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We conjecture that the number of components of the fiber over
infinity of Landau–Ginzburg model for a smooth Fano variety X
equals the dimension of the anticanonical system of X. We ver-
ify this conjecture for log Calabi–Yau compactifications of toric
Landau–Ginzburg models for smooth Fano threefolds, complete
intersections in projective spaces, and some toric varieties.

AMS 2000 subject classifications: Primary 14J45, 14J33.

Keywords and phrases: Fano varieties, Landau–Ginzburg models, log

Calabi–Yau compactifications, anticanonical linear systems.

1. Introduction

Let X be a smooth Fano variety of dimension n. Then its Landau–Ginzburg

model is a certain pair (Y,w) that consists of a smooth (quasi-projective)

variety Y of dimension n and a regular function

w : Y → A
1,

which is called a superpotential. (More precise, Landau–Ginzburg model

corresponds to a variety together with a divisor class on it, but we assume

this class to be anticanonical.) Its fibers are compact and KY ∼ 0, so that

general fiber of w is a smooth Calabi–Yau variety of dimension n − 1. Ho-

mological Mirror Symmetry conjecture predicts that the derived category

of singularities of the singular fibers of w is equivalent to the Fukaya cate-

gory of the variety X, while the Fukaya–Seidel category of the pair (Y,w)
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is equivalent to the bounded derived category of coherent sheaves on X.
In short: the geometry of X should be determined by singular fibers of w.

Often, Landau–Ginzburg models of smooth Fano varieties can be con-
structed via their toric degenerations (see [23]). In this case, the variety Y
contains a torus (C∗)n, one has KY ∼ 0, and there exists a commutative
diagram

(1.1) (C∗)n

p

Y

w

C C

for some Laurent polynomial p ∈ C[x±1
1 , . . . , x±1

n ] which is defined by an
appropriate toric degeneration of the variety X. Then p is said to be a toric
Landau–Ginzburg model of the Fano variety X, and (Y,w) is said to be its
Calabi–Yau compactification.

If (Y,w) is a Calabi–Yau compactification of a toric Landau–Ginzburg
model, then the number of reducible fibers of the morphism w : Y → C

does not depend on the choice of the Calabi–Yau compactification. Likewise,
the number of irreducible components of each singular fiber of w does not
depend on the compactification either. Therefore, it is natural to expect that
these numbers contain some information about the smooth Fano variety X.
For instance, we have the following.

Conjecture 1.2 (See [21, 26, 8]). Let X be a smooth Fano variety of di-
mension n ≥ 3, and let (Y,w) be a Calabi–Yau compactification of its toric
Landau–Ginzburg model. Then

h1,n−1(X) =
∑
P∈C1

(
ρP − 1

)
,

where ρP is the number of irreducible components of the fiber w−1(P ).

Note that the toric Landau–Ginzburg models considered in Conjec-
ture 1.2 correspond to the anticanonical divisors on Fano varieties. It may
fail for other divisors. For instance, all singular fibers of Landau–Ginzburg
models of smooth del Pezzo surfaces together with general divisors on them
have at most ordinary double points as singularities, while ones for the an-
ticanonical divisors are very specific. One can formulate Conjecture 1.2 re-
placing the Hodge number h1,n−1(X) by the primitive one h1,n−1

pr (X), which
is equal to the usual one for n ≥ 3 and is less by one for n = 2; del Pezzo
surfaces satisfy the corrected Conjecture 1.2.
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This conjecture under some mild conditions can be derived from Ho-
mological Mirror Symmetry conjecture, cf. [15] and [10]. Recently, Conjec-
ture 1.2 has been verified for Calabi–Yau compactifications of toric Landau–
Ginzburg models of smooth Fano complete intersections and smooth Fano
threefolds (see [21, 26, 3]).

In all considered cases, the commutative diagram (1.1) can be extended
to a commutative diagram

(1.3) (C∗)n

p

Y

w

Z

f

C C P1

such that Z is a smooth proper variety that satisfies certain natural geo-
metric conditions, e.g. the fiber f−1(∞) is reduced, it has at most normal
crossing singularities, and

f−1(∞) ∼ −KZ .

Then (Z, f) is called the log Calabi-Yau compactification of the toric Landau–
Ginzburg model p (see [23, Definition 3.6]). Observe that the number of
irreducible components of the fiber f−1(∞) does not depend on the choice
of the log Calabi-Yau compactification. Indeed, let f ′ : Z ′ → P1 be another
such compactification. Then Z and Z ′ are smooth proper varieties such that
there exists the following commutative diagram:

Z
ψ

f

Z ′

f

P1

where ψ is a birational map that is an isomorphism away from f−1(∞)
and (f ′)−1(∞). On the other hand, both relative canonical divisors KZ/P1

and KZ′/P1 are trivial, because

f−1(∞) ∼ −KZ ,

(f ′)−1(∞) ∼ −KZ′ .

