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We present basic constructions and properties in arithmetic Chern-
Simons theory with finite gauge group along the line of topolog-
ical quantum field theory. For a finite set S of finite primes of a
number field k, we construct arithmetic analogues of the Chern-
Simons 1-cocycle, the prequantization bundle for a surface and the
Chern-Simons functional for a 3-manifold. We then construct arith-
metic analogues for k and S of the quantum Hilbert space (space
of conformal blocks) and the Dijkgraaf-Witten partition function
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Simons invariants and arithmetic Dijkgraaf-Witten partition func-
tions.
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1. Introduction

In [14] Minhyong Kim initiated to study arithmetic Chern-Simons theory
for number rings, which is based on the ideas of Dijkgraaf-Witten theory for
3-manifolds ([9]) and the analogies between 3-manifolds and number rings,
knots and primes in arithmetic topology ([22]). We note that Dijkgraaf-
Witten theory may be seen as a 3-dimensional Chern-Simons gauge theory
with finite gauge group (cf. [11], [12], [28], [31] etc). Among other things, Kim
constructed an arithmetic analog of the Chern-Simons functional, which is
defined on a space of Galois representations over a totally imaginary number
field. In the subsequent paper [8] Kim and his collaborators showed a de-
composition formula for arithmetic Chern-Simons invariants and applied it
to concrete computations for some examples. Later, Kim’s construction was
extended over arbitrary number field which may have real primes ([13], [16]).
Computations of arithmetic Chern-Simons invariants have also been carried
out for some examples, by employing number-theoretic considerations in [1],
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[6], [7], [13] and [16]. In [7], the arithmetic Chern-Simons correlation func-
tions for finite cyclic gauge groups were computed in terms of arithmetic
linking numbers. It should be noted that Kim also considered arithmetic
Chern-Simons functionals for the case where the gauge groups are p-adic
Lie groups ([14, Section 3]). By arithmetic Dijkgraaf-Witten theory in the
title, we mean arithmetic Chern-Simons theory with finite gauge group in
the sense of Kim.

The purpose of this paper is to add some basic constructions and prop-
erties to Kim’s theory and lay a foundation for arithmetic Dijkgraaf-Witten
theory along the line of topological quantum field theory, TQFT for short,
in the sense of Atiyah ([2]). TQFT is a framework to produce topological
invariants for manifolds. For example, the Jones polynomials of knots can
be obtained in the context of (2+1)-dimensional Chern-Simons TQFT with
compact connected gauge group (cf. [3], [15], [30]). For the TQFT struc-
ture of Dijkgraaf-Witten theory, we consult [9], [11], [12], [28], [31]. In this
paper, following Gomi’s treatment [12] and Kim’s original ideas [14], we
construct an arithmetic analogue of Dijkgraaf-Witten TQFT in a certain
special situation, namely, we construct arithmetic analogues, for a finite set
S of finite primes of a number field k, of the prequantization bundles, the
Chern-Simons 1-cocycle, the Chern-Simons functional, the quantum Hilbert
space (space of conformal blocks) and the Dijkgraaf-Witten partition func-
tion. Arithmetic Dijkgraaf-Witten invariants are new arithmetic invariants
for a number field, which may be seen as variants of (non-abelian) Gaussian
sums.

We fix a finite group G and a 3-cocycle c ∈ Z3(G,R/Z). For an oriented
compact manifold X with a fixed triangulation, let FX be the space of
gauge fields associated to G and let GX be the gauge group Map(X,G)
acting on FX . Note that FX and GX are finite sets and that the quotient
spaceMX := FX/GX is identified with Hom(π1(X), G)/G ifX is connected,
where Hom(π1(X), G)/G is the quotient of the set of homomorphisms from
the fundamental group π1(X) of X to G by the conjugate action of G.

As for the classical theory in the sense of physics, we construct, using
the 3-cocycle c, the following correspondences
(1.1)

oriented closed surface Σ � λΣ ∈ Z1(GΣ,Map(FΣ,R/Z)),
oriented compact 3-manifold M � CSM ∈ C0(GM ,Map(FM ,R/Z)),

which satisfy

(1.2) dCSM = res∗λ∂M ,
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where res : FM (resp. GM ) → F∂M (resp. G∂M ) is the restriction map and
d : C0(GM ,Map(FM ,R/Z) → C1(GM ,Map(FM ,R/Z)) is the coboundary
map of group cochains. The key ingredient to construct λΣ and CSM is
the transgression homomorphism Ci(G,R/Z) → Ci−d(GX ,Map(FX ,R/Z))
with d = dimX and, in fact, λΣ and CSM are given by the images of c
for i = 3, X = Σ and M , respectively ([12]). Then we can construct a
GΣ-equivariant principal R/Z-bundle LΣ and the associated complex line
bundle LΣ over FΣ, using λΣ, and hence the complex line bundle LΣ over
MX . In fact, LΣ is the product bundle FΣ × R/Z on which GΣ acts by
(ρΣ,m).g = (ρΣ.g,m + λΣ(g, ρΣ)) for ρΣ ∈ FΣ,m ∈ R/Z and g ∈ GΣ. We
call λΣ the Chern-Simons 1-cocycle. The line bundle LΣ (or LΣ) is called
the prequantization complex line bundle for a surface Σ. The 0-chain CSM is
called the Chern-Simons functional for a 3-manifold M . We see that CSM

is a GM -equivariant section of res∗LΣ over FM .
As for the quantum theory, the formalism of (2+1)-dimensional TQFT is

given by the following correspondences (functor from the cobordism category
of surfaces to the category of complex vector spaces)
(1.3)

oriented closed surface Σ � quantum Hilbert space HΣ,
oriented compact 3-manifold M � partition function ZM ∈ H∂M ,

which satisfy several axioms (cf. [2]). Here we notice the following two ax-
ioms:
(1.4) functoriality: An orientation preserving homeomorphism f : Σ

≈→ Σ′

induces an isomorphism HΣ
∼→ HΣ′ of Hilbert quantum spaces. Moreover,

if f extends to an orientation preserving homeomorphism M
≈→ M ′, with

∂M = Σ, ∂M ′ = Σ′, then ZM is sent to ZM ′ under the induced isomorphism
H∂M

∼→ H∂M ′ .
(1.5) multiplicativity and involutority: For disjoint surfaces Σ1,Σ2 and the
surface Σ∗ = Σ with the opposite orientation, we require

HΣ1�Σ2
= HΣ1

⊗HΣ2
, HΣ∗ = (HΣ)

∗,

where (HΣ)
∗ is the dual space of HΣ. Moreover, if ∂M1 = Σ1 � Σ2, ∂M2 =

Σ∗
2 � Σ3 and M is the 3-manifold obtained by gluing M1 and M2 along Σ2,

then we require

< ZM1
, ZM2

>= ZM ,

where < ·, · >: HΣ1�Σ2
× HΣ∗

2�Σ3
→ HΣ1�Σ3

is the natural gluing pairing
of quantum Hilbert spaces. This multiplicative property is indicative of the
“quantum” feature of the theory (cf. [2]).
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The construction of the Hilbert space HΣ is phrased as the geomet-
ric quantization. We note that HΣ is known to be isomorphic to the space
of conformal blocks for the surface Σ when the gauge group is a compact
connected group (cf. [15]). Elements of HΣ are called (non-abelian) theta
functions (cf. [4]). For Dijkgraaf-Witten theory, HΣ is constructed, in an
analogous manner, as the space of GΣ-equivariant sections of the prequanti-
zation line bundle LΣ over FΣ, in other words, the space of sections of LΣ

over MΣ:
(1.6)

HΣ = {ϑ : FΣ → C |ϑ(�Σ.g) = e2π
√
−1λΣ(g)(ϑ)ϑ(�Σ) ∀g ∈ GΣ, �Σ ∈ FΣ}

= Γ(MΣ, LΣ).

In quantum field theories, partition functions are given as path integrals.
In Dijkgraaf-Witten theory, the Dijkgraaf-Witten partition function ZM ∈
H∂M is defined by the following finite sum fixing the boundary condition:

(1.7) ZM (�∂M ) =
1

#G

∑
�∈FM

res(�)=�∂M

e2π
√
−1CSM (�) (�∂M ∈ F∂M ).

The value ZM (�∂M ) is called the Dijkgraaf-Witten invariant of �∂M ∈ F∂M .
We note that when [c] is trivial and S is empty, then FΣ = {∗} and the
Dijkgraaf-Witten invariant ZM (∗), denoted by Z(M), coincides with the
(averaged) number of homomorphism from π1(M) to G:

(1.8) Z(M) =
#Hom(π1(M), G)

#G
,

which is the classical invariant for the connected 3-manifold M .
Now let us turn to the arithmetic. First, let us recall the basic analogies

in arithmetic topology which bridges 3-dimensional topology and number
theory ([22]. See also [19], [24]). Let k a number field of finite degree over
the rationals Q. Let Ok be the ring of integers of k and set Xk := Spec(Ok).
Let X∞

k denote the set of infinite primes of k and set Xk := Xk � X∞
k .

We see Xk, X
∞
k and Xk as analogues of a non-compact 3-manifold M , the

set of ends and the end-compactification M , respectively. A maximal ideal
p of Ok is identified with the residue field Spec(Ok/p) = K(Ẑ, 1) (Ẑ being
the profinite completion of Z), which is seen as an analogue of the circle
S1 = K(Z, 1). We see the mod p reduction map Spec(Fp) ↪→ Xk as an
analogue of a knot, an embedding S1 ↪→ M . Let Op be the ring of p-adic
integers and let kp be the p-adic field. We denote Spec(Op) and Spec(kp)
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by Vp and ∂Vp, respectively. We see Vp and ∂Vp as analogue of a tubular
neighborhood of a knot and its boundary torus, respectively. So we see the
étale fundamental group Πp of Spec(kp), which is the absolute Galois group
Gal(kp/kp) (kp being an algebraic closure of kp), as an analogue of the
peripheral group of a knot. (To be precise, the tame quotient of Πp may be
seen as a closer analogue of the peripheral group. (cf. [22, Chapter 3])

Let S = {p1, . . . , pr} be a finite set of maximal ideals of Ok. Let XS :=
Xk\S. We see S andXS as an analogue of a link in a 3-manifold and the link
complement, respectively. We may also see XS as an analogue of a compact
3-manifold with boundary (union of tori), where ∂VS := Spec(kp1

) � · · · �
Spec(kpr

) plays an analogous role of the boundary tori, “∂XS = ∂VS”. The
modified étale fundamental group ΠS of XS , which was introduced in [13,
Section 2.1] by taking real primes into account, is the Galois group of the
maximal subextension kS of k which is unramified at any (finite and infinite)
prime outside S, as an analogue of the link group.

We list herewith some analogies which will be used in this paper.

oriented, connected, closed compactified spectrum of

3-manifold M number ring Xk = Spec(Ok)

knot prime

K : S1 ↪→ M {p} = Spec(Ok/p) ↪→ Xk

link finite set of maximal ideals
L = K1 � · · · � Kr S = {p1, . . . , pr}

tubular n.b.d of a knot p-adic integer ring
VK Vp = Spec(Op)

boundary torus p-adic field
∂VK ∂Vp = Spec(kp)

peripheral group local absolute Galois group

π1(∂VK) Πp = Gal(kp/kp)

tubular n.b.d of a link union of pi-adic integer rings
VL = VK1

� · · · � VKr
VS = Spec(Op1

) � · · · � Spec(Opr
)

boundary tori union of pi-adic fields
∂VL = ∂VK1

� · · · � ∂VKr
∂VS = Spec(kp1

) � · · · � Spec(kpr
)

link complement complement of a finite set of primes

XL = M \ Int(VL) XS = Xk \ S
link group maximal Galois group with

ΠL = π1(XL) given ramification ΠS = Gal(kS/k)

Based on the analogies recalled above, we construct an arithmetic ana-
logue of Dijkgraaf-Witten TQFT in a special situation, which corresponds
to the case that M is a link complement and Σ is the boundary tori of a
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tubular neighborhood of a link. Notations being as above, let N be an inte-

ger > 1 and assume that the number field k contains a primitive N -th root

ζN of unity. We fix a finite group G and a 3-cocycle c ∈ Z3(G,Z/NZ). Let

F be a subfield of C such that ζN is contained in F and F = F (F being the

complex conjugate). Let S be a finite set of finite primes S = {p1, . . . , pr} of

k such that any finite prime dividing N is contained in S. Let XS := Xk \S
and let ∂VS := Spec(kp1

)�· · ·�Spec(kpr
) as before so that ∂VS plays a role of

the boundary of XS , “∂XS = ∂VS”. For arithmetic analogues of the spaces

of gauge fields FΣ and FM , we consider FS :=
∏r

i=1Homcont(Πpi
, G) and

FXS
:= Homcont(ΠS , G), respectively, where Homcont(−, G) denotes the set

of continuous homomorphisms to G. For an arithmetic analog of the gauge

groups GΣ and GM , we simply take the group G acting on FS and FXS
by

conjugation. Set MS := FS/G.

As for the classical theory in the arithmetic side, we firstly develop a

local theory at a finite prime p, namely, we construct the arithmetic pre-

quantization principal Z/NZ-bundle Lp and the associated arithmetic pre-

quantization F -line bundle Lp for ∂Vp, which are G-equivariant bundles over

Fp := Homcont(Πp, G). By choosing a section xp ∈ Γ(Fp,Lp), we construct

the arithmetic Chern-Simons 1-cocycle λ
xp

p ∈ Z1(G,Map(Fp,Z/NZ)). The

key idea for the constructions is due to M. Kim ([14]), who used the conju-

gate G-action on c and the canonical isomorphism

invp : H2(Πp,Z/NZ)
∼−→ Z/NZ

in the theory of Brauer groups of local fields. We note that this isomorphism

tells us that ∂Vp is “orientable” and we choose (implicitly) the “orientation”

of ∂Vp corresponding to 1 ∈ Z/NZ.

Getting together the local theory over S, we construct the arithmetic

prequantization principal Z/NZ-bundle LS and the associated arithmetic

prequantization F -line bundle LS for ∂VS , which are G-equivariant bundles

over FS . By choosing a section xS of LS over FS , we construct the arithmetic

Chern-Simons 1-cocycle λxS

S ∈ Z1(G,Map(FS ,Z/NZ)) and show that LS

(resp. LS) is isomorphic to the product bundle LxS

S = FS × Z/NZ (resp.

LxS

S = FS × F ) on which G acts by (ρS ,m).g = (ρS .g,m + λxS

S (g, ρS))

(resp. (ρS , z).g = (ρS .g, zζ
λ
xS
S (g,ρS)

N )) for ρS ∈ FS , m ∈ Z/NZ, z ∈ F and

g ∈ G. By employing H3(ΠS ,Z/NZ) = 0, the arithmetic Chern-Simons

functional CSXS
for XS is defined as a G-equivariant section of res∗S(LS)

over FXS
, where resS : FXS

→ FS is the restriction map induced by the

natural homomorphisms Πp → ΠS for p ∈ S. Using the section xS , it can
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be regarded as a G-equivariant functional CSxS

XS
: FXS

→ Z/NZ. Thus we

construct the following correspondences

(1.9)
∂VS � 1-cocycle λxS

S ∈ Z1(G,Map(FS ,Z/NZ)),
XS � 0-chain CSxS

XS
∈ C0(G,Map(FXS

,Z/NZ)),

which satisfy

(1.10) dCSxS

XS
= res∗Sλ

xS

S .

We may regard (1.9), (1.10) as arithmetic analogues of (1.1), (1.2) in a

special situation that corresponds to the case Σ is a boundary tori of a link

and M is a link complement.

As for the quantum theory in the arithmetic side, following the topolog-

ical side, we define the arithmetic quantum space HS for ∂VS to be the space

of G-equivariant sections of the arithmetic prequantization F -line bundle LS

over FS . Choosing a section xS ∈ Γ(FS ,LS), it is isomorphic to the space

HxS

S given by

(1.11)
HxS

S ={θ : FS → F | θ(ρS .g)=ζ
λS(g)(ρS)
N θ(ρS) ∀g ∈ G, ρS ∈ FS}

=Γ(MS , L
xS

S ),

where L
xS

S is the quotient of LxS

S by the action ofG. The arithmetic Dijkgraaf-

Witten invariant ZxS

XS
(ρS) of ρS ∈ FS with respect to xS is then defined by

the following finite sum fixing the boundary condition:

(1.12) ZxS

XS
(ρS) =

1

#G

∑
ρ∈FXS

resS(ρ)=ρS

ζ
CS

xS
XS

(ρ)

N .

Then we can show that ZxS

XS
∈ HxS

S . Since the spaces HxS

S , when xS is varied,

are naturally isomorphic each other,HS is identified with (
⊔

HxS

S )/ ∼, where

the equivalence relation ∼ identifies elements via the isomorphisms between

HxS

S ’s. Hence ZxS

XS
determine the element ZXS

∈ HS , which we call the

arithmetic Dijkgraaf-Witten partition function for XS . Thus we construct

the following correspondences

(1.13)
∂VS � arithmetic quantum space HS ,

XS � arithmetic Dijkgraaf-Witten partition function ZXS
∈ HS ,
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which satisfy some properties similar to the axioms in (2 + 1)-dimensional
TQFT. We note that when [c] is trivial and S is empty, then the arithmetic
Dijkgraaf-Witten invariant ZXS

, denoted by Z(Xk), coincides with the (av-
eraged) number of continuous homomorphism from the modified étale fun-
damental group π1(Xk) of Xk ([13, Section 2.1]), which is the Galois group
of maximal extension of k unramified at all finite and infinite primes, to G:

(1.14) Z(Xk) =
#Homcont(π(Xk), G)

#G
,

which is the classical invariant for the number field k. We may regard (1.11),
(1.12), (1.13) and (1.14) as an arithmetic analogues of (1.6), (1.7), (1.3) and
(1.8) respectively, in a special situation that corresponds to the case Σ is a
boundary tori of a link and M is a link complement.

We note that elements of HS may be seen as arithmetic analogs of (non-
abelian) theta functions. In this respect, it may be interesting to observe
that the arithmetic Dijkgraaf-Witten invariants ZxS

XS
(ρS) in (1.12) look like

(non-abelian) Gaussian sums.
Next, we show some basic and functorial properties of arithmetic Chern-

Simons 1-cocycles, arithmetic prequantization bundles, arithmetic Chern-
Simons invariants, arithmetic quantum spaces and arithmetic Dijkgraaf-
Witten partition function
(i) when we change the 3-cocycle c in the cohomology class [c],
(ii) when we change the pair of k and S to the isomorphic one,
(iii) when S is an empty set, and
(iv) when S is a disjoint union of finite sets of finite primes and when we
reverse the orientation of ∂VS .
As for (ii) and (iv), we show the following properties:
(1.15) functoriality: If there are isomorphisms ξi : kpi

∼→ k′
p′
i
(1 ≤ i ≤ r),

then they induce the isomorphism HS
∼→ HS′ for S = {p1, . . . , pr}, S′ =

{p′1, . . . , p′r}. Moreover, if ξ : k
∼→ k′ is an isomorphism of number fields such

that ξ(pi) = p′i and ξ induces isomorphisms kpi

∼→ k′
p′
i
, then ξ induces the

isomorphism HS
∼→ HS′ which sends ZXS

to ZXS′ .
(1.16) multiplicativity and involutority: For disjoint sets S1, S2 of finite sets
of finite primes and ∂V ∗

S = ∂VS with the opposite orientation for a finite set
S of finite primes (cf. 4.4 below for the meaning), we show

HS1�S2
= HS1

⊗HS2
, HS∗ = (HS)

∗,

where HS∗ denotes the arithmetic quantum space for ∂V ∗
S and (HS)

∗ is the
dual space of HS .
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These properties (1.15) and (1.16) may be regarded as arithmetic ana-
logues of the axioms (1.4) and (1.5) in (2 + 1)-dimensional TQFT.

Finally we show decomposition formulas for arithmetic Chern-Simons
invariants, which generalize, in our framework, the “decomposition formula”
by Kim and his collaborators ([8]), and show gluing formulas for arithmetic
Dijkgraaf-Witten partition functions. Let S1 and S2 be disjoint sets of finite
primes of k, where S1 may be empty and S2 is non-empty. We assume that
any prime dividing N is contained in S2 if S1 is empty and that any prime
dividing of N is contained in S1 if S1 is non-empty. We set S := S1 � S2.
When S1 is empty, XS1

= Xk and we mean by CSXS1
the arithmetic Chern-

Simons functional CSXk
defined in [13] (see also [16]). We can also define the

arithmetic Chern-Simons functional CSVS2
for VS2

as a section of ˜res∗S2
(LS2

)

over FVS2
:=

∏
p∈S2

Homcont(Π̃p, G), where Π̃p := πét1 (Vp) and ˜resS : FVS2
→

FS2
is the restriction map induced by the natural homomorphism Πp → Π̃p.

Then we have the following decomposition formula

(1.17) CSXS1
(ρ) � CSVS2

((ρ ◦ up)p∈S2
) = CSXS

(ρ ◦ ηS),

where ρ ∈ Homcont(ΠS1
, G), and ηS : ΠS → ΠS1

, up : Π̃p → ΠS1
are

natural homomorphisms induced by XS → XS1
, Vp → XS1

for p ∈ S2,
respectively, and � : LS1

× LS2
→ LS is the natural “sum” of arithmetic

prequantization principal Z/NZ-bundles (cf. (5.4.1), (5.4.2)). When S1 is
empty, the formula (1.13) is a reformulation of the decomposition formula
in [8]. As for arithmetic Dijkgraaf-Witten partition functions, we have the
following gluing formula. Note that XS1

may be obtained by gluing XS and
V ∗
S2

along ∂VS2
, where V ∗

S2
= VS2

with the opposite orientation. Then we
have

(1.18) < ZXS
, ZV ∗

S2
> = ZXS1

,

where < ·, · >: HS×HS∗
2
→ HS1

is the gluing pairing of arithmetic quantum
spaces (cf. (6.2.3)). We may regard (1.16) as an arithmetic analog of the
gluing formula in the axiom (1.5) in (2 + 1)-dimensional TQFT.

The contents of this paper are organized as follows. In Section 1, we
collect some basic facts on torsors and group cochains, which will be used in
the subsequent sections. In Section 2, we construct arithmetic prequantiza-
tion bundles, arithmetic Chern-Simons 1-cocycles and the arithmetic Chern-
Simons functionals. These constructions correspond to the classical theory
of topological Dijkgraaf-Witten TQFT. In Section 3, we construct arith-
metic quantum spaces and the arithmetic Dijkgraaf-Witten partition func-
tions. These constructions correspond to the quantum theory of topological
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Dijkgraaf-Witten TQFT. In Section 4, we show some basic and functorial

properties of arithmetic prequantization bundles, arithmetic Chern-Simons

1-cocycles, arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-

Witten invariants. In Section 5, we show decomposition formulas for arith-

metic Chern-Simons invariants and gluing formulas for arithmetic Dijkgraaf-

Witten partition functions.

Notation. For a G-equivariant fiber bundle 
 : E → B for a group G,

we denote by Γ(B,E) (resp. ΓG(B,E)) the set of sections (resp. the set of

G-equivariant sections) of 
. In this paper, we deal with the case where the

base space B is a finite (discrete) set.

2. Preliminaries on torsors and group cochains

In this section, we collect some basic facts on torsors for an additive group

and group cochains, which will be used in the subsequent sections.

2.1. Torsors for an additive group

Let A be an additive group, where the identity element of A is denoted by

0. An A-torsor is defined by a non-empty set T equipped with action of A

from the right

T ×A −→ T ; (t, a) �→ t.a,

which is simply transitive. So, for any elements s, t ∈ T , there exists uniquely

a ∈ A such that s = t.a. We denote such an a by s− t:

(2.1.1) a = s− t
def⇐⇒ s = t.a.

For A-torsors T and T ′, a morphism f : T → T ′ is defined by a map of

sets, which satisfies

(2.1.2) f(t.a) = f(t).a

for all t ∈ T and a ∈ A. We easily see that any morphism of A-torsors is an

isomorphism.

Defining the action of A on A by (t, a) ∈ A × A �→ t + a ∈ A, A itself

becomes an A-torsor. We call it a trivial A-torsor. A morphism f : A → A

of trivial A-torsors is given by f(a) = a + λ for any a ∈ A with λ = f(0).
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Choosing an element t ∈ T , any A-torsor T is isomorphic to the trivial

A-torsor by the morphism

(2.1.3) ϕt : T
∼−→ A; s �→ ϕt(s) := s− t.

We call ϕt the trivialization at t.

Here are some properties concerning A-torsors, which will be used in the

subsequent sections.

Theorem 2.1.4. (1) Let T be an A-torsor. For s, t, u ∈ T and a ∈ A,

we have the following equality in A:

s− s = 0, s− u = (s− t) + (t− u), s.a− t = (s− t) + a.

(2) T, T ′ be A-torsors and let f : T → T ′ be a morphism of A-torsors. Then,

for s, t ∈ T , we have the following equality in A:

s− t = f(s)− f(t).

(3) Let T, T ′ be A-torsors and let f : T → T ′ be a morphism of A-torsors.

Fix t ∈ T and t′ ∈ T ′, and let λ(f ; t, t′) := f(t) − t′. Then we have the

following commutative diagram:

T
f−→ T ′

ϕt ↓ ↓ ϕt′

A
+λ(f ;t,t′)−→ A.

For other choices s ∈ T and s′ ∈ T ′, we have

λ(f ; s, s′) = λ(f ; t, t′) + (s− t)− (s′ − t′).

(4) For an A-torsor T and a subgroup B of A, we note that the quotient set

T/B is an A/B-torsor by (tmodB).(amodB) := (t.amodB) for t ∈ T and

a ∈ A.

Proof. (1) These equalities follow from the definition of group action and

(2.1.1).

(2) This follows from (2.1.1) and (2.1.2).

(3) The former assertion follows from (2.1.3). For the latter assertion, we
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note the following commutative diagram.

T
id−→ T

f−→ T ′ id−→ T ′

↓ ϕs ↓ ϕt ↓ ϕt′ ↓ ϕs′

A
+(s−t)−→ A

+λ(f ;t,t′)−→ A
−(s′−t′)−→ A.

Since the composite map in the lower row is +λ(f ; s, s′) by the former as-
sertion, the latter assertion follows.
(4) This is easily seen.

2.2. Conjugate action on group cochains

Let Π be a profinite group and let M be an additive discrete group on which
Π acts continuously from the left. Let Cn(Π,M) (n ≥ 0) be the group of
continuous n-cochains of Π with coefficients inM and let dn+1 : Cn(Π,M) →
Cn+1(Π,M) be the coboundary homomorphisms defined by

(2.2.1)

(dn+1αn)(γ1, . . . , γn+1)
:= γ1α

n(γ2, . . . , γn+1)

+

n∑
i=1

(−1)iαn(γ1, . . . , γi−1, γiγi+1, γi+2, . . . , γn+1)

+(−1)n+1αn(γ1, . . . , γn)

for αn ∈ Cn(Π,M) and γ1, . . . , γn+1 ∈ Π. Let Zn(Π,M) := Ker(dn+1) and
Bn(Π,M) := Im(dn) be the subgroups of Cn(Π,M) consisting of n-cocycles
and n-coboundaries, respectively, and letHn(Π,M) := Zn(Π,M)/Bn(Π,M),
the n-th cohomology group of Π with coefficients in M . By convention, we
put Cn(Π,M) = 0 for n < 0. We sometimes write d for dn simply if no
misunderstanding is caused.

Note that Π acts on Cn(Π,M) from the left by

(2.2.2) (σ.αn)(γ1, . . . , γn) := σαn(σ−1γ1σ, . . . , σ
−1γnσ)

for αn ∈ Cn(Π,M) and σ, γ1, . . . , γn ∈ Π. By (2.2.1) and (2.2.2), we see that
this action commutes with the coboundary homomorphisms:

(2.2.3) dn+1(σ.αi) = σ.dn+1(αi) (αi ∈ Ci(Π,M)).

Now we shall describe the action of Π on Cn(Π,M) in a concrete manner.
For σ, σ1, σ2 ∈ Π, 0 ≤ i ≤ j ≤ n (n ≥ 1), and 1 ≤ k ≤ n − 1, we define
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the maps si = sni (σ) : Πn → Πn+1, si,j = sni,j(σ1, σ2) : Πn → Πn+2 and

tk = tnk : Πn → Πn−1 by

(2.2.4)

si(g1, g2, . . . , gn) := (g1, . . . , gi, σ, σ
−1gi+1σ, . . . , σ

−1gnσ),
si,j(g1, g2, . . . , gn) := (g1, . . . , gi, σ1, σ1

−1gi+1σ1, . . . , σ1
−1gjσ1,

σ2, (σ1σ2)
−1gj+1σ1σ2, . . . , (σ1σ2)

−1gnσ1σ2),
tk(g1, g2, . . . , gn) := (g1, . . . , gk−1, gkgk+1, gk+2, . . . , gn)

for (g1, g2, . . . , gn) ∈ Πn. We note that sn+1
j+1 (σ2) ◦ sni (σ1) = sni,j(σ1, σ2). We

define the homomorphisms

hnσ : Cn+1(Π,M) −→ Cn(Π,M),
Hn

σ1,σ2
: Cn+2(Π,M) −→ Cn(Π,M)

by

(2.2.5)

hnσ(α
n+1) :=

∑
0≤i≤n

(−1)i(αn+1 ◦ sni (σ)),

Hn
σ1,σ2

(αn+2) :=
∑

0≤i≤j≤n

(−1)i+j(αn+2 ◦ sni,j(σ1, σ2))

for αn+1 ∈ Cn+1(Π,M) and αn+2 ∈ Cn+2(Π,M). For example, explicit

forms of hnσ(α
n+1), Hn

σ1,σ2
(αn+2) for n = 1, 2 are given as follows:

h1σ(α
2)(g) = α2(σ, σ−1gσ)− α2(g, σ).

h2σ(α
3)(g1, g2) = α3(σ, σ−1g1σ, σ

−1g2σ)− α3(g1, σ, σ
−1g2σ) + α3(g1, g2, σ).

H1
σ1,σ2

(α3)(g) = α3(σ1, σ2, (σ1σ2)
−1gσ1σ2)− α3(σ1, σ

−1
1 gσ1, σ2)

+α3(g, σ1, σ2)
H2

σ1,σ2
(α4)(g1, g2) = α4(σ1, σ2, (σ1σ2)

−1g1σ1σ2, (σ1σ2)
−1g2σ1σ2)

−α4(σ1, σ
−1
1 g1σ1, σ2, (σ1σ2)

−1g2σ1σ2) + α4(σ1, σ
−1
1 g1σ1, σ

−1
1 g2σ1, σ2)

+α4(g1, σ1, σ2, (σ1σ2)
−1g2σ1σ2)− α4(g1, σ1, σ

−1
1 g2σ1, σ2)

+α4(g1, g2, σ1, σ2)

We call hnσ, H
n
σ1,σ2

the transgression homomorphisms, which play roles sim-

ilar to the transgression homomorphisms in [12].

The following Theorem 2.2.6 and Corollary 2.2.7 were shown in Appen-

dices A and B of [14]. Here we give an elementary direct proof. See also

Remark 2.2.8 below for the background of the proof.
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Theorem 2.2.6. Notations being as above, we have the following equali-
ties.

σ.αn − αn = hnσ(d
n+1(αn)) + dn(hn−1

σ (αn)),

σ1.h
n
σ2
(αn+1)− hnσ1σ2

(αn+1) + hnσ1
(αn+1) = Hn

σ1,σ2
(dn+2(αn+1))

− dn(Hn−1
σ1,σ2

(αn+1)),

for αn ∈ Cn(Π,M) and αn+1 ∈ Cn+1(Π,M) (n ≥ 1).

Proof. By (2.2.4), we can see

(2.2.6.1)

si ◦ tk =

{
tk ◦ si+1 (k ≤ i)
tk+1 ◦ si (i < k),

si,j ◦ tk =

⎧⎨⎩
tk ◦ si+1,j+1 (k ≤ i)
tk+1 ◦ si,j+1 (i < k ≤ j)
tk+2 ◦ si,j (j < k).

