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We compute the fundamental group of an open Richardson variety
in the manifold of complete flags that corresponds to a partial
flag manifold. Rietsch showed that these log Calabi-Yau varieties
underlie a Landau-Ginzburg mirror for the Langlands dual partial
flag manifold, and our computation verifies a prediction of Hori for
this mirror. It is log Calabi-Yau as it isomorphic to the complement
of the Knutson–Lam–Speyer anti-canonical divisor for the partial
flag manifold. We also determine explicit defining equations for this
divisor.
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1. Introduction

It is an old problem of Zariski [21] to compute the fundamental group of

the complement of an algebraic curve in the complex projective plane. The

fundamental group of the complement of a projective hypersurface reduces

to the case of a plane curve by Zariski’s Theorem of Lefschetz type [22]. More

generally, one may ask about the fundamental group of the complement of a

divisor in a projective variety. Examples of importance in mirror symmetry

are log Calabi-Yau varieties [7, 8, 10], which are quasi-projective varieties

that are the complement of an anti-canonical divisor in a smooth projective

variety. We consider this case when the ambient projective variety is a flag

variety.

Let G be a complex, simply-connected, simple Lie group with a Borel

subgroup B. For an element u in the Weyl group W of G, the (opposite)

Schubert cells X̊u and X̊u in G/B are affine spaces of codimension and
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dimension �(u) respectively, where � : W → Z≥0 is the length function. The
open Richardson variety

X̊w
v := X̊v ∩ X̊w

is irreducible and has dimension �(w)−�(v) if v ≤ w in Bruhat order and
otherwise it is empty. It is a log Calabi-Yau variety [11]. We pose the fol-
lowing:

Problem 1.1. What is the fundamental group of X̊w
v ?

Fundamental groups of log Calabi-Yau varieties arise in mirror sym-
metry, which is about equivalences of two apparently completely different
physical theories. For instance, one mirror symmetry statement asserts that
the small quantum cohomology of a Fano manifold Y should be isomorphic
to the Jacobi ring of a holomorphic function f : Z → C defined on an open
Calabi-Yau variety Z [2, 5, 6]. Such pair (Z, f) is a Landau-Ginzburg model
mirror to Y . The Jacobi ring of f is the coordinate ring of the critical points
of f , and therefore the mirror space Z is not uniquely determined. Never-
theless, physicists expect a mirror with certain optimal physical properties.
According to Kentaro Hori1, one of these properties is manifested in the
fundamental group, π1(Z), of Z as follows.

Assertion 1.2. Let Y be a Fano manifold, and D be a specified anti-
canonical divisor on Y . If Aut(Y,D) contains a maximal compact torus
(S1)m, then an optimal mirror Landau-Ginzburg model (Z, f) should have
π1(Z) = Zm.

We consider this when Z is an open Richardson variety X̊w0
wP

. Here,
P ⊃ B is a parabolic subgroup of G and w0 (resp. wP ) is the longest element
in W (resp. the Weyl group WP of the Levi subgroup of P ). This is a log
Calabi-Yau variety, as it is isomorphic to the complement of the Knutson-
Lam-Speyer [11] anti-canonical divisor −KG/P in the flag manifold G/P .
Let G∨ (resp. P∨) denote the Langlands dual Lie group of G (resp. P ).
Rietsch [20] constructed a Landau-Ginzburg model (X̊w0

wP
, f) mirror to the

flag manifold G∨/P∨, assuming unpublished work of Peterson [18]. This
has been verified when G∨/P∨ is a flag manifold of Lie type A [19] and
when it is either a minuscule or a cominuscule flag variety [12, 16, 17].
The automorphism group of G∨/P∨ is G∨ (except for three special types
of Grassmannians of Lie type B,C, or G2 which are homogeneous with

1Personal communication and talks.
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respect to a larger simple Lie group) [1]. The subgroup of Aut(G∨/P∨) that
preserves −KG∨/P∨ is a complex torus (C×)n−1, where G has rank n−1.
Following Assertion 1.2 and the belief that Rietsch’s mirror is optimal, we
expect that π1(X̊

w0
wP

) = Zn−1. Our main result verifies this prediction when
G∨/P∨ has Lie type A.

Theorem 1.3. Let P be a parabolic subgroup of SL(n,C). Then π1(X̊
w0
wP

) =
Zn−1.

A flag variety of Lie type A is determined by a sequence n• : 0 < n1 <
· · · < nr < n of integers. The corresponding flag variety F�(n•) is the set of
all sequences of subspaces

Fn1
⊂ Fn2

⊂ · · · ⊂ Fnr
⊂ Cn where dimFi = i .

This is a subvariety of the product of Grassmannians G(n1, n) × · · · ×
G(nr, n). Under the Plücker embedding of G(ni, n) into the projective space

P
( n

ni
)−1

, the flag variety F�(n•) has a Plücker embedding into the product

P(
n

n1
)−1×· · ·×P(

n

nr
)−1. Although F�(n•) is a compactification of X̊w0

wP
in this

Plücker embedding, we prove Theorem 1.3 by considering a different com-
pactification of X̊w0

wP
in a single projective space. This allows us to reduce

Theorem 1.3 to Zariski’s classical case of a plane curve complement. We
do this by investigating the intersections of the different irreducible com-
ponents of the Knutson-Lam-Speyer [11] anti-canonical divisor −KF�(n•),
whose defining equations we also determine.

A projected Richardson variety prP (X
w
v ) is the image of a Richardson

variety Xw
v = Xv∩Xw under the natural projection prP : G/B → G/P . This

enjoys many geometric properties of Richardson varieties, such as being nor-
mal, Cohen-Macaulay, and having rational singularities [3, 4, 11]. The union
of certain projected Richardson hypersurfaces forms an anti-canonical divi-
sor −KG/P of G/P [11]. Another main result is explicit defining equations
in Theorem 4.1 for these projected Richardson hypersurfaces in terms of the
Plücker coordinates when G = SL(n,C). Each is given either by a single
Plücker variable or by a bilinear quadric. For instance, F�(1, 3; 4) ⊂ P3 × P3

is the hypersurface V(x1x234−x2x134+x3x124−x4x123) and −KF�(1,3;4) is the
divisor V(x1x234(x1x234 − x2x134)x4x123). We expect these explicit defining
equations to also be helpful in the study of the mirror symmetry for F�(n•),
similar to the study of mirror symmetry for Grassmannians in [14].

Finally, we remark that the cohomologies of an open Richardson vari-
ety and its Langlands dual are isomorphic to each other, as was shown in
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[12, §14]. It will be very interesting to study the cohomology of an open
Richardson variety itself, about which little seems to be known.

The paper is organized as follows. We review basic facts on Richardson
varieties in Section 2. We provide an expectation for the fundamental group
π1(X̊

v
id) in Section 3. For G = SL(n,C), we derive the explicit defining

equations of −KG/P in terms of the Plücker coordinates in Section 4, and
then compute the fundamental group of the complement −KG/P in G/P in
Section 5. Finally, in Section 6, we provide the proof of Lemma 5.2.

