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Introduction

Multiple zeta values are special values of multiple zeta functions on the one
hand and special values of multiple polylogarithms on the other. Hence, they
may be represented either as sums of number series or as integrals.

Multiple zeta values form an algebra over rational numbers. A product
of two of them may be presented as a linear combination of multiple zeta
values with integer coefficients by means of each representation. It gives two
systems of relations which multiple zeta values obey.

The first one is called shuffle relations. They immediately follow from
Fubini’s theorem applied to the integral representation.

The second family is called stuffle relations and is given by rearrange-
ment of summands in the product of number series. They are not so evident
in the integral presentation. The equality of corresponding integrals is based
on Fubini’s theorem, relation (11), which is a form of Arnold’s relation, and
some coordinate transformations. These transformations are given by per-
mutations of coordinates in cubical coordinates, but in simplicial coordinates
they are birational transformations.

These relations may be extended by regularizations of some equalities
with divergent series, see [IKZ06, Rac02]. This extended system of relations
is called regularized double shuffle relations. The long-standing conjecture
states that they imply all rational relations between multiple zeta values.

Multiple zeta values of weight n being values of integrals are periods of
the pair (Mδ

0,n+3,Mδ
0,n+3 \M0,n+3) of a special kind ([GM04]). In [Bro09,

BCS10] all periods of such pairs were studied. In [BCS10] they were called
cell-zeta values.
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As well as multiple zeta values, cell-zeta values obey a lot of relations

over rational numbers. By the main result of [Bro09], all cell-zeta values are
rational combinations of multiple zeta values. In light of this, it is natural to

try to find a set of relations on cell-zeta values, which allows to express any

cell-zeta value in terms of multiple zeta values and implies all known relation
on multiple zeta values. We suggest a candidate for this, which consists of

two families of relations. In [BCS10] another system of relations on cell-zeta

values is written down. It would be very interesting to compare them.

The first family containing quadratic-linear relations was introduced in

[Bro09]. It is analogous to shuffle relations and follows from Fubini’s theorem.

In [BCS10] these relations called product map relations. We suggest the term

“generalized shuffle relations” to emphasize the similarity between our pair
of families with the pair of shuffle and stuffle relations.

The second family is what we call generalized stuffle relations. This is

a family of linear relations following from the relative version of Fubini’s
theorem. They seem to be new. These relations generalize above-mentioned

manipulations with integrals in cubical coordinates. It means in particular

that generalized shuffle relations and generalized stuffle relations imply usual
stuffle relations. This is the main result of the paper.

The natural question is whether generalized shuffle and stuffle relations

imply regularized double shuffle relations. The answer seems to be no. But
if we add relations implied by Stokes’ theorem to the generalized shuffle

and stuffle relations, the answer becomes positive. In [KY16] a set of linear

relations between multiple zeta values is introduced. It is proved there that
these relations along with double shuffle relations imply regularized double

shuffle relations. Thus, to confirm a positive answer to the question above one

needs to show that the Kaneko–Yamamoto integral-series relations follow
from Stokes’ theorem and generalized stuffle relations. It is a subject of

another paper [Mar].

In contrast to usual stuffle relations (see nevertheless [Sou10]), general-
ized stuffle relations have a clear motivic nature. A motivic version of these

relations is the subject of future research.

1. Shuffle and stuffle relations

1.1. Multiple zeta values

Call a finite sequence of natural numbers (k1, . . . , kn) convergent if k1 ≥ 2.

For a convergent sequence k = (k1, . . . , kn) the multiple zeta value is defined
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by the integral (see e. g. [IKZ06])

(1) ζ (k) =

∫
Δw(k)

ω1(t1) ∧ · · · ∧ ωw(k)(tw(k)),

where Δw(k) = {1 > t1 > · · · > tw(k) > 0}, w(k) = k1 + · · ·+ kn is weight of
the sequence and

ωi(t) =

{
dt/(1− t) if i ∈ {k1, k1 + k2, . . . , k1 + · · ·+ kn}
dt/t otherwise

Thus multiple zeta values are iterated integrals.
A more conventional way to define multiple zeta values is by series rep-

resentation ascending to Euler, but we will not need it.

1.2. Shuffle relations

With a finite sequence of natural numbers k = (k1, . . . , kn) associate the
word zk = xk1−1yxk2−1 . . . xkn−1y of two letters x and y. It establishes a
bijection between sequences and words ending in y.

