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Flux vacua: a voluminous recount
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In this note, we apply mathematical results for the volume of cer-
tain symmetric spaces to the problem of counting flux vacua in
simple IIB Calabi-Yau compactifications. In particular, we obtain
estimates for the number of flux vacua including the geometric fac-
tor related to the Calabi-Yau moduli space, in the large flux limit,
for the FHSV model and some closely related models. We see that
these geometric factors give rise to contributions to the counting
formula that are typically not of order one and might potentially
affect the counting qualitatively in some cases. We also note, for
simple families of Calabi-Yau moduli spaces, an interesting de-
pendence of the moduli space volumes on the dimension of the
flux space, which in turn is governed by the Betti numbers of the
Calabi-Yaus.

1. Introduction

The purview of this note is to re-count flux vacua in certain simple string
compactifications. The string theory landscape, the huge number of vacua
arising from string theory, is among the most influential and controversial
concepts in string theory, or even high-energy physics, in the past decade.
The purported existence of such a landscape suggests the possibility that
the fine-tuning of fundamental constants like the cosmological constant or
the Higgs boson mass may be explained not by a physical mechanism but
rather by a statistical argument, which is appropriate under the assumption
that many “universes” are equally consistent from the point of view of the
fundamental laws of physics despite looking nothing like ours.

Given the important consequences, in this note we revisit the counting
formula and in particular we focus on a factor, which we will call the geomet-
ric factor, that is often taken to be of order one in the literature. The main
question that motivates this note, and which we answer in specific cases, is
whether the geometric factor really is of order one, or not. The answer will
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be: “Sometimes yes, sometimes no.” To be precise, the geometric factor is

the expression π−m/2
∫
det(R+ ω · 1), in Equation (1.5).

This question is a reasonable one because existing computations of vol-

umes of string theory moduli spaces with respect to the Zamolodchikov

metric have yielded numbers that, depending on the context, have been

prodigious or miniscule.1 Of course, the answer depends sensitively on the

choice of metric on the space in question. In particular, since the dimen-

sionality of Calabi-Yau complex structure moduli spaces can be enormous

(see [47] for a particularly striking recent example), obtaining the correct

normalisation of the metric is essential: rescaling the metric by a numerical

factor λ will scale the volume by a factor λdimR(M)/2.

It is very hard to analyze the geometric factor for Calabi-Yau threefolds

of generic holonomy. The global form of the Calabi-Yau moduli spaces is not

known in general, and the curvature of the space, present in the geometric

factor, is not uniform over moduli space; for instance, the curvature is known

to diverge (albeit remains integrable!) in the vicinity of the conifold point;

see [14, 26, 9, 19] for an exploration of the geometric factor in certain IIB

vacua in the vicinity of the conifold point, as well as in the neighborhoods

of other tractable regimes in moduli space. Yet for specific, and indeed quite

special Calabi-Yau manifolds, we are able to compute this factor, essentially

given by the volume of the moduli space, exactly, by applying certain re-

cent mathematical results. For these examples, we see that the answer to

the question can be either yes or no. We report on the effect of the exact

geometric factor for the case of the FHSV Calabi-Yau manifold in Table 1,

whereupon the geometric term contributes a factor of 10−8 (significant but

still subleading in the limit of large flux). On the other hand, one can more

properly consider orientifolds of this model. The simplest choice of orientifold

action dramatically reduces the dimension of the moduli space, whereupon

its volume corrects the volume estimate by a paltry 10−2.

In Section 4, we make a curious observation: if we consider certain fam-

ilies of moduli spaces of increasing dimension then the volume is a steeply

decreasing and then increasing function of the dimension and the minimal

1We have in mind the computations in [44], which provided some motivation for
the present work. The work of [44], related to a question posed in [4], used these
volumes to estimate the likelihood that certain CFTs have a weakly-curved AdS
gravity duals. Moduli spaces associated with superconformal field theories built
from products of Hilbn(K3) and Hilbn(T 4) were considered and the corresponding
Zamolodchikov volumes were found to be extremely small in examples relevant to
string compactification.



Flux vacua: a voluminous recount 763

value can be extremely small. Moreover, the minimum appears at the di-
mensions most relevant for string compactification. (A similar phenomenon
occurs with (4, 4) sigma models [44].) While this might well be an artifact
of the examples we have considered it might also be more general. If so, it
could have important consequences for the main claim of [47].

We begin by recalling the flux vacua counting formula [1], which builds
on the seminal work of [5]. Our exposition will closely follow that of [13]. Con-
sider a region S in a space with real coordinates xi, i = 1, . . . ,m, equipped
with a Kähler structure. For our application, this will be (a region of) the
complex structure moduli space of the F-theory fourfold. Let PIi, I = 1, . . . , b
be a set of real vector fields2 and let AIJ be given by a non-degenerate,
symmetric bilinear form. In F-theory, AIJ = −QIJ , where the latter is the
intersection product on the integral homology lattice of the fourfold. For a
given Lmax, we would like to count the number of pairs (N, x∗) where

(1.1) N = (N1, . . . , Nb), N I ∈ Z satisfying 1
2N

INJAIJ ≤ Lmax =
R2

max

2

and x∗ ∈ S such that UN ;i :=
∑

I N
IPIi = 0 for all i. It is easy to see that

such a number is given by

(1.2) Nzeros =
∑
N

∫
S
dmx

(∏
i

δ(UN ;i)

)
|det(∂jUN ;k)|,

where the sum is taken over fluxes satisfying (1.1). Assuming that there is
no large cancellation and the absolute value |det(∂jUN ;i)| can be replaced
by det(∂jUN ;i), in the limit where the discreteness of N can be ignored the
above quantity is approximated by the index

(1.3) Izeros =

∫
dbN

∫
S
dmx

(∏
i

δ(UN ;i)

)
det(∂jUN ;k),

which, in the present context of flux vacua, can be shown to be the same as

(1.4) Izeros =
1√
detA

volRmax
(Bb)

∫
S

det(R+ ω · 1)
πm/2

,

2Per [13], the derivation is presented assuming xi, PIi are real, but the argument
goes through with minor modifications when xi, PIi are complex. In the F-theory
context, they are to be identified, respectively, with the coordinates on complex
structure moduli space and derivatives of the period vector; see [13] for the precise
identifications.
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where R is the Ricci curvature of the holomorphic tangent bundle and ω is
the Kähler form of the Weil-Peterson metric on S, and

volRmax
(Bb) =

(2πLmax)
b/2

(b/2)!

is the volume of the b-dimensional ball of radius Rmax =
√
2Lmax.

Under the above assumptions, and setting aside the question of Kähler
moduli stabilisation (by assuming that the moduli are stabilised by quantum
effects), the number of vacua in type IIB flux compactification is given by

(1.5) Ivac = volRmax
(Bb)

∫
S

det(R+ ω · 1)
πm/2

,

where we have used the fact that the bilinear form A is given by the inter-
section form and has determinant 1. In terms of the F-theory data and in
particular the fourfold Y , we have in the above formula b = dimRH, where
H ⊂ H4(Y,R) is space of all G ∈ H4(Y,R) satisfying

∫
Y G∧D ∧D′ = 0 for

all D,D′ ∈ H1,1(Y,R). It is not hard to see that b, being the dimension of
the subspace of H4(Y ) orthogonal to intersections of divisors, is equivalent
to the dimension of the subspace of fluxes with exactly one leg in the elliptic
fibre. The maximal number of fluxes is given by the tadpole cancellation
condition3

(1.6)
1

2
AIJN

INJ +ND3 =
χ(Y )

24
⇒ Lmax =

χ(Y )

24
.

The vacua counting formula we will use in this note is obtained from
the above by making extra assumptions, as in [1]. Namely, we consider the
number of bulk flux vacua in the weakly coupled type IIB limit and ignore
the D7 degrees of freedom. Let X be the Calabi-Yau threefold in the type
IIB orientifold compactification and n = h−2,1(X) to be the dimension of the

3Notice that although AIJ is a form of indefinite signature, the restriction to
the set of N that admit a supersymmetric vacuum is positive definite (in brief, the
supersymmetry condition DW = 0 constrains the charge sublattice H3(X,C) by
restricting the flux vectors G to lie in the subspace H(2,1) ⊕H(0,3); [25] show that
the inner product, which is proportional to

∫
G ∧ �G, on this subspace is positive

definite), and therefore the tadpole constraint does bound the region of allowed
fluxes N . Furthermore, though one can reduce the upper bound on flux slightly by
adding anti-D3 branes, one cannot add an arbitrary number of these: a sufficient
number of anti-D3 branes in a flux background will decay to a configuration that
contains only flux and D3-branes [35].
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subspace of H2,1(X,Z) that is anti-invariant under the orientifold action. In

this limit the four-fold can be taken to be Y = (T 2 × X)/Z2 and we have

b/2 = 2n + 2, corresponding to the (n + 1) Ramond–Ramond and (n + 1)

NS–NS fluxes one can turn on. Using this we obtain [14]4

(1.7) Ivac = volRmax
(B4n+4)

∫
S

det(R+ ω · 1)
π1+n

,

where S is now taken to be a region inM = Max−dil×Mcpx(X), the product

of the axion-dilaton moduli space and the complex structure moduli space

of the three-fold X. Again, ω is the Kähler form on M, in terms of which the

volume form on M is given by ωn+1/(n+ 1)! and R is the Ricci curvature.