2. Open Richardson varieties

Let G be a complex, simply-connected, simple Lie group of rank n−1, and
B ⊂ G be a Borel subgroup containing a maximal complex torus T �
(C×)n−1. Let Δ = {α1, . . . , αn−1} be a basis of simple roots in (Lie(T))∗. The
Weyl group W of G is a Coxeter group generated by the simple reflections
{sα | α ∈ Δ}, and is identified with the quotient NG(T)/T, where NG(T)
is the normalizer of T in G. For each u ∈ W , choose a lift u̇ ∈ NG(T). The
opposite Borel is B− := ẇ0Bẇ0, where w0 is the longest element in W . The
(opposite) Schubert cells

X̊u := B−u̇B/B ∼= CdimG/B−�(u) and X̊u : = Bu̇B/B ∼= C�(u)

are independent of choice of lift u̇. Henceforth, we write u for u̇.
The root system of (G,B) is R := W ·Δ = R+ 
 (−R+), where R+ :=

R ∩
⊕n−1

i=1 Z≥0αi is the set of positive roots. Each root γ = w(αi) ∈ R gives
a reflection sγ := wsiw

−1 ∈ W , independent of the expressions for γ. The
Bruhat order on W is the transitive closure of its covering relation, u�v for
u, v ∈ W if �(v) = �(u)+ 1 and v = usγ for some γ ∈ R, where � : W → Z≥0

is the length function. The open Richardson variety

X̊u
v : = X̊v ∩ X̊u

is irreducible and of dimension �(u) − �(v) if v ≤ u, and otherwise it is
empty. Its closure, a (closed) Richardson variety, is the intersection Xu

v :=
Xv ∩ Xu of (opposite) Schubert varieties Xv and Xu, which are closures
of the corresponding Schubert cells. As w2

0 = id, we have the following
identification of open Richardson varieties.

Proposition 2.1. For any v ∈ W , X̊w0
v

∼= X̊w0v
id .

Proof. X̊w0
v = w0Bw0vB/B ∩ Bw0B/B ∼= Bw0vB/B ∩ w0Bw0B/B =

Xw0v
id .
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A proper parabolic subgroup P � B determines and is determined by
a proper subset ΔP � Δ. The Weyl group WP of (the Levi subgroup) of
P is the subgroup of W generated by {sα | α ∈ ΔP }. Let WP be the set
of minimal length coset representatives of W/WP . We write prP for both
the natural projection G/B → G/P and the map W → WP determined
by w ∈ prP (w)WP . Then prP (w0) = w0wP ∈ WP , where wP is the longest
element in WP . Following [11], the P -Bruhat order, ≤P , is the suborder of
the Bruhat order whose covers are u�P v when u� v and prP (u) < prP (v).
The varieties

Π̊w
v := prP (X̊

w
v ) and Πw

v := prP (X
w
v )

are open and closed projected Richardson varieties, respectively. The next
proposition is implicit in [11]. We explain how it follows from explicit results
there.

Proposition 2.2. The open Richardson variety X̊w0
wP

is isomorphic to the
complement in G/P of

−KG/P :=
∑

id�u≤Pw0wP

prP (X
w0wP
u ) +

∑
id≤P v�w0wP

prP (X
v
id) ,

which is an anti-canonical divisor of G/P .

Proof. By Proposition 2.1, we have X̊w0
wP

∼= X̊w0wP

id . As id ≤P w0wP , we
have dimΠw0wP

id = �(w0wP ) = dimG/P by [11, Corollary 3.2], and hence

Πw0wP

id = G/P . By [11, Lemma 3.1], X̊w0wP

id
∼= Π̊w0wP

id . By [11, Proposition

3.6], we have Πw0wP

id � Π̊w0wP

id = −KG/P . It follows again from [11, Proposi-
tion 3.6, Corollary 3.2] that −KG/P is the sum of all projected Richardson
hypersurfaces in Πw0wP

id , and hence it does be an anti-canonical divisor of
Πw0wP

id by [11, Lemma 5.4].

3. Expectation for π1(X̊
v
id)

The open Richardson variety X̊w0wP

id has the form X̊v
id where v ∈ W . We

begin with some well-known facts about fundamental groups.

Proposition 3.1 (Zariski Theorem of Lefschetz type [22]). Let V be a hy-
persurface in PN . For almost every two-plane Λ ⊂ PN , the map

π1(Λ� V ) −→ π1(P
N � V )

induced by the inclusion (Λ� V ) ↪→ (PN � V ) is an isomorphism.
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Proposition 3.2 ([15]). Let C1 and C2 be algebraic curves in C2. Assume
that the intersection C1 ∩ C2 consists of d1d2 points where di is the degree
of Ci. Then the fundamental group π1(C

2 � C1 ∪ C2) is isomorphic to the
product π1(C

2 � C1)× π1(C
2 � C2).

Subvarieties X and Y of projective or affine space meet transversally
at a point p ∈ X ∩ Y if p is a smooth point of each and the defining
equations for the tangent spaces TpX and TpY are in direct sum. They
meet transversally if they are transverse at every point of their intersection,
which implies that X ∩ Y is smooth and of the expected dimension. They
meet generically transversally if the subset of points of X ∩ Y where they
meet transversally is dense in every irreducible component of X ∩ Y . The
conditions in Proposition 3.2 on the curves C1 and C2 is that they meet
transversally. Indeed, by Bézout’s Theorem, their projective completions
meet in at most d1d2 isolated points, counted with multiplicity. As their
intersection consists of d1d2 points, they are transverse at every point of
their intersection.

Proposition 3.3 (see e.g. Remark 2.13 (1) of [13]). If C is a smooth al-
gebraic curve in C2 whose projective completion is transverse to the line at
infinity, then π1(C

2 � C) = Z.

Since Xid = G/B, the Schubert cell X̊id is the complement of the union
of Schubert hypersurfaces Xsα for α ∈ Δ. For v ∈ W , the Schubert cell
X̊v ∼= C�(v). Therefore,

X̊v
id = X̊v ∩ X̊id = X̊v ∩Xid � Xv ∩ ∂Xid

= C�(v) � Xv ∩ ∪α∈ΔXsα = C�(v) �
⋃
α∈Δ

Xv
sα .

The Richardson variety Xv
sα has dimension �(v)−1 (and contains X̊v

sα as a
Zariski open dense subset) if sα ≤ v, and otherwise it is empty. A Richardson
variety is reduced and normal, and thus its singular set has codimension at
least two. Therefore, if Λ ⊂ C�(v) = X̊v is a general affine two-plane, then
Cα := Xv

sα ∩ Λ is a smooth curve in Λ, whenever sα ≤ v. If these curves
satisfy the hypotheses of Propositions 3.2 and 3.3, we are led to the following
expectation. For any v ∈ W , define Γ(v) := {α ∈ Δ | sα ≤ v}.

Conjecture 3.4. We have π1(X̊
v
id) = Z|Γ(v)|.

Example 3.5. The flag manifold SL(3,C)/B = {F1 ⊂ F2 ⊂ C3 | dimFi =
i} is the hypersurface V(x1x23−x2x13+x3x12) in P2×P2, where [x1, x2, x3]
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are coordinates for the first P2 and [x12, x13, x23] are coordinates for the
second. The Schubert cell X̊id (resp. X̊w0) is the subset of this hypersurface
where x1x12 �= 0 (resp. x3x23 �= 0). Dehomogenizing by setting x1 = x12 = 1,
writing the remaining coordinates as (z2, z3, z13, z23) ∈ C4, and using the
equation 0 = z23 − z2z13 + z3 to solve for z23, we obtain

X̊w0

id = {(z2, z3, z13) ∈ C3 | z3 �= 0, z2z13 − z3 �= 0} .

This is the complement in C3 of two smooth hypersurfaces whose intersection
is transverse away from (0, 0, 0). Intersecting with a general two-plane Λ
gives two smooth curves in Λ that satisfy the hypotheses of Propositions 3.2
and 3.3. Thus π1(X̊

w0

id ) = Z2.
The Schubert subvariety Xs1s2 of SL(3,C)/B is V(x3, x1x23 − x2x13).

The Schubert cell X̊s1s2 is the subset where x2x23 �= 0. Setting x2 = x23 = 1
and using z∗ for the remaining coordinates, gives X̊s1s2 = {(z1, z12, z13) ∈
C3 | z1 − z13 = 0}. Solving for z13, we obtain X̊s1s2

id = {(z1, z12) ∈ C2 |
z1z12 �= 0}, which shows that π1(X̊

s1s2
id ) = Z2. Fundamental groups of the

remaining open Richardson varieties in SL(3,C)/B are as follows.

v id s1 s2 s1s2 s2s1 w0

Γ(v) ∅ {α1} {α2} {α1, α2} {α1, α2} {α1, α2}
π1(X̊

v
id) {id} Z Z Z2 Z2 Z2

�

We establish some lemmas that will help to rewrite the expression for
−KG/P from Proposition 2.2. They use basic facts about reflection groups
as could be found in, for example [9, §1].

Lemma 3.6. 1. If w = si1 · · · sim ∈ WP is a reduced expression of w,
then sij · · · sim is also in WP and is again a reduced expression (of
length (m− j + 1)).

2. If β ∈ ΔP and v ∈ WP satisfy both (1) sβ �≤ v and (2)sβv �= vsβ, then
�(sβv) = �(v) + 1 and sβv ∈ WP .

Proof. (1) w ∈ WP if and only if �(wsα) = �(w)+1 for all α ∈ ΔP . Since the
given expression of w is reduced, we have �(sij · · · simsα) = (m− j+1)+1 =
�(sij · · · sim)+1 for any α ∈ ΔP . Hence, sij · · · sim ∈ WP and it is a reduced
expression.

(2) Since sβ �≤ v, any reduced expression of v−1 does not contain sβ, and
hence v−1(α) ∈ R+. Thus �(sβv) = �(v−1sβ) = �(v−1) + 1 = �(v) + 1.

For any α ∈ ΔP , we have v(α) ∈ R+ as v ∈ WP ; we claim sβv(α) ∈ R+

for all such α and hence sβv ∈ WP . Indeed, if α �= β, then we have v(α) �= β,
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as any reduced expression of v does not contain sβ . Moreover, v(β) �= β
(otherwise vsβv

−1 = sβ, contradicting to the hypothesis). Therefore the
claim holds by noting sβ(R

+ \ {β}) = R+ \ {β}.

Lemma 3.7. For any parabolic subgroup P , we have Γ(w0wP ) = Δ.

Proof. For any α ∈ Δ � ΔP , we have wP (α) > 0 and thus w0wP (α) < 0.
Consequently, w0wP has a reduced expression ending with sα (by [9, §1.7
Exchange Condition]). Thus w0wP ≥ sα and α ∈ Γ(w0wP ). It remains to
show ΔP ⊂ Γ(w0wP ).

If ΔP �⊂ Γ(w0wP ), then there exists α ∈ ΔP such that sα �≤ w0wP . Since
the Dynkin diagram of Δ is a tree, there exist {β1, . . . , βm} satisfying both
(1) β1 = α, {β1, . . . , βm−1} ⊂ ΔP , βm ∈ Δ \ΔP , and (2) βi is adjacent to
βi+1 for i = 1, . . . ,m− 1. Then for γ := sβ1

· · · sβm−1
(βm) =

∑m
j=1 ajβj with

aj > 0 for all j, we have wP (γ) = wP (
∑m−1

j=1 ajβj)+wP (amβm) > 0 and con-
sequently w0wP (γ) < 0. However, w0wP is in the Weyl subgroup generated
by {sβ | β ∈ Δ � {α}}, by the hypothesis sα �≤ w0wP . Thus we deduce a
contradiction by noting w0wP (γ) = w0wP (a1α)+w0wP (

∑m
j=2 ajβj) > 0.

For general G/P , the expectation π1(X̊
w0wP

id ) � Z|Δ| would follow from
Conjecture 3.4 and Lemma 3.7. We refine the description of −KG/P of
Proposition 2.2. Moreover, we have the following.

Lemma 3.8. Let u ∈ W . Then we have

1. id� u ≤P w0wP if and only if u = sα for some α ∈ Δ.
2. id ≤P u� w0wP if and only if u = prP (w0sα) = w0sαwP for α ∈

Δ�ΔP .

Proof. If id� u, then u = sα for some α ∈ Δ. If α ∈ Δ � ΔP , then as in
the beginning of the proof of Lemma 3.7, w0wP admits a reduced expression
w0wP = si1 · · · sil where l = �(w0wP ) and sil = sα. For j = 1, . . . , l, set vj :=
sil−j+1

· · · sil−1
sil . Then we have sα = v1� · · ·�vl = w0wP with vj ∈ WP for

any j by Lemma 3.6 (1), which implies prP (vj) = vj . Hence, sα ≤P w0wP . If
β ∈ ΔP , then we still have sβ ≤ w0wP by Lemma 3.7, so sβ must occur in the
aforementioned reduced expression of w0wP . Let m := max{j | sij = sβ}.
Set uj = sil−j+1

· · · sil−1
sil if l − m + 1 ≤ j ≤ l, uj = simsil−j+2

· · · sil−1
sil

if 2 ≤ j ≤ l − m (in which case sβuj = sil−j+2
· · · sil ∈ WP by Lemma 3.6

(1), and we will discuss whether it commutes with sβ), and u1 = sim . Then
we have sβ = u1 � · · · � ul = w0wP . For j ≤ l − m, we notice that if
uj = simujsim , then ur = simursim and simur ∈ WP hold for any r ≤ j,
and if uj �= simujsim then uj ∈ WP by Lemma 3.6 (2). It follows that
sβ ≤P w0wP by definition.
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If id ≤P u, then by definition we have �(prP (u)) − �(prP (id)) ≥ �(u) −
�(id), implying that �(prP (u)) ≥ �(u) and hence u ∈ WP . Together with
u� w0wP , it follows that �(u) = �(w0wP )− 1 = �(w0)− �(wP )− 1, so that
�(uwP ) = �(w0) − 1. Hence, uwP = w0sα for some α ∈ Δ. This further
implies u = w0sαwP , and hence �(w0) − �(wP ) − 1 = �(u) = �(w0sαwP ) =
�(w0) − �(sαwP ). Therefore �(sαwP ) = �(wP ) + 1, implying α /∈ ΔP . On
the other hand, for α ∈ Δ � ΔP , for any γ ∈ R+

P , we have wP (γ) ∈ R−
P ,

implying sαwP (γ) ∈ R− and hence w0sαwP (γ) ∈ R+. Therefore prP (wsα) =
wsαwP ∈ WP and id ≤P wsαwP for any such α.

Proposition 3.9. −KG/P =
∑
α∈Δ

prP (X
w0wP
sα ) +

∑
α∈Δ�ΔP

prP (X
w0sαwP

id ).

Proof. This is a direct consequence of Proposition 2.2 and Lemma 3.8.

4. Defining equations of −KSL(n,C)/P

Henceforth, we assume thatG = SL(n,C). Then SL(n,C)/P = F�(n•) is the
manifold of partial flags F• : Fn1

⊂ · · · ⊂ Fnr
⊂ Cn of type n• (dimFni

= ni).
Here n• := 1 ≤ n1 < · · · < nr < n is an increasing sequence of integers and
P is the parabolic subgroup corresponding to the roots not in n•, so that
ΔP = {αi | i �∈ n•}. Also, W = Sn is the symmetric group generated by
simple transpositions {si | 1 ≤ i ≤ n−1}.

The natural embedding of F�(n•) into the product

G(n1, n) × G(n2, n) × · · · × G(nr, n)

of Grassmannians and then into the product P(∧n1Cn)× · · · × P(∧nrCn) of
Plücker spaces gives Plücker coordinates xJ for F�(n•). We describe their

indexing. For any positive integer m, set [m] := {1, . . . ,m} and write
(
[m]
j

)
for the set of subsets J of [m] of cardinality j, which we always write as
increasing sequences. There is a Plücker coordinate xJ for F�(n•) for every

J ∈
(
[n]
nj

)
, for each j = 1, . . . , r.

Let us explain xJ concretely in terms of local coordinates for F�(n•). A
point F• ∈ F�(n•) is represented by a nr×n matrix A• of full rank nr, where

Fnj
is the row space of the first nj rows of A•. For J ∈

(
[n]
nj

)
, the Plücker

coordinate xJ of F• is the determinant of the nj×nj submatrix of A• formed
by the first nj rows and the columns from J . This is the Jth minor of the
matrix formed by the first nj rows of A•.

For a < b ≤ n, let us write (a, b] for the set {a+1, . . . , b} and [a, b) for
{a, . . . , b−1}. Note that (0, i] = [i]. If J ⊂ [a] and J ′ ⊂ (a, n], then J, J ′ is
the index J ∪ J ′ ⊂ [n].
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Elements of WP index Schubert varieties in F�(n•), while elements of Sn

index Schubert varieties in F�(n) = G/B. The Richardson variety Xw0wP

id
projects birationally onto F�(n•), under the map prP : F�(n) → F�(n•). We
describe explicit equations for the irreducible components of −KF�(n•), which
were identified in Proposition 3.9.

Theorem 4.1. Let i ∈ [n−1].

1. For i ∈ n•, prP (X
w0siwP

id ) is the Schubert divisor of F�(n•) defined by
the Plücker coordinate hyperplane x(n−i,n] = 0.

2. When i ∈ n•, prP (X
w0wP
si ) is the Schubert divisor of F�(n•) defined by

the Plücker coordinate hyperplane x[i] = 0.
3. When i < n1, prP (X

w0wP
si ) is given by x[i],(n−n1+i,n] = 0.

4. When i > nr, prP (X
w0wP
si ) is given by x(i−nr,i] = 0.

5. When nj < i < nj+1 with j ∈ [r−1], set k := i − nj and l :=
min{i, n−nj+1+k}.
The projected Richardson hypersurface prP (X

w0wP
si ) is given by

(4.1)
∑

J∈([l]k )

(−1)|J |x[i]�J · xJ,(n−nj+1+k,n] = 0 ,

where |J | is the sum of the elements in J .

Proof. We start with the most involved case (5). As a first check, note that
in (4.1) the first Plücker coordinate x[i]�J has nj indices, while xJ,(n−nj+1+k,n]

has nj+1 indices. To prove Statement (5), set a1 := n1 and ai := ni−ni−1 for
i = 2, . . . , r. We start with a structured matrix parameterizing the Schubert
cell X̊w0wP , which has the block form

(4.2)

⎛
⎜⎜⎜⎜⎜⎝

∗ ∗ . . . ∗ ∗ Ia1

∗ ∗ . . . ∗ Ia2
0

∗ ∗ . .
.

. .
.

0 0
...

... . .
.

0 0 0
∗ Iar

0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

nr×n

.

Here, Ia is the a×a identity matrix. Observe that the first column block has
n−nr columns. The hypersurface Schubert variety Xsi in G/B is defined by
the single Plücker coordinate x[i], which is not a Plücker coordinate on G/P
when i �∈ n•. Our equation for prP (X

w0wP
si ) is obtained by evaluating x[i] on

the coordinates (4.2) for X̊w0wP and expressing it in terms of the Plücker
coordinates for G/P .



On the fundamental group of open Richardson varieties 87

To that end, suppose that i �∈ n•, and for now that nj < i < nj+1 as
above. Consider the first i rows of (4.2),

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ . . . ∗ ∗ Ia1

∗ ∗ ∗ . . . ∗ Ia2
0

...
...

... . .
.

. .
.

0 0
∗ ∗ ∗ Iaj

0 0 0
∗ Ik 0k,aj+1−k 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠

i×n

.

Here, 0k,aj+1−k is the zero matrix with k rows and aj+1−k columns, and
the first column block has size n − nj+1. The Plücker coordinate x[i] is the
determinant of the first i columns of this matrix. Use Laplace expansion on
the last k rows to get

x[i] =
∑

J∈([i]k )

x[i]�J · zJ ,

where zJ is the Jth minor of the last k rows,
(
∗ Ik 0k,aj+1−k 0 · · ·

)
.

Its last nonzero column is in position n−nj+1+k, so we may assume that
J ⊂ [l], as otherwise zJ = 0.