A finite multiset is an unordered finite list with possible repetitions. For
a multiset M , denote by x ·M the result of the action of operation x· on M
elementwise.

Define shuffle product sh( · , · ) of two words in letters x and y as a
multiset of words given by the recursive rule

(2) sh(v · z1, u · z2) = v · sh(z1, u · z2) ∪ u · sh(v · z1, z2),

where u, v ∈ {x, y} and sh(1, z) = sh(z, 1) = {z}.
One may see that the shuffle product of two words ending in y consists

of words ending in y. It defines the shuffle product of sequences of natural
numbers, which we denote likewise by sh( · , · ).

Proposition 1 (Shuffle relations). Let k and l be convergent sequences.
Then

(3) ζ (k) ζ (l) =
∑

s∈sh(k,l)
ζ (s)

Proof. The statement is an immediate consequence of Fubini’s theorem. It
also follows from Proposition 3 below.
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1.3. Stuffle relations

For a finite sequence of natural numbers k = (k1, . . . , kn−1), denote the

sequence (k1, . . . , kn−1, kn) by k · kn. Introduce the empty sequence () such

that () · k = (k).

Define stuffle product st( · , · ) of two sequences as a multiset of sequences

given by the recursive rule

(4) st(k · x, l · y) = st(k · x, l) · y ∪ st(k, l · y) · x ∪ st(k, l) · (x+ y)

and by st((),k) = st(k, ()) = {k}. Note that st(k, l) = st(l,k).

Stuffle relations follow easily from the series representation of multiple

zeta values. The proof of them in terms of integrals may be found in [Gon02,

Bro09, Sou10]. We present it in a form convenient for our purposes.

Proposition 2 (Stuffle relations). Let k and l be convergent sequences.

Then

(5) ζ (k) ζ (l) =
∑

s∈st(k,l)
ζ (s)

Proof. Define cubical coordinates on the standard simplex Δk = {1 > t1 >

· · · > tk > 0} by

x1 = t1 x2 = t2/t1 . . . xk = tk/tk−1.

Introduce notations:

f b
a =

∏b
i=a xi

1−
∏b

i=a xi
.

In cubical coordinates we can rewrite definition (1) as

(6) ζ (k) =

∫
�
fk1

1 fk1+k2

1 · · · fw(k)
1 dV,

where dV = dx1/x1 ∧ dx2/x2 . . . is the standard volume form on the

torus and symbol � here and below in this proof means the unit cube

{0 < xi < 1}.
Fubini’s theorem gives
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(7) ζ (k) ζ (l) = ∫
�
fk1

1 fk1+k2

1 · · · fw(k)
1 ×

f
w(k)+l1
w(k)+1 f

w(k)+l1+l2
w(k)+1 · · · fw(k)+w(l)

w(k)+1 dV

Thus we need to prove that the right hand side of (7) equals to the right

hand side of (5).

Introduce following transformations of the cube

(8) ra(xi) =

{
xa+1−i for i ≤ a,

xi for i > a.

Applying rw(k) to the right hand side of (7) we get

(9) r.h.s. (7) = ∫
�
f
w(k)
1+w(k)−k1

f
w(k)
1+w(k)−k1−k2

· · · fw(k)
1 ×

f
w(k)+l1
w(k)+1 f

w(k)+l1+l2
w(k)+1 · · · fw(k)+w(l)

w(k)+1 dV

To show that right hand sides of (9) and (5) are equal, we will prove a

more general equality

(10)
∑

s∈st(k,l)
ζ(· · · (s ·m1) ·m2) · · · ) ·mi) =

∫
�
f
w(k)
1+w(k)−k1

f
w(k)
1+w(k)−k1−k2

· · · fw(k)
1 ×

f
w(k)+l1
w(k)+1 f

w(k)+l1+l2
w(k)+1 · · · fw(k)+w(l)

w(k)+1 ×

f
w(k)+w(l)+m1

1 f
w(k)+w(l)+m1+m2

1 · · · fw(k)+w(l)+m1+···+mi

1 dV

by induction on w(k) + w(l).

The base of induction is given by (6).

If k = (), there is nothing to prove. If l = (), the application of rw(k) to

the integral proves the equality.

If both sequences are not empty, let x = kw(k) and y = lw(l) be the last

terms of k and l. Introduce notations k = k′ · x and l = l′ · y.
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Substituting in α =
∏a

i=1 xi and β =
∏b

i=a+1 xi into the relation

(11)
1

(1− α)(1− β)
=

α

(1− α)(1− αβ)
+

β

(1− β)(1− αβ)
+

1

1− αβ

we have for b > a > 1

fa
1 f

b
a+1 = fa

1 f
b
1 + f b

a+1f
b
1 + f b

1

Applying this to the product of the last factors in the second and the
third lines of (10) we get a sum of three terms.

The first term is

(12)

∫
�
f
w(k)
1+w(k)−k1

f
w(k)
1+w(k)−k1−k2

· · · fw(k)
1 ×

f
w(k)+l1
w(k)+1 f

w(k)+l1+l2
w(k)+1 · · · fw(k)+w(l′)

w(k)+1 ×

f
w(k)+w(l′)+y
1 f

w(k)+w(l′)+y+m1

1 · · · fw(k)+w(l′)+y+m1+···+mi

1 dV

By the induction assumption it is equal to
∑

s∈st(k,l′) ζ(· · · (s · y) ·m1) · · · ) ·
mi).

The second term is

(13)

∫
�
f
w(k)
1+w(k)−k1

f
w(k)
1+w(k)−k1−k2

· · · fw(k)
1+x ×

f
w(k)+l1
w(k)+1 f

w(k)+l1+l2
w(k)+1 · · · fw(k)+w(l)

w(k)+1 ×

f
w(l)+w(k′)+x
1 f

w(l)+w(k′)+x+m1

1 · · · fw(l)+w(k′)+x+···+mi

1 dV

Applying rw(k)+w(l) to it we get

(14) (13) =

∫
�
f
w(l)
1+w(l)−l1

f
w(l)
1+w(l)−l1−l2

· · · fw(l)
1 ×

f
w(l)+k1

w(l)+1 f
w(l)+k1+k2

w(l)+1 · · · fw(l)+w(k′)
w(l)+1 ×

f
w(l)+w(k′)+x
1 f

w(l)+w(k′)+x+m1

1 · · · fw(l)+w(k′)+x+···+mi

1 dV

By the induction assumption it is equal to
∑

s∈st(l,k′) ζ(· · · (s · x) ·m1) · · · ) ·
mi).

The third term is
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(15)

∫
�
f
w(k)
1+w(k)−k1

f
w(k)
1+w(k)−k1−k2

· · · fw(k)
1+x ×

f
w(k)+l1
w(k)+1 f

w(k)+l1+l2
w(k)+1 · · · fw(k)+w(l′)

w(k)+1 ×

f
w(k′)+w(l′)+x+y
1 f

w(k′)+w(l′)+x+y+m2

1 · · · fw(k′)+w(l′)+x+y+···+mi

1 dV

Applying rw(k)+w(l′) to it we get

(16) (15) =

∫
�
f
w(l′)
1+w(l′)−l1

f
w(l′)
1+w(l′)−l1−l2

· · · fw(l′)
1 ×

f
w(l′)+k1

w(l′)+1 f
w(l′)+k1+k2

w(l′)+1 · · · fw(l′)+w(k′)
w(l′)+1 ×

f
w(l′)+w(k′)+x+y
1 f

w(l′)+w(k′)+x+y+m1

1 · · · fw(l′)+w(k′)+x+y+···+mi

1 dV

By the induction assumption it is equal to
∑

s∈st(l′,k′) ζ(· · · (s · (x + y)) ·
m1) · · · ) ·mi).

By (4) the sum of these three terms equals to
∑

s∈st(k,l) ζ(· · · (s · m1) ·
m2) · · · ) ·mi), which proves (10) and thus the proposition.

2. Generalized shuffle and stuffle relations

2.1. M0,S

For a finite set S, |S| > 2 denote by M0,S the moduli space of its embed-
dings S ↪→ P

1 to the complex projective line considered up to the action of
the Möbius group. This is a smooth affine variety and it has a smooth pro-
jective compactification M0,S , which is the moduli space of stable curves.
The complement M0,S \M0,S is the union of normal crossing divisors. These
divisors are numerated by partitions of S in two subsets with cardinalities
more than 2.