When the Ricci curvature is ignored, the geometric factor is the moduli

space volume up to an overall multiplicative factor of (n+ 1)!/πn+1:

(1.8)

∫
S

det(ω · 1)
πn+1

=
(n+ 1)!

πn+1
vol(S).

We briefly review the derivation of the index density, emphasizing the ap-

pearance of the Weil-Petersson metric in its canonical normalisation, follow-

ing [13], in Appendix A.

In this note, we will take the region S to be the entire (orientifold)

moduli space. As quantified in [14], using results from [30], for any region S in

moduli space there will be corrections to the continuum-flux approximation.

If Lmax is large enough, then the number of lattice points in a corresponding

region in flux space which contains vacua that satisfy Equation (1.6) will

be well-approximated by the volume of that region; the leading corrections

depend on the surface area of the region. When one takes S to be the entire

moduli space, the validity of the continuum approximation used in this note

translates to the requirement that Lmax > c ·b for some order one constant c.

We refer to [14, 13] for a more thorough discussion.

Without further input on the corresponding four-fold Euler characteris-

tic, the maximal flux Lmax is usually chosen by hand to be of order 101∼3.

See [37, 40] for a list of Calabi-Yau four-folds that can be realised as hyper-

surfaces in toric varieties and their Euler characteristics.

The estimate for the number of flux vacua led to some effort and progress

in understanding the moduli space volume in the Weil–Petersson metric.

4In general,
∫
det(R+ω) is replaced by

∫
S
e(∇), the integral of the Euler density

derived from the covariant derivative ∇ [13].
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In particular, in [17, 41] it was proven (see also [16] for a physical argu-
ment) that the moduli space volume is finite.5 However, to the best of our
knowledge no moduli space volumes of Calabi-Yau three-folds leading to
N = 2, d = 4 compactifications have been computed so far. As a result, the
geometric factor in the counting formula (1.7) is usually taken to be of order
one in the estimates. In particular, the problem is often simplified to that of
counting lattice points in a region in a sphere of radius

√
2Lmax, whose vol-

ume accounts for the factor that should be multiplied by the ‘geometric’ fac-
tor coming from the Calabi-Yau moduli space. See, for instance, [47] where
this simplified estimate (i.e. neglecting the geometric factor) leads to the
interesting conclusion that a single fourfold dominates the whole F-theory
landscape. The contributions from other F-theory flux vacua, according to
[47], are relatively suppressed by several orders of magnitude.

The geometric factor accounts for the difference between counting fluxes
that satisfy the tadpole constraint and counting (with signs) the actual
supersymmetric vacua. If the geometric factor turns out to be prodigious
then we can conclude that at least some fluxes N lead to superpotentials
WN admitting many vacua. (One would expect that the generic flux N
would lead to many vacua.) If the geometric factor turns out to be miniscule
then we would be tempted to conclude that for most flux vacua N , the
superpotential WN in fact does not have a supersymmetric vacuum. One
cannot arrive at this conclusion in strict logic because we are computing
an index: a miniscule geometric factor might just indicate that many vacua
have cancelling contributions. Indeed, we will see an example below where
the geometric factor is negative.

In this note, we compute exactly the volume of the vector multiplet
moduli of type IIB compactifications on certain Calabi-Yau threefolds which
lead to N = 2, d = 4 theories before turning on the fluxes. We see that,
at least in this specific family of threefolds, it is possible that including the
volume factor can lead to non-negligible effects in the counting of flux vacua.
Moreover, at least for some special threefolds with non-generic holonomy (of
the form SU(2)×G ⊂ SU(3) for some finite group G), we find circumstantial
evidence that the volume factor decreases with increasing b3, at least up to a

5It had previously been conjectured to be finite in [34], based on a number of
examples where it could be shown to be finite. The reason the finiteness of the
volume was important to [34] was that a finite volume of moduli space would
then lead to a well-defined probability distribution on moduli spaces of vacua. In
particular, potential energy functions generated by nonperturbative string effects
would lead to basins of attraction in moduli space. Then, it was proposed, vacua
should be selected on a statistical basis.
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certain critical value of b3. Note that naively (1.7) suggests that Ivac increases
with b when the geometric factor is ignored.6 Our result hence suggests that
further study is needed to arrive at this conclusion, due to the effect of the
geometric factor.

The geometric factor, of course, is not just the volume. For the spe-
cial Calabi-Yaus we study, we are able to account for the Ricci curvature
explicitly using the simple form of the resulting moduli spaces (Hermitian
symmetric spaces). It would be nice to be able to prove something like
boundedness properties of R+ ω on more general moduli spaces.

We also note in passing that a second application of the Calabi-Yau mod-
uli space volumes relates to counting attractor black holes in certain string
compactifications. For the counting of attractor points in type IIB compact-
ifications, the asymptotic density of attractor points with large |Z| ≤ Zmax

(corresponding to a bound on the BH entropy) in a region S of the complex
structure moduli space is given by [14]

(1.9) N (R, |Z| ≤ Zmax) ∼
2n+1

(n+ 1)πn
Zn+1
max vol(S)

where vol(R) is the Weil–Petersson metric of the region R and n is the
complex dimension of complex structure moduli space, and n = h2,1 for a
Calabi-Yau threefold.

2. Simple volume formulas

We now turn to the description of the volume formula for certain spe-
cial Calabi-Yau moduli spaces. Often in string theory we encounter mod-
uli spaces of string vacua that are certain double coset spaces (or products
thereof) of the form

(2.1) Γ\G/K

for some group G, (maximal) compact subgroup K and discrete subgroup Γ.
For example, these are familiar from the Narain moduli spaces of string
compactifications on a torus T k, where G = O(k, k),K = O(k)× O(k) and
Γ = O(k, k;Z) is the group of T-dualities. More precisely, for L the under-
lying lattice, the group Γ is (a subgroup of) the group of automorphisms

6The increase of Ivac with b only persists until b/2 = 2πLmax (recall b/2 :=
2n + 2), after which point it decreases precipitously, as expected for the volume
of a sphere of large dimension. However, as explained above, we will focus on the
regime where Lmax � b.
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of the lattice, which we will often denote by OZ(L) (or, by slight abuse of
notation for brevity O(L)). In this note, G = OR(Γ) (and K the maximal
compact subgroup of the latter). The relatively ‘tame’ nature of these spaces
is a consequence of some special properties of the underlying geometry, such
as the preservation of extended supersymmetry; moduli spaces of K3 sigma
models and symmetric products thereof, which possess N = 4 supersymme-
try, furnish other famous examples of double coset spaces that find a natural
home in string theory. In this note, we aim to understand the volumes of
moduli spaces associated to Calabi-Yau manifolds that preserve only N = 2
supersymmetry but nonetheless enjoy a moduli space of double coset type.

The moduli spaces we will be interested in are special cases of what
are called Shimura varieties. We will not need the general definition of such
spaces here [11, 12] (see [43] for an introduction), but we note that in the
special case that G is of orthogonal type and signature (2, n) the variety is
a (quotient of a) Hermitian symmetric space and may therefore be endowed
with a natural complex structure. One can go further and develop the theory
of automorphic forms on such spaces, and much more. Our primary interest
will be in the volume of such spaces, for which explicit formulas have happily
been developed (cf. Equation (4.1)); see [29, 22] for further mathematical
applications of these volumes, such as their appearance in (the leading term
of) the growth of the dimension of spaces of cusp forms.

Here we present and explain some aspects of the formula for volumes
of orthogonal Shimura varieties, following [29, 22] (to which we refer the
reader for further details), which build off the seminal work of Siegel [46].
Since several volumes appear in this note, we begin this section with a
short account of the volumes and the various relationships among them.
Our primary interest is in the Weil-Petersson volume volWP and we will
determine the appropriate multiplicative factors to convert to volWP from
the other volumes that appear in this note. The definition of the Weil-
Petersson volume, and its appearance in the study of counting flux vacua,
is reviewed in Appendix A.

We first introduce the volumes computed by Siegel who computed vol-
umes of quotients of symmetric spaces by arithmetic subgroups, volS(Γ\Drs)
(see Equation (2.6)). Next, we relate the Siegel volumes to the Hirzebruch-
Mumford volume (Equation (2.10)) employed by [29], which is given by a

ratio of Siegel volumes: volHM (Γ\Drs) :=
volS(Γ\Drs)

volS(D(c)
rs )

, where D(c)
rs is the com-

pact dual of Drs, given below. This is a natural volume from a mathematical
perspective and, since we closely follow the presentation of [29], we take time
to introduce it. We also use several computations of volHM in [29] for in-
teresting classes of spaces, and convert them to computations of volWP , in
Section 4.
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The Hirzebruch-Mumford volume may be immediately compared to both
the canonically normalised Zamoldchikov volume, familiar to physicists, and
computed for several interesting classes of spaces in [44], as well as to
the canonically normalised Weil-Petersson volume. The conversion factor
between the Weil-Petersson and Hirzebruch-Mumford volumes appears in
Equation (2.14). We also fix the relative normalisations between the Weil-
Petersson and Zamoldchikov volumes in Appendix C using standard string
theoretic manipulations.

We begin with the Siegel volumes. Siegel began his study with the ho-
mogeneous symmetric domain

(2.2) Drs = O(r, s)/O(r)×O(s)

using its realization as a bounded domain:

(2.3) Drs =
{
X ∈ Mat r×s(R)|Ir −XXt > 0

}
.

This proceeds by making use of the natural O(r, s)-invariant metric

(2.4) ds2 = Tr
(
(Ir −XXt)−1dX(Is −XtX)−1dXt

)
which induces the following volume form on Drs:

(2.5) dV =
(
det(Ir −XXt)−1

) r+s

2

∏
i,j

dxij .

With respect to this volume form, Siegel then computes, for any lattice of
signature (r, s):

(2.6) volS(O(L)\Drs) = 2α∞(L)|detL|(r+s+1)/2γ−1
r γ−1

s

where γm :=
∏m

k=1 π
k/2Γ(k/2)−1, α∞(L) is the real Haar measure of L, also

known as the Tamagawa measure, and detL is simply the determinant of
the matrix whose (ij)th entry is the inner product of the ith and jth basis
vector with respect to a chosen basis.7 We will refer to the above volume as
the Siegel volume.

Next, we decompose the Lie algebra g of O(r, s) as g = k ⊕ p, where k

is the Lie algebra of O(r)× O(s) and p is the orthogonal complement with
respect to the Killing form and may be written as

(2.7) p =

{(
0 U
tU 0

)
, U ∈ Matr×s(R)

}
.

7This matrix is often called the Gram matrix.
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This parabolic subspace is isomorphic to the tangent space of Drs at the
origin. Indeed, starting from the Killing form tr(U t

1U2) one may produce
the O(r, s)-invariant metric by studying the tangent space at the origin. We

also introduce the compact dual of our symmetric space: D(c)
rs = SO(r +

s)/SO(r)× SO(s).8 The tangent space of D(c)
rs at the identity Ir+s is given

by

(2.8) p′ =

{(
0 U

−tU 0

)
, U ∈ Matr×s(R)

}
,

and the Killing form of SO(r+ s) induces the form 2Tr(U t
1U2) on p′ [33]. To

properly compare the volumes of Γ\Drs and D(c)
rs , as required to produce the

Hirzebruch-Mumford volume, one has to normalise the metrics on Drs and

D(c)
rs so that they coincide with the Siegel metric at their common base point.

For instance, when computing the volume of SO(r + s) using the metric
induced from the Killing form one must multiply by an additional factor of
2−(r+s)(r+s−1)/4, using the fact that the dimension of SO(n) is n(n−1)/2 [29].

In total, the Siegel volume of the compact dual is volS(D(c)
rs ) = 2γr+sγ

−1
r γ−1

s .
To finish the computation of the volume, we still need to determine the

Tamagawa measure α∞(L). It turns out [29, 22] that the Tamagawa measure
may be computed in terms of local densities of lattices L⊗Zp over the p-adic
integers:

(2.9) α∞(L) =
2

g+sp(L)

∏
p

αp(L)
−1,

where g+sp(L) is the number of proper spinor genera in the genus of L. Im-
portantly for us, the right hand side is computable for a given lattice L. We
record the definitions of the proper spinor genera, and local factors αp(L), in
Appendix B, and refer to [22] for the algorithm with which one may compute
them.

At last, the Hirzebruch-Mumford volume as determined by [29, 22] in
the notation of [29] is given by

volHM(O(L)\Drs) =
2

g+sp(L)
|detL|(r+s+1)/2

r+s∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)
−1.

(2.10)

8Note that O(r, s)/O(r)×O(s) = SO(r, s)0/SO(r)× SO(s), where SO(r, s)0 is
the component connected to the identity.
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When L is a lattice of signature (2, n), n ≥ 1 and contains at least one
hyperbolic plane (the primary case of interest for us), then the formula
specializes to [29]

(2.11) volHM(O(L)\Drs) = 2|detL|(n+3)/2
n+2∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)
−1.

This specialization uses the facts that a.) the spinor genus of an indefinite
lattice of rank ≥ 3 coincides with its class and b.) the genus of any indefinite
lattice containing a hyperbolic plane contains only one class [39]. If one
wishes to study the volume with respect to a choice of finite index arithmetic
subgroup of O(L), which we denote by Γ, and if we still focus on L of
signature (2, n) and containing a hyperbolic plane, the Hirzebruch-Mumford
volume is given by

volHM(Γ\Drs) = 2 [PO(L) : PΓ] |detL|(n+3)/2
n+2∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)
−1,

(2.12)

where the notation PG refers to the image of the group in Aut(Drs) (which
is isomorphic to the group modulo its center).

In what follows, we will sometimes denote volumes vol(Γ\Drs) by simply
vol(Γ) or vol(O(Γ)), with the understanding that we are always computing
volumes of double coset spaces.

Next, we will determine the factor that converts the Hirzebruch-Mumford
volume to the (canonically normalised) Weil-Petersson metric for our phys-
ical applications. To do this, we will first compare the Hirzebruch-Mumford
volume to the Zamolodchikov volume studied in [44] as an intermediate step.
In Appendix C, we will compute the conversion factor between the Zamolod-
chikov and Weil-Petersson metrics. Combining these contributions, we will
presently obtain

(2.13) volWP(Γ) = CWP volHM(Γ)

where

(2.14) CWP =

(
1√
2

)2n σ(2 + n)

σ(2)σ(n)

with σ(D) ≡ 2(D+1)/2
∏D−1

j=1

(
(2π)

j+1
2

Γ( j+1

2
)

)
.
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We first recapitulate the Zamolodchikov volumes computed in [44]. Con-
sider first the double coset

(2.15) Na+8b,a = OZ(Qa,b)\OR(Qa,b)/(O(a+ 8b)×O(a))

where Qa,b denotes the quadratic form of the even, unimodular lattices of
signature (a+8b, a). Its volume, induced from the natural left-right invariant
metric on the Lie algebra, is given by

(2.16) voltr(Na+8b,a) =
σ(2a+ 8b)

σ(a)σ(a+ 8b)
2(d− 1)!

ζ(d)

(2π)d

d−1∏
j=1

|B2j |
4j

,

with σ(D) defined as above, and the Zamolodchikov metric is

(2.17) volZ(Na+8b,a) =

(
1√
2π

)a(a+8b)

voltr(Na+8b,a).

If we specialize this result to even, unimodular lattices of signature (2, 2+8b),
we can compute the Zamolodchikov/HM conversion directly to be

(2.18) volZ(N2+8b,2) =

(
1√
2π

)2(2+8b) σ(4 + 8b)

σ(2)σ(2 + 8b)
volHM (N2+8b,2).

More generally, it is derived in [44] that ds2Z = 1
2π2 ds2,tr. Notice that for

a lattice of signature (2, n), σ(2+n)
σ(2)σ(n) = 2n γ2+n

γ2γn
, so that, up to the factors of

π, the conversion is essentially reinstating the volume of the compact dual
that is divided out in the definition of volHM .9

Finally, we derive in Appendix C that ds2WP = π2ds2Z , which leads to
the relation (2.13).

3. Compactification on the Enriques Calabi-Yau

The FHSV model [21] is a particularly simple example of a compactification
down to four dimensions that preserves N = 2 spacetime supersymmetry.
First, let us briefly recall its basic properties. Our presentation will largely
follow [21, 2]. The FHSV model is obtained via string theory compactifica-
tion on the so-called Enriques Calabi-Yau manifold, which is a quotient of

9To account for the various factors of 2 that arise in the conversion see the
discussion above and [29] and [44].
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K3× T 2 by a fixed-point-free involution. More specifically, one considers a
free Enriques involution on the K3 factor but allows the involution on the
T 2 to have fixed points. Consequently, the theory possesses N = 2 spacetime
supersymmetry but in some aspects enjoys similar physics to the underlying
N = 4 theory. One avatar of this is that the Enriques Calabi-Yau manifold
has SU(2) × Z2 holonomy, rather than SU(3) holonomy. In particular, the
involution just acts as −1 on the torus coordinate z3, and as −1 on the
holomorphic (2, 0)-form Ω on the K3, giving a natural invariant (3, 0)-form
Ω ∧ dz3. The resulting Enriques surface has nonvanishing Hodge number
h(1,1) = 10 and the full Enriques Calabi-Yau has h(1,1)(X3) = 11. One can
also compute that the manifold has h(2,1)(X3) = 11, and is self-mirror up to
a global Z2 discrete torsion. The latter implies that the genus-zero instan-
ton corrections vanish in this model, meaning the classical moduli spaces,
described below, are in fact locally exact.

The complex structure moduli space of the Enrique Calabi-Yau (which
in IIB compactification is part of the vector multiplet moduli space) takes
the form

(3.1) (SL(2,Z)\SL(2,R)/SO(2))×
(
O(Γ2,10)\O(2, 10)/(O(2)×O(10))

)
.

The first factor arises from the complex modulus of a complex torus and the
second factor from an Enriques surface. In the second factor, we have

(3.2) Γ2,10 := Γ1,1 ⊕ Γ1,1(2)⊕ E8(−2).

Notice that the perturbative in α′ correction to the prepotential (of
order α′ 3) vanishes for this Calabi-Yau because the term is proportional to
its Euler characteristic, χ = 2(h1,1−h2,1) = 2(11−11) = 0 [27]. In addition,
the first, genus zero, non-perturbative corrections to the prepotential vanish
as well.

3.1. Moduli space volume

We will now compute the volumes of the full complex structure moduli
space and the orientifold moduli space. We can directly compute the volume
by starting with Equation (2.10), computing the local densities and other
lattice-dependent contributions, and converting it to the Weil-Petersson nor-
malisation using Equation (2.13).

Our FHSV lattice Γ2,10 is very close to the unimodular lattice 2Γ1,1 ⊕
E8(−1) and we will show that its volume differs from its unimodular counter-
part by an overall factor 2079/2 ∼ 103, by recomputing the appropriate local



774 Miranda C. N. Cheng et al.

densities and determinant factor. First, we get a contribution of (210)13/2

from the factor |det Γ2,10|(r+s+1)/2. Additionally, relative to the unimodular
case, the rescaling of the constituent sublattices will change the contribution
coming from the local factor α2(Γ

2,10)−1, but none of the other factors.
To compute local densities one should know the Jordan decomposition

of the lattice Γ2,10 over Zp, the p-adic integers; see Appendix B for the
definition of the Jordan decomposition and several examples. We can express
a so-called pr-modular lattice L as the appropriate rescaling of a unimodular
lattice N , N(pr), and we will be interested in the decomposition of a general
lattice L into pj-modular lattices Lj of ranks nj which are pj-rescalings of
unimodular lattices Nj . In equations, L =

⊕
j∈Z Lj where Lj := Nj(p

j).
With this notation, the local density of interest is given by (see [29] for
the most general definition of these quantities, and for notation; below we
already make several simplifications for our lattice of interest)

(3.3) α2(L) = 2n−1+wP2(L)E2(L)

with

w =
∑
j

jnj

⎛
⎝nj + 1

2
+
∑
k>j

nk

⎞
⎠

P2(L) =
∏
j

P2

(
rank(Nj)

2

)
with P2(n) =

n∏
i=1

(1− 2−2i)

E2(L) =
∏

j,Lj �=0

2

1 + 2−rank(Nj)/2
.

(3.4)

The Jordan decomposition for our lattice over p �= 2 is given by Γ2,10 ⊗
Zp = 6Γ1,1, so the local densities for p �= 2 coincide for those of the uni-
modular lattice of signature (2, 10) and are given in [29]. The decompo-
sition for Γ2,10 over Z2, on the other hand, is given by 5Γ1,1(2) ⊕ Γ1,1,
which is the sum of five 21-modular lattices and one unimodular lattice.
The corresponding local density is the only thing we need to compute,
and plugging everything in to the previous definitions we find w = 55,
α2(Γ

2,10) = 98563190995235635200, and therefore an overall discrepancy,
including the determinant factor, of 2079

2 from the unimodular lattice of the
same signature.
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If we plug in (a = 2, b = 1) to (2.16) and multiply by our compensatory

factor we get

(3.5) voltrvec1(Γ
2,10) =

π10

320820302880000

2079

2
∼ 3× 10−7.

The subscript indicates that this is the volume of one factor of the full vector

multiplet moduli space.

Next, we need the volume for the first factor of the vector multiplet

moduli space (3.1), which is the familiar modular fundamental domain of

the upper half-plane. The volume computed in the standard Poincaré metric

(writing τ = x+ iy) is well-known to be

(3.6)

∫
F

dx dy

y2
=

π

3
.

Applying our previous formulas, the volume of the fundamental domain with

respect to the Weil-Petersson metric is given by 1
2 vol

tr(F) = 1
2
π
6 :

(3.7)

∫
F

dx dy

4y2
=

π

12
.

Note that, as a consistency check, our normalisation gives the same volume

of the fundamental domain as that computed in [1].

Putting together the Weil-Petersson-normalised volumes for both fac-

tors, we obtain

volWP(Mcpx) =

((
1√
2

)2 π

6
×
(

1√
2

)20

voltrvec1(2, 1)

)

=
π11

3792438558720000
∼ 7.7× 10−11.

(3.8)

Notice that the axio-dilaton moduli space computed with respect to this

metric contributes an additional factor volWP(Max−dil) = π/12 as well (cf.

(3.5)):

volWP(Mr ×Maxio−dil) = volWP(Mcpx)× volWP(Max−dil)(3.9)

=
π12

45509262704640000
∼ 2.0× 10−11.(3.10)
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3.2. Orientifold counting

The orientifold procedure projects out some complex structure moduli, there-

by reducing the dimensionality of the complex structure moduli space. Con-

sequently, the volume taken over the whole moduli space may not be a good

approximation to the volume of the remaining moduli space that the fluxes

are allowed to occupy after orientifolding. Indeed, in our particular example,

we will presently see that this is the case.

We will use the orientifold action studied in [27]. We emphasize here

that we are making a particular, tractable choice of orientifold action; other

choices of orientifold action may preserve more complex structure moduli

and potentially result in surviving moduli spaces that are symmetric spaces

for O(2, n), n < 10. The involution of [27], as characterized by its action on

cohomology, is chosen to act as an overall minus sign on the E8 lattice factor

while leaving the Γ1,1 factor coming from the parent K3 surface invariant,

hence acting by an overall minus sign on the Enriques surface’s top form. It

also acts by a minus sign on the coordinate of the T 2/Z2 factor. This action

restricts the complex structure moduli space to a certain sublocus that has,

happily, already been explored in the context of studying simplifications of

the topological string on the Enriques Calabi-Yau [38, 28]. Blowing down the

8 specified cycles results in the reduced moduli space Mr of the following

local form (suppressing the axio-dilaton factor, which is untouched by the

orientifold)

(3.11)
SL(2,R)

SO(2)
×
(
SL(2,R)

SO(2)

)2

.

The first factor, which descends from the torus, is quotiented by the discrete

group SL(2,Z) as usual, while the second factor is quotiented by the discrete

group Γ(2)×Γ(2), which is deduced in [38] by a subtle analysis. This form of

the moduli space follows from noticing (as verified by detailed computations

in [38]) that the reduced moduli space has an algebraic realization as a

product of Γ(2)-symmetric elliptic curves:

(3.12) x21 = x42 + x43 + z−1/4x1x2x3.

The volume of the orientifold moduli space, being merely a product

of several quotients of the upper half-plane, is obtained easily. As described

earlier, the two factors in (3.11) on the right have a discrete symmetry group
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Γ(2), a congruence subgroup of SL(2,Z) of index 6. Therefore, the volume
of the orientifold complex structure moduli space is

(3.13) volWP(Mr) =
π

12
×
(π
2

)2

which, including another π
12 from the axio-dilaton, gives

volWP(Mr × Maxio−dil) = π4

576 ∼ 0.2: an order 1 volume after all! Recall
also that although the volume is of order 1, the index density is the Weil-
Petersson volume multiplied by a (n− + 1)!/(π)n−+1 factor, and the latter
brings the order of magnitudes down slightly, as we will now compute.

With the moduli space volumes in hand, we can now ask about their
(rough) quantitative impact on the statistical formulas reviewed in Section 1,
subject to the assumptions described therein. The maximum number of flux
quanta allowed by tadpole cancellation is determined by the Euler charac-
teristic of the Calabi-Yau fourfold X4 coming from the F-theory lift of a
specified orientifold (divided by 24). For instance, in the weakly coupled
limit and given an orientifold action like that in [27]10 we can glean some
information about χ(X4) in terms of the Hodge numbers of the threefold
X3 [13, 37]:

χ(X4) = 48 + 6(h(1,1)(X4) + h(3,1)(X4)− h(2,1)(X4))

h(1,1)(X4) = h
(1,1)
+ (X3) + 1

h(2,1)(X4) = h
(1,1)
− (X3)

h(3,1)(X4) = h
(2,1)
− (X3) + 1 + h(2,0)(S)

(3.14)

where the ± subscripts denote the eigenvalues under the orientifold action,
and S denotes the surface in X3 wrapped by D7 branes. Unfortunately,
computing its contribution in the perturbative IIB picture is quite subtle [8]
and often yields the lion’s share contribution to χ(X4).

For instance, using the orientifold action chosen in [27] we immediately
see that

h
(1,1)
− (X3) = 8, h

(1,1)
+ (X3) = 3, h

(2,1)
+ (X3) = 8, h

(2,1)
− = 3

10We remark that the action of [27], constructed at the level of cohomology,
specifies only a family of possible orientifold actions. Viewing the Enriques Calabi-
Yau at the orbifold locus, for instance, allows for a number of possible shifts in
the holomorphic coordinates of the constituent elliptic curves consistent with the
action on cohomology. The F-theory lift will depend on these choices, so we consider
a range of possible χ(X4).
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Table 1: Estimates of the number of flux vacua in the FHSV model. Here,
volRmax

(B4n+4) denotes the estimate from the (4h2,1 + 4) = 48-ball volume
factor, assuming the moduli space volume contribution is of order 1, which
has been the strategy employed in the literature so far. Ivac,vol includes the

geometric contribution (12)! volWP(Mcpx) volWP(Max−dil)
π12

Lmax volRmax(B
4n+4) Ivac,vol

101 1016 108

102 1034 1026

103 1052 1044

which gives us the lower bound χ(X4) ≥ 48 + 6(4 + 4 − 8) = 48 and hence

Lmax = χ(X4)
24 > 2. Again, since h(2,0)(S) is normally the dominant contri-

bution to χ(X4), we expect this to be a weak lower bound. Furthermore,
the continuous approximation formulas of [1] is strictly speaking not valid
when Lmax is of order one. With these points in mind, we will remain some-
what agnostic about the correct value of Lmax

11 and test several values,
Lmax ∼ 101, 102, 103, representative of contributions from ‘typical’ four-
folds.12 For convenience, we reproduce the formula of [1]

(3.15) Ivac(R,L ≤ Lmax) ∼
(2π)2n−+2

(2n− + 2)!
L2n−+2
max

∫
M

det(R+ ω · 1)
πn−+1

,

In our example n := h(2,1)(X3) = 11, we have n− = h
(2,1)
− (X3) = 3, where the

subscript again denotes the anti-invariant part under the orientifold involu-
tion. The estimates for the number of flux vacua at various Lmax, assuming
the volume factor is order 1, as well as accounting for the contribution of
volWP(M)cpx using (3.8) are recorded in Table 1. Of course, since the for-
mula is asymptotic we should take the result obtained by applying (3.15)
with a grain of salt when it is of order one.

Accounting for the orientifold action, we also re-compute the quantities
of Table 1 using the volumes of the orientifold sublocus and replacing n →
n−; see Table 2. We stress again that there may be other choices of orientifold
action such that n− ∼ n, in which case the estimates of Table 1 would be
more indicative of the volume factor corrections.

11A reasonable approximation to Lmax in this model, without constructing an
explicit F-theory lift, may be to take the fourfold to be K3 × K3, which gives
Lmax = 24; we thank Thomas Grimm for this suggestion.

12It might be interesting to consult the lists of Hodge numbers of Calabi-Yau
fourfolds represented as hypersurfaces in toric varieties. See, for example, [37, 40].
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Table 2: Estimates of the number of flux vacua in the FHSV model with
a specific choice of orientifold action. Here, volRmax

(B4n−+4) denotes the
estimate from the (4h−2,1 + 4) = 16-ball volume factor, assuming the moduli
space volume contribution is of order 1. Ivac,orient includes the geometric

contribution (4)! volWP(Mr) volWP(Max−dil)
π4 . Note that the relatively small effect

of the geometric contribution can be traced to the fact that n− = 3 in this
case, in contrast to n = 11 before the orientifold

Lmax volRmax(B
4n−+4) Ivac,orient

101 1010 108

102 1018 1016

103 1026 1024

3.3. The effect of the curvature

We now reinstate the Ricci curvature into the geometric factor in the count-
ing formula (1.7), so that we are computing the integral of an Euler density
of a connection on TS⊗L (see Appendix A for the derivation), rather than
the volume form. Slightly more explicitly, we have

1

πn+1
det(R+ ω · 1) = 1

πn+1
det

(
Rl

ij̄kdz
i ∧ dzj̄ + δlk

i

2
gij̄dz

i ∧ dzj̄
)

(3.16)

where the curvature two-form is expressed as a Hermitian (n+1)×(n+1) ma-
trix and is given in terms of the Hermitian metric gij̄ as R

l
ij̄k

= −iglm̄Rij̄km̄.
The computation in the index density is particularly simple in the case

of the FHSV orientifold. The curvature matrix decomposes into three 1× 1
matrices which we denote by R0,1,2 and each of the three upper half plane
enjoys the relation Ra = −2ωa. Explicitly, we have:

det(R+ ω · 1)
π3

=
1

π3
det

⎛
⎝R1 +

∑3
i=1 ωi 0 0

0 R2 +
∑3

i=1 ωi 0

0 0 R3 +
∑3

i=1 ωi

⎞
⎠

=
1

π3
det

⎛
⎝−ω1 + ω2 + ω3 0 0

0 ω1 − ω2 + ω3 0
0 0 ω1 + ω2 − ω3

⎞
⎠

=
−2

π3
(ω1 ∧ ω2 ∧ ω3)

(3.17)

and so the curvature contribution has modified the answer by −2.
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More generally, if (X, g) is an Hermitian symmetric space of real dimen-

sion d = 2n then, giving X a natural complex structure from a choice of

positive roots, and letting R denote the curvature 2-form of the holomorphic

tangent space and ω the Kähler form, we claim that

(3.18) det(R+ ω) =

(
1− 2

d− 1

)
ωn

To prove this note that

(3.19) Rμνλρ = κ(gμλgνρ − gμρgνλ)

with κ = 2
d−1 .

13 We can choose local coordinates so that the metric is

(3.20) ds2 = gμνdx
μ ⊗ dxν =

n∑
i=1

λi((du
i)2 + (dvi)2)

with complex coordinates

zj = uj + ivj

z̄j = uj − ivj
(3.21)

In these coordinates, the curvature 2-form is an outer product of two vectors:

(3.22) Ri
j = − iκ

2
dziλjdz̄

j̄ .

We now use the identity

(3.23) det(xδij + viwj) = xn + xn−1

(∑
i

viwi

)

which holds over an arbitrary commutative ring.

The generalization to a product of symmetric spaces is straightforward.

Now Ri
j is a block diagonal matrix. Consider for instance a produce of two

symmetric spaces. Letting κ1, κ2 be the constants for the two factors, with

13To check the normalisation we compute the Ricci tensor and refer to Proposi-

tion 3.6, ch. VIII of [33].
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Kähler forms ω1, ω2, and so forth, we have

det(R+ ω) =
[
(ω1 + ω2)

n1 − κ1(ω1 + ω2)
n1−1ω1

]
·[

(ω1 + ω2)
n2 − κ2(ω1 + ω2)

n2−1ω2

]
= ωn−2

[
ω2 − κ1ω

2
1 − κ2ω

2
2 − (κ1 + κ2 − κ1κ2)ω1ω2

](3.24)

where ω = ω1 + ω2. We conclude that for products of homogeneous spaces,
the inclusion of the two form R in the geometric factor does not produce a
significant difference from the volume.

4. Estimation of other models

In this section, we conduct a similar analysis on related models, and discuss
possible lessons one can learn for a more general class of string compactifi-
cations.

4.1. Generalities in signature (2, n)

Roughly speaking, lattices of signature (2, n) comprise a family of examples
with computable moduli space volumes that moreover are relevant in string
compactifications. We reproduce for convenience the general formula for
the Hirzebruch-Mumford volume for a lattice of signature of (2, n), i.e. the
volume of the double coset moduli space O(L)\O(2, n)/O(2) × O(n) [29,
22]:

(4.1) volHM(O(L)) =
2

g+sp
|detL|(n+2+1)/2

n+2∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)
−1

where g+sp is the number of proper spinor genera in the genus of L and
αp(L) are the local factors. We will also include, at the end, our overall
normalisation factor to put the Hirzebruch-Mumford volumes in the canoni-
cal normalisation of the Weil-Petersson metric. Fixing all the constants and
computing the local factors in the formula (4.1) requires specifying some
details of the class of lattices under consideration (e.g. Are the lattices even
and unimodular? Do they contain some factors of the standard hyperbolic
lattice Γ1,1?) In this section, we will try to study some general expectations
for how the volumes scale with n and ignore as many lattice-dependent sub-
tleties as possible. This crude approximation can be trusted provided the
only lattice-dependent contributions are order 1 factors (as in the case of
g+sp) or factors that do not scale with the rank.
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Figure 1: In the left figure, the red curve plots log(β) versus n, and the
other curves depict log(volWP(O(L))) versus n for the lattices L = II2,2+8s

(orange), T2,2+8s (green), F 2
2,3+8s (blue), F 7

2,3+8s (purple). In the right fig-
ure each volume is multiplied by an additional factor of n!/πn. This is the
analogue of the multiplicative factor h2,1!/π

h2,1 that is relevant for the index
density (cf. (1.8)).

The normalisation factor we need to convert to Weil-Petersson volumes
as above is (see Equation (2.13))

(4.2) CWP =

(
1√
2

)2n σ(2 + n)

σ(2)σ(n)

where σ(D) ≡ 2(D+1)/2
∏D−1

j=1

(
(2π)

j+1
2

Γ( j+1

2
)

)
. Recall that the first factor of 1√

2

2n

is the conversion factor to the Weil-Petersson metric worked out in Ap-

pendix C, and the second factor σ(2+n)
σ(2)σ(n) is the conversion factor derived

to go from the Hirzebruch-Mumford volume volHM to the “Lie algebraic”
volume voltr, as in [44].

Now let us examine the behavior of some volumes. If for now we
completely ignore the (important-but-lattice-dependent) factors
2
g+
sp
|detL|(n+2+1)/2

∏
p αp(L)

−1, we can look at the behavior with n of β ≡
CWP

∏n+2
k=1 π

−k/2Γ(k/2) numerically. At n = 1 we simply have β = 1
π and it

decreases until n = 17 where it reaches

(4.3) β =
24329988412181570252900390625

1048576π73
� 10−14,

after which it starts increasing dramatically. (As it goes from n = 27 to
n = 28, it crosses over from β < 1 to β > 1). See Figure 1.

Next, we turn to the behavior with n of the lattice-dependent factors:
2
g+
sp
|detL|(n+2+1)/2

∏
p αp(L)

−1. For illustration, Figure 1 displays the dif-
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ferences between β and volWP(O(L)) for some even unimodular lattices
of signature (2, 2 + 8b). Recall that the latter are the lattices of the form
L = II2,2+8b = 2Γ1,1⊕bE8(−1) (i.e. two copies of the hyperbolic lattice and b
copies of the E8 root lattice), and the volumes for these have been computed
in [29, 44]. In terms of the Bernoulli numbers Bn and the function (2n)!! ≡
2.4. . . . 2n they are given by volHM (O(II2,2+8b)) = 2−(4b+1)B2...B8b+2

(8b+2)!!
B4b+2

4b+2 .

b 0 1 2 3 4
β 0.101 1.5× 10−10 1.6× 10−14 1.6× 10−4 3.6× 1025

volWP(O(L)) 0.068 2.8× 10−13 1.1× 10−19 4.3× 10−12 3.8× 1015

We can see the qualitative similarities between the behavior with n of
β and the full volWP for this class of lattices; in fact, the scaling with n is
exacerbated by the inclusion of the local factors. To get a sense of whether
this is a generic feature, let us consider the behavior of some of the other
examples computed in [29]. See Figure 1 for plots of their volumes.

The lattices L = T2,2+8b Consider now the lattices of signature (2, 2 +
8b) that are of the form T2,2+8b ≡ Γ1,1 ⊕ Γ1,1(2)⊕ bE8(−1). Notice that one
of the hyperbolic lattices has been rescaled relative to the other. It turns out
that these volumes are those of the even unimodular examples, multiplied
by an additional factor (24b+1+1)(24b+2− 1), following logic similar to that
which we employed in Section 3:

b 0 1 2 3 4
volWP(O(L)) 0.617 5.9× 10−10 5.8× 10−14 5.8× 10−4 1.3× 1026

The lattices L = F d
2,3+8b As a final example, consider the set of lattices

of signature (2, 8b+3) of the form F d
2,3+8b = 2Γ1,1⊕bE8(−1)⊕〈−2d〉. When

b = 2, this moduli space is (almost) that of polarized K3 surfaces of degree
2d [29]. For d > 114 the answer is

(4.4) volHM(O(L)) =

(
d

2

) 8b+4

2 ∏
p|d

(1 + p−
8b+4

2 )
|B2 . . . B8b+4|
(8b+ 4)!!

.

The volumes after normalising are given for low-lying b and several values
of d below:

14The d = 1 case is identical up to an additional factor of 2.
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b 0 1 2 3 4
volWP(d = 2) 0.036 2.8× 10−11 6.6× 10−14 0.097 1.1× 1031

volWP(d = 7) 0.359 5.1× 10−8 1.8× 10−8 4.0× 106 7.0× 1040

volWP(d = 100) 93 0.43 6440 5.9× 1022 4.3× 1061

Notice that if d is large and has many prime factors, the volumes start out
fairly large, in contrast to the other examples. In general, any contribution

from the lattice-dependent factors that scales with the rank (e.g. the factor

|detL|(3+n)/2 for lattices that are not unimodular) can have a pronounced

quantitative effect.

From the above numbers, plotted in Figure 1, we can see the qualitative
similarities between the behaviour with n of β and the full volWP for these

lattices. This provides some evidence that the behaviours of β with n is in-

dicative of how the volumes depend on the lattice ranks. Given the decrease

in β in the range n < n∗, below some minimum n∗, it is tempting to con-
clude that moduli space volumes (at least for lattices of this signature) are

tiny for the ranks of relevance to string theory. More precisely, the volumes

reach their minimum value when the ranks of the lattices approximately

coincide with known ranks of complex structure moduli spaces in threefold

compactifications with non-generic holonomy, based on quotients of K3×T 2

or T 6. In particular, as mentioned above, lattices of these signatures govern

the moduli space of certain polarized K3 surfaces.

In other words, in the case when the Calabi-Yau moduli space is of

this form (of symmetric spaces), our computation suggests an increase of
the importance of the damping effect coming from the geometric factor

as the relevant Hodge number (governing the dimension of the flux space)

increases. Extrapolating this effect to more general Calabi-Yaus, it suggests

that the previously ignored geometric factor could be a cause for caution

when drawing the conclusion that the landscape is dominated by Calabi-
Yaus with extremely large Hodge numbers. See, for instance, [47]. This said,

our analysis does not provide strong evidence that the possible damping

effect of the geometric factor is generically more dominant than the growth

effect from the flux counting factor as the Hodge number increases.

4.2. Self-mirror Calabi-Yaus

The special form of the FHSV moduli space makes it an ideal intermedi-
ate case for studying moduli space geometry between the compactifications

preserving N = 4 supersymmetry and compactifications on more generic
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(simply connected) Calabi-Yaus with SU(3) holonomy. Recall that the self-
mirror property of the Enriques Calabi-Yau makes it possible to perform
perturbatively exact computation on the moduli space geometry.15 In the
spirit of exploring simpler N = 2 compactifications, it is therefore amus-
ing to note the existence of other self-mirror Calabi-Yaus. This property
implies that, just as for the FHSV model, their moduli space geometries
are protected from certain quantum corrections and could therefore furnish
examples of Shimura varieties which are amenable to exact volume compu-
tations.

Two interesting and natural classes of self-mirror Calabi-Yaus have been
recently studied in [31, 32] following the work of [45]. These are the 14
Calabi-Yaus16 (8 of the so-called type K [31, 32] and 6 of type A [45]) with
infinite fundamental group and so enjoy holonomy further reduced from
SU(3). The former are realized as free quotients of K3×T 2 while the latter
are realized as quotients of abelian threefolds. Of course, the FHSV model
is the most well-studied representative of the type K varieties. Focusing on
the three-folds of type K, we expect that the type K moduli spaces in most
cases will be of the form

(4.5) H/ΓE ×
(
O(Γ2,n)\O(2, n)/(O(2)×O(n))

)
In the above, ΓE denotes an appropriate congruence subgroup of SL(2,Z)
depending on the quotient group. If we denote the Calabi-Yau by (S×E)/G
where S is a K3 surface and E an elliptic curve, we have n = rankH2(S,Z)G

and Γ2,n � H2(S,Z)G, the G-invariant part of the integral K3 cohomology
lattice. See Section 3.4 of [31] for details.

The upshot is that, given the detailed description of these manifolds
given in [31, 32], one can re-do the volume computation of the previous sec-
tion by computing the appropriate local factors associated to the (even but
not unimodular) lattices H2(S,Z)G; we expect such a computation would
yield numerics comparable to those of the previous subsection.
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Appendix A. The index density and the Weil-Petersson
metric

In this appendix, we will briefly review the derivation of the index den-
sity in [1] following the method of [13] to emphasize the appearance of the
(canonically normalised) Weil-Petersson metric in the final formula. In Ap-
pendix C, we will subsequently compare the canonical normalisations of the
Weil-Petersson and Zamolodchikov metrics to fix the numerical constants
appearing in the volume formula. We begin by recalling the Weil-Petersson
metric for a Calabi-Yau n-fold X. Denote by H → M the first Hodge bundle
over the Calabi-Yau complex structure moduli space. It has fiber Hn(X) of
complex dimension 2(hn−1,1+1). The n-form Ω is a local, nonzero holomor-
phic section of the projectivization of H. The Kähler potential is

(A.1) K = − log

(
i

∫
M

Ω ∧ Ω̄

)

and the corresponding Hermitian metric is given by

(A.2) GWP,AB̄ = − ∂2

∂A∂B̄
log

(
i

∫
M

Ω ∧ Ω̄

)
.

To account for the overall scaling ambiguity of Ω, we introduce a line
bundle L with metric eK and first Chern class17

(A.3)
ωWP

π
:= c1(H) =

i

2π
∂∂̄K.

17Here, we follow the conventions of [1]. It is also common to include the factor
of 1

π directly into the normalisation of ωWP, as in [42]. We will leave this factor
explicit. In particular, it will reemerge in the index density as ∼ det(ω/π).
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One can thus view Ω as a local, nonzero holomorphic section of H⊗L.
The index density arises from a parallel with the following simple ex-

pression for the number of zeros of a function f(x) in one real variable x:

(A.4) # {x|f(x) = 0} =

∫
dx δ(f(x))|f ′(x)|.

Analogously, the number of flux vacua in the complex structure moduli space

of an Calabi-Yau fourfold Z is given by

(A.5) Nvac =
∑
N

∫
M

d2hz δ2h(DWN )|detD2WN |,

where h := dimC(M), WN is the flux superpotential determined by N , and

the sum is taken over fluxes satisfying (1.1). The index density is then given

by the following approximate quantity:

(A.6) Ivac =

∫
dbN

∫
M

d2hz δ2h(DWN ) detD2WN ,

which is a good approximation in the large flux limit (see [14] for a discussion

about subleading corrections).

In the F-theory context, we have DμWN,μ = N IΠIμ where the peri-

ods in a fixed homology basis are, as usual, ΠI =
∫
ΣI ∧ Ω4 and ΠIμ :=

eK/2(∂μ+∂μK)ΠI(z) = eK/2DμΠI(z). Note that hereW denotes the rescaled

superpotential. See (2.1)-(2.2) of [14].

To evaluate the corresponding index density it is useful to define, as

a computational tool, an (a priori) auxiliary metric on the moduli space

Gμν := −PIμQ
IJPJν with QIJ = Q−1

IJ the inverse of the intersection matrix

on H4(Z,Z). Here μ, ν are to be understood as indices for real coordinates

μ, ν = 1 . . . 2h. We also have, following the prescription of [13], PIμ = ΠIμ for

μ = 1, . . . , h and PIμ = Π̄I(μ−h) for μ = h+1 . . . 2h. In complex coordinates

one can compute, using Griffiths transversality, that the metric components

are GAB = 0 = GĀB̄ and GAB̄ = −eK
∫
DAΩ ∧ DB̄Ω̄ = ∂A∂B̄K and G

is Hermitian. Note that this is precisely the Weil-Petersson metric (A.2),

namely G = G.

A covariant derivative ∇ with respect to this auxiliary metric must sat-

isfy the condition

(A.7) PIμQ
IJ∇νPJρ = 0.
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We can rewrite this equation using the definition of PIμ and passing to
complex coordinates as

(A.8) eK/2DAΠI(z)Q
IJ∇μ

(
eK/2DB̄Π̄I(z)

)
= 0.

We stress that such a covariant connection is a connection on TM ⊗ L,
where L is the line bundle on M of which the supergravity potential is a
section: in our conventions, c1(L) = [ω

WP

π ], the curvature form of L, and so
the Weil-Petersson volume may be expressed as18

(A.9) volWP(M) =
(ωWP)h

h!
=

πh

h!
c1(L)h.

Expanding Equation (A.7) and applying Griffiths transversality, following
[13], shows that the covariant connection on TM⊗L is exactly the standard
Levi-Civita Kähler connections, i.e. the auxiliary metric recovers the Weil-
Petersson metric on moduli space.

One can then follow the derivation in [13], by constructing the generating
function

Z(t) =

∫
d4h+4N e−t/2NIQIJNJ

∫
M

d2hx δ2h(N IPIμ) det(∇μ(N
JPJν))μν

(A.10)

and expressing the index density as Ivac(Qc) = 1
2πi

∫
dt
t e

−tQcZ(t) with the
contour passing the pole t = 0 on the left; recall −1

2N
IQIJN

J = Qc. We
sum over the repeated I, J indices, with I, J = 1, . . . b = 4h+4. Notice that
the integral over fluxes in Z(t) is now taken over the full (4h+4)-dimensional
Euclidean space, with the Laplace transform enforcing the bound on fluxes.
Rewriting the delta function and determinant factors as integrals over extra
Grassmann variables leads to the integral over continuous fluxes to become
a Gaussian integral. The series of simplifications outlined in [13] then results
in the final expression

(A.11) Ivac =
1√

detQIJ

(2πQc)
2h+2

(2h+ 2)!

∫
M

e(∇)

18In contrast to [1], we choose conventions to work with dimensionless quantities
from the outset. Therefore, the factors of −1/M2

pl required in [1] to render quantities
like c1(L) dimensionless do not appear in our formulas.
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where e(∇) = Pf
(
Rμν/2π

)
= 1

πh det(R + ω · 1). The first equality is in

terms of the Pfaffian of the curvature form on M in an orthonormal frame

(represented by underlined indices) with respect to Gμν . Its appearance fol-

lows from identifying the Grassmann integral representation of the Pfaffian

directly in the aforementioned manipulations after performing the
∫
d4h+4N

integral.

Crucially, the auxiliary metric appearing in the derivation coincides pre-

cisely with the physical metric on moduli space, including the proper nor-

malisation for the Weil-Petersson metric: L, with metric eK, captures the

scaling ambiguity of the top-degree form Ω, and its first Chern class is un-

ambiguously defined19 and gives the metric associated to the Kähler con-

nection. If we drop the curvature term in the index density, then we find

(ωWP)h/πh = h!
πh volWP (M) as claimed.

It is frequently stated that the Weil-Petersson and Zamolodchikov met-

rics coincide. We claim that in fact, these metrics differ in their canonical

(constant) normalisations. In Appendix C, we quantify this discrepancy and

thereby fix the scale of the metric.

Appendix B. Some number theoretic objects

In this appendix, we elaborate on the definition and computation of the

remaining ingredients in the lattice volume formula.

First, we recapitulate the definition of proper spinor genus in [36], which

is a definition particularly suitable for computations [22]. The reader who

wants to learn more about these quantities is also advised to consult [10, 7]

for more conceptual definitions and further references.

Recall that the spinor norm θ : O(V ) → F×/(F×)2 where V is a

quadratic space over F . The map is explicitly given by θ(σ) :=

Q(v1)Q(v2) . . . Q(vn) where σ = τv1
τv2

. . . τvn
∈ O(V ) is written as a product

of elementary reflections τvi
with respect to basis elements vi ∈ V , and Q

denotes the quadratic form.

The genus gen(L) of a lattice L on a quadratic space V is the set of

lattices M on V such that for some σp ∈ O(Vp)

Mp = σp(Lp) for every prime p.

19Recall that the first Chern class map produces a certain, fixed constant multiple
of the trace of the curvature operator associated to a chosen connection on L, via
Chern-Weil theory.
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A genus is called proper if one replaces O(Vp) with O+(Vp), the subgroup
of elements that preserve the orientation of all positive-definite planes. The
spinor genus gsp(L) of L is the set of lattices M such that for some η ∈ O(V )
and some σp ∈ O′(Vp) we have

η(M)p = σp(Lp) for every prime p.

The group O′(Vp) is the kernel of the spinor norm from O+(Vp) to
(Q×

p )/(Q
×
p )

2. Finally, the proper spinor genus uses the same definition except
with η ∈ O+(V ).

Cor 6.3.1 of [36] establishes that g+sp(L), which appears in the volume
formula, is always a power of 2. Cor 6.3.2 of [36] further establishes how the
numerical value can be obtained by a finite computation. For our purposes,
we note that for a lattice L of rank (2, n) containing at least one copy of
the hyperbolic plane as a direct summand, one can prove that 1

g+
sp

= 1 using

results of [39] (see [29]).
The definition of a local density αp(S) of a quadratic form over a number

field F given by a matrix S ∈ Matn×n(F ) is

αp(S) :=

1

2
lim
r→∞

p−rn(n−1)/2
∣∣{X ∈ Matn×n(Zp) mod pr;XtSX ≡ S mod pr

}∣∣.
As before, Zp denotes the p-adic integers. In general, such representation
densities serve to assign a volume to sets of isometric embeddings
Isom(L1, L2) for lattices over a ring R. To compute these local densities,
one needs to know the Jordan decomposition of L over Zp. Let us elaborate
on this.

We call a lattice L over a ring R a-modular, where a is an invertible
fractional ideal of R, if HomR(L,R) = a−1L or, equivalently, HomR(L, a) =
L. Theorem 4.3.5 in [22] tells us that every lattice L over a p-adic ring R
may be written as L = ⊕iLi where Li are ai-modular lattices and each
ai is distinct. This is referred to as a Jordan decomposition of L. Jordan
decompositions are in general not unique, and one must in general have a
method to determine all Jordan decompositions of a given lattice to compute
the local densities. However, let us say we have two Jordan decompositions
of a lattice over a p-adic ring R: L = ⊕r1

i=1Li = ⊕r2
j=1Kj , such that Li

are ai-modular and Kj are bj-modular. Let us also suppose that ai1 |ai2 for
i1 < i2 and bj1 |bj2 for j1 < j2. Then there is a uniqueness result for Jordan
decompositions (see Theorem 4.3.14 of [22] for the precise statement) that
in particular tells us r1 = r2, ai = bi, rk(Li) = rk(Ki) and Li � Ki if p �= 2.
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The algorithm for computing local densities goes as follows [22, 36].

1. Any Jordan decomposition of a lattice expresses the lattice in terms of

a-modular summands. One can relate the local density of an a-modular

lattice to that of a unimodular lattice.

2. One can relate the local density of a unimodular lattice to the local

densities of certain lattices that have rank at most 4.

3. Computing the local densities for the low-rank lattices in the previous

item may be done explicitly.

4. Finally, the computation of local densities for an arbitrary lattice re-

quires enumeration of all Jordan decompositions of the lattice and

the computation of the local factors for the corresponding a-modular

pieces as above. In this work, we work with simple lattices with simple,

unique Jordan decompositions and refer to [22] for discussions of the

more general case.

Many local densities of interest in this paper have already been computed

in [29] and [44] to which we refer for the precise formulas; we only modify

their results slightly using the recipe of [22] when needed.

For example, for every prime p, the even unimodular lattices of signature

(2, 2+8b) over Zp are given by direct sums of hyperbolic planes. For another

example, consider the lattice T2,2+8b = U⊕U(2)⊕bE8. When p = 2, we have

T2,2+8b ⊗ Z2 = (4b + 1)Γ1,1 ⊕ Γ1,1(2) and for p �= 2 we have T2,2+8b ⊗ Z2 =

(4b+ 2)Γ1,1 [29].

Appendix C. Relation of the Weil-Petersson and
Zamolodchikov metrics

For the calculation in the main text it is crucial that we carefully compare

the normalisation between the Hirzebruch–Mumford metric and the Weil–

Petersson metric that leads to the pre-factor in (2.13). To do so, we compare

the canonical normalisations of the Weil–Petersson and Zamalodchikov met-

rics, where the latter is determined using the arguments of [44].

C.1. Zamolodchikov metric vs Weil–Petersson metric

We revisit the original computation of [6], keeping careful track of overall

normalisations. Although we focus on the complex structure moduli space,

the derivation is completely analogous for the complexified Kähler moduli.
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First consider the WP metric for the moduli space of complex structures
of the Calabi-Yau three-fold M . We use l,m to denote indices for real coor-
dinates X l. Using the normalisation of [6] the natural metric on the space
of metrics on M is

(C.1)
1

V

∫
M

√
GGll′Gmm′

δGlmδGl′m′d6x.

Here V is the volume of M . If we choose a complex structure we let μ, ν
denote indices of the complex coordinates. We also denote by Gμν̄ the Her-
mitian metric such that

(C.2) ds2 =
1

2
Gμν̄(dX

μ ⊗ dX ν̄ + dX ν̄ ⊗ dXμ).

We denote the inverse to Gμν̄ as

Gμν̄G
μρ̄ = δρ̄ν̄

Gμν̄G
ρν̄ = δρμ

(C.3)

Now, the tangent space to the complex structure moduli space can be asso-
ciated with first order deformations of the metric of the form

(C.4) ds2 → ds2 +
(
hμν(x)dX

μ ⊗ dXν + h̄μ̄ν̄(x)dX
μ̄ ⊗ dX ν̄

)
+O(h2)

where h̄μ̄ν̄(x) = (hμν(x))
∗, and the associated Beltrami differential Gμρ̄h̄ρ̄σ̄

is harmonic. Evaluating (C.1) on such deformations gives the metric:

GWP(h
1, h̄2) =

4

V

∫
M

d6x
√

G(x)h1μν(x)h̄
2
ρ̄σ̄(x)G

νσ̄(x)Gμρ̄(x),(C.5)

and the other components vanish because it is of type (1, 1) on the complex
structure moduli space. According to [6] (C.1) is precisely the normalisation
that gives the canonically normalised Weil-Peterson form which explains the
subscript WP.

Now we turn to the Zamolodchikov metric. As in [44], we denote a CFT
C as a point in the moduli space M of CFTs and study the map from the
space V 1,1 of exactly marginal operators of C to the tangent space to M
at C: Ψ : V 1,1 → TCM. If our CFT’s are defined by an action (as is the
case here) then a path in M is determined by a path of actions S[t]. If20

20We denote the real worldsheet coordinates by σ1, σ2 and the corresponding
derivatives by ∂1,2, and also define the complex worldsheet coordinates z := σ1 +
iσ2, z̄ := σ1−iσ2 with ∂ = 1

2 (∂1−i∂2), etc. In particular d2z := i
2dz∧dz̄ = dσ1∧dσ2.
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d
dt |t=0S[t] =

∫
Od2z then Ψ(O) = ∂

∂t |t=0 is the tangent vector to the path in
moduli space. If a tangent vector v = Ψ(O) to M corresponds to the exactly
marginal operator O then we define the Zamolodchikov metric by:

(C.6) 〈O(z1)O(z2)〉 :=
gZ(v, v)

|z1 − z2|4

where the LHS is the correlation function on the complex plane C with the
unique SL(2,C) invariant vacuum at z = 0,∞.

Now specialize to a supersymmetric non-linear sigma model on a Calabi-
Yau threefold M . For simplicity, we consider background with vanishing
B-field. Then the bosonic part of the action reads:

S0 =
1

2�2

∫
Glm(X)(∂1X

l∂1X
m + ∂2X

l∂2X
m) dσ1 ∧ dσ2

=
1

2�2

∫
Gμν̄(X)(∂1X

μ∂1X
ν̄ + ∂2X

μ∂2X
ν̄) dσ1 ∧ dσ2

=
1

�2

∫
Gμν̄(X)(∂Xμ∂̄X ν̄ + ∂̄Xμ∂X ν̄) dσ1 ∧ dσ2

(C.7)

where �2 ≡ 2πα′. Because we are considering the metric to leading order
in α′ it suffices to consider only the bosonic part of the action. The reason
for this is that one can check that the contributions of the fermionic terms
to the exactly marginal operator lead to terms in the expression for the
Zamolodchikov metric that are all higher order in α′. One way to prove this
is to show that all the fermionic contributions involve integrals over M with
extra insertions of curvature tensors and/or covariant derivatives acting on
h1 and/or h̄2. The fermionic terms certainly would need to be taken into
account if one computed the α′ corrections to the Weil-Peterson metric.

Metric deformations of the form (C.4) will preserve the CY property and
the corresponding deformation of the action is associated with the exactly
marginal operator:

O(h) :=
1

2�2
hμν(X(σ))(∂1X

μ∂1X
ν + ∂2X

μ∂2X
ν) + · · ·

=
2

�2
hμν(X(σ))∂Xμ∂̄Xν + · · ·

(C.8)

with a similar formula for O(h̄). Here + · · · indicates the fermionic contri-
butions.

We can now compare the Zamolodchikov metric (C.6) with the Weil-
Peterson metric, at least in the leading order in the α′ → 0 limit. Note that
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this is sufficient for us since the metric for the Enriques Calabi-Yau does not
receive α′-corrections.

We write

(C.9) Xμ(σ) = xμ + X̃μ(σ); X μ̄(σ) = xμ̄ + X̃ μ̄(σ),

and subsequently

Gμν̄(X) = Gμν̄(x) +O(X̃).

The bosonic part of the action in this limit for the sigma model with van-
ishing B-field is

(C.10) S̃0 = Gμν̄(x)
1

2�2

∫
(∂1X̃

μ∂1X̃
ν̄ + ∂2X̃

μ∂2X̃
ν̄) dσ1 ∧ dσ2.

In this free field limit, we have21

〈X̃μ(σ1, σ2)X̃
ν̄(σ′

1, σ
′
2)〉S̃0

=

∫
[DX̃]X̃μ(σ1, σ2)X̃

ν̄(σ′
1, σ

′
2)e

−S̃0∫
[DX̃]e−S̃0

= −�2

π
Gμν̄(x) log((σ1−σ′

1)
2 + (σ2−σ′

2)
2) +O(α′)

= −�2

π
Gμν̄(x) log |z − z′|2 +O(α′).

(C.11)

where we recall (C.3). Moreover

〈X̃μ(σ1, σ2)X̃
ν(σ′

1, σ
′
2)〉S̃0

= 〈X̃ μ̄(σ1, σ2)X̃
ν̄(σ′

1, σ
′
2)〉S̃0

= O(α′).

Hence

〈∂X̃μ(σ1, σ2)∂X̃
ν̄(σ′

1, σ
′
2)〉S̃0

= −�2

π
Gμν̄(x)

1

(z − z′)2
+O(α′)

〈∂̄X̃μ(σ1, σ2)∂̄X̃
ν̄(σ′

1, σ
′
2)〉S̃0

= −�2

π
Gμν̄(x)

1

(z̄ − z̄′)2
+O(α′)

(C.12)

21The essential fact is that, on the Euclidean plane (∂2
x+∂2

y) log |z|2 = 4πδ(2)(0).
Adding source terms to the action

∫
(jμX

μ + jμ̄X
μ̄)dσ1 ∧ dσ2 we cancel them by

shifting

Xμ(1) → Xμ(1) +Gμρ̄

∫
�2

2π
log |z1 − z2|2jρ̄(2)d2σ.
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and

〈∂X̃μ(σ1, σ2)∂̄X̃
ν̄(σ′

1, σ
′
2)〉S̃0

= 〈∂̄X̃μ(σ1, σ2)∂X̃
ν̄(σ′

1, σ
′
2)〉S̃0

= O(α′).

(C.13)

From this, we conclude

〈O(h1)(σ)O(h2)(σ′)〉 = 〈O(h̄1)(σ)O(h̄2)(σ′)〉 = O(α′).

Using again the expansion and writing

(C.14)

∫
[DX].... =

∫
d6x

√
G(x)

∫
[DX̃]....

(cf. (17) of [6]), we obtain

〈O(h1)(z1, z̄1)O(h̄2)(z2, z̄2)〉 :=
∫
[DX]O(h1)(z1, z̄1)O(h̄2)(z2, z̄2)e

−S∫
[DX]e−S

=
1

V

∫
M
d6x

√
G(x)

(
2

�2

)2

h1μν(x)h̄
2
ρ̄σ̄(x)〈∂X̃μ∂̄X̃ν(z1, z̄1)∂̄X̃

ρ̄∂X̃ σ̄(z2, z̄2)〉S̃0

=
4

π2

1

|z1 − z2|4
1

V

∫
M

d6x
√

G(x)Gμρ̄(x)Gνσ̄(x)h1μν(x)h̄
2
ρ̄σ̄(x)

(C.15)

Using the definition (C.6) and comparing with (C.5) we conclude that
the Zamolodchikov metric in the leading order of α′ is simply given by

(C.16) ds2Z =
1

π2
ds2WP.

C.2. Consistency check for square tori

The Zamolodchikov metric for a periodic scalar of radius R was computed
in [44] to be 1

π2 (
dR
R )2 and the metric for a 2d-dimensional square torus was

similarly given to be 1
π2

∑2d
i=1(

dRi

Ri
)2. As a test of our proposed normalisation,

we will consider the moduli space of a complex abelian variety and consider
the pullback of the metric to the sublocus of products of square tori with
zero B-field. The Kähler deformations of the metric are [6]

(C.17) GAB̄δw
AδwB̄ =

1

V

∫
M

d6z
√
GGμτ̄Gρν̄ (δGμν̄δGρτ̄ + δBμν̄δBτ̄ρ)
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and one may follow the arguments of the previous subsection identically to
obtain the same relative normalisation between the metric on the space of
complexified Kähler moduli and the Zamolodchikov metric:

(C.18) ds2Z =
1

π2
ds2K

so that for a threefold given by a square abelian variety we expect to obtain

(C.19) ds2K =

6∑
i=1

(
dRi

Ri

)2

.

The components of the canonically normalised Kähler metric are defined for
threefolds as [6]

(C.20) GAB̄ = − ∂2

∂wA∂wB̄
log

(∫
M

J ∧ J ∧ J

)
.

We restrict our manifold T 6 to be the product T 2 × T 2 × T 2 and plug
the factorised Kähler form into (C.20). Restricting to the locus of square
tori with zero B-field, each T 2 factor has Kähler modulus T = T1 + iT2 =
iR1R2, where T1 = 0 and T2 = R1R2 is the volume of T 2. Plugging this
form into the result and labeling the moduli/radii as Ri immediately gives
Equation (C.19).
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