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Resurgent-transseries solutions to Painlevé equations may be re-
cursively constructed out of these nonlinear differential-equations—
but require Stokes data to be globally defined over the complex
plane. Stokes data explicitly construct connection-formulae which
describe the nonlinear Stokes phenomena associated to these so-
lutions, via implementation of Stokes transitions acting on the
transseries. Nonlinear resurgent Stokes data lack, however, a first-
principle computational approach, hence are hard to determine
generically. In the Painlevé I and Painlevé II contexts, nonlin-
ear Stokes data get further hindered as these equations are res-
onant, with non-trivial consequences for the interconnections be-
tween transseries sectors, bridge equations, and associated Stokes
coefficients. In parallel to this, the Painlevé I and Painlevé II equa-
tions are string-equations for two-dimensional quantum (super)
gravity and minimal string theories, where Stokes data have nat-
ural ZZ-brane interpretations. This work conjectures for the first
time the complete, analytical, resurgent Stokes data for the first
two Painlevé equations, alongside their quantum gravity or min-
imal string incarnations. The method developed herein, dubbed
“closed-form asymptotics”, makes sole use of resurgent large-order
asymptotics of transseries solutions—alongside a careful analysis
of the role resonance plays. Given its generality, it may be appli-
cable to other distinct (nonlinear, resonant) problems. Results for
analytical Stokes coefficients have natural structures, which are de-
scribed, and extensive high-precision numerical tests corroborate
all analytical predictions. Connection-formulae are explicitly con-
structed, with rather simple and compact final results encoding
the full Stokes data, and further allowing for exact monodromy
checks—hence for an analytical proof of our Painlevé I results.
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gent Stokes data, Stokes phenomena, connection formulae, monodromy,
large-order behavior, resurgent asymptotics, Borel analysis.

1. Introduction and summary

Over one hundred years ago, Paul Painlevé embarked on a quest to find new
classes of special functions, beyond the realms of elliptic and classical-special
functions [1, 2]. It was already well-known at the time that a large number of
special functions could be defined via ordinary differential equations (ODEs)
(see, e.g., [3]), and that, in almost all such cases, the resulting ODE was
linear. Painlevé’s quest hence started off by asking if it could be possible
to define new special functions—beyond the classical ones—but via generic
nonlinear ODEs instead?

Such a seemingly simple question opened a century’s mathematical Pan-
dora’s box. To start, the ability to define new, sensible functions very much
depends upon the nature of their would-be singularities. Now, whereas linear
ODEs only have fized' singularities, it turns out that nonlinear ODEs may
have both fixed and mowable? singularities. On top of this lies the myriad
of possible singularities one may find—at its broadest split, either single-
valued or multi-valued (branch point) singularities. In such wide contexts,
and to ensure that the “nonlinear special-function programme” would be
feasible, the Painlevé property arises: these are ODEs whose solutions have
no movable multi-valued singularities. Let us follow Painlevé in trying to
classify them.

For first-order Painlevé-type ODEs there is not much to say. It turns out,
one either finds equations that are reducible to linear ODEs, or else equations
that may be solved via elliptic functions (all of those are actually deducible
from, say, the Weierstrass p-function; in which case there is a single “new”—
well known!—special function at this level). The level of complexity jumps
dramatically as soon as one turns to second-order Painlevé-type ODEs, of
the form

(1.1) u'(z) =R (v, u,2),

LA fixed singularity of an ODE is a singularity in its solutions whose location
does not depend on initial data/boundary conditions, i.e., a singularity which only
depends upon the ODE and not upon any particular solution.

2A movable singularity of an ODE is otherwise. It is a singularity in the solution
whose location will depend upon the initial/boundary conditions selecting that
particular solution. It varies as initial/boundary data vary.
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with R rational in u and v/, and locally analytic in z. In a nutshell, Painlevé’s
classification of this type of second-order ODEs [1, 2] tells us that most (44,
to be precise) are solvable in terms of previously known functions (e.g., ellip-
tic functions, classical special functions), hence bringing nothing new to the
table. But there are 6 canonical ODEs which require the introduction of new
transcendental® functions in order to describe their general solutions—these
are the famous six Painlevé equations, Painlevé I through Painlevé VI. This
set of six Painlevé transcendents is the first historical example of “nonlinear
special functions”, which have received a great deal of attention over the
past 100 years. We refer to, e.g., [4, 5, 6, 3, 7, 8, 9], for introductions, re-
views, and references on the above highlights—of what is a very long, rich,
and on-going history and literature, hence one which is also too large to
review herein. Let us further point-out that taking the programme further,
to higher-order equations, is an open on-going research problem.

In the present work we shall be interested in the Painlevé I equation
(henceforth simply denoted by Py),

(1.2) Wd(z) — sl (2) = 2,

and in the (homogeneous) Painlevé II equation (similarly, henceforth de-
noted simply by Py),

(1.3) (=) — 5 () = 2 (=)

As mentioned above, solutions to these equations are transcendental hence
hard to simply describe quantitatively (but more on this below). However we
do know, essentially by definition, that they will have movable poles—as we
shall review in section 2, these are double-poles in the case of P, and simple-
poles in the case of P);. Consequently, precisely because of their (movable)
singularity structure, P, and Pj solutions are simple to describe qualita-
tively—as was worked out soon after Painlevé’s initial results by Boutroux
[10, 11]. In order to swiftly describe Boutroux’s classification of Painlevé
solutions, let us first point out straightforward symmetries of Py and Py so-
lutions. Py (1.2) has a natural Zs symmetry, invariant under

ZH= K2
(1.4) with K% =1.

uy — K2 Ut

3This just means that their general solutions cannot be expressed in terms of
previously known functions (e.g., rational functions, exponential functions, elliptic
functions, classical special functions, and so on).
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Hence if uj(z) is a solution of Py, so are its above “five-fold rotations”. It
turns out to be convenient to partition the complex z-plane for P, solutions
into five radial sectors, as illustrated in figure 1—but this will be properly
discussed in subsection 7.3, where this five-fold split actually corresponds
to (anti-)Stokes lines for Pj. The double-poles of P; solutions (asymptoti-
cally) accumulate in each of these sectors. Something similar occurs for Py.
First, (1.3) has definite parity hence is Zs-invariant under puyy — —pur. Sec-
ond, akin to what happened for Py, P, has a natural Zs symmetry being
further invariant under

Zr= KZ
(1.5) . with &3 =1.
pI = K I

Hence if pj;(2) is a solution of Py, so are its “six-fold rotations” (combined
via reflection). It turns out to be convenient to partition the complex z-plane
for Py, solutions into sixz radial sectors, as illustrated in figure 2—again, this
will be properly discussed in subsection 7.3, where this six-fold split actually
corresponds to (anti-)Stokes lines for P);. The simple-poles of Py solutions
(asymptotically) accumulate in each sector. With this rough motivation in
mind, one qualitatively classifies Painlevé solutions depending on which such
“pizza slices” are populated* with movable singularities, and which ones are
singularity-free. Boutroux denoted the different types of solutions as [10, 11]
(see as well, e.g., [4, 12, 13, 14, 15, 16, 3, 17, 18, 19, 20, 21, 22, 7, 8]):
tritronquée (solutions free of poles in 4 adjacent sectors; “lattices” of poles
throughout the remaining sectors), tronquée (solutions free of poles in 2 adja-
cent sectors; “lattices” of poles throughout the remaining ones), and general
solutions (all sectors are populated with movable singularities). In the case
of Py one may also construct the Hastings—McLeod [23] or bitronquée solu-
tion, which is real and pole-free on the real line. All these different solutions
are schematically illustrated in figures 1 and 2.

Having qualitatively understood where Painlevé movable-poles accumu-
late, for different solutions, we may now go back and ask if one may actually
locate them quantitatively—which would greatly amount to fully describing
Painlevé transcendents. We are interested in the construction of general so-
lutions to either Py or Py starting off with (inverse) power-series expansions
around the (single) irregular point at infinity z ~ co. Due to the nature

4With singularities asymptotically constrained inside each slice, given its bound-
aries are (anti-)Stokes lines.
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Figure 1: Illustrative plots of the complex z-plane for P, solutions, along-
side its five-fold “pizza slicing”. From left to right, images plot the possible
Boutroux classifications of P solutions, where the yellow circles represent
the double-pole movable singularities. In sequence, we plot a trintronquée,
a tronquée, and a general solution. See the main text for details.
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Figure 2: Illustrative plots of the complex z-plane for Py, solutions, alongside
its six-fold “pizza slicing”. From left to right, images illustrate the possible
Boutroux classifications of Pj; solutions, where the yellow circles represent
the simple-pole movable singularities: a tritronquée, a bitronquée, a tronquée,
and a general solution. See the main text for details.

of this fixed singularity, these expansions are asymptotic, hence require ex-
ponential “beyond-all-orders” corrections. This is best tackled within the
resurgent transseries framework [24, 25, 26, 27|, where general transseries
for P were constructed in [28, 29] and for Py in [30] (see as well, e.g.,
[31, 32, 33, 34, 4, 12, 35, 36, 16, 37, 38, 39, 40, 41, 42, 7, 43, 8])—and
which we review in section 2. These asymptotic solutions and their asso-
ciated resurgent transseries start-off at z ~ +oo, implying if one wants to
reach any of the pole-populated sector of figures 1 and 2—where, recall,
radial-sector boundaries correspond to (anti-)Stokes lines—one must neces-
sarily deal with Stokes phenomena [44]. In the resurgent transseries context
for Painlevé solutions this amounts to nonlinear Stokes phenomena, hence
to an infinite amount of Stokes data lacking a first-principle computational
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approach®. Prior to this work, only one Stokes coefficient was analytically
known for each Painlevé equation. This is the “canonical” coefficient appear-
ing in the leading perturbative asymptotics (it is also the single non-trival
coefficient in the Riemann—Hilbert formulation; or the coefficient computed
from the matrix integral around a non-trivial instanton saddle). For P, this
number was (Painlevé conventions will appear in section 2 and Stokes data
notation in section 3)

(1.6) N =

and for Py it was

(1.7) N =

By now these two numbers have been computed in many different ways—
the first of which made use of indirect methods (linearization via Riemann—
Hilbert, Lax pairs, or isomonodromic deformations [45, 46]), for both P, [32,
47, 4, 48] and Py [4, 49, 50]. But the existence of an underlying infinite
amount of other Stokes data was only realized later, when addressing the
asymptotics of instanton sectors in the Painlevé transseries in the seminal
paper [28], and then digging deeper into these two-parameter transseries
structures [29, 30]. In particular, these complete Stokes data have a very
clean raison d’étre within resurgence [24], appearing throughout all resur-
gence relations in-between distinct transseries sectors; see, e.g., [27]. How-
ever, all these additional data were previously only known numerically [28,
29, 30]. Many (empirical) relations between these coefficients were also found
[28, 29, 30, 42], which led to long lists of numbers begging for an explanation.
It is our goal in this paper to compute® the complete, analytical, resurgent
Stokes data for P, and P). We wish to tackle this problem as directly as
possible” (i.e., bypassing indirect methods such as Riemann-Hilbert and

SLet us further stress that their connection formulae are transcedental functions
of initial/boundary data—as we shall see, Stokes data turn out to be zeta-numbers
themselves—hence, in any case, generically hard to compute.

6A first—yet not successful—attempt at finding these numbers and their struc-
ture was reported in October 2017 in [51, 52]. Their correct structure was found
later and reported in June 2019 in [53], up to a single number, which was then
finally reported in February 2021 in [54] (the contents of this paper).

"Other direct methods appearing in the mathematical literature include, e.g.,
for Py [55, 20].
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the like), so that its solution might be applicable to arbitrary Painlevé-type
ODEs (more below). This is done by introducing a method, which we dub
“closed-form asymptotics”, that solely exploits resurgent large-order asymp-
totics of the Painlevé transseries—hence, hopefully, general enough for appli-
cations in broad classes of nonlinear systems. Only then may one write fully
general connection-formulae implementing Stokes transitions; hence write
transseries solutions in all sectors of the complex z-plane (in fact more than
one Stokes transition may be required); hence finally compute exact loca-
tions of Painlevé poles (upon specified initial/boundary data). Note that
this final step will still require resummation methods to handle the result-
ing transseries, an analysis which will be addressed elsewhere. Stokes data
thus play a fundamental role in the study of resurgent-transseries general-
solutions to Painlevé equations, and our present results finally close the
analyses started-out in [28, 29, 30].

One absolutely remarkable aspect of the Py (1.2) and Py (1.3) equations—
specially in light of their purely mathematical origin—is their appearance
in the nonperturbative study of two-dimensional (2d) quantum gravity and
minimal string theory. Specifically, P, appears in the framework of 2d quan-
tum gravity [56, 57, 58, 59, 60], Py appears in the framework of 2d quantum
supergravity [61, 62, 63], and both appear within minimal (super) string the-
ory [64, 65, 66] (see, e.g., [67, 68, 69, 70, 71] for reviews). In particular, P is
the string-equation describing the (exact) specific-heat of the lowest multi-
critical hermitian matrix-model. It is also the simplest minimal string theory
(in the conformal background [72, 65]). Similarly, Py, is the string equation
describing the square-root of the (exact) specific-heat of the lowest multi-
critical unitary matrix-model; the simplest minimal superstring theory. Due
to their role in nonperturbative quantum gravity and string theory, and also
due to their relation to (double-scaled) hermitian/unitary random matrices,
there has been long-lasting recurrent physical interest in understanding the
multi-instanton content of solutions to these Painlevé equations; see, e.g.,
[73, 74, 75, 76, 77, 78, 79, 65, 80, 81, 82, 83, 84, 85, 39, 40, 41, 86]. These
multi-instanton analyses—describing D-brane exponential-corrections [87,
88] “beyond-all-orders” of the string-theoretic perturbative asymptotic ex-
pansion [89]—were what later naturally led to the aforementioned resurgent-
transseries analyses for both Py [28, 29] and Py [40, 30], hence bridging the
gap between mathematical and physical interests® in these equations. In
particular, it is precisely this string-theoretic connection which sparks our

8Which exists in other directions; e.g., a reformulation of Painlevé connection
problems in terms of quantum-mechanical exact-WKB analysis was achieved in
[90, 91, 92] for the case of P|, with a modern counterpart in [93].
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focus of interest solely in these first two Painlevé equations (and which does
not hold for the remaining ones).

This is actually just the beginning of a fascinating story taking us into
the realm of higher-order Painlevé-type ODEs. Both Py and Py, sit at the
bottom of (distinct) hierarchical towers of increasingly-complicated, higher-
order nonlinear ODEs, describing the specific-heat of all hermitian /unitary”
(respectively) multicritical models with one-matrix origin. These are the
Korteweg—de Vries (KdV) hierarchy, arising from P; [94], and the modi-
fied KdV (mKdV) hierarchy, arising from Py [63] (see [95] for a discussion
in our resurgent transseries and Stokes data contexts). Due to their origin
in Painlevé-type ODEs, this plethora of multicritical and string-theoretic
models share common physical and mathematical properties. All specific-
heat transcendents along the KdV (mKdV) hierarchy have fields of movable
double (simple) poles [74, 63]—akin to what happened for P (Pj)—but
now with more intricate would-be Boutroux-type classifications. The corre-
sponding (nonperturbative) string-theoretic partition functions follow from
the specific heats; where, in both cases, movable poles translate to simple
zeroes of the partition functions (this is briefly illustrated in section 2). This
implies the Boutroux-type classification is, to some extent, a classification
of different string-theoretic phases—hence that accessing them will again
require complete, analytical, resurgent Stokes data for all these equations;
hence that these data will play a fundamental role in the uncovering of
the associated string physics (only now our results are opening'’ many new
analyses; not closing!).

Having in mind eventually addressing all string theories in the afore-
mentioned (m)KdV hierarchy—obtaining their resurgent-transseries struc-
tures alongside their complete Stokes data—then direct methods to compute
the latter straight-out of string-equations are of prime relevance (hence our
“closed-form asymptotics” as already mentioned). But this should be com-
plemented with physically-motivated calculations. Indeed, in the physics lit-
erature the most interesting calculations arise from matrix models and min-
imal strings. Herein, “canonical” Stokes data has an eigenvalue-tunneling
or ZZ-brane [96] one-loop amplitude interpretation [97, 98, 99] and may be
computed directly from the matrix integral, for both P, [77, 80, 39] and

9To be precise, and as already mentioned for Py, the unitary case yields the
square-root of the specific heat.

10 Albeit computing generic resurgent Stokes data for all string equations in the
KdV and mKdV hierarchies is likely a daunting endeavor. One first step was taken
in [95], computing the “canonical” Stokes coefficient for all multicritical and string
theoretic models associated to the KdV hierarchy (see below for P\/Py).
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P [82, 40] (see as well [65, 81, 83, 84]). For all multicritical and minimal
string theoretic models, these “canonical” Stokes coefficients were recently
computed in [95]. The main question, of course, is how to compute all other
Stokes data? Hopefully, “closed-form asymptotics” is general enough to be
applicable to all string-equations along the (m)KdV hierarchy (albeit, as
mentioned, this may be a daunting task). Let us stress, however, that our
long-term goal is to achieve a direct calculation of all resurgent Stokes data
out of the matrix model/minimal string ZZ-brane interpretation alone. This
would probably greatly illuminate the proper role of Stokes data—but is at
this stage impaired by the fact that we do not know which types of ZZ-branes
could yield the remaining data (only the “canonical” coefficients [95]). If this
was to be achievable, the whole (m)KdV Stokes data would likely unfold.
And if that were to happen, Stokes data for Jackiw—Teitelboim gravity would
likely also follow (see [95] and references therein).

One final remarkable aspect of the Py (1.2) and Py (1.3) equations is their
relation to gauge theories in four dimensions. Building upon [100, 101, 102,
103] it was shown in [104] that the partition functions of P, and Py relate
to certain (distinct) four-dimensional N' = 2 superconformal gauge theo-
ries. Although exploring in any further detail such relation is far from the
scope of the present work, there is one particular aspect of relevance to our
analysis. Essentially by construction such correspondence yields natural vari-
ables parametrizing the space of initial /boundary conditions for our ODEs,
and these variables seem to lead to the simplest formulation of connection
formulae at the level of the Painlevé partition function [105]. Interestingly
enough, these are the very same variables used in the exact WKB analysis
of [90, 91, 92] (see [106] for a review), as shown in [107, 108]. As we shall
see in section 7, the “resurgence origin” of this particular parametrization
stems from a special property of resurgent-transseries Painlevé solutions:
they are'! resonant, i.e., instanton actions arise in symmetric pairs (this
will be reviewed in section 2). Choosing to parametrize the moduli-space
of initial/boundary conditions—in other words, of transseries parameters—
in the natural variables arising from “factoring out” resonance, leads to the
aforementioned simple formulation of connection formulae and gauge theory
relation [104, 105, 107, 108]. This will allow us to reformulate the (compli-
cated) nonlinear Stokes data in a rather simple and compact final package.

The precise contents of this paper are as described in the following. We
begin in section 2 with a swift overview of resurgent-transseries construc-
tions of Painlevé solutions—as constructed in [28, 29, 30]. This includes

HTn fact, to a great extent, resonance is also the mathematical reason why there
is a correspondence between Painlevé and gauge-theory partition functions—see
the discussions on “framings” throughout this paper.
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both mathematical constructions, alongside physical interpretations in quan-
tum gravity and minimal strings. In particular, we introduce the concept of
“framing” in the organization of a transseries, which is directly related to
resonance and will play a key role in our subsequent Stokes analysis. This is
discussed in section 3, where we show how resonant transseries imply specific
properties for Stokes data, Borel residues, and connection formulae. Starting
in this section we need to assume the reader has some working knowledge
of [27] in order to proceed. Section 4 starts with a somewhat general discus-
sion of resurgent asymptotics in the Painlevé context, reviewing large-order
asymptotics and its uses in the calculation of Stokes data. It then builds
its way to the introduction of “closed-form asymptotics”. The discussion
quickly becomes rather technical, but we made our best effort to keep it as
pedagogical as possible. Conjectured (later analytically verified) results for
complete, analytical, resurgent Stokes data are in section 5. This includes
results specifically tailored for the Painlevé equations, for their quantum-
gravity incarnations, and for their string-theoretic incarnations. The reader
interested in results but not in the procedure may jump directly to this
section, where all data is presented also with many illustrative examples.
As we mentioned above, we expect these results may be generalizable to
the full (m)KdV-hierarchy string equations. Further, one thing we know
for sure is that they are generalizable to the matrix-model origins of either
Py or Py. As explained in [29, 30] Painlevé (critical) Stokes data immedi-
ately translates to matrix-model (off-critical) Stokes data (and vice-versa).
Hence our results immediately yield the complete resurgent Stokes data of
the quartic matriz model (which would, for instance, immediately become
relevant in a two-parameter transseries extension of the analysis in [109]).
To make sure our results are rock-solid, we performed extensive numeri-
cal checks. An overview of all those numerics may be found in section 6,
with further details included in appendix A. Having conjectured resurgent
Stokes data one may finally discuss the nonlinear Stokes phenomenon, and
we construct connection-formulae implementing transseries Stokes transi-
tions in our last section 7. Upon implementing “diagonal framing” at the
tau-function/partition-function transseries level, such connection formulae
simplify considerably. In particular, the complete (and complicated) non-
linear Stokes data may, in this way, be fully packaged in a rather simple
and compact final result—whose non-trivial “numerology content” reduces
to (1.6) and (1.7). In particular we implement the direct monodromy calcu-
lation at Painlevé solutions level, and how to map it to the aforementioned
isomonodromy calculation which exists in the literature. Having achieved
such calculation and such map is tantamount to a proof of our earlier con-
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jectures for P| and a very strong check for P, making our analysis come full
circle and hence closing our paper.

2. Painlevé equations and resurgent transseries

In order to set the stage, let us begin by addressing resonant resurgent-
transseries solutions to the Painlevé equations (1.2) and (1.3), briefly re-
viewing the results in [28, 29, 30]. This should also highlight the need for
Stokes data, at both transseries and alien calculus levels—albeit we will
come back to alien calculus in section 3. At the same time, we also address
the role these equations play in 2d quantum (super) gravity and minimal
string theory—already mentioned in the introduction. Finally, we discuss
transseries “framing”; rectangular versus diagonal.

2.1. Painlevé I, 2D quantum gravity, and minimal strings

Let us begin by addressing Py (1.2), which we repeat herein:

(2.8) uf(z) — g u (2) = 2.

We are following the conventions in [28, 29], associated to a matrix-model
origin with odd potential [39]. If one were to consider an even-potential ori-
gin instead, we would find the % normalization which is also natural in the
Gel’'fand-Dikii KdV potentials context [94] (see [95] for results in this latter
normalization). In the mathematics literature, one other common normal-
ization is instead [5, 6]

(2.9) i = 6af + 2.

Of course all choices trivially relate to each other. We mostly work with (2.8)
as we are building upon [28, 29], but on occasion we shall also translate our
results to the (2, 3) minimal-string normalization [95] (where gs is the string
coupling)

1 4v2
(2.10) “?2,3) - ggf Ul(lg,g) =T 3 A

as this is the (KdV) normalization'? which matches against string-theoretic
world-sheet calculations once z is tuned to the conformal background [72,

. . .. 3
65, 95] (in this case, this is z — —m).

2See, e.g., [39, 95] for the relation between the (2.10) 3 and the (2.8) # normal-
izations.
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The construction of resurgent transseries solutions to nonlinear differen-
tial equations [110, 111], and in particular of resurgent transseries solutions
for our (resonant) Painlevé systems, begins with a perturbative solution,
say uipert(2), expanded in inverse powers of the variable z, around z ~ oo.
Such a perturbative expansion with asymptotics uypert(2) ~ /2 at infinity
is easily obtained as

(2.11)
1 s 49 . 1225 . 4412401 )

UL pert(2) =V < 18 T T a608° T 55296 © T 42467328 °

This power-series is asymptotic, with perturbative coefficients growing fac-
torially fast, uéo) ~ (2g)!, in which case nonperturbative instanton-type cor-
rections are needed in order to properly define'® a complete P; solution.

These come in the form of a transseries solution. In the variable'* z = 274,
P, admits a one-parameter transseries solution of the form

“+oo
(2.12) uy (x;01) Z ore” e Zug") x?
g=0

Here o7 is the transseries parameter, A is the instanton action, S some
characteristic exponent, and n is the multi-instanton number. Plugging this
back into Py [28, 29] recursively determines the transseries perturbative co-

(n)

efficients ug" around the n-instanton sector and further fixes

8 1
(2.13) A= i;—f B=-.
The two signs'® for the instanton action are due to the second-order nature
of P|, and already make clear that a full solution entails constructing a
two-parameter transseries. This is'® [28, 29]
(2.14)

2 =X _ log = (%]
Uux (gj 0'1,0'2 s Z Zgl 02 (n— m) Z< > z g+ﬁnm

n=0m=0 k=0 =0

13Which is not enough—one very much needs Borel resummations as well, but
we leave them for the next section.

14For the moment, just a convenient variable. Below we show it is in fact the
(multicritical) string coupling.

15Where the specific symmetric-pair solution is an immediate telltale of reso-

nance.
2

16When comparing formulae, keep in mind that the factor =5 was factored-out
most of the time in [29].
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The notation is the same as above, only now with two transseries parameters,
and with the added intricacies [29]

(2.15) kpm = min (n,m) — 1 dnm, gkl — % (n+m)— {% (k+ k‘nm)J )

In particular, ﬁlﬂl is the starting power of the (n,m) asymptotic series.
The coefficients ug;’m)[k] are again recursively determined by plugging this
ansatz into Py, albeit this is best done by working with a variable w = \/z
hence the reason why we are now labelling coefficients with a 2g subscript
(see [29] for these details, alongside the full recursion relation). Note how
transmonomial ~ e * powers are not all independent as one roams the
(n,m) N? transseries lattice—which implies that the transseries (2.14) is
resonant; see, e.g., [27]. It should also be immediately clear that there must
be more to the above logarithms than initially meets the eye—after all,
we expect Painlevé solutions to be meromorphic. Indeed, the “logarithmic
sectors” in the above transseries are not independent of each other; rather
they are a “resonant rearrangement” of the transseries solution [29], as

1[4 ¥
(mm)lk] — = (2 (0 (n—k,m—k)[0]
(2.16) ug =7 <\/§ (m n)) ug .

This implies the sum in k£ may be exactly evaluated, trading logarithms with
exponentiation of transseries parameters. One obtains!'” [29]:
(2.17)

400 +00 +o0
_2 —(r— A 2 (o
up (z;01,02) =25 E E ol oy'e (n—m)% =5 (n—m)oro: E ug;’m) 29+ Bnm
n=0m=0 g=0

Some examples of nonperturbative transseries sectors'® in (2.14) are [29]

(2.19)
1 5 11 75 21 341329 31
u%l’o)(a:) NI — ————= L0 f T — ————————= 10 f- -

64v/3 8192 23592960+/3

1"Note that when the transseries coefficients have no [k] superscript index, we
are simply setting it to [0].
8The coefficients we display are defined according to

400
(2.18) u%n’m)(x) ~ g3 ZugZ’m) g9 Pnm
g=0
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(2.20)
u(2,0)(x) N 196% 55 o 1325 LB 3363653 RS

I 6 576v/3 36864 530841603 ’
(2.21)
u(l,l)(x) o gE ﬁf 300713 e 4807377125 L2

I - 512 1572864 7247757312 ’
(2.22)

2,1) 11 u 985 a1 597575 am 660060187  a
Uy (m)2—$1 — T 4 r1i — T 10

2 4608v/3 15925248 5096079360/3

The coefficients in all these perturbative expansions also grow factorially
fast, turning every transseries sector asymptotic. All sectors, however, still
relate to each other via resurgence [24], as alien calculus relates distinct
transseries sectors to each other by means of resurgence relations whose
proportionality factors are Stokes data (see, e.g., [27])—more on this in the
next section.

The bridge to 2d quantum gravity, also denoted the (hermitian) “k = 2
multicritical model”, is rather simple [56, 57, 58, 59, 60]. The P solution (2.8)
describes the specific-heat of the simplest multicritical model, where the
string coupling gs relates to the z (or x) variable as

o

(2.23) gs =T =2 4.

The free energy and partition function of this system follows from its specific
heat via the usual

(2.24) F'(z) = —ui(2), Z1(z) = exp F1(z).

From the perturbative specific-heat (2.11) it is clear that the free energy has
the usual string-theoretic genus-expansion (the large z expansion is a small
gs expansion),

(2.25)

4 1 1 245 259553
FI(gs)z___'{'_lOggs : 6

7 2
152 ' 60 5760 % T 331776 % T 19252480 % T

and the exponential transmonomials in (2.12) become the usual D-brane
weights [87, 88|

(2.26) ~ exp <—i>
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(which, in this context, correspond to ZZ-brane contributions [65, 95, 99]).

As already mentioned, Painlevé movable-poles translate to simple zeroes
of the partition function. This is now simple to verify. Instead of trying
to solve (2.8) with an (asymptotic) expansion around the (fixed) irregular
point z ~ 00, let us consider instead an expansion around some (movable)
singularity, zg. A Laurent-series ansatz of arbitrary (negative) degree about
20 in (2.8) immediately yields degree 2 (the well-known double poles of P)
and further fixes its structure as
(2.27)

1 3z 328

up(z) = m-ﬁ-?o (z — 20)°+(2 — 20)>+A (z — 2)* +g (z — 20)%+- - .

The two transseries parameters o1, o2, parametrizing initial/boundary con-
ditions of the second-order ODE P, have now been traded by zy and A
(albeit the map in-between them is highly non-trivial). Following (2.24) to
reach free energy and then partition function immediately yields

1
(2.28) Zi(z) = — (2 — 20) + g—g (z —20)° + o (z —20)° + % (z—20)" +
SR
1120 0 '

This shows how P| double-poles became Zi(z) simple zeroes.

For completeness, let us address the (2,3) minimal-string (2.10). With-
out surprise, its perturbative free-energy'® has the standard string-theoretic
genus-expansion (we have already tuned to the conformal background, hence

no-longer any z-dependence)

(2.29)

3 75 245, 519106 e 10699640 4

1
3092 " 810% 6561 % T Res73s P T Th3tdar

F(2,3) (gs) ==

The ZZ-brane instanton action is now

(2.30) A= j:§l£:

9The relation between free- energy and specific-heat gets slightly upgraded to
3F('é 5 (2) = —3u(2,3)(2); where the 1 factor arises due to change from the (2.8) &

to the (2.10) § normalization [39, 95]
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and a couple of free-energy nonperturbative transseries sectors are

(2.31)
(10) 1 137 s 6433 & 12741169 I
F = - s + s — s + S T
2.3) (99) 3v6 % T216v2% T 103686 " T 1119744012 7
(2.32)
2.0) 1 109 , 11179 , 11258183
F = - + s S + s "7
(.3)(9) = ~55 % F 355 5% ~ 279936 %+ 5033818003
(2.33)
(1) 6, 5 15827 ;6630865 5
F s) — or Us Is s )
(o3) (9) = 5 95 F 5595 e 05+ Gamnons 06+
(2.34)

FCD(g) ~ 71 o 2099 : 25073507 I
(2.3) 81v6 " T 10442 % T 25104046 "

2.2. Painlevé II and 2D quantum supergravity

Py (1.3) follows in complete parallel with the last subsection. We first repeat
it herein:

1

S kii(2) = 2 pu (2).

(2.35) Hin(2) = 5

We are following the conventions?” in [40, 30]. Note that this normalization is
the natural one in the mKdV hierarchy [61, 63], and there are now no issues
of even versus odd matrix-model potentials. In the mathematics literature,
one other common normalization is instead [5, 6]

(2.36) il = 2 i + 2 .

which is of course trivially related to ours. As we build upon [30], we always
work with (2.35).

As for P, we begin with a perturbative solution with asymptotics
Pt pert (%) ~ v/z at infinity. This is easily obtained as

(2.37)
L 573 ¢ 10657 o 13912277

1, T3 _ 18012277 4,
pLpert (2) = Vz ( 16~ ~512° 8192 524288 )

20We are also focusing on the case of vanishing parameter, in order to connect
to 2d supergravity in the following.
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Just as for P, the above P perturbative power-series is asymptotic; a non-
perturbative solution is only properly defined via a transseries completion.
In the variable?! z = z_%, P\ admits a one-parameter transseries solution
of the form

“+oo “+oo
1 nA
2.38 pir (z;01) =2~ s ole % P ul™ 29
1 g
n=0 g=0

Here o7 is the transseries parameter, A is the instanton action, 8 some
characteristic exponent, and n is the multi-instanton number. Inserting this
ansatz back into Py [40, 30] recursively determines the transseries pertur-

(n)

bative coefficients ug ’ around the n-instanton sector and further fixes
1
(2.39) A==, B = 3"

The two signs for the instanton action are again due to the second-order
nature of P, and again make clear that a full solution entails constructing
a resonant two-parameter transseries. This is?2 [30]

(2.40)

=X log = (k]
ur(z; 01,09) =2 32 Zol oy'e (n-m)3 Z< ) Z .

n=0m=0 k=0 g=0

This is also pretty much the exact same structure as (2.14), including the
definitions (2.15) (but of course all transseries coefficients are distinct—
they are now recursively determined by plugging this ansatz into P, which
is again done working with the variable w = y/x hence the reason we again
label them with a 2g subscript; all details alongside the full recursion may
be found in [30]). The same holds concerning resonance and the remark
on logarithms—and its resolution. Also here the “logarithm sectors” in the
transseries are not independent of each other; rather they are a hallmark of
resonance in this case. One now finds [30]

n,m)[k 1 k _ (n—km—k)[0
(2.41) UE, k] — o (8 (m —n)) ug )[0].

21 Again, for now just a convenient variable. Below this will turn out to be the
string coupling.

22When comparing formulae, keep in mind that the factor =
most of the time in [30].

1
3 was factored-out
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Again, this implies the sum in k may be exactly evaluated, once more trading
logarithms with exponentiation of transseries parameters. One obtains [30]:

(2.42)
+oo +oo +oo

1 A
pir (z;01,09) = x5 E E ol oy e~ (nmm) g p—d(n—mjoro, E ug;’m) g9+ Bnm,

Some examples of nonperturbative transseries sectors® in (2.40) are [30]

. 17 . 1513 1. 850193 o

2.44) IO () ~ps - ZLpd g 2200 g 990 R

(2.44) gy (@) 2w = et e T eigarg Y T

A1 5461 4 173MOT b

R 3 3 — 3 “ e

96 7" T 9216 7" T 1327104 ’

291 s 447441 1 886660431 =0

— — 13 — T3 — T3 — e
128 32768 4194304

115 1= 30931 1 4879063 =

BT Tzt T eessse T

(245) iy (@) ~

(2.46) 1Y () ~ 321

(247) (@) = 2t -

The coefficients in all these perturbative expansions also grow factorially
fast, turning every transseries sector asymptotic. All sectors, however, still
relate to each other via resurgence [24], as alien calculus relates distinct
transseries sectors to each other by means of resurgence relations whose
proportionality factors are Stokes data (see, e.g., [27])—more on this in the
next section.

The bridge to 2d quantum supergravity, also denoted®* the (unitary)
“k = 1 multicritical model”, is rather simple [61, 63, 64]. The Py solu-
tion (2.35) describes the square-root of the specific heat of the simplest
(unitary) multicritical model. This also explains why we have denoted Py so-
lutions as uyp rather than wupy, as we have left the u-variable to precisely
denote the specific heat. The string coupling g5 now relates to the z (or x)
variable as

MY

(2.48) gs =T =2 2.

23 Again, the coefficients we display are defined according to

—+oo
1
(2.43) ,ug"’m) (x) ~a~3 E u(QZ’m) g9t Bnm
9=0
24 “Hermitian-k” of the previous subsection, and “unitary-k” herein, are of course

not the same k.
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The free energy and partition function of this system follows from its specific
heat?® via the usual

(2.49) Fi(2) = —un(2) = —pii(2),  Zu(z) = exp Fu(2).

From the perturbative specific-heat (2.37) it is clear that the free energy has
the usual string-theoretic genus-expansion (the large z expansion is a small
gs expansion),

1 3 63 2407
10g gs + 52 g2 + =00 s+ ooz e e

2. F s) = —
(2.50)  Fii(gs) 19 128 1024 7% " 4096 7

11
62 12
and the exponential transmonomials in (2.38) become the usual D-brane
weights [87, 88|

(2.51) ~ exp (gl> .

Also in the present P case Painlevé movable-poles will translate to sim-
ple zeroes of the partition function. Using the same strategy as for Py, let us
try to solve (2.35) with a Laurent expansion around some (movable) singu-
larity, zo. Such an ansatz of arbitrary (negative) degree about zp in (2.35)
immediately yields degree 1 (the well-known simple?® poles of Py;) and fur-
ther fixes its structure as
(2.52)

2z 1 2z
pn(z) = 0 G — ) b= (2= 202N (2 — 202+ 2 (2 — z0) 4+

— 20 3 2 18

As for Py, the two transseries parameters of the second-order ODE have been
(non-trivially) traded by zg and A. Following (2.49), it is immediate to reach
the free energy, fix an integration constant, and finally obtain the partition
function

1

Z
(2.53) ZH(z):—(z—z0)+50(2—20)3—&-6(2—20)44-
1 ) 5 20 6
+m(18)\—5z0)(7;—z0) —%(z—zo) +--e

This shows how Py simple-poles became Zy1(z) simple zeroes.

2Due to the pu — —u Py Zy-symmetry, P); solutions come in pairs but this is
irrelevant for the specific-heat.

26Double-poles of the corresponding specific heat, as expected from a statistical-
mechanical standpoint.
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2.3. Transseries structures: resonance and framing

What the two previous subsections clearly show is that the P, and P, cases
are extremely similar. In fact, we can write them both in one go, which will
greatly facilitate the upcoming analysis in our paper—as we shall see also
their Stokes structure will be extremely similar.

Both Py and Py two-parameter transseries, (2.14) and (2.40), are pretty
much the same and we will write them as (herein ~; = % and yip = % ensure
the leading ~ 4/z Painlevé behavior)

(2.54)

+o00 +oo nm log:n k +oo N .
RS 3 DT TNIED 3 1 B S

n=0m=0 k=0 g=0

It will be convenient in the following to have this broken down into its
constituents. The two-parameter transseries, ® (z;01,02),

+oo +oo
(2.55) O (r501,00) =27y Y ol oF e TMT B, (1),

n=0m=0

is herein split into a sum over its nonperturbative @, ,,,) sectors

Epnm k
log
o0 ()= 5 (25) a0,

k=0

each of which being given by an asymptotic series
0 NS ()l
, (k]
(2.57) Q(n,m)(a:) ~ E U’QZ mlE] patBi.

We had already seen that transseries data (2.15) was the same for Py and
Pi. We repeat it herein:

(2.58) kpm = min (n,m) — ndpm, Bl = (n +m) — {% (k+ knm)J .

Finally, logarithmic sectors are not independent, as all coefficients satisfy:

k
Lrmi _ L (a (m — n)) uim ],

(2.59) % k!
[k] n,m)[k ntm m,n)lk
(1) ] _ gy gt
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(we have also included an existing reflection symmetry valid for all coef-
ficients, and which is the same for Py and Pj). The only distinctions we
have—besides the obvious transseries coefficients and instanton actions—is
the parameter we have denoted by « above:

4
\/gv
In particular, the logarithmic k-sum in (2.54) may be evaluated exactly, to
(2.61)

(2.60) a1 = A = 8.

+oo +oo R )
O (z;01,00) =7 Z Z ol ot e (M) pzalnomjoio: @E%’m) ().

n=0m=0

To finish setting the stage, let us discuss transseries “organizations” in
light of resonance (and which will have clear impact in the structure of Stokes
data, as we shall see in the following). In fact, by definition, resonance is
itself a statement about the transseries organization, e.g., when defined as
the existence of distinct (n,m) sectors with the same transmonomial ex-
ponential weight—in our examples, ~ exp (— (n—m) %) More generically
and more precisely, our two-parameter transseries (2.55) collects nonpertur-
bative sectors @, ) labelled on a ZQZO semi-positive rectangular-lattice as
depicted in figure 3. These are the sectors which appear in the bridge equa-
tions of alien calculus (more in the following), relating distinct sectors to
each other via alien derivation and Stokes data—and which further relate
to Borel singularities in a natural way [27]. On the complex Borel s-plane,
potential singularities are located at s = £- A with £ € Z? an integer-valued
vector and A = (A, —A) the pair of Painlevé actions. This defines a map
projecting the transseries grid into the complex Borel plane as [27]

P:7Z? - C
(2.62) L AL,

which is not one-to-one once in the resonant case; i.e., kerl3 # 0. In the
present Painlevé case, this kernel is generated by the integer multiples of
n = (1,1). This vector defines the diagonal direction of the kernel. In light
of this, it is now natural to ask if instead of organizing the transseries in
the original ®(, ,,) “rectangular framing” (2.55), one might instead orga-
nize it in “diagonal framing”, i.e., along the kernel direction; as depicted
in figure 4. Certainly in this case distinct transseries sectors will now have
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Figure 3: Visual representation of the different sectors building the Painlevé
transseries (2.55). As explained in the text, they occupy (n,m) sites on a
semi-positive rectangular-lattice, with n “moving” along the orange direc-
tions and m along the green directions. Compare with figure 4.

distinct transmonomial exponential weights—albeit the transseries sectors
themselves will be more convoluted. Rewriting (2.55) or (2.61) in diagonal
framing is absolutely straightforward,

(2.63)
+oo . +00 .

® (;:01,09) = 0O (2, 1) + Y o e T 0l (2, 1) + Y ok et T oW (a, ).
k=1 k=1

Herein we have momentarily denoted n = o109, and introduced the “new”
sectors

(2.64)
—+00 400

+00
2O (@) =27 Y (102) By (@) =27 YD (102) by 20t
£=0 =0 g=0
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Figure 4: The Painlevé transseries, or “alien lattice”, in diagonal fram-
ing (2.63). In this resonant case, sectors on the main diagonal (black) @, ;)
all have vanishing instanton action, and all sectors along the same diagonal
have the same instanton action (always a multiple integer of A). In blue
we have sectors with positive action, in red we have sectors with negative
action. Each line corresponds to a fixed k in equations (2.64)—(2.65)—(2.66).

(2.65)
(k) — (0]
W0 im0 S (o ol (o) -
=0
+00 o0
— kS Jlazzz o 0.2 Eg‘*‘ke) g+5lz+k£
=0 g=0
(2.66)
(k) o (0]
s (% H) = YRS 01‘722(0102) (I)(M+k)( ):
=0
“+00 +00

= ’Y-‘rk—O’lUQZZ 0_0_2 EeJrk) g+ﬁ£€+k.
{=0 g=0
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As we will make clear as we go on, resonance is one of the reasons why
it is hard even just trying to guess Stokes data. But it will be by tack-
ling resonance head-on, in the resurgent asymptotic relations, that we have
managed to bypass it and analytically determine these data. This precisely
entails looking along the direction of the projection kernel of Stokes data,
which was already seen at the level of the transseries itself in the above
discussion.

3. Resurgent Stokes data in the resonant setting

Having made transseries structures clear for both Py and P solutions, we
still need to properly set-up resurgence and, in sequence, our main players:
Stokes data. We refer the reader to the pedagogical introduction in [27],
which we lightening review in the following.

Recall that all sectors in our transseries are given by asymptotic se-
ries (2.57), with zero radius of convergence, hence requiring Borel resumma-
tion in order to yield finite values. This procedure occurs in three steps.
First one takes the Borel transform of any asymptotic power-series via
B [22] (s) := F(;—:l) This produces a convergent power-series at the ori-
gin, which may then be analytically continued throughout the complex s-
plane to find the function B [®] (s). Finally, picking a direction € of integra-
tion on the complex s-plane, one obtains the Borel #-resummation of the
asymptotic power-series via Laplace transform

s

(3.67) Sp®(z) = /Oe h dsB[®](s)e =

This simple story turns extremely interesting once one realizes that B [®] (s)
is not entire, and the fundamental role its singularity structure plays. In fact,
the above integral (3.67) will not be defined along rays fg which encounter
a singularity of B [®] (s)—these are the Stokes lines on the complex Borel
plane. In order to describe what happens as the Borel resummation crosses
a Stokes line, one first defines lateral®>” Borel resummations Sg+®. These two
turn out to be related by the action of the Stokes automorphism &, [24],

(3.68) Sp+ = Sp- 0 6y.

Note that, for example, in the simple case of a one-parameter transseries with
a Stokes line along § = 0 and a singularity at A € R*—such as, say, (2.12)

2"These are always with respect to the Stokes line along s, and we can henceforth
drop the “S” subscript.
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or (2.38)—this formulation is elementary and just describes Stokes phenom-
ena as in [44]. One finds

(3.69) Siu(z;0) =8S_u(x;0+51),

with S7 the corresponding Stokes coefficient. In full generality, being an
automorphism, Gy must be the exponential of a derivation—this is the (di-
rectional, pointed) alien derivative Ay

(3.70) Sy = exp Ay,

The standard alien derivative follows immediately. Let {wyp} denote the set
of Borel singularities with same argument 6. Then:

(3.71) Ag= D) e T A,
we{we}

with A, the standard alien derivation. For our two-parameter transseries
(2.55), with Borel singularities located at s = £ - A via the projection
map (2.62), the action of the alien derivative on a specific transseries sector
®,,, with n = (n,m), is given by?®

(3.72) Apa®n =Sp- (n+£) Pppy

This result sometimes goes by the name of the bridge equation [24]. Herein,
Sy is the two-dimensional Stokes vector associated to the £- A Borel singu-
larity or, more precisely, associated to the £ transseries-lattice site. These
are the Stokes data, the coefficients we set-out to compute. It turns out [27]
that they are very much more accessible when working on the complex Borel
plane, where the analogue of (3.72) becomes?’

(373) BIBal ()] _,  ~Snmse < BlEnidl (s~ £ A) W

i

and where the proportionality factors S, _p,4¢ are the Borel residues. They
encode the exact same information as Stokes data (and in fact obviously

28This is actually not correct, as this expression is only valid for a non-resonant
transseries. It is nonetheless more pedagogical to start with just this formula, and
in any case we will write the correct one right below.

29This expression is not a strict equality: it solely displays the local, singular
component of the Borel transform.
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relate to each other; see [27] for many such formulae). In some sense they
are the “unexponentiated” version of Stokes data, as one may write the
action of the Stokes automorphism on a specific transseries sector as3’ [27]

(3.74) 69 n=%n Z Sn—>n+k£ efk% Dt e

Once all this data is on the table, one may walk the road back to the
Stokes automorphism (3.68) and finally fully describe the crossing of a Stokes
line. This makes it clear how whereas transseries expansions—essentially by
construction—immediately represent local solutions to our Painlevé equa-
tions, they can only be understood as global solutions once Stokes data is
known. We will come back to the resulting connection formulae in section 7.
We also refer the interested reader to [27] and its references for a detailed
exposition of all these concepts.

Let us run this story again, but now in our precise Painlevé context and
being fully explicit on what concerns resonance. Following our discussion in
subsection 2.3, in the resonant setting the projection map (2.62)

(3.75) P:li— AL, Lc7?

has a non-trivial kernel, ker8 # 0. For our Painlevé equations, where the
action-vector has the form A = (A, —A), this is simply

(3.76) ker P ={n(1,1),n € Z}.

Resonance also plays a distinctive role at the resurgent level, where multiple
transseries sectors have the same action, or transmonomial weight, as we
illustrated in figure 4. In fact, in the resonant setting, all transseries sec-
tors of the form ®,, g with k € ker 3 will contribute to the very same Borel
singularity—which immediately implies the singularity structure cannot pos-
sibly be as simple as was illustrated in (3.73) (hence, neither can (3.72) ex-
actly hold). A simple visualization of this projection is illustrated in figure 5.

3.1. Setup: organizing resonant Stokes vectors

The correction required to make (3.72) precise follows from looking at fig-
ure 5 (but see [27] for a proper derivation). The alien derivative on a specific

30The infinite sum truncating if we hit the transseries-lattice boundary.
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Figure 5: Schematic projection of the transseries “alien lattice” into the
Borel plane, in the present resonant setting. Multiple nodes in the lattice
get projected to the same point, and the singularity structure on the Borel
plane becomes more complicated than in the non-resonant setting. Under
this projection, all singularities on the Borel plane are located at nA, with
n € zZ*.

sector ®,, now “sees” the whole kernel-direction, transseries sectors and
Stokes vectors alike,

(3.77) Nealn= Y Serp (n+L+p)Tpipp
peker P

For our Painlevé cases, it will be often convenient to rewrite (3.77) in compo-
nent notation. Note how the projection map 3 has the same action on every
representative of classes in Z2/ker 3, so it is convenient to choose represen-
tatives with one null component. In particular, we will distinguish between
forward alien derivatives—derivatives Ay 4 with £- A > 0—and backward
alien derivatives—derivatives Ay.4 with £- A < 0. With £ € N*, we simply
define Apy 1= Ay).a and A g4 1= Agy).4- In this case, equation (3.77)
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becomes

n+4+p
(B78)  Ama®nm) = D Supp) - [ } P (ntt4pmtp)

=t m-+p
n+p
(3'79) AfZA(I)(n,m) = Zs(p,ﬁ—i-p) ’ |: m+L+p :| q’(n-&-p,m—f—ﬂ-f—p)'
PEZ

These formulae may be simplified given the natural resurgence bounds on
Stokes vectors [27], namely, S(,,) vanishes if either p > 1 or ¢ > 1 or
(p,q) = (1,1). Further, another simplification on the infinite-sum arises from
the fact that by definition @, ,,) = 0 for n < 0 or m < 0. Finally, it will be
useful for the following to perform the substitution p — —p — £+ 1. We may
then rewrite (3.78)—(3.79) as

(3.80)
min(n+1,m+1—2¢) n41—p
Apa®nm) = Z Sa-—p1-p-o) - [m f1-p— g] P(n+1-pmt1-p-0);
p=0
(3.81)
min(n+1—¢,m+1)
n+l—p—1~
A_pa®m) = Z Sii-p-t1-p) - [ m+1—p :|q)(n+1—p—é,m+1—p)'

p=0

These are the alien derivatives we shall use in the following. In accordance
with these expressions, let us define a forward Stokes vector, a vector S, )
with p —¢ > 0, and a backward Stokes vector, a vector S, ,y with p —
q < 0. Note that Stokes vectors are organized on a two-dimensional lattice,
almost entirely sitting in the third quadrant of Z? [27]—which is illustrated
in figure 6.

Let us make a remark on conventions. In previous work, notably the one
we construct upon [29, 30, 42], Stokes data notation used different conven-
tions. When comparing with those papers, we find Stokes data denoted by
S(Ea) and §l§a) therein. Our present work follows in line with the vectorial
notation of [27]. In order to compare all different conventions, it is enough
to compare our bridge equations (3.80)—(3.81) with the corresponding equa-
tions in [29, 30, 42]. The resulting map between notations is then:

5@ s@=h
(3.82) S-p1-p-) = §(1§J) ] ’ St-p-ti-p) = §(€p) ’
s ¢
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Sca-n) [Sca-n]| [Scr-n| [So-n| [Sa-s

Figure 6: Organization of the Stokes vectors on a two-dimensional lattice.
Stokes vectors along the same diagonal are associated to the same instanton-
action, i.e., they will appear together upon action of the corresponding alien
derivative, (3.80)—(3.81). This fact, that multiple Stokes vectors are associ-
ated to the same instanton-action, is of course a consequence of resonance.

for £ € N* and p € N. Imposing reality of the transseries solution at real,
positive x constrains the forward Stokes vectors to be purely imaginary [42].
This behavior has been checked numerically for both Py [29] and Py [30].
For backward Stokes vectors, however, no such reality condition holds—the
components of the vectors have been numerically observed to show non-
trivial phases.

3.2. Setup: organizing resonant Borel residues

Having understood resonant Stokes data, let us next address resonant Borel
residues. Whereas Stokes data are the building blocks of resurgence as un-
derstood via alien calculus (3.72), their rearrangement into Borel residues
essentially appears everywhere else. To start-off with, when studying Borel
singularities as in (3.73). But also when addressing the resurgent large-order
behavior of transseries sectors, all asymptotic formulae explicitly depend on
this rearrangement of Stokes data into Borel residues—to the extent that
one may think of Borel residues as some sort of “amplitudes” measuring the
effect of resurgence: e.g., at large-order, the Borel residue S,,_,,,, measures
the influence of the sector ®,,, on the large-order behavior of the ®,, sector.
In light of the alien-derivative “resonant upgrade” from (3.72) to (3.77), it
is now also simple to see how Borel singularities behave under resonance
(looking at figure 5 or else going back to [27]),

(3.83)

log(s—£-A)

2

a Z Snonterp X B®nieipl (s — € A)
pEker P
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As already mentioned with (3.74), Borel residues are the relevant com-
binations when spelling out the action of the Stokes automorphism (3.70)
on specific transseries sectors (and, eventually, we will see how they build-
up connection formulae). For our Painlevé problems, with instanton actions
£A, the only non-trivial Stokes automorphisms are &, and & .. They can
be expressed in terms of the Borel residues as

(384) @(]q)(n (b(nm Ze & Zs(nm )= (n+€—p,m—p) (n+€—p,m—p)v
PEZ

+o00
4
(3'85) gwq)(n,m) = <I>(n,m) - Ze+ ® Z S(n,m)—>(n—p,m+€—p) (I)(n—p,m+é—p)'
/=1 PEZL

As always, we implicitly define ®(, ) to vanish if a < 0 or b < 0. Via (3.84)~
(3.85) above, we may now split the Borel residues in two classes, much like
we did for the alien derivatives and Stokes vectors in (3.80)—(3.81). Denote
S(n,m)—(a,p) as a forward Borel residue if it appears in the action of &, upon
®(,,m); and as a backward Borel residue if it instead appears in the action
of &, upon @, ,,,). It is immediate to see that a Borel residue S, ) (a,p)
is forward if and only if n — m < a — b, and it is backward if and only if
n—m>a—b.

Borel residues are slightly more difficult to display in a graphical rep-
resentation as compared to Stokes vectors—whereas the latter essentially
depend on a lattice site and are immediate to organize as in figure 6, the
former depend on “starting” and “ending” lattice nodes. As such, one con-
venient way to represent them on the two-dimensional transseries “alien
lattice” with sectors @, ,,), is with arrows in-between the joined sectors.
We plot one such visualization in figure 7.

3.3. Relating Borel residues and Stokes vectors

Borel residues and Stokes vectors obviously encode the exact same infor-
mation, in which case we may determine ones from the others—see [27] for
many explicit such formulae in generic cases. Let us make these relations
precise in the present Painlevé example. In fact it will turn out that there
is a “minimal set” of Borel residues out from which all Stokes data may
be constructed. Their relation stems from Stokes data being an “exponenti-
ated” version of Borel residues; via the Stokes automorphisms (3.70) which
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Figure 7: Organization of the Borel residues on the transseries lattice. Being
complex-numbers (not vectors) in-between two distinct nodes, one conve-
nient way to visualize Borel residues is by interpreting them as “amplitudes”
for the resurgence of the linked nodes. In the plot, we have illustrated vari-
ous sectors which resurge upon the asymptotic behavior of the @3 3) sector
(their thickness illustrates the strength of their contribution). We have rep-
resented with blue arrows the Borel residues of positive action, and with red
arrows the Borel residues of negative action.

are now:

(3.86)

(3.87)

+oo

ﬁo = €exp Ao = exXp Z e,g:é Apa |,
=1
+oo R

S, = expA, =exp ZGM? AN
/=1

The explicit relation between Stokes vectors and Borel residues is immedi-
ately obtained by simply applying (3.86)—(3.87) to any sector, expanding the
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exponential (using definitions (3.80)—(3.81) to recursively compute multiple
alien derivatives), and then collecting the resulting terms so as to fit them
appropriately in (3.84)—(3.85). There are three important properties in this
relation:

e In light of our “forward-backward” definitions, any forward Borel
residue will only be a combination of forward Stokes vectors; and any
backward Borel residue will only be a combination of backward Stokes
vectors (actually, hence those definitions).

e The bounds on the sums in the alien derivatives (3.80)—(3.81) also
translate to bounds in the Borel residue formulae. For example, when
considering forward alien derivatives (3.80) on @, ,,,), one obtains lin-
ear combinations of the sectors ®(,4¢_p m—p), wWith p > 0. On Borel
residues, this translates to S¢, m)— (n4-t—pm—p) @04 S(p.m) = (n—p,m+e—p)
vanishing if p < 0. It is then convenient to rewrite (3.84)—(3.85) with
such explicit bounds, as

(3.88)
+o00 min(n+£,m)
ﬁoq)(n,m) = (I)(n,m) - Z e—ﬂ% Z S(n,m)—>(n+€—p,m—p) (I)(n+€—p,m—p)a
/=1 p=0
(3.89)
+o00 min(n,m+£)
ﬁﬂ—q)(n,m) = (I)(n,m) - ;: e+€% 2; S(n,m)—>(n—p,m+€—p) (I)(n—p,m+€—p)'
—1 =

These constraints on Borel residues are illustrated in figure 8.

e There is a “minimal set” of Borel residues which yields all Stokes data
(and, conversely, all other Borel residues). To characterize this minimal
set, let us focus on forward Stokes data—the same discussion holds for
backward Stokes data. The relation between Borel residues and Stokes
data implies that every forward Borel residue will be of the form
(3.90)

n—i—ﬁ—p :| +R(n,m)

S(n,m)ﬁ(n+€fp,mfp) = _S(ffpﬁp) ' [ m—p (n+€—p,m—p)’

(n,m)
(n+L—p,m—p
ucts of forward Stokes vectors S;_q gy, with ¢ < £ and ¢ < p, and

all the actions of the Stokes vectors in a given term of the product
will sum up to £. By working inductively on ¢, we can deduce that

where the remainder term R ) is a linear combination of prod-
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Figure 8: Ilustration of the constraints on Borel residues. As in figure 7,
let us focus on the @33y sector, which is framed in black in the plot. From
this sector, the non-vanishing forward Borel residues are those connecting
®(3,3) to all sectors framed in blue—but where only the Borel residues con-
necting to sectors colored in blue are actually needed to construct all other
Borel residues S3 3)_;(p+s,p)- An analogous situation holds for the backward
residues (now in red).

all Stokes data S(;_q _4) with ¢ < £ and ¢ < p are known. Then, all

remainder terms are known, and we write instead

n+fl—p (n,m)
(3.91) S(g_p’_p) . [ m—p ] = R(n—f—ﬁ—p,m—p) - S(n,m)—>(n+€—p,m—P)’

(n,m)
are known by the inductive hypothesis, and the Borel residues with

where in this rewrite the right-hand side is fully known: the R

action ¢ have been obtained using some numerical procedure (more

below). Next, consider two copies of the previous equation, where we
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choosen=m=pandn=m=p+1,

(
¢ (7,
S(e—p,—p) - 0 = R(Z(I))) S(pp)—=(6.0)>
(3.92) )
l + 1 (p+1, +1)
S(e—p,—p) ’ 1 = R(?ﬂ,f) - S(p+1,p+1)—>(€+1,1)a

and rearrange these two equations as a matrix equation:

(3.93)

p)

[ : ; ] S(Z ) = [ ( IRE%I)D) - S(p,p)ﬁ(é,o)
e +1p+

(+1 1 RETIPD S pan)os(erL)

The Stokes vector S(,_, _p) finally follows from matrix inversion (with
determinant ¢, hence always invertible) acting on the right-hand side
which is known. In conclusion, the set of Borel residues

(394)  {Stga)»(0) Sararsery | 1SE<60<g<p]
is sufficient to construct all remainder terms Rgg’g)) and Rgill’f;r 1);
hence, alongside the Borel residues S, ;) r,0) and S¢pi1 pt1)—(041,1)

they are sufficient to construct all Stokes vectors S A com-

f—p,—p)‘
pletely analogous result holds for the backward direction: remainder
terms for S(_, ;) are now constructed from the set

(3:95)  {S(qg) =00 Sgrgt) sty | 1<t <6,0<qg<p},

with the vector itself obtained with the added knowledge of S, ;,) (0,0
and Sgp1,p41)-5(1,6+1):

Then, for all purposes and from now on, we may solely focus on Borel

residues which start at transseries sectors of vanishing instanton-action (the
main diagonal). Everything else follows. In addition, we will later find a rela-
tion between forward and backward Borel residues, that allows us to obtain

one set from the other: this relation will hence allow us to solely focus on
an even smaller subset of the data, the set of forward Borel residues which
start at diagonal sectors.
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3.4. The general structure of Stokes vectors

It turns out that not only the Borel residue story is simpler than it seems at
first sight—as we have just seen in the previous subsection—but also Stokes

vectors have a simpler structure than what it seems at first sight. In order

to understand this, we need to make use of two facts:

In [29], for Py, and in [30], for Py, numerical observations suggested that
the following relation between vectorial-components of Stokes vectors
should hold:

(2) ___ P O
(3.96) S(=p-p) = p+1 S=p-p)°

All our present additional numerical data confirms this relation, in fact
with improved accuracy, in which case we shall assume it to be true
for arbitrary p.

In [27], albeit in the non-resonant setting, the following fact was shown.
In order for the commutator of two alien derivatives, say An.4 and

A4, to still result?! in an alien derivative, A(n4m).a, then their
corresponding Stokes vectors must verify the following necessary and

sufficient proportionality relation:
(3.97) Sntm X (Sp-m) Sy, — (Sm -n) Sy.

We have numerically verified this relation to hold, with great accuracy,
for all our (resonant!) Painlevé data. As such, we shall assume it to be
true for arbitrary Stokes vectors (this will later be checked in section 6,
more specifically in tables 14 and 15 therein). For the moment, we focus
on its consequences for generic Stokes data.

Combining (3.96) and (3.97), we obtain the following general structure
of Stokes vectors:

(3.98)

(3.99)

¢ p+4
S—pir-p-t) = Nl()p[ —p }’

.y —p
S(lfp*&lfp) = Nl(—p) |:p+e :| .

31With the obvious exception of the commutator between A,.4 and A_,. 4.
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Figure 9: Vectorial structure of Stokes data (upgrading figure 6). In the

proportionality factors NZSQ of (3.98)—(3.99) the superscript indicates which
diagonal we are on; whereas the subscript indicates the “depth” along the
selected diagonal. For forward vectors, p corresponds to the z-coordinate on
the grid, while for backward it corresponds to the y-coordinate.

In these expressions, ¢ and p are integers with?? ¢ > 0 and p > 0. This
resulting vector structure is illustrated in figure 9—and is in fact rather

simple: we have reduced our unknowns to the proportionality factors Nl(Z
and N (

175) (this also finally explains the notation used earlier in the intro-
duction, for (1.6) and (1.7)). This structure also has a consequence for the
computation of Borel residues: instead of needing two Borel residues in or-
der to construct a single Stokes vector, we now only need a single residue.
In particular—and for numerical convenience as will be explained in more
detail in section 6—we shall always compute the Borel residues S, )0
numerically, and then compute all others by reconstruction via their relation
with Stokes data.

3.5. Stokes transitions as flows on moduli space

Up to now we have discussed the action of either alien derivative or Stokes
automorphism (3.70) upon specific transseries sectors ®y; e.g., (3.72) and

#From now on, whenever we write Stokes vectors as S(_p1_p—p and
S(1—p—t,1—p) We are implicitly assuming the bounds £ > 0 and p > 0 for integer ¢
and p.
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(3.74), respectively. In order to understand the Stokes transitions or con-
nection formulae®? associated to Stokes automorphisms, one first needs to
rewrite these formulae as acting on the full two-parameter transseries (2.55).
For what concerns A, this is in fact the original way to write the bridge
equation [24]

0P

(3.100) Apa® = Sy(0) 5

The proportionality vector on the right-hand side is dictated by Stokes data,
i.e., its o = (01, 02) dependence is fixed (see below). The great advantage
of writing the bridge equation like this is that the Stokes automorphism
immediately becomes a flow on the space of transseries parameters, yielding
connection formulae. Introducing

(3.101) Sy(o)= Y Si(o),

Le{ls}

essentially along the same lines as in (3.71) but where we now use {£g} to
denote the set of Borel singularities with same argument 6, i.e., the set of
lattice®* vectors £ with arg (£- A) = 0; then appropriately using the bridge
equation (3.100) in the Stokes automorphisms (3.70) yields

(3.102) Sp® (2;0) = 5952 & (2;0) = @ (2;Sy(0)),

where o — §,(o) is the automorphism generated by the two-parameter flow
of the vector field Sy(o) - 8% and it explicitly yields the connection formula
associated to the Stokes transition [42]. The trivial one-parameter example
associated to (3.69) is

(3.103) Sy (z;0) = %155 @ (x;0) = @ (2;8)(0)) = P (x;0 + 51).
Of course for our Painlevé problems, transseries solutions (2.55) are param-

trized by (o1,02) € C x C, hence the corresponding Stokes automorphisms
acting on (2.55) will likely yield more complicated Stokes transitions than

33Hence making Stokes phenomenon fully explicit; for instance as in (3.69).

34Tn the resonant setting there exists different £; and €5 such that £;- A = £5- A.
In this case, the set {€y} is defined as a quotient set with the identification that two
vectors are in the same class if they are projected to the same number. Sums over
such a set will require a choice of representative in the class. In all computations
that follow, the choice of representative is non influential.
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this. Iteration of these “jumps”, occurring at Stokes lines, lays down a tra-
jectory in o-space which allows us to go anywhere on the Painlevé com-
plex plane, hence turning our local transseries solution into a full-fledged
global solution. Note, however, that our solutions still obey the Painlevé
property, hence this hopping trajectory eventually returns to its starting
point. This implies we could have started anywhere on this “closed-loop”
trajectory, and we would still be describing the very same solution. In other
words, the moduli-space of initial-data or boundary-conditions is not truly
parametrized by (o1, 02) living in C x C, but requires being modded out by
this equivalence relation—originated by the Stokes automorphism—which
we have just described. This is an intricate discussion, out of the scope of
this work, which has seen very interesting geometrical understanding in, e.g.,
[112, 113].

Let us explicitly formalize the aforementioned concepts in our (reso-
nant) Painlevé contexts. First, rewrite the two-parameter transseries (2.55)
in slightly more compact vector notation,

n-A

v (I’n(.’B),

(3.104) O (z;0) = Z o"e”

neN
where we are using multi-index notation; e.g., o™ is defined as 6™ = H?:l o}
(basically, this just so that the upcoming derivation is equally valid for ar-
bitrary k-parameter transseries). Given A = (A, —A), the (singular) Stokes
lines (3.68) are at g = 0,7. For the purpose of describing the Stokes-
automorphism flow, it is also convenient to introduce arbitrary powers of
(3.70) [42]

(3.105) &F = exp (T Ag) :

This is simply computed from G, by replacing every Stokes vector Sy with
T Sp. Its corresponding Borel residues (computed from “t.Sp Stokes data”)
will be denoted by Sﬁ{lm. Let us next, in sequence, compute the alien deriva-
tive as in (3.100) and Stokes automorphism as in (3.105), applied to the full
Painlevé transseries, in order to produce connection formulae—which is to
say, find the vectorial functions §;, (o). To run the calculation generically,
let us further denote by {£y} the subset of vectors £ € Z? producing Borel
singularities £y - A with same argument 6 (the sum over such singularities
translates to a sum over such subset). The calculation then proceeds along
the following steps:
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e The directional, pointed alien derivative (3.71) acts on transseries sec-
tors via (3.77), as

(3.106)  Ag®n= > > e T Spp (n+L+P) Prieip.
Le{Ly} pCker P

Its action on the full transseries (3.104) can then be written as

(3 107)
Z Z ZO' —em Serp (N+L+P)Ppipip(T).

£2e{ly} pker P neN3

We added the term p - A in the exponent, changing nothing as p €
ker 3. The simple shift n + £ + p — n in the sums then yields

(3.108) A =33 Y P Sy ndn(a).

neN Le{Ly} pcker’p

If one now defines

(1)
op| 018
(3.109) Sylo):= > Y o tP U S@gp
£e{ty} pCker P 29¢4+p
then (3.108) immediately becomes®

, 0P
A1 A,d =S L
(3.110) Ap® = Sy(o) 9’

leading to both the (directional) bridge equation (3.100) and the vector
field Sy(o) generating the flow (3.102). The above equality of course
shows how Aa is indeed a vector field on the space of transseries param-
eters, and, furthermore, (3.109) explicitly shows how Sy(o) is solely
dictated by the Stokes data with fixed o-dependence. Conversely,
via (3.109), one may also think of Sy(a) as the generating function3¢
of full Stokes data.

35This result is a particular case of the more general statement proven in [25].
36For example, in the case of a (non-resonant) one-parameter transseries of the
sort (2.12)—(2.38) one finds

(3.111) SV = s,
(3112) SW(o) = SYWo2+8UeP+ 8N4+ 8% 6% +
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e The Stokes automorphism (3.105) acts on transseries sectors via (3.84)—
(3.85), as

_eaA
(3113)  SfPn=Cn— > e 5 Y S i Pririp.
Le{ls} p€Eker P

Its action on the full transseries (3.104) can then be written as

(3.114)
&)@ (x;0) =2 (z;0) —

Z Z Z o W“f”) : S’E;El)n+£+p q)n+€+p($)-

Le{ly} pEker P neN2

Performing the same shift in the sums as before yields
(3.115)

S5 ® (v;0) = Z( DD D P f—P>e—"Jf O, ().

neNg £e{€s} pker P

Via the bridge equation (3.110), the action of the Stokes automor-
phism (3.105) on the full transseries (3.104) may also be written as

(3.116) &I (z;0) =50 (@) 55 & (x;0) = (m;ﬁéT)(U)) ,

which is basically the “t-version” of (3.102). Matching of (3.115)
and (3.116) implies3”

TR ) R S S R

£c{ly} pCker P

370One technical assumption is further required: that if ®, (x) and ®,,(z) have
the same action in the exponential transmonomial, i.e., n—m € ker P, then ®,,(x)
has the same asymptotic behavior as ®,,(z) (up to a non-zero constant) when
x — 0 if and only if n = m. In both P, and Pj cases this condition holds as the
asymptotic behavior of the sectors is given by

(p+S p)[k]

D (prep) () ~ ?(log )",

Two sectors ®(,4¢,) and (440, have the same asymptotic behavior only if p = g.
For the sectors of negative action, the same asymptotic behavior holds.
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Determining the automorphism generated by the Stokes flow now
amounts to finding the vector function SéT) (o) : C? — C? satisfy-
ing (3.117)—which explicitly shows how ﬁ((f)(a) is solely dictated by
Borel residues data, with fixed o-dependence. Conversely, at T = 1,
one may also think of §y(o) as the generating function®® of full Borel

residues data.

In section 5, we shall present closed-form formulae for (3.109) in the con-
text of both P; and Py solutions alongside their associated (string theoretic)
free energies—hence closed-form formulae generating all their Stokes data.
One might then be tempted to use a similar procedure (say, via (3.117)) to
compute SéT) (o). For example, the ith component of Séf) (o) can be obtained
by picking n = e; in (3.117),

T A S

Le{Lo} pEker P

In practice, however, this computation is hard to perform due to the intricate
relations between Borel residues and Stokes vectors. An alternative path is
to find Sy(o) by integration of Sy(o), which is done by solving the system
of differential equations

(3.121) Sy (87(@)) = 8770,

(3.122) sy (o) =

Once the vector functions 5((;) (o) are obtained, (3.117) finally indicates how
to use them to get generating functions for the Borel residues (as mentioned
above), and can be used as a confirmation that the transitions are the correct
ones. In particular, evaluation at T = 1 will by definition give the functions
Sy(o). Later, in section 7, we shall use this approach to present closed-form
formulae for (3.120), again in the contexts of both P} and P;—hence closed-

38For example, in the case of a (non-resonant) one-parameter transseries of the
sort (2.12)—(2.38) one finds

(3118) §O(O') = 0 — S()_>17

(3.119) Sﬂ.(d) = 0'—52_)10'2—53_&0'3—54_>10'4—S5_>10'5—'~'.
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form formulae generating all Borel residues. We will also see how there is
an appropriate choice of coordinates which rewrites these functions almost
trivially as simple shifts.

4. From large-order asymptotics to closed-form asymptotics

Having understood Stokes data, Borel residues, the relevance of their gen-
erating functions and how they reorganize themselves into the Stokes auto-
morphism—which in some sense is what one really needs to compute in
order to access them all—, we may turn to the actual calculations. Due
to the prominent role Stokes data or Borel residues play in large-order
asymptotics—see [27] for generics and [28, 29, 30] for Painlevé—this is
where we start: how resurgence dictates the asymptotic growth of the co-
efficients uén’m)[k], in terms of the other sectors and weighted by the Borel
residues. Large-order asymptotics was extensively used in [29, 30] to compute
Stokes data numerically, which we now build and improve upon. Subsec-
tion 4.1 discusses a method based on large-order analysis, which computes
arbitrary Stokes data in a systematic way. Subsection 4.2 then presents
the method of “closed-form asymptotics”, a procedure which we use to
conjecture closed-form expressions for the Stokes data and that will be
the basis for our closed-form results—later presented in the following sec-
tion 5.

4.1. Large-order asymptotics: review and upgrades

Resurgent large-order asymptotics is a computational technique which re-
lates the (asymptotic) growth of the coefficients in the transseries sectors
to each other [27]. It makes the consequences of resurgence explicit in re-
lating different sectors, and allows access (in principle) to all Stokes data—
albeit in a numerical form. This technique has been largely used in the
literature; the interested reader may refer to [28, 29, 30] for previous appli-
cations to Painlevé equations. The exposition in this paper, however, will
follow the guidelines and notations in [27], adapting it to the resonance set-
ting and exploring the consequences of the symmetries of P; and P prob-
lems.

Large-order asymptotics is based on the Cauchy theorem. Defining the
discontinuity operator across a Stokes line,

(4.123) Discy :=1 — &y,
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we observe that the only angles across which Discy acts non-trivially are
6 = 0, 7. Then, the Cauchy theorem3? can be written as*®
(4.125)

S (r;0) ~ —— W————" — ——

1‘ +°Od Discy @ (w; o) 1,/_Oodw Discwé(w;a).
27 Jy w—z 2mi

w—x
Expanding the transseries in powers of o, we find the analogous statement

for transseries sectors
(4. 126)

1 oo Disco @(,,.m, 1 -0 Disc, ®(,,
(I)(n,m)(x)g_—. dw i )(w)__'/ dw ' (n, )(w).

27 Jy w— 2mi w—x

Setting n = m one gets relations for the diagonal sectors, which, as dis-
cussed in subsection 3.3, will yield all the necessary Borel residues needed
to compute arbitrary Stokes data. Using (3.88)—(3.89) we obtain (after a
convenient translation p — n — p)

+0o n

P 2 :Z > a® (w)
(n,n)( 27-‘-1 (n,n)—=(p+£,p) / dwe “w ﬁ —

¢=1 p=0

+oco n

o0 A @ (w)
¢4 = (p,pt+l)
(4.127) — ZZ .- ,p+€)/ dw e PP,

¢=1 p=0

Now use (2.56)—(2.57)—(2.58) to convert the asymptotic equality between
formal power-series into an asymptotic equality between power-series coef-

39Note how, in principle, there should be a term in the Cauchy theorem contain-
ing an integration around the singularity at = 0. See [114, 115] for a discussion
on why this term does not contribute in the P, and P cases.

40T hroughout, the symbol ~ denotes an asymptotic equality defined in the fol-
lowing way: a function f(x) is said to be asymptotic to a formal power-series in x
with coefficients ¢, in the limit  — 0 if, for every N € N,

N
(4.124) f(z) — Z cnz™ =o (V).
n=0

Two functions are asymptotic to each other if they are asymptotic to the same
formal power-series. Note that a function can be asymptotic to a power-series with
zero radius of convergence: this is what happens in the non-trivial resurgence ex-
amples, where the sectors in the transseries are represented by formal power-series.
An analogous definition holds for functions that are asymptotic to power-series in
27! in the z — +oo limit.
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ficients. Here we use that B[O] = n, alongside the integrals:
(4.128)
i -1 —4z k. _ g

Hy(g,0) := /0 dz2z97te ™ logh 2 = TR

(4.129)
+o0 k L N
Hio,0) 1= [ az a7t ent logh (=) = 3 <t> (i)~ Hilg. ).
0 =0

To arrive at the last equality, we have chosen the analytic continuation of
the logarithm as: log z is real for z real-positive, and log(—z) = log z + im
again for z real-positive. The integrals in (4.127) then become

(4.130)

400 400 o0 P
dwe=t2 ® p+£,p Z Z Z z9 p+€,p)[k]
0 2)k Usp,

g=0 h= OkO
XHk(g h= ﬂp%,p A>’

(4.131)

—00 R (I) é +00 +o0 P .Tg
[ awerts Rowealt) S

gOhOkO

ka(g h=B o eA).

Using these integrals and translating ¢ — g 4+ n in the right-hand side
of (4.127) allows us to finally obtain the main asymptotic relation for diag-
onal transseries coefficients. This is:

(4.132)
nop
n,n)[0 +£,p) [k
uég M o Conmi Zzzzs(n,n)ﬁ(ﬁé,p) (=2)” k“gijl P
x Hj, (g+n—h prHp A)—

g—htn— B(p p+2)( 2)_k X

5]
(]
(]
FL?’B

(nm)—(ppte) (—1)

<P M (g4n—n- gl eA).
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All large-order relations which are necessary in order to compute Stokes data
will be obtained from this relation. But there is one further simplification
that makes explicit how our two Painlevé actions are symmetric: this is the
backward-forward symmetry to which we now turn.

Backward-forward symmetry The Painlevé transseries coefficients
u™E are iterativel d f i lati d i
2 y constructed from recursion relations computed in

[29 30]. Among others, these recursion relations yield the properties (2.59)
for the coefficients (essentially the same for Py and Pyj). As we shall see now,
these properties have a very relevant outcome. In fact, we may use them to
reduce the amount of coefficients appearing in the right-hand side of (4.133)

solely to the set ug;fe’p )[O], for p,h > 0 and ¢ > 1. In this way, we obtain the
(simpler) asymptotic relation*!

(4.133)

400 +00 n

i 1 L |
a0 LSS Zg(%@ WH R0l

=1 h=0 p=0 k=0

X (S(n,n)ﬁ(er[,p) ﬁk < +n— h — B (p+£,p)’ gA) +
. n k
(=) (D Sy i B (94— h =B, £4) ).

(nm)[0]

The aforementioned symmetries of the coefficients further imply “2(29 ) =

0, in which case it follows

(4.134)

400 +o0 n

~ D233 g (50)

(=1 h=0 p=0 k=0
X (Stumsren Hx (204 1Hn—h— 80, .04) -
~() (V)™ Stumysrny Hi (20 +14n =k = B0, 4. 04)).
Now, the asymptotic behavior of the functions Hy, Hy, is given by

(4.135) Hy, (g, 0A) ~ Hy, (g,0A) ~ (g — 1)! log" g (1A)™9

(SIS

“'Having set the logarithm log (—1) = +im, we now set the square-root (—1)
+Hi.
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In order for (4.134) to hold, we can look at the leading large-order behavior of
its right-hand side and impose that the coefficient of the expansion vanishes;
then look at the next-to-leading large-order behavior, and so on. In order to
get necessary relations (which we will later prove to be also sufficient), we
can drop the sum over /—as terms with growths (¢/1A)"Y and (¢34)™7 have
different growths when ¢; # {5—and choose h = 0—as the leading factorial
contribution is obtained when the argument of Hj and Hj is as large as
possible. We finally use the inverse relation in (4.129), between Hj and Hy,
to obtain

(4.136)

0~ S S L (@ N kb

_Zkzo w50 u *
p=0 k=

0

5k

. \k— 0

x <5<n,n)a(p+e,p) > (t> (—im)* " Hy (2 + 140 = B0, 4, 40 0A)
t=0

A\ L n (0)
— (—1) (—1) +p S(n,n)—>(p1P+f) Hk (29 + ]. + n — B(p-&-@—k,p—k)’gA) > .

Note how herein £ is no longer a summation variable—instead this relation
now holds for every positive integer £. To extract the leading factorial, notice

that 5 (p+L—k,p—Fk)
over k can be dropped by fixing k£ = p, obtaining

is minimized when p = k with value ¢/2. Then, the sum

(4.137)
1 o NP - _ Hi(29+1+n—%,0A)
0~y — (¢ —~
I;Op!(2 )< p“”’;() Ho (29 +1+4n—£,¢A)

~(=)* (=1)"*"'s

H, (29 +1+n— %, 0A)
(n,N)%(pvp—’—Z) HO (2g =+ 1 +n — %7 EA) .

We have divided by an overall Hy(g,¢) in order to cancel the factorial
growth and obtain a power-series in g~! and logg. One can now extract
the backward-forward relation for Borel residues by simply considering the
different log g growths in (4.137).

First rewrite the above equation (4.137) as

29+1—n L EA)
29+1—n—— EA)

(4.138) 0~ Z dy(
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with some coefficients dp(n, ¢) that contain the Borel residues. These coeffi-
cients must all vanish in order for (4.138) to hold, as the pth term in the sum
is asymptotic to log? g. The coeflicients themselves can be easily obtained
by direct computation,

"1 /a \¢ q . Ng—
(4.139) dim )=~ (3¢) <p> (10" St (a+ea)
a=p =
it ra \P ntp
T (59) V™ Smoss-
By setting them all to zero, we finally obtain the backward-forward relation:
(4.140)

. y ¢ a \4-P
Stumsipart) = (=) (=1)"FF Z ( m20)" " St

Through this relation, we are able to compute the set of backward Borel
residues and Stokes data given the set of forward Borel residues and Stokes
data.

This symmetry is necessary for property (4.134) to hold. It can now
be seen that it is also sufficient: insert (4.140) and (4.129) in (4.134), and
after a long but straightforward calculation one finds the vanishing of the
right-hand side in (4.134)—hence the asymptotic equation holds.

One may now use this backward-forward symmetry to update (4.133) in
such a way as to only depend on forward Borel residues. Using the symmetry
of coefficients (2.59), relation (4.129) to eliminate the Hy(g,s) functions,
the backward-forward symmetry, and evaluating the expression at step 2g
in order to only find non-zero coefficients, we get:

400 400 n

(4.141) u4nn —EZZZZSnn (i) ( 2)~ kuéz;L-HZ,p)[k}X

¢=1 h=0 p=0 k=0
Xﬁk(29+n h — ’Bp—l—fp)’ )

This is the fundamental relation which is the basis for our large-order asymp-
totic analyses, and which will also be the basis of the next subsection where
we propose an ansatz to obtain closed-form results out from this formula
(up to the determination of a number—see below).

For the moment, let us run a couple of checks on this expression. This
was already partially addressed in [29], but herein we have upgraded their
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equation (5.77) to better numerical precision and we have also explored the
effect of conformal transformations?. Furthermore, apart from enlarging
the precision for P), we have also carried this out for the first time in the
case of Pj;. We test (4.141) for the case n = 0, which is a good test on the
resurgent structure as the Stokes vector S(; gy (which is known analytically)
is sufficient to build all Borel residues S(g 0)-(¢,0)- In order to work with
quantities which have nicer behavior than factorial or exponential growth,
we introduce as usual [27]

~(0 i7TA2g_% 0,0
(4.142) iy = - {0000,
N T (29— 5)

Using S(0,0)(2,0) = —(Nl(l))e, we also introduce
(4.143)

N +4oo L

3OS (VY 0 L(29—h - 2) pogrhit ghiist
(=1 h=0 I'(29—3)

which represents the first NV instanton contributions to the large-order be-
havior for the perturbative quantity ﬂfl(;). Herein the h-sum is asymptotic
and has to be evaluated via Borel-Padé resummation; e.g., [27]. We have
detailed this method in a more general setting in subappendix A.1. For now,
let us denote the resummed quantity with the same name as the asymptotic
series. Focusing on the first N instanton contributions implies one has, at

the asymptotic level,

~(0) , ~(0),(N) 1
(4144) U4g = Uyq + o0 <m> .

In order to check upon the resurgent structure, we have evaluated both u(o)

exactly as in (4.142) and u N(O) ) numerically as in (4.143). For the latter,
we have performed Borel—- Pade resummations up to orders h = 300, 280,
260, 240, 220, 200, 180, 160, 140 for the £729 = 1729, 2729 3729 4=29 529
6729, 7729, 8729 9729 contributions, respectively*>. We may then compare
both sides of (4.144), and the results are displayed in figures 10 and 11.

42These will be discussed in further detail in subsection 6.4 and subap-
pendix A.3—to where we refer the reader.

43Note that for each £ =1,..., N, we have kept different maximum h’s for each
resummation. This means that in order to compute ﬂg;)’<4>, for example, we have
resummed the £ = 1 sector up to h = 300, £ = 2 up to h = 280, £ = 3 up to h = 260

and ¢ = 4 up to h = 240.
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(a) Analogue of computation in [29]. (b) Upgrade with conformal transformations.

Figure 10: Precision of the large-order asymptotic formula for P,. The fig-
ures plot numerical precision with increasing instanton corrections in the
two approaches: a straightforward upgrade of [29] and with the addition of
conformal transformations (see subappendix A.3).
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(a) Analogue of computation in [29)]. (b) Upgrade with conformal transformations.

Figure 11: Precision of the large-order asymptotic formula for Py;. The figures
plot numerical precision with increasing instanton corrections in the above
two approaches.

4.2. Closed-form asymptotics and Stokes data

We are finally ready to conjecture analytic equations for Stokes data, which
we will be able to solve in order to find generating functions for all coeffi-
cients. We shall do this by focusing on the asymptotic relations (4.141), and
extracting all relevant information solely out of them. Let us also stress at
this stage that the upcoming procedure is strongly supported by numerics
and, although it allows for the conjecture of exact relations that determine
Stokes data, the method presented herein is by no means a rigorous deriva-
tion. Supporting evidence possibly amounting to a fully rigorous proof of
our conjectures will be later discussed in section 7.

Some (explicit) facts we do already have on P|/P Stokes data. Firstly,
we are dealing with a two-parameter resonant problem with logarithms—
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one could fear that these additional logarithmic terms could contribute to
make the problem harder, but, as we shall see, and because of resonance, it
turns out that at the end of the day they will make it simpler?*. Secondly,
we are trying to compute vectors labelled on a lattice, figures 6 or 9, and
resonance is associated to the diagonal directions on this lattice—but it
turns out that the boundaries of this Stokes lattice (depicted in figure 12)
have a particularly simple structure and are easy to guess*®. This structure
was in fact already found in [29] in the P| context (generalizable to Py in
[30]), and reads:

-1 2—¢
(0 _1 1)
(4.145) N = o (] ) .
There are two main reasons why these numbers were easily guessable from
numerical results:

e The number content is basically dictated from Nl(l) alone, which is
known analytically.

e The are no sums of numbers—just products—which makes guessing
such structures with computer code much easier and efficient.

We are thus left with understanding the Stokes numbers located in the bulk
of the lattice. These numbers are immediately harder to guess because the
asymptotic relations suggest that on top of being sums of numbers, each
additive term in these sums may have rather non-trivial number content.
Understanding these asymptotic relations essentially means understanding

44Gtokes data and connection formulae for the P| tau-function have been recently
addressed in [107], following upon the exact WKB analysis in [90, 91, 92]; and in
[105], following upon the gauge theoretic construction in [104]. Albeit completely
different approaches from ours, in the end all results should match, i.e., in principle
it should be possible to map those results to the highly non-trivial numbers we are
computing [108]. In the isomonodromic-like formulations used in the aforementioned
papers, connection formulae have rather compact final expressions and logarithms
or resonance seem to be hidden. Whereas resurgence relations and their associated
asymptotics will always need all Stokes data we are computing, these results also
imply that somehow our formulation of the problem should greatly simplify—on
what concerns connection formulae—once we better understand the logarithmic
structure present in our asymptotic relations. That this is the case will become
fully clear in section 7, when we discuss how to compute connection formulae out
of the bridge equations.

45We will give a more complete exposition on how to guess closed-forms for
numbers in subappendix A.4.
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Figure 12: The lattice of Stokes data revisited (recall figures 6 and 9). It is
sufficient to focus on the asymptotic relations for the forward Stokes data
(in blue), as discussed in subsection 4.1. The edge or boundary of this blue
region in the lattice is easily guessable (and we have hence changed its color
to green). On the other hand, the numbers in the bulk of the blue region
consist of sums of different terms and have a rather more non-trivial number
content. In other words, they are much harder to guess without first properly
understanding the logarithmic structure of the asymptotic relations (4.141).
In the following we will conjecture equations which allow us to compute all
Stokes numbers along the diagonals (the blue arrows).

the large g limit in (4.141). But, as already mentioned, such asymptotic
behavior is also seemingly complicated by logarithms and we first need to
understand their role. In order to achieve this, let us modify our asymptotic
relations in the following three steps:

1. We will hide away everything which does not yield an immediate con-
dition on the Borel residues, in different terms stored on the left-hand
side of the asymptotic relation.

2. We then try to better understand the logarithmic structure in these
resulting equations.

3. We finally deal with the asymptotic limit by making use of properties
of the digamma functions, which we will see appear in these resulting
equations.

At the end of these steps, we shall be able to conjecture analytic equations
that determine Stokes data. As always, we find one may treat P,/P; with
the very same equations.

4.2.0.1. 1. Simplifying the asymptotic relations: Let us recast the asymp-
totic relations (4.141) derived in the previous subsection in a more conve-
nient form. Start with (4.141) and incorporate the properties of the coeffi-
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cients (2.59). One obtains:

(4.146)

+00 +00 n

p
nn 1
w0 ZZZZSnwwp = (Eg) uEHE R0l
=0

€: h=0 k=0

x Hy, <2g+n—h 5(p+£p A).

Out of this expression, in order to lose subleading contributions, introduce

(n,n)

the truncated series Tg /  in the obvious manner:

(4.147)

—1 +00 n

1 &1 P 1 /a\F
T S S SS  p y (31)
t=1 h=0 p=0 k=0

x (2g+n—h B, tA) :

Subtracting this truncated series from the original asymptotic expression
(4.146), dividing by an appropriate quantity (which becomes clear in the
following), and leaving out subleading terms, i.e., those associated to h > 0,

k < p, one finds:

n,n)[0 n,n
u‘(lg )[} !](7 )

f[o(29+n—— KA)

+o0o n

k
~ —E Z Z Z (n,n)—(p+L,p) 7 ol ( g) ué};;rsz,pfk)[o] %

h=0 p=0 k=0

Hy (2g+n—h Berfp A)
Hy (29 +n— &, ZA)

1 — 1 ra NP (o, 0)[0} (29 +n— KA)
17sz0 (’)ﬁ(p%’p)p!(Q ) o HO(Qg—i—n——ZA)
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In our on-going quest to isolate the unknown Borel residues, it is next natural

to define the sequence 55}’”) via,

. (TL,TL)[O} (’VL,TL) n

i Uy, —T,y 1 /o \P
(4.149) _ L N S i) — (—5) X

= (n—i—l)Df;’Lg’")

5 I;Tp (29+n7 %,KA)
I;TO (Qg—l—n— %,KA)'

(n,n)

g.t
(n,n)

g.¢
coefficients contain logarithms in g, matching those in the Hp-functions.

More explicitly, we can manipulate (4.149) to explicitly give

In particular, this expression implies that the large-g behavior of the D

will determine the Borel residues. It is important to note that the D

(4.150)

n

~(n,n 1 a \P
(n+ 1) D" =D St o (5¢)"
p=0

x B, (w(o) <Qg +n— g) —log (¢A),

17[)(1) <2g+n_§> a"'vw(p_l) <2g+n_§>)7

where B, denotes the complete Bell polynomial of order p and (™) the
polygamma functions [3]. Given the known behavior of these polygamma
functions [3], it follows that all logarithmic growth originates from ¥ in the
first entry of the Bell polynomial. Furthermore, by including the structure
of the Stokes vectors (3.98)—(3.99) into equations (3.90) or (3.91) we may
now obtain the relation

_ () (n,n)
(4.151) Stnm)—(prep) = —(n+1) Néfner + R(p+£,p)7
where, much as in (3.90), REZfE)p) contains products of the N,gfi)’s such that

for each term we have ), ¢; = ¢ and ¢; < ¢ for any i. Furthermore, Rg;’n) =0



438 Salvatore Baldino et al.

for £ = 1. These conditions let us further constrict the above sum over p, as

(4.152)
() n—_0+1 o 1 /a AP
n,n
DQ! = Z Né—n-i-p_l (55) X
p=0 P

x By <¢(0) (29 +n— g) —log (¢A),

77/)(1) <29+7’L—§> a'--aw(p_l) <29+7’L—§>),

where we have absorbed the remainder terms R"™™ . into the (new) pim
(p+Lp) 9.t

(hence the small change in notation). This we do because R

(p+£.p)
tains Stokes data which can be determined from equations with lower n—
and therefore we are not interested in it. Note also that Rg;fgp)
the first diagonal. The usual procedure dictated by large-order asymptotics

only con-
is zero for

would now be to understand the large-order behavior of the D;T;Jn). For large
g, it takes the form

n,n - n,n 1
(4.153) DI =" dl™ (g) logh g + o0 <§> .
k=0

(n,n)

In this way, knowledge of the coefficients d, "’ (g) implies knowledge of all

Stokes data. It turns out that understanding the Dé"e’
than understanding “bare” Stokes data.

mn) . .
) is a much easier task

4.2.0.2. 2. Dealing with the logarithmic structure: As we have just seen, in
the strict asymptotic limit equation (4.152) splits into different conditions,
each one corresponding to a different logarithmic growth, as in (4.153). It
turns out that only the lowest-order growth will give a non-trivial condi-
tion on Stokes data. What this means is that not all the numbers dg};n) (9)
encode relevant information; and it turns out that it is possible to find a
reformulation of our problem which gets rid of all the logarithmic growth in
equation (4.152). We will use the fact that this equation has a very special
structure dictated by the Bell polynomials. Let us introduce a new sequence
in g that we call

(4.154) Celg)
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which we leave unspecified for now. Considering the sum

n—~+1 p
(4.155) Z l(M) pn—pn=p)

= p! 2 9.4

is where the special structure of the Bell polynomials comes in. Using the
explicit asymptotic relation (4.152) in the above sum (4.155), it turns out
that in the resulting right-hand side Cy(g) will appear in the first argument
of the Bell polynomials, but changing nothing else. Explicitly, we find

(4.156)

n—_+1

3 L (LG e
p! 2 g,t -

p=0

—l+

Z l' <2€)po<w(o> <29+n— g) —log (¢A) + Cy(9),

=0
P <2g+n—g> R C)) <2g—|—n—§>>.

Interestingly it turns out that if we now choose Cy(g) such that it cancels the
logarithmic growth of 1(©) (29+n— —) then the right-hand side of (4.156)
becomes logarithmic-free. We then conclude that this also has to be the
case for its left-hand side. This implies the choice of Cy(g) which removes
the logarithmic dependence of (4.156) is such that

1
(4.157) 4© (29+n - g) —log (lA) + Ci(g9) = co+o (;) , ¢« € C,

where ¢y is constant in g. With this choice we now know that

n—~+1
no._ 1L (alC(g)\” (n—p,n—p)
(4.158) Dy = % ﬁ(T D,

is logarithm-free, and we can spell out a new logarithm-free asymptotic
relation as

(4.159)

Z ”+p p' <§£>p %

=0
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1
x B, <Cg+0<§>’¢(1) <29+n—§>,...,¢(7’_1) <2g+n—§>>.

Note how removing the logarithmic growth came at a price: we had to intro-
duce the a priori unknown constants c¢,. The above resulting equation also
has a much simpler structure than the original asymptotic relation (4.141)
that we started-off with, but it is still an asymptotic relation. Let us finally
try to understand this asymptotic limit in the next step.

4.2.0.3. 8. Understanding the asymptotic limit: As we have just seen, un-
derstanding Stokes data is tantamount to understanding the Dg’g set. Now,
in order to make further progress along this analysis, one requires some
intuition from our numerical explorations. As we will discuss later in sub-
appendix A.4, calculating numerical Stokes data and trying to match those
numbers against possible closed-form analytic forms led us to find that they
contain combinations of zeta-function values, essentially everywhere. At the
same time, we have just seen in the previous paragraph how our main asymp-
totic equations contain polygamma functions, also essentially everywhere.
These polygamma functions have the interesting property that, for integer
arguments, they contain the zeta-function:

z—1 1
_fYE—i_ZE? TLZO,
k=1

(4.160) " (z) = -
(1Rl (1) (C Y o L
k=1

One first—very reasonable—assumption we can make is that all transcen-
dental numbers appearing in Stokes data arise from the above polygamma
functions; in particular from their z-independent contributions in the formu-
lae above. In other words, we are assuming that no additional transcendental
numbers may appear through the large-g limit—which is in fact the simplest
assumption one can make about such a limit, and further implies that the
limit itself does not contain any non-trivial information. To do this let us
try to group all the terms in (4.159) that still contain a g dependence on
its left-hand side. We have already seen in (4.156) how we can modify the
first entry of the Bell polynomials by considering clever summations of the
asymptotic relation (4.152). We can follow an analogous procedure to modify
the other entries of the Bell polynomials in order to remove the g depen-
dence on its right-hand side. Let us start by spelling out the polygamma
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functions explicitly

(4.161)
—+ o \p 2g+n—1—£/2 .
2% nﬂ,p, <§€> Bp<ce+0<g> 20 (2) + ; e
29+n—1-£/2 1
LEDP D) - ()P (-1 ) ﬁ>
k=1

Here, the parts which contain g-dependence are the sums that are gen-
erated by the polygamma functions inside the Bell polynomials. Now, as
explained above, by picking good linear combinations of the asympotic re-
lations (4.161) we can absorb those sums into the left-hand side. Let us call
the resulting linear combination of the D;z by the name dj(g). We then
arrive at

(4.162)
—l+

Z e (50)

=0
. B, <c£+o<g> 2(2) o, (417 (0= D))

We note that the right-hand side of (4.162) goes to a finite value in the
g — —oo limit. For consistency reasons this also has to be the case for
its left-hand side. We can therefore turn this asymptotic relation into an
equality containing a limit:

(4.163)
—0+
i 010 = 3 Ny (30 B b0, 00)),

where we have replaced the zeta expressions in the Bell polynomials back
to polygamma functions evaluated at the finite value x = 1 for conciseness.
This final form no longer contains any asymptotic relation nor superfluous
logarithms. All the non-triviality of the asymptotics is now contained in the
limit lim d} lone.
imit lm 7 (g) alone

The last step in uniquely fixing Stokes data is now to understand this

hrll d}(g) limit. This is where the rewriting of the asymptotic relations
g—+o0
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that we did above pays-off, in the sense that we find simple expressions for
the limits which we can calculate numerically. Let us start with the first
diagonal, and thereafter try to generalize it to higher diagonals.

e First diagonal, ¢/ = 1:
We have calculated a few of the desired numbers using our numerical
methods (these will be discussed later). What we found*®, for both
P, and Py, is that:

(4.164) Jim dig) = N,
(4.165) Jim di(g) = 0, n>0,
with

(4.166) c1 = log 12[1 + VE,

(1)

and where A; can be calculated from Ny’ alone. In light of this, one
is immediately led to conjecture that all liril d?(g) vanish for any
g—+0o

n > 0. As the calculation of ¢; needs Nél), this also implies that in

order to fully determine the first diagonal we only need the first two
numbers of said diagonal, i.e., Nél) and Nl(l).

e Higher diagonals, ¢ > 1:
For higher diagonals the right-hand side in (4.163) does not immedi-
ately yield such a simple form as for the first diagonal. Nonetheless,
it is possible to perform further modifications to this equation so as
to obtain the exact same structure for the (modified) gggloo dy(g) as

for the first diagonal above (the decisive hint for this step once again
came from our numerics, yet to be discussed). If we insert factors of ¢
in our asymptotic relations in the following way

(4.167)
—(+
p
i 0= 3 N, (51)

1 1 _
< B, (% O, ),

46We explicitly checked this for Py with n = 0,...,20; and for Py, with n =
0,...,6.
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we again arrive at a remarkably simple structure for the limiting proce-
dure. Interestingly, this is something that would not change the £ =1
case. We now find*’, again for both P, and Py, that

4.1 lim di(g) = N
(4.168) A di(g) 1
4.1 li o =
( 69) g~l>IJPoo d@ (g) 0, n >0,
with
(4.170) ¢ = log Ay + g,

and where gz can be calculated from Née) alone. As before, we now
simply conjecture that all liIJP d}(g) vanish for any n > 0. Remark-
g—+o0

ably, it again suffices to know the first two non-trivial numbers in each
diagonal, in order to construct the whole diagonal. Note that, in par-
ticular, this insertion of the ¢ factors in equation (4.167) is necessary
in order to reproduce the “green factors” appearing in the several for-
mulae of figure 14 (factors which were initially observed numerically).

We are now done. All cases discussed above may be assembled into a
single set of recursive relations, which we conjecture uniquely determine full
Stokes data for the first two Painlevé equations. These relations are:

(4.171)
n—~0+1

() L ap)e 1. LoDy ) — o
> N (50) Bp(cz, Fo0(), 0 ) = i d ),

where the limits are given by

4172 lim d(g) = N

(4.172) A dy(g) 1

4.1 lm d}(g) =

(4.173) 7 (9) 0, n > 0,
with

(4.174) co = log Ay — g,

4TWe explicitly checked this for Py with ¢ = 1,2,3 and n up to 20, 14, 5, respec-
tively; and for Py with £ = 1,2 and n up to 6,4, respectively.
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and where Zg is a number which may be calculated from N(gz) alone. What
this final result implies is that all Stokes data may be specified once we
know the first two numbers associated to each diagonal. In other words,
unfortunately, these first two numbers still need to be computed in some
other way. Further, note that (4.171) is clearly problem-specific as we had
to put-in information concerning the structure of the gEIJrnoo d}(g) (struc-

ture which we were able to conjecture after numerically exploring the first
few Borel residues for the first two Painlevé equations). This part of the
analysis would have to be readdressed if focusing on different (eventually
non-Painlevé) problems—albeit in the exact same way. Finally, we assumed
a very specific vector structure (3.98)—(3.99), which allowed for the closure
of the alien algebra (3.97) (and is, as usual, strongly supported by numer-
ical explorations). All in all, it seems very likely that for other resonant
problems—as, e.g., those in the (m)KdV hierarchies [95] mentioned in the
introduction—very similar results and subsequent conjectures might hold.
Analogous sequences gEToo dj(g) may be constructed for those problems,

which, hopefully, will also enjoy a simpler structure than the “bare” original
Stokes data, hence allowing for a similar solution to their full determination.

5. Analytical results for Borel residues and Stokes vectors

We are now ready to present our complete results, for the first two Painlevé
equations alongside their quantum gravity and minimal string incarnations.
In other words, we will list Stokes data for both Painlevé solutions and
quantum-gravity /minimal-string free energies (following up on the discus-
sions in subsections 2.1 and 2.2). Using the method of “closed-form asymp-
totics”, just described in subsection 4.2, we are able to obtain an ansatz
for the full set of forward Stokes data, which in sequence allows for the
computation of all Stokes data—up to a single number. In the strict con-
text of “closed-form asymptotics” this unknown number has to be guessed
numerically—see such details in subappendix A.4. Another goal of this sec-
tion is to systematically assemble all Stokes data into adequate generating
functions. Later, in section 7, we shall see how these generating functions are
in fact the ones adequate to discuss Stokes automorphisms and connection
formulae—as already partially discussed in subsection 3.5.

5.1. Stokes data for the Painlevé I equation

We recall the structure of Stokes vectors that we described in subsection 3.4;
see expressions (3.98)—(3.99). The forward vectors S(;_,, 1) and the back-
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ward vectors S(;_,_g1_p) have the structure®
_ N0 | pHL
(5175) