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We generalise a result of Kazarian regarding Kadomtsev–Petvi-
ashvili integrability for single Hodge integrals to general cohomo-
logical field theories related to Hurwitz-type counting problems or
hypergeometric tau-functions. The proof uses recent results on the
relations between hypergeometric tau-functions and topological re-
cursion, as well as the DOSS correspondence between topological
recursion and cohomological field theories. As a particular case,
we recover the result of Alexandrov of KP integrability for triple
Hodge integrals with a Calabi-Yau condition.
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1. Introduction

The moduli spaces of curves are a central object in modern algebraic ge-
ometry, and have been studied intensively. In particular, their intersection
theory is a subject of ongoing research. The space Mg,n has n line bun-
dles Li whose fibres at a point are the cotangent lines at the ith point
of the represented curve, and a rank-g Hodge bundle E whose fibres are
the space of one-forms on the curve. Their Chern classes are defined to be
ψi := c1(Li) and λj := cj(E), respectively. Moreover, the spaces Mg,n for
different g and n have many structure maps between them, and many classes
behave well under these maps. A collection of classes on all Mg,n satisfy-
ing certain coherence axioms with respect to the structure maps are called
cohomological field theories (CohFTs), and these play an important role in
enumerative geometry of curves. One well-known example is the total Hodge
class Λ(t) =

∑
λit

i.

By the Witten–Kontsevich theorem [60, 43], moduli spaces of curves
have many relations to areas of mathematical physics and integrable hier-
archies. In particular, this theorem proves that a generating function of the
intersection numbers of ψ-classes is a tau-function of the Korteweg–de Vries
hierarchy.
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Furthermore, the Ekedahl–Lando–Shapiro–Vainshtein formula [29] re-

lates single Hodge integrals, i.e. intersection numbers of Λ(−1) with ψ-

classes, to simple single Hurwitz numbers, counting ramified coverings of

P1
C with only simple ramifications (with profile (2, 1, 1, 1, . . .)) except for one

point. Hurwitz numbers themselves also give a large class of tau-functions

of Toda or Kadomtsev–Petviashvili hierarchies (of which the KdV hierarchy

is a reduction), as noted by Okounkov [53].

Kazarian [40] interpreted the ELSV formula as a change of variables

from the generating function of single Hodge integrals to a tau-function

of the Kadomtsev–Petviashvili hierarchy, using the result of Okounkov on

simple single Hurwitz numbers.

All of these results have strong relations to Chekhov–Eynard–Orantin

topological recursion [19, 32], a successful way of encoding many counting

problems with a natural genus expansion into a spectral curve with a re-

cursively defined collection of multidifferentials, which should be generating

functions of the counts. The Witten–Kontsevich ψ-intersection numbers can

be encoded this way, and this is in a sense the base case of the theory.

Many types of Hurwitz numbers obey topological recursion as well, starting

with [12, 10] for the first case of simple Hurwitz numbers, and culminat-

ing in the works of Bychkov–Dunin-Barkowski–Kazarian–Shadrin [18, 17],

which prove topological recursion for two large families of hypergeometric

KP tau-functions, encompassing nearly all previously-studied cases of Hur-

witz numbers.

In another direction, there is a general correspondence between topo-

logical recursion and intersection numbers of CohFTs [31, 28], which vastly

generalises the ELSV formula when combined with the results on topological

recursion for Hurwitz numbers.

A particularly interesting case is the conjecture of Mariño–Vafa [51]

on a further generalisation of the ELSV formula, proved independently in

[47, 54]. This Mariño–Vafa formula, inspired by topological vertex ampli-

tudes, i.e. Gromov–Witten invariants of C3, relates triple Hodge integrals

with a Calabi–Yau condition to characters of symmetric groups. Topologi-

cal recursion was conjectured for toric Calabi–Yau threefolds by Bouchard–

Klemm–Mariño–Pasquetti [13]. It was first proved in [20, 63] for C3, as well

as in [30] as an example of the general correspondence of theorem 2.13, while

the general BKMP conjecture was proved in [34].

Both the space of CohFTs and the space of KP tau-functions have an ac-

tion of an infinite-dimensional group, respectively the Givental group and the

Heisenberg–Virasoro group. As certain elements of these spaces have been
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identified by Witten–Kontsevich and Kazarian, and different integrable hier-
archies have been constructed for general CohFTs by Dubrovin–Zhang [24]
and Buryak [14], one may ask how general the relation is with KP specifi-
cally, and the group actions are a natural tool to study this question.

Alexandrov [2] showed that in the case of a rank-one CohFT, the orbits of
the Witten–Kontsevich CohFT/tau-function under these two different group
actions have an intersection which is only two-dimensional, and contains
exactly the triple Hodge integrals that appear in the Mariño–Vafa formula.
As a consequence, Alexandrov generalises Kazarian’s result to show that
the generating function of Calabi–Yau triple Hodge integrals satisfies the
KP hierarchy after a linear change of variables.

Results of this paper

We give a new viewpoint on the relation found by Alexandrov, by general-
ising Kazarian’s proof in [40] to all hypergeometric KP tau-functions satis-
fying topological recursion, using the above results. This yields a change of
variables coming from the function X for any hypergeometric tau-function
preserving the KP hierarchy after removing the unstable terms of the tau-
function. When topological recursion holds, this resulting tau-function can
be interpreted as the generating function of the cohomological field theory.

This new viewpoint encompasses other examples of explicit CohFTs,
most notably the Chiodo classes [21], which are the CohFTs associated to
completed cycles orbifold Hurwitz numbers by Zvonkine’s conjecture [65],
proved in [25].

In general, the change of variables contains infinite linear combinations.
However, we identify when the linear combinations are actually finite, and
find a finite-dimensional family for each CohFT rank. In the rank one case,
this recovers exactly the triple Hodge integrals, in a particular parametrisa-
tion. For higher rank, this family seems to fit within Alexandrov’s deformed
generalised Kontsevich model [3].

The Calabi–Yau triple Hodge integrals are an interesting special case
also, because in this case the detour through topological recursion is not nec-
essary: the Mariño–Vafa formula which generalises the ELSV formula for this
case was proved independently. Therefore, we consider this case seperately
in more detail, to give an explicit exposition of the general method. We do
also find that the Mariño–Vafa formula fits in the more general framework,
and hence give a new proof of this formula.

Interestingly, the function X may also be a Möbius transformation. In
this case, there is no unstable correction term, and this can be interpreted as
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certain independence of the parametrisation of the spectral curve. This also
resolves the meaning behind Kazarian’s change of coordinates, as voiced in
[40, Remark 2.6]: “The definition for the change (6) looks unmotivated. [...]
The only motivation that we can provide here is that ‘it works’.” There is
quite a freedom of choice, but the particular choice Kazarian made reduces
to the finite-dimensional family indicated above.

Open questions

Single and triple Hodge integrals have been studied intensively in relation
to Dubrovin–Zhang hierarchies, yielding relations to the intermediate long
wave (ILW) hierarchy and the fractional Volterra hierarchy, cf. [15, 16, 49].
The relation between those results and the current work are still unclear, and
will be discussed elsewhere. Between the first and second preprint versions
of this paper, Liu–Wang–Zhang [48] related the ILW hierarchy to a limit of
fractional Volterra hierarchy viewed as a reduction of the 2D Toda hierarchy,
possibly giving a new avenue to relating to the current paper.

The family where the linear change of variables is finite seems like an
interesting and natural deformation of Witten’s r-spin class, keeping a single
ramification point, but splitting the pole of dx. However, this family seems
mostly unknown, with the exception of Alexandrov’s work mentioned above.
It may be interesting to investigate it more closely, in order to better un-
derstand the deformation of higher-order zeroes of dx. Moreover, the r-spin
classes themselves do not fit in the scope of this paper, although they are
known to satisfy the KP hierarchy (more precisely, the r-Gelfand–Dickey
hierarchy, a reduction) [61, 36]. This may be amended by the use of limit
arguments, but limits of topological recursion are a delicate subject, and
this falls outside the scope of the current paper.

Currently, there is a gap in the literature on limits of spectral curves,
which in particular limits the validity of the proof theorem 2.7, and hence
the applicability of the main theorem of this paper, to dx with simple zeroes.
Future work with Borot, Bouchard, Chidambaram, and Shadrin will fix this,
and will investigate more generally the applicability of limit arguments for
topological recursion.

For the BKP hierarchy, similar results should hold. In particular, Alexan-
drov and Shadrin [4] proved an adapted topological recursion for a large class
of hypergeometric BKP tau-functions, analogous to theorem 2.7. The analo-
gous ELSV–Eynard–DOSS correspondence between this kind of topological
recursion and cohomological field theories has not appeared in the literature,
but the special case of completed cycles spin Hurwitz numbers is treated in
work of the author with Giacchetto and Lewański [37].
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Outline of the paper

Section 2 contains prerequisites. In sections 2.1 and 2.2, we give a short intro-
duction to the Kadomtsev–Petviashvili hierarchy and its space of solutions.
In section 2.3, we recall the main ideas from [40], which we will generalise. In
sections 2.4 and 2.5, we recall recent results on hypergeometric tau-functions
and their relations to topological recursion and cohomological field theories,
and state our main theorem, which is theorem 2.18. We also introduce, in
section 2.6, the generating function of triple Hodge numbers, which is the
main motivating example of this paper.

