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We investigate Feynman graphs and their Feynman rules from the
viewpoint of graph complexes. We focus on the interplay between
graph homology, Hopf-algebraic structures on Feynman graphs and
the analytic structure of their associated integrals. Furthermore,
we discuss the appearance of cubical complexes where the differ-
ential is formed by reducing internal edges and by putting edge-
propagators on the mass-shell.
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1. Introduction

1.1. Motivation

Feynman integrals and graph complexes belong arguably to the more mys-
terious objects populating modern mathematical physics. They have rather
simple definitions, yet we only have a very limited understanding of the gen-
eral structures underlying these objects. These structures appear to be very
fundamental as both graph complexes and Feynman integrals are connected
to many different areas of mathematics. For graph complexes these areas
include the study of embedding spaces, the deformation theory of operads,
the cohomology of various groups and Lie algebras, and the topology of
moduli spaces, just to give a few examples. We refer to the original work
of Kontsevich [39, 40] as well as [60, 31, 59, 26] for further reading.1 Feyn-
man integrals on the other hand, apart from being the central objects in
perturbative quantum field theory, are connected to the study of periods
and special functions in number theory [14, 15, 16, 54] as well as fundamen-
tal questions in modern algebraic geometry [7, 8]. In addition, the discrete
shadows of these integrals, Feynman graphs or diagrams, have a rich combi-
natorial structure which reaches into the fields of Hopf algebras [45, 48, 50]
(with plenty of applications from combinatorics to stochastic analysis) and
even as far as category theory [38].

In the present paper we aim at drawing a connection between the two
fields, that is, we investigate the role graph complexes play in the study of
Feynman integrals in perturbative quantum field theory.2 In the following
we write Φ(G) for the Feynman integral associated to a Feynman graph G.
Our goal is to study the analytic structure of Φ(G), viewed as a function of
its kinematic variables, and clarify the role two particular graph complexes
play in this endeavour,

• a “traditional” graph complex, generated by Feynman graphs G, the
differential defined by a (signed) sum over all possible edge-collapses,

d : G �−→
∑

e∈E(G)

±G/e,

1It is difficult to give a concise survey on graph complexes as they come in
many variants; graphs may be decorated with additional data, satisfy certain rela-
tions/symmetries etc.

2For the opposite direction, see [17, 18].
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• a cubical chain complex whose generators are pairs (G,F ) where F ⊂
G is a spanning forest and the differential is the (signed) sum of two
maps, summing over all ways of collapsing or removing edges in F ,

d = d0 + d1 : G �−→
∑

e∈E(F )

±
(
(G,F − e)− (G/e, F/e)

)
.

It is important to note that in the case of topological quantum field
theories there is a direct link between graph complexes and the Feynman
diagrams of their perturbative expansions. However, for “real” physical the-
ories there appears to be no variant of Stokes’ theorem which would allow
to transfer constructions from the former to the latter case. We therefore
propose here a different approach to draw a connection between the two
fields.

1.2. Philosophy

To connect graph complexes to the study of Feynman integrals we pursue
two main ideas. Our first approach continues a program initiated in [10].
It is based on the observation that the defining operations of the above
mentioned complexes, collapsing or removing edges (from a spanning forest
of G), have a natural interpretation in physics, a fact which so far has only
been partially appreciated. In this regard we view edge-collapses as a means
of relating the analytic structures of different – “neighboring” – Feynman
integrals, while removing an edge amounts to putting it on the mass-shell,
that is, to replace the corresponding propagator by its (positive energy)
residue. We hence obtain applications in the study of Landau varieties of
graphs and their associated monodromies – see the next section for a list of
precise results. An underlying thread is the comparison of two approaches
to Feynman graphs and their analytic evaluation, the direct integration of
quadrics in momentum space and the parametric approach.

Our second approach is more of an indirect nature. It is based on the
observation that both graph complexes and Feynman integrals are related to
various moduli spaces (of graphs). For moduli spaces of curves this is a well-
known story, originating with the very work of Kontsevich that introduced
graph complexes [39, 40]. For moduli spaces of graphs such complexes appear
quite naturally as chain complexes associated to their cell structure [36, 30].
These two pictures are not unrelated, see [31, 59] as well as [26] which uses
a moduli space of tropical curves.

In the world of Feynman integrals, a direct connection to moduli spaces
of curves was established by the work of Francis Brown [14] (see also their
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role in the study of string scattering amplitudes [19]). Furthermore, Brown

introduced canonical differential forms on moduli spaces of metric graphs in

[17], and showed how they allow to study the cohomology of the commuta-

tive graph complex. The corresponding canonical integrals look tantalizingly

similar to parametric Feynman integrals. Moreover, examples suggest that

their respective periods are related by integration-by-parts methods. He ex-

tended this connection to graphs with masses and kinematics recently in

[18].

In addition, the works [3, 5, 52] introduced moduli spaces of Feynman

graphs, tailor-made to the study of Feynman amplitudes. On these spaces

parametric Feynman integrals can be understood as evaluations of certain

volume forms (or cochains). It is therefore natural to ask what the topol-

ogy and geometry of such moduli spaces can tell us about Feynman ampli-

tudes.

Roughly speaking, a moduli space of graphs MGn,s is built as a dis-

joint union of cells, one for each (isomorphism class of) Feynman graph

with n loops and s legs, glued together along face relations induced by

edge collapses. This cell structure gives then rise to a graph complex via

its associated chain complex C∗(MGn,s) on which the boundary map trans-

forms into a sum of edge-collapses (this is not quite a graph complex of

Feynman diagrams, but closely related to it). Furthermore, inside this mod-

uli space sits a homotopy equivalent subspace, called its spine, a simpli-

cial complex whose simplices assemble into a cube complex, parametrized

by pairs (G,F ) where G is a (Feynman) graph and F a spanning forest

of G. Its associated chain complex is the cubical chain complex described

above. In topological terms, the former complex computes certain relative

homology groups of MGn,s while the cubical chain complex computes its

full homology. In the case of one loop graphs this relation simplifies; the

spine is merely a subdivision of MG1,s and the two complexes are quasi-

isomorphic.

The present work is to be understood as a first approximation to building

a bridge between the lands of graph complexes and Feynman rules. We

believe that eventually a moduli space of appropriately decorated graphs

(in the sense of Culler-Vogtmann’s Outer space [33]) and/or local systems

on it to be the right setting to investigate the analytic structure of Feynman

integrals from a geometric/topological point of view. However, already on

the combinatorial level we observe how graph complexes have interesting

and fruitful applications to the study of Feynman integrals.
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1.3. Outline and results

After setting up some notation in Sec.(2) we introduce various Hopf algebras
of Feynman graphs,

• Hcore, the Hopf algebra of core/1PI Feynman graphs,
• HC , a Hopf algebra of Cutkosky graphs,
• HGF , a generalization of Hcore to pairs (G,F ) of graphs and spanning
forests.

Our first goal in Sec.(3) and (4) is to define and study various maps and
structures on these algebras, and to investigate how they interact with each
other. To switch to the analytic side of things we recall then in Sec.(5) the
definition of (renormalized) Feynman rules Φ (ΦR) and in Sec.(6) the notion
of Landau singularities of a Feynman graph (or rather of the function defined
by the integral associated to G via ΦR). This sets the ground to derive the
following results:

Core graphs In Sec.(7) we show that the computation ΦR(G) of a core
Feynman graph G ∈ Hcore can be obtained as a sum of evaluations of ΦR

on pairs (G,T ) where T runs over all spanning trees of G and edges not in
the spanning tree are evaluated on-shell, that is, ΦR((G,T )) is equal to

∑
σ∈S|G|

∫
0<sσ(|G|)<···<sσ(1)<∞

( ∏
e∈ET

1

Qe

)R

|k(j)20=sj+m2
j , j �∈ET

∏
j �∈ET

ds(j).

See Thm.(7.8) for the notation. In terms of generalized Feynman rules on
HGF this reads

ΦR(G) =
∑
T

ΦR((G,T )).

The distinction of spanning trees upon integrating the 0-component of loop
momenta is also familiar in particular for one-loop graphs as a loop-tree
duality, see [57] and references there. We use invariance properties of di-
mensional regularization under affine transformations of loop momenta for
a systematic multi-loop approach. We follow [41] where a separation into
parallel and orthogonal components was utilized. This separation is now
systematically used by Baikov [2] and leads to an interesting approach via
intersection numbers [35]. In future work we hope to connect the structure
of graph complexes to these intersection numbers.
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If one interprets Feynman amplitudes as (generalized) volumes on the

moduli spaces MGn,s as explained above (cf. [3]), then Thm.(7.8) shows

that this point of view can also be established on the spine of MGn,s (recall

its description as a cube complex, parametrized by pairs (G,F )). In other

words, the moduli space is the total space of a fibration over its spine and

Thm(7.8) is the result of integrating along its fibers (if translated into the

parametric formulation). We comment on this point of view and discuss an

example, leaving a detailed study to future work [4].

Co-actions for HC The core Hopf algebra Hcore co-acts

Δ̄core : HC → Hcore ⊗HC ,

on proper Cutkosky graphs G ∈ HC such that the computation of Feynman

graphs can be reduced to a computation in H
(0)
C and a computation in Hcore.

There is a direct sum decomposition

HC = ⊕∞
j=0H

(j)
C

where H
(j)
C are j-loop graphs (and similarly for Hcore), such that

Δ̄core(G) =

j∑
i=0

G′
(i) ⊗G′′

(i),

G′
(i) ∈ H

(i)
core and G′′

(i) ∈ H
(j−i)
C for G ∈ H

(j)
C .

From this we derive Eq.(8.3):

ΦR(G) =

∫ |G′′
(j)|∏

i=1

dDki

(
ΦR(G

′
(j))∏

e∈EF
Qe

)
(
∩f∈Eon(G′′

(j)
)

)
(Qf=0)

.

Here the graph G′′
(j) has edges which are off-shell (e ∈ EF ) and their inverse

product is evaluated at the loci determined by the simultaneous on-shell

conditions Qf = 0 for its on-shell edges.

For the choice of a spanning tree and an ordering of edges o we then get

a sequence of such evaluations. See Sec.(8.2) for details on the co-action of

the renormalization algebra.
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Vanishing of the commutator [ΔGF , d0+d1] Following the Feynman
rules used in Thm.(7.8) only two types of edges appear: Edges in a spanning
forest F remaining off-shell and edges �∈ F which are evaluated on-shell.
This result implies that the co-product ΔGF and pre-Lie structure of pairs
(G,F ) are compatible and hence commute with the boundary d = d0 + d1
of the cubical chain complex, see Thm.(9.2).

A one-loop example In Sec.(10) we analyze the one-loop triangle graph
and explain how it relates to a generator for the homology of the cubical
chain complex furnished by the boundary d = d0 + d1. Recall our inter-
pretation, on the analytic side: d0 reduces a graph, d1 puts edges on the
mass-shell.

Graph homology In Sec.(11) we consider a variant of Kontsevich’s graph
complex that is defined by collapsing edges in Feynman graphs.

We show how its differential encodes which Feynman integrals share
subsets of their Landau singularities. More precisely, we show that cycles
represent families of graphs/integrals that “exhaust a set of common sin-
gularities”: Each graph in the family maps under the Feynman rules to a
function whose singularities are contained in a minimal common Landau
variety (cf. Thm.(11.4) for a precise definition of this property).

For a theory with cubic interaction this gives a direct connection be-
tween the top dimensional graph homology group and the analytic structure
of Feynman amplitudes. In the one loop case the elements of the homology
classes induce a nice partition of the set of graphs contributing to the full
amplitude. Each subset of this partition satisfies the above mentioned prop-
erty of sharing singularities while also obeying certain symmetry relations.
We prove this and comment on extensions in Sec.(11.4).

2. Graphs, spanning trees, refinements

Note that our definition of graphs closely follows the set-up of [50]. We first
settle the notion of a partition.

Definition 2.1. Given a set S a partition (or set partition) P of S is a
decomposition of S into disjoint nonempty subsets whose union is S. The
subsets forming this decomposition are the parts of P . The parts of a par-
tition are unordered, but it is often convenient to write a partition with k
parts as ∪̇k

i=1Si = S with the understanding that permuting the Si still gives
the same partition. A partition P with k parts is called a k-partition and
we write k = |P|.
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Now we can define a Feynman graph.

Definition 2.2. A Feynman graph G is a tuple G = (HG,VG, EG) consisting
of

• HG, the set of half-edges of G,
• VG, a partition of HG with parts of cardinality at least 3 giving the
vertices of G,

• EG, a partition of HG with parts of cardinality at most 2 giving the
edges of G.

From now on when we say graph we mean a Feynman graph.
We do not require all parts of EG to be of cardinality 2. We identify

the parts of cardinality 2 with the set of edges EG of the graph and set
eG := |EG|. We identify the sets of cardinality 1 with the set of external
edges LG of the graph and set lG := |LG|. Also we set vG := |VG|.

We say that a graph G is connected if there is no partition of the parts
of VG into two sets HG(1), HG(2) such that the parts of cardinality two of
EG are either in HG(1) or HG(2). If it is not connected it has |H0(G)| > 1
components.

The partition VG collects half-edges of G into vertices. This formulation
of graphs does not distinguish between a vertex and the corolla of half-
edges giving that vertex. However, it is sometime useful to have notation
to distinguish when one should think of vertices as vertices and when one
should think of them as corollas. Consequently let VG, the set of vertices
of G, be a set in bijection with the parts of VG, |VG| = vG = |VG|. This
bijection can be extended to a map νG : HG → VG by taking each half edge
to the vertex corresponding to the part of VG containing that vertex. For
v ∈ VG define

Cv := ν−1
G (v) ⊂ HG,

to be the corolla at v, that is the part of VG corresponding to v.
A graph G as above can be regarded as a set of corollas determined by

VG glued together according to EG.
If |νG(e)| = 1, we say e is a self-loop at v, with νG(e) = {v}.
We frequently have cause to make an arbitrary choice of an orientation

on the edges. If |νG(e)| = 2, with e = {l,m} and ν(l) = v, ν(m) = w say,
e is an edge evw from v to w or ewv vice versa for the opposite orientation.
This choice of an edge orientation corresponds to a choice of an order of e
as a set of half-edges.

If we orient an edge e, we also write v+(evw) = w and v−(evw) = v for
the source and target vertices.
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We emphasize that we allow multiple edges between vertices and allow
self-loops as well.

We write h1(G) ≡ |G| := |H1(G)| = eG − vG + |H0(G)| for the number
of independent loops (cycles), or the dimension of the cycle space of the
graph G. Note that for disjoint unions of graphs h1, h2, we have |h1 ∪ h2| =
|h1|+ |h2|. We write h0(G) := |H0(G)|.

