1)nn!δk,0. The sum over k

becomes trivial and (135) follows.
To prove (136) we calculate

(z − z)ndnz
m =

n∑
k=0

(−1)k
(n+ k)!m!(z − z)n−kzm−n+k

(n− k)!k!(m− n+ k)!

=

n∑
k=0

n−k∑
�=0

(−1)k+�(n+ k)!m!zm−�z�

k!(m− n+ k)!(n− k − �)!�!

=

n∑
�=0

(−1)�
m!zm−�z�

�!

n−�∑
k=0

(−1)k
(n+ k)!

(n− �− k)!k!(k +m− n)!
,

where terms with negative factorials in the denominator vanish. We sub-
stitute a = 2n − m, b = n, c = n − � into the first identity of (126) and
obtain

(z − z)ndnz
m =

n∑
�=0

(−1)�
m!zm−�z�

�!

(−1)n−�(2n−m)!n!

(n−m+ �)!(m− �)!(n− �)!
=

= (−1)nn!

m∑
�=0

(
m

�

)(
2n−m

n− �

)
zm−�z�.

By substituting � �→ m−� we see that the result is symmetric under complex
conjugation. Upon division by (z − z)n we obtain (136).

For the last statement we observe that P = (z−z)ndnp(z) is a polynomial
in z and z. Because p has degree ≤ 2n we obtain from (136) that P is
symmetric under z ↔ z. Obviously P is of degree ≤ n in z. By symmetry it
is also of degree ≤ n in z.

Proof of Theorem 34. With F (z) in (47) we calculate ΔnF (z):
By Theorem 33 we have Δn(dnh(z) + dnh(z)) = 0.
From Lemma 94 we get ΔnInf(z) = f(z) +

∑n
k=1 gk(z)/(z − z)k+1 for

some anti-holomorphic functions gk(z). Hence

(1−ΔnIn)f(z) = −
n∑

k=1

gk(z)/(z − z)k+1

and by Lemma 95 we get

ΔnDn(1−ΔnIn)f(z) = f(z)−ΔnInf(z).
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This gives ΔnF (z) = f(z).

We need to show that for a suitable choice of φ, φ, p0, p1 every such

F ∈ (z − z)−nSV{0,1,∞} is given by the right hand side of (47). It follows

from Theorem 33 that for any function F (z) with ΔnF (z) = f(z) there

exist (anti-)holomorphic functions h(z), h(z) on C\R such that (47) holds.

By (45) we get

(137) (z − z)n[dnh(z) + dnh(z)] ∈ SV{0,1,∞}.

Because SV{0,1,∞} is stable under (anti-)differentiation we get from Lem-

ma 96 that ∂2n+1
z h(z) ∈ SV{0,1,∞}. Hence ∂2n+1

z h(z) has single-valued log-

Laurent expansions (17), (19) at 0, 1,∞. Because h(z) is analytic we get that

∂2n+1
z h(z) is meromorphic on the Riemann sphere with poles at 0, 1,∞. By

the theory of Riemann surfaces we get ∂2n+1
z h(z) ∈ C[z, z−1, (z − 1)−1].

We use partial fraction decomposition to see that h(z) = h0(z) log(z) +

h1(z) log(z − 1) + φ(z) with h0, h1 ∈ C[z] of degrees ≤ 2n and φ ∈ C[z, z−1,

(z − 1)−1].

We get the complex conjugated result for h(z) and substitute this into

(137). By single-valuedness the result is of the form H0 log(zz)+H1 log[(z−
1)(z− 1)] +Φ with H0, H1 ∈ C[z, z] and Φ ∈ C[z, z−1, (z − 1)−1, z, z−1, (z−
1)−1]. The polynomialsH0 andH1 are obtained when no differential operator

acts on logarithms in h and h. We get

(138) Hi = (z − z)ndnhi(z) = (z − z)ndnhi(z), for i = 0, 1.

If hi(z) = (−1)nhi(z), then, by (136), we have dnhi(z) = (−1)ndnhi(z) =

dnhi(z) and (138) is fulfilled.

We need to show that (138) fixes the choice of hi(z). Then (48) follows

and the proof of Theorem 34 is complete. We consider z and z as independent

variables. The pole of order n at z = z in dnhi(z) is (−1)n(2n)!hi(z)/(n!(z−
z)n). This allows to determine hi(z) from dnhi(z) and the claim follows.