We note that ti+1 ◦ si+1 = ti+1 ◦ si. By (2.2.1) and (2.2.5), we have, for any
(g1, g2, . . . , gn) ∈ Πn,

hnσ(d
n+1(αn))(g1, . . . , gn) = (σ.αn)(g1, . . . , gn)

+
∑

1≤i≤n
(−1)ig1(α

n ◦ si−1)(g2, . . . , gn)

+
∑

0≤i≤n,1≤k≤n

(−1)i+k(αn ◦ tk ◦ si)(g1, . . . , gn)

+(−1)n+n+1αn(g1, . . . , gn)
+

∑
0≤i≤n−1

(−1)i+n+1(αn ◦ si)(g1, . . . , gn−1),

dn(hn−1
σ (αn))(g1, . . . , gn) =

∑
0≤i≤n−1

(−1)ig1(α
n ◦ si)(g2, . . . , gn)

+
∑

0≤i≤n−1,1≤k≤n−1

(−1)i+k(αn ◦ si ◦ tk)(g1, . . . , gn)

+
∑

0≤i≤n−1
(−1)i+n(αn ◦ si)(g1, . . . , gn−1),

and

Hn
σ1,σ2

(dn+2(αn+1))(g1, . . . , gn) = (σ1.h
n
σ2
(αn+1))(g1, . . . , gn)

+
∑

0<i≤j≤n

(−1)i+jg1(α
n+1 ◦ si−1,j−1)(g2, . . . , gn)

−hnσ1σ2
(αn+1)(g1, . . . , gn)
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+
∑

0≤i≤j≤n,1≤k≤n+1
i �=j or k �=i+1

(−1)i+j+k(αn+1 ◦ tk ◦ si,j)(g1, . . . , gn)

+hnσ1
(αn+1)(g1, . . . , gn)

+
∑

0≤i≤j≤n−1

(−1)i+j+n+2(αn+1 ◦ si,j)(g1, . . . , gn−1),

dn(Hn−1
σ1,σ2

(αn+1))(g1, . . . , gn)

=
∑

0≤i≤j≤n−1
(−1)i+jg1.(α

n+1 ◦ si,j)(g2, . . . , gn)

+
∑

0≤i≤j≤n−1,1≤k≤n−1

(−1)i+j+k(αn+1 ◦ si,j ◦ tk)(g1, . . . , gn)

+
∑

0≤i≤j≤n−1
(−1)i+j+n(αn+1 ◦ si,j)(g1, . . . , gn−1).

Hence we have

hnσ(d
n+1(αn))(g1, . . . , gn) + dn(hn−1

σ (αn))(g1, . . . , gn)
= (σ.αn)(g1, . . . , gn)− αn(g1, . . . , gn)
+

∑
0≤i≤n,1≤k≤n

(−1)i+k(αn ◦ tk ◦ si)(g1, . . . , gn)

+
∑

0≤i≤n−1,1≤k≤n−1

(−1)i+k(αn ◦ si ◦ tk)(g1, . . . , gn),

and

Hn
σ1,σ2

(dn+2(αn+1))(g1, . . . , gn)− dn(Hn−1
σ1,σ2

(αn+1))(g1, . . . , gn)

= σ1.h
n
σ2
(αn+1)(g1, . . . , gn)− hnσ1σ2

(αn+1)(g1, . . . , gn)
+hnσ1

(αn+1)(g1, . . . , gn)
+

∑
0≤i≤j≤n,1≤k≤n+1

i �=j or k �=i+1

(−1)i+j+k(αn+1 ◦ tk ◦ si,j)(g1, . . . , gn)

−
∑

0≤i≤j≤n−1,1≤k≤n−1

(−1)i+j+k(αn+1 ◦ si,j ◦ tk)(g1, . . . , gn).

By (2.2.6.1), we obtain the required equalities.

By (2.2.3), Π acts on Zn(Π,M) from the left. This action is described

by Theorem 2.2.6 as follows.

Corollary 2.2.7. Suppose α ∈ Zn(Π,M) (n ≥ 1). For σ ∈ Π, we let

βσ := hn−1
σ (α).
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Then we have

σ.α = α+ dnβσ.

For σ, σ′ ∈ Π, we have

βσσ′ = βσ + σ.βσ′ mod Bn−1(Π,M),

namely, the map Π � σ �→ βσ mod Bn−1(Π,M) ∈ Cn−1(Π,M)/Bn−1(Π,M)
is a 1-cocycle.

Proof. Proof. The both equalities are obtained immediately from Theorem
2.2.6, since dn+1(α) = 0 by α ∈ Zn(Π,M) (n ≥ 1).

Remark 2.2.8 (Algebro-topological proof of Theorem 2.2.6). For σ ∈ Π, let
σ• denote the automorphism of the cochain complex (C•(Π,M), d•) defined
by σn(α) := σ.α for α ∈ Cn(Π,M). Then Theorem 2.2.6 asserts that the
family of homomorphisms {hnσ : Cn+1(Π,M) → Cn(Π,M)} gives a homo-
topy connecting σ• and idC•(Π,M). Actually, our explicit definition (2.2.5)
is obtained by making the following algebro-topological proof concrete: we
may assume Π is finite by the limit argument. Let E be the one-object cat-
egory whose morphisms are the elements of Π. We consider two functors
idE , σ̂ : E → E defined by idE(g) := g, σ̂(g) := σ−1gσ for each morphism
g ∈ Π. Let N : Cat → Fct(Δop, Set) denote the nerve functor, where Cat is
the category of small categories and Fct(Δop, Set) is the category of simpli-
cial sets. Define the natural transformation η : σ̂ → idE by η(∗) := σ (∗ is the
unique object of E). Then η induces a corresponding functor hη : E ×1 → E ,
where n denotes the category defined by the set {0, 1, . . . , n} and its order.
Then Nhη : NE × N1 → NE is a homotopy connecting the two simplicial
maps N σ̂,N idE : NE → NE . Let Cn(NE) = Z[NE(n)] be the group of
n-chains of the simplicial set NE . By [17, Proposition 5.3] and [17, Proposi-
tion 6.2], Nhη induces a homotopy {hσn : Cn(NE) → Cn+1(NE)} connecting
two chain maps (N σ̂)•, (N idE)• : C•(NE) → C•(NE). For the groups of n-
cochains Cn(NE ,M) = Hom(Cn(NE),M), the homotopy {hσn} induces the
homotopy {hnσ : Cn+1(NE ,M) → Cn(NE ,M)} connecting the two cochain
maps (N σ̂)•, (N idE)• : C•(NE ,M) → C•(NE ,M). Since NE(n) is Πn, we
have the isomorphisms for i ≥ 0

Cn(NE ,M) � Map(Πn,M) = Cn(Π,M).

Under the above isomorphisms, (N σ̂)• and (N idE)• are identified with σ•

and idC•(Π,M), respectively, and hence {hnσ} gives a homotopy connecting σ•

and idC•(Π,M).
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3. Classical theory

In this section, we construct the arithmetic prequantization bundle and the
arithmetic Chern-Simons 1-cocycle for ∂VS := �r

i=1Spec(kpi
), where S =

{p1, . . . , pr} is a finite set of finite primes of an algebraic number field k
of finite degree over Q, and the arithmetic Chern-Simons functional over a
space of Galois representations unramified outside S. These constructions
correspond to the classical theory of topological Dijkgraaf-Witten TQFT.

Throughout the rest of this paper, we fix a natural number N > 1and let
μN be the group of N -th roots of unity in the field C of complex numbers.
We fix a primitive N -th root of unity ζN and the isomorphism Z/NZ �
μN ; m �→ ζmN . The base number field k (in C) is supposed to contain μN .
Let G be a finite group and let c be a fixed 3-cocycle of G with coefficients
in Z/NZ, c ∈ Z3(G,Z/NZ), where G acts on Z/NZ trivially.

3.1. Arithmetic prequantization bundles and arithmetic
Chern-Simons 1-cocycles

We firstly develop a local theory at a finite prime. Let p be a finite prime
of k and let kp be the p-adic field. We let ∂Vp := Spec(kp), which play a
role analogous to the boundary of a tubular neighborhood of a knot (see
the dictionary of the analogies in Introduction). Let Πp denote the étale
fundamental group of ∂Vp with base point Spec(kp) (kp being an algebraic
closure of kp), which is the absolute Galois group Gal(kp/kp).

Let Fp be the set of continuous homomorphisms of Πp to G:

Fp := Homcont(Πp, G).

It is a finite set on which G acts from the right by

(3.1.1) Fp ×G → Fp; (ρp, g) �→ ρp.g := g−1ρpg.

Let Mp denote the quotient space by this action:

Mp := Fp/G.

Let Map(Fp,Z/NZ) denote the additive group consisting of maps from Fp

to Z/NZ, on which G acts from the left by

(3.1.2) (g.ψp)(ρp) := ψp(ρp.g)
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for g ∈ G,ψp ∈ Map(Fp,Z/NZ) and ρp ∈ Fp. For ρp ∈ Fp and α ∈
Cn(G,Z/NZ), we denote by α ◦ ρp the n-cochain of Πp with coefficients in

Z/NZ defined by

(α ◦ ρp)(γ1, . . . , γn) := α(ρp(γ1), . . . , ρp(γn)).

By (2.2.2) and (3.1.1), we have

(3.1.3) (g.α) ◦ ρp = α ◦ (ρp.g)

for g ∈ G,α ∈ Cn(G,Z/NZ) and ρp ∈ Fp.

Firstly, we shall construct an arithmetic analog for ∂Vp := Spec(kp) of

the prequantization bundle, using the given 3-cocycle c ∈ Z3(G,Z/NZ). The
key idea for this is due to Kim ([14]), who uses the conjugate G-action on c

and the 2nd Galois cohomology group (Brauer group) of the local field kp.

Let ρp ∈ Fp and so c◦ρp ∈ Z3(Πp,Z/NZ). Let d denote the coboundary

homomorphism C2(Πp,Z/NZ) → C3(Πp,Z/NZ). We define Lp(ρp) by the

quotient set

(3.1.4) Lp(ρp) := d−1(c ◦ ρp)/B2(Πp,Z/NZ).

Here we note that d−1(c ◦ ρp) is non-empty, because the cohomological di-

mension of Πp is 2 ([23, Theorem 7.1.8], [25, Chapitre II, 5.3, Proposition

15]) and so H3(Πp,Z/NZ) = 0. Thus d−1(c◦ρp) is a Z2(Πp,Z/NZ)-torsor in
the obvious manner and so Lp(ρp) is an H2(Πp,Z/NZ)-torsor by (3.1.4) and

Lemma 2.1.4 (4). Since kp contains μN and so H2(Πp,Z/NZ) = H2(kp, μN ),

the theory of Brauer groups (cf. [26, Chapitre XII]) tells us that there is the

canonical isomorphism

invp : H2(Πp,Z/NZ)
∼−→ Z/NZ

and hence Lp(ρp) is a Z/NZ-torsor via invp.

Let Lp be the disjoint union of Lp(ρp) over all ρp ∈ Fp:

Lp :=
⊔

ρp∈Fp

Lp(ρp)

and consider the projection


p : Lp −→ Fp; αp �→ ρp if αp ∈ Lp(ρp).
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Since each fiber 
−1
p (ρp) = Lp(ρp) is a Z/NZ-torsor, we may regard Lp as

a principal Z/NZ-bundle over Fp.
Let g ∈ G. Using the transgression map h2g in (2.2.5), we define hg ∈

C2(G,Z/NZ)/B2(G,Z/NZ) by

hg := h2g(c) mod B2(G,Z/NZ),

where h2g(c) is the 2-cochain defined explicitly by

h2g(c)(g1, g2) := c(g, g−1g1g, g
−1g2g)− c(g1, g, g

−1g2g) + c(g1, g2, g),

where g1, g2 ∈ G. By Corollary 1.2.7, we have

(3.1.5) g.c = c+ dhg

and

(3.1.6) hgg′ = hg + g.hg′

for g, g′ ∈ G. By (3.1.3), (3.1.4) and (3.1.5), we have

d(α+ hg ◦ ρp) = c ◦ ρp + (g.c− c) ◦ ρp = (g.c) ◦ ρp = c ◦ (ρp.g)

for αp ∈ Lp(ρp) and so we have the isomorphism of Z/NZ-torsors

(3.1.7) fp(g, ρp) : Lp(ρp)
∼−→ Lp(ρp.g); αp �→ αp + hg ◦ ρp.

By (3.1.3) and (3.1.6), we have

αp + hgg′ ◦ ρp = αp + (hg + g.hg′) ◦ ρp
= αp + hg ◦ ρp + hg′ ◦ (ρp.g)

for g, g′ ∈ G. It means that G acts on Lp from the right by

(3.1.8) Lp ×G → Lp; αp �→ αp.g := f(g, ρp)(αp).

By (3.1.7), (3.1.8) and the way of the Z/NZ-action on Lp, we have the
following commutative diagram

Lp

.g−→ Lp � Z/NZ

p ↓ ↓ 
p

Fp

.g−→ Fp,
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namely,

(3.1.9) (αp.m).g = (αp.g).m, 
p(αp.g) = 
p(αp).g

for αp ∈ Fp, m ∈ Z/NZ, g ∈ G. So Lp is a G-equivariant principal Z/NZ-
bundle over Fp. Taking the quotient by the action of G, we have the principal
Z/NZ-bundle 
p : Lp → Mp. We call 
p : Lp → Fp or 
p : Lp → Mp the
arithmetic prequantization Z/NZ-bundle for ∂Vp := Spec(kp).

Let us choose a section xp ∈ Γ(Fp,Lp), namely, the map

xp : Fp −→ Lp such that 
p ◦ xp = idFp
.

This means that we fix a “coordinate” on Lp. In fact, by the trivialization
at xp(ρp) in (2.1.3), we may identify each fiber Lp(ρp) over ρp with Z/NZ:

ϕxp(ρp) : Lp(ρp)
∼−→ Z/NZ; αp �→ αp − xp(ρp).

For g ∈ G and ρp ∈ Fp, we let

(3.1.10) λ
xp

p (g, ρp) := fp(g, ρp)(xp(ρp))− xp(ρp.g) = xp(ρp).g − xp(ρp.g)

so that we have the following commutative diagram by Lemma 2.1.4 (3):

Lp(ρp)
fp(g,ρp)−→ Lp(ρp.g)

ϕxp(ρp) ↓ ↓ ϕxp(ρp.g)

Z/NZ
+λ

xp
p (g,ρp)−→ Z/NZ,

namely, for αp ∈ Lp(ρp), we have

(3.1.11) αp.g − xp(ρp.g) = (αp − xp(ρp)) + λ
xp

p (g, ρp).

We define the map λ
xp

p : G → Map(Fp,Z/NZ) by

(3.1.12) λ
xp

p (g)(ρp) := λ
xp

p (g, ρp)

for g ∈ G and ρp ∈ Fp.

Theorem 3.1.13. For g, g′ ∈ G, we have

λ
xp

p (gg′) = λ
xp

p (g) + (g.λ
xp

p )(g′).
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Namely, the map λ
xp

p is a 1-cocycle:

λ
xp

p ∈ Z1(G,Map(Fp,Z/NZ)).

Proof. For g, g′ ∈ G and ρp ∈ Fp, we have

λ
xp

p (gg′, ρp) = fp(gg
′, ρp)(xp(ρp))− xp(ρp(gg

′)) by (3.1.10)
= (xp(ρp) + hgg′ ◦ ρp)− xp(ρp.(gg

′)) by (3.1.7)
= (xp(ρp) + hg ◦ ρp + hg′ ◦ (ρp.g))− xp(ρp.(gg

′))
by (3.1.3), (3.1.6).

By Lemma 2.1.4 (1), we have

(xp(ρp) + hg ◦ ρp + hg′ ◦ (ρp.g))− xp(ρp.(gg
′))

= {(xp(ρp) + hg ◦ ρp)− xp(ρp.g)}
+{(xp(ρp.g) + hg′ ◦ (ρp.g))− xp(ρp.(gg

′))}.

Here we see by (3.1.7), (3.1.10) that

(xp(ρp) + hg ◦ ρp)− xp(ρp.g) = λ
xp

p (g, ρp),
(xp(ρp.g) + hg′ ◦ (ρp.g))− xp(ρp.(gg

′)) = λ
xp

p (g′, ρp.g).

Combining these, we have

λ
xp

p (gg′, ρp) = λ
xp

p (g, ρp) + λ
xp

p (g′, ρp.g)

for any ρp ∈ Fp. By (3.1.2) and (3.1.12), we obtain the assertion.

We call λ
xp

p the Chern-Simons 1-cocycle for ∂Vp with respect to the
section xp.

For a section xp ∈ Γ(Fp,Lp), we define Lxp

p by the product (trivial)
principal Z/NZ-bundle over Fp:

Lxp

p := Fp × Z/NZ,

on which G acts from the right by

(3.1.14) Lxp

p ×G → Lxp

p ; ((ρp,m), g) �→ (ρp.g,m+ λ
xp

p (g, ρp)),

and so the projection



xp

p : Lxp

p −→ Fp
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is G-equivariant.

Proposition 3.1.15. We have the following isomorphism of G-equivariant
principal Z/NZ-bundles

Φ
xp

p : Lp
∼−→ Lxp

p ; αp �→ (
p(αp), αp − xp(
p(αp))).