A graph is bridgeless if (G− e) has the same number of connected com-
ponents as G for any e ∈ EG. A graph is 1PI or 2-edge-connected if it is
both bridgeless and connected, equivalently if (G − e) is connected for any
e ∈ EG. Here, for G = (HG,VG, EG), we define

(G− e) := (HG,VG, E ′
G)

where E ′
G is the partition which is the same as EG except that the part

corresponding to e is split into two parts of size 1.
The removal G − X of edges forming a subgraph X ⊂ G is defined

similarly by splitting the parts of EG corresponding to edges of X. G − X
can contain isolated corollas.

Note that this definition is different from graph theoretic edge deletion
as all the half-edges of the graph remain and the corollas are unchanged.
We neither lose vertices nor half-edges when removing an internal edge. We
just unglue the two corollas connected by that edge.

The graph resulting from the contraction of edge e, denoted G/e for
e ∈ EG, is defined to be

(2.1) G/e = (HG − e,V ′
G, EG − e)

where V ′
G is the partition which is the same as VG except that in place of the

parts Cv and Cw for e = {ν−1(v), ν−1(w)}, V ′ has a single part (Cv∪Cw)−e.3

Likewise we define G/X, for X ⊆ G a (not necessarily connected) graph,
to be the graph obtained from G by contracting all internal edges of X ⊆ G.

Intuitively we can think of G/X as the graph resulting by shrinking all
internal edges of X to zero length:

(2.2) G/X = G|length(e)=0,e∈EX
.

This intuitive definition can be made into a precise definition if we add the
notion of edge lengths to our graphs, but doing so is not to the point at
present.

3We often use − for the set difference, e.g. HG − e = HG \ e.
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Note that restricting VG to LG we also obtain a partition of LG into the
sets LG ∩ ν−1

G (v):4

LG = ∪̇v∈VG

(
LG ∩ ν−1

G (v)
)︸ ︷︷ ︸

=:Lv

.

We let val(v) := |Cv| the degree or valence of v and eval(v) := |Lv| the
number of external edges at v, and ival(v) := val(v)− eval(v) the number
of internal edges at v.

Summarizing, for a graph G we have an internal edge set EG, vertex set
VG and set of external edges LG.

A simply connected subset of edges T which contains VG we call a span-
ning tree of G. For any proper subset f of edges of T we call F = T − f a
spanning forest of G. Note that a spanning forest of G contains all vertices
of G.

It induces a graph (HG,V,F) on the same set of half-edges and vertices
as G, and with a refined edge partition F defined by retaining as parts of
cardinality two only the edges of F .

We often notate this as a pair (G,F ). We also write GF for such a pair.
By a Cutkosky graph we mean such a pair [50].

The set of edges e ∈ EG such that e �∈ EF forms the set Eon of G, the
set of edges e ∈ EF the set Eoff . Note that GT has a non-empty set Eon,
|Eon| = |G|.

Any spanning tree T is also a forest with F = ∅ such that |Eon| = |G|
as Eon provides a basis for the loops le ∈ L of G: for any e ∈ Eon, there is a
path pe ⊂ T such that le = e∪̇pe is a loop.

Definition 2.3. Given two partitions P and P ′ of a set S, we say P ′ is a
refinement of P if every part of P ′ is a subset of a part of P . Intuitively
P ′ can be made from P by splitting some parts. The set of all partitions
of S with the refinement relation gives a lattice called the partition lattice.
The covering relation in this lattice is the special case of refinement where
exactly one part of P is split into two parts to give P ′.

We will need more than just the refinements of partitions as defined
above. Given a refinement P ′ of P it will often be useful that we additionally
pick a maximal chain from P to P ′ in the partition lattice. Concretely this
means we keep track of a way to build P ′ from P by a linear sequence
of steps, each of which splits exactly one part into two. Unless otherwise
specified our refinements always come with this sequence building them,

4Technically we must discard any subsets which are now empty in order to obtain
a partition.
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and we will let a j-refinement be such a refinement where the sequence
P(i), 0 ≤ i ≤ j of partitions has length j (including both ends). P(0) = S is
the trivial partition.

An ordering o of the edges in a spanning tree defines a vG-refinement of
G with corresponding refinement of LG.

5

We define the vectorspace Hcore as the Q vectorspace generated by (dis-
joint unions of) bridgeless connected (core) graphs G.

Similarly, we define the Q vectorspaceHGF generated by (disjoint unions
of) pairs of a core graph G and spanning tree F of G.

Finally, we define the Q vectorspace HC generated by (disjoint unions
of) Cutkosky graphs.

3. Hopf algebras

Again, our set-up is closely related to [50]. We first define the Hopf algebras
Hcore. It will co-act on HC defined above. Hcore is central in studying the
relation between quantum fields and the structure of Outer Space, see [50]
and also [13].

3.1. The core Hopf algebra Hcore

The core Hopf algebra Hcore [45, 48] is based on the Q-vectorspace generated
by connected bridgeless Feynman graphs and their disjoint unions.

We define a commutative product

m : Hcore ⊗Hcore → Hcore, m(G1, G2) = G1∪̇G2,

by disjoint union. The unit I is provided by the empty set so that we get a
free commutative Q-algebra with bridgeless connected graphs as generators.

We define a co-product by

Δcore(G) = G⊗ I+ I⊗G+
∑
g�G

g ⊗G/g,

where the sum is over all g ∈ Hcore such that g � G. Hence there are
bridgeless graphs gi such that g = ∪̇igi, and G/g denotes the co-graph in

5A removal of edges from the spanning tree in any order induces a removal of
edges from the graph which connect different components of the resulting spanning
forest giving a corresponding refinement of the graph.
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which all internal edges of all gi shrink to zero length in G. We define the

reduced co-product to be

Δ̃core(G) =
∑
g�G

g ⊗G/g,

We have a co-unit Î : Hcore → Q which annihilates any non-empty graph

and Î(I) = 1 and we have the antipode S : Hcore → Hcore, S(I) = I

S(G) = −G−
∑
g�G

S(g)G/g.

Furthermore, our Hopf algebras are graded,

Hcore = ⊕∞
j=0H

(j)
core, H

(0)
core

∼= QI, Augcore = ⊕∞
j=1H

(j)
core,

and h ∈ H
(j)
core ⇔ |h| = j. The core Hopf algebra has various quotient Hopf

algebras amongst them the Hopf algebra for renormalization Hren, see [48].

3.2. The Hopf algebra HGF

The Hopf algebra Hcore has a generalization HGF operating on pairs (G,F )

of a graph G and a spanning forest F [50].

Let FG be the set of all spanning forests of G. It includes the set TG of

all spanning trees of G. The empty graph I has an empty spanning forest

also denoted by I.
Each spanning tree T of G gives rise to a set of cycles L = L(T ).
The powerset ∪̇TPT of these cycles can be identified with the set of all

subgraphs of (G,T ).

Each forest F defines a partition LG(F ) of the set of external edges of

G. In fact, for two pairs (G;F ), (G′, F ′) with the same set of external edges

LG = LG′ we say F ∼ F ′ if they define the same partition:

LG(F ) = LG′(F ′).

We define a Q-Hopf algebra HGF for such pairs (G,F ), F ∈ FG by

setting

ΔGF (G,F ) = (G,F )⊗ (I, I) + (I, I)⊗ (G,F ) +
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+
∑
g�G

F−(F∩g)∈FG/g

F∼F−(F∩g)

(g, g ∩ F )⊗ (G/g, F − (F ∩ g)),(3.1)

where FG is the set of all forests of G. Additionally, by F − (F ∩ g) ∈ FG/g

we mean to interpret the edges of F − (F ∩ g) as a subgraph of G/g and

then check if that subgraph is an element of FG/g. This ensures that only

terms contribute such that G/g has a valid spanning forest. Finally, by

F ∼ F − (F ∩ g) we mean that the partition of external legs of (G,F ) and

(G/g, F − (F ∩ g)) are identical.

We define the commutative product to be

mGF ((G1, F1), (G2, F2)) = (G1∪̇G2, F1∪̇F2),

whilst IGF = (I, I) serves as the obvious unit which induces a co-unit through

ÎGF (IGF ) = 1 and ÎGF ((G,F )) = 0.

Theorem 3.1. This is a graded commutative bi-algebra graded by |G| and
therefore a Hopf algebra HGF (IGF , ÎGF ,mGF ,ΔGF , SGF ).

Proof. We rely on the co-associativity of Hcore which holds for graphs with

labeled edges. Using Sweedler’s notation this amounts to∑
i,j

(G′
(i))

′
(j) ⊗ (G′

(i))
′′
(j) ⊗G′′

(i)

=
∑
i,j

G′
(i) ⊗ (G′′

(i))
′
(j) ⊗ (G′′

(i))
′′
(j)(3.2)

for any graph G. Consider all edges e ∈ EF as labeled. The core co-product

generates loops in these labeled edges in its first application only in the right

slot, and when applying it again at most in the two slots to the right. We

have to show that the same terms are eliminated when we abandon terms

with loops from edges in EF respecting co-associativity.

The assertion follows:

iff G′
(i)/(G

′
(i))

′
(j) contains a loop then G′′

(i)/(G
′
(i))

′
(j) contains that loop and

iff G′′
(i) contains a loop then either (G′′

(i))
′
(j) or (G

′′
(i))

′′
(j) will.

We have HGF = ⊕∞
j=0H

(j)
GF with H

(0)
GF ∼ QIGF and AugGF = ⊕∞

j=1H
(j)
GF .

(G,F ) ∈ H
(j)
GF ⇔ |G| = j, F ∈ FG.
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3.3. The vectorspace HC

Consider a Cutkosky graph G with a corresponding vG-refinement P of its

set of external edges LG. It is a maximal refinement of VG corresponding to

the choice of an ordered spanning tree.

The core Hopf algebra co-acts on the vectorspace of Cutkosky graphs

HC .

(3.3) Δ̄core : HC → Hcore ⊗HC , Δ̄core(G) = I⊗G+
∑

g�G, g∈Hcore

g ⊗G/g.

We set G ∈ H
(n)
C ⇔ |G| = n and decompose HC = ⊕∞

i=0H
(i)
C .

Note that the sub-vectorspace H
(0)
C is rather large: it contains every

Cutkosky graphs G = ((HG,VG,FG) such that |G| = 0. These are the

graphs where the cuts leave no loop intact.

For any G ∈ HC there exists a largest integer corC(G) ≥ 0 such that

˜̄ΔcorC(G)
core (G) �= 0, ˜̄ΔcorC(G)

core (G) : HC → H⊗corC(G)
core ⊗H

(0)
C ,

whilst Δ̃
corC(G)+1
core (G) = 0.

Proposition 3.2.

corC(G) = |G|.

Proof. The primitives of Hcore are one-loop graphs.

As Δ̄core : HC → Hcore⊗HC there is for any G ∈ HC a unique g ∈ Hcore

such that G/g ∈ H
(0)
C has no loops.

Corollary 3.3. There is a unique element g ⊗G/g ∈ Hcore ⊗H
(0)
C :

Δ̄core(G) ∩
(
Hcore ⊗H

(0)
C

)
= g ⊗G/g,

with |g| = |G|.

4. Flags

The notion of flags of Feynman graphs was for example already used in

[8, 54]. Here we use it based on the core Hopf algebra introduced above.
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4.1. Expanded flags

Consider a graph G. We define as an expanded flag associated to G a se-
quence of graphs

f̃ := G1 � G2 � · · · � G|G| = G,

where |G1| = 1 and |Gi/Gi−1| = 1 for all i ≥ 2. We set γi := Gi/Gi−1 and
γ1 := G1.

Write F l(G) for the collection of all expanded flags f̃ ∈ F l(G) of G.

4.2. Flags

The flag f ∈ Aug⊗k
core of length |G| associated to f̃ is

f := γ1 ⊗ · · · ⊗ γ|G|.

Define the flag associated to a graph G ∈ 〈Hcore〉 to be a sum of flags of
length |G| arising from all expanded flags:

FlG :=
∑

f̃∈F l(G)

f = Δ̃|G|−1
core (G).

With ξG = |F (G)| the number of expanded flags a graph G has we can
hence write

FlG =

ξG∑
i=1

γ
(i)
1 ⊗ · · · ⊗ γ

(i)
|G|,

where for any of the orderings of the cycles lj of G we have

(4.1) γ1 = l1, γ2 = l2/El1∩l2 , . . . , γ|G| = lG/El1∩···∩l|G|−1
.

Similarly, for a pair (G,F ) we can define

FlG,F := Δ̃
|G|−1
GF ((G,F )) ∈ Aug

⊗|G|
GF ,

which as a sum of flags is

FlG,F =
∑
i

(γ1, f1)
i ⊗ · · · ⊗ (γ|G|, f|G|)

i,

in an obvious manner. Here Δ̃GF ((γl, fl)
i) = 0, ∀i, l, 1 ≤ l ≤ |G|.
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See Fig.(1) for an example.

Figure 1: The 3-edge banana graph Θ on edges e1, e2, e3. It has three 2-
edge subgraphs bij on edges ei, ej , with a cograph tk on edge ek. FlΘ =
γ12 ⊗ t3 + γ23 ⊗ t1 + γ31 ⊗ t2. The three cycles in θ are l1 = e1, e2, l2 = e2, e3
and l3 = e3, e1. If l1, l2 are chosen as a basis (so e2 is the spanning tree)
in the order l1 < l2 we have t3 = l2/El1∩l2 . FlΘ,e2 = γ12 ⊗ t3 + γ23 ⊗ t1.
With three spanning trees and two orders we thus get six terms. In fact, the
γij subgraphs have two residues, the tadpoles have one, so that we have a
decomposition 6 = 2× 1 + 2× 1 + 2× 1 into 3 = ξΘ parts.

4.3. Flags for ordered spanning trees

We consider pairs of a graph G and a spanning tree T but this time we
assume that there is an order o = o(T ) on the edges of the spanning tree T .

For any decomposition T = T ′ ∪ T ′′ into two disjoint subtrees, we say
that the pair (T ′, T ′′) is o-compatible,

(T ′, T ′′) ∼ o,

if any edge e ∈ T ′ is ordered before any edge f ∈ T ′′, so that o is a concate-
nation

o(T ′)o(T ′′).

We now define a map by restricting ΔGF for any order o to o-compatible
terms,

Δo
GF (G,T ) := (G,T )⊗ (I, I) + (I, I)⊗ (G,T ) +

+
∑
g�G

T−(T∩g)∈FG/g, T∼T−(T∩g)
(g∩T,T−(T∩g))∼o

(g, g ∩ T )⊗ (G/g, T − (T ∩ g)).(4.2)
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The generalization of this map to ordered forest instead of ordered spanning
trees is straightforward as the definition in Eq.(3.1) ensures compatibility of
cuts on graphs and co-graphs [50]. We use Δo

GF (G,T ) later to investigate a
Leibniz rule apparent in the cubical chain complex in Sec.(9).

Remark 4.1. Maps Δo
GF (G,T ) can be made co-associative in any sector as

described by o. In each sector they give rise to a co-product on decorated
rooted trees without side-branchings [8]. Their connection to co-interacting
bi-algebra structures and sector decompositions (see [50]) is left for future
work.

We now give an example of such a map. We choose a pair (G,T ) with T
with a spanning tree of length three. We label its edges by a, b, c and choose
the order acb. |G| = 3 and the edges not in the spanning tree -labeled 1, 2, 3-
define a base for the fundamental cycles of the graph.

Figure 2: The map Δo=acb
GF in an example. Note that the three terms in the

lowest row all have tadpoles on the rhs. They will always be present for any
order order we choose. In particular, the maps Δo=bac

GF and Δo=bca
GF produce

just those three terms in the lowest row.

5. Feynman rules

5.1. Momentum space renormalized Feynman rules

Consider a graph G with set of external half-edges LG. All external half-
edges are oriented incoming.
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To each f ∈ LG assign an external momentum q(f) ∈ MD.
Next, choose an orientation for each edge e ∈ EG and assign an internal

momentum k(e) ∈ MD to each edge. With these orientations the half-edges
h ∈ Cv at a vertex v are oriented. We say that k(e) is incoming at v if h ∈ e
is oriented towards v (v is the target of e). We set k(h) = k(e). Else, if v is
the source of e, −k(e) is incoming at v. We set k(h) = −k(e).

Define the integral
(5.1)

IG({q(f)}, {me}) :=
∫
MDeG

dDeGk
∏
e∈EG

1

k2e −m2
e + iη

∏
v∈VG

δ(D)
∑
h∈Cv

k(h).

By momentum conservation at each vertex this is a D × |G|-dimensional
integral.

Imposing kinematic renormalization conditions the renormalized integral
IRG({q(f)}, {μ(f)}, {me}) is given as

lim
D→4

(∑
IS(G′) ({μ(h)}, {me}) · IG′′ ({q(f)}, {me})

)
using Sweedler’s notation for the coproduct Δren(G) =

∑
G′ ⊗ G′′ of the

renormalization Hopf algebra Hren and a kinematic renormalization scheme
which subtracts on the level of the integrand. S is the antipode of Hren. Hren

is the usual quotient of Hcore obtained by discarding superficially convergent
diagrams [50].

5.2. Renormalized quadrics

The integrands above are products of quadrics (taking momentum conser-
vation at each vertex into account)

(5.2) IΠG({q(f), {me}}) :=
∏
e∈EG

1

Qe
.

The renormalized integrand is then

(5.3) IRG({q(f)}, {μ(f), {me}}) = IΠS(G′)({μ(h)}, {me})IΠG′′({q(f)}, {me}).

5.3. Symanzik polynomials

Let ψ(G), φ(G) be the two usual graph polynomials, and

(5.4) Ξ(G) = φ(G)−M(G)ψ(G),
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the full second graph polynomial with masses. Here,

(5.5) M(G) :=
∑
e∈EG

m2
eae,

and it is understood that all iη’s are absorbed in the masses me. We have

(5.6) ψ(G) = ψ(G/γ)ψ(γ) +RG
γ ,

(5.7) φ(G) = φ(G/γ)ψ(γ) + R̃G
γ .

(5.8) Ξ(G) = Ξ(G/γ)ψ(γ) + R̄G
γ .

(5.9) ψ(G1G2) = ψ(G1)ψ(G2),

(5.10) φ(G1G2) = φ(G1)ψ(G2) + φ(G2)ψ(G1),

(5.11) Ξ(G1G2) = Ξ(G1)ψ(G2) + Ξ(G2)ψ(G1).

Here, the remainders RG
γ , R̃

G
γ , R̄

G
γ are all of higher degrees in the subgraph

variables than ψ(γ). This is crucial to achieve renormalizability [20].

5.4. Parametric renormalized Feynman rules

Omitting constant prefactors and absorbing the iη’s into the masses me, the
parametric version of the Feynman integral (5.1) reads∫

PG

ψ
−D

2

G

(
ψG

ΞG

)w(G)

ΩG.

Here w denotes the superficial degree of divergence, PG is the standard
projective simplex,

PG := P
(
ReG
≥0

)
= {[a1 : · · · : aeG ] | ai ≥ 0} ⊂ CPeG−1,

and

ΩG =

eG∑
i=1

(−1)iaida1 ∧ . . . ∧ d̂ai ∧ . . . ∧ daeG .
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In a renormalizable field theory, we then get renormalized Feynman rules

for an overall logarithmically divergent graph G (w(G) = 0) with logarith-

mically divergent subgraphs as

(5.12) ΦR(G) =

∫
PG

∑
F∈FG

(−1)|F |
ln

ΞG/FψF+Ξ0
FψG/F

Ξ0
G/FψF+Ξ0

FψG/F

ψ2
G/Fψ

2
F

ΩG.

Formulae for other degrees of divergence for sub- and cographs and fur-

ther details can be found in [20]. In particular, also overall convergent graphs

are covered.

5.5. Cut graphs

We now give the Feynman rules for graphs ∈ HC . This can be regarded as

giving Feynman rules for a pair (G,F ).

(5.13) ΥF
G :=

∫ ⎛⎝ ∏
e∈EF

1

P (e)

∏
e �∈EF

δ+(P (e))

⎞⎠ d4eGk.

This holds when the pair (G,F ) does not require renormalization. Else we

proceed using the co-action of Hren induced by Hcore on HC , see Sec.(8.2)

in accordance with the above.

6. Landau singularities

We give a quick recap of Landau singularities of Feynman integrals. For a

detailed treatment we refer to the standard textbook [34], for a short account

to the classic paper [27]. A mathematical rigorous discussion can be found

in [55].

A Feynman graph G represents via the above introduced (renormalized)

Feynman rules ΦR a function ΦR(G) of its kinematics, that is, the exter-

nal momenta and internal masses. If we restrict the allowed masses to a

finite set, then each bare graph represents a finite family of such functions,

parametrized by the distribution of masses on its internal edges. We model

this family by edge-colorings of G where the set of colors C ⊂ N represents

the mass spectrum. In the following we let G = (G, c), with c : EG → C the

coloring map, always denote a colored graph.
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A classic result6 establishes the analyticity of ΦR(G) outside an analytic
set in the space of kinematic invariants, the Landau variety LG of G. More
precisely, the analytic set of singularities of ΦR(G) is a subset of LG since
its equations give only necessary, but not sufficient conditions for ΦR(G) to
exhibit a singularity.

Using the “Feynman trick”

n∏
i=1

1

Xi
=

∫
[0,1]n

da1 · · · dan
δ0(1−

∑n
i=1 ai)

(a1X1 + . . .+ anXn)n

=

∫
Δn−1

da1 · · · dan
(a1X1 + . . .+ anXn)n

we may rewrite a momentum space Feynman integral (omitting the δ factors)
as

Φ(G) =

∫
MDeG

dk
∏
e∈EG

1

Qe
=

∫
MDeG

dk

∫
PG

da
( ∑

e∈EG

Qeae

)−eG
.

From this we find the poles of the integrand characterized by

(L1) ∀e ∈ EG : either k2e = m2
e or ae = 0.

Some of these poles might still be integrable by a suitable deformation
of the integration contour. Such a deformation is impossible if either the
contour of integration gets “pinched” by the singular hypersurface specified
by the equation above or if it occurs at a boundary point of PG, that is, for
some ae = 0. The pinching condition translates to

(L2)
∑
e∈El

aeke = 0 for each simple loop l in G.

These two conditions constitute the Landau equations, their solution set
defines the Landau variety LG. Some authors include the side constraint
ae ≥ 0, in other conventions it is used to distinguish physical from non-
physical singularities.

Note that the first set of Landau equations (L1) induces a natural strati-
fication of LG. Moreover, the strata inherit a partial order from the boundary
structure of PG.

6Strictly speaking, the statement is classic, but not the result. Astonishingly,
there does not exist a rigorous derivation in the published literature. See the recent
works [29] and [53] for a discussion.
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Definition 6.1. Let G be a Feynman graph. The singularities of ΦG form
a poset (SG,≤) where

SG := {lγ | γ ⊂ G}

and lγ is the stratum of LG associated to the subgraph γ ⊂ G as the solution
of Landau’s equations for

ae = 0 if e ∈ Eγ and Qe = 0 if e ∈ EG/γ .

The partial order ≤ is given by reverse inclusion,

lγ ≤ lη ⇐⇒ η ⊂ γ ⇐⇒ LG/γ ⊂ LG/η.

The maximal element in this poset is l∅, called the leading singularity of
G. The other elements lγ with γ �= ∅ are called non-leading or reduced
singularities, the corresponding graphs G/γ are referred to as the reduced
graphs (of G). The coatoms in SG, the elements covered by l∅, are called
next-to-leading or almost leading singularities. In terms of reduced graphs,
these coatoms are represented by the graphs G/e where e ∈ EG.

Remark 6.2. Refining this poset structure allows to derive vanishing state-
ments (e.g. “Steinmann relations”) for iterated variations/discontinuities of
Feynman integrals; see [6].

7. Partial fractions and spanning trees

In this section, we want to derive one of our main results: The computation
ΦR(G) of a core Feynman graph G ∈ Hcore can be obtained as a sum of
evaluations of pairs GT := (G,T ) where T ∈ T (G) runs over all spanning
trees of G and edges not in the spanning tree are evaluated on-shell.

We proceed by separating the integration over energy variables k0 for any
internal loop momentum D-vector k ∈ MD from the space-like integrations
for (D − 1)-vectors 
k.

7.1. Divided differences

Consider the integral (see Eq.(5.2))

∫ ∞

−∞

∫
RD−1

|G|∏
i=1

dki;0d
D−1
kiI

Π
G({ki;0}, {
ki}).
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The replacement of IΠG by IRG as in Eq.(5.3) is understood if renormalization
is needed.

We note that any of those |G| energy integrals converges and hence can
be done as a residue integral closing the contour say in the upper complex
half-plane upon regarding ki;0 as a complex variable.

Such multiple residue integrals can be expressed using divided differences
[37].

To this end consider first a product λγ of vγ quadrics Qe which constitute
a one-loop graph γ. Without loss of generality we can assume that each
quadric Qe, e ∈ Eγ , has the form

Qe = (k + re)
2 −m2

e + iη,

for some loop momentum k, four-vectors re, masses me and 0 � η � 1. We
write

λγ :=

vγ∏
e=1

1

Qe
.

The divided difference with regard to the function f : x → x−1 delivers the
partial fraction decomposition

(7.1) λγ =

vγ∑
e=1

f(Qe)
∏
f �=e

1

Qf −Qe︸ ︷︷ ︸
=:pfγe

.

Note that all residues of poles in pfγe at Qf = Qe vanish by definition of
pfγe .

As an example for the bubble b we find:

λb =
1

Q1Q2
=

1

Q1

1

Q2 −Q1
+

1

Q2

1

Q1 −Q2
=

1

Q1 −Q2
(f(Q2)− f(Q1)) .

7.2. pf and spanning trees

The edges f ∈ Eγ in pfγe , for f �= e, for any chosen edge f ∈ Eγ , form a
spanning tree of γ.

We hence can write

λγ =
∑

T∈T (γ)

pf(T )
1

QT́

,
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where T́ denotes the edge of γ which is not in T so that pf(T ) = pfγ
T́
, see

Eq.(7.1).

The inverse pf(T )−1 = (pfγ
T́
)−1 is linear in the four-vector k and is real

for η �= 0; in particular, it vanishes for real values of k0.

The divided difference structure gives

Proposition 7.1. λ−1
γ does not vanish at any zero of any pf(T )−1.

Proof. For pf(T )−1 to vanish, we need to have T́ and f such that Qf = QT́ .
By the divided difference structure the coefficient of this zero is 1/Qf−1/QT́
which vanishes.

As a result, the poles of λγ in the variable k0 are solely determined
by the two zeroes of the quadric QT́ which are located in the upper and
lower complex k0-plane. In particular, no spurious infinities arise from poles
in pf(T ). Accordingly, upon choosing a dedicated different 0 < iηe � 1
for every quadric Qe one can show that the resulting residue integrals are
independent of such a choice [41]. Thus the product of inverse quadrivs
regarded as a distribution has a unique definition also when represented as
a divided difference.

Indeed,

QT́ = (k0 + rT́ ,0)
2 − (
k + 
rT́ )

2 −m2
T́
+ iη,

so that the zeroes are at

kT́0 ± = −rT́ ,0 ±
√

(
k + 
rT́ )
2 +m2

T́
− iη,

and we close the contour in either half-plane with causal boundary conditions
as usual.

7.3. Shifts

λγ above has to be integrated:

Φ(γ) :=

∫ ∞

−∞
dk0

∫
dD−1
kλγ .

Proposition 7.2. For each term in the partial fraction decomposition the
integral

Φ(γ, T ) :=

∫ ∞

−∞
dk0

∫
dD−1
kf(QT́ )pf(T ),



Graph complexes and Feynman rules 127

exists as a unique Laurent-Taylor series with a pole of at most first order
for

0 < ε ≡ D/2− 2 � 1

and is invariant under the shifts k0 → k0 − rT́ ,0 and 
k → 
k − 
rT́ .

Proof. Elementary properties of dimensional regularisation [41, 28].

Remark 7.3. A remark on powercounting is in order. Each term in Φ(γ, T )
can be more divergent than Φ(γ) itself and only in the sum over span-
ning trees is the original degree of divergence restored and renormalization
achieved through suitable subtractions. That the limit ε → 0 exists for the
sum does not imply that it does exist in any summand. Indeed, it does not
in general and generically Φ(γ, T ) is a proper Laurent series with a pole of
first order.

Assume from now on that for each Φ(γ, T ) the indicated shift has been
performed so that QT́ = k2 −m2

T́
+ iη. Let

p̄f(T ) = pf(T )
k0→k0−rT́ ,0,

�k→�k−�rT́
.

We get

Φ(γ) =
∑

T∈T (γ)

Φ(γ, T ) :=

∫ ∞

−∞
dk0

∫
dD−1
k

∑
T∈T (γ)

p̄f(T )
1

k20 − 
k2 −m2
T́
+ iη

.

Exchanging the order of integration and doing first the k0-integral by a
contour integration closing in the upper complex half-plane we find for each
T

Φ(γ, T ) =

∫
dD−1
kp̄f(T )

|k0=+
√
�k2−m2

T́
+iη

× 1

+2
√

k2 −m2

T́
+ iη

.

Renormalization is understood as needed.
This is of the desired form but has to be generalized to the multi-loop

case.

7.4. Partial fractions for generic graphs

A generalization to multi-loop graphs proceeds as follows. We define

(7.2) Λ(FlG) :=
∑
i

|G|∏
j=1

λγ(i)
j
.
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This is a homogeneous polynomial of degree |G| in inverse quadrics 1/Qe.

The γ
(i)
j are determined as above in Eq.(4.1).

For the unrenormalized integral Φ(G) on |G| loop momenta k(j), 1 ≤
j ≤ |G| we have

Φ(G) :=

ξG∑
i=1

⎛⎝ |G|∏
j=1

∫ ∞

∞
dk0(j)

∫
dD−1
k(j)

⎞⎠×

⎛⎝ |G|∏
j=1

λγ
(i)
j

⎞⎠ .

Note that each flag contributes different residues in the variables k0(j). Car-
rying out all k0(j)-integrals by contour integrations first we find

Φ(G) =

ξG∑
i=1

⎛⎝ |G|∏
j=1

∫
dD−1
k(j)

⎞⎠
×

|G|∏
j=1

∑
T∈T (γ

(i)
j )

p̄f(T )
k0(j)=+

√
�k(j)2−m2

T́
+iη

1

+2
√

k2 −m2

T́
+ iη

.

(7.3)

Note that for each of the ξG terms in the above sum, the spanning trees tij

of the graphs γ
(i)
j combine to a spanning tree T ∈ T (G). Furthermore, each

term in the summand indicates one of the |G|! possible orders of the |G|
independent cycles of the graph.

As an example let us consider the 3-edge banana graph Θ of Fig.(1). We
have three quadrics and two loop momenta k(1) = k, k(2) = l. The three
quadrics are

Q1 = l20 −
l2 −m2
1 + iη(7.4)

Q2 = (l0 − k0 + q0)
2 −
l2 − 
k2 + 2
l · 
k −m2

2 + iη(7.5)

Q3 = k20 − 
k2 −m2
3 + iη,(7.6)

Then, Q1 determines

l0,1 := +

√

l2 +m2

1,

Q2 determines

l0,2 := k0 − q0 +

√

l2 + 
k2 − 2
l · 
k +m2

2

for the location of poles in l0 and Q3 determines

k0,1 := +

√

k2 +m2

3,
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while Q2 determines

k0,2 := l0 − q0 +

√

l2 + 
k2 − 2
l · 
k +m2

2

for the location of poles in k0.
We have

1

Q1Q2Q3
=

1

Q3

(
1

Q2 −Q1

(
1

Q1
− 1

Q2

))
After an integration of l0, we get

1

Q1Q2Q3
→ 1

Q3

(
1

Q1 |Q2=0

× 1

l0,2
+

1

Q2 |Q1=0

× 1

l0,1

)
.

Here Q3, Q1|Q2=0
, Q2|Q1=0

depend on k0.
We can shift l0 → l0 + k0 − q0 and also for the k0 integration k0 →

k0 + l0 − q0 to obtain the representation in accordance with Eq.(7.3).
So next we do the k0 integration. Q3 delivers

1

Q1 |Q2=0,Q3=0

× 1

l0,2k0,1
+

1

Q2 |Q1=0,Q3=0

× 1

l0,1k0,1
.

Note that Q1|Q2=0
, Q2|Q1=0

have the same zero in k0 by construction and
summing the two terms gives

1

Q3 |Q1=0,Q2=0

× 1

k0,2l0,1
.

Thus integrating the 0-components delivers a sum of three terms:∫ ∞

−∞
dk0dl0

1

Q1Q2Q3
=

1

Q2|l0=l0,1,k0=k0,1

× 1

l0,1k0,1

+
1

Q1|l0=l0,2,k0=k0,1

× 1

l0,2k0,1

+
1

Q3|k0=k0,2,l0=l0,1

× 1

k0,2l0,1
,

where we note that after the shifts k0,i and l0,i evaluate to the corresponding√
s+m2

j , s =

k2 or 
l2 in accordance with those shifts.

The sector decomposition 
l2 > 
k2 or 
l2 < 
k2 then gives the six terms of
Fig.(1).
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Remark 7.4. The above methods were already used some time ago when
using parallel and orthogonal space decompositions in one- and two-loop
integrals with masses [21, 41, 42, 43, 44]. Integral representations were ob-
tained which facilitated numerical approaches to massive two-loop integrals
not available by other methods at the time.

Related methods now emerge under the name of loop-tree duality (LTD).
In particular, the approach by Hirschi and collaborators [22, 23, 24, 25] re-
lates to ours in avoiding spurious singularities at infinity similarly.7 LTD
is approached in the literature sometimes slightly differently by modify-
ing the causal structure of propagators, an approach we strictly avoid. See
Sec.(II.B.) in [22] for a critical discussion of such approaches. A valuable
discussion of causal structure is given by Tomboulis [57].

7.5. General structure

To understand the structure of this integral it is then useful to count the
number of spanning trees of a graph to control its computation. This is also
useful to understand the number of Hodge matrices describing the analytic
structure of an evaluated Feynman graph [47].

So we let spt(G) = |T (G)| be the number of spanning trees of G, spt :
Hcore → N, and define spt : Hcore → N, spt(G) := spt(G)|G|!.

Proposition 7.5.

1.

spt(G) =
∑

|G′|=1

spt(G′)spt(G/G′),

and
2. If |G| = 1 and G is bridgeless we have spt(G) = spt(G) = eG while

for |G| > 1

spt(G) = m|G|−1spt|G|Δ̃|G|−1
core (G) = m|G|−1spt |G|Δ̃|G|−1

core (G).

Proof. (from [50])

1. For all T ∈ T (G) and e ∈ EG \ ET there is a unique cycle in T ∪ e.
This is called the fundamental cycle l(T, e) associated to T and e. For
each spanning tree the fundamental cycles associated to T and each
of the edges of EG \ ET give a basis for the cycle space of G.

7Even when singularities at infinity cancel each other out at the end of the
computation they make convergence slow in any approach.
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Let us count (T, e) pairs with T ∈ T (G) and e ∈ EG \ ET in two
different ways. Counting directly, there are spt(G)|G| such pairs. Now
we will count (T, e) pairs based on the fundamental cycles. Each cycle
C can appear as a fundamental cycle for any edge e in C and any
spanning tree formed from a spanning tree of G/C along with the
edges of C \ e. So C is the fundamental cycle for |C|spt(G/C) (T, e)
pairs. So there are

∑
|G′|=1 spt(G

′)spt(G/G′) (T, e) pairs in all. Thus
we have

spt(G)|G| =
∑

|G′|=1

spt(G′)spt(G/G′).

Multiplying both sides by (|G| − 1)! gives the result.
2. The |G| = 1 case is immediate as a bridgeless graph with |G| = 1 is

simply a cycle. The first equality follows from iterating part i). To see
the same argument directly, note For any T ∈ T (G) the basis of funda-
mental cycles {l1, . . . , l|G|} can be ordered in |G|! ways corresponding
exactly to the |G|! flags generated by Δ̃|G|−1(G)

li1 ⊗ li2/Eli1
⊗ · · · ⊗ li|G|/(∪

|G|−1
j=1 Elj ).

Since the spt on the right of the first equality only acts on one loop
graphs it can be replaced by spt .

Note that we can recover IΠG from each single flag.

Proposition 7.6.

Λ(FlG) = ξGI
Π
G ,

As before ξG is the number of distinct flags in FlG.

Proof. By definition of FlG we can write FlG =
∑ξG

j=1 γ
(j)
1 ⊗· · ·⊗γ

(j)
|G|. Each

λ(γ
(j)
k ) =

∏
e∈E

γ
(j)
k

1
Qe

and we use λ(u ⊗ v) = λ(u)λ(v) where we extend λ

as a map λ : Hcore → C, λ(G) =
∏

e∈EG

1
Qe

.

In carrying out all dk0(j)-integrals all ξG flags contribute.

Let spt(G) ≡ |TG| be the number of spanning trees of G.

Lemma 7.7. There are |G|!× spt(G) =: spt(G) contributing residues.

Proof. Consider a given spanning tree T ∈ T (G). The locus ∩e �∈TQe =
0, defines |G|! residues through the |G|! possible orders of evaluation of∏

e∈T 1/Qe corresponding to the |G|! sectors in the above hypercube.
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Consider

ResG(T ) :=
∏
e∈ET

1

Qe
.

For any chosen order and fixed chosen T , the contour integrals above deliver

ResG(T ) =

( ∏
e∈ET

1

Qe

)
|l0,i=+

√
si+m2

i

.

Next, let us consider the set of residues in the energy integrals which can
contribute. Come back to the cycle space LG of G. Any choice of a spanning

tree determines a basis for this space.

Choose an ordering of the cycles li ∈ LG. This defines a sequence corre-

sponding to some flag

l1, l2/l1, . . . , l|G|/l|G|−1/ · · · /l1.

Now any choice of an ordering of the cycles, or equivalently of the edges

e �∈ T , defines the Feynman integral as an iterated integral, and therefore a
sequence s1 > s2 > · · · > s|G| > 0, where we assign to cycle li the variable

si = 
k(i)
2
. We get spt(G) = spt(G)× |G|! such iterated integrals.

7.6. The integral

Summarising, we have

Theorem 7.8. The integral ΦG is given as

ΦG =
∫∞
−∞
∏|G|

i=1 dki,0
∏|G|

j=1

∫
dD−1
k(j) 1∏

e∈EG
Qe

=
∑ξG

i=1

(∏|G|
j=1

∫
dD−1
k(j)

)
×
∏|G|

j=1

∑
T∈T (γ

(i)
j ) p̄f(T )k0(j)=+

√
�k(j)2−m2

T́
+iη

1

+2
√
�k(j)2−m2

T́
+iη

.

This can be written as a sum over all spanning trees of G together with a

sum of all orderings of the space like integrations in accordance with the flag
structure and we find

ΦG =
∑

T∈T (G)

ΦGT
,
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with

ΦGT
=

∑
σ∈S|G|

∫
0<sσ(|G|)<···<sσ(1)<∞

( ∏
e∈ET

1

Qe

)
|k(j)20=sj+m2

j , j �∈ET

×

× s(j)
√
D−3dD−1k̂(j)

+2
√

s(j)−m2
T́
+ iη

∏
j �∈ET

ds(j),

where dD−1k̂(j) is the spacelike angular integral over the unit sphere in (D−
1) dimensions.

This is the desired result. If renormalization is needed one has to sum
over all such terms generated by the corresponding Hopf algebra Hren in
accordance with the forest formula.

There is a corresponding graphical identity for the energy integrals.

(7.7) G =
∑

T∈T (G)

GT ,

where GT = (G,T ) is represented as the cut graph which splits all edges
e �∈ ET .

G = (HG,VG, EG) → GT = (HG,VG, EH).

Here EH has as parts of cardinality two only the edges of T . See Fig.(4).

Remark 7.9. The preceding theorem has a nice interpretation in terms of
parametric Feynman rules viewed as integrals over certain volume forms on
moduli spaces of graphs.

Roughly speaking, these spaces are constructed by taking the integration
domains PG of all Feynman graphs with a fixed number of loops and legs and
gluing them together along faces that are indexed by isomorphic graphs. In
this picture Feynman rules associate to each cell a family of “volumes”, the
values ΦR(G)(p,m), parametrized by the kinematic data attached to G (we
further discuss this construction in Sec.(11), for a more detailed exposition
see [3]). Each of these moduli spaces deformation retracts onto a certain
subspace, its spine, which has the structure of a cubical complex, that is,
it is a union of cells, each homeomorphic to a (non-degenerate) cube, and
the intersection of two cubes is again a cube. In this retraction, each cell
of the moduli space, indexed by a graph G, gets mapped to a union of
cubes, indexed by pairs (G,F ) where F is a spanning forest of G [36, 33, 5].
Put differently, each cell – in fact, the whole space – is the total space
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Figure 3: A graph G and its corresponding cell PG ⊂ MG2,2. The red part
is the cubical complex onto which PG retracts, the blue lines indicate the
fibers over one cube (G,T ) where T consists of one of the edges of G. Note
that the three corners of the simplex are not in MG2,2, because collapsing
two edges in G alters its loop number.

of a topological fiber bundle with contractible fibers over its spine. When
restricted to a single cell, outside of a subset of measure zero, the bundle
map is smooth. See Fig.(3) for an example.

Now, integrating along its fibers, we can (at least formally) reduce a
parametric Feynman integral Φ(G) to a sum of parametric integrals over
cubes (G,T ) where T runs over all spanning trees of G. This is precisely the
content of Thm.(7.8), translated from momentum to parametric space.

It is an instructive exercise to the reader to work Λ(Fldc) (see Eq.(7.2))
and the corresponding identifications out. We find

Λ(Fldc) =
1

Qb

(
1

(Qr −Qb)(Qy −Qb)

)
1

Qg

+
1

Qy

(
1

(Qr −Qy)(Qb −Qy)

)
1

Qg

+
1

Qr

(
1

(Qy −Qr)(Qb −Qr)

)
1

Qg

+
1

Qb

(
1

(Qg −Qb)(Qy −Qb)

)
1

Qr

+
1

Qy

(
1

(Qg −Qy)(Qb −Qy)

)
1

Qr

+
1

Qg

(
1

(Qy −Qg)(Qb −Qg)

)
1

Qr

+
1

Qb

(
1

(Qy −Qb)

)
1

Qr

(
1

(Qg −Qr

)
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Figure 4: The Dunce’s cap G = dc gves rise to five graphs GT , with T
running through five spanning trees. So the five spanning trees give rise to
five pairs GT of graphs and a tree. They are given as a graph with a spanning
tree (doubled lines) where each edge not in the spanning tree is put on-shell.
Hence edges in the spanning tree are off-shell. Edges not in the spanning tree
are on-shell. The external momenta extering at the three vertices are routed
through the respective spanning trees. Different colours (r, b, y, g) indicate
different masses in each edge.

+
1

Qb

(
1

(Qy −Qb)

)
1

Qg

(
1

(Qr −Qg

)
+

1

Qy

(
1

(Qb −Qy)

)
1

Qr

(
1

(Qg −Qr

)
+

1

Qy

(
1

(Qb −Qy)

)
1

Qg

(
1

(Qr −Qg

)
.

The spanning trees can be read off from the above equation in an obvious
way. Each appears twice, for example the spanning tree with edges er, ey
contributes to the first and eights term.

We can also indicate sub- and co-graphs by the edges involved. Then the
first three terms correspond to the contribution

ebeyer ⊗ eg,

the next three terms correspond to

ebeyeg ⊗ er,

which gives the 6 = 3×1+3×1 terms of the partial fraction decompositions
of the triangle subgraphs and tadpole cographs. The last four terms give the
4 = 2×2 terms of the partial fraction decompositions of the bubble subgraph
(on edges er, eg) and the bubble co-graph on edges ey, eb.
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The co-graph sub-graph order translates into an order of the spacelike
momenta of the loops and hence we find the 10 = 5 × 2 terms above as it
must be. This uses that ResG(T ) is uniquely defined for any order of the
spacelike momenta.

Remark 7.10. This is all in accordance with a corresponding sector decom-
position determined by the spine. For the example of the graph dc, see the
discussion in [47].

8. Cutkosky graphs

Above, we learned that we should put all edges not in the spanning tree on
the mass-shell. Now, for a proper Cutkosky graph G, so in the presence of
spanning forests instead of spanning trees, we will see that the same message
arises: all edges not in the spanning forest will be evaluated on the mass-
shell, either due to a contour integral, or due to the fact that they connect
distinct components of the forest.

We are left with only two types of edges:
• in the forest (e ∈ EF ),
• or not in the forest (e ∈ Eon = EG − EF ).

8.1. The general formula for H
(0)
C

Consider a Cutkosky graph G ∈ H
(0)
C so that no loop is left intact.

It is generated by a necessarily unique forest F and associated set of
edges Eon with e ∈ Eon ⇔ e �∈ EF so that Eon∪̇EF = EG.

Then,

Φ(G) =

∫ |G|∏
j=1

dDkj

(
1∏

e∈EF
Qe

)
∩f∈Eon (Qf=0)

.

It remains to describe the threshold divisor prescibed by ∩f∈Eon
(Qf = 0).

We first note that |Eon| � |G|. We can fix more than the |G| energy
variables k0(j), 1 ≤ j ≤ |G|. Let us start consider the reduced graph Gr :=
G/EF where each edge gives is on-shell and fixes a variable as this graph is
a Cutkosky graph which has all its edges cut.

Any chosen partition of LG with which F is compatible defines a parti-
tion of VG/EF

and therefore a set of variables ki,0 and si which are determined
by the set Eon. As |Eon| � |G|, all ki,0 are fixed and so is at least t, where
we set si = ts̃i for all i and integrate t over the positive real half-axis, whilst
the s̃i are integrated over a corresponding simplex Δσ.
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As a result, the |Eon| constraints make sure that the remaining integrals
are over an integration domain CG/EF

which is compact and give its volume.
The computation in Sec.(10.1) is a typical example.

Now consider G itself. The side-constraints remain unchanged. The in-
tegration domain is still CG/EF

which now splits:

CG/EF
= CG × f,

where f is a eF -dimensional fiber such that the integration resulting from
the momentum flow through F corresponds to an integral over this fiber.
CG fulfills

(8.1) dim(CG) = dim(CG/Ef
)− eF .

Note that the uniqueness of F for a Cutkosky graph in H
(0)
C means that we

do not have to consider a sum over spanning forests. This is different below

when we consider H
(j)
C , j � 0.

Remark 8.1. Any 2-partition VG = V1∪̇V2 which is part of a vG-refinement
of LG determines a Lorentz scalar

s = (
∑
v∈V1

q(v))2

defined from the 2-partition VG = V1∪̇V2, the first non-trivial entry in any
vG-refinement. It follows that Φ(G) has thresholds as a function of s deter-
mined by the threshold divisors ∩f∈Eon

(Qf = 0) with the 2-partition itself
providing the normal threshold s0 in that variable s.

Theorem 8.2. For G ∈ H
(0)
C with h0(F ) ≥ 2, Φ(G) exists and deter-

mines a threshold sF (G) in the variable s defined by the 2-partition in a
vG-refinement of LG.

Proof. We regard ΦR(G) as a function of s only, with all other kinematic
variables fixed. The second Symanzik polynomial Φ is quadratic in edge
variables ai and hence determines a set of discriminants D(i) assigned to
such a refinement. Minimizing s under the condition D(i) = 0 determines
the thresholds sF (G).

Remark 8.3. The above analysis relies on a decomposition of loop momenta
into a parallel space and its orthogonal complement, the former provided
by the span of external momenta. Hence rephrasing this analysis in terms
of Baikov polynomials using the results of [35] is an obvious task for future
work.
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8.2. Using the co-action

Let G be a Cutkosky graph with partition P of LG.
Consider a forest F compatible with P so that we get a pairGF of a forest

F and a graph G. For any such pair there is an associated triple (G0, g, F0)

where g ∈ Hcore and G0 ∈ H
(0)
C so that |G0| = 0, which determines F0

uniquely, in accordance with Cor.(3.3). The set FP of all compatible forests
F can be described as

(8.2) FP = F0∪̇T (g).

The set EG
on = EG − EF so that E

G/g
on = EG/g − EF0

.
Then,

Φ(G) =
∑

F∈FP

∫ |G|∏
j=1

dDkj

(
1∏

e∈EF
Qe

)R

∩f∈EG
on

(Qf=0)

.

The superscript R indicated a sum of such terms for renormalization as
needed corresponding to the transition IΠG → IRG .

Note that this is a variant of Fubini’s theorem by Eq.(8.2):

ΦR(G) =

∫ |G/g|∏
j=1

dDkj

(
1∏

e∈EF0
Qe

)
∩

f∈E
G/g
on

(Qf=0)

×
∑

t∈T (g)

ΦgT︷ ︸︸ ︷∫ |g|∏
j=1

dDkj

(∏
e∈Et

1

Qe

)R

∩f∈(Eg−Et)(Qf=0)︸ ︷︷ ︸
ΦR(g)

,

(8.3)

where the superscript R indicates to sum over all terms needed for renor-
malization as usual, using that the renormalization Hopf algebra Hren is a
quotient of Hcore and co-acts accordingly.

Now consider a vG-refinement P of Lg. We call its partitions P (i). Note
that for every T ∈ T (G), such a refinement induces an ordering oT of its
edges.

Accompanying the partitions P (i) are Cutkosky graphs G(i), forests
F0(i), reduced graphs Gr(i) = G(i)/Fi, core subgraphs g(i), and sets FP (i) =
F0(i)∪̇T (g(i)).
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With this set-up we thus obtain a sequence Φ(G(i)) of evaluations of
Cutkosky graphs. They provide the entries in the Hodge matrices studied
in [47].

9. The cubical chain complex, ΔGF and the pre-Lie product

In this section, we consider the interplay between the Hopf algebra of pairs
(G,F ) and the boundary d = d0+d1 of the associated cubical chain complex,
and the relation between d and the pre-Lie product for pairs of Cutkosky
graphs G and forests F .

This is groundwork to prepare the analysis of cubical complexes in QFT
in future work. A first example is studied in the next Sec.(10) when analysing
the one-loop triangle graph.

9.1. The cubical chain complex

Consider GT ≡ (G,T ). Any spanning tree T defines a cube complex for eT -
cubes assigned to G. There are eT ! orderings o = o(T ) which we can assign
to the edges of T .

We define a boundary for any elements GF ≡ (G,F ) of HGF . For this
consider such an ordering

o : EF → [1, . . . , eF ]

of the eF edges of F . There might be other labels assigned to the edges of
G and we assume that removing an edge or shrinking an edge will not alter
the labels of the remaining edges. In fact, the whole Hopf algebra structure
of Hcore and HGF is preserved for arbitrarily labeled graphs [58].

The (cubical) boundary map d is defined by d := d0 + d1 where
(9.1)

d0(G
o(F )
F ) :=

eF∑
j=1

(−1)j(G
o(F\ej)
F\ej ), d1(G

o(F )
F ) :=

eF∑
j=1

(−1)j−1(G/ej
o(F/ej)
F/ej

).

We understand that all edges ek, k � j on the right are relabeled by ek →
ek−1 which defines the corresponding o(T/ej) or o(T \ej). Similar if T is
replaced by F .

From [36] we know that d is a boundary:

Theorem 9.1. [36]

d ◦ d = 0, d0 ◦ d0 = 0, d1 ◦ d1 = 0.
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Starting from GT for any chosen T ∈ TG each chosen order o defines
one of eT ! simplices of the eT -cube. Such simplices will define the triangular
matrices studied in [47].

This cubical chain complex was used to compute the homology groups
of certain moduli spaces of (Feynman) graphs; see Sec.(11) and [5].

Here we want to understand how the boundary d interacts with the
coproduct ΔGF and with the pre-Lie structure which defines HGF dually via
the Milnor–Moore–Cartier–Quillen theorem [32, 51]. This aims to provide a
tool which is hopefully useful in future investigations.

9.2. The dual U(LGF ) of HGF

We have HGF = U∗(LGF ) by Milnor–Moore–Cartier–Quillen. The universal
enveloping algebra U(LGF ) is determined by the Lie algebra LGF . The latter
comes from a pre-Lie structure which we describe below in Sec.(9.4).

Here let us recapitulate the set-up.
The Hopf algebra HGF is a commutative Q-algebra and is graded by

the loop number. Its linear space of generators 〈hGF 〉Q is generated by pairs
(G,F ) of a graph G and a spanning forest thereof. By abuse of notation we
simply continue to write (G,F ) for a generator h(G,F ) ∈ HGF indexed by
such a pair.

The boundary d acts as a map

d : HGF → HGF ,

by definition.
HGF = U∗(LGF ) is the dual of a universal enveloping Lie algebra U(LGF )

and the generators l(G,F ) ∈ LGF of LGF are indexed by pairs (G,F ) them-
selves. We use the Kronecker pairing

〈(G,F ), l(G′,F ′)〉 = δG,G′δF,F ′ .

The Lie bracket in LGF

[l(G1,F1), l(G2,F2)] := l(G1,F1) ∗ l(G2,F2) − l(G2,F2) ∗ l(G1,F1),

is defined via the pre-Lie product ∗ : LGF ⊗ LGF → LGF . This pre-Lie
product ∗ itself is determined from the requirement

〈ΔGF (G,F ), l(G1,F1) ⊗ l(G2,F2) − l(G2,F2) ⊗ l(G1,F1)〉
= 〈(G,F ), [l(G1,F1), l(G2,F2)]〉.
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The so-determined pre-Lie product ∗ induces a map (by abuse of nota-
tion also denoted by ∗)

∗ : HGF ⊗HGF −→HGF ,

(G1, F1) ∗ (G2, F2) �−→
∑
i

(g(i), f (i))

=
∑

(g,f)∈〈HGF 〉Q

(g, f)〈(g, f), l(G1,F1)∗(G2,F2)〉,

where we sum over all possibilities (g(i), f (i)) to insert (G2, F2) into (G1, F1),
see Sec.(9.4) below. Furthermore, l(G1,F1)∗(G2,F2) ≡ l(G1,F1) ∗ l(G2,F2), ∗ is a
linear map LGF × LGF → LGF .

Note that for generators in LGF we use linearity in the subscripts

l∑
i(g

(i),f (i)) =
∑
i

l(g(i),f (i)).

9.3. ΔGF and the boundary d

We first investigate the interplay between the map Δo
GF defined in Eq.(4.2)

and the boundary d. The fact that a shrunken edge can not be removed and
a removed edge can not shrink allows to treat d0 and d1 individually.

In fact, we indicate the action of either boundary on an edge e by marking
that edge. We sum over all edges with alternating signs as prescribed by the
order o = o(F ) in accordance with Eq.(9.1).

Similarly, for the co-product, we can notate it by coloring edges in GF

with two colors, ‘co’ (red) and ‘sub’ (blue) which can be consistently done
following Sec.(A.4) in [50].

Then applying the coproduct ΔGF first generates a sum of colored graphs
and the boundary map gives a sum of colored graphs where edges e ∈ EF

are marked (say by a dot) in turn and with signs as prescribed by o(F ).
Vice versa starting with the boundary d0 or d1 we first mark uncolored

edges by a dot and then color them according to the co-product. The result
is obviously the same as long as the set of blue edges and the set of red edges
are o-compatible. This is ensured by the definition of Δo

GF .
As a result, one gets

Δo
GF ◦ d = (d⊗ I+ ι⊗ d) ◦Δo

GF .

Here, ι is the map

ι : (G,F ) → (−1)eF (G,F ),
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for eF the number of edges of F . It appears as for an odd number of edges in

in the term on the lhs of the co-product we get a change of sign in counting.

See Fig.(5) for an example.

Note that exchanging the order gives the result presented in Fig.(6).

Figure 5: Consider the Dunce’s cap on the left with the spanning tree T
indicated by two thickened edges ea, eb labeled a, b. The ordered co-product
Δab

GF can be notated by giving the edges of the subgraphs in blue, and the
edges of the co-graphs (obtained by shrinking blue edges) in red. There are
two terms generated in the Hopf algebra HGF . For the action of d by a dot
we indicate the action of either d0 or d1 on the indicated edge of T . With a
spanning tree of length two we again get two terms. It follows that we here
have Δab

GFd = (d⊗ I+ ι⊗ d)Δab
GF . Here d can be either d0 or d1.

Figure 6: The same for Δba
GF .
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9.4. The pre-Lie product for pairs (G, F )

We define the pre-Lie product ∗ as a sum over bijections adopted to pairs
(G,F ) for F a forest. This is well-defined by the Milnor–Moore–Cartier–
Quillen theorem. The latter guarantees the existence of a Lie algebra which
has an enveloping algebra dual to the Hopf algebra HGF . The construction
is standard [32, 50], in particular Sec.(A.4.4) in [50] for composing pairs
(G,F ).

For our purposes we note that when we compose a pair (G1, F1) of a
graph G1 with an ordered forest F1 with a pair (G2, F2) we get a sum

(G1, F1) ∗ (G2, F2) =
∑
i

(Gi, Fi)

of pairs (Gi, Fi) with ordered forests Fi. The orders o(Fi) are independent
of the label i, o(Fi) = o(F ) and defined by concatenation

o(F ) = o(F2)o(F1).

This is prescribed by Milnor–Moore which imposes that the edges of the
sub-graph F2 when inserted are counted before the edges of the co-graph
F1.

Finally, the sum is over all bijections between external half-edges of G2

with suitable half-edges of G1 as described in Sec.(A.4.4) in [50].

9.5. Final result

Let d = d0 + d1 as before, with d ◦ d = 0. As also d0 ◦ d0 = d1 ◦ d1 = 0 we
have {d0, d1} = d0 ◦ d1 + d1 ◦ d0 = 0.

Theorem 9.2. i) We can reduce the computation of the boundary map of
the cubical chain complex for large graphs to computations for smaller graphs
by a Leibniz rule:

d ((G1, F1) ∗ (G2, F2)) = (d(G1, F1)) ∗ ι(G2, F2) + (G1, F1) ∗ (d(G2, F2)).

ii) We have

Δo
GF ◦ d = (d⊗ id + ι⊗ d) ◦Δo

GF .

Proof. All edges of EF appear either in EF1
or EF2

. One by one by d they
either shrink or are removed either in F1 or F2 which makes the signed
Leibniz rule in i) obvious, ii) was derived above in Sec.(9.3).
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10. Monodromy and reduced graphs

We want to use the set-up so far to derive an old result of Polkinghorne
et.al. [11, 34] in the context of one-loop graphs. The argument is sufficiently
robust to allow for a generalization to the multi-loop case. Actually, we do
a bit more and derive a relation between the amplitude of a reduced graph
and the amplitude of the full graph.

10.1. One-loop graphs

We consider the one-loop triangle with vertices {A,B,C} and edge set
{(A,B), (B,C), (C,A)}, and quadrics:

PAB = k20 − k21 − k22 − k23 −M1,

PBC = (k0 + q0)
2 − k21 − k22 − k23 −M2,

PCA = (k0 − p0)
2 − (k1)

2 − (k2)
2 − (k3 − p3)

2 −M3.

Here, we Lorentz transformed into the rest frame of the external Lorentz
4-vector q = (q0, 0, 0, 0)

T , and oriented the space like part of p = (p0, 
p)
T in

the 3-direction: 
p = (0, 0, p3)
T .

Using q0 =
√

q2, q0p0 = qμp
μ ≡ q.p, 
p · 
p = q.p2−p.pq.q

q2 , we can express
everything in covariant form whenever we want to.

We consider first the two quadrics PAB, PBC which intersect in C4.
The real locus we want to integrate is R4, and we split this as R ×

R3, and the latter three dimensional real space we consider in spherical
variables as R+×S1×[−1, 1], by going to coordinates k1 =

√
s sinφ sin θ,k2 =√

s cosφ sin θ, k3 =
√
s cos θ, s = k21 + k22 + k23, z = cos θ.

We have

PAB = k20 − s−M1,

PBC = (k0 + q0)
2 − s−M2.

So we learn say s = k20 −M1 from the first and

k0 = kr :=
M2 −M1 − q20

2q0

from the second, so we set

sr :=
M2

2 +M2
1 + (q20)

2 − 2(M1M2 + q20M1 + q20M2)

4q20
.
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The integral over the real locus transforms to∫
R4

d4k → 1

2

∫
R

∫
R+

√
sδ+(PAB)δ+(PBC)dk0ds×

∫ 2π

0

∫ 1

−1
dφδ+(PCA)dz.

We consider k0, s to be base space coordinates, while PCA also depends on
the fibre coordinate z = cos θ. Nothing depends on φ (for the one-loop box
it would).

Integrating in the base and integrating also φ trivially in the fibre gives

1

2

√
sr

2q0
2π

∫ 1

−1
δ+(PCA(s = sr, k0 = kr))dz.

For PCA we have

(10.1) PCA = (kr − p0)
2 − sr − 
p · 
p− 2|
p|√srz −M3 =: α+ βz.

Integrating the fibre gives a very simple expression (the Jacobian of the
δ-function is 1/(2|√sr
p|), and we are left with the Omnès factor8

(10.2)
π

4|
p|q0
=

π

2|
√

λ(q2, p2, (q + p)2)|
.

This contributes as long as the fibre variable

(10.3) z =
(kr − p0)

2 − sr − 
p · 
p−M3

2
√

λ(q2, p2, (q + p)2)sr

lies in the range (−1, 1). This is just the condition that the three quadrics
intersect.

An anomalous threshold below the normal threshold appears when (m1−
m2)

2 < q2 < (m1+m2)
2. In that range, sr is negative, hence its square root

imaginary. In the denominator in the expression for z we have the square
root of the Kallen function as |
p| = |

√
λ(q2, p2, (p+ q)2)|/2q0. Assume we

are not in the rest frame of q.
Then, that Kallen function can be negative as well so that z can still be

real. This is then the origin of an anomalous threshold when we solve for
the minimal q2 = q2(z) in the range 1 ≥ z(q2) ≥ −1.

8For any 4-vector r we have r2 = r20 − 
r · 
r. Let q be a time-like 4-vector, p an
arbitrary 4-vector. Then, (q · p2 − q2p2)/q2 = λ(q2, p2, (q+ p)2)/4q2 and in the rest
frame of q, (q · p2 − q2p2)/q2 = 
p · 
p where λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ca),
as always.
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On the other hand, when we leave the propagator PCA uncut, we have

the integral

1

2

√
sr

2q0
2π

∫ 1

−1

1

PCA (s=sr,k0=kr)
dz.

This delivers a result as foreseen by S-Matrix theory [11, 34].

The two δ+-functions constrain the k0- and t-variables, so that the re-

maining integrals are over the compact domain S2. This is an example al-

luded to in Eq.(8.1) where here the fiber is provided by the one-dimensional

z-integral and the compactum CG/EF
is the two-dimensional S2 while for

CG it is the one-dimensional S1.

As the integrand does not depend on φ, this gives a result of the form

(10.4) 2πC

∫ 1

−1

1

α+ βz
dz︸ ︷︷ ︸

:=JCA

= 2π
C

β
ln

α+ β

α− β
=

1

2
Var(ΦR(b2))× JCA,

where C =
√
sr/2q0 is intimately related to Var(ΦR(b2)) for b2 the reduced

triangle graph (the bubble), and the factor 1/2 here is Vol(S1)/Vol(S2).

Here, α and β are given through (see Eq.(10.1)) l1 ≡ 
p2 = λ(q2, p2, (p+

q)2)/4q2 and l2 := sr = λ(q2,M1,M2)/4q
2 as

α = (kr − p0)
2 − l2 − l1 −M3, β = 2

√
l1l2.

Note that

C

β
=

1

|
√

λ(q2, p2, (q + p)2)|
=

1

2q0|
p|
,

in Eq.(10.4) is proportional to the Omnès factor Eq.(10.2).

In summary, there is a Landau singularity in the reduced graph in which

we shrink PCA. It is located at

q20 = snormal = (
√

M1 +
√

M2)
2.

It corresponds to the threshold divisor defined by the intersection (PAB =

0) ∩ (PBC = 0).

This is not a Landau singularity when we unshrink PCA though. A (lead-

ing) Landau singularity appears in the triangle when we also intersect the

previous divisor with the locus (PCA = 0).
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Figure 7: The two Cutkosky triangle graphs G1, G2 are distinguished by a
permutation of external edges p1, p2. Edges e1, e2 are on-shell, e3 is off-shell
and hence in the forest. Shrinking or removing it delivers in both cases the
same reduced (g) or leading (h) graph. As a result, we get a cycle d(G1 −
G2) = 0. Obviously, there is no X such that dX = G1 −G2.

It has a location which can be computed from the parametric approach
as alluded to in Thm.(8.2). One finds

q20 =sanom = (
√

M1 +
√

M2)
2 +

4M3(
√
λ2

√
M1 −

√
λ1

√
M2)

2

4M3

√
λ1

√
λ2

−
(√

λ1(p
2 −M2 −M3)−

√
λ2((p+ q)2 −M1 −M3)

)2
4M3

√
λ1

√
λ2

,

with λ1 = λ(p2,M2,M3) and λ2 = λ((p+ q)2,M1,M3).
Eq.(10.4) above is the promised result: the leading singularity of the

reduced graph t/PCA and the non-leading singularity of t have the same
location and both involve Var(ΦR(b2)) and the non-leading singularity of t
factorizes into the (fibre) amplitude JCA ×Var(ΦR(b2)).

In fact, this gives rise to a cycle which is a generator in the above coho-
mology as Fig.(7) demonstrates.

To understand how to generalize this it pays to look at the parametric
representation. Consider the second Symanzik polynomial for the triangle
graph Δ. Set r2 = (p+ q)2. It reads

Φ(Δ) = −M3A
2
3 +A3(A1(p

2 −M1) +A2(r
2 −M2)) + q2A1A2
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−(A1 +A2)(A1M1 +A2M2)

= Φ(Δ/e3) +A3Φ(Δ− e3)−A2
3M3.

What we are after is the symmetry r2 ↔ p2 corresponding to the exchange

symmetry p1 ↔ p2 in Fig.(7).

For this note that the integration measure is symmetric under the ex-

change A1 ↔ A2. As Φ(Δ/e3) has the desired symmetry as the two ver-

tices connected by e3 collapse, the result follow from the fact that Φ(Δ −
e3)(A1, A2) + Φ(Δ− e3)(A2, A1) has the desired symmetry.

Remark 10.1. It is easy to find finite linear combinations of graphs X =∑
iGi such that the symmetry of the integration measure enforces dX =

(d0 + d1)X = 0 similarly. The question if there exists Y such that X =

dY is harder to answer in general and a systematic study is left to future

work. Furthermore, factorizations as in Eq.(10.4) on the rhs can similarly be

established using dispersion relations and will be discussed in future work.

11. Complexes of graphs and Landau singularities

Above we have seen how the cubical boundary d = d0 + d1 acts on (cut)

Feynman graphs and how it relates to their analytic structure. In this sec-

tion, we study a simpler differential. We forget about the information stored

in spanning trees and restrict ourselves to shrinking edges to investigate the

role of “traditional” graph complexes for Feynman graphs and their analytic

structure.

By traditional we mean here a differential graded (Hopf) algebra struc-

ture on Hcore, induced by the derivation

d : Hcore −→ Hcore, G �−→
∑

e={v,w}
±G/e,

defined by collapsing edges that are not tadpoles (cf. Defn.(11.1) below –

the signs ± are determined by an order on EG; we refrain from a precise

definition since in what follows we work exclusively with coefficients in Z2).

As in Thm.(9.2) we have

(11.1) Δcore(dG) = d⊗Δcore(G)

where d⊗(G′⊗G′′) := dG′⊗G′′+(−1)|G
′|G′⊗dG′′, using Sweedler’s notation.
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To prove this formula for Z2 coefficients9, let CG denote the set of non-
empty core subgraphs g � G. For any edge e ∈ EG we have a decomposition

CG/e = {g/e | g ∈ CG, e ∈ Eg} � {g | g ∈ CG, e /∈ Eg}.

This allows to write the coproduct of G/e as

Δ(G/e) =I⊗G/e+G/e⊗ I+
∑

g∈CG:e∈Eg

g/e⊗ (G/e)/(g/e)

+
∑

g∈CG:e/∈Eg

g ⊗ (G/e)/g

=I⊗G/e+G/e⊗ I+
∑

g∈CG:e∈Eg

g/e⊗G/g

+
∑

g∈CG:e/∈Eg

g ⊗ (G/g)/e.

If e is a tadpole, then g/e = 0, by definition, for any g ⊂ G with e ∈ Eg.
The equation above shows thus Δ(G/e) = G′/e⊗G′′ +G′ ⊗G′′/e for every
e ∈ EG and (11.1) follows.

Apart from this compatibility condition, the map d has another impor-
tant property: it encodes which Feynman graphs share parts of their Landau
varieties.

11.1. Edge-collapses and the analytic structure of Feynman
integrals

Recall the discussion of Landau singularities of Feynman integrals in Sec.(6).
Given a Feynman graph G, the analytic function ΦR(G) can in principle be
reconstructed by a Hilbert transform from knowledge of its Landau variety
LG and the behavior of ΦR(G) in a neighborhood of LG (the nature of the
singularities and the associated monodromy). See [34, 55] for background
material.

This is a highly non-trivial problem whose solution is not yet fully under-
stood. However, if this reconstruction were indeed possible, we could apply
the same method to elements of Hcore, that is, to linear combinations of
graphs, or even a full amplitude (say for a fixed number of loops and legs).
In this setting it is natural to ask which families of Feynman graphs share
a set of singularities – not only to apply a Hilbert transform directly to

9It holds for integer coefficients as well, but we do not need this for our purposes.



150 Marko Berghoff and Dirk Kreimer

linear combinations of graphs, but also to check for possible cancellations of
singularities.

Put differently, one would like to partition the set of graphs contributing
to an amplitude into subsets organized by their Landau varieties.

Disclaimer: In the following we use the term singularity as an abbre-
viation for the location of a Landau singularity, that is, a solution of the
Landau equations. This does not include any classification of the type, or
even the prediction whether it is one at all. The Landau equations give
only necessary, not sufficient conditions for singularities of Feynman inte-
grals. Here we are only concerned with the Landau variety LG, the set of
superficial singularities of G, or, more precisely, of the function ΦR(G).

Considering elements in Hcore, in general each summand in a linear com-
bination of graphs brings its own singularities to the party. However, some
graphs will have singularities in common, especially those of non-leading
type. Since

LG+H ⊂ LG ∪ LH

holds for all Feynman graphs with the same number of legs, one is naturally
led to wonder whether there is an efficient way to partition the set of graphs
that contribute to an amplitude so that each subset has “a large overlap of
individual Landau singularities” or “a small joint Landau singularity”.

We argue below that for a theory with cubic interaction this is indeed
possible. We construct a partition of the set of graphs contributing to an
amplitude into subsets that simultaneously satisfy two properties;

1. the integrals, and therefore also their singularities, are related by a
symmetry of exchanging masses and/or leg labels,

2. the Landau singularities have maximal overlap with respect to satis-
fying such a symmetry.

In formulae: let Gm
n,s denote the set of all Feynman graphs with n loops, s

legs and their edges labeled bym different masses. Then (omitting symmetry
factors) we can rewrite the Green’s function An,s as

An,s := ΦR

( ∑
G∈Gm

n,s

G
)
= a1+ . . .+ ak := ΦR

( ∑
G∈G1

G
)
+ . . .+ΦR

( ∑
G∈Gk

G
)

where G1 � · · · �Gk is a partition of Gm
n,s. The functions ai and their singu-

larities (the union of the Landau singularities of the graphs that contribute
to them) satisfy the above mentioned maximality (cf. Theorem 11.4) and
are related by a Γ-symmetry where Γ ⊂ Σs×Σm is a subgroup of the group
of permutations of legs and mass labels.
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The machine that provides this partition is (the top degree homology of)
a graph complex whose chains are Z2-linear combinations of generators of
Hcore and the differential is defined by collapsing edges. The connection to
Landau singularities is established by the following argument: via the map
G �→ LG each graph represents a subset in the space of external momenta,
given by the solution of its Landau equations. The poset structure introduced
in Defn.(6.1) implies that the singularities of all graphs contributing to An,s

form a simplicial complex K = Kn,s. By relating the graph complex to the
simplicial chain complex of K, we see how (the kernel of) its differential
encodes incidence relations of singularities.

In the next section, we present this construction in detail. First, we treat
the case of Feynman graphs with all masses different, then we comment on
the general case when two or more internal propagators can carry the same
non-vanishing mass.

After that we specialize to the case of a theory with cubic interaction
and discuss the above mentioned partition property. We show this to be true
for one loop graphs with all masses different by relating the homology of the
graph complex to the topology of a certain moduli space of graphs. Roughly
speaking, Feynman rules provide a distribution density on this space. Eval-
uating an amplitude amounts to integrate it against its fundamental class.
This class is, in fact, a sum of cycles (the moduli space is not a manifold)
whose elements form the sought-after partition of graphs.

For the case of general masses we present arguments that support this
conjecture. For higher loop numbers the homology of the graph complex is
unknown, hindering any further speculations whether such partitions exist
in general.

11.2. Holocolored graphs

Let us study a toy-model first, Feynman graphs with all edges carrying
a different mass. On the graphical level we work thus with graphs where
all edges are colored differently, that is, we consider graphs with injective
coloring maps c : EG → C, dubbed holocolored graphs. If the number of
loops n and legs s is fixed, then a simple Euler characteristic argument
shows that one needs at least 3(n− 1) + s colors for each admissible graph
to admit such a holocoloring. Here we call a graph admissible if it is 1-PI
and all of its vertices are of valence at least three.10 We write Gn,s for the

10Apart from this being the relevant case for physics, this assumption assures
the finite-dimensionality of all chain groups and topological spaces we encounter in
the following.



152 Marko Berghoff and Dirk Kreimer

set of all admissible graphs with n loops and s (labeled) legs. For k ∈ N let
[k] := {1, . . . , k}.
Definition 11.1. For n, s ∈ N define a chain complex (HG, d) = (HGn,s, d)
of holocolored graphs by

HG = HGn,s := Z2

〈
(G, c) | G ∈ Gn,s, c : EG ↪→ [3(n− 1) + s]

〉
,

where the grading is given by |(G, c)| := |EG|−1. The differential d is defined
by

d(G, c) :=
∑
e∈EG

(G/e, ce).

Here the coloring ce is induced by the contraction map, that is, it is simply
the restriction of c to EG\{e}. If e is a tadpole, then we set G/e = 0.

Remark 11.2. Many interesting features and applications of graph complexes
over fields of characteristic zero stem from the signs in the definition of the
differential and their relation to graph automorphisms (see [31], for exam-
ple). Although we do not need the signs here (our graph complexes are thus
quite simple), we still have to take automorphisms into account. The auto-
morphism group of a holocolored graph is trivial, but for general colorings
these symmetries complicate the picture considerably; see Ex.(11.13) and
the discussion in the next section.

Lemma 11.3. d2 = 0.

Proof. Since we are working over Z2, this is a simple consequence of the fact

(G/e)/f = G/{e, f} = (G/f)/e,

which holds for any (colored) graph G and every pair of edges e, f ∈ EG.

The differential d maps a graph to the sum of its “boundary graphs”,
or in the language of Landau singularities, of its reduced graphs, modulo
those obtained by collapsing tadpoles. In terms of the poset of singularities
SG the image of d is the sum over its coatoms – cf. the discussion at the
end of Sec.(6). Each such coatom represents thereby a family of non-leading
singularities of ΦR(G) of the form

ae = 0 and for all e′ ∈ EG/e either ae′ = 0 or Qe′ = 0.

In the poset SG these equations correspond to intervals

[∅, le] = {l ∈ SG | l ≤ lG/e}.
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Thus, if two graphs G,H satisfy G/e = H/f for some edges e ∈ EG, f ∈ EH ,
the functions ΦR(G) and ΦR(F ) have all corresponding reduced singularities
(with ae = 0 and af = 0, respectively) in common.

We now state a technical formulation of this condition of shared Landau
singularities. Although we will focus later on the case of three-regular graphs
(the Feynman diagrams of a theory with only cubic interactions), we state
it here in full generality. The proof uses a geometric picture of the situation
where we show how to identify (HG, d) as the simplicial chain complex of a
topological space. There are two (equivalent) ways of doing so, using

• the geometric realization of the simplicial set of Landau singularities,
• a moduli space of normalized metrics on Feynman graphs.

The former approach was outlined at the end of the previous section, the
latter uses the following observation: Varying the edge-lengths of a graph
G ∈ Gn,s parametrizes the interior of the (projective) |EG| − 1 dimensional
simplex PG (we mod out overall rescaling). In this regard, parametric Feyn-
man rules can be understood as a map that associates to each Feynman
graph G a family of volume forms on the space PG of (normalized) metrics on
G.11 The family is parametrized by the kinematical data – here the external
momenta – in the complement of the Landau variety of G. Upon integration
it produces a multivalued function on the latter space. The faces of PG are
represented by graphs H obtained from G via sequences of edge-collapses.
We define an equivalence relation by declaring two such faces PH and PH′

equivalent if H and H ′ are isomorphic as colored graphs. We may thus form
a Δ-complex K = Kn,s by taking the union of all PG for G = (G, c) ∈ Gn,s

and gluing them together along faces that are equivalent.
As explained above, this complex gives a geometric picture of the poset

of Landau singularities of all graphs in Gn,s. In this way we see that incidence
relations between its simplices capture information about when and where
the singularities of their associated Feynman integrals intersect.

Theorem 11.4. Let X = G1 + . . . + Gm ∈ HGn,s be a cycle of degree k.
Assume that X is not decomposable as a linear combination of cycles. Then
the family {G1, . . . , Gm} is maximal in the following sense:

Write Lred
X for the union of all reduced singularities associated to the Gi,

Lred
X :=

m⋃
i=1

⋃
e∈EGi

LGi/e.

11Such forms may be ill-defined, i.e., the volume of PG may be infinite, but it
becomes finite after renormalization.
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If there is an element X ′ =
∑m′

i=1G
′
i ∈ HGn,s of degree k with Lred

X′ ⊆
Lred
X that can be completed to form a different cycle X ′ +X ′′ ∈ ker d, then

Lred
X′′ � Lred

X .

It follows that, if X is d-closed, then there is no subdivision X = X1+X2

(with dXi �= 0) such that

Lred
X1

∩ Lred
X2

= ∅.

Thus, a cycle in HG represents a sum of Feynman integrals, closed under

the operation of adding another Feynman integral without generating new

(reduced) singularities. Roughly speaking, the graphs in the cycle satisfy two

conditions simultaneously; their singularities have maximal overlap while

their union is as small as possible. See examples (11.6) and (11.14) below.

Proof. There is a natural identification of the elements of HGn,s with the

simplicial chains of K. Moreover, the differential d is almost the boundary

map of the simplicial chain complex of K; the only difference is that in the

definition of d we set G/e = 0 if e is a tadpole. It is therefore a relative

boundary map in the following sense. To account for the cancellation of

tadpoles, let Ij denote the union of all j-dimensional simplices in K that

are represented by graphs not in Gn,s (i.e., those obtained by collapsing a

tadpole in an admissible graph on j + 2 edges). This allows to identify the

homology of HGn,s with a certain relative homology of K,

Hk(HGn,s) ∼= Hk(K, Ik−1;Z2) ∼= H̃k(K/Ik−1;Z2).

With this geometric interpretation at hand, the theorem now follows

from the long exact sequence of a pair. Let Y denote the space K/Ik−1 and,

abusing notation, let X ⊂ Y be the cycle representing the class of
∑m

i=1Gi

in Hk(HGn,s) ∼= Hk(Y ;Z2). The long exact sequence of the pair X ⊂ Y

reads

· · · → Hk(X;Z2) −→ Hk(Y ;Z2) −→ Hk(Y,X;Z2)
∂−→ Hk−1(X;Z2) → · · ·

Now, the assumptions on X ′ imply, under the same abuse of notation, that

it represents a class [X ′] in Hk(Y,X;Z2). The connecting map ∂ maps it to

Hk−1(X;Z2), given by the class of the boundary of X ′ in X. If X ′ is a cycle,

then dX ′ = 0 and we are done. If it is not a cycle, then X ′ ∈ ker ∂. Since

the sequence is exact, there must be an element X ′′ in Hk(Y ;Z2) that gets

mapped to X ′.
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Note that the reverse implication of Thm.(11.4) does not hold. A single

graph is in general maximal with respect to the set of its reduced singular-

ities. On the other hand, a full amplitude is always maximal in this sense.

This is the reason for our interpretation of cycles in HGn,s as represent-

ing the largest possible families with respect to the smallest possible sets of

shared singularities.

The identity d2 = 0 simply translates into the fact that repeated appli-

cation of “reducing” a graph does not give any new information. In other

words, d-exact terms give “trivial” relations.

If we specialize to a theory with cubic interaction, then the graphs par-

ticipating in the n-loop s-point amplitude are precisely the elements living

in degree 3n + s − 4, the highest degree part of HG. In this case there are

no exact elements so that

H3n+s−4(HG) = ker (d : (HGn,s)3n+s−4 → (HGn,s)3n+s−5)

detects all cycles. This is the main case we consider in the following.

If we drop the restriction of considering a theory with cubic interaction,

then graphs with differing numbers of edges contribute to the amplitude.

However, the vertex valency of Feynman graphs in a given theory is usually

bounded from above. This restricts the homological degrees that need to

be considered to a subset of [3n+ s− 4]. In this case, we would need to

take the homology of HG in multiple degrees into account. This has twofold

implications:

• Homology detects only closed elements modulo exactness, while with

the reasoning we have given here, we are only concerned with the kernel

of d. Thus, in lower degrees the homology can not predict all relevant

elements. However, note that computing ker d is a simple linear algebra

problem.

• Since we are only interested in cycles, we can construct elements with

high loop numbers from elements in lower loop numbers (without hav-

ing to check for exactness), for instance with the maps introduced in

Sec.(11.2.3) below.

In this regard it is also important to note that, although graphs with tad-

poles are trivial in kinematic renormalization schemes, we must not omit

them in the definition of the graph complexes. They have to be included

as “boundary graphs” to keep track of all reduced singularities of a given

graph.
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Remark 11.5. The elements in H3(n−1)+s(HG) may be extended by adding

all reduced graphs of each summand, including also graphs of lower loop

number that are created by the contraction of subgraphs, as in the defini-

tion of the poset structure of SG. Alternatively, the construction presented

here may be adjusted to account for graphs with varying loop numbers. In

this case we need to consider marked weighted graphs as in [26] where the

term marking simply refers to a labeling of the legs while weights are ad-

ditional labels on the vertices which keep track of collapsed loops; see [26]

for a precise definition. This leads to an alternative approach allowing to

find classes of Feynman graphs across different loop numbers. The associ-

ated graph complex is then related to the topology of a moduli space of

tropical curves, instead of metric graphs (the latter connection is outlined

below).

Example 11.6. Let us consider the differential of a one loop graph with

three legs,

(11.2)
x

y
z

p1
p2

p3
d�−→ p1 p2

p3
z

x
+ p2 p3

p1
y

x
+ p3 p1

p2
y

z
.

From this it readily follows that the sum over all six permutations of col-

orings by x, y, z defines a cycle, hence a generator of H2(HG1,3). There are

no other graphs in HG1,3 with three edges, so H2(HG1,3) ∼= Z2 – in accor-

dance with (11.3) below. On the level of Landau singularities we find for the

graph on the left hand side of (11.2) reduced singularities for p21 = (x± z)2,

p22 = (x ± y)2 and p23 = (y ± z)2. From this it is also clear, that Φ applied

to any two graphs that are related by a permutation of x, y, z produces two

functions which have some singularities in common.

Example 11.7. For the case of four legs we would find three different gener-

ators, each given by the sum of 24 box graphs, their set of reduced singular-

ities related by an Σ3-symmetry. Instead of presenting the full computation,

we refer to the general discussion below.

11.2.1. The homology of HG1,s In the case of one loop holocolored

graphs with s legs the top degree homology of HG = HG1,s was computed

in [5]. It is given by the formula

(11.3) Hs−1(HG1,s) ∼= Z
(s−1)!

2

2 ,
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In this section, we provide a geometric way of understanding these homology

groups.

For n = 1 the complexes HG1,s are naturally isomorphic to the simpli-

cial chain complexes of certain Δ-complexes, constructed as in the proof of

Thm.(11.4): Take the union of all PG for G = (G, c) ∈ Gn,s and glue them

together along faces that correspond to isomorphic colored graphs (c.f. [3, 5]

for details). Since in the one loop case there are no tadpoles to collapse, ev-

ery edge-collapse represents such a face relation, and vice versa. The disjoint

union of all simplices PG associated to holocolored graphs in G1,s, glued to-

gether via the above described face relations, forms thus a pure12 Δ-complex

of dimension s − 1, the moduli space of holocolored one loop graphs with s

legs MHG1,s.

Clearly, there is a one-to-one correspondence between the simplices in

MHG1,s and the elements of HG1,s under which the map d transforms into

the simplicial boundary map. This induces a chain isomorphism

HG1,s
∼=−→ C∗(MHG1,s;Z2),

so that

H∗(HG1,s) ∼= H∗(MHG1,s;Z2).

Moreover, if we define orientations on graphs by ordering their internal edges,

this isomorphism extends to the case of integer coefficients [5].

The top-dimensional facets of MHG1,s may be represented by cyclic

graphs with s labeled vertices/legs and s colors on their internal edges.

Traveling from one such facet to its neighbor is in this representation ex-

pressed by exchanging two neighboring legs while keeping the same color

pattern on the edges. We call this operation a leg-flip. See Fig.(8) for an

example. In the one loop case every permutation of legs can be expressed as

a sequence of leg-flips. This generates a free Σs-action on MHG1,s.

Proposition 11.8. The action of Σs on (the top-dimensional facets of)

MHG1,s is free with 1
2(s− 1)! different orbits.

Proof. We use the cyclic representation introduced above. A cycle graph Cs

on s vertices has the dihedral group Ds as its group of automorphisms. Since

12A Δ-complex of dimension d is pure if every simplex is the face of a (d + 1)-

simplex.



158 Marko Berghoff and Dirk Kreimer

p2 p3

↔
p4p1

p2 p3

↔
p4p1

p2 p3

p4p1

p2
σ1←→

p3

p4

p1

p1

p3

p4

p2

Figure 8: Two graphs representing two neighboring facets of MHG1,4 and
their representatives, related by a leg-flip σ1, interchanging the legs carrying
momenta p1 and p2. In geometric terms, we travel in MHG1,4 from one
facet to the other through the codimension one face represented by the
graph obtained from the two in the figure by collapsing the cyan colored
edge.

|Dn| = 2s and there are s! possible colorings of its edges, we have 1
2(s− 1)!

non-isomorphic colorings.

Take any such coloring c and consider the colored graph (Cs, c). In ad-

dition to the coloring of its edges, the graph has s labeled legs attached to

it, which is equivalent to an order on its s vertices. Thus, every edge and

every vertex of (Cs, c) is uniquely labeled, so this graph cannot have any

automorphisms. In particular, for two non-isomorphic choices of colorings,

there is no permutation of its vertices that translates one into the other.

Hence, the action is free, and its set of coinvariants consists of the 1
2(s− 1)!

non-isomorphic colorings of Cs.

These orbits are full (s− 1)-dimensional subcomplexes of MHG1,s that

intersect each other only in faces of codimension greater than two. Thus, for

calculating homology in dimension s−1 it suffices to consider each subcom-

plex individually. Eq. (11.3) follows now from the simple observation that in

each subcomplex each (s−2)-dimensional simplex appears as a codimension

one face of exactly two top-dimensional facets, related by a leg-flip. There-
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fore, the sum over all elements of a Σs-orbit represents a homology class.13

Moreover, all classes arise in such manner.

11.2.2. Digression: homology with integer coefficients The result
holds also for homology with integer coefficients, that is, there are no tor-
sion elements in H∗(HG1,s;Z) ∼= H∗(MHG1,s;Z). To see this we need to
introduce the notion of a two-coloring of a Δ-complex.

Definition 11.9. Let K be a Δ-complex. A two-coloring of K is an assign-
ment of labels in {+,−} to each of its top-dimensional facets, such that no
two facets that are both labeled by + or −, share a codimension one face.
A Δ-complex K is called two-colorable if it admits a two-coloring.

We will deduce (11.3) with integral coefficients by showing that the
complexes MHG1,s are two-colorable. This, together with the above result
for Z2-coefficients, implies that we can orient each simplex in a Σs-orbit in
such a way that the (oriented) boundary of the sum of its (oriented) elements
vanishes.