In Theorem 34 the definition of the integral operator In has three in-

tegrations: Two with respect to dz in I−n , I+n and one explicit integration

with respect to dz. We close the section with an alternative representa-

tion I ′
n which has only two integrations: one holomorphic and one anti-

holomorphic. We need the result for the proof of Theorem 45 on the weights

of constructible graphical functions. For implementing the algorithm of ap-

pending an edge the operator In is more efficient.
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Lemma 97. Let I ′
n : (z − z)nSV{0,1,∞} → (z − z)−nSV{0,1,∞} be defined by

I ′
n =

n∑
k,�=0

(−1)n+k+� (n+ k)!(n+ �)!

(n− k)!(n− �)!(k + �)!k!�!
×

× 1

(z − z)k

∫
sv
dz(z − z)k+�

∫
sv
dz

1

(z − z)�
.

(139)

Then Lemma 94 holds if In is replaced by I ′
n.

Proof. We have I ′
0 = I0 and hence assume that n ≥ 1.

The derivative ∂z generates two terms on the right hand of (139). In one

term (z− z)−k is differentiated and in the second term the integral operator∫
sv dz is annihilated. After the annihilation of

∫
sv dz the sum over k can be

evaluated with the first identity in (126) for a = n− �, b = c = n. The result

(−1)nδ�,0 trivializes the sum over � and the second term becomes
∫
sv dz,

∂zI ′
n =

n∑
k=1

n∑
�=0

−(−1)n+k+�(n+ k)!(n+ �)!

(n− k)!(n− �)!(k + �)!(k − 1)!�!
×

× 1

(z − z)k+1

∫
sv
dz(z − z)k+�

∫
sv
dz

1

(z − z)�
+

∫
sv
dz.

(140)

The derivative ∂z on the first term of the right hand side gives four terms.

Term one and three hit powers of z−z. The second term has the commutator

[∂z,
∫
sv dz] which gives rise to the anti-holomorphic functions gk(z) on the

right hand side of (131). The fourth term annihilates
∫
sv dz. Like above we

get in this term (−1)nδk,0 from evaluating the sum over �. The k-sum starts

at 1, so the fourth term is zero. After a shift k �→ k+ 1 the third term adds

to the first term yielding

−
n∑

k,�=0

(−1)n+k+�[k(k + 1) + (n+ k + 1)(n− k)](n+ k)!(n+ �)!

(n− k)!(n− �)!(k + �)!k!�!
×

× 1

(z − z)k+2

∫
sv
dz(z − z)k+�

∫
sv
dz

1

(z − z)�
.

This is −n(n+1)(z−z)−2I ′
n and the result follows because the second term

in (140) differentiates to the identity.
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24. Proof of Theorem 36

Let n = 0, 1, 2, . . .. Assume f(z) with (G3) for the graph G1 is in the kernel
of Δn(z − z)n+1. We need to show f(z) = 0.

We consider (z−z)2n+1f(z). From Theorem 33 we know that there exist
(anti-)holomorphic functions h(z), h(z) on C\R such that

(141) (z − z)2n+1f(z) = (z − z)n[dnh(z) + dnh(z)].

By (G3) we have f ∈ SV{0,1,∞}. We are thus in the situation of (137) in the
proof of Theorem 34. We follow the proof to conclude that there exist (anti-
)meromorphic functions φ ∈ C[z, z−1, (z−1)−1], φ ∈ C[z, z−1, (z−1)−1] and
polynomials p0, p1 of degrees ≤ 2n such that (see (48))

(z − z)n+1f(z) = dn

[
φ(z) +

∑
s=0,1

ps(z) log(z − s)
]
+

+ dn

[
φ(z) + (−1)n

∑
s=0,1

ps(z) log(z − s)
]
.

We consider the log(zz) term in the expansion (17) of f(z) at z = 0. The
only contribution comes from [dnp0(z)] log(z) + (−1)n[dnp0(z)] log(z). By
(136) this equals [dnp0(z)] log(zz). By Lemma 96 there exists a symmetric
polynomial P of degrees ≤ n in z and z such that

log(zz) coefficient of f(z) =
P (z, z)

(z − z)2n+1
.

In the following we consider z and z as independent variables. If P (z, z) = 0,
the coefficient has singularity at z = z. This is ruled out by (G3). (Because
the right hand side is anti-symmetric, P (z, z) = 0 also follows from (G1).)
Therefore dnp0(z) = 0 and because dn is injective in the space of analytic
functions (this is the complex conjugate of the last statement in the proof
of Theorem 34) we have p0(z) = 0. Likewise we get p1(z) = 0.

Assume φ(z) has a pole of order m > 0 at z = 0. Then dnφ(z) has a pole
of order n+m at z = 0 (from the summand k = 0 in dn). The term dnφ(z)
is analytic at z = 0 (it may have poles at z = 0). Therefore (z − z)n+1f(z)
(and hence also f(z)) has a pole of order n+m at z = 0. On the other hand
the graph G1 has a single edge of weight 1 connected to z so that ν>z = 1
and ν0z = 0 in (G3). We get M0 ≥ −n which rules out poles of order > n in
f(z). Therefore φ(z) is analytic at z = 0. Likewise φ(z) is analytic at z = 1
which makes φ(z) a polynomial in z.
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Let m be the degree of the polynomial φ(z) and assume m > 2n. We

consider the expansion of f(z) at z = ∞. From dnφ(z) we get a leading

order zm−n with coefficient

n∑
k=0

(−1)k
(n+ k)!m!

(n− k)!k!(m− n+ k)!
=

(m− n− 1)!

(m− 2n− 1)!
,

where we used the second identity in (126) for a = m− 2n, b = c = n. The

term dnφ(z) is of order ≤ n < m − n for z → ∞. We conclude that in the

expansion of f(z) at z = ∞ we have a term of order zm−2n−1. On the other

hand we have ν<z = 0 and νz = 1 which implies M∞ ≤ −1 in (G3). This

rules out the case m > 2n. So, φ(z) is a polynomial of degree ≤ 2n in z.

Likewise φ(z) is a polynomial of degree ≤ 2n in z. Like for the coefficient of

log(zz) there exists a symmetric polynomial P ∈ C[z, z] of degrees ≤ n in

z and z such that f(z) = P (z, z)/(z − z)2n+1. By (G3) (or by (G1)) we get

P (z, z) = 0.

25. The algorithm for appending an edge of weight 1

Let n = D/2− 2. By repeated single-valued integration we calculate

(142) g(z) = (z − z)n[In +Dn(1−ΔnIn)](z − z)n+1fG(z) ∈ SV{0,1,∞}

(if possible). By Lemma 30 and Theorem 34 we get

(143) − n!(z − z)2n+1fG1
(z) = g(z)− h(z),

with

h(z) = (z − z)ndn

[
φ(z) +

∑
s=0,1

ps(z) log(z − s)
]
+

+ (z − z)ndn

[
φ(z) + (−1)n

∑
s=0,1

ps(z) log(z − s)
]
,

(144)

where φ ∈ C[z, z−1, (z − 1)−1], φ ∈ C[z, z−1, (z − 1)−1], and p0, p1, are

polynomials of degrees ≤ 2n. By partial fraction decomposition we write

φ(z) =
∑
s=0,1

φs(z) + φreg(z) + φ∞(z), where
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φs(z) =

−1∑
k=Ks

csk(z − s)k, φreg(z) =

2n∑
k=0

c∞k zk, φ∞(z) =

K∞∑
k=2n+1

c∞k zk,

(145)

with an analogous decomposition for φ(z).

25.1. Solving for φs(z) and φs(z)

For s = 0, 1 we expand g(z) at s in z and z up to order n yielding the
truncated single-valued log-Laurent series gs(z).

By (G3) the graphical function fG1
(z) admits an expansion at z = s

with terms log�(|z − s|2)(z − s)m(z − s)m with m,m ≥ −n. By (143) the
total degree (i.e. m+m) of any term in the expansion of g(z)−h(z) at z = s
is thus ≥ 1. Because the differential operators (z − z)ndn and (z − z)ndn do
not alter the total degree, terms of negative total degree in h(z) at z = s
can only come from φs(z) and φs(z). Therefore

(z − z)n[dnφs(z) + dnφs(z)] = gs(z) for negative total degree.

Note that the left hand side has maximal degree n in z and z (from the term
k = 0 in the sums of dn and dn). Therefore all pole-terms are contained in
gs(z). We read off (z−z)ndnφs(z) from the negative powers of z in gs(z). The
coefficient of zn in (z−z)ndnφs(z) is (−1)n∂n

z φs(z). This gives ∂
n
z φs(z) which

can trivially be integrated n times. Integration constants are insignificant
because they do not affect the pole terms in φs(z).

The procedure to obtain φs(z) is analogous starting from negative powers
of z in gs(z).

25.2. Solving for φ∞(z) and φ∞(z)

We expand g(z) at ∞ to order −n − 1 in z−1 and −n in z−1 yielding the
truncated single-valued log-Laurent series g∞(z).

By (G3) the graphical function fG1
(z) admits an expansion at z = ∞

with terms log�(|z|2)zmzm with m,m ≤ −1. The total degree of any term
in the expansion of g(z)− h(z) at z = ∞ is thus ≥ −2n+ 1. Terms of total
degree ≤ −2n− 1 in h(z) at z = ∞ come from φ∞(z) and φ∞(z). Therefore

(z − z)n[dnφ∞(z) + dnφ∞(z)] = g∞(z) for total degree ≤ −2n− 1 in z−1.

In (z − z)ndnφ∞(z) the coefficient of zn is (−1)n∂n
z φ∞(z) whereas in (z −

z)ndnφ∞(z) all terms have degree ≤ −n− 1 in z−1. From the zn coefficient
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of g∞(z) we read off ∂n
z φ∞(z) which can trivially be integrated to obtain

φ∞(z) (integration constants are insignificant).
To obtain φ∞(z) we expand g(z) at ∞ to order −n in z−1 and −n−1 in

z−1. The analog of the above algorithm gives φ∞(z). Because expansions at
infinity can be time consuming, it is faster to compute the orders −n−1,−n
and −n,−n− 1 than a single expansion to order −n,−n in z−1, z−1.

25.3. Solving for ps(z)

Terms with log(|z − s|2) in h(z) come from (see (136))

(z − z)n[dnps(z) log(z − s) + (−1)ndnps(z) log(z − s)] =

= (z − z)n log(|z − s|2)dnps(z) + non-log terms.

The function g ∈ SV{0,1,∞} has a single-valued log-Laurent expansion at
z = s of the form (17),

g(z) =
∑
�

∑
m,m

gs�,m,m log�(|z − s|2)(z − s)m(z − s)m.

We set z = z in the log(|z− s|2)-coefficient of this expansion. Because of the
factor (z − z)2n+1 on the left hand side of (143) we have h(z) = g(z) in this
limit. In (z − z)ndn only the summand k = n survives. We get

(146) (−1)n
(2n)!

n!
ps(z) =

∑
m,m

gs1,m,m(z − s)m+m.

On the other hand we get from (G1) and (143) that g(z) − h(z) is anti-
symmetric under z ↔ z. From Lemma 96 we know that (z − z)ndnps(z) is
a symmetric polynomial of degree ≤ n in z and z. Therefore, the expansion
coefficients gs1,m,m with m or m not in {0, 1, . . . , n} are anti-symmetric,

gs1,m,m = −gs1,m,m if not m,m ∈ {0, 1, . . . , n}.

This anti-symmetry lets the sum over m and m on the right hand side of
(146) collapse to values in {0, 1, . . . , n},

ps(z) = (−1)n
n!

(2n)!

n∑
m,m=0

gs1,m,m(z − s)m+m.

With this restriction the coefficients gs1,m,m are in gs(z).
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25.4. Solving for φreg(z) and φreg(z)

We expand

g̃(z) = g(z)− (z − z)ndn

[
φ∞(z) +

∑
s=0,1

φs(z) + ps(z) log(z − s)
]

− (z − z)ndn

[
φ∞(z) +

∑
s=0,1

φs(z) + (−1)nps(z) log(z − s)
]

in z = 0 up to order n yielding

g̃reg(z) =
∑
�

∑
m,m≤n

g̃reg�,m,m log�(zz)zmzm.

By (136) we have

(z − z)ndnφreg(z) = (z − z)ndnφreg(z).

So, the contributions of φreg(z) and φreg(z) to h(z) can be combined to

(z − z)ndn[φreg(z) + φreg(z)]. We can hence set

φreg(z) = 0

without restriction. We follow the construction of ps(z) in the previous sub-
section, now using the logarithm-free part of the expansion of g̃reg(z). In
complete analogy we get

φreg(z) = (−1)n
n!

(2n)!

n∑
m,m=0

g̃reg0,m,mzm+m.
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