In particular, the isomorphism class of Lxp

p is independent of the choice of
a section xp. In other words, for another section x′p ∈ Γ(Fp,Lp), we have

Lx′
p

p � Lxp

p as G-equivariant principal Z/NZ-bundles.

Proof. (i) It is easy to see that 

xp

p ◦ Φxp

p = 
p.
(ii) For αp ∈ Lp and m ∈ Z/NZ, we have

Φ
xp

p (αp.m) = (
p(αp.m), αp.m− xp(
p(αp.m)))
= (
p(αp), αp.m− xp(
p(αp)))
= (
p(αp), (αp − xp(
p(αp))) +m) by Lemma 2.1.4 (1)
= Φ

xp

p (αp).m.

(iii) Φ
xp

p has the inverse defined by (Φ
xp

p )−1((ρp,m)) := xp(ρp).m for (ρp,m) ∈
Fp × Z/NZ.
By (i), (ii), (iii), Φ

xp

p is an isomorphism of principal Z/NZ-bundles. So it
suffices to show that Φxp is G-equivariant. It follows from that

Φ
xp

p (αp.g) = (
p(αp.g), αp.g − xp(
p(αp.g)))
= (
p(αp).g, (αp − xp(
p(αp))) + λ

xp

p (g,
p(αp)))
= Φ

xp

p (αp).g,

where the 2nd equality holds by (3.1.9), (3.1.11) and the 3rd equality follows
from (2.1.14)

Taking the quotient of 

xp

p : Lxp

p → Fp by the action of G, we have
the principal Z/NZ-bundle 


xp

p : Lxp

p → Mp. We call 

xp

p : Lxp

p → Fp or



xp

p : Lxp

p → Mp the arithmetic prequantization principal Z/NZ-bundle for
∂Vp with respect to the section xp.

For xp, x
′
p ∈ Γ(Fp,Lp), we define the map δ

xp,x′
p

p : Fp → Z/NZ by

(3.1.16) δ
xp,x′

p

p (ρp) := xp(ρp)− x′p(ρp)

for ρp ∈ Fp.
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Lemma 3.1.17. For xp, x
′
p, x

′′
p ∈ Γ(Fp,Lp), we have

δ
xp,xp

p = 0, δ
x′
p,xp

p = −δ
xp,x′

p

p , δ
xp,x′

p

p + δ
x′
p,x

′′
p

p = δ
xp,x′′

p

p .

Proof. These equalities follow from Lemma 2.1.4 (1).

The following proposition tells us how λ
xp

p is changed when we change
the section xp.

Proposition 3.1.18. For xp, x
′
p ∈ Γ(Fp,Lp), we have

λ
x′
p

p (g)− λ
xp

p (g) = g.δ
xp,x′

p

p − δ
xp,x′

p

p

for any g ∈ G. So the cohomology class [λ
xp

p ] ∈ H1(G,Map(Fp,Z/NZ)) is
independent of the choice of a section xp.

Proof. By (3.1.10) and Lemma 2.1.4 (1), (2), we have

λ
x′
p

p (g, ρp)− λ
xp

p (g, ρp)
= (fp(g, ρp)(x

′
p(ρp))− x′p(ρp.g))− (fp(g, ρp)(xp(ρp))− xp(ρp.g))

= (xp(ρp.g)− x′p(ρp.g)) + (fp(g, ρp)(x
′
p(ρp))− fp(g, ρp)(xp(ρp)))

= (xp(ρp.g)− x′p(ρp.g)) + (x′p(ρp)− xp(ρp))

= (g.δ
xp,x′

p

p )(ρp)− δ
xp,x′

p

p (ρp) by (2.1.2)

for any g ∈ G and ρp ∈ Fp, hence the assertion.

By Proposition 3.1.18, we denote the cohomology class [λ
xp

p ] by [λp],
which we call the arithmetic Chern-Simons 1st cohomology class for ∂Vp.
As a corollary of Proposition 3.1.18, we can make the latter statement of
Proposition 3.1.15 more precise as follows.

Corollary 3.1.19. (1) For xp, x
′
p ∈ Γ(Fp,Lp), we have the following iso-

morphism of G-equivariant principal Z/NZ-bundles over Fp:

Φ
xp,x′

p

p : Lxp

p

∼−→ Lx′
p

p ; (ρp,m) �→ (ρp,m+ δ
xp,x′

p

p (ρp)),

where δ
xp,x′

p

p : Fp → Z/NZ is the map defined in (3.1.16).
(2) For xp, x

′
p, x

′′
p ∈ Γ(Fp,Lp), we have{

Φ
xp,x′

p

p ◦ Φxp

p = Φ
x′
p

p ,

Φ
xp,xp

p = idLxp
p
, Φ

x′
p,xp

p = (Φ
xp,x′

p

p )−1, Φ
x′
p,x

′′
p

p ◦ Φxp,x′
p

p = Φ
xp,x′′

p

p
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Proof. (1) We easily see that Φ
xp,x′

p

p is isomorphism of principal Z/NZ-

bundles and so it suffices to show that Φ
xp,x′

p

p is G-equivariant. This follows

from

Φ
xp,x′

p

p ((ρp,m).g) = Φ
xp,x′

p

p ((ρp.g,m+ λ
xp

p (g, ρp))) by (3.1.14)

= (ρp.g,m+ λ
xp

p (g, ρp) + δ
xp,x′

p

p (ρp.g))

= (ρp.g,m+ δ
xp,x′

p

p (ρp) + λ
x′
p

p (g, ρp)) by Prop. 3.1.18

= Φ
xp,x′

p

p (ρp,m).g.

(2) The first equality follows from the definitions of Φ
xp

p ,Φ
xp,x′

p

p . The latter

equalities follow from Lemma 3.1.17.

Let F be a field containing μN . Let Lp be the F -line bundle over

Fp associated to the principal Z/NZ-bundle Lp and the homomorphism

Z/NZ ↪→ F×; m �→ ζmN , namely,

(3.1.20)
Lp := Lp ×Z/NZ F

:= (Lp × F )/(αp, z) ∼ (αp.m, ζ−m
N z) (αp ∈ Lp,m ∈ Z/NZ, z ∈ F ),

on which G acts from the right by

(3.1.21) Lp ×G → Lp; ([(αp, z)], g) �→ [(αp.g, z)].

The projection


p,F : Lp −→ Fp; [(αp, z)] �→ 
p(αp)

is a G-equivariant F -line bundle. We denote the fiber 
−1
p,F (ρp) over ρp by

Lp(ρp):

(3.1.22) Lp(ρp) := {[(αp, z)] ∈ Lp |
p(αp) = ρp, z ∈ F}

We have a non-canonical bijection by fixing an αp ∈ Lp(ρp):

Lp(ρp)
∼−→ F ; [(αp, z)] �→ z.

Taking the quotient by the action of G, we obtain the F -line bundles 
p,F :

Lp → Mp. We call 
p,F : Lp → Fp or 
p,F : Lp → Mp the arithmetic

prequantization F -line bundle for ∂Vp.
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Let L
xp

p be the product F -line bundle over Fp:

L
xp

p := Fp × F,

on which G acts from the right by

(3.1.23) L
xp

p ×G → L
xp

p ; ((ρp, z), g) �→ (ρp.g, zζ
λ
xp
p (g,ρp)

N ),

and the projection



xp

p,F : L
xp

p −→ Fp

is G-equivariant. Then we have the following Proposition similar to Propo-
sition 3.1.15 and Corollary 3.1.19.

Proposition 3.1.24. We have the following isomorphism of G-equivariant
F -line bundles over Fp

Φ
xp

p,F : Lp
∼−→ L

xp

p ; [(αp, z)] �→ (
p(αp), zζ
αp−xp(�p(αp))
N ).

For another section x′p, we have the following isomorphism of G-equivariant
F -line bundles over Fp

Φ
xp,x′

p

p,F : L
xp

p

∼−→ L
x′
p

p : (ρp, z) �→ (ρp, zζ
δ
xp,x′

p
p (ρp)

N ),

where δ
xp,x′

p

p : Fp → Z/NZ is the map in (3.1.16), and we have the equalities{
Φ
xp,x′

p

p,F ◦ Φxp

p,F = Φ
x′
p

p,F

Φ
xp,xp

p,F = idLxp
p,F

, Φ
x′
p,xp

p,F = (Φ
xp,x′

p

p,F )−1, Φ
x′
p,x

′′
p

p,F ◦ Φxp,x′
p

p,F = Φ
xp,x′′

p

p,F

for xp, x
′
p, x

′′
p ∈ Γ(Fp,Lp).

Proof. (i) It is easy to see that 

xp

p,F ◦ Φxp

p,F = 
p,F .
(ii) For ρp ∈ Fp, we let

L
xp

p (ρp) := (

xp

p,F )
−1(ρp) = {(ρp, z) | z ∈ F} � F.

So Φ
xp

p,F restricted to a fiber over ρp

Φ
xp

p,F |Lp(ρp) : Lp(ρp) −→ L
xp

p (ρp); [(αp, z)] �→ (ρp, zζ
αp−xp(ρp)
N )
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is F -linear.

(iv) For g ∈ G, we have

Φ
xp

p,F ([(αp, z)].g) = Φ
xp

p,F ([(αp.g, z)]) by (3.1.21)

= (
p(αp.g), zζ
αp.g−xp(�p(αp.g))
N )

= (
p(αp).g, zζ
(αp−xp(ρp))+λ

xp
p (g,ρp)) by (3.1.11)

= Φ
xp

p,F ([αp, z)]).g by (3.1.23).

Hence Φ
xp

p,F is the isomorphism of G-equivariant F -line bundles over Fp.

The proofs of the latter parts are similar to those of Corollary 3.1.19 (1),

(2).

Taking the quotient of 

xp

p,F : L
xp

p → Fp by the action of G, we have the

F -line bundle 

xp

p,F : L
xp

p → Mp. We call 

xp

p,F : L
xp

p → Fp or 

xp

p,F : L
xp

p →
Mp the arithmetic prequantization F -line bundle for ∂Vp with respect to the

section xp.

Let S = {p1, . . . , pr} be a finite set of finite primes of k and let ∂VS :=

∂Vp1
� · · · � ∂Vpr

. Let FS be the direct product of Fpi
’s:

FS := Fp1
× · · · × Fpr

.

It is a finite set on which G acts diagonally from the right, namely,

(3.1.25) FS ×G → FS ; (ρS , g) �→ ρS .g := (ρp1
.g, . . . , ρpr

.g)

for ρS = (ρp1
, . . . , ρpr

) ∈ FS and let MS denote the quotient space by this

action

MS := FS/G.

Let Map(FS ,Z/NZ) be the additive group of maps from FS to Z/NZ, on

which G acts from the left by

(3.1.26) (g.ψS)(ρS) := ψS(ρS .g)

for ψS ∈ Map(FS ,Z/NZ), g ∈ G and ρS ∈ FS .

For ρS = (ρp1
, . . . , ρpr

) ∈ FS , let LS(ρS) be the quotient space of the

product Lp1
(ρp1

)× · · · × Lpr
(ρpr

):

(3.1.27) LS(ρS) := (Lp1
(ρp1

)× · · · × Lpr
(ρpr

))/ ∼,
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where the equivalence relation ∼ is defined by

(3.1.28) (αp1
, . . . , αpr

) ∼ (α′
p1
, . . . , α′

pr
) ⇐⇒

r∑
i=1

(αpi
− α′

pi
) = 0.

We see easily that LS(ρS) is equipped with the simply transitive action of
Z/NZ defined by

LS(ρS)× Z/NZ −→ LS(ρS);
([αS ],m) �→ [αS ].m := [(αp1

.m, . . . , αpr
)] = · · · = [(αp1

, . . . , αpr
.m)]

for αS = (αp1
, . . . , αpr

) and hence LS(ρS) is a Z/NZ-torsor.
Let LS be the disjoint union of Lp(ρS) for ρS ∈ FS :

(3.1.29) LS :=
⊔

ρS∈FS

LS(ρS),

on which G acts diagonally from the right by

(3.1.30) LS ×G −→ LS ; ([(αp1
, . . . , αpr

)], g) �→ [(αp1
.g, . . . , αpr

.g)].

Consider the projection


S : LS −→ FS ; [αS ] = [(αpi
)] �→ (
pi

(αpi
)),

which isG-equivariant. Since each fiber
−1
p (ρS) = LS(ρS) is a Z/NZ-torsor,

we may regard 
S : LS −→ FS as a G-equivariant principal Z/NZ-bundle.
Taking the quotient by the action of G, we have the principal Z/NZ-bundle

S : LS → MS . We call 
S : LS → FS or 
S : LS → MS the arithmetic
prequantization Z/NZ-bundle for ∂VS = Spec(kp1

) � · · · � Spec(kpr
).

Let xS be a section of 
S , xS ∈ Γ(FS ,LS). By (3.1.27) and (3.1.29), it
is written as xS = [(xp1

, . . . , xpr
)], where xpi

∈ Γ(Fpi
,Lpi

) for 1 ≤ i ≤ r.
For g ∈ G and ρS = (ρpi

) ∈ FS , we set

(3.1.31) λxS

S (g, ρS) := λ
xp1
p1

(g, ρp1
) + · · ·+ λ

xpr
pr

(g, ρpr
)

and define the map λxS

S : G → Map(FS ,Z/NZ) by

(3.1.32) λxS

S (g)(ρS) := λxS

S (g, ρS)

for g ∈ G and ρS ∈ FS .
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Lemma 3.1.33. (1) Let x′pi
∈ Γ(Fpi

,Lpi
) be another section for 1 ≤ i ≤ r

such that [(x′p1
, . . . , x′pr

)] = xS. Then we have

r∑
i=1

λ
xpi
pi

(g, ρpi
) =

r∑
i=1

λ
x′
pi

pi
(g, ρpi

)

for g ∈ G and ρpi
∈ Fpi

. So λxS

S (g, ρS) is independent of the choice of xpi
’s

such that xS = [(xp1
, . . . , xpr

)].

(2) The map λxS

S is a 1-cocycle:

λxS

S ∈ Z1(G,Map(FS ,Z/NZ)).

Proof. (1) Since (xp1
(ρp1

), . . . , xpr
(ρpr

)) ∼ (x′p1
(ρp1

), . . . , x′pr
(ρpr

)),

by (3.1.28), we have

r∑
i=1

(xpi
(ρpi

)− x′pi
(ρpi

)) = 0.

for any ρpi
∈ Fpi

. Therefore we have

r∑
i=1

λ
xpi
pi

(g, ρpi
) =

r∑
i=1

(fpi
(g, ρpi

)(xpi
(ρpi

))− xpi
(ρpi

.g)) by (3.1.10)

=

r∑
i=1

((fpi
(g, ρpi

)(xpi
(ρpi

))− fpi
(g, ρpi

)(x′pi
(ρpi

)))

+

r∑
i=1

(fpi
(g, ρpi

)(x′pi
(ρpi

))− x′pi
(ρpi

.g))

+

r∑
i=1

(x′pi
(ρpi

.g)− xpi
(ρpi

.g)) by Lem. 2.1.4 (1)

=

r∑
i=1

(fpi
(g, ρpi

)(x′pi
(ρpi

))− x′pi
(ρpi

.g)) by Lem. 2.1.4 (2)

=

r∑
i=1

λ
x′
pi

pi
(g, ρpi

)

for g ∈ G and ρpi
∈ Fpi

.



30 Hikaru Hirano et al.

(2) By Theorem 3.1.13, (3.1.26), (3.1.31) and (3.1.32), we have

λxS

S (gg′, ρS) =

r∑
i=1

λ
xpi
pi

(gg′, ρpi
)

=

r∑
i=1

λ
xpi
pi

(g, ρpi
) +

r∑
i=1

λ
xpi
pi

(g′, ρpi
.g)

= λxS

S (g, ρS) + λxS

S (g′, ρS .g)
= (λxS

S (g) + (g.λxS

S )(g′))(ρS)

for g ∈ G and ρS = (ρpi
) ∈ FS . Thus we obtain the assertion.

We call λxS

S the arithmetic Chern-Simons 1-cocycle for ∂VS with respect
to xS .

Proposition 3.1.34. Let x′S = [(x′p1
, . . . , x′pr

)] ∈ Γ(FS ,LS) be another sec-

tion of 
S. We define the map δ
xS ,x′

S

S : FS → Z/NZ by

δ
xS ,x′

S

S (ρS) :=

r∑
i=1

δ
xpi

,x′
pi

pi
(ρpi

)

for ρS = (ρpi
) ∈ FS, where δ

xpi
,x′

pi
pi

is the map defined in (3.1.16). Then we
have

λ
x′
S

S (g)− λxS

S (g) = g.δ
xS ,x′

S

S − δ
xS ,x′

S

S

for g ∈ G. So the cohomology class [λxS

S ] ∈ H1(G,Map(FS ,Z/NZ)) is inde-
pendent of the choice of xS.