Then ψ is a composition of flops by [17, Theorem 1], so the number of
irreducible components of f−1(∞) is independent on the choice of the log
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Calabi-Yau compactification. Thus, one can expect that this number keeps
some information about the Fano variety X. The following two examples
confirm this.

Example 1.4. Let X be a smooth del Pezzo surface, and let (Z, f) be a
log Calabi–Yau compactification of its toric Landau–Ginzburg model con-
structed in [2]. Then the fiber f−1(∞) consists of

χ
(
O(−KX)

)
− 1 = h0

(
OX(−KX)

)
− 1 = K2

X

irreducible rational curves.

Example 1.5. LetX be a smooth Fano threefold such that the divisor −KX

is very ample, and let (Z, f) be a log Calabi–Yau compactification of its toric
Landau–Ginzburg model constructed in [1, 22, 4]. Then f−1(∞) consists of

χ
(
O(−KX)

)
− 1 = h0

(
OX(−KX)

)
− 1 =

(−KX)3

2
+ 2

irreducible rational surfaces by [22, Corollary 35], see also [9, Theorem2.3.14].

This example motivates the following conjecture.

Conjecture 1.6. Let X be a smooth Fano variety, and let (Z, f) be a log
Calabi–Yau compactification of its toric Landau–Ginzburg model. Then the
fiber f−1(∞) consists of

χ
(
O(−KX)

)
− 1 = h0

(
OX(−KX)

)
− 1

irreducible components.

In [9, Conjecture 2.3.13] this conjecture for threefolds is formulated in
the equivalent form: the number of components of f−1(∞) is equal to the
genus of Fano threefold X (which by definition is a genus of a generic double
anticanonical section of X) plus 1. This form suggests the generalization of
the latter conjecture to higher dimensions. More precise, let Z be a generic
double anticanonical section of the Fano variety X of dimension n. Then

h0(OX(−KX))− 1 = h0(OZ(KZ)) + 1 = h0,n−2(Z) + 1.

In [9, Remark 2.3.16] this observation is generalized to other Hodge numbers.
That is, Mirror Symmetry expectation is that the fiber f−1(∞) is a mirror
dual object to Z, and Hodge diamond for Z after the mirror 90◦-rotation
coincide to the Hodge diamond for the sheaf of vanishing cycles for f at
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infinity (after appropriate shift). Thus, Conjecture 1.6 can be treated as

a particular case of the conjecture alluded in [9, Remark 2.3.16], cf. [10,

Theorem 3.8].

The main result of the paper is the following.

Theorem 1.7. Conjecture 1.6 holds for

§2: standard rigid maximally-mutable toric Landau–Ginzburg models for

smooth Fano threefolds;

§3: Givental’s toric Landau–Ginzburg models for Fano complete intersec-

tions in projective spaces;

§4: Givental’s toric Landau–Ginzburg models for toric varieties whose dual

toric varieties admit crepant resolutions.

Remark 1.8. Conjecture 1.6 together with the conjectural existence of toric

Landau–Ginzburg models of smooth Fano varieties [23, Conjecture 3.9] im-

ply that

h0
(
OX(−KX)

)
� 2,

which is only known for dim(X) � 5, see [12, Theorem 1.7] and [11, The-

orem 1.1.1]. Let us also note that Kawamata’s [16, Conjecture 2.1] implies

that h0(OX(−KX)) � 1.

Homological Mirror Symmetry conjecture suggests that the monodromy

around f−1(∞) is maximally unipotent (see [15, §2.2]). Thus, if the fi-

ber f−1(∞) in (1.3) is a divisor with simple normal crossing singularities,

then its dual intersection complex is expected to be homeomorphic to a

sphere of dimension n − 1 (see [20, Question 7]). This follows from [20,

Proposition 8] for n � 5. However, the following example shows that we

cannot always expect f−1(∞) to be a divisor with simple normal crossing

singularities.

Example 1.9. Let X be a smooth intersection of two general sextics in

the weighted projective space P(1, 1, 1, 2, 2, 3, 3). Then X is a smooth Fano

fourfold and −KX = O(1), so that

h0(OX(−KX))− 1 = 3− 1 = 2.