In section 3, we prove the main result. Firstly, in section 3.1, we find
a change of variables, for any hypergeometric tau-function, that preserves
the property of being a tau-function after removal of unstable terms, corol-
lary 3.5. In section 3.2, we restrict to the case where topological recursion
holds, and use this machinery to obtain tau-functions of intersection num-
bers, proving our main result. We also determine, in section 3.3, the exact
conditions for the change of variables to be finite, in a specific sense. Finally,
in section 3.4, we return to the triple Hodge integrals, and prove an explicit
version of the main theorem for this case.

Notation

We work over the field of complex numbers C. We will use the functions

ς(z) := e
z

2 − e−
z

2 and S(z) = ς(z)
z .

Integer partitions will be denoted by μ and ν, and we will write |Autμ| :=∏μ1

i=1mi(μ)! and zμ :=
∏μ1

i=1 i
mi(μ)mi(μ)!, where mi(μ) is the number of

parts of μ of size i. We will also consistently write n := �(μ), also denoted
μ � n, and �n� := {1, . . . , n}. We write sν for Schur functions and χν

μ for the
symmetric group character of the irreducible representation ν evaluated on
cycle type μ. We identify a partition ν with its Young diagram, and write
� ∈ ν to show � is a box in the diagram. For such a box, c� is its content,
and h� its hook length. We denote by P the set of all partitions.

For a set S, we write M � S to indicate that M is a set partition of S,
i.e. a collection of non-empty, disjoint subsets with union all of S. We also
use l(M) for the length of M , i.e. the number of subsets.

Given a set indexed by another set, e.g. {zi}i∈I , and a subset of the sec-
ond set J ⊆ I, we write zJ = {zi}i∈J . In particular, z�n� = {z1, z2, . . . , zn}.
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On the origin of this paper

An earlier version of this text, only concerning triple Hodge integrals, was
written in 2018, shortly after A. Alexandrov informed me of his result. That
version appeared in my PhD dissertation [45, Chapter 10]. This paper is an
updated and extended version of that chapter.

2. Prerequisites on the KP hierarchy and topological
recursion

In this section, we review some standard notions on the KP hierarchy and its
relations to the infinite Grassmannian. We give the main outline of Kazar-
ian’s proof of KP for single Hodge integrals, which we will use as a blueprint
for our results. We also recall the class of hypergeometric tau-functions,
which fulfills a central role in this paper, as well as its relation to topological
recursion and cohomological field theories. Finally, we recall the Mariño–
Vafa formula for triple Hodge integrals and show it fits in the setup.

2.1. The KP hierarchy

The Kadomtsev–Petviashvili (KP) hierarchy is an infinite set of evolutionary
differential equations in infinitely many variables. It is a very well-studied
system, and some introductions into the subject can be found in [22, 41, 52].

Let t = {ti}i≥1 be a set of independent variables and ∂ := ∂
∂t1

. Define

the pseudo-differential operator (i.e. a Laurent series in ∂−1 with coefficients
functions in t with composition defined formally)

(1) L = ∂ + u1∂
−1 + u2∂

−2 + . . . .

where the uj are dependent variables in the ti. For a pseudo-differential
operator O, define O+ to be its purely differential part, the part without
powers of ∂−1. The Lax formulation of the KP hierarchy is given by the
system of equations

(2)
∂L

∂ti
=

[
(Li)+, L

]
.

This is a system of partial differential equations for the uj , and they can be
interpreted as the compatibility equations for the system

(3) LΨ = zΨ ,
∂Ψ

∂ti
= (Li)+Ψ .
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Equation (3) has a solution of the form

(4) Ψ =
τ
({

tk − z−k

k

})
τ({tk})

eξ(t,z) , ξ(t, z) =

∞∑
k=1

tkz
k ,

which is called the Baker–Akhiezer function. Here τ is a single function,

called a tau-function, dependent on the tk and such that τ(0) = 1, and all

dependent variables can be expressed in terms of this one function. This

way, the entire hierarchy can be rewritten as bilinear equations for τ called

Hirota equations :

(5) Res
z=∞

dz eξ(t,z)−ξ(t′,z)τ
({

tk −
1

kzk
})

τ
({

t′k +
1

kzk
})

= 0 .

Writing F = log τ (we call this a solution to the KP hierarchy), we find

u1 = ∂2 log τ , and the first two equations are

0 = 3
∂2F

∂t22
− 4

∂2F

∂t3∂t1
+

∂4F

∂t41
+ 6

(∂2F

∂t21

)2
;(6)

0 = 2
∂2F

∂t3∂t2
− 3

∂2F

∂t4∂t1
+

∂4F

∂t2∂t31
+ 6

∂2F

∂t2∂t1

∂2F

∂t21
.(7)

The first of these equations is the KP equation, after which the hierarchy is

named.

2.2. Space of tau-functions and Lie action

The space of solutions of the KP hierarchy is an infinite-dimensional Grass-

mannian [57], which is Plücker embedded in a Fock space, i.e. a highest

weight module of a certain Clifford algebra. The Hirota equations are then

the Plücker relations defining the Grassmannian inside the Fock space. By

the boson-fermion correspondence, this can also be expressed in terms of

symmetric functions, which is the viewpoint we will adopt here.

Definition 2.1. We write Λ := C�p1, p2, . . .� for the space of symmetric

functions, also called the bosonic Fock space (of type A). Here the pk are

power-sum functions pk =
∑

iX
k
i in some countably infinite variable set

X = {Xi}.
For other symmetric functions in X, e.g. the Schur functions sλ, we write

sλ(p) := sλ(X).
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For more information on symmetric functions, see [50].

The space of symmetric functions has a projective action of the Lie

algebra gl(∞), the algebra of infinite square matrices (aij)i,j∈Z+ 1

2
.1 This

space has a standard basis given by Ekl = (δikδjkl)ij . Define the vertex

operator

(8)

Z(z, w) =
1

z − w

(
exp

( ∞∑
j=1

(zj−wj)pj

)
exp

(
−

∞∑
k=1

(z−k−w−k)
1

k

∂

∂pk

)
−1

)
.

Then expanding this vertex operator as

(9) Z(z, w) =
∑

i,j∈Z+ 1

2

Zijz
i+1/2w−j−1/2 ,

the assignment Eij �→ Zij is a projective representation of gl(∞), i.e. a

representation of a central extension ĝl(∞).

The matrices αk =
∑

l∈Z+ 1

2

El−k,l give rise to the following operators on

Λ:

(10) ak :=

⎧⎪⎨
⎪⎩
pk k > 0

−k ∂
∂p−k

k < 0

0 k = 0

.

We also define the following operators:

Lm :=
1

2

∞∑
i=−∞

:aiam−i: ,(11)

where the : :, the normal ordering, means one should order the operators

inside in order of decreasing index. All of these operators are in ĝl(∞).

Theorem 2.2 ([57]). Under the identification tk = pk

k , the space of KP

tau-functions is the orbit of 1 ∈ Λ under the action of ĝl(∞).

1In order to make the Lie bracket well-defined, some decay condition is needed. A
common choice is restriction to finitely many diagonals, but there are other options,
see e.g. [57]. We will remain agnostic on this choice, as in this paper, the required
convergence in guaranteed by our constructions.
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An important class of KP tau-functions is given by the hypergeometric

tau-functions [42, 55, 56], for which we will use the results and notation of

[18].

Theorem 2.3 ([42, 55, 56]). Given two formal power series

ψ̂(�2, y) :=
∞∑
k=1

∞∑
m=0

ck,myk�2m ,

ŷ(�2, z) :=
∞∑
k=1

ŷk(�
2)zk :=

∞∑
k=1

∞∑
m=0

sk,mzk�2m ,

(12)

define their associated hypergeometric KP tau-function or Orlov–Scherbin

partition function

(13) Z(p) = eF (p) =
∑
ν∈P

exp
(∑

�∈ν
ψ̂(�2,−�c�)

)
sν(p)sν

({ ŷk(�2)
�

})
.

This is a KP tau-function, as the name suggests.

For future reference, define also

(14)
ψ(y) := ψ̂(0, y) , y(z) := ŷ(0, z) , x(z) := log z − ψ(y(z)) ,

X(z) := ex(z) , D :=
∂

∂x
, Q := z

dx

dz
.

2.3. Single Hodge integrals

In [40], Kazarian considered the generating function for single Hodge inte-

grals,

(15) FH(u;T0, T1, T2, . . .) :=
∑
g,n

1

n!

∑
d1,...,dn≥0

∫
Mg,n

Λ(−u2)

n∏
i=1

ψdi

i Tdi
,

and showed that its exponent, ZH := exp(FH), is a tau-function for the KP

hierarchy, after a certain change of coordinates. Explicitly, this change of

coordinates is given as follows: define

(16) D = (u+ z)2z
∂

∂z
.
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Then we define the Td in terms of other coordinates qk by the linear corre-
spondence

qk ↔ zk , Td ↔ Ddz .(17)

The proof consists of three steps, and makes essential use of the ELSV
formula [29] to transform this generating function into a generating function
of Hurwitz numbers.

The first step, [40, Theorem 2.2], is the observation that the generating
function for single simple Hurwitz numbers is a tau-function for the KP
hierarchy. This is a well-known result, see [53]. In fact, the single simple
Hurwitz generating function can be obtained from the trivial τ -function 1
by the action of two very explicit elements of the Lie group associated to

ĝl(∞). The second step, [40, Theorem 2.3], uses the ELSV formula to rewrite
the Hurwitz generating function (after subtracting the unstable geometries)
as a generating function for single Hodge integrals. This introduces certain
combinatorial factors, that suggest a certain change of coordinates, which

is encoded by the equation X(z) = z
1+βz e

− βz

1+βz . After this change of coordi-
nates, we obtain ZH, viewed as a function in q’s.