If we consider the form of the matrix (4.2) (specifically, its first nj+1

rows), then we see that zJ = ±xJ,(n−nj+1+k,n], as the columns in the final po-
sitions in (n−nj+1+k, n] all end with a 1 in rows 1, . . . , nj , nj+k+1, . . . , nj+1.
Rather than compute the sign, we note that the sign does not depend upon
J , but only on n• and i. Hence, prP (X

w0wP
si ) satisfies the formula (4.1),

and then this completes the proof, by noting that the hypersurface of G/P
defined by (4.1) is irreducible.

The arguments for cases (2), (3), (4) are similar and much simpler. Case
(1) follows from case (2) by noting prP (X

w0siwP

id ) = w0prP (X
w0wP
si ) for i ∈

n•.

Example 4.2. For F�(3, 6; 7), prP (X
w0wP
s4 ) is given by x234x134567 −

x134x234567 = 0, and prP (X
w0wP
s5 ) is given by x145x234567 − x245x134567 +

x345x124567 = 0. �

5. Fundamental group of the complement of −KF�(n•) in
F�(n•)

To study F�(n•) � (−KF�(n•)), we first remove the Schubert divisors (1)
in Theorem 4.1. These are given by the Plücker coordinates x(n−nj ,n] for
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nj ∈ n•, and correspond to the second sum in Proposition 3.9. This leaves

the dense Schubert cell of F�(n•), which is identified with X̊w0wP , and is
parameterized by the coordinates (4.2). Let N := �(w0wP ) so that X̊w0wP �
CN , and let PN := CN 
 P(CN ) be its projective completion.

For any subvarietyD of F�(n•) which meets the cell X̊w0wP , we also write
D for its closure in PN . WriteD0 for the hyperplane P(C

N ) at infinity and for
i = 1, . . . , n−1, let Di := prP (X

w0wP
si ) ∩ X̊w0wP be the image of a projected

Richardson variety that meets X̊w0wP . Set D := D0 ∪ D1 ∪ · · · ∪ Dn−1, a
divisor in PN .

Theorem 5.1. The fundamental group of F�(n•)� (−KF�(n•)) is Zn−1.

Proof. Since PN�D � F�(n•)�(−KF�(n•)), we study the fundamental group

of the hypersurface complement PN�D. Let Λ ⊂ PN be a general two-plane.
For i = 0, . . . , n−1, set Ci := Λ ∩Di and set C := Λ ∩D, which are curves,
as Λ is general. We claim that:

1. Each curve Ci is smooth.
2. For i �= j, then intersection Ci ∩ Cj is transverse.
3. For i, j, k distinct Ci ∩ Cj ∩ Ck = ∅.

Given these claims, Propositions 3.2 and 3.3 imply that π1(Λ�C) = Zn−1,
and Proposition 3.1 implies π1(P

N �D) = Zn−1, which implies the theorem.

By Bertini’s Theorem and the genericity of Λ, these three properties
of the curves Ci are consequences of the following three properties of the
divisors Di.

1. Each Di is smooth in codimension 1.
2. For i �= j, the intersection Di ∩Dj is generically transverse.
3. For i, j, k distinct, the intersection Di∩Dj∩Dk has codimension three.

The hyperplane D0 at infinity in PN is smooth. For 0 < i the intersection
Di ∩ CN with the complement of D0 is isomorphic to an open part of the
projected Richardson variety prP (X

w0wP
si ) in F�(n•). Projected Richardson

varieties are normal [3, 4, 11], and thus smooth in codimension 1. Therefore,
the first property is satisfied.

For the second, we notice that for 0 < i < j, the intersection Xsi ∩Xsj

is given by Xsisj if j > i + 1, or Xsisj ∪ Xsjsi if j = i + 1, and in either
case the intersection is reduced. It follows from the defining equations that
prP (X

w0wP
si )∩prP (Xw0wP

sj ) = prP (X
w0wP
si ∩Xw0wP

sj ), and hence the intersection
is given by prP (X

w0wP
sisj ) if j > i+1, or prP (X

w0wP
sisj )∪prP (X

w0wP
sjsi ) if j = i+1.

Thus the intersection Di ∩Dj is generically transverse for 0 < i < j.
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To show that D0 ∩Di is generically transverse, we study the equations
for Di. The divisor Di is defined by the determinant f (i) of the upper left i×i
submatrix of the local coordinates (4.2). Write f (i) as a sum of homogeneous
pieces,

f (i) = f
(i)
di

+ f
(i)
di−1 + · · · + f

(i)
0 ,

where deg f
(i)
j = j and deg f (i) = di. If z is a new homogenizing variable, so

that z = 0 defines the hyperplane D0 at infinity in PN , then Di is defined
in PN by

(5.1) f
(i)
di

+ zf
(i)
di−1 + z2f

(i)
di−2 + · · · + zdif

(i)
0 .

Lemma 5.2. With these definitions, we have the following.

1. For each i ∈ [n−1], the top homogeneous component f
(i)
di

of Di is

square-free. If f (i) is inhomogeneous, then its second highest homoge-

neous component f
(i)
di−1 is nonzero and coprime to f

(i)
di

.

2. For i, j ∈ [n−1] with i �= j, the top homogeneous components of f (i)

and f (j) are coprime.

We will prove this in Section 6 and assume it for now. Then D0 ∩Di =

V(z, f (i)) is defined in D0 by the top homogeneous component f
(i)
di

of f (i).

Since f
(i)
di

is square-free, D0 ∩ Di is reduced in the plane D0. When f (i)

is homogeneous, this shows that the intersection is generically transverse.
When f (i) is inhomogeneous, the intersection will be nontransverse where

V(f (i)
di

) is singular, and at points of V(f (i)
di

, f
(i)
di−1). Since f

(i)
di

and f
(i)
di−1 are

coprime, we see again that the intersection is generically transverse.
Consider now the final point, that for i < j < k, Di ∩ Dj ∩ Dk has

codimension three. If i �= 0, then this follows from the same fact about the
Richardson divisors. We may also see this from the defining equations, which
give the following four cases.

i, j, k Di ∩Dj ∩Dk

i < j − 1 < k − 2 prP (X
w0wP
sisjsk

)

i = j − 1 < k − 2 prP (X
w0wP
sisjsk

) ∪ prP (X
w0wP
sjsisk

)

i < j − 1 = k − 2 prP (X
w0wP
sisjsk

) ∪ prP (X
w0wP
sisksj

)

i = j − 1 = k − 2 prP (X
w0wP
sisjsk

) ∪ prP (X
w0wP
sjsisk

) ∪ prP (X
w0wP
sksisj

) ∪ prP (X
w0wP
sksjsi

)

If i = 0, then this holds as f
(j)
dj

and f
(k)
dk

are coprime.
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6. Proof of Lemma 5.2

Let M be a principal a × a submatrix of (4.2). We will later show that

its determinant equals the determinant of a matrix with a block form (6.1)

described below. Consequently, we first investigate the factorization of the

top homogeneous component of the determinant of such a matrix, and use

that to deduce Lemma 5.2. Until we deduce Lemma 5.2 at the end of this

section, all symbols, N , r, etc. will have different meanings than in Sections 4

and 5. We start with a well-known fact, as we will use similar arguments

later.