A toric Landau–Ginzburg model for X is the Laurent polynomial

p =
(x+ y + 1)6(z + t+ 1)6

x3yz3t
,
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see [23, §7.2.2]. The change of variables

x =
a2c

b3d
, y =

ac

b2d
− a2c

b3d
− 1, z = c, t = d− c− 1

gives us a birational map (C∗)4 ��� C4 that maps the pencil p = λ to

the pencil of quintics in C4 given by

d4 = λ(abc− a3c− b3d)(d− c− 1),

where λ is a parameter in C∪{∞}. Now arguing as in [3], one can construct

a log Calabi–Yau compactification (Z, f) of the toric Landau–Ginzburg mo-

del p. Then f−1(∞) consists of two irreducible divisors intersecting by a

singular plane cubic, and the monodromy around this fiber is maximally

unipotent. All other log Calabi–Yau compactifications differ from (Z, f)
by flops, so that their fibers over ∞ also consist of two irreducible di-

visors. If one of them is a divisor with simple normal crossing singulari-

ties, then its dual intersection complex must be homeomorphic to a three-

dimensional sphere by [20, Proposition 8], which is impossible for dimension

reasons.

Nevertheless, all toric Landau–Ginzburg models we consider in this pa-

per admit log Calabi–Yau compactifications such their fibers over ∞ are di-

visors with simple normal crossing singularities. For toric Landau–Ginzburg

models of smooth Fano threefolds, this follows from the construction of the

log Calabi–Yau compactifications given in [22] except for the families No2.1

and No10.1. For each of these two families, the fiber over ∞ does not have

simple normal crossing singularities, but one can flop the log Calabi–Yau

compactification in several curves contained in this fiber such that the re-

sulting divisor has simple normal crossing singularities.

Let us describe the structure of this paper. In Section 2, we verify Con-

jecture 1.6 for smooth Fano threefolds. In Section 3, we verify Conjecture 1.6

for smooth Fano complete intersections in projective spaces. In Section 4,

we verify Conjecture 1.6 for some smooth toric Fano varieties.

2. Fano threefolds

In this section, we prove Conjecture 1.6 for standard toric Landau–Ginzburg

models of smooth Fano threefolds. More precise, by [6, Theorem 4.1], mu-

tation-equivalence classes of rigid maximally-mutable Laurent polynomials
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(see [6]) whose Newton polynomials are three-dimensional reflexive poly-

topes correspond one-to-one to the 98 deformation families of three-di-

mensional Fano manifolds with very ample anticanonical class. Let us call

them standard. Furthermore, each of the 105 deformation families of three-

dimensional Fano manifolds has a rigid maximally-mutable Laurent polyno-

mial mirror (see [1, 22, 4]). Thus for the remaining 7 deformation families

of Fano varieties with not very ample anticanonical class choose those of

them that are discussed in [3] and call them standard as well. Let X be a

smooth Fano threefold. Then the log Calabi–Yau compactification of its toric

Landau–Ginzburg model is given by (1.3), where p is standard. Let us de-

note by [f−1(∞)] the number of irreducible components of the fiber f−1(∞).

We have to show that

[
f−1(∞)

]
=

(−KX)3

2
+ 2.

The polynomial p is not uniquely determined byX, but the number [f−1(∞)]

does not change under mutation, and thus does depend on the choice of p

provided p is standard. In particular, for the very ample case we may

choose p from [5] among any mirror partners for X. Note that conjecturally

Theorem 1.7 holds for all rigid maximally mutable Laurent toric Landau–

Ginzburg model due to [6, Conjecture 5.1].

By Example 1.5, we may assume that the anticanonical divisor −KX is

not very ample, so that X is a smooth Fano threefold No1.1, No1.11, No2.1,

No2.2, No2.3, No9.1, or No10.1. Here we use enumeration of deformation

families of smooth Fano threefolds from [14]. Recall that the threefold X

can be described as follows:

(No1.1) a smooth sextic hypersurface in P(1, 1, 1, 1, 3);

(No1.11) a smooth sextic hypersurface in P(1, 1, 1, 2, 3);

(No2.1) a blow up of a smooth sextic hypersurface in P(1, 1, 1, 2, 3) along

an elliptic curve;

(No2.2) a double cover of P1 × P2 ramified in a surface of bidegree (2, 4);

(No2.3) a blow up of a smooth quartic hypersurface in P(1, 1, 1, 1, 2) along

an elliptic curve;

(No9.1) X ∼= P1 × S2, where S2 is a smooth del Pezzo surface of degree 2;

(No10.1) X ∼= P1 × S1, where S1 is a smooth del Pezzo surface of degree 1.

Moreover, it follows from [3, §2.2], [3, §2.3], [3, §9.1], [3, §10.1] and

the proof of [21, Theorem 18] that we can choose the polynomial p in (1.3)
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as follows:

p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a+ b+ c+ 1)6

abc
if X is a Fano threefold No1.1,

(a+ b+ 1)6

ab2c
+ c if X is a Fano threefold No1.11,

(a+ b+ 1)6(c+ 1)6

ab2
+

1

c
if X is a Fano threefold No2.1,

(a+ b+ c+ 1)2

a
+

(a+ b+ c+ 1)4

bc
if X is a Fano threefold No2.2,

(a+ b+ 1)4(c+ 1)

abc
+ c+ 1 if X is a Fano threefold No2.3,

(a+ b+ 1)4

ab
+ c+

1

c
if X is a Fano threefold No9.1,

(a+ b+ 1)6

ab2
+ c+

1

c
if X is a Fano threefold No10.1,

where (a, b, c) are coordinates on (C∗)3.