Proof. First, note that δ
xS ,x′

S

S is proved to be independent of the choices
of xpi

’s in the similar manner to the proof of Lemma 3.1.33 (1). By the

definition of δ
xS ,x′

S

S , the formula follows from Proposition 3.1.18 by taking
the sum over pi ∈ S.

We denote the cohomology class [λxS

S ] by [λS ], which we call the arith-
metic Chern-Simons 1st cohomology class for ∂VS .

Let LxS

S be the product principal Z/NZ-bundle over FS :

LxS

S := FS × Z/NZ,

on which G acts from the right by

LxS

S ×G → LxS

S ; ((ρS ,m), g) �→ (ρS .g,m+ λxS

S (g, ρS)).
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Proposition 3.1.35. We have the following isomorphism of G-equivariant
principal Z/NZ-bundles over FS :

ΦxS

S : LS
∼−→ LxS

S ;

[αS ] = [(αp1
, . . . , αpr

)] �→ (
S([αS ]),

r∑
i=1

(αpi
− xpi

(
pi
(αpi

))).

For another section x′S, we have the following isomorphism of G-equivariant
F -line bundles over FS

Φ
xS ,x′

S

S : LxS

S
∼−→ Lx′

S

S : (ρS ,m) �→ (ρS ,m+ δ
xS ,x′

S

S (ρS)),

where δ
xS ,x′

S

S : FS → Z/NZ is the map in Proposition 3.1.34. For xS , x
′
S , x

′′
S ∈

Γ(FS ,LS) we have the equalities{
Φ
xS ,x′

S

S ◦ ΦxS

S = Φ
x′
S

S ,

ΦxS ,xS

S = idLxS
S
, Φ

x′
S ,xS

S = (Φ
xS ,x′

S

S )−1, Φ
x′
S ,x

′′
S

S ◦ ΦxS ,x′
S

S = Φ
xS ,x′′

S

S .

Proof. First, suppose [(αp1
, . . . , αpr

)] = [(α′
p1
, . . . , α′

pr
)]. Then 
pi

(αpi
) =


pi
(α′

pi
) and

∑r
i=1(α

′
pi
− αpi

) = 0 by (3.1.28). So we have

r∑
i=1

(α′
pi
− xpi

(
pi
(α′

pi
))) =

r∑
i=1

(
(α′

pi
− αpi

) + (αpi
− xpi

(
pi
(α′

pi
)))

)
=

r∑
i=1

(αpi
− xpi

(
pi
(αpi

))).

The proofs of the assertions go well in the similar manner to those of Propo-
sition 3.1.15 and Corollary 3.1.19, by taking the sum over pi ∈ S.

Taking the quotient by the action of G, we obtain the principal Z/NZ-
bundle 
xS

S : LxS

S → MS . We call 
xS

S : LxS

S → FS or 
xS

S : LxS

S → MS

the arithmetic prequantization principal Z/NZ-bundle for ∂VS with respect
to xS .

Let LS be the F -line bundle associated to the principal Z/NZ-bundle
LS over FS and the homomorphism Z/NZ → F×;m �→ ζmN :

(3.1.36)
LS := LS ×Z/NZ F

:= (LS × F )/([αS ], z) ∼ ([αS ].m, ζ−m
N z)

([αS ] ∈ LS ,m ∈ Z/NZ, z ∈ F ),
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on which G acts from the right by

(3.1.37) LS ×G −→ LS ; ([([αS ], z)], g) �→ [([αS ].g, z)].

The projection


S,F : LS −→ FS ; [([αS ], z)] �→ 
S([αS ])

is a G-equivariant F -line bundle. We denote the fiber 
−1
S,F (ρS) over ρS by

LS(ρS), which is non-canonically bijective to F by fixing [αS ] ∈ LS(ρS):
(3.1.38)

LS(ρS) := {[([αS ], z)] ∈ LS |
S([αS ]) = ρS} ∼→ F ; [([αS ], z)] �→ z.

Taking the quotient by the action of G, we obtain the F -line bundle 
S,F :
LS → MS . We call 
S,F : LS → FS or 
S,F : LS → MS the arithmetic
prequantization F -line bundle for ∂VS .

Let LxS

S be the trivial F -line bundle over FS :

LxS

S := FS × F,

on which G acts from the right by

LxS

S ×G → LxS

S ; ((ρS , z), g) �→ (ρS .g, zζ
λ
xS
S (g,ρS)

N ).

Proposition 3.1.39. We have the following isomorphism of G-equivariant
F -line bundles over FS :

ΦxS

S,F : LS
∼−→ LxS

S ; [([αS ], z)] �→ (
S([αS ]), zζ
∑r

i=1(αpi
−xpi

(�pi
(αpi

)))
N )

For another section x′S, we the following isomorphism of G-equivariant F -
line bundles over FS

Φ
xS ,x′

S

S,F : LxS

S
∼−→ L

x′
S

S : [(ρS , z)] �→ [(ρS , zζ
δ
xS,x′

S
S (ρS)

N )],

where δ
xS ,x′

S

S : FS → Z/NZ is the map in Proposition 3.1.34. For xS , x
′
S , x

′′
S ∈

Γ(FS ,LS), we have the equalities{
Φ
xS ,x′

S

S,F ◦ ΦxS

S,F = Φ
x′
S

S,F ,

ΦxS ,xS

S,F = idLxS
S
, Φ

x′
S ,xS

S,F = (Φ
xS ,x′

S

S,F )−1, Φ
x′
S ,x

′′
S

S,F ◦ ΦxS ,x′
S

S,F = Φ
xS ,x′′

S

S,F .
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Proof. The assertions can be proved in the similar manner to those of the
assertions in Proposition 3.1.24, by taking the sum over pi ∈ S.

Taking the quotient by the action of G, we obtain the line F -bundle

xS

S,F : L
xS

S → MS . We call 
xS

S,F : LxS

S → FS or 
xS

S,F : L
xS

S → MS the
arithmetic prequantization F -line bundle for ∂VS with respect to xS .

We may also give the description of LS in terms of the tensor product
of F -line bundles. Let pi : FS → Fpi

be the i-th projection. Let p∗i (Lpi
) be

the F -line bundle over FS induced from Lpi
by pi:

p∗i (Lpi
) := {(ρS , [(αpi

, zi)]) ∈ FS × Lpi
| pi(ρS) = 
pi

(αpi
)},

and let

p∗i (
pi
) : p∗i (Lpi

) −→ FS ; (ρS , [(αpi
, zi)]) �→ ρS

be the induced projection. The fiber over ρS = (ρpi
) is given by

p∗i (
pi
)−1(ρS) = {ρS} × {[(αpi

, zi)] ∈ Lpi
| ρpi

= 
pi
(αpi

), zi ∈ F}
� Lpi

(ρpi
)

� F,

where Lpi
(ρpi

) is as in (3.1.22). Let Lp1
� · · · � Lpr

be the tensor product
of p∗i (Lpi

)’s:

Lp1
� · · · � Lpr

:= p∗1(Lp1
)⊗ · · · ⊗ p∗r(Lpr

),

which is an F -line bundle over FS . An element of Lp1
� · · ·�Lpr

is written
by

(ρS , [(αp1
, z1)]⊗ · · · ⊗ [(αpr

, zr)]),

where ρS = (ρpi
) ∈ FS , [(αpi

, zi)] ∈ Lpi
(ρpi

). Let 
�
S : Lp1

� · · ·�Lpr
→ FS

be the projection. For fiber over ρS , we have

(3.1.40) (
�
S )

−1(ρS)
∼→ F ; (ρS , [(αp1

, z1)]⊗ · · · ⊗ [(αpr
, zr)]) �→

r∏
i=1

zi.

The right action of G on Lp1
� · · · � Lpr

is given by

(3.1.41)
Lp1

� · · · � Lpr
×G → Lp1

� · · · � Lpr
;

((ρS , [(αp1
, z1)]⊗ · · · ⊗ [(αpr

, zr)]), g)
�→ (ρS .g, [(αp1

.g, z1)]⊗ · · · ⊗ [(αpr
.g, zr)]).
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The projection 
�
S is G-equivariant.

Proposition 3.1.42. We have the following isomorphism of G-equivariant
F -line bundles over FS

Φ�
S,F : Lp1

� · · · � Lpr

∼−→ LS ;

(ρS , [(αp1
, z1)]⊗ · · · ⊗ [(αpr

, zr)]) �→ [([αS ],
∏r

i=1 zi)],

where ρS = (ρpi
) ∈ FS , [(αpi

, zi)] ∈ Lpi
(ρpi

), and αS = (αp1
, . . . , αpr

).

Proof. If (αpi
, zi) is changed to (αpi

.mi, ζ
−mi

N zi) for mi ∈ Z/NZ,
(αS ,

∏r
j=1 zj) is changed to ([αS ].mi, ζ

−mi

N

∏r
j=1 zj) ∼ ([αS ],

∏r
j=1 zj). So,

by (3.1.20) and (3.1.36), Φ�
S,F is well-defined.

(i) It is easy to see that 
S,F ◦ Φ�
S,F = 
�

S .

(ii) By (3.1.40), Φ�
S,F restricted to a fiber over ρS is F -linear.

(iii) By (3.1.30), (3.1.37) and (3.1.41), we see that Φ�
S,F is G-equivariant.

Therefore Φ�
S,F is a morphism of G-equivariant F -line bundles over FS . The

inverse is given by

(Φ�
S,F )

−1 : LS
∼−→ Lp1

� · · · � Lpr
;

([αS ], z) �→ (
S([αS ]), [(αp1
, z)]⊗ [(αp2

, 1)]⊗ · · · ⊗ [(αpr
, 1)]),

Hence Φ�
S,F is a G-equivariant isomorphism.

3.2. Arithmetic Chern-Simons functionals

Let Ok be the ring of integers of k. Let Xk := Spec(Ok) and let X∞
k denote

the set of infinite primes of k. We set Xk := Xk �X∞
k . Let S = {p1, . . . , pr}

be a finite set of finite primes of k. Let XS := Xk \S. We denote by ΠS the
modified étale fundamental group of XS with geometric base point Spec(k)
(k being a fixed algebraic closure of k), which is the Galois group of the
maximal subextension kS of k over k, unramified outside S (cf. [13, Section
2.1]). We assume that all maximal ideals of Ok dividing N are contained in
S (in particular, S is non-empty).

Let FXS
denote the set of continuous representations of ΠS to G:

FXS
:= Homcont(ΠS , G),

on which G acts from the right by

(3.2.1) FXS
×G → FXS

; (ρ, g) �→ ρ.g := g−1ρg,
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and let MXS
denote the quotient set by this action:

MXS
:= FXS

/G.

Let Map(FXS
,Z/NZ) be the additive group of maps from FXS

to Z/NZ,
on which G acts from the left by

(3.2.2) (g.ψ)(ρ) := ψ(ρ.g)

for g ∈ G,ψ ∈ Map(FXS
,Z/NZ) and ρ ∈ FXS

.

We fix an embedding k ↪→ kpi
, which induces the continuous homomor-

phism for each 1 ≤ i ≤ r

ιpi
: Πpi

−→ ΠS .

Let respi
and resS denote the restriction maps (the pull-backs by ιpi

) defined
by

(3.2.3)
respi

: FXS
−→ Fpi

; ρ �→ ρ ◦ ιpi
,

resS := (respi
) : FXS

−→ FS ; ρ �→ (ρ ◦ ιpi
),

which are G-equivariant by (3.1.1), (3.1.25) and (3.2.1). We denote by Respi

and ResS the homomorphisms on cochains defined by
(3.2.4)
Respi

: Cn(ΠS ,Z/NZ) −→ Cn(Πpi
,Z/NZ); α �→ α ◦ ιpi

,
ResS := (Respi

) : Cn(ΠS ,Z/NZ) −→
∏r

i=1C
n(Πpi

,Z/NZ); α �→ (α ◦ ιpi
).

Firstly, we note the following

Lemma 3.2.5. We have

H3(ΠS ,Z/NZ) = 0.

Proof. It suffices to show that the p-primary part H3(ΠS ,Z/NZ)(p) = 0 for
any prime number p. Since H3(ΠS ,Z/NZ)(p) = 0 for p � N , we may assume
that p | N .
Case thatN > 2. Then k is totally imaginary and so ΠS = ΠS∪X∞

k
(ΠS∪X∞

k
:=

πét1 (Spec(Ok \ S) being the Galois group of the maximal extension of k
unramified outside S ∪ X∞

k ). By our assumption on S, all primes over p
are contained in S. So the cohomological p-dimension cdp(ΠS) ≤ 2 by [23,
Proposition 8.3.18]. Hence H3(ΠS ,Z/NZ)(p) = 0.
Case that N = 2 and so p = 2. Since S does not contain any real primes
of k, the cohomological 2-dimension cd2(ΠS) ≤ 2 by [23, Theorem 10.6.7].
Hence H3(ΠS ,Z/2Z)(2) = 0.
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Let ρ ∈ FXS
and so c ◦ ρ ∈ Z3(ΠS ,Z/NZ). By Lemma 2.2.5, there is

βρ ∈ C2(ΠS ,Z/NZ)/B2(ΠS ,Z/NZ) such that

(3.2.6) c ◦ ρ = dβρ,

where d : C2(ΠS ,Z/NZ) → C3(ΠS ,Z/NZ) is the coboundary homomor-

phism. By (3.2.3), (3.2.4) and (3.2.6), we see that

(3.2.7) c ◦ respi
(ρ) = dRespi

(βρ)

for 1 ≤ i ≤ r. By (3.1.4), (3.1.27) and (3.2.7), we have

(3.2.8) [ResS(βρ)] ∈ LS(resS(ρ)).

Let res∗S(LS) be the G-equivariant principal Z/NZ-bundle over FXS
in-

duced from LS by resS :

(3.2.9) res∗S(LS) := {(ρ, αS) ∈ FXS
× LS | resS(ρ) = 
S(αS)}.

and let res∗S(
S) be the projection res∗S(LS) → FXS
. The quotient by the

action of G is the principal Z/NZ-bundle res∗(LS) over MXS
induced from

LS by resS . By (3.2.9), a section of res∗S(
S) is naturally identified with a

map yS : FXS
→ LS satisfying 
S ◦ yS = resS :

(3.2.10) Γ(FXS
, res∗S(LS)) = {yS : FXS

→ LS |
S ◦ yS = resS},

on which G acts by (g.yS)(ρ) := yS(ρ.g) for ρ ∈ FXS
, g ∈ G. We denote by

ΓG(FXS
, res∗S(LS)) the set of G-equivariant sections of res∗S(
S). We define

the (mod N) arithmetic Chern-Simons functional CSXS
: FXS

→ LS by

(3.2.11) CSXS
(ρ) := [ResS(βρ)]

for ρ ∈ FXS
. The value CSXS

(ρ) ∈ LS is called the arithmetic Chern-Simons

invariant of ρ.

Lemma 3.2.12. (1) CSXS
(ρ) is independent of the choice of βρ.

(2) CSXS
is a G-equivariant section of res∗S(
S):

CSXS
∈ ΓG(FXS

, res∗S(LS)) = Γ(MXS
, res∗S(LS)).
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Proof. (1) Let β′
ρ ∈ C2(ΠS ,Z/NZ)/B2(ΠS ,Z/NZ) be another choice satis-

fying c ◦ ρ = dβ′
ρ. Then we have β′

ρ = βρ + z for some z ∈ H2(ΠS ,Z/NZ)
and so

Respi
(β′

ρ)− Respi
(βρ) = invpi

(Respi
(z)) (1 ≤ i ≤ r).

Noting that any primes dividing N is contained in S, Tate-Poitou exact
sequence ([23, 8.6.10]) implies that the composite of the following maps

H2(ΠS ,Z/NZ)

∏
p∈S Resp−→

∏
p∈S

H2(Πp,Z/NZ)

∑
p∈S invp−→ Z/NZ

is the zero map, where S = S ∪ X∞
k . For any infinite prime v ∈ X∞

k ,
the restriction map Πv := Gal(kv/kv) → ΠS = Gal(kS/k) is the trivial
homomorphism, because any infinite prime is unramified in kS/k. So Resv :
H2(ΠS ,Z/NZ) → H2(Πv,Z/NZ) is the zero map. Hence we have

r∑
i=1

invpi
(Respi

(z)) = 0.