Lemma 6.1. The determinant det
(
xij

)
a×a

of a matrix of indeterminates

is irreducible.

Proof. Let g be this determinant, and note that it has degree one in every

variable xij . Suppose that g = pq. We may assume that x11 appears in

p, so that p is of degree one in x11. Then x1j appears in p for all j, for

otherwise x1j appears in q, which implies that x11x1j appears in g, which

is a contradiction. Similarly, xj1 appears in p, and then similar arguments

show that each xjk appears in p. Consequently, q is constant.

For sequences i• := (i1, i2, . . . , ir) and j• := (j1, j2, . . . , jr) of positive

integers with |i•| = |j•| = N , consider a matrix of the following form,

(6.1) M(i•; j•) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · · · · ∗ ∗ A1

∗ · · · · · · ∗ A2 Ii2,j1
... · · · . .

.
. .
.

. .
.

0
∗ . . . As Iis,js−1

0 0
... . .

.
. .
.

. .
.

0 0
Ar Iir,jr−1

0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

N×N

.

Here, Ic,d is a c×dmatrix with 1s on its diagonal and 0s elsewhere, the blocks

Ar are ir×jr matrices of indeterminates, and every ∗ denotes another matrix

of indeterminates. As the entries of M(i•; j•) that are not specified to be 0 or

1 are different indeterminates, all properties of its determinant g = g(i•; j•)

depend only upon the sequences i• and j•. This includes whether or not

g = 0, its degree, its irreducibility and factorization, as well as the same

properties of its top degree homogeneous component.

We need not determine whether g = 0, or if it is irreducible, or its degree.

We do study the factorization of its top degree homogeneous component. For
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this, we set

Υ(i•; j•) := {s ∈ [r−1] | i1 + · · ·+ is = j1 + · · ·+ js} .

We show that this set controls the factorization of the top homogeneous com-
ponent of the determinant g of M . For a polynomial f , let top(f) be the top
homogeneous component of f and snd(f) be the homogeneous component
of f of degree deg(f)−1.

Lemma 6.2. Let g be the determinant of the matrix M(i•; j•) (6.1). Assume
that g is irreducible and nonzero. Then top(g) is reducible if and only if
Υ(i•; j•) �= ∅.

Proof. Suppose that Υ(i•; j•) �= ∅. Let s ∈ Υ(i•; j•) and observe that remov-
ing Iis+1,js from (6.1) gives a block upper left triangular matrix, ( ∗ ∗

∗ 0 ). Using
Laplace expansion of g along the first i1 + · · ·+ is rows of M(i•; j•), gives

g = ±

∣∣∣∣∣∣∣∣∣

· · · ∗ ∗ As+1

∗ ∗ As+2 Iis+2,js+1

... . .
.

. .
.

0
Ar Iir,jr−1

0 0

∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣

· · · ∗ ∗ A1

∗ ∗ A2 Ii2,j1
... . .

.
. .
.

0
As Iis,js−1

0 0

∣∣∣∣∣∣∣∣∣
+ (other terms).

In the other terms, at least one column of the first minor is from the lower
right submatrix (

Iis+1,js 0
0 0

)
,

and thus its degree is strictly less than that of the first minor in the first term.
Indeed, the minor is zero if any column is zero, and if not, then expanding
that minor along the rows containing 1s from Iis+1,js shows that its degree
drops by the number of such rows/columns. However, the second minor has
the same degree as the second minor in the first term (as they have the same
format M(i1, . . . , is; j1, . . . , js)). Since we assumed that g �= 0, these second
minors are all nonzero, and we conclude that the degree of the other terms
is strictly less than that of the first term. Therefore, top(g) is given by the
product of top homogeneous components of the two minors in the first term
of g, neither of which is a constant (we see this by Laplace expansion along
their first rows of indeterminates). Thus Υ(i•; j•) �= ∅ is sufficient for the
reducibility of top(g).



92 Changzheng Li et al.

We use induction on r for necessity. If r = 1, then we are done by

Lemma 6.1. Suppose that for any sequences i• and j• of length s < r with

i1+· · ·+is = j1+· · ·+js, if g(i•; j•) is irreducible and i1+· · ·+it �= j1+· · ·+jt
for all 1 ≤ t < s, then top(g(i•; j•)) is irreducible.

Let i• and j• be sequences of length r such that i1+ · · ·+is �= j1+ · · ·+js
for any 1 ≤ s < r, but i1 + · · · + ir = j1 + · · · + jr = N . Note that this

implies that ir �= jr.

Assume ir < jr. Consider the Laplace expansion of g along the last ir
rows of M(i•; j•). For each L ∈

(
[N ]
ir

)
, write CL for the determinant of the

square submatrix formed by the columns from L and the last ir rows, and

let ĈL be its cofactor (determinant of the square submatrix formed by the

columns from [N ]�L and the first N − ir rows, with the appropriate sign).

If b := min{ir, jr−1}, then

(6.2) g =
∑

L∈([jr+b]

ir
)

CLĈL =
∑

L∈([jr ]

ir
)

CLĈL + (other terms) .

(The first sum is restricted as these are the only nonzero columns in the last

ir rows.) In the second expression, the degree of each of the (other terms) is

strictly less than the degree of the terms in the sum over L ∈
(
[jr]
ir

)
. Indeed,

in each, the minor CL has degree |L ∩ [jr]| < ir as L includes at least one

column beyond the jrth. Thus these minors have smaller degree than those

in the sum over
(
[jr]
ir

)
. Also, each cofactor ĈL in either expression is, up to a

sign, the determinant of a matrix of the form (6.1) with indices

(6.3) M(i1, . . . , ir−2, ir−1 ; j1, . . . , jr−2, jr−1+jr−ir) .

Thus they are either all zero or all nonzero. As g �= 0, we have ĈL �= 0 for

all L and they all have the same degree and are irreducible. Indeed, suppose

that for some L, ĈL = pq factors with neither p nor q a constant. Since

ĈL �= 0, every entry in the lower left ir−1× (jr−1+ jr − ir) submatrix of the

matrix for ĈL appears in ĈL, which we may see by Laplace expansion along

its last ir−1 rows. If one entry occurs in p, then the argument used in the

proof of Lemma 6.1 implies that they all do, and no such entry occurs in q.

But then q depends only on the last (j1 + · · ·+ jr−2) columns of the matrix

for ĈL. Since all the ĈL have the same form (6.3), they are all reducible

with the same factor q. But this implies that q divides g, contradicting the

irreducibility of g.
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As each CL for L ∈
(
[jr]
ir

)
is homogeneous of degree ir, we have

top(g) =
∑

L∈([jr ]

ir
)

CL · top(ĈL) .