Proposition 2.1. Suppose that X is a Fano threefold No1.1, No1.11, No2.2,

No2.3, or No9.1. Then [f−1(∞)] = (−KX)3

2 + 2.

Proof. It follows from [21], [3, §2.2], [3, §2.3] and [3, §9.1] that we can choose

p such that there is a pencil S of quartic surfaces on P3 given by

f4(x, y, z, t) + λg4(x, y, z, t) = 0

for

(f4, g4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x4, yz(xt− xy − xz − t2)

)
if X is a Fano threefold No1.1,(

x4 + z2(xt− xy − t2), yz(xt− xy − t2)
)

if X is a Fano threefold No1.11,(
xz3 − (zt− xy − yz − t2)z2, xy(zt− xy − yz − t2)

)
if X is a Fano threefold No2.2,(

x3y + y(y + z)(xz + xt− t2), z(y + z)(xz + xt− t2)
)

if X is a Fano threefold No2.3,(
x3y(y2 + z2)(xt− xz − t2), yz(xt− xz − t2)

)
if X is a Fano threefold No9.1
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(certain changes of variables can be found in [23, proof of Proposition 5.11]),
that expands (1.3) to the following commutative diagram:

(2.2) (C∗)3

p

Y

w

Z

f

V
χ

g

π
P3

φ

C C P1 P1

where φ is a rational map given by S, the variety V is a smooth threefold, π
is a birational morphism described in [3], and χ is a composition of flops.
Here λ ∈ C ∪ {∞}, where λ = ∞ corresponds to the fiber f−1(∞). Moreover,
it follows from [3] that π factors through a birational morphisms α : U → P3

that is uniquely determined by the following three properties:

1. the map α−1 is regular outside of finitely many points in X;
2. the proper transform of the pencil S via α, which we denote by Ŝ, is

contained in the anticanonical linear system | −KU |;
3. for every point P ∈ U , there is a surface in Ŝ that is smooth at P .

We denote by Σ the (finite) subset in X consisting of all indeterminacy
points of α−1.

Let S be the quartic surface given by g4(x, y, z, t) = 0, let Ŝ be its proper
transform on the threefold U , and let

D̂ = Ŝ +

k∑
i=1

aiEi,

where E1, . . . , Ek are α-exceptional surfaces, and a1, . . . , ak are non-negative
integers such that D̂ ∼ −KU . Then D̂ ∈ Ŝ. Moreover, for any D̂′ ∈ Ŝ such
that D̂′ �= D̂, we have

D̂ · D̂′ =
s∑

i=1

miĈi,

where Ĉ1, . . . , Ĉn are base curves of the pencil Ŝ, andm1, . . . ,ms are positive
numbers. Without loss of generality, we may assume that the base curves
of the pencil S are the curves α(Ĉ1), . . . , α(Ĉr) for some r � n. Then we
let Ci = α(Ĉi) for every i � r.

For every i ∈ {1, . . . , n}, let Mi = mult
̂Ci
(D̂) and

δi =

{
0 if Mi = 1,

mi − 1 if Mi � 2.
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Then it follows from [3, (1.10.8)] that

(2.3)
[
f−1(∞)

]
=

[
S
]
+

r∑
i=1

δi +
∑
P∈Σ

DP ,

where [S] is the number of irreducible components of the surface S, and DP

is the defect of the point P ∈ Σ that is defined as

DP = AP +

s∑
i=r+1

α( ̂Ci)=P

δi,

where AP is the total number of indices i ∈ {1, . . . , k} such that ai > 0
and α(Êi) = P . By [3, Lemma 1.12.1], we have DP = 0 if the rank of
the quadratic form of the (local) defining equation of the surface S at
the point P is at least 2.

To proceed, we need the following notation: for any subsets I, J , and K
in {x, y, z, t}, we write HI for the plane defined by setting the sum of co-
ordinates in I equal to zero, we write LI,J = HI ∩HJ , and, finally, we wri-
te PI,J,K = HI ∩HJ ∩HK .

Suppose X is a Fano threefold No1.1. Recall that we have f4 = x4

and g4 = yz(xt− xy − xz − t2), so that the pencil S is given by

x4 − λyz(xt− xy − xz − t2) = 0.

Observe that every surface in this pencil is invariant with respect to the
Z/2Z-action given by [x : y : z : t] 
→ [x : z : y : t]. Moreover, the base locus
of the pencil S consists of the curves L{x},{y}, L{x},{z}, L{x},{t}. Thus, we
have r = 3 and, without loss of generality, we may assume that

C1 = L{x},{y},

C2 = L{x},{z},

C3 = L{x},{t}.