The third step, [40, Theorem 2.5] shows that a certain class of coordi-
nate changes preserves solutions of the KP hierarchy, after they are mod-
ified with a quadratic function. In essence, this coordinate change is given

infinitesimally by the flow along the differential part of an A ∈ ĝl(∞), whose
polynomial part is exactly the added quadratic function. In this specific case,
this quadratic function is exactly the (0, 2) part of the Hurwitz generating
function.

In this paper, we will generalise this proof scheme to a more general
setting. We will start from a general hypergeometric tau-function in the
sense of theorem 2.7 below, corresponding to the first point of the proof.

We obtain a change of coordinates coming from this formalism that can
always be completed to an automorphism of KP when correcting with the
H0,2 of equation (25), without any further assumption, corresponding to the
third point of the proof.

If we restrict to the class of hypergeometric tau-functions satisfying
topological recursion, we can use the correspondence between topological
recursion and cohomological field theories of Eynard and Dunin-Barkowski–
Orantin– Shadrin–Spitz [31, 28], which generalises the ELSV formula and
hence gives the second step.

In the particular case of triple Hodge integrals, the role of the ELSV
formula is taken by the Mariño–Vafa formula. For explanations on all the
required notions and notation, see the following sections.
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2.4. Topological recursion

By [18], two large families of hypergeometric KP tau-functions satisfy Eynard–
Orantin topological recursion [32] (or its generalisation to non-simple ramifi-
cation given by Bouchard–Eynard [11]), which we define first. We will confine
ourselves to the case of rational spectral curves, as this is the appropriate
setting for the Hurwitz-type problems covered.

Definition 2.4 ([32, 11]). A rational spectral curve is a quadruple C = (Σ =
P1, dx, dy,B), where dx and dy are meromorphic one-forms on Σ with no
common zeroes, only simple poles of dx, and without poles of dy at zeroes
of dx, and B = B(z1, z2) = dz1 dz2

(z1−z2)2
is a symmetric (1, 1)-form on Σ × Σ.

Write R ⊂ Σ for the set of zeroes of dx, and ra for the order of vanishing of
dx at a ∈ R.

On a rational spectral curve, define a set of symmetric multidifferentials
{ωg,n}g≥0,n≥1 on Σn via topological recursion as follows: first, define the
unstable cases by ω0,1 := ydx (this need only be defined locally near the ai
using any primitive y of dy) and ω0,2 := B. Then, for 2g − 2 + (n+ 1) > 0,
the stable range, define

ωg,n+1(z�n�, zn+1) :=
∑
a∈R

∑
{0}�I⊂{0,...,ra−1}

Res
z=a

∫ z
a ω0,2(·, zn+1)∏

i∈I\{0}

(
ω0,1(z)− ω0,1(σi

a(z))
)

·Wg,|I|+1,n(σ
I
a(z); z�n�) ,

(18)

where σa is a generator of the local deck transformations of a primitive of
dx at a, σI

a is the set {(σa)i | i ∈ I}, and

(19) Wg,m,n(ζ�m�; z�n�) :=

′∑
M��m�

⊔l(M)
k=1 Nk=�n�∑
gk=g+l(M)−n

l(M)∏
k=1

ωgk,|Mk|+|Nk|(ζMk
, zNk

)

where the prime on the summation means exclusion of any term with
(gk, |Mk|+ |Nk|) = (0, 1) for some k.

Remark 2.5. Often, the definition of spectral curves involves functions x
and y, instead of their derivatives. However, these functions may not be de-
fined globally on Σ, e.g. they may – and in this paper will – contain logarith-
mic terms. As most of the theory of topological recursion (with the notable
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exception of the global topological recursion of Bouchard–Eynard [11]) only

depends on the derivatives, I have chosen to use this as a definition.

Theorem 2.6 ([6, 9]). Let C be a rational spectral curve with simple ze-

roes of dx. A collection of symmetric meromorphic multidifferentials on Σn,

{ωg,n}g≥0,n≥1, with ω0,1 = ydx and ω0,2 = B satisfies topological recursion

if and only if the following hold:

• Meromorphicity: For 2g − 2 + n > 0, ωg,n extends to a meromorphic

form on Σn;

• Linear loop equation: For any g, n, and a ∈ R,

(20) ωg,n+1(z, z�n�) + ωg,n+1(σa(z), z�n�)

is holomorphic near z = a and has a simple zero at z = a;

• Quadratic loop equation: For any g, n, and a ∈ R,

(21)

ωg−1,n+2(z, σa(z), z�n�) +
∑

g1+g2=g
I�J=�n�

ωg1,|I|+1(z, zI)ωg2,|J |+1(σa(z), zJ)

is holomorphic near z = a and has a double zero at z = a;

• Projection property: For 2g − 2 + n > 0,

(22) ωg,n(z�n�) =
∑

a1,...,an∈R

( n∏
j=1

Res
ζj=aj

∫ ζj

w=aj

ω0,2(zj , w)
)
ωg,n(ζ�n�) .

If only the meromorphicity and linear and quadratic loop equations hold,

the problem is said to satisfy blobbed topological recursion, cf. [9]. In this

case, the ωg,n are determined by the spectral curve along with their holo-

morphic parts at ramification points.

One important reason to consider topological recursion is that the ωg,n

will often encode enumerative invariants in their Taylor series expansion

around a given point of the spectral curve in a given coordinate. For us, this

is also the case, as we consider the class given by the following theorem:

Theorem 2.7 ([18, 17]). In the situation of theorem 2.3, write

(23) Hn(X1, . . . , Xn) :=

∞∑
k1,...,kn=1

∂nF

∂pk1
· · · ∂pkn

∣∣∣∣
p=0

Xk1

1 · · ·Xkn
n .
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1. The Hn can be decomposed as

(24) Hn =

∞∑
g=0

�2g−2+nHg,n ,

with Hg,n independent of �. Additionally, interpreting Xi as X(zi),

(25)

DH0,1(X(z1)) = y(z1) , H0,2(X(z1), X(z2)) = log
( z−1

1 − z−1
2

X−1
1 −X−1

2

)
.

2. If moreover dψ(y)
dy

∣∣
y=y(z)

and dy(z)
dz have analytic continuations to mero-

morphic functions in z and all coefficients of positive powers of �2

in ψ̂(�2, y(z)) and ŷ(�2, z) are rational functions of z whose singular

points are disjoint from the zeroes of dx, then the n-point differentials

(26)

ωg,n(z�n�) := d1 · · · dnHg,n

(
{X(zi)}ni=1

)
+ δg,0δn,2

dX(z1) dX(z2)

(X(z1)−X(z2))2
,

where di is the exterior derivative in the ith variable, can be extended

analytically to (P1)n as global rational forms, and the collection of

n-point differentials satisfies the linear and quadratic loop equations,

i.e. blobbed topological recursion, for the curve (P1, dx(z), dy(z), B =
dz1 dz2
(z1−z2)2

).

3. Finally, if ψ̂ and ŷ belong to one of the two families

Family I ψ̂(�2, y)=S(�∂y)P1(y)+log
(P2(y)

P3(y)

)
; ŷ(�2, z)=

R1(z)

R2(z)
,

Family II ψ̂(�2, y)=αy ; ŷ(�2, z)=
R1(z)

R2(z)
+S(�z∂z)−1 log

(R3(z)

R4(z)

)
,

where α ∈ C× and the Pi and Rj are arbitrary polynomials such that

ψ(y) and y(z) are non-zero, but vanishing at zero, and no singular

points of y are mapped to branch points by x, then the n-point dif-

ferentials also satisfy the projection property, and hence topological

recursion, for the curve above.

Remark 2.8. It is possible to allow for constant terms in ψ̂ in equation (12),

but using quasihomogeneity of the sν in equation (13), this can be absorbed

in a rescaling of the argument of ŷ. From the spectral curve point of view,
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this follows from the fact that the two curves

(27){
X1(z) = ze−ψ◦y(z)+log a = aze−ψ◦y(z)

y1(z) = y(z)
and

{
X2(z

′) = z′e−ψ◦y( z′
a
)

y2(z
′) = y( z

′

a )

can be identified via z′ = az. For Family I to make sense in the generality

stated in the theorem, constant terms in z of ψ̂ should be interpreted this

way.

Remark 2.9. We will consistently use the symbol x for the function which

is part of the spectral curve data and X for its exponential, which is the

expansion parameter for this class of Hurwitz problems.

There is one small generalisation that can be made in theorem 2.7 by

using a homogeneity property, using that equation (13) is a KP tau-function

identically in �.

Lemma 2.10. There is a C× action on pairs (ψ̂, ŷ) induced by rescaling of

� in equation (13) as follows:

(28) λ ·
(
ψ̂(�2, y), ŷ(�2, z)

)
=

(
ψ̂(λ−2�2, λ−1y), λŷ(λ−2�2, z)

)
.

This acts on Hg,n as λ ·Hg,n = λ2−2g−nHg,n and on the spectral curve by

(29) λ · (P1, dx(z), dy(z), B) = (P1, dx(z), λdy(z), B) .

Hence it is compatible with the homogeneity of topological recursion of e.g.

[33, Section 4.1].

Corollary 2.11. Family II of theorem 2.7 can be extended to

(30) ψ̂(�2, y) = αy ; ŷ(�2, z) =
R1(z)

R2(z)
+ λS(λ−1�z∂z)

−1 log
(R3(z)

R4(z)

)
,

with the same conditions on α, the Pi, and the Rj as before, and λ ∈ C×.