By the same reasoning as above, to find a two-coloring of the total
complex MHG1,s, it suffices to consider each of its 1

2(s − 1)! Σs-invariant
subcomplexes. For this let us look at the dual graphs of these subcomplexes.
Here, the dual graph of a pure Δ-complex K is the graph GK defined by

V (GK) := {Δ | Δ is a top-dimensional facet of K},
E(GK) := {(Δ,Δ′) | Δ ∩Δ′ is a codimension one face}.

In the present case, the dual graph of a Σs-orbit can be described as fol-
lows: its vertices are given by cyclic graphs with s edges and s legs, the edges
colored by a fixed color pattern (there are 1

2(s− 1)! non-isomorphic choices,
corresponding to each orbit/subcomplex), the legs labeled by elements in
{1, . . . , s}. Two such vertices are adjacent if and only if the corresponding
cyclic graphs are related by a leg-flip. It is therefore a simple graph. The
integral version of the formula in Eq. (11.3) now follows from

Theorem 11.10. For all s ≥ 1 the Δ-complex MHG1,s is two-colorable.

The proof relies on two propositions on the colorability of graphs, which
we apply to the dual graphs of the Σs-invariant subcomplexes of MHG1,s.
For a definition of the graph-theoretic notions and proofs of the following
two statements, see [12].

13It may be interpreted as the fundamental class of the non-singular part of
MHG1,s that is covered by this orbit.
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Figure 9: The Δ-complex MHG1,3 and its dual graph with edges labeled by
the corresponding leg-flips (σi flips legs i and i+ 1).

Proposition 11.11. Let G be a finite simple graph. G is two-colorable if
and only if it is bipartite.

Proposition 11.12. Let G be a finite simple graph. G is bipartite if and
only if it contains no odd cycles.

Proof of Theorem 11.10. Let G be the dual graph of one of the Σs-invariant
subcomplexes of MHG1,s, determined by fixing a color pattern. Since every
vertex corresponds to a leg configuration and the adjacency relation in G is
given by leg-flips, we have an induced Σs-action on G. Therefore, cycles in
G are in one-to-one correspondence with closed orbits of the Σs-action.

Since this action is free (it is induced by the free action of Σs on
MHG1,s), the only way to form a cycle is by a relation in the presenta-
tion of Σs with leg-flips. Using the well-known fact that

Σs =

〈
σ1, . . . , σs−1

∣∣∣∣∣ σ2
i = e, σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi for |i− j| > 1

〉
,

we deduce that the only possible cycles in G are of length six (the cycles of
length two are trivial). Applying Prop.(11.11) and Prop.(11.12) finishes the
proof.

For the lower degree homology groups of MHG1,s partial results exist
from computer calculations. These, together with lists of generators can be
found in [52].

Recall that in Sec.(10) we gave an explicit formula for the variation as-
sociated to singularities of one loop graphs, cf. Eq. (10.4). It shows that
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graphs with a common boundary term share the location of reduced singu-
larities and the corresponding variation; the latter is expressed by a single
function with only its constant coefficients depending on the distribution of
colors/masses on the graph.

11.2.3. Higher loop numbers For higher loop numbers the homology of
HGn,s is not known. If n > 1, we cannot use the above described connection
to a moduli space of colored graphs. This is due to the restrictions on edge-
collapses which are not allowed to change the loop number of graphs. The
resulting moduli spaces become thus cell complexes with “missing faces”,
also called faces at infinity. As a consequence, the interpretation of (HG, d)
as the (simplicial) chain complex of a moduli space of graphs breaks down
and we cannot use results on the topology of these spaces (which, for exam-
ple, would guarantee the existence of non-trivial homology classes in certain
degrees).

However, since we are interested in cycles, not homology classes, we can
construct cycles in HGn,s from cycles with lower loop numbers. There are
two promising approaches:

• via the pre-Lie/operadic/dgla structure on Feynman graphs which by

d[G,H] = [dG,H] + (−1)|G|[G, dH]

maps cycles to cycles; c.f. Thm.(9.2).
• via so-called assembly maps, as used in [30] in the context of Outer
space, where new cycles are generated by gluing together graphs along
their legs, i.e., by maps

HGn1,s1 ⊗ · · · ⊗HGnk,sk −→ HGn,s

where n > n1 + . . .+ nk and s < s1 + . . .+ sk; see [30] for details. In
the presence of colors and legs, already the simplest examples become
very bulky. For an unphysical example, consider two bubble graphs B2

merged along their legs, forming a cycle with n = 3, s = 0.

A detailed study of these ideas is left to future work.

11.3. General colored graphs

In principle we may set up a similar machine for the case where two or
more colors/masses are equal. The only, but severe, complication is that
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this introduces symmetries via graph automorphisms into the picture. As a
consequence, the corresponding graph complex detects too many relations
because some graphs may cancel each other by symmetry reasons.

Example 11.13. Let Bk be the banana or melon graph on k-edges, all
colored by the same color,

Bk = p1 p2
... .

Then dBk = 0 if and only if k is even.

However, if we consider only homology classes of top degree and s large
enough, this problem does not show up. For instance, for one loop graphs
we get similar results as in the previous section.

Example 11.14. Let us consider a theory with two particle masses, a and
b. Using (11.2) in Ex.(11.6) where x, y, z ∈ {a, b} we see that the element

X =
a

b
a

p1
p2

p3

+
a

a
b

p1
p2

p3

+
b

a
a

p1
p2

p3

+
a

a
a

p1
p2

p3

is d-closed. Inspecting Landau’s equations for the first three graphs in the
linear combination X = G1 + . . . + G4 we find for the analytic function
Φ(G1 + G2 + G3) reduced singularities at p2i = 4a2, p2i = 0 as well as
p2i = (a±b)2, i = 1, 2, 3. The element G1+G2+G3 is not d-closed, indicating
that this sum is not “complete” with respect to this set of singularities.
Indeed, we can add G4 which has reduced singularities also along p2i = 4a2

and p2i = 0.

The preceding example holds in fact more generally. If we consider only
one loop graphs with s ≥ 4 legs and homology in degree greater than two,
there are no automorphisms (no multi-edges and each vertex carries at least
one leg-label). In this case, we may mimic the constructions and arguments
of the previous section. In the general case, one has to keep an eye on possible
symmetry-cancellations as in Ex.(11.13); see the discussion below.

We now introduce a variant of (HG, d) that allows for general edge-
colorings by elements of [m] for m ∈ N.

Definition 11.15. For m,n, s ∈ N define a chain complex (CG, d) =
(CGm

n,s, d) of m-colored graphs by

CG = CGm
n,s := Z2

〈
(G, c) | G ∈ Gn,s, c : EG → [m]

〉
,
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graded by |(G, c)| := |EG| − 1, and equipped with the same differential d as

in Def.(11.1),

d(G, c) :=
∑
e∈EG

(G/e, ce).

The basic results of the previous section, Lem.(11.3) and Thm.(11.4), as

well as all the points made thereafter, apply verbatim to the complexes CG.

Moreover, for n = 1 we have a similar interpretation of (CG, d) as in the

holocolored case. If s ≥ 4 and we restrict attention to degree at least three,

then this complex computes the corresponding homology groups of MCGm
1,s,

the moduli space of m-colored one loop graphs with s legs. For a detailed

account of these moduli spaces we refer to [5]. In this case, the results of

[5] on the homology of MCGm
1,s (in degree greater or equal to three) may

be used to find linear combinations of Feynman integrals that are d-closed,

thus satisfy the property given in Thm.(11.4).

Note that in regard to the connection to moduli spaces of graphs (or

tropical curves) we retain for m = 1 the classical (uncolored) cases of the

latter spaces which are well studied in the mathematical literature [26, 33,

36].

Example 11.16. The computation in Ex. (11.14) shows the existence of

non-zero classes in H2(CGm
1,3) for every m ≥ 2. Furthermore, it implies that

H2(CGm
1,3) ≥ Zm(m−1)

2 .

For m = 2 this is an equality, H2(CG2
1,3)

∼= Z2
2. For m ≥ 3 it is a strict

inclusion, because classes of the form constructed in Ex. (11.6) appear as

well.

For m > 1 there exist only partial results on the homology of the mod-

uli spaces of m-colored graphs MCGm
1,s. Tab.(1) lists the known homology

groups with rational coefficients, calculated with computer assistance (a list

of generators can be found in [52] – recall, that only for s ≥ 4 and in degree

greater than two this relates to the homology of the above defined complexes

CG (with Q replaced by Z2)).

Two interesting observations from [5]:

• The top degree Betti numbers of MCGm
1,s (and hence also the number

of classes in Hs−1(CGm
1,s)) grow polynomially of degree s as functions

of the number of colors m (see Theorem 4.13 in [5]).
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Table 1: The dimensions of the homology groups Hk(MCGm
1,s;Q) for up to

seven colors and various numbers of legs s

H0 H1 H2 H3 H4

MCG2
1,1 2 - - - -

MCG2
1,2 1 0 - - -

MCG2
1,3 1 0 6 - -

MCG2
1,4 1 0 3 9 -

MCG2
1,5 1 0 6 0 84

H0 H1 H2 H3

MCG3
1,1 3 - - -

MCG3
1,2 1 1 - -

MCG3
1,3 1 0 20 -

MCG3
1,4 1 0 3 103

H0 H1 H2 H3

MCG4
1,1 4 - - -

MCG4
1,2 1 3 - -

MCG4
1,3 1 0 49 -

MCG4
1,4 1 0 3 426

H0 H1 H2

MCG5
1,1 5 - -

MCG5
1,2 1 6 -

MCG5
1,3 1 0 99

H0 H1 H2

MCG6
1,1 6 - -

MCG6
1,2 1 10 -

MCG6
1,3 1 0 176

H0 H1 H2

MCG7
1,1 7 - -

MCG7
1,2 1 15 -

MCG7
1,3 1 0 286

• Conjecturally, only the top degree homology of MCGm
1,s, or equiva-

lently CGm
1,s (if s ≥ 4), depends on the number of colors, all other

homology groups are independent of m (see Conjecture 4.4 in [5]). On
the level of Feynman integrals, with our interpretation given here, this
appears less surprising. Introducing additional masses, while keeping
the number of loops and legs fixed, changes only the constants in the
corresponding Feynman integrals. Thus, this only recolors known cy-
cles, except in the highest nontrivial degree where it generates new
patterns of mass distributions in a Feynman graph. These patterns
may give new homology classes (their number growing polynomially
with m), while all new classes in lower degree come from reduced
graphs, hence are exact.

For higher loop numbers the machinery introduced here may still be
applied to the study of Feynman integrals, albeit with some restrictions.
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We find families exhausting a set of common singularities by computing the
homology of CG, then checking which classes have representatives free of
(color-respecting) automorphisms. However, it is important to note that for
m > 1 the homology of the complex (CGm

n,s, d) or the space MCGm
n,s (as well

as their relationship) is unknown so far.

Remark 11.17. The results discussed here and in Sec.(9) relate two different
chain complexes to the analytic structure of Feynman integrals, a cubical
chain complex of graphs and spanning forests, and a “simplicial” graph
complex. Heuristically speaking, our results show that the former encodes
more information about the analytic structure of Feynman integrals than
the latter. One is thereby led to wonder whether this fact is also reflected
on the topological or homological level.

For one loop graphs it is easy to see that the cubical chain complex
arises from a cubical subdivision of the moduli space of (holo- or m-)colored
graphs, hence it is indeed a finer structure.

This connection does not hold for higher loops, though. Here the cubical
chain complex comes from a subdivision of a subspace of the moduli space
of colored graphs, a deformation retract, called the spine in the context
of Outer space (the uncolored case).14 In contrast, as we have seen in the
proof of Thm.(11.4), the graph complex introduced here computes certain
relative homology groups of a larger space15 that contains the moduli space
of colored graphs as a subspace. It is thus not clear if and how the cubical
chain complex can be understood as a refinement of the graph complex.

This seems to be another instance of the well-known fact that there is
a considerable jump in complexity when passing from the one loop case to
higher loop numbers. However, at least on the topological level, this appears
to be the only threshold. Remarkably, the same is true “in” Outer space: un-
derstanding the homology of the moduli spaces of one and two loop graphs

14If one interprets Feynman integrals as volume forms on moduli spaces of graphs
as in [3], then the results of Sec.(7) show how the operation of deformation retracting
gets balanced out by a simultaneous change of volume forms: when passing to the
deformation retract, each cell, indexed by a graph G is replaced by a cube complex,
indexed by pairs (G, T ), where T runs over all spanning trees ofG, which is generally
of lower dimension. However, Thm.(7.8) shows that an appropriate change of the
associated volume form assures the equivalence of both constructions, that is, both
give the same amplitude. See [4].

15This space is one of two natural choices for compactifying moduli spaces of
graphs. It is obtained by adding all simplices at infinity. The other choice is more
intricate, a type of Borel-Serre compactification which is specifically suited to renor-
malization. See [3] for the details.
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(with legs) allows to construct (potential) classes in H∗(Out(Fn)) for arbi-
trary large n ∈ N; see [30].

11.4. Partitioning the one loop Green’s function

Recall that for the special16 case of a theory with cubic interaction the
graphs contributing to the s-point function (1PI) are the maximal degree
elements of HGn,s or CGm

n,s (all vertices three-valent).
If n = 1, then the maximal degree is s, so these elements are represented

by colored cyclic graphs on s edges.
For the holocolored case we immediately deduce from Thm.(11.4) and

Eq. (11.3) that the top degree homology classes in HG1,s form a partition
of the set of graphs making up the one loop Green’s function.

For general colorings we find this also to be true for s = 3 and m =
2: One class in H2(CG2

1,3) is generated by the element X in Ex.(11.14),
another by the same element with a and b interchanged. The graphs in these
classes make up all of the graphs in G1,3 with two colors. Moreover, a simple
calculation confirms that there are no other classes, hence H2(CG2

1,3)
∼= Z2

2.
Thus, the two cycles describe a partition of the one loop Green’s function,

A1,s = a1 + a2

with a1 and a2 as well as their singularities related by a Σ2-symmetry, ex-
changing the colors a and b. If m > 2, then we find a partition of the degree
two part of CGm

1,3 by taking all classes X as above for a, b ∈ [m], a �= b,
together with the generator of H2(HG1,3) from Ex.(11.6) with x, y, z ∈ [m],
x �= y �= z. Note, however, that it is not clear whether this exhausts all
homology classes.

The case s > 3 needs further study – a starting point would be to use
the list of the generators from [52] – as does the question whether this holds
for higher loop numbers as well.
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[40] Maxim Kontsevich (1993), Formal (Non)-Commutative Symplectic

Geometry. In: Gelfand I.M., Corwin L., Lepowsky J. (eds) The

Gelfand Mathematical Seminars, 1990–1992. Birkhäuser, Boston, MA.
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[52] Max Mühlbauer (2018), Master Thesis Moduli Spaces of Colored
Feynman Graphs, http://www2.mathematik.hu-berlin.de/∼kreimer/
wp-content/uploads/MstrMax.pdf.
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