Recall that S = {yz(xt− xy − xz − t2) = 0} ⊂ P3, so that

S = H{y} +H{z} +Q,

where Q is the irreducible quadric surface {xt−xy−xz−t2 = 0} ⊂ P3, which
is singular at the point P{x},{t},{y,z}. Since S is smooth at general points
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of the lines L{x},{y}, L{x},{z}, L{x},{t}, we see that general surface in the
pencil S has isolated singularities. In particular, we have M1 = 1, M2 = 1,
and M3 = 1. Moreover, if S′ is another surface in the pencil S, then

S · S′ = 4L{x},{y} + 4L{x},{z} + 8L{x},{t},

which means that m1 = 4, m2 = 4 and m3 = 8. Now, taking partial deriva-
tives of the polynomial x4−λyz(xt−xy−xz−t2), we see that all surfaces in
the pencil S are singular at the points P{x},{y},{z}, P{x},{y},{t}, P{x},{z},{t},
P{x},{t},{y,z}, and these four points are the only singularities of a general
surface in this pencil. This shows that

Σ =
{
P{x},{y},{z}, P{x},{y},{t}, P{x},{z},{t}, P{x},{t},{y,z}

}
.

Thus, using (2.3), we get[
f−1(∞)

]
= 3 +DP{x},{y},{z} +DP{x},{y},{t} +DP{x},{z},{t} +DP{x},{t},{y,z} .

We claim that

DP{x},{y},{z} = DP{x},{y},{t} = DP{x},{z},{t} = DP{x},{t},{y,z} = 0.

Indeed, P{x},{y},{z} �∈ Q and P{x},{y},{z} ∈ H{y} ∩H{z}, which implies that
the rank of the quadratic form of the defining local equation of the surface
S at the point P{x},{y},{z} is two. Hence, we have DP{x},{y},{z} = 0 by [3,
Lemma 1.12.1]. Similarly, we see that the rank of the quadratic form of
the defining equation of the surface S at the point P{x},{t},{y,z} is three, be-
cause P{x},{t},{y,z} �∈ H{y}, P{x},{t},{y,z} �∈ H{z}, and Q has an isolated ordi-
nary double singularity at the point P{x},{t},{y,z}. This givesDP{x},{t},{y,z} =0.
Likewise, we have P{x},{z},{t} �∈ H{y} and P{x},{z},{t} ∈ H{z} ∩ Q, but both
surfaces H{z} and Q are smooth at the point P{x},{z},{t}, and they intersect
each other transversally at this point. Hence, the rank of the quadratic form
of the defining equation of the surface S at the point P{x},{z},{t} is two, which
implies that DP{x},{z},{t} = 0 by [3, Lemma 1.12.1]. Finally, keeping in mind
the Z/2Z-symmetry mentioned earlier, we conclude that DP{x},{y},{t} = 0.
Thus, we have[

f−1(∞)
]
= 3 +DP{x},{y},{z} +DP{x},{y},{t}

+DP{x},{z},{t} +DP{x},{t},{y,z} = 3 =
(−KX)3

2
+ 2

as claimed.
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Now, we suppose that X is a Fano threefold No1.11. Recall that

f4 = x4 + z2(xt− xy − t2) and g4 = yz(xt− xy − t2),

so that Σ consists of the points P{x},{y},{z}, P{x},{y},{t}, P{x},{z},{t}; more-
over, r = 3, C1 = L{x},{z}, C2 = L{x},{t}, and C3 is the rational quartic
curve given by y = x4 + txz2 − t2z2 = 0. Then

M1 = 1, M2 = 1, M3 = 1, m1 = 4, m2 = 8, m3 = 1,

so that[
f−1(∞)

]
= 3 +DP{x},{y},{z} +DP{x},{y},{t}

+DP{x},{z},{t} +DP{x},{t},{y,z} = 3 +DP{x},{y},{t}

by (2.3) and [3, Lemma 1.12.1]. To compute DP{x},{y},{t} , observe that (lo-
cally) α is a blow up of the point P{x},{y},{t}. Thus, we may assume that E1 is
mapped to P{x},{y},{t}. Then a1 = 1, so that AP{x},{y},{t} = 1. Moreover, the

pencil Ŝ has a unique base curve in E1, which is a conic in E1
∼= P2. We may

assume that this curve is Ĉ4. Then M4 = 2, which gives DP{x},{y},{t} = m4.
On the other hand, we have

10 = 8 +multP{x},{y},{t}

(
C
)
= multP{x},{y},{t}

(
4C1 + 8C2 + C3

)
= 4 + 2m4,

which gives DP{x},{z},{t} = 3, so that [f−1(∞)] = 6 = (−KX)3

2 + 2.