Proof. The constant λ has been absorbed in α and the Ri where possible.

A similar argument for Family I does not lead to an extended class, as

this family is already invariant under the torus action.
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2.5. Topological recursion and cohomological field theories

Topological recursion is strongly related to intersection theory of the moduli

spaces of curves: there is a quite general correspondence between spectral

curves and certain coherent collections of intersection classes in the moduli

spaces. These coherent collections are cohomological field theories, which

were originally defined by Kontsevich–Manin [44] to axiomatise Gromov–

Witten theory.

Definition 2.12 ([44]). Let V be a vector space with a non-degenerate,

symmetric bilinear form η and a distinguished vector 1. A cohomological

field theory with flat unit (CohFT) on (V, η,1) is a collection of maps

(31) Ωg,n : V
⊗n → H∗(Mg,n) ,

for all g, n ≥ 0, such that 2g − 2 + n > 0, such that

• Ωg,n is Sn-equivariant with respect to simultaneous permutation of

the factors and the marked points;

• with respect to the glueing maps

(32)

ρ : Mg−1,n+2 → Mg,n , σ : Mg,|I|+1 ×Mh,|J |+1 → Mg+h,|I�J | ,

we get

ρ∗Ωg,n

( n⊗
k=1

vk

)
= Ωg−1,n+2

( n⊗
k=1

vk ⊗ η†
)
,

σ∗Ωg+h,|I|+|J |
( ⊗

k∈I∪J
vk

)
= Ωg,|I|+1 ⊗ Ωh,|J |+1

(⊗
i∈I

vi ⊗ η† ⊗
⊗
j∈J

vj

)
,

where η† ∈ V ⊗ V is the bivector dual to η;

• With respect to the forgetful maps

(33) π : Mg,n+1 → Mg,n ,

we have

(34)

η(v1, v2)=Ω0,3(v1⊗v2⊗1) , π∗Ωg,n

( n⊗
k=1

vk

)
=Ωg,n+1

( n⊗
k=1

vk⊗1
)
.
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There is a large group acting on the space of CohFTs, called the Given-

tal group [38, 58, 59]. It consists of R(u) ∈ Id + uEnd(V )�u� such that

R(u)R†(−u) = Id. It is called the unit-preserving action in case one also

considers CohFTs without unit.

A CohFT whose image lies withing H0(Mg,n) for all g, n – i.e. the

classes are just numbers – is a topological field theory (TFT). TFTs are

determined by (V, η,1), and Ω0,3, as all other classes can be recovered from

Ω0,3 via the glueing axiom in this case. The data of a TFT is equivalent

to a commutative Frobenius algebra, with the multiplication determined by

η(u, v · w) = Ω0,3(u, v, w).

Any CohFT has an underlying TFT (and hence Frobenius algebra),

given by taking the degree zero part of all classes on Mg,n. By Teleman’s

classification [59], any CohFT with semisimple underlying Frobenius algebra

can be reconstructed from its degree zero part via some element of the

Givental group.

Theorem 2.13 ([31, 28, 8]). Consider a rational spectral curve (P1, dx, dy,

B), and define V ∗ to be the space of residueless meromorphic one-forms on

P1 with poles only at a ∈ R of order at most ra+1. Choose a basis {dξj}j∈J
of V ∗ with dual basis ej and define dξjk = (d ◦ 1

dx)
kdξj. Then

(35)

ωg,n(z1, . . . , zn) =
∑

j1,...,jn∈J

∫
Mg,n

Ωg,n(ej1 ⊗ · · · ⊗ ejn)

n∏
i=1

∞∑
ki=0

ψki

i dξjiki
(zi) ,

where Ω is a cohomological field theory on V , given explicitly by acting on

a direct sum of Witten ra-spin classes for all ramification points of order ra
by a Givental group element determined by the spectral curve.

Remark 2.14. The results of [31, 8] do not mention CohFTs, but rather

give a relation between local spectral curves and intersection numbers. In

order to obtain a CohFT, a condition is required, cf. [46, Equation (17)]. As

noted in [27, Section 2.6], in case the spectral curve is compact and dx is

meromorphic with simple zeroes, this condition is satisfied by [31, Appendix

B]. In case of higher order zeroes, the same holds, using [8, Section 7.2.3].

In this formalism, the CohFT has a semisimple underlying Frobenius

algebra if and only if x has only simple zeroes, because Witten’s r-spin class

is only semisimple for r = 2.

Remark 2.15. The space V ∗ is naturally related to the projection prop-

erty of theorem 2.6: the dξjk span the image of the projection operator. Its
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dimension, the rank of the CohFT, equals the degree of the divisor of zeroes

of dx.

There are two common choices for the basis dξj , depending on a local

coordinate ζa around a ramification point a such that x(z) = ζa(z)
ra +x(a).

One is dξa,k(z) = Resz′=a

( ∫ z′

a B(z, ·)
)
dζ(z′)
ζ(z′)k , with 1 ≤ k ≤ ra − 1, cf. [8,

Equation (80)], while the other is ξa(z) =
∫ z B(ζa,·)

dζa

∣∣
ζa=0

, in case ra = 2, cf.

[37, Equation (2.23)]. Both have merit, depending on the situation, but they

are not compatible.

Furthermore, several normalisation conventions exist for the recursion

operator linking dξjk to dξjk+1. These different conventions can be related by

rescaling Ω and the correlators, using that the integrand must be of degree

3g − 3 + n.

So the ωg,n we are concerned with can be expanded in different ways: as

a formal series around X = 0 by theorem 2.7, and on a basis of meromorphic

differentials with poles at the zeroes of dx by theorem 2.13. The change of

variables we require is found by relating these different expansions.

In order to apply the Eynard–DOSS correspondence to get a good change

of variables, we will want to take a different basis of V ∗. It turns out to be

useful to relate to powers of our preferred coordinate z, so the basis we take

is ξj :=
(
dx
dz

)−1
zj = d

dx
zj+1

j+1 .

By concatenating theorems 2.7 and 2.13, we obtain a class of CohFTs

which are the ones we will be interested in in this paper.

Definition 2.16. The CohFTs obtained from theorem 2.13 applied to either

family in theorem 2.7 are called Hurwitz-type.

In practise, giving an explicit form for the CohFT associated to a spectral

curve via theorem 2.13 is very complicated, due to the nature of the Givental

group action. But there are several cases of Hurwitz problems for which

the CohFT is known. Notable examples are the Chiodo classes [21], which

by Zvonkine’s conjecture [65], proved in [25], are the CohFTs associated

to completed cycles orbifold Hurwitz numbers. These lie in Family I, with

ψ(y) = zr and y(z) = zq. Two other examples (both in Family I) are weakly

monotone Hurwitz numbers, ψ(y) = − log(1 − y) and y(z) = z, proved in

[23], and strictly monotone Hurwitz numbers with even ramification, ψ(y) =

log(1 + y) and y(z) = z2, proved in [7]. In these two cases, the CohFTs are

expressed in terms of κ and λ classes and boundary strata.

Definition 2.17. Let Ω be a cohomological field theory on a space (V, η)
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with a basis {ej}j∈J . Its generating function GΩ is defined as

(36)

GΩ({T j
k}k≥0

j∈J
) :=

∑
g,n

2g−2+n>0

�2g−2+n

n!

∑
ji,...,jn∈J

∫
Mg,n

Ω(ej1⊗· · ·⊗ejn)

n∏
i=1

∞∑
ki=1

ψki

i T ji
ki
,

where we write {T j} for the basis of V ∗ dual to {ej} and T j
k are associated

descendent variables.

The main theorem of this paper is the following:

Theorem 2.18. If Ω is a Hurwitz-type CohFT, then the exponential of

GΩ(T (q)) is a KP tau-function in {td = qd
d }, where the T j

k (q) are defined by

(37) T j
−1 =

1

j + 1
qj+1 , T j

k+1 =

∞∑
m=1

∞∑
l=0

mTlqm+l
∂

∂qm
T j
k ,

with Tl given by

(38) Q(z)−1 =

∞∑
l=0

Tlzl .

Note that we really obtain a tau-function of a single copy of KP, even

in case of several ramification points. The proof of this theorem is given in

proposition 3.8. The proof relies heavily on theorem 2.7: we will need differ-

ent parts of that theorem for the different parts of the proof. In particular,

topological recursion is needed to obtain intersection numbers.

Remark 2.19. The proof of this theorem does not use anything specific

to the families mentioned, it just requires topological recursion to obtain

a cohomological field theory. As soon as topological recursion is proved for

another hypergeometric tau-function and the spectral curve fits in the scope

of theorem 2.13, this theorem generalises.

The first two KP equations in q variables are

0 =
∂2F

∂q22
− ∂2F

∂q3∂q1
+

1

12

∂4F

∂q41
+

1

2

(∂2F

∂q21

)2
;(39)

0 =
∂2F

∂q3∂q2
− ∂2F

∂q4∂q1
+

1

6

∂4F

∂q2∂q31
+

∂2F

∂q2∂q1

∂2F

∂q21
.(40)
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Example 2.20 (Naive single Hodge). Let us consider the functions

(41) ψ̂(�2, y) = y , ŷ(�2, z) = z .

Then we find

(42) x(z) = log z − z , X(z) = z e−z , Q = 1− z .

This is the usual shape of spectral curve for simple Hurwitz numbers [12, 10],
so the CohFT associated to it by theorem 2.13 is the single Hodge class
Λ(−1) via the ELSV formula [29]. This is a one-dimensional CohFT, so
we drop all indices for the bases of V and V ∗. In this case, writing Tk =∑∞

m=1 ck,mqm, theorem 2.18 yields

(43) ck+1,m =

m∑
j=0

jck,j .

Along with the initial condition c−1,m = δm,1, this shows that ck,m =
{
k+m
m

}
for m > −1, the Stirling numbers of the second kind. In particular,

(44)

T0 = q1 + q2 + q3 + q4 + q5 + ... ,

T1 = q1 + 3q2 + 6q3 + 10q4 + 15q5 + ... ,

T2 = q1 + 7q2 + 25q3 + 65q4 + 140q5 + ...

Note that these are infinite sums, in contrast to the ones Kazarian found
in [40], cf. equations (16) and (17), even though both are related to single
Hodge integrals. This phenomenon is explained by the arbitrary choice of a
rational parametrisation of the spectral curve, formalised in corollary 3.6.

Using the intersection numbers∫
M̄0,3

1 =

∫
M̄0,4

ψi = 1 ,(45) ∫
M̄1,1

λ1 =

∫
M̄1,1

ψ1 =

∫
M̄1,2

ψ2
i =

∫
M̄1,2

ψ1ψ2 =

∫
M̄1,2

λ1ψ1 =
1

24
,(46)

we see that

GΛ(−1)(T ) = �
(1
6
T 3
0 +

1

24
T1 −

1

24
T0

)
+ �2

(1
6
T 3
0 T1 +

1

48
T 2
1 +

1

24
T0T2 −

1

24
T0T1

)
+O(�3) .

(47)
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From this, we obtain

∂2GΛ(−1)(T (q))

∂q22
= �

∑
k>0

qk

+ �2
( ∑

k,l>0

( l(l + 1)

2
+ 3

)
qkql +

2 · 32
48

+
2 · 7
24

− 2 · 3
24

)

+O(�3) ,

∂2GΛ(−1)(T (q))

∂q1q3
= �

∑
k>0

qk

+ �2
( ∑

k,l>0

( l(l + 1)

2
+

7

2

)
qkql +

2 · 6
48

+
25 + 1

24
− 6 + 1

24

)

+O(�3) ,

∂4GΛ(−1)(T (q))

∂q41
= �2

24

6
+O(�3) ,

∂2GΛ(−1)(T (q))

∂q21
= �

∑
k>0

qk +O(�2) ,

which does show that GΛ(−1)(T (q)) solves equation (39) up to second order

in �.

I would like to thank P. Norbury for using this example to check the

results of this paper.

2.6. The Mariño–Vafa formula and KP for topological vertex

amplitudes

A particularly interesting family of hypergeometric tau-functions is given

by the theory of the topological vertex, or triple Hodge integrals. For the

triple Hodge integrals, the ELSV-type formula required is the Mariño–Vafa

formula [51]. Because this formula was proved without using topological re-

cursion [54, 47] (in fact before topological recursion was first formulated), we

can use it directly without going through the detour of topological recursion.

On the other hand, this theory is the particular case for C3 of the

Gromov–Witten theory of toric Calabi–Yau threefolds, which was conjec-

tured by Bouchard–Klemm–Mariño–Pasquetti [13] to satisfy topological re-

cursion. The case we are interested in was proved in [20, 63], as well as in [30]
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as an example of the general correspondence of theorem 2.13, while the gen-
eral BKMP conjecture was proved in [34]. Combining this with theorem 2.7,
we actually obtain a new proof of the Mariño–Vafa formula.

In this section, we use the triple Hodge integrals as an example of our
general theory, using methods slightly adapted to this special case. We will
see in section 3.3 why this case is particularly nice.

Definition 2.21. The triple Hodge cohomological field theory with Calabi–
Yau condition is the one-dimensional CohFT THg,n(a, b, c) = Λ(a)Λ(b)Λ(c),
where the parameters a, b, c satisfy 1

a + 1
b +

1
c = 0.

We write

(48) GTH(a, b, c;T ) := GTH(a,b,c)(T ) .

An adapted application of theorem 2.18 is given in the following theorem.
This theorem has already been proved by Alexandrov [2], here we give a new
proof.

Theorem 2.22 ([2, Theorem 2]). Define T0(q) := q1, Tk+1(q) :=
∑∞

m=1

m(u2qm + u w+2√
w+1

qm+1 + qm+2)
∂

∂qm
Tk. Then

(49) GTH

(
− u2,−u2w,

u2w

w + 1
; {Tk(q)}

)
is a solution of the KP hierarchy with respect to the variables {td = qd

d },
identically in u and w.

In this particular case, we will make slightly different choices to end up
with the formulation above.

Remark 2.23. Note that the triple a = −u2, b = −u2w, c = u2w
w+1 does

indeed satisfy 1
a+

1
b+

1
c = 0, and moreover any triple satisfying this condition

can be written this way.

Remark 2.24. In the limit w → 0, this theorem reduces to the main the-
orem, 2.1, of [40]. In the limit u → 0, it reduces to the Witten–Kontsevich
theorem [60, 43]: in that limit Td → (2d − 1)!!q2d+1 and independence of
even parameters reduces the KP hierarchy to the KdV hierarchy.

Before giving the Mariño–Vafa formula, note that in genus zero

(50)

∫
M0,n

Λ(a)Λ(b)Λ(c)∏n
i=1 1− μiψ

di

i

= |μ|n−3
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for n ≥ 3, and this serves as a definition for n = 1, 2. These terms are not
included in GTH.

Theorem 2.25 (Mariño–Vafa formula, [51, 47, 54]). There is a relation be-
tween triple Hodge integrals and characters of symmetric groups, as follows:

exp

(∑
μ∈P
g≥0

(w + 1)g+n−1

|Autμ|

n∏
i=1

∏μi−1
j=1 (μi + jw)

(μi − 1)!

·
∫
Mg,n

Λ(−1)Λ(−w)Λ
(

w
w+1

)
∏n

i=1(1− μiψi)
β2g−2+n+|μ| pμ

)

=

∞∑
m=0

∑
μ,ν�m

χν
μ

zμ
e(1+

w

2
)βf2(ν)

∏
�∈ν

βw

ς(βwh�)
pμ .

(51)

On the right-hand side the sum is over all partitions μ, ν of equal size m,
and f2(ν) =

1
2

∑
j(νj − j + 1

2)
2 − (−j + 1

2)
2 is the shifted symmetric sum of

squares.

Remark 2.26. Even though it seems the triple Hodge class in this formula
only depends on one parameter, w, the parameter β can be interpreted in
this way as well, entering as a cohomological grading parameter. Hence, the
formula does govern the entire generating function of triple Hodge integrals.

In the limit w → 0, the Mariño–Vafa formula reduces to the ELSV
formula, as the product over boxes simplifies to the hook length formula for
the dimension of the S|μ|-representation associated to ν.

Remark 2.27. This formula is perfectly well-behaved for w = −1, but theo-
rem 2.22 does not make sense in this case. From the general theorem 2.18, we
will see that in this case X is a Möbius transformation, and hence conforms
to corollary 3.6.

By symmetry in the arguments of the Λ-classes, the point w = −1 is
equivalent to the limit w → ∞, which in the conventional formulation of the
Mariño–Vafa formula is the initial condition for the cut-and-join equation
used to prove the formula, see [62, Theorem 3.3]. In this case, the inte-
gral reduces to

∫
Mg,1

λgψ
2g−2 by Mumford’s relation. These integrals were

calculated by Faber–Pandharipande [35].

The right-hand side of the Mariño–Vafa formula is a hypergeometric KP
tau-function, which can be seen explicitly by the following lemma. In essence
this lemma was used by both [47, 54] to prove the Mariño–Vafa formula.
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Lemma 2.28. Relabel parameters in equation (51) by β = �
w and pk =(γw

�

)k
rk to obtain

exp

(∑
μ

∞∑
g=0

(w + 1)g+n−1

|Autμ|

n∏
i=1

∏μi−1
j=1 (μi + jw)

(μi − 1)!

·
∫
Mg,n

Λ(−1)Λ(−w)Λ
(

w
w+1

)
∏n

i=1(1− μiψi)
�2g−2+nγ|μ|w|μ|+2−2g−n rμ

)

=

∞∑
m=0

∑
μ,ν�m

χν
μ

zμ
e(

1

w
+ 1

2
)�f2(ν)

∏
�∈ν

γw

ς(�h�)
rμ .

(52)

This right-hand side (and hence also the left-hand side) is equal to a hyper-
geometric KP tau-function Z(r) of equation (13), with
(53)

ψ̂(�2, y)=− y

w
, ŷ(�2, z)=

∞∑
k=1

1

kS(�k)(γwz)
k , X(z)=z(1−γwz)1/w.

This pair (ψ̂, ŷ) is an element of Family II, with α = − 1
w , R1(z) = R2(z) =

R4(z) = 1, R3(z) = γwz, and hence, by theorem 2.7, topological recursion
holds for this case.

Proof. By basic theory of symmetric functions,
∑

μ�m
χν

μ

zμ
pμ = sν(p). Also,

by [54, Equations (0.6), (0.7)],

1∏
�∈ν q

h�/2 − q−h�/2
= q−|ν|/2−f2(ν)/2sν(1, q

−1, q−2, . . .)

where here the q−k are the ‘usual’ variables, i.e. the ones in which sν is
symmetric, not the power sum variables.

Writing q = e� and using that f2(ν) =
∑

�∈ν c� gives

∞∑
m=0

∑
μ,ν�m

χν
μ

zμ
e(

1

w
+ 1

2
)�f2(ν)

∏
�∈ν

γw

ς(�h�)
rμ

=

∞∑
m=0

∑
ν�m

sν(r)e
∑

�∈ν
�

w
c�sν

({ γw

e�(l+
1

2
)

}∞

l=0

)
.

Comparing with theorem 2.7, we immediately find ψ̂(�2, y) = − y
w . To find

ŷ, we must revert to power-sum variables in the Schur functions. We use
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that

pk

({ γw

e�(l+
1

2
)

}∞

l=0

)
=

∞∑
l=0

( γw

e�(l+
1

2
)

)k

= (γw)ke−
�k

2

∞∑
l=0

e−�kl

=
(γw)k

e
�k

2

1

1− e−�k

=
(γw)k

ς(�k)
.

By equation (13), ŷk = �pk, as the pk are the power-sum arguments of the
Schur functions, so

ŷ(�2, z) =
∞∑
k=1

ŷkz
k =

∞∑
k=1

(γw)k

ς(�k)
�zk =

∞∑
k=1

1

kS(�k)(γwz)
k ,

which yields the value of ŷ. Finally,

X(z) = ex(z)

= ze−ψ̂(0,ŷ(0,z))

= z exp
( 1

w

∞∑
k=1

1

k
(γwz)k

)

= z exp
( log(1− γwz)

w

)
= z(1− γwz)

1

w .

If one were to relabel instead by β = γ̃� and pk = �−kr̃k, i.e. just to
naively introduce a parameter �, one would not end up in Family II, but in
the extension of corollary 2.11. These two choices are related by lemma 2.10,
for λ = γw.

Corollary 2.29. Topological recursion yields a new proof of the Mariño–
Vafa formula.

Proof. Topological recursion for these triple Hodge integrals, i.e. the left-
hand side of equation (52), was already proved in [20, 63, 30]. Lemma 2.28
shows the right-hand side satisfies topological recursion for the same spectral
curve, equation (53). Hence, both sides must be equal.
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Zhou [64] also explored this relation between triple Hodge integrals and

integrable hierarchies, extending it to the 2-Toda hierarchy and to certain

relative Gromov–Witten theories.

3. KP hierarchy for intersection numbers

In this section, we will prove the main theorem 2.18, as proposition 3.8,

generalising Kazarian’s method to the generating functions of intersection

numbers coming from hypergeometric tau-functions.

3.1. The change of variables

We will interpret any X(z) defined by equations (12) and (14) as giving a

change of coordinates. For this, define a linear correspondence Θ between

power series in X or z on the one hand and linear series in p or q on the

other by

pk ↔ Xk , qm ↔ zm .(54)

In other words, Θ is a pair of linear isomorphisms

Θz : C�z� ∼→
∞∏

m=1

Cqm : zm �→ qm ,(55)

ΘX : C�X� ∼→
∞∏
k=1

Cpk : X
k �→ pk .(56)

This map is meant to express the correspondence of equation (23), so a ho-

mogeneous polynomial of degree n in the pk will correspond to a symmetric

polynomial in X1, . . . , Xn.

This defines a change of coordinates as follows:

Definition 3.1. We define a linear morphism between power series in

{pm}m≥1 and {qd}d≥1 by

(57) pk(q) =

∞∑
m=k

cmk qm with cmk given by Xk =

∞∑
m=k

cmk zm .

This is the map ΘX ◦X ◦ (Θz)−1.
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In order to make this change of coordinates and remain within the realm
of solutions of the KP hierarchy, we should flow along the action of the
infinite general linear algebra. Hence, we should find the infinitesimal flow
associated to this change. For this, we introduce a flow parameter β by

(58) Xβ(z) :=
1

β
X(βz) = ze−ψ(y(βz)) ,

such that X0(z) = z and X1(z) = X(z).

Lemma 3.2. For Xβ(z) := 1
βX(βz), where X(z) = z + O(z2), and with

Q(z) := z
X(z)

dX
dz (z), the flow along β of the function Xβ is given by

(59)
∂Xβ

∂β
=

(
1− 1

Q(βz)

) z

β

∂Xβ

∂z
=

1

β

(
Q(βz)− 1

)
Xβ .

Proof. By definition of Q, X = z
Q(z)

dX
dz . Therefore,

∂Xβ

∂β
=

∂

∂β

( 1

β
X(βz)

)
=

z

β

dX

dz

∣∣∣
z→βz

− 1

β2
X(βz)

=
z

β

dX

dz

∣∣∣
z→βz

− 1

β2

( z

Q(z)

dX

dz

)∣∣∣
z→βz

=
(
1− 1

Q(βz)

) z

β

∂Xβ

∂z
.

We will use this with [40, Theorem 2.5], which uses the ĝl(∞) action on
τ -functions:

Theorem 3.3 ([40]). In the situation of a correspondence like equation (57),
there is a quadratic function Q(p) such that the transformation sending an

arbitrary series Φ(p) to the series Ψ(q) = (Φ+Q)
∣∣
p→p(q)

is an automorphism

of the KP hierarchy: it sends solutions to solutions.

The function Q(p) is not unique.

Proposition 3.4. In the general situation of theorem 2.7, without analytic
assumptions, the quadratic function for the change of variables of defini-
tion 3.1 can be taken to be −1

2Θ(H0,2).

Proof. We will use the β-flow defined above to flow from Φ at β = 0 to Ψ at
β = 1. Consider the more general linear correspondence Θβ between power
series in Xβ or z on the one hand and linear series in p or q on the other by

pk ↔ Xβ(z)
k , qm ↔ zm .
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This gives a linear morphism between power series in {pm}m≥1 and {qd}d≥1

by

pk(β; q) =

∞∑
m=k

cmk qm with cmk given by Xk
β =

∞∑
m=k

cmk zm ,(60)

such that pk(0; q) = qk.

Under Θβ , the operator zm+1 ∂
∂z transforms into

∑∞
k=1 kqm+k

∂
∂qk

, which

is the differential part of Lm(q). The polynomial part of this operator is

1

2

m−1∑
k=1

qkqm−k ,

which under the correspondence transforms into

1

2

m−1∑
k=1

zk1z
m−k
2 =

1

2
z1z2

zm−1
1 − zm−1

2

z1 − z2
= −1

2

zm−1
1 − zm−1

2

z−1
1 − z−1

2

.

Therefore, the correction to be made to lemma 3.2 to obtain a KP-preserving
flow is found by the substitution f(z)z ∂

∂z → −1
2

1
z−1
1 −z−1

2

(
z−1
1 f(z1)−z−1

2 f(z2)
)

for a series f(z) ∈ zC�z�. Note that 1
β

(
1− 1

Q(βz)

)
∈ zC�z�, and we find that

the differential operator of lemma 3.2 needs to be completed by

− 1

2β(z−1
1 − z−1

2 )

(
z−1
1

(
1− 1

Q(βz1)

)
− z−1

2

(
1− 1

Q(βz2)

))

=
1

2β(z−1
1 − z−1

2 )

(
1

z1Q(βz1)
− 1

z2Q(βz2)

)
− 1

2β
.

By a similar calculation as for lemma 3.2, if we take X to be β-independent,
and see equation (60) as giving the β-dependence of z,

∂z(Xβ)

∂β

∣∣∣
X const.

=
∂

∂β

( 1

β
z(βX)

)∣∣∣
Xconst.

=
(
− 1

β2
z(βX) +

1

β

dz(X)

dX

∣∣∣
X→βX

X
)

=
(
− 1

β2
z(βX) +

1

β2

(dz(X)

dX
X
)∣∣∣

X→βX

)
=

(
− 1

β
z(Xβ) +

1

β2

( 1

Q(z(X))
z(X)

)∣∣∣
X→βX

)
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=
(
− 1

β
z(Xβ) +

1

β

1

Q(βz(Xβ))
z(Xβ)

)

=
1

β

( 1

Q(βz(Xβ))
− 1

)
z(Xβ) .

It follows that, using equation (25),

−∂H0,2

∂β

∣∣∣
Xi const.

= − ∂

∂β
log

( z−1
1 − z−1

2

X−1
1 −X−1

2

)∣∣∣
Xi const.

=
1

z−1
1 − z−1

2

(
z−2
1

∂z1
∂β

∣∣∣
Xi const.

− z−2
2

∂z2
∂β

∣∣∣
Xi const.

)

=
1

β(z−1
1 − z−1

2 )

( 1

z1Q(βz1)
− 1

z2Q(βz2)

)
− 1

β
,

which, up to a factor 2, is exactly the polynomial correction needed.

From these calculations, we find that

A :=
(
1− 1

Q(βz)

) z

β

∂

∂z
− 1

2

∂H0,2

∂β

∣∣∣
Xi const.

corresponds to a linear combination of Lm under Θβ , and hence preserves

KP. Now consider a KP τ -function Z = expΦ(p) and define the func-

tion Z(β, q) = exp
(
Φ(p) − 1

2Θ(H0,2)
)∣∣

p=p(β,q)
. We see that Z(0, q) = Z,

as p(0, q) = q, and therefore Θ(H0,2) = 0. Also, Z(1, q) = exp
(
Ψ(q)

)
. More-

over,

∂

∂β
Z =

( ∞∑
k=1

∂pk(β, q)

∂β

∂

∂pk
− 1

2
Θ
(∂H0,2

∂β

∣∣∣
Xi const.

))
Z(61)

= Θ
((

1− 1

Q(βz)

) z

β

∂

∂z
− 1

2

∂H0,2

∂β

∣∣∣
Xi const.