Present S as a union of the three-element set {0,∞, 1} and a set with n
elements, where and below |S| = n+3. For a point of M0,S introduce on P

1

the coordinate such that coordinates of points labeled by 0,∞, 1 are 0, ∞
and 1 correspondingly. Coordinates of points labeled by the finite set with
n elements are called simplicial coordinates on M0,S . Thus a point of M0,S

with simplicial coordinates (t1, . . . , tn) is (0,∞, 1, t1, . . . tn).
The algebra of regular differential forms on M0,S with logarithmic sin-

gularities at infinity is generated by 1-forms

(17) ωij = d log(ti − tj) 0 ≤ i < j ≤ n+ 1 ij 	= 0n+ 1,
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where ti are simplicial coordinates, t0 = 1 and tn+1 = 0. The only relations
between them are Arnold’s relations:

ωij ∧ ωjk + ωjk ∧ ωik + ωik ∧ ωij = 0

Rewrite these relations in new coordinates α = tj/ti, β = tk/tj and
t = ti:

(18)

(
− dα

1− α
+

dt

t

)
∧

(
− dβ

1− β
+

dα

α
+

dt

t

)
+(

− dβ

1− β
+

dα

α
+

dt

t

)
∧

(
− d(αβ)

1− αβ
+

dt

t

)
+(

− d(αβ)

1− αβ
+

dt

t

)
∧

(
− dα

1− α
+

dt

t

)
= 0

Collecting terms with dα ∧ dβ we get relation (11), which is crucial in the
proof of Proposition 2.

2.2. Mδ
0,S

Let S be a cyclically ordered set. In [Bro09] the space Mδ
0,S is introduced

and described in great detail. It may be thought as a partial compactification
of M0,S

M0,S ⊂ Mδ
0,S ⊂ M0,S ,

which contains only those compactification divisors for which corresponding
partitions of S respect the cyclic order. It is proved in [Bro09] that Mδ

0,S is
a smooth affine variety.

For any subset T ⊂ S the forgetful map

Mδ
0,S → Mδ

0,T

is defined, where the cyclic order on T is the restriction of the one from
S. Being restricted on M0,S this map forgets points labeled by elements of
S \ T .

As above present S as a union of the three-element set {0,∞, 1} and a set
with n elements, and introduce a cyclic order on it as follows: [0,∞, 1, 1, . . . , n].
Consider the standard simplex Δn = {1 > t1 > · · · > tn > 0} in M0,S ,
where ti are simplicial coordinates. This set depends on the order of the
labeling set, but one may see that it depends only on the cyclic order. Then,
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the closure of the standard simplex in Mδ
0,S is compact; this is the Stasheff

polytope. Denote this subset of Mδ
0,S by Δ(S) to emphasize its dependence

on the cyclic order.
Since Δ(S) is compact, a regular differential form of top degree may

be integrated by it. For a regular differential form with logarithmic singu-
larities at infinity ω on Mδ

0,S the integral
∫
Δ(S) ω is a period of the pair

(Mδ
0,S , Mδ

0,S \M0,S), see [GM04]. In [BCS10] these numbers are called cell-
zeta values. By the very definition (1), multiple zeta values are examples of
such numbers, convergence of sequence k implies that the form has no poles
on divisors from Mδ

0,S \M0,S .

2.3. Generalized shuffle relations

Let 3 be a cyclically ordered set with three elements. Define a 3-pointed
cyclically ordered set T as a pair of a cyclically ordered set T and a mono-
tonic embedding ı : 3 ↪→ T .

Let T1,2 be a pair of 3-pointed cyclically ordered sets and ı1,2 : 3 ↪→ T1,2

are corresponding embeddings. Let T1
∐

3 T2 be the colimit of the diagram
in the category of sets given by these embeddings. Denote by sh(T1, T2) the
set of cyclically ordered sets given by all cyclic orders on T1

∐
3 T2 for which

projections on T1 and T2 are monotonic.
For any C ∈ sh(T1, T2) consider the map

(19) βC : Mδ
0,C → Mδ

0,T1
×Mδ

0,T2
,

which is the forgetful map on each factor. In [Bro09, 2.7] this map is called
the product map.

The following proposition is taken from [Bro09, BCS10], where it is called
product map relations.

Proposition 3 (Generalized shuffle relations). Using notations as above
let φ and ψ be regular top-degree differential forms on Mδ

0,T1
and Mδ

0,T2

correspondingly. Then

(20)

(∫
Δ(T1)

φ

)
·
(∫

Δ(T2)
ψ

)
=

∑
C∈sh(T1,T2)

∫
Δ(C)

β∗
C(φ � ψ)

Proof. By Fubini’s theorem and because β is an embedding containing the
domain of integration, the left hand side of (20) equals to the integral of
β∗
C(φ � ψ) by β−1(Δ(T1) × Δ(T2)). The decomposition of the latter set in

simplices corresponding to elements of sh(T1, T2) proves the statement. For
more details see [Bro09, Corollary 7.10].
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2.4. Generalized stuffle relations

Let 4 be a cyclically ordered set with four elements. Define a 4-pointed cycli-
cally ordered set T as a pair of a cyclically ordered set T and a monotonic
embedding ı : 4 ↪→ T .

The Klein four-group V acts on 4. Half of this group respects the cyclic
order and the other half reverses it. For ν ∈ V and a 4-pointed cyclically
ordered set T = (T, ı) denote by T ν the 4-pointed cyclically ordered set
with the embedding equal to ı composed with ν and with the cyclic ordered
set equal to T or to T op depending on whether ν respects cyclic order on 4
or not, where · op means the same set with the opposite order. Denote the
latter cyclically ordered set by T ν .

Let T1,2 be a pair of 4-pointed cyclically ordered sets and ı1,2 : 4 ↪→ T1,2

are corresponding embeddings. Let T1
∐

4 T2 be the colimit of the diagram
in the category of sets given by these embeddings. Denote by st(T1, T2) the
set of cyclically ordered sets given by all cyclic orders on T1

∐
4 T2 for which

projections on T1 and T2 are monotonic.
For any ν ∈ V , C ∈ st(T1, T2) and Cν ∈ st(T1, T ν

2 ) consider maps

(21)

γC : Mδ
0,C

Mδ
0,T1

×Mδ
0,T2

γCν
: Mδ

0,Cν

which are forgetful map on each factor.

Proposition 4 (Generalized stuffle relations). Using notations as above let
ν be a non-trivial element of the Klein four-group and φ and ψ be regular
differential forms on Mδ

0,T1
and Mδ

0,T2
correspondingly such that

deg φ+ degψ = |T1|+ |T2| − 7

Then

(22)
∑

C∈st(T1,T2)

∫
Δ(C)

γ∗C(φ � ψ) = ε ·
∑

Cν∈st(T1,T ν
2 )

∫
Δ(Cν)

γ∗Cν
(φ � ψ),

where ε = (−1)
(|T2|−3)(|T2|−2)

2 if ν reverses the cyclic order on 4 and ε = 1 if
not.
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Proof. Note that there are only two possibilities: φ is a top-degree form and
degree of ψ is one less and vice versa.

Consider the forgetful projection Mδ
0,C → Mδ

0,4. By Fubini’s theorem,

(23)

∫
Δ(C)

γ∗C(φ � ψ) =

∫
Δ(4)

(∫
Δ(C)/Δ(4)

γ∗C(φ � ψ)

)
,

where
∫
Δ(C)/Δ(4) is the fiber-wise integral of the projection. By the relative

analog of Proposition 3, we have

∑
C∈st(T1,T2)

∫
Δ(C)/Δ(4)

γ∗C(φ � ψ) =

(∫
Δ(T1)/Δ(4)

φ

)
·
(∫

Δ(T2)/Δ(4)
ψ

)

Because the cross-ratio of four points is invariant under the Klein four-group,
action of the Klein four-group on four points of projective line may be lifted
to the whole projective line. It follows the equality of forms on Mδ

0,4∫
Δ(T2)/Δ(4)

ψ = ε ·
∫
Δ(T ν

2 )/Δ(4)
ψ

Thus we get

∑
C∈st(T1,T2)

∫
Δ(C)/Δ(4)

γ∗C(φ � ψ) =

(∫
Δ(T1)/Δ(4)

φ

)
·
(∫

Δ(T2)/Δ(4)
ψ

)
=

ε·
(∫

Δ(T1)/Δ(4)
φ

)
·
(∫

Δ(T ν
2 )/Δ(4)

ψ

)
= ε·

∑
Cν∈st(T1,T ν

2 )

∫
Δ(Cν)/Δ(4)

γ∗Cν
(φ�ψ)

Integrating both sides by Δ(4) and using (23) we get a proof of the propo-
sition.

Theorem 1. Generalized shuffle relations (20) and generalized stuffle rela-
tions (22) jointly imply shuffle relations (3) and stuffle relations (5).

Proof. From (17) we see that for a sequence k the differential form under
the integral sign in (1) is a top-degree form on M0,w(k)+3. If sequence k

is convergent, then the form comes from Mδ
0,w(k)+3 for the standard cyclic

order [0,∞, 1, t1, . . . , tw(k)] on the labeling set. Given a pair of such forms
corresponding to sequences k and l, applying Proposition 3 to them with

T1 = [0,∞, 1, t1, . . . , tw(k)] and T2 = [0,∞, 1, s1, . . . , sw(l)]
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and the common subset [0,∞, 1] we get (2). Thus generalized shuffle relations
imply shuffle relations.

Now show that generalized shuffle and generalized stuffle relations jointly
imply stuffle relations. To do it we need to verify that all steps of the proof of
Proposition 2 follow from generalized shuffle and generalized stuffle relations.

As it is mentioned in [Bro09, Sou10], the first relation (7) of the proof fol-
lows from the Proposition 3 for differential forms corresponding to sequences
k and l and for

T1 = [0,∞, 1, t1, . . . , tw(k)] and T2 = [0,∞, tw(k), s1, . . . , sw(l)]

with the common subset [0,∞, tw(k)].
The rest of the proof of Proposition 2 depends on two statements: invari-

ance of integrals under transformations (8) and relation (11). The second
one is a form of Arnold’s relations by (18). Invariance of an integral under
transformation ra follows from Proposition 4 for

T1 = [0,∞, 1, ta, ta+1, . . . , tn] and T2 = [0,∞, 1, t1, t2, . . . , ta]

with the common subset [0,∞, 1, ta] and the involution ν, which interchanges
0 and ∞. There are three places where invariance under these transforma-
tions is used in the proof of Proposition 2: (9), (14) and (16). Corresponding
differential forms φ and ψ from the statement of Proposition 4 may be found
from these formulae, for (9) and (14) the first form is being of top degree
and for (16) the second form is.

2.5. Formal algebra of periods of (Mδ
0,∗,Mδ

0,∗ \ M0,∗)

If differential forms in Propositions 3 and 4 are regular with logarithmic
singularities at infinity, then forms under integral signs in (20) and (22)
are also regular with logarithmic singularities at infinity. Thus Proposi-
tions 3 and 4 impose quadratic-linear and linear conditions on periods of
(Mδ

0,∗,Mδ
0,∗ \M0,∗) or cell-zeta values, which are integrals

∫
Δ(S) ω of a reg-

ular differential form with logarithmic singularities at infinity ω on Mδ
0,S by

the standard simplex. By Proposition 3 they form an algebra.
One may consider the formal algebra of periods of (Mδ

0,∗,Mδ
0,∗ \M0,∗),

which is the one generated by symbols representing integrals as above on
which all natural relations such as Stokes’ theorem, and generalized shuffle
and generalized stuffle relations are imposed. Formal multiple zeta values
are elements of this algebra corresponding to iterated integrals (1).
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The main theorem of [Bro09] states that all cell-zeta values are rational

combinations of multiple zeta values. The long-standing conjecture ([IKZ06,

Conjecture 1]) states that all rational relations between multiple zeta val-

ues are given by regularized double shuffle relations. This leads us to the

following conjecture.

Conjecture. The formal algebra of periods of (Mδ
0,∗,Mδ

0,∗ \M0,∗) is gen-

erated by formal multiple zeta values and the system of relations to which

they obey is equivalent to regularized double shuffle relations.

An analogous conjecture was formulated in [BCS10]. The formal algebra

of cell-zeta values defined there has the same generators, but relations differ.

Its system of relations contains product map relations, which are the same

as generalized shuffle relations, dihedral relations and shuffles with respect

to one element. It would be interesting to compare these algebras. Note that

dihedral relations follow from generalized stuffle relations for |T1| = 4 and

φ = 1.
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