Suppose that X is a Fano threefold No2.2. Recall that

f4 = xz3 − (zt− xy − yz − t2)z2 and g4 = xy(zt− xy − yz − t2),

so that the set Σ consists of the points P{x},{y},{z}, P{x},{z},{t}, P{y},{z},{t};
moreover, r = 5, C1 = L{x},{z}, C2 = L{y},{z}, and C3, C4, and C5 are
the conics given by

x = zt− yz − t2 = 0, y = xz − zt+ t2 = 0, and z = xy − t2 = 0,

respectively. Then

M1 = 1, M2 = 1, M3 = 2, M4 = 1, M5 = 1,

m1 = 2, m2 = 2, m3 = 2, m4 = 1, m5 = 3,
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so that[
f−1(∞)

]
=

[
S
]
+1+DP{x},{y},{z}+DP{x},{z},{t}+DP{y},{z},{t} = 4+DP{y},{z},{t}

by (2.3) and [3, Lemma 1.12.1]. To compute DP{y},{z},{t} , observe that we
have AP{y},{z},{t} = 0, because S has a double point at P{y},{z},{t}. Moreover,
locally near the point P{y},{z},{t}, the pencil S is given by

λy2 + z3 + z3t− yz2 − λyzt+ λy2z + λyt2 − yz3 − z2t2 = 0,

where P{y},{z},{t} = (0, 0, 0). Let α1 : U1 → P3 be the blow up of the
point P{y},{z},{t}, and let S1 be the proper transform on U1 of the sur-
face S, and let S1 be the proper transform on U1 of the pencil S. A chart
of the blow up α1 is given by the coordinate change y1 = y

t , z1 = z
t , t1 = t.

In this chart, the surface S1 is given by

y1(t1 + y1 − t1z1 + t1y1z1) = 0,

and the pencil S1 is given by

λy1(t1+ y1)−λt1y1z1+
(
λt1y

2
1z1− t21z

2
1 − t1y1z

2
1 + t1z

3
1

)
+ t21z

3
1 − t21y1z

3
1 = 0.

All surfaces in this pencil are singular at the point (y1, z1, t1) = (0, 0, 0), and
this is the only singular point of a general surface in the pencil S1 that is
contained in the α1-exceptional surface. Note also that the α1-exceptional
surface contains unique base curve of the pencil S1. Without loss of gen-
erality, we may assume that its proper transform on U is the curve Ĉ6.
Then M6 = 2. Furthermore, since the rank of the quadratic form of the (lo-
cal) defining equation of the surface S1 at the point (y1, z1, t1) = (0, 0, 0)
is two, we can apply arguments of the proof of [3, Lemma 1.12.1] to the
pencil S1 to deduce the equality DP{x},{z},{t} = δ6 = m6 − 1. One the other
hand, we have

4 +m6 = multP{y},{z},{t}

(
3C5 + 2C1 + 2C2 + 2C3 + C4

)
= 6,

so that m6 = 2. This gives DP{y},{z},{t} = 1. Hence, we have

[f−1(∞)] = 5 =
(−KX)3

2
+ 2.

Suppose that X is a Fano threefold No2.3. Recall that

f4 = x3y + y(y + z)(xz + xt− t2) and g4 = z(y + z)(xz + xt− t2).
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In this case, the set Σ consists of the points

P{x},{z},{t}, P{x},{y},{z}, P{x},{t},{y,z};

moreover, r = 5 and

C1 = L{x},{t}, C2 = L{y},{z}, C3 = L{x},{y,z},

the curve C4 is given by z = x3 + xyt − yt2 = 0, and the curve C5 is the
conic y = xz + xt− t2 = 0. Then

M1 = 1, M2 = 2, M3 = 1, M4 = 1, M5 = 1,

m1 = 6, m2 = 2, m3 = 3, m4 = 1, m5 = 1,

so that[
f−1(∞)

]
= [S]+1+DP{x},{z},{t}+DP{x},{y},{z}+DP{x},{t},{y,z} = 4+DP{x},{z},{t}

by (2.3) and [3, Lemma 1.12.1]. Arguing as in the case No1.11, we can

get DP{x},{z},{t} = 2, so that [f−1(∞)] = 6 = (−KX)3

2 + 2.
Finally, we consider the case when X is a smooth Fano threefold No9.1.

In this case, we have

f4 = x3y(y2 + z2)(xt− xz − t2) and g4 = yz(xt− xz − t2).

Then Σ consists of the points P{x},{z},{t} and P{x},{y},{z}; moreover, r = 4,
and C1 = L{x},{t}, C1 = L{y},{z}, the curve C3 is given by y = xt−xz−t2 = 0,
and C4 is given by z = x3 + yt(x+ t) = 0. Observe that

M1 = 1, M2 = 2, M3 = 2, M4 = 1,

m1 = 6, m2 = 3, m3 = 2, m4 = 1.