Each term of some minor CL occurs only in that minor, and therefore ap-
pears in top(g). In particular, every indeterminate entry xst of the matrix
Ar occurs in top(g). We note that for each L, top(ĈL) is irreducible, by our
induction hypothesis, as ĈL is irreducible and the corresponding sequences
in (6.3) have length r−1 < r and unequal partial sums.

Suppose that top(g) = pq factors as a product of polynomials. We may
assume that x11 appears in p. Arguing as in the proof of Lemma 6.1 shows
that each entry of Ar appears in p, and none appears in q.

For L ∈
(
[jr]
ir

)
, let yL be the specialization obtained by replacing Ar by a

matrix whose only nonzero entries form the identity matrix in the columns
of L. Since AK(yL) = δK,L, the Kronecker delta, if we evaluate top(g) at
this specialization, we obtain

top(ĈL) = top(g)(yL) = p(yL) · q(yL) = p(yL) · q .

Since top(ĈL) is irreducible, if q is nonconstant, then p(yL) is a nonzero

constant. Thus for K,L ∈
(
[jr]
ir

)
with K �= L, we have

p(yL) · top(ĈK) = p(yK) · top(ĈL) ,

which is a contradiction, as top(ĈK) and top(ĈL) have different indetermi-
nates. (Expand ĈL along a column of K � L, whose indeterminates do not
appear in ĈK .)

Suppose that ir > jr. We prove that top(g) is irreducible by modifying
the argument for the case ir < jr. Since g is nonzero and irreducible, the
matrix M(i•; j•) does not contain a l× (N − l) submatrix of zeroes, for any l
(containing such a submatrix implies that M(i•; j•) is upper left triangular
so that g factors, and a larger submatrix forces g to be zero). Considering
the last ir rows of M(i•; j•), this implies that ir < jr+jr−1.

The lower left ir × (jr+jr−1)-corner of M(i•; j•) is (Ar Iir,jr−1
). This

has jr+b nonzero columns where b = min{ir, jr−1}. Let us reconsider the
expansion (6.2) of g,

g =
∑

L∈([jr+b]

ir
)

CLĈL =
∑

L∈([jr+b]

ir
) , [jr]⊂L

CLĈL + (other terms) .
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The cofactors ĈL as before are nonzero, have the same degree, and are

irreducible. The degree of CL is |L ∩ [jr]|, so only the terms in the sum

in the second expression contribute to top(g). The rest of the argument

proceeds as before.

We deduce three corollaries from this proof. In all, g = detM(i•; j•) is

assumed to be nonzero and irreducible. Suppose that Υ(i•; j•) = {s1 < · · · <
sm} �= ∅. Set s0 := 0 and sm+1 := r. For t = 0, . . . ,m, let

(6.4) M(i•; j•)t :=

⎛
⎜⎜⎜⎝

∗ · · · ∗ A1+st

∗ · · · A2+st Ii2+st ,j1+st

... . .
.

. .
.

0
Ast+1 Iist+1

,jst+1−1
0 0

⎞
⎟⎟⎟⎠ ,

which is a square submatrix of M(i•; j•).

Corollary 6.3. If Υ(i•; j•) �= ∅, then the irreducible factorization of top(g)

is f0 · · · fm, where ft = top(det(M(i•; j•)t)).

Proof. That top(g) = f0 · · · fm is a consequence of the proof of sufficiency

in Lemma 6.2. The irreducibility of each ft is a consequence of the proof of

necessity (using mathematical induction and arguing as for the irreducibility

of ĈL therein).

Remark 6.4. When s ∈ Υ(i•; j•), let m := i1 + · · · + is. Then the matrix

M(i•; j•) has a block structure

(6.5)

(
∗ M
M ′ P

)
,

where ∗ is a m×(N−m) matrix of indeterminates, M and M ′ are structured
matrices (6.1) with parameters

M = M(i1, . . . , is; j1, . . . , js) M ′ = M(is+1, . . . , ir; js+1, . . . , jr) ,

and P is a (N−m)×m matrix with block structure
(
I 0
0 0

)
, where I = Iis+1,js .

In particular, the 2×2 submatrix on the anti-diagonal in rows m,m+1 (and

columns n−m,n−m−1) is ( ∗ ∗
∗ 1 ), where ∗ indicates an indeterminate. In

particular,

top(detM(i•; j•)) = top(detM) · top(detM ′) . �
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Corollary 6.5. Every indeterminate in each matrix Ak for k = 1, . . . , r
appears in top(g).

Proof. This can be proven by induction on k, using the same arguments as
in the proof of necessity in Lemma 6.2.

Corollary 6.6. If r = 1, then g = top(g) is homogeneous and if r > 1, then
snd(g) �= 0.

Proof. If r = 1, then i1 = j1 = N , and g = detA1 is a homogeneous
polynomial.

Assume that r > 1. Expand g along the last ir rows of M(i•; j•) as in
the proof of necessity in Lemma 6.2,

g =
∑

L∈([jr+b]

ir
)

CL ĈL .

Recall that CL is homogeneous of degree |L ∩ [jr]| and that ĈL is the de-
terminant of a matrix with format (6.3), and thus these all have the same
degree. As the maximum value for |L ∩ [jr]| is min{ir, jr}, we have

snd(g) =
∑

|L∩[jr]|=min{ir,jr}
CL · snd(ĈL) +

∑
|L∩[jr]|=min{ir,jr}−1

CL · top(ĈL) .

The same arguments as before show that there is no cancellation in these
sums. In particular, the second sum is nonempty and nonzero, which implies
that snd(g) �= 0.

Lemma 6.7. Let g be the determinant of M(i•; j•) and assume that g is
nonzero, irreducible, and inhomogeneous. Then snd(g) �= 0 and top(g) is
coprime to snd(g).

Proof. Since g is inhomogeneous, r > 1 and snd(g) �= 0, by Corollary 6.6. If
Υ(i•; j•) = ∅, then top(g) is irreducible by Lemma 6.2 and thus is coprime
to snd(g) as it has greater degree.

Now suppose that Υ(i•; j•) �= ∅, so that top(g) is reducible, and that one
of its factors divides snd(g). We use the notation of Corollary 6.3. Suppose
that for some t ∈ {0, . . . ,m}, we have snd(g) = hft, for some polynomial
h. Here, ft = top(gt), where gt is the determinant of the submatrix Mt :=
M(i•; j•)t of M(i•; j•) as defined in (6.4).

Suppose that Mt has columns indexed by the interval [a, b] and rows
by [c, d], and n := b − a + 1 is its size. Let us consider the expansion of
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g = detM(i•; j•) along the rows [c, d] of Mt,

(6.6) g = C[a,b]Ĉ[a,b] +
∑

L∈([N]

n ) , L 
=[a,b]

CLĈL .

Suppose that δ := deg(g). By Corollary 6.3, only the first term in (6.6) has
degree δ. As in Section 5, let pδ−1 be the homogeneous component of degree
δ−1 in the polynomial p. Then

(6.7) hft = snd(g) = snd(C[a,b]Ĉ[a,b]) +
∑

L 
=[a,b]

(
CLĈL

)
δ−1

.

If we specialize the indeterminates not appearing in C[a,b]Ĉ[a,b] to zero, we
obtain

hft = snd(C[a,b]Ĉ[a,b]) = top(C[a,b])snd(Ĉ[a,b]) + snd(C[a,b])top(Ĉ[a,b]) ,

where h is the specialization of h. Since ft = top(C[a,b]) is irreducible and

top(Ĉ[a,b]) �= 0, we conclude that snd(C[a,b]) = 0. Since C[a,b] = detMt,
and it is irreducible (as top(C[a,b]) is irreducible), Corollary 6.6 implies that
1+st = st+1 so that Mt = Ast+1 is a square matrix of indeterminates. Thus
ft = detMt and every term of ft involves a variable from each column of
Mt.

The only variables from rows in [c, d] in terms of g come from C[a,b] and
the minors CL in the sum in (6.6). Each CL for L �= [a, b] is the determinant
of a matrix with at least one column not from among [a, b], consequently,
there is no term of CL and hence of CLĈL that involves a variable from
each column of Mt. This implies that ft cannot divide the sum of (6.7), and
thus no term in the sum of (6.6) has degree δ−1. We will show that the
sum of (6.6) has degree δ−1, which is a contradiction. This will imply that
top(g) is coprime to snd(g) and complete the proof.

Observe that the matrix M(i•; j•) has the following block form

⎛
⎝ ∗ ∗ M(i′•; j

′
•)

∗ Mt P
M(i′′• ; j

′′
• ) Q 0

⎞
⎠ ,

where i′• = i1, . . . , ist and i′′• = i1+st+1
, . . . , ir, and the same for j′• and j′′• .

Both P and Q have block structure
(
I 0
0 0

)
, where I = Ii1+st ,ist for P and

I = Ii1+st+1
,ist+1

for Q. If t = 0, then M(i′•; j
′
•) and its rows and columns
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are omitted, while if t = m, then M(i′′• ; j
′′
• ) and its rows and columns are

omitted, but at most one of these occurs, as m ≥ 1. Note that Ĉ[a,b] =
detM(i′•; j

′
•) · detM(i′′• ; j

′′
• ).

If t �= m, then a > 1 and let L := {a−1}, (a, b]. Then CL is the de-
terminant of the matrix obtained from Mt by replacing its first column of
variables with another column of variables, so degCL = degC[a,b]. Similarly,

ĈL is the product detM(i′•; j
′
•) ·detM , where M is obtained from M(i′′• ; j

′′
• )

by replacing its last column with the first column of Q. This amounts to
setting all variables in the last column of M(i′′• ; j

′′
• ) to zero, except for the

first, which is set to 1. This variable was in the block A1+st+1 , and by Corol-
lary 6.5 it appears in top(detM(i′′• ; j

′′
• )). This implies that the degree of

CLĈL is δ−1.
If t �= 0, then b < N and we let L = [a, b), {b+1}. We have deg ĈL =

deg Ĉ[a,b], as they are determinants of matrices of the same format. However,
CL is obtained from C[a,b] by setting all variables in the last column of Mt

to zero, except the for the first, which is set to 1. This again implies that
the degree of CLĈL is δ−1, which shows that the sum of (6.6) has degree
δ−1, and completes the proof.

Proof of Lemma 5.2. Recall that we are considering F�(n•). Set a1 := n1,
at := nt − nt−1 for t = 2, . . . r, and ar+1 := n−nr. Let us augment the
coordinates (6.1) to a square matrix by appending (Iar+1

0) in the remaining
rows as follows:

(6.8)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗ ∗ Ia1

∗ ∗ · · · ∗ Ia2
0

...
... . .

.
. .
.

0 0
... ∗ . .

.
. .
.

0 0

∗ Iar
0 . .

.
0 0

Iar+1
0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

For a ∈ [n], the divisor Da is given by the a × a principal minor f (a) of
this matrix. Each minor f (a) is nonzero and irreducible as Da is irreducible.
For a ≤ min{nr, n−n1}, the a × a principal minor is the determinant of
the first a rows and a columns of (6.8), and thus has the form (6.1). If
min{nr, n− n1} < a ≤ n, then the matrix formed by the first a rows and a
columns of (6.8) does not have this form. When n−n1 < a, its last a+n1−n
columns have an identity matrix in the first a+n1−n rows and 0s elsewhere,
and when nr < a, its last a − nr rows have an identity matrix in the first
a− nr columns and 0s elsewhere.
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In the first case, removing the first a+ n1 − n rows and last a+ n1 − n

columns does not change the determinant, and in the second case, removing

the first a − nr columns and a − nr columns does not change the determi-

nant. After these removals, we are left with a matrix having the form (6.1).

Hence, by Lemma 6.1 and Corollary 6.3, every polynomial top(f (a)) is ei-

ther irreducible or a product of distinct irreducible polynomials, and hence

is square-free. By Lemma 6.7, top(f (a)) and snd(f (a)) are coprime when-

ever f (a) is not homogeneous (in which case snd(f (a)) �= 0). This proves

statement (1) of Lemma 5.2.

For statement (2), let us first consider the irreducible factorization of

top(f (a)) for a ∈ [n−1]. Let M (a) be the principal a× a submatrix of (6.8).

By Corollary 6.3 and Remark 6.4, the factorization of top(f (a)) is determined

by decompositions of M (a) as in (6.5). That is, by the rows of M (a) whose

2 × 2 block along the anti-diagonal is ( ∗ ∗
∗ 1 ). From the form of (6.8) this

occurs when the northwest 1 of some Ias
is in the indicated position. In this

case, a+ as = n and it occurs in row ns + 1 and column a− ns + 1.

Thus each row ns giving the block structure of (6.8) will contribute to

the factorization of a unique top(f (a)), namely when a = n − as. Suppose

that

top(f (a)) = f
(a)
0 · f (a)

1 · · · f (a)
ma

is the irreducible factorization of top(f (a)). Here,ma is the number of indices

s such that a + as = n and f
(a)
i := top(det(M

(a)
i )), where M

(a)
i is the

corresponding submatrix of M (a). These matrices M
(a)
0 , . . . ,M

(a)
ma lie along

the anti-diagonal of M (a) between adjacent rows ns, ns′ such that as = aa′ =

n− a (or row 1 when i = 0 or row a when i = ma).

Statement (2) follows from the claim that if a �= b, then for all i, j,

f
(a)
i �= f

(b)
j , as these are irreducible. To prove the claim, let M ′ be the matrix

M
(a)
i , after removing rows and columns coming from Ia1

if a + a1 > n and

i = 0 and after removing rows and columns corresponding to Iar+1
if a > nr

and i = ma. Then M ′ has structure as in (6.1) and by Corollary 6.5 each

variable of each anti-diagonal block At of M ′ appears in f
(a)
i . The claim now

follows, as this set of variables is different for distinct a and i.
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