)
Z(β)(62)

= Θ(A)Z(β)(63)

As Θ(A) preserves τ -functions of KP, this automorphism does indeed pre-

serve solutions, so Φ is a solution if and only if Ψ is.

Corollary 3.5. For Z(p) defined by equation (13), Z(p) exp
(
−Θ(�−1H0,1+

1
2H0,2)

)∣∣
p→p(q)

is also a KP tau-function, whose logarithm does not contain

unstable terms. Here H0,1 and H0,2 are defined by equation (25).
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Proof. As all equations in the KP hierarchy only contain at least second

derivatives of F , addition of a linear term −Θ(�−1H0,1) preserves solutions.

By proposition 3.4, subtracting the (0, 2) term and changing p �→ p(q) is an

automorphism as well.

Corollary 3.6. In case X(z) is a Möbius transformation with the shape

of equation (14), i.e. X(z) = az
1+bz (taking into account remark 2.8), this

quadratic function can be taken to be 0.

Proof. By direct calculation,

H0,2(z1, z2) = log
( z−1

1 − z−1
2

X(z1)−1 −X(z2)−1

)
= log a .

Comparing this with the proof of proposition 3.4, the quadratic correction

is needed to complete the operator A, which only depends on ∂H0,2

∂β . As this

vanishes in the present case, we may as well omit the entire correction.

Remark 3.7. The usual B-function of topological recursion,

(64) B(z1, z2) =
dz1 dz2

(z1 − z2)2
= d1d2 log(z

−1
1 − z−1

2 ) ,

is invariant under all Möbius transformations, so d1d2H0,2 vanishes if X is

any Möbius transformation. However, this is not the case for H0,2 itself: it

is invariant under a one-dimensional subgroup, changes by a constant under

the two-dimensional subgroup above, but under other Möbius transforma-

tions also changes by addition of terms like log zi.

Viewed another way, these more general Möbius transformations would

take us out of the realm of formal power series in z. However, in a space of

functions, a shift z �→ z+ c does preserve the KP hierarchy, so if the formal

power series converges to a function on a large enough domain, this shift

does preserve KP. This argument is essentially taken from [40, Section 8].

In particular, under the ‘natural analytic assumptions’ of [17, section 1.3],

i.e. the assumptions in the second part of theorem 2.7, the Hg,n do extend

to rational functions on all of P1, so this shift is well-defined.

In case the Möbius transformation is a dilation, X(z) = az, the invari-

ance of KP is just quasi-homogeneity: in this case equation (57) reduces to

pk = akqk.
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3.2. KP for intersection numbers

Now we will restrict to the cases where topological recursion, and hence
theorem 2.13, can be used, in order to relate to intersection numbers. In this
case, the following holds from equation (35).

F (p) =

( ∑
2g−2+n>0

�2g−2+n

n!

∑
j1,...,jn∈J

∫
Mg,n

Ωg,n(ej1 ⊗ · · · ⊗ ejn)

n∏
i=1

∞∑
ki=0

ψki

i ξjiki
(zi)

+ �−1H0,1 +
1

2
H0,2

)∣∣∣∣
X

ki
i →pki

,

(65)

if we define ξjk(z) :=
∫ z
z′=rj

dξjk(z
′), noting that due to the shape of the Hg,n

in equations (23) and (24) and X(z) in equation (14), the Hg,n have no
constant terms in zi.

Under the correspondence pk ↔ Xk, qm ↔ zm of definition 3.1, we define
T j
k by

(66) T j
k (q) ↔

1

dx
dξjk(z) = Dk+1 z

j+1

j + 1
,

with D as in equation (14). Explicitly, we define

(67) T j
−1 =

1

j + 1
qj+1 , T j

k+1 =

∞∑
m=1

∞∑
l=0

mTlqm+l
∂

∂qm
T j
k ,

with Tl given by

(68) Q(z)−1 =

∞∑
l=0

Tlzl .

Note that, even though the recursion operator for the T j
k may have infinitely

many terms, its alternate description via equation (66) ensures they are well-
defined in Λ.

Therefore, by definition,

Θ
(
�−1H0,1 +

1

2
H0,2

)
+GΩ(T (p))

(69)
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= Θ
(
�−1H0,1 +

1

2
H0,2

)
+

∑
2g−2+n>0

�2g−2+n

n!

∑
j1,...,jn∈J

∫
Mg,n

Ωg,n(ej1 ⊗ · · · ⊗ ejn)

n∏
i=1

∞∑
ki=0

ψki

i T ji
ki
(q)

is the logarithm of a tau-function, where {ej} is the dual basis to the basis

{dξj0} of V ∗.

Proposition 3.8. Suppose the pair of functions (ψ̂, ŷ) lies in family I or II

of theorem 2.7, and let Ω be the cohomological field theory associated to the

related topological recursion via theorem 2.13. Then

(70) ZΩ(q) = eGΩ(T (q))

is a KP tau-function.

Proof. Apply corollary 3.5 to the exponent of equation (69).

3.3. Finiteness of the transformation

The operator A in the proof of proposition 3.4 corresponds to a finite sum of

Lm if and only if Q(z)−1 is a polynomial in z. As this case seems particularly

nice, we will investigate it here. Note that this condition is dependent on the

parameter z on the spectral curve, cf. the difference between example 2.20

and section 2.3.

Write P (z) = Q(z)−1 for this polynomial, and write r+1 for its degree.

From equation (14), it follows that P (0) = 1, so we may write

(71) P (z) =

r+1∏
j=1

(1− cjz) .

We immediately see that dx(z) = dz
zP (z) , and hence the spectral curve has a

unique ramification point, ∞, of ramification index r. This is also the rank

of the associated Frobenius algebra. But we can do better. By calculating

the residues in v of

(72)
vr+1dv

(1− vz)
∏r+1

k=1(v − ck)
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and using that they sum to zero, one can check that (if all cj are distinct)2

(73)
dx

dz
=

1

z
+

r+1∑
j=1

cr+1
j∏

k �=j(cj − ck)

1

1− cjz
,

from which we see that

(74) x(z) = log z −
r+1∑
j=1

∏
k �=j

(
1− ck

cj

)−1
log(1− cjz) .

If r = 0, dx has two (simple) poles, and hence no zeroes. In fact, in this

case, X is a Möbius transformation.

If r = 1, this recovers the triple Hodge curve, studied in section 3.4

below, after identifying c1 = −β, c2 = −(w + 1)β.

If r > 1, the related Frobenius algebra is not semi-simple, cf. remark 2.14:

it is a deformation of the algebra corresponding to Witten’s r+1-spin coho-

mological field theory, which is given by x = yr+1, cf. [61, 26, 5]. This class

fits in Alexandrov’s theory of the deformed generalised Kontsevich model

[3]: it seems like it is a complementary subspace of the polynomial defor-

mations of the Witten r + 1-spin theory. Note that the Witten spin classes

themselves do not fit in the scope of this paper, as the curve is not of the

shape of equation (14).

Interestingly, except for special choices of cj , these cases seem not to be

covered in the two families in theorem 2.7 for which topological recursion is

proved (for any choice of y). Even the r = 1 case does not fall in that scope,

unless c1
c2

∈ Q.

3.4. The case of triple Hodge integrals

Let us now consider the special case of triple Hodge integrals. The approach

taken in this section overlaps with the previous results, but is also slightly

different in details, adapted to this specific problem. For example, we do

not use the formal parameter �, but make another convenient choice. In this

case, the ELSV-type formula is completely explicit, and there is no need to

take the detour via topological recursion.

2If some cj coincide, the residue argument still holds, but the result changes.
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The coordinate change we want to perform is inspired by the Mariño–
Vafa formula.

F
(
w, β; p

)
= log

( ∞∑
m=0

∑
μ,ν�m

χν
μ

zμ
e(1+

w

2
)βf2(ν)

∏
�∈ν

βw

ς(βwh�)
pμ

)

=
∑
μ

∞∑
g=0

(w + 1)g+n−1

|Autμ|

n∏
i=1

∏μi−1
j=1 (μi + jw)

(μi − 1)!∫
Mg,n

Λ(−1)Λ(−w)Λ
(

w
w+1

)
∏n

i=1(1− μiψi)
β2g−2+n+|μ|pμ .

(75)

As 2g − 2 + n + |μ| = 2
3 dimMg,n +

∑n
i=1(μi +

1
3) and g + n − 1 =

1
3 dimMg,n +

∑n
i=1

2
3 , we get after rewriting u := β

1

3 (w + 1)
1

6

F
(
w, β; p

)
=

∑
μ

1

|Autμ|

∞∑
g=0

n∏
i=1

u4
∏μi−1

j=1 (μi + jw)β

(μi − 1)!∫
Mg,n

Λ(−u2)Λ(−u2w)Λ
(
u2w
w+1

)
∏n

i=1(1− μiu2ψi)
pμ

=

∞∑
g=0

∞∑
n=1

1

n!

∫
Mg,n

Λ(−u2)Λ(−u2w)Λ
( u2w

w + 1

) n∏
i=1

∞∑
d=0

T̃d(p)ψ
d
i

= GTH

(
− u2,−u2w,

u2w

w + 1
; T̃ (p)

)
+H0,1 +

1

2
H0,2 ,

(76)

where

(77) T̃d(p) :=

∞∑
m=1

∏m−1
j=1 (m+ jw)

(m− 1)!
mdu2d+4βm−1pm .

Hence, our goal is to show that this change of variables and addition of the
unstable terms preserves solutions of the KP hierarchy.