Thus, using (2.3) and [3, Lemma 1.12.1], we get[
f−1(∞)

]
= 6 +DP{x},{z},{t} +DP{x},{y},{z} = 6 +DP{x},{z},{t} .

Arguing as in the case No1.11, we get DP{x},{z},{t} = 2, so that

[f−1(∞)] =
(−KX)3

2
+ 2

as claimed.
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Proposition 2.4. Suppose that X is a Fano threefold No2.1 or a Fano

threefold No10.1. Then [f−1(∞)] = (−KX)3

2 + 2.

Proof. It follows from [3, §2.1] that the following commutative diagram ex-
ists:

V

g

π
P2 × P1

φ

C3

q

γ
C∗ × C∗ × C∗

p

Y

w

Z

f

P1 C1 C1 C1 P1

(2.5)

where q is a surjective morphism, γ is a birational map that is described in
[3, §2.1], π is a birational morphism, V is a smooth threefold, the map g is
a surjective morphism such that −KV ∼ g−1(∞), and φ is a rational map
that is given by the pencil S given by

f2,3(x, y, a, b, c) + λg2,3(x, y, a, b, c) = 0,

where ([x : y], [a : b : c]) is a point in P1 × P2, both f2,3 and g2,3 are
bi-homogeneous polynomials of bi-degree (2, 3), and λ ∈ C ∪ {∞}. The
diagram (2.5) is similar to (2.2), so that we will follow the proof of Proposi-
tion 2.1 and use its notation. The only difference is that P3 is now replaced
by P1 × P2, and S is the surface given by g2,3(x, y, a, b, c) = 0.

Suppose that X is a Fano threefold No2.1. Then

f2,3 = x(x+ y)c3 − y2(abc− b2c− a3),

g2,3 = y(x+ y)(abc− b2c− a3).

Then Σ consists of the point P{y},{a},{c}, and the base locus of the pencil S
consists of the curve C1 given by x + y = abc − b2c − a3 = 0, the curve C2

given by x = abc − b2c − a3 = 0, the curve C3 given by y = c = 0, and
the curve C4 given by a = c = 0. Hence, we have[

f−1(∞)
]
= 4 +DP{y},{a},{c} = 4 =

(−KX)3

2
+ 2

by (2.3) and [3, Lemma 1.12.1], since M1 = 2, M2 = 1, M3 = 1, M4 = 1,
and m1 = 2.

Suppose that X is a Fano threefold No10.1. Then

f2,3 = xyc3 + (x2 + y2)(abc− b2c− a3),

g2,3 = xy(abc− b2c− a3).
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In this case, we have Σ = ∅, and the base locus of the pencil S consists

of the curve C1 given by x = abc − b2c − a3 = 0, the curve C2 given by

y = abc− b2c− a3 = 0, and the curve C3 given by a = c = 0. Moreover, one

has M1 = 2, M2 = 2, M3 = 1, m1 = 2 and m2 = 2. Hence, using (2.3), we

get

[f−1(∞)] = 5 =
(−KX)3

2
+ 2

as claimed.

3. Fano complete intersections in projective spaces

Let X be a Fano complete intersection in PN of hypersurfaces of deg-

rees d1, . . . , dk, let iX be its Fano index, and let p be the Laurent polynomial∏k
i=1(xi,1 + . . .+ xi,di−1 + 1)di∏k

i=1

∏di−1
j=1 xi,j

∏iX−1
j=1 yj

+ y1 + . . .+ yiX−1 ∈ C
[
x±1
i,j , y

±1
s

]
,

which we consider as a regular function on (C∗)n, where n = dim(X). Let Δ

be the Newton polytope of p in N = Zn, let TΔ be the toric Fano variety

whose fan polytope (convex hull of generators of rays of the fan of TΔ) is Δ.

In other words, cones of the fan that defines TΔ are cones of faces of Δ. Let

∇ =
{
x
∣∣ 〈x, y〉 � −1 for all y ∈ Δ

}
⊂ MR = N∨ ⊗ R

be the dual to Δ polytope. Then ∇ and Δ are reflexive (see [24]). Let M be

the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iX 0 . . . 0 . . . 0 0 . . . 0 −1 . . . −1
0 iX . . . 0 . . . 0 0 . . . 0 −1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . iX . . . 0 0 . . . 0 −1 . . . −1

−iX −iX . . . −iX . . . 0 0 . . . 0 −1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . iX 0 . . . 0 −1 . . . −1
0 0 . . . 0 . . . 0 iX . . . 0 −1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 0 0 . . . iX −1 . . . −1
0 0 . . . 0 . . . −iX −iX . . . −iX −1 . . . −1

0 0 . . . 0 . . . 0 0 . . . 0 iX − 1 . . . −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 0 0 . . . 0 −1 . . . iX − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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which is formed from k blocks of sizes (di − 1) × di and one last block of
size (iX − 1)× (iX − 1). Then it follows from [24] that the vertices of ∇ are
the rows of the matrix M . Note that there is a mistake in the size of the last
block in [24].