By (3.1.28), we obtain

[ResS(β
′
ρ)] = [ResS(βρ)].

(2) By (3.2.8), (3.2.10) and (3.2.11), we have

CSXS
∈ Γ(FXS

, res∗S(LS)).

So it suffices to show that CSXS
is G-equivariant. By (3.1.5) and (3.2.6), we

have

dβρ.g = c ◦ (ρ.g) = (g.c) ◦ ρ = (c+ dhg) ◦ ρ = d(βρ + hg ◦ ρ).

for g ∈ G and ρ ∈ FXS
. Therefore there is z ∈ H2(ΠS ,Z/Z) such that

βρ.g = βρ + hg ◦ ρ+ z and so

ResS(βρ.g) = ResS(βρ) + hg ◦ resS(ρ) + ResS(z)
= ResS(βρ).g +ResS(z).

By the same argument as in (1) above, we obtain

CSXS
(ρ.g) = [ResS(βρ.g)] = [ResS(βρ)].g = CSXS

(ρ).g.
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Let xS = [(xp1
, . . . , xpr

)] ∈ Γ(FS ,LS) be a section and let LxS

S be the
arithmetic prequantization principal Z/NZ-bundle over FS with respect to
xS . Let res∗S(L

xS

S ) be the G-equivariant principal Z/NZ-bundle over FXS

induced from LxS

S by resS :

res∗S(L
xS

S ) = {(ρ, (ρS ,m)) ∈ FXS
× LxS

S | resS(ρ) = ρS}
= FXS

× Z/NZ

by identifying (ρ, (ρS ,m)) with (ρ,m). So a section of res∗S(L
xS

S ) over FXS

is identified with a map FXS
→ Z/NZ:

Γ(FXS
, res∗S(LxS

S )) = Map(FXS
,Z/NZ),

on which G acts by (3.2.2). Therefore, letting MapG(FXS
,Z/NZ) denote

the set of G-equivariant maps FXS
→ Z/NZ, we have the identification

ΓG(FXS
, res∗S(L

xS

S )) = MapG(FXS
,Z/NZ)

= {ψ : FXS
→ Z/NZ |ψ(ρ.g) = ψ(ρ) + λxS

S (g, resS(ρ))

for ρ ∈ FXS
, g ∈ G}.

The isomorphism ΦxS

S : LS
∼→ LxS

S in Proposition 3.1.35 induces the isomor-
phism

ΨxS : ΓG(FXS
, res∗S(LS))

∼−→ ΓG(FXS
, res∗S(L

xS

S )) = MapG(FXS
,Z/NZ)

yS �→ ΦxS

S ◦ yS .

We then define the arithmetic Chern-Simons functional CSxS

XS
: FXS

→
Z/NZ with respect to xS by the image of CSXS

under ΨxS :

(3.2.13) CSxS

XS
:= ΨxS(CSXS

).

Theorem 3.2.14. (1) For ρ ∈ FXS
, we have

CSxS

XS
(ρ) =

r∑
i=1

(Respi
(βρ)− xpi

(respi
(ρ))),

which is independent of the choice of βρ.
(2) We have the following equality in C1(G,Map(FXS

,Z/NZ))

dCSxS

XS
= res∗(λxS

S ).
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Proof. (1) This follows from the definition of ΦxS

S in Proposition 3.1.35 and
(3.2.13).
(2) Since CSxS

XS
∈ MapG(FXS

,Z/NZ), we have

CSxS

XS
(ρ.g) = CSxS

XS
(ρ) + λxS

S (g, resS(ρ))

for g ∈ G and ρ ∈ FXS
, which means the assertion.

Proposition 3.2.15. Let x′S ∈ Γ(FS ,LS) be another section which

yields CS
x′
S

XS
, and let δ

xS ,x′
S

S : FS → Z/NZ be the map in Proposition 3.1.34.

Then we have

CS
x′
S

XS
(ρ)− CSxS

XS
(ρ) = δ

xS ,x′
S

S (resS(ρ)).

Proof. By Proposition 3.2.14 (1) and Lemma 2.1.4 (1), we have

CS
x′
S

XS
(ρ)− CSxS

XS
(ρ) =

r∑
i=1

(Respi
(βρ)− x′pi

(respi
(ρ)))

−
r∑

i=1

(Respi
(βρ)− xpi

(respi
(ρ)))

=

r∑
i=1

(xpi
(respi

(ρ))− x′pi
(respi

(ρ)))

= δ
xS ,x′

S

S (resS(ρ)).

For xS , x
′
S ∈ Γ(FS ,LS), the G-equivariant isomorphism Φ

xS ,x′
S

S : LxS

S
∼→

Lx′
S

S induces the isomorphism

ΨxS ,x′
S : ΓG(FXS

, res∗S(LxS

S ))
∼−→ ΓG(FXS

, res∗S(LxS

S )); ψxS �→ Φ
xS ,x′

S

S ◦ ψxS .

By Proposition 3.1.35, we have

ΨxS ,x′
S ◦ΨxS = Ψx′

S .
ΨxS ,xS = idΓG(FXS

,res∗S(L
xS
S )),Ψ

x′
S ,xS = (ΨxS ,x′

S)−1,Ψx′
S ,x

′′
S ◦ΨxS ,x′

S = ΨxS ,x′′
S .

So we can define the equivalence relation ∼ on the disjoint union of
ΓG(FXS

, res∗S(L
xS

S )) over xS ∈ Γ(FS ,LS) by

ψxS ∼ ψx′
S ⇐⇒ ΨxS ,x′

S(ψxS) = ψx′
S
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for ψxS ∈ ΓG(FXS
, res∗S(L

xS

S )) and ψx′
S ∈ ΓG(FXS

, res∗S(L
xS

S )).Since

Φ
x′
S

S = Φ
xS ,x′

S

S ◦ ΦxS

S , CSxS

XS
� CS

x′
S

XS
.

Thus we have the following identification:

(3.2.16)
ΓG(FXS

, res∗S(LS)) =
⊔

xS∈Γ(FS ,LS)
ΓG(FXS

, res∗S(L
xS

S ))/ ∼;

ψ �→ [ΨxS(ψ)]

where CSXS
and [CSxS

XS
] are identified.

4. Quantum theory

In this section, we construct the arithmetic quantum space and the arith-
metic Dijkgraaf-Witten invariant over the moduli space of Galois representa-
tions. These constructions correspond to the quantum theory of topological
Dijkgraaf-Witten TQFT. We keep the same notations and assumptions as
in Section 3. We assume that F is a subfield of C such that ζN is contained
in F and F = F (F being the complex conjugate).

4.1. Arithmetic quantum spaces

Following the construction of the quantum Hilbert space, we define the arith-
metic quantum space HS for ∂VS by the space of G-equivariant sections of
the arithmetic prequantization F -line bundle 
S,F : LS → FS :

HS := ΓG(FS , LS) = Γ(MS , LS).

It is a finite dimensional F -vector space.
Let xS = [(xp1

, . . . , xpr
)] ∈ Γ(FS ,LS) be a section and let LxS

S be the
arithmetic prequantization F -line bundle over FS with respect to xS and let
(4.1.1)

HxS

S := ΓG(FS , L
xS

S ) = Γ(MS , L
xS

S )

= {θ : FS → F | θ(ρS .g) = ζ
λ
xS
S (g,ρS)

N θ(ρS) for ρS ∈ FS , g ∈ G},

which we call the arithmetic quantum space for ∂VS with respect to xS . The
isomorphism ΦxS

S,F : LS
∼→ LxS

S in Proposition 3.1.39 induces the isomor-
phism

(4.1.2) ΘxS : HS
∼−→ HxS

S ; θ �→ ΦxS

S,F ◦ θ.
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We call an element of HS or HxS

S an arithmetic theta function (cf. Remark
4.2.4 below).

For xS , x
′
S ∈ Γ(FS ,LS), the isomorphism Φ

xS ,x′
S

S,F : LxS

S
∼→ L

x′
S

S induces
the isomorphism of F -vector spaces:

ΘxS ,x′
S : HxS

S
∼−→ Hx′

S

S ; θxS �→ Φ
xS ,x′

S

S,F ◦ θxS

and, by Proposition 3.1.39, we have{
ΘxS ,x′

S ◦ΘxS = Θx′
S

ΘxS ,xS = idHxs
S
,Θx′

S ,xS = (ΘxS ,x′
S)−1,Θx′

S ,x
′′
S ◦ΘxS ,x′

S = ΘxS ,x′′
S .

So the equivalence relation ∼ is defined on the disjoint union of all HxS

S
running over xS ∈ Γ(FS ,LS) by

θxS ∼ θx
′
S ⇐⇒ ΘxS ,x′

S(θxS) = θx
′
S

for θxS ∈ HxS

S and θx
′
S ∈ Hx′

s

S . Then we have the following identification:

(3.1.3) HS =
⊔

xS∈Γ(FS ,LS)

HxS

S / ∼ .

Remark 4.1.4. The arithmetic quantum space HS is an arithmetic ana-
log of the quantum Hilbert space HΣ for a surface Σ in (2+1)-dimensional
Chern-Simons TQFT. We recall that HΣ is known to coincides with the
space of conformal blocks ([4]) and its dimension formula was shown by
Verlinde ([27]). It would also be an interesting question in number theory
to describe the dimension and a canonical basis of HS in comparison of
Verlinde’s formulas.

4.2. Arithmetic Dijkgraaf-Witten partition functions

For ρS ∈ FS , we define the subset FXS
(ρS) of FXS

by

FXS
(ρS) := {ρ ∈ FXS

| resS(ρ) = ρS}.

We then define the arithmetic Dijkgraaf-Witten invariant ZxS

XS
(ρS) of ρS

with respect to xS by

(4.2.1) ZxS

XS
(ρS) :=

1

#G

∑
ρ∈FXS

(ρS)

ζ
CS

xS
XS

(ρ)

N .
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Theorem 4.2.2. (1) ZxS

XS
(ρS) is independent of the choice of βρ.

(2) We have

ZxS

XS
∈ HxS

S .

Proof. (1) This follows from Lemma 3.2.12 (1).
(2) This follows from Theorem 3.2.14 (2) and (4.2.1).

We call ZxS

XS
∈ HxS

S the arithmetic Dijkgraaf-Witten partition function

for XS with respect to xS .

The following proposition tells us how they are changed when we change
xS .

Proposition 4.2.3. For sections xS , x
′
S ∈ Γ(FS ,LS), we have

ΘxS ,x′
S(ZxS

XS
) = Z

x′
S

XS
.

Proof. We have

ΘxS ,x′
S(ZxS

XS
)(ρS) = (Φ

xS ,x′
S

S,F ◦ ZXS
)(ρS)

= ZXS
(ρS)ζ

δ
xS,x′

S
S (ρS)

N by Proposition 3.1.39

=
1

#G

∑
ρ∈FXS

(ρS)

ζ
CS

xS
XS

(ρ)+δ
xS,x′

S
S (ρS)

N by (4.2.1)

=
1

#G

∑
ρ∈FXS

(ρS)

ζ
CS

x′
S

XS
(ρ)

N by Proposition 3.2.15

= Z
x′
S

XS
(ρS)

for ρS ∈ FS . So we obtain the assertion.

By the identification (4.1.3), ZxS

XS
defines the element ZXS

of HS which

is independent of the choice of xS . We call it the arithmetic Dijkgraaf-Witten
partition function for XS .

Remark 4.2.4. In (2+1)-dimensional Chern-Simons TQFT, an element of
HΣ for a surface Σ may be regarded as a (non-abelian) generalization of the
classical theta function on the Jacobian manifold of Σ (cf. [4]. It goes back
to Weli’s paper [29]. See [21] for an arithmetic analog.) In this respect, it
may be interesting to observe that the Dijkgraaf-Witten partition function
in (3.2.1) may look like a variant of (non-abelian) Gaussian sums.
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5. Some basic and functorial properties

In this section, we study some basic and functorial properties of the objects

constructed in Sections 2 and 3. We keep the same notations as in Sections

3 and 4.

5.1. Change of the 3-cocycle c

The theory given in Sections 3 and 4 depends on a chosen 3-cocycle c. We

shall see in the following that when c is changed in the cohomology class

[c], objects are changed to isomorphic ones, and hence the theory depends

essentially on the cohomology class [c]. Let c′ ∈ Z3(G,Z/NZ) be another 3-

cocycle representing [c]. The objects constructed by using c′ will be denoted
by using ′, for example, by L′

p, L
′
p, . . . etc.

There is b ∈ C2(G,Z/NZ) such that c′ − c = db. Then we have the

isomorphism of Z/NZ-torsors for ρp ∈ Fp:

Lp(ρp)
∼−→ L′

p(ρp); αp �→ αp + b ◦ ρp,

which induces the following isomorphisms of arithmetic quantization bun-

dles:

(5.1.1)
ξp : Lp

∼−→ L′
p, ξp,F : Lp

∼−→ L′
p,

ξS : LS
∼−→ L′

S , ξS,F : LS
∼−→ L′

S .

Let xp ∈ Γ(Fp,Lp) and xS = [(xp1
, . . . , xpr

)] ∈ Γ(FS ,LS), and let x′p ∈
Γ(F ′

p,L′
p) and x′S ∈ Γ(F ′

F ,L′
S). Denote by λ′

p and λ′
S the arithmetic Chern-

Simons 1-cocycles for ∂Vp and ∂VS with respect to x′p and x′S , respectively.
We define κp : Fp → Z/NZ and κS : FS → Z/NZ by

κp(ρp) := (ξp ◦ xp)(ρp)− x′p(ρp), κS(ρS) :=

r∑
i=1

κpi
(ρpi

)

for ρp ∈ Fp and ρS = (ρp1
, . . . , ρpr

) ∈ FS , respectively. Then we have

λ′
p(g)− λp(g) = g.κp − κp, λ′

S(g)− λS(g) = g.κS − κS .

We note that if we take x′p := ξp ◦ xp and x′S := ξS ◦ xS , κp = 0 and so

κS = 0. As in Corollary 3.1.19, Propositions 3.1.24, 3.1.35 and 3.1.39, using
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κp and κS , we have the isomorphisms

Lxp

p

∼−→ L′
p
x′
p , L

xp

p

∼−→ L′
p
x′
p ,

LxS

S
∼−→ L′

S
x′
S , LxS

S
∼−→ L′

S
x′
S .

which are compatible with the isomorphisms in (5.1.1) via the isomorphisms

Lp � Lxp

p , Lp � L
xp

p ,LS � LxS

S and LS � LxS

S in Propositions 3.1.15, 3.1.24,

3.1.35 and 3.1.39.

The isomorphism ξS : LS
∼→ L′

S induces the isomorphism

ΓG(FXS
, res∗S(LS))

∼−→ ΓG(FXS
, res∗S(L′

S))

which sends CSXS
to CS′

XS
, and the isomorphism ξS,F : LS

∼→ L′
S induces

the isomorphisms

HS
∼−→ H′

S , HxS

S
∼−→ H′

S
x′
S ,

which sends ZXS
to Z ′

XS
.

Remark 5.1.2. A cochain α ∈ Cn(G,A) is called normalized if α(g1, . . . ,

gn) = 0 whenever one of gi’s is 1. It is known that any cocyle is cohomol-

ogous to a normalized one, namely, any cohomology class of Hn(G,A) is

represented by a normalized cocycle ([23, Chapter I, §2, Exercise 4], [10,

Lemma 6.1]). Therefore, by the above argument, we may assume that we

can take the fixed cocycle c ∈ Z3(G,Z/NZ) in our theory to be normalized.

5.2. Change of number fields

Let k′ be an another number field contains a primitive N -th root of unity

and let S′ = {p′1, . . . , p′r′} be a finite set of finite primes of k′ such that

any finite prime dividing N is contained in S′. The objects constructed by

using k′ and S′ will be denoted by, for example, Lp′ , Lp′ ,LS′ , LS′ , . . . etc,

for simplicity of notations. Assume that r = r′ and there are isomorphisms

ξi : kpi

∼→ k′
p′
i
for 1 ≤ i ≤ r. Then ξi’s induces the following isomorphisms of

arithmetic quantization bundles:

ξpi
: Lpi

∼−→ Lp′
i
, ξpi,F : Lpi

∼−→ Lp′
i

ξS : LS
∼−→ LS′ , ξS,F : LS

∼−→ LS′ .
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Let xpi
∈ Γ(Fpi

,Lpi
) and xS = [(xp1

, . . . , xpr
)] ∈ Γ(FS ,LS), and let xp′

i
∈

Γ(Fp′
i
,Lp′

i
) and xS′ = [(xp′

1
, . . . , xp′

r
)] ∈ Γ(FS′ ,LS′). Then we have the iso-

morphisms of arithmetic prequantization bundles with respect to sections

Lxpi
pi

∼−→ L
xp′

i

p′
i
, L

xpi
pi

∼−→ L
xp′

i

p′
i

LxS

S
∼−→ LxS′

S′ , LxS

S
∼−→ LxS′

S′ .

Suppose further that there is an isomorphism τ : k
∼→ k′ of number fields

which sends pi to p′i for 1 ≤ i ≤ r. so that we have the isomorphism

ξ : XS := Xk \ S
∼−→ Xk′\S′ =: XS′ .

For example, let k := Q( 3
√
2), k′ := Q( 3

√
2ω), ω := exp(2π

√
−1

3 ) and so N = 2.

Let ξ be the isomorphism k
∼→ k′ defined by ξ( 3

√
2) := 3

√
2ω. Noting 2Ok =

( 3
√
2)2, X3−2 = (X−4)(X−7)(X−20) mod 31, let S := {p1 := ( 3

√
2), p2 :=

(31, 3
√
2 − 4), p2 := (31, 3

√
2 − 7), p4 := (31, 3

√
2 − 20)}, S′ := ξ(S) = {p′1 :=

( 3
√
2ω), p′2 := (31, 3

√
2ω − 4), p′3 := (31, 3

√
2ω − 7), p′4 := (31, 3

√
2ω − 20)}, so

that we have kp1
= k′

p′
1
= Q2 and kpi

= k′
p′
i
= Q31 (2 ≤ i ≤ 4). So this

example satisfies the above conditions.
The isomorphism ξ : XS

∼→ XS′ induces the bijection ξ∗ : FXS′

∼−→
FXS

. By the constructions in the subsection 3.2 and the section 4, we have
the following

Proposition 5.2.1. The isomorphism ξS : LS
∼→ LS′ induces the bijection

ΓG(FXS
, res∗S(LS))

∼−→ ΓG(FXS′ , res
∗
S′(LS′))

which sends CSXS
to CSXS′ . The isomorphism ξS,F : LS

∼→ LS′ induces the
isomorphism

HS
∼−→ HS′ ,

which sends ZXS
to ZXS′ .

Remark 5.2.2. Proposition 5.2.1 may be regarded as an arithmetic ana-
logue of the axiom in (2 + 1)-dimensional TQFT, which asserts that an

orientation homeomorphism f : Σ
≈→ Σ′ between closed surfaces induces an

isomorphism HΣ
∼→ HΣ′ of quantum Hilbert spaces and if f extends to an

orientation preserving homeomorphism M
≈→ M ′, with ∂M = Σ, ∂M ′ = Σ′,

ZM is sent to ZM ′ under the induced isomorphism H∂M
∼→ H∂M ′ .
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5.3. The case that S is empty

In the theory in Sections 3 and 4, we can include the case that S is the
empty set ∅ as follows.

We define F∅ to be the space of a single point, F∅ := {∗}. We define
the arithmetic prequantization principal Z/NZ-bundle L∅ to be Z/NZ, on
which G acts trivially, so that the map
∅ : L∅ → F∅ is G-equivariant. So the
arithmetic prequantization F -line bundle L∅ is defined by Z/NZ×Z/NZF =
F . The arithmetic Chern-Simons 1-cocycle λ∅ is defined to be 0.

Let Π̃k be the modified étale fundamental group of Xk defined by con-
sidering the Artin-Verdier topology on Xk, which takes the real primes into
account (cf. [13, Section 2.1], [1], [5], [32]). It is the Galois group of the
maximal extension of k unramified at all finite and infinite primes. We set

FXk
:= Homcont(Π̃k, G).

Following [H], we define the mod N arithmetic Chern-Simons invariant
CSXk

(ρ) of ρ ∈ FXk
by the image of c under the composition

H3(G,Z/NZ)
ρ∗

→ H3(Π̃k,Z/NZ) → H3(Xk,Z/NZ) � Z/NZ,

where the cohomology group of Xk is the modified étale cohomology defined
in the Artin-Verdier topology. Thus we have the arithmetic Chern-Simons
functional CSXk

: FXk
→ Z/NZ and so we see that

CSXk
∈ ΓG(FXk

, res∗∅(L∅)) = Map(MXk
,Z/NZ),

where res∅ is the (unique) restriction map FXk
→ F∅. Then we have

dCSXk
= 0 = res∗∅(λ∅).

The arithmetic quantum space H∅ is defined by ΓG(F∅, L∅) = F . Fol-
lowing [13], we define the arithmetic Dijkgraaf-Witten invariant Z(Xk) of
Xk by

Z(Xk) :=
1

#G

∑
ρ∈FXk

ζ
CSXk

(ρ)

N

and the arithmetic Dijkgraaf-Witten partition function by ZXk
: F∅ → F

by ZXk
(∗) := Z(Xk) for ∗ ∈ F∅. So we have

ZXk
∈ H∅.
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We note that when [c] is trivial, Z(Xk) coincides with the (averaged) number
of continuous homomorphism from Π̃k to G:

Z(Xk) =
#Homcont(Π̃k, G)

#G
,

which is the classical invariant for the number field k.

5.4. Disjoint union of finite sets of primes and reversing the
orientation of ∂VS

Let S1 = {p1, . . . , pr1} and S2 = {pr1+1, . . . , pr} be disjoint sets of finite
primes of k and let S = S1 � S2. We include the case where S1 is empty,
but S2 is non-empty. (For the case where S1 and S2 are both empty, the
following arguments are trivial.) Then we have

FS = FS1
×FS2

.

For the arithmetic quantization principal Z/NZ-bundles, we define the
map

� : LS1
× LS2

−→ LS ,

as follows. For the case that S1 = ∅ (and so S2 = S), we set

(5.4.1) m � [αS2
] := [αS2

].m

for (m, [αS ]) ∈ L∅ × LS2
. For the case that S1 �= ∅, we set

(5.4.2) [αS1
] � [αS2

] := [(αS1
, αS2

)]

for ([αS1
], [αS2

]) ∈ LS1
× LS2

.

For the arithmetic quantization F -line bundles, we let p∗i (LSi
) be the

G-equivariant F -line bundle over FS induced from LSi
by the projection

pi : FS → FSi
for i = 1, 2:

p∗i (LSi
) := {(ρS , [([αSi

], zi)]) ∈ FS × LSi
| ρSi

= 
Si
([αSi

]) }

for ρS = (ρS1
, ρS2

). When S1 = ∅, we think of p∗i (L∅) = F simply over
F∅ = {∗}. Let

p∗i (
Si
) : p∗i (LSi

) −→ FS
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be the projection. The fiber over ρS = (ρS1
, ρS2

) is given by

p∗i (
Si
)−1(ρS) = {ρS} × {[([αSi

], zi)] ∈ LSi
| ρSi

= 
Si
([αSi

]), zi ∈ F}
= LSi

(ρSi
)

� F,

where LSi
(ρSi

) is as in (3.1.38). We set

LS1
� LS2

:= p∗1(LS1
)⊗ p∗2(LS2

),

which is the F -line bundle over FS and whose element is written by

(ρS , [([αS1
], z1)]⊗ [([αS2

], z2)]),

where ρS = (ρS1
, ρS2

) ∈ FS , [([αSi
], zi)] ∈ LSi

(ρSi
). The right action on

LS1
� LS2

is defined by

(ρS , [([αS1
], z1)]⊗ [([αS2

], z2)]).g := (ρS .g, [([αS1
].g, z1)]⊗ [([αS2

].g, z2)])

so that the projection LS1
�LS2

→ FS is G-equivariant. Then, as in Propo-
sition 3.1.42, we have the isomorphism of G-equivariant F -line bundles over
FS :

LS1
� LS2

∼−→ LS ; (ρS , [([αS1
], z1)]⊗ [([αS2

], z2)]) �→ [([αS ], z1z2)],

where αS = (αS1
, αS2

). Choose xSi
∈ Γ(FSi

,LSi
) and let xS := [(xS1

, xS2
)] ∈

Γ(FS ,LS). Then we see that

λ
xS1

S1
(g, ρS1

) + λ
xS2

S2
(g, ρS2

) = λxS

S (g, ρS)

for g ∈ G, ρS = (ρS1
, ρS2

) and, as in the case that LS , we have the isomor-
phism

L
xS1

S1
�L

xS2

S2 := p∗1(L
xS1

S1
)⊗p∗2(L

xS2

S2
)

∼−→ LxS

S ; ((ρS1
, ρS2

), z1⊗z2) �→ (ρS , z1z2)

for ρS = (ρS1
, ρS2

), which is compatible with LS1
�LS2

� LS via Proposition
2.1.39.

Proposition 5.4.3. For θi ∈ HxSi

Si
(i = 1, 2), we define θ1 · θ2 ∈ HxS

S

by

(θ1 · θ2)(ρS) := θ1(ρS1
)θ2(ρS2

)
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for ρS = (ρS1
, ρS2

). Then we have the following isomorphism of F -vector
spaces

HxS1

S1
⊗HxS2

S2

∼−→ HxS

S ; θ1 ⊗ θ2 �→ θ1 · θ2.
For θi ∈ HSi

(i = 1, 2), we define θ1 � θ2 ∈ HS by

(θ1 � θ2)(ρS) := p∗1(θ1(ρS1
))⊗ p∗2(θ2(ρS2

))

for ρS = (ρS1
, ρS2

). Here p∗1(θ1(ρS1
))⊗p∗2(θ2(ρS2

)) denotes [([αS ], z1z2)] when
θi(ρSi

) = [([αSi
], zi)], αS = (αS1

, αS2
). Then we have the following isomor-

phism of F -vector spaces

HS1
⊗HS2

∼−→ HS ; (θ1, θ2) �→ θ1 � θ2.

The above isomorphisms are compatible via the isomorphisms ΘxSi : HSi
�

HxSi

Si
(i = 1, 2) and ΘxS : HS � HxS

S in (4.1.2).

Proof. We may assume by Remark 5.1.2 that the cocycle c is normalized.
For θ ∈ HxS

S , set θ1(ρS1
) := θ(ρS1

, 1) and θ2(ρS2
) := θ(1, ρS2

). Since c is
normalized, by (3.1.7) and (3.1.10), we have λp(g, 1) = 0 for g ∈ G and
p ∈ Si. From this, we have θi ∈ HxSi

Si
. Then the map HxS

S → HxS1

S1
⊗ HxS2

S2
;

θ �→ θ1 ⊗ θ2, gives the inverse of the former map. By the definitions, the
second map is compatible with the first one via Θ

xSi

Si
: HSi

� HxSi

Si
(i = 1, 2)

and ΘxS : HS � HxS

S and so we have the following commutative diagram

HS1
⊗HS2

−→ HS

ΘxS1 ⊗ΘxS2 � ↓ ↓ � ΘxS

HxS1

S1
⊗HxS2

S2

∼−→ HxS

S ,

from which the second isomorphism follows.

Remark 5.4.4. Proposition 5.4.3 may be regarded as an arithmetic analog
of the multiplicative property that HΣ1�Σ2

= HΣ1
⊗HΣ2

for disjoint surfaces
Σ1 and Σ2 which is one of the axioms required in (2+1)-dimensional TQFT
([2]).

For a finite prime p of k, the canonical isomorphism

invp : H2
ét(∂Vp,Z/NZ)

∼−→ Z/NZ

indicates that ∂Vp is “orientable” and we choose (implicitly) the “orienta-
tion” of ∂Vp corresponding 1 ∈ Z/NZ. We let ∂V ∗

p = ∂Vp with the “opposite
orientation”, namely, invp([∂V

∗
p ]) = −1.
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The arithmetic prequantization principal Z/NZ-bundle for ∂V ∗
p , denoted

by Lp∗ , is defined (formally) by Lp with the opposite action of the structure
group Z/NZ, (αp,m) �→ αp.(−m) for αp ∈ Lp∗ and m ∈ Z/NZ. So the
arithmetic prequantization F -line bundle Lp∗ for ∂V ∗

p is the dual bundle of
Lp, Lp∗ = L∗

p. Noting Γ(Fp,Lp∗) = Γ(Fp,Lp), the arithmetic Chern-Simons
1-cocycle λ

xp

p∗ for ∂V ∗
p is given by −λ

xp

p for xp ∈ Γ(Fp,Lp∗). The actions of
G on Lxp

p∗ = Fp × Z/NZ and L
xp

p∗ = Fp × F are changed to those via λ
xp

p∗ .

For a finite set of finite primes S = {p1, . . . , pr}, we set ∂V ∗
S := ∂V ∗

p1
�

· · · � ∂V ∗
pr
. Then the arithmetic prequantization bundles LS∗ , LS∗ ,LxS

S∗ and
LxS

S∗ (xS ∈ Γ(FS ,LS∗) = Γ(Fp,LS)) are defined in the similar manner. For
the arithmetic Chern-Simons 1-cocycle, we have

λxS

S∗ = −λxS

S .

Let HxS

S∗ be the arithmetic quantum space for ∂V ∗
S with respect to xS .

Then we see that

HxS

S∗ = {θ∗ : FS → F | θ∗(ρS .g) = ζ
λ
xS
S∗ (g,ρS)

N θ∗(ρS) for ρS ∈ FS , g ∈ G}
= {θ∗ : FS → F | θ∗(ρS .g) = ζ

−λS(g,ρS)
N θ∗(ρS) for ρS ∈ FS , g ∈ G}

= HxS

S ,

where HxS

S is the complex conjugate of HxS

S . Since the pairing

HxS

S∗ ×HxS

S −→ F ; (θ∗, θ) �→
∑

ρS∈FS

θ∗(ρS)θ(ρS)

is a (Hermitian) perfect pairing, together with (3.1.2), we have the following

Proposition 5.4.5. HxS

S∗ and HS∗ are the dual spaces of HxS

S and HS,
respectively:

HxS

S∗ = (HxS

S )∗, HS∗ = (HS)
∗.

Remark 5.4.6. Proposition 5.4.5 may be regarded as an arithmetic analog
of the involutory property that HΣ∗ = H∗

Σ, where Σ
∗ = Σ with the opposite

orientation, which is one of the axioms required in (2+1)-dimensional TQFT
([2]).

In the subsection 3.2 and the section 4, we have chosen implicitly the
orientation of XS so that the boundary ∂XS with induced orientation may
be identified with ∂VS . Let X

∗
S denote XS with the opposite orientation.
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Then, the arithmetic Chern-Simons functional and the Dijkgraaf-Witten
partition function for X

∗
S are given as follows:

(5.4.7) CSxS

X
∗
S

= −CSxS

XS
, ZxS

X
∗
S

(ρS) =
1

#G

∑
ρ∈FXS

ζ
−CS

xS
XS

(ρ)

N .

6. Decomposition and gluing formulas

In this section, we show a decomposition formula for arithmetic Chern-
Simons invariants and a gluing formula for arithmetic Dijkgraaf-Witten
partition functions, which generalize the decomposition formula in [8] in
our framework. We keep the same notations and assumptions as in Sections
3, 4 and 5.

6.1. Arithmetic Chern-Simons functionals and arithmetic
Dijkgraaf-Witten partition functions for VS

For a finite prime p of k, let Op denote the ring of p-adic integers and we let
Vp := Spec(Op). For a non-empty finite set of finite primes S = {p1, · · · , pr}
of k, let VS := Vp1

� · · · � Vpr
, which plays a role analogous to a tubular

neighborhood of a link, and so ∂VS plays a role of the boundary of VS . In
this subsection, we introduce the arithmetic Chern-Simons functional and
arithmetic Dijkgraaf-Witten partition function for VS , which will be used
for our gluing formula in the next section.

Let Π̃p be the étale fundamental group of Vp, namely, the Galois group
of the maximal unramified extension of kp and we set

FVp
:= Homcont(Π̃p, G), FVS

:= FVp1
× · · · × FVpr

.

Since Π̃p � Ẑ (profinite infinite cyclic group), FVp
� G. G acts on FVS

from
the right by

FVS
×G → FVS

; ((ρ̃pi
)i, g) �→ ρ.g := (g−1ρ̃pi

g)i,

and let MVS
denote the quotient set by this action:

MVS
:= FVS

/G.

Let ˜respi
: FVpi

→ Fp and ˜resS := ( ˜respi
) : FVS

→ FS denote the restriction

maps induced by the natural continuous homomorphisms vpi
: Πpi

→ Π̃pi
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(1 ≤ i ≤ r), which are G-equivariant. We denote by R̃espi
and R̃esS the

homomorphisms on cochains given as the pull-back by vpi
:

R̃espi
: Cn(Π̃pi

,Z/NZ) −→ Cn(Πpi
,Z/NZ);αi �→ αi ◦ vpi

,

R̃esS :

r∏
i=1

Cn(Π̃pi
,Z/NZ) →

r∏
i=1

Cn(Πpi
,Z/NZ); (αi) �→ (R̃espi

(αi)).

For ρ̃ = (ρ̃pi
)i ∈ FVS

, c ◦ ρ̃pi
∈ Z3(Π̃pi

,Z/NZ). Since H3(Π̃pi
,Z/NZ) = 0,

there is β̃pi
∈ C2(Π̃pi

,Z/NZ) such that

c ◦ ρ̃pi
= dβ̃pi

.

We see that

c ◦ ˜respi
(ρ̃pi

) = dR̃espi
(β̃pi

)

for 1 ≤ i ≤ r and we have

[R̃esS((β̃pi
)i)] ∈ LS( ˜resS(ρ̃)).

Let ˜res∗S(LS) be the G-equivariant principal Z/NZ-bundle over FVS
induced

from LS by ˜resS :

˜res∗S(LS) := {(ρ̃, αS) ∈ FVS
× LS | ˜resS(ρ̃) = 
S(αS)}

and let ˜res∗S(
S) be the projection ˜res∗S(LS) → FVS
. We define the arithmetic

Chern-Simons functional CSVS
: FVS

→ LS by

CSVS
(ρ̃) := [R̃esS((β̃pi

)i)]

for ρ̃ ∈ FVS
. The value CSVS

(ρ̃) is called the arithmetic Chern-Simons in-
variant of ρ̃.

Lemma 6.1.1. (1) CSVS
(ρ̃) is independent of the choice of β̃pi

.
(2) CSVS

is a G-equivariant section of ˜res∗S(
S):

CSVS
∈ ΓG(FVS

, ˜res∗S(LS)) = Γ(MVS
, ˜res∗S(LS)).

Proof. (1) This follows from the fact that the cohomological dimension of
Π̃pi

is one.
(2) The proof of this lemma is almost same as Lemma 3.2.12. (2).



On arithmetic Dijkgraaf-Witten theory 53

For a section xS = [(xp1
, . . . , xpr

)] ∈ Γ(FS ,LS), the isomorphism ΦxS

S :

LS
∼→ LxS

S induces the isomorphism

Ψ̃xS : ΓG(FVS
, ˜res∗S(LS))

∼−→ ΓG(FVS
, ˜res∗S(LxS

S )) = MapG(FVS
,Z/NZ);

yS �→ ΦxS

S ◦ yS .

We define the arithmetic Chern-Simons functional CSxS

VS
: FVS

→ Z/NZ

with respect to xS by the image of CSVS
under Ψ̃xS .

Proposition 6.1.2. (1) For ρ ∈ FVS
, we have

CSxS

VS
(ρ̃) =

r∑
i=1

(R̃esS(β̃pi
)− xpi

( ˜respi
(ρ̃pi

))).

(2) We have the following equality in C1(G,Map(FVS
,Z/NZ))

dCSVS
= ˜res∗(λxS

S ).

Proof. (1) This follows from the definition of Ψ̃xS .
(2) Since CSVS

∈ MapG(FVS
,Z/NZ), we have

CSxS

VS
(ρ̃.g) = CSxS

VS
(ρ̃) + λxS

S (g, ˜resS(ρ̃))

for g ∈ G and ρ̃ ∈ FVS
, which means the assertion.

Proposition 6.1.3. Let x′S ∈ Γ(FS ,LS) be another section, which yields

CS
x′
S

VS
and let δ

xS ,x′
S

S : FS → Z/NZ be the map in Proposition 3.1.34. Then
we have

CS
x′
S

VS
(ρ̃)− CSxS

VS
(ρ̃) = δ

xS ,x′
S

S ( ˜resS(ρ̃)).

Proof. This follows from Proposition 6.1.2. (1) and Lemma 2.1.4.

For ρS ∈ FS , we define the subset FVS
(ρS) of FVS

by

FVS
(ρS) := {ρ̃ ∈ FVS

| ˜resS(ρ̃) = ρS}.

We then define the arithmetic Dijkgraaf-Witten invariant ZVS
(ρS) of ρS with

respect to xS by

ZxS

VS
(ρS) :=

1

#G

∑
ρ̃∈FVS

(ρS)

ζN
CS

xS
VS

(ρ̃).
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Theorem 6.1.4. (1) ZxS

VS
(ρS) is independent of the choice of β̃ρpi

.
(2) We have

ZxS

VS
∈ HxS

S .

Proof. (1) This follows from Proposition 6.1.1. (1).
(2) This follows from Proposition 6.1.2. (2).

We call ZxS

VS
the arithmetic Dijkgraaf-Witten partition function for VS

with respect to xS .

Proposition 6.1.5. For sections xS , x
′
S ∈ Γ(FS ,LS) we see that

ΘxS ,x′
S(ZxS

VS
) = Z

x′
S

VS
.

Proof. This follows from Proposition 6.1.3.

By the identification (4.1.3), ZxS

VS
defines the element ZVS

of HS which is
independent of the choice of xS . We call it the arithmetic Dijkgraaf-Witten
partition function for VS .

In the above, the orientation of VS is chosen so that it is compatible
with that of ∂VS as explained in the subsection 5.4. Let V ∗

S denote VS with
opposite orientation. Then, following (5.4.7), the arithmetic Chern-Simons
functional and the arithmetic Dijkgraaf-Witten partition function are given
by

(6.1.6) CSxS

V ∗
S
= −CSxS

VS
, ZxS

V ∗
S
(ρS) =

1

#G

∑
ρ̃∈FVS

(ρS)

ζ
−CS

xS
XS

(ρ̃)

N .

6.2. Gluing formulas for arithmetic Chern-Simons invariants and
gluing formulas for arithmetic Dijkgraaf-Witten partition

functions

Let S1 and S2 be disjoint sets of finite primes of k, where S1 may be empty
and S2 is non-empty. We assume that any prime dividing N is contained in
S2 if S1 is empty and that any prime dividing N is contained in S1 if S1

is non-empty. We let S := S1 � S2. We may think of XS1
as the space ob-

tained by gluing XS and V ∗
S2

along ∂VS2
. Let ηS : ΠS → ΠS1

, ιp : Πp → ΠS ,

vp : Πp → Π̃p, and up : Π̃p → ΠS1
be the natural homomorphisms, where

p ∈ S2, so that we have ηS ◦ ιp = up ◦ vp for p ∈ S2.
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�����

Πp

�����

Π̃p
�����

ΠS �����
ΠS1

vp

ιp

up

ηS

Let � : LS1
× LS2

→ LS be the map defined as in (5.4.1) and (5.4.2).

Now we have the following decomposition formula.

Theorem 6.2.1 (Decomposition formula). For ρ ∈ Homcont(ΠS1
, G), we

have

CSXS1
(ρ) � CSVS2

((ρ ◦ up)p∈S2
) = CSXS

(ρ ◦ ηS).

Proof. Case that S1 = ∅. Although this may be well known, we give a

proof for the sake of readers. By the Artin–Verdier Duality for compact

support étale cohomologies ([20, Chapter II. Theorem 3.1]) and modified

étale cohomologies ([5, Theorem 5.1]), we have the following isomorphisms

for a fixed ζN ∈ μN ,

H3
comp(XS ,Z/NZ) ∼= HomXS

(Z/NZ,Gm,XS
)∼ ∼= μN (k)∼ ∼= Z/NZ,

H3(Xk,Z/NZ) ∼= HomXk
(Z/NZ,Gm,Xk

)∼ ∼= μN (k)∼ ∼= Z/NZ,

where Gm,XS
(resp. Gm,Xk

) is the sheaf of units on XS (resp. Xk) and

(−)∼ is given by Hom(−,Q/Z). We denote the isomorphisms above by

inv′ : H3
comp(XS ,Z/NZ) → Z/NZ and inv : H3(Xk,Z/NZ) → Z/NZ. Now

we recall the definition of H3
comp(XS ,Z/NZ) ([20, p.165]). We define the

complex Ccomp(ΠS ,Z/NZ) by

Cn
comp(ΠS ,Z/NZ) := Cn(ΠS ,Z/NZ)×

∏
p∈S

Cn−1(Πp,Z/NZ),

d(a, (bp)) := (da, (Resp(a)− dbp)),

where a ∈ Cn(ΠS ,Z/NZ) and (bp) ∈
∏
p∈S

Cn−1(Πp,Z/NZ). Hn
comp(XS ,Z/NZ)

is defined by

Hn
comp(XS ,Z/NZ) := Hn(C∗

comp(ΠS ,Z/NZ)).
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Then we can describe inv′ : H3
comp(XS ,Z/NZ) → Z/NZ as follows. Let

[(a, (bp))] ∈ H3
comp(XS ,Z/NZ). Since da = 0 and H3(ΠS ,Z/NZ) = 0, there

is a cochain b ∈ C2(ΠS ,Z/NZ) such that db = a. Then we have

inv′([(a, (bp)]) =
∑
p∈S

invp([Resp(b)− bp]),

where invp : H2(Πp,Z/NZ) → Z/NZ is the canonical isomorphism given
by the theory of Brauer groups. We note that the right side of the equation
above doesn’t depend on the choice of b. Recall that Π̃k denotes the modified
étale fundamental group of Xk. Let j3 : H3(Π̃k,Z/NZ) → H3(Xk,Z/NZ)
be the natural homomorphism induced by the modified Hochschild-Serre
spectral sequence ([13, Corollary 2.2.8]). We describe the image of the co-
homology class [c ◦ ρ] ∈ H3(Π̃k,Z/NZ) by the composed map

inv′−1 ◦ inv ◦ j3 : H3(Π̃k,Z/NZ) → H3
comp(XS ,Z/NZ).

Since c ◦ (ρ ◦ ηS) ∈ Z3(ΠS ,Z/NZ) and H3(ΠS ,Z/NZ) = 0, there exists a
cochain βρ◦ηS

∈ C2(ΠS ,Z/NZ) such that dβρ◦ηS
= c ◦ (ρ ◦ ηS). We note

that dResp(βρ◦ηS
) = d(βρ◦ηS

◦ ιp) = c ◦ ρ ◦ up ◦ vp. Since c ◦ (ρ ◦ up) ∈
Z3(Π̃p,Z/NZ) and H3(Π̃p,Z/NZ) = H2(Π̃p,Z/NZ) = 0, there exists a
cochain β̃ρ◦up

∈ C2(Π̃p,Z/NZ) such that dβ̃ρ◦up
= c ◦ (ρ ◦ up). We set

βρ◦up◦vp := β̃ρ◦up
◦vp ∈ C2(Πp,Z/NZ). So we have dβρ◦up◦vp = c◦(ρ◦up◦vp).

Then we obtain

(inv′−1 ◦ inv ◦ j3)([c ◦ ρ]) = [(c ◦ (ρ ◦ ηS), (βρ◦up
))].

We see that [Resp(βρ◦ηS
)], [βρ◦up◦vp ] ∈ Lp(ρ ◦ up ◦ vp). Thus we obtain

CSXk
(ρ) = (inv ◦ j3)([c ◦ ρ])

= (inv′ ◦ inv′−1 ◦ inv ◦ j3)([c ◦ ρ])
= inv′([(c ◦ (ρ ◦ ηS), (βρ◦up◦vp))])

=
∑
p∈S

invp([Resp(βρ◦ηS
)− βρ◦up◦vp ])

= CSXS
(ρ ◦ ηS)− CSVS

((ρ ◦ up)p∈S).

Case that S1 �= ∅. Let βρ ∈ C2(ΠS1
,Z/NZ) be a cochain such that dβρ =

c◦ρ. We have d(βρ ◦ηS) = c◦ (ρ◦ηS) and d(βρ ◦up) = c◦ (ρ◦up) for p ∈ S2.
So we obtain

CSXS1
(ρ) � CSVS2

((ρ ◦ up)p∈S2
) = [(βρ ◦ ηS ◦ ιp)p∈S1

] � [(βρ ◦ up ◦ vp)p∈S2
]
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= [(βρ ◦ up ◦ vp)p∈S ]
= [(βρ ◦ ηS ◦ ιp)p∈S ]
= CSXS

(ρ ◦ ηS).

Let xSi
∈ Γ(FSi

,LSi
) (i = 1, 2)) be any sections. We define the section

xS ∈ Γ(FS ,LS) by

xS(ρS1
, ρS2

) := xS1
(ρS1

) � xS1
(ρS2

).

By the proof of Theorem 6.2.1, we have the following

Corollary 6.2.2. Notations being as above, we have the following equality
in Z/NZ.

CS
xS1

XS1

(ρ) + CS
xS2

VS2
((ρ ◦ up)p∈S2

) = CSxS

XS
(ρ ◦ ηS).

We consider the situation that we obtain the space XS1
by gluing XS and

V ∗
S2

along ∂VS2
. We define the pairing < , >: HxS

S ×HxS2

S2
∗ → HxS1

S1
by

(6.2.3) < θS , θS2
∗ > (ρS1

) := #G
∑

ρS2∈FS2

θS(ρS1
, ρS2

)θS2
∗(ρS2

)

for θS ∈ HxS

S , θS∗
2
∈ HxS2

S∗
2

and ρS1
∈ FS1

. This induces the pairing < , >:

HS ×HS2
∗ → HS1

by (3.1.2). Now we prove the following gluing formula.

Theorem 6.2.4 (Gluing formula). Notations being as above, we have the
following equality

< ZXS
, ZV ∗

S2
> = ZXS1

.

Proof. We show the equality

< ZxS

XS
, Z

xS2

V ∗
S2

> = Z
xS1

XS1

for any sections xSi
∈ Γ(FSi

,LSi
) (i = 1, 2). Noting (6.1.6), we have

< ZxS

XS
, Z

xS1

V ∗
S2

> (ρS1
)

=
1

#G

∑
ρS2∈FS2

( ∑
ρ′∈FXS

(ρS1 ,ρS2)

ζN
CS

xS
XS

(ρ′)
)( ∑

ρ̃∈FVS2
(ρS2 )

ζN
−CS

xS2
VS2

(ρ̃′)
)

=
∑

ρS2∈FS2

( 1

#G

∑
(ρ′,ρ̃)∈FXS

(ρS1 ,ρS2)×FVS2
(ρS2)

ζN
CS

xS
XS

(ρ′)−CS
xS2
VS2

(ρ̃)
)
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for ρS1
∈ FS1

. We define the map

χ(ρS1
) : FXS1

(ρS1
) →

⊔
ρS2∈FS2

(
FXS

(ρS1
, ρS2

)×FVS2
(ρS2

)
)

by

χ(ρS1
)(ρ1) = (ρ1 ◦ ηS , (ρ1 ◦ up)p∈S2

)

for ρ1 ∈ FXS1
(ρS1

). In order to obtain the required statement by Corollary

5.2.2, it suffices to show that χ(ρS1
) is bijective. (Though this may be seen

by noticing that ΠS1
is the push-out of the maps ιp and vp (ΠS1

is the

amalgamated product of ΠS and Π̃k along Πp) for S2 = {p}, we give here a

straightforward proof.)

χ(ρS1
) is injective: suppose χ(ρS1

)(ρ1) = χ(ρS1
)(ρ′1) for ρ1, ρ

′
1 ∈ FXS1

(ρS1
).

Then ρ1 ◦ ηS = ρ′1 ◦ ηS . Since ηS is surjective, ρ1 = ρ′1.
χ(ρS1

) is surjective: Let (ρ, (ρ̃p)p∈S2
) ∈ FXS

(ρS1
, ρS2

)×FVS2
(ρS2

). Then we

have

resS1
(ρ) = ρS1

, resS2
(ρ) = ρS2

, ˜resS2
((ρ̃p)p∈S2

) = ρS2
.

Since ˜resp(ρ̃p) is unramified representation of Πp for p ∈ S2, ρ is unramified

over S2. Therefore there is ρ1 ∈ FXS1
such that ρ = ρ1 ◦ ηS . Since we see

that

ρ1 ◦ up ◦ vp = ρ1 ◦ ηS ◦ ιp = ρ ◦ ιp = ρ̃p ◦ vp

for p ∈ S2 and vp is surjective, we have ρ1 ◦ up = ρ̃p for p ∈ S2. Hence

χ(ρS1
)(ρ1) = (ρ, (ρ̃p)p∈S2

) and so χ(ρS1
) is surjective.
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