Lemma 3.9. The following two expressions are inverse to each other:

Xβ(z) =
z

1 + (w + 1)βz

(
1 + βz

1 + (w + 1)βz

) 1

w

;

z(Xβ) =

∞∑
m=1

∏m−1
j=1 (m+ jw)

(m− 1)!
βm−1Xm

β .

(78)
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Proof. This can be proved by a residue calculation. Start from the for-
mula for X(z) = X1(z) and write z(X) =

∑∞
m=1CmXm. Then Cm =

ResX=0 z X
−mdX

X , and

dX

X
=

dz

z
+

d(1 + z)
1

w

(1 + z)
1

w

+
d(1 + (w + 1)z)−

w+1

w )

(1 + (w + 1)z)−
w+1

w

=
dz

z
+

1

w

dz

1 + z
− (w + 1)2

w

dz

1 + (w + 1)z

=
dz

z(1 + z)(1 + (w + 1)z)
.

Therefore,

Cm = Res
X=0

z X−m dz

z(1 + z)(1 + (w + 1)z)

= Res
z=0

z−m(1 + z)−
m

w
−1(1 + (w + 1)z)m

w+1

w
−1dz

= Res
z=0

z−m
∞∑
k=0

∏k−1
i=0 (−m

w − 1− i)

k!
zk

∞∑
l=0

∏l−1
j=0(m

w+1
w −1−j)

l!
(w + 1)lzldz

= Res
z=0

z−m
∞∑
k=0

∏k
i=1(

m
w + i)

k!
(−1)kzk

∞∑
l=0

∏m−1
j=m−l(

m
w + j)

l!
(w + 1)lzldz

=

m−1∑
k=0

∏k
i=1(

m
w + i)

k!

∏m−1
j=k+1(

m
w + j)

(m− k − 1)!
(−1)k(w + 1)m−k−1

=

∏m−1
j=1 (mw + j)

(m− 1)!

m−1∑
k=0

(
m− 1

k

)
(−1)k(w + 1)m−k−1

=

∏m−1
j=1 (mw + j)

(m− 1)!
wm−1 =

∏m−1
j=1 (m+ jw)

(m− 1)!
.

Finally, β can be introduced in this formula by scaling z→βz,X→βXβ.

Corollary 3.10. The expressions for X(z) in lemma 2.28 and Xβ(z) in
lemma 3.9 are related by Möbius transformations:

(79) X
( βz

γ(1 + (w + 1)βz)

)
=

β

γ
Xβ(z)

Hence, by corollary 3.6, they require the same correction term for their in-
duced linear change of variables.
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We see that in this particular case we may obtain the function X in two

different ways: from the general theory of theorem 2.7, or from the specific

shape of the Mariño–Vafa formula, theorem 2.25. In fact, the second choice

is nothing but choosing the spectral curve coordinate z to equal ξ (which

is unique in this case), or in other words T0 = q1. The scaling factor β
γ is

exactly the scaling factor between rk and pk in lemma 2.28.

Remark 3.11. Under the correspondence of theorem 2.13, the rank of

the cohomological field theory corresponds to the number of zeroes of dx,

counted with multiplicities. So for rank one, dx can only have one zero, and

hence must have three poles. By Möbius transformation, we may place the

zero at infinity, and two of the poles at 0 and −1, from which we find that

dx must correspond to the dX
X found in the proof of lemma 3.9. This may

explain in part why Alexandrov [2] finds only the triple Hodge CohFT in the

intersection of the orbits of the Givental and Heisenberg–Virasoro groups.

However, dx is not the only datum of a spectral curve, and while P1 is rigid

and has a unique B, it is not clear why there is no freedom in the choice of

dy.

Lemma 3.12. The series Xβ(z) from lemma 3.9 satisfies the differential

equation

(80)
∂Xβ

∂β
(z) = −

(
(w + 2)z + (w + 1)βz2)z

∂Xβ

∂z
(z) .

Proof. For X(z) = z
1+(w+1)z

(
1+z

1+(w+1)z

) 1

w

, we get Q(z)−1 = (1+ z)(1+(w+

1)z), which using lemma 3.2 immediately yields the result.

We use this lemma in combination with the linear correspondence of

definition 3.1, slightly adapted as follows: define a linear correspondence Θ

between power series in X or z on the one hand and linear series in p or q̃

on the other by

pk ↔ Xk , q̃m ↔ zm .(81)

Definition 3.13. We define a linear morphism between power series in

{pm}m≥1 and {q̃d}d≥1 by

pk(q̃) =

∞∑
m=k

cmk q̃m with cmk given by Xk =

∞∑
m=k

cmk zm .(82)
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Under the correspondence pk ↔ Xk, q̃m ↔ zm, we have

T̃d(p) ↔ (u2D)du4z ; D := X
∂

∂X
=

(
1 + βz

)(
1 + (w + 1)βz

)
z
∂

∂z
.(83)

In terms of q̃-variables, this gives

T̃d = u2
∞∑

m=1

m
(
q̃m + (w + 2)βq̃m+1+(w + 1)β2q̃m+2

) ∂

∂q̃m
T̃d−1 ; T̃0 = u4q̃1 .

(84)

If we write q̃m(q) := u−4mqm, and using β = u3√
w+1

, we may express

Td(q) := T̃d

(
p(q̃(q))

)
as

Td =

∞∑
m=1

m
(
u4m+2q̃m+

u3(w + 2)√
w + 1

u4m+2q̃m+1+u6u4m+2q̃m+2

) 1

u4m
∂

∂q̃m
Td−1

(85)

=

∞∑
m=1

m
(
u2qm +

u(w + 2)√
w + 1

qm+1 + qm+2

) ∂

∂qm
Td−1 ;

(86)

T0 = q1 .
(87)

This is exactly the definition given in theorem 2.22.

Corollary 3.14. For Xβ(z) = z
1+(w+1)βz

( 1+βz
1+(w+1)βz

) 1

w , the quadratic cor-

rection of theorem 3.3 is Q = −1
2Θ(H0,2).

Proof. The function Xβ(z) satisfies the conditions of theorem 2.7, so we may
apply proposition 3.4.

Now we are ready to prove the main result on KP integrability of triple
Hodge integrals.

Proof of theorem 2.22. By lemma 2.28, expF is a tau function of the KP

hierarchy in the variables sk :=
(

�
γw

)k rk
k = pk

k . By quasi-homogeneity of

the KP hierarchy, it is also a tau function in the variables tk = pk

k . By
equation (76), in combination with corollary 3.14 and theorem 3.3,

(88) GTH

(
− u2,−wu2,

wu2

w + 1
; {Td(q)}

)
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is a solution of the KP hierarchy in the variables q̃m
m . Again using quasi-

homogeneity of the KP hierarchy, rescaling q̃m → qm preserves solutions.

This completes the proof.

Remark 3.15. The result in this subsection do hold for w = −1 (ignoring

powers of u), but in this specific case X(z) is a Möbius transformation, so

it reduces to the setting of corollary 3.6. From another point of view, in this

case the change of coordinates equation (57) is an isomorphism, whereas it

gives a half-dimensional subspace in all other cases. Equations for this half-

dimensional space, in the linear Hodge case, were found in [1], cf. also [39]

for a reformulation. These can be viewed as a deformation of the reduction

from KP to KdV. Similar equations should exist for triple Hodge integrals

as well, but clearly none of this works for w = −1.

In light of section 3.3, one may expect a deformation of the reduction

from KP to r-KdV or r-Gelfand-Dickey for the families found there.
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their Interactions

[9] Borot, G. and Shadrin, S. (2017). Blobbed topological recursion:
properties and applications. Math. Proc. Camb. Phil. Soc. 162 39–87.
MR3581899

[10] Borot, G., Eynard, B., Mulase, M. and Safnuk, B. (2011). A
matrix model for simple Hurwitz numbers, and topological recursion.
Journal of Geometry and Physics 61 522–540. MR2746135

[11] Bouchard, V. and Eynard, B. (2013). Think globally, compute lo-
cally. Journal of High Energy Physics 2013 1–34. MR3046532

[12] Bouchard, V. and Mariño, M. (2008). Hurwitz numbers, matrix
models and enumerative geometry. In From Hodge theory to integra-
bility and TQFT tt*-geometry. Proc. Sympos. Pure Math. 78 263–283.
Amer. Math. Soc., Providence, RI. MR2483754

[13] Bouchard, V., Klemm, A., Mariño, M. and Pasquetti, S.

(2009). Remodeling the B-model. Comm. Math. Phys. 287 117–178.
MR2480744

[14] Buryak, A. (2015). Double ramification cycles and integrable hierar-
chies. Comm. Math. Phys. 336 1085–1107. MR3324138

[15] Buryak, A. (2015). Dubrovin-Zhang hierarchy for the Hodge integrals.
Commun. Number Theory Phys. 9 239–272. MR3361294

[16] Buryak, A. (2016). ILW equation for the Hodge integrals revisited.
Math. Res. Lett. 23 675–683. MR3533190

[17] Bychkov, B., Dunin-Barkowski, P., Kazarian, M. and
Shadrin, S. (2020). Topological recursion for Kadomtsev-Petviashvili
tau functions of hypergeometric type.

[18] Bychkov, B., Dunin-Barkowski, P., Kazarian, M. and
Shadrin, S. (2022). Explicit closed algebraic formulas for Orlov-
Scherbin n-point functions. J. Éc. polytech. Math. 9 1121–1158.
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(4) 43 621–658. MR2722511

[37] Giacchetto, A., Kramer, R. and Lewański, D. (2021). A new spin
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