It has been shown in [13, 24] that p is a toric Landau–Ginzburg model
of the variety X that admits a log Calabi–Yau compactification (Z, f).

Theorem 3.1 (cf. [24, Problem 11]). The number of irreducible components
of the fiber f−1(∞) equals h0(OX(−KX))− 1.

Proof. By [13, Theorem 2.2], the toric variety TΔ is a flat degeneration of X.
Since this degeneration is flat, one has

χ ((OX(−KX)) = χ ((OTΔ
(−KTΔ

)) .

On the other hand, TΔ is Fano by construction. Moreover, the singularities
of TΔ are Kawamata log terminal by [18, Proposition 3.7]. Thus, by Ko-
daira vanishing (see e.g. [19, Theorem 2.70]), one has hi(OTΔ

(−KTΔ
)) = 0

for i > 0. Similarly, applying Kodaira vanishing on a smooth Fano varietyX,
we see that hi(OX(−KX)) = 0 for i > 0. Therefore, we obtain

h0(OX(−KX)) = h0(OTΔ
(−KTΔ

)).

It is well known (see, for instance, [7, §6.3]) the anticanonical linear sys-
tem of TΔ can be described as the linear system of Laurent polynomi-
als supported on its dual polytope ∇. Since ∇ is reflexive, the dimensi-
on h0(−KTΔ

)− 1 of this linear system equals to the number of integral
points on the boundary of ∇. By [24, Theorem 1], the log Calabi–Yau com-
pactification (Z, f) is constructed via a crepant toric resolution of TΔ and
a sequence of blow ups in smooth centers such that exceptional divisors of
these blow ups do not lie over ∞. In particular, the number of irreducible
components of the fiber f−1(∞) is equal to the number of boundary divisors
of the crepant resolution of TΔ, which is equal to the number of integral
points in the boundary of ∇, since Δ is reflexive. This gives the assertion of
the theorem.

Remark 3.2. Theorem 3.1 seems to hold in a much more general case of
smooth Fano weighted complete intersections. The problem is that the New-
ton polytope Δ in this case is usually is not reflexive, so that ∇ is not
integral. This means that the lattice points count in ∇ is not enough for
the claim, because the log Calabi–Yau compactification procedure (construc-
tion of the diagram (1.3)) from [22] does not work. However, at least in some
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cases, this procedure can be modified: one can construct the compactifica-
tion in the face fan of the (non-integral) polytope ∇ and blow down some of
the components of the fiber over infinity. It turns out that the blown down
components correspond exactly to the non-integral vertices of ∇, so that
the arguments of Theorem 3.1 work in these cases. For details, see [25].

4. Toric Fano varieties

Let X be a smooth toric Fano variety of dimension n, let Δ be its fan poly-
tope, and let ∇ be the dual (integral) polytope, and let X∨ be the dual toric
variety, i.e. the Fano variety whose fan polytope is ∇. Note that X∨ can be
singular. Suppose that X∨ admits a crepant (toric) resolution X̃∨ → X∨.
Let p be the Laurent polynomial given by the sum of monomials corre-
sponding to vertices of Δ. Then it follows from [22] that p defines a toric
Landau–Ginzburg model of the Fano variety X that admits a log Calabi–
Yau compactification (Z, f) such that the exists the following commutative
diagram:

X̃∨

φ

(C∗)n

p

Z

f

P1 C P1

where φ is a rational map given by an anticanonical pencil S on the (weak
Fano) variety X̃∨. Note that the toric boundary divisor X̃∨ \ (C∗)n is con-
tained in S.

Proposition 4.1. The fiber f−1(∞) consists of h0(OX(−KX)) − 1 irre-
ducible components.

Proof. Since X is smooth, every irreducible toric boundary divisor of X̃∨

is isomorphic to a projective space, and the restriction of base locus of
the pencil S on this divisor is a hyperplane that does not contain torus in-
variant points. Thus, to obtain Z, we can blow up (consecutively) irreducible
components of the base locus of the pencil S, which implies that f−1(∞)
is the proper transform of the the toric divisor X̃∨ \ (C∗)n. In particular,
the number of irreducible components of the fiber f−1(∞) equals the number
of integral points of ∇ minus one. This number is exactly h0(OX(−KX))−1,
which can be described as a linear system of Laurent polynomials supported
by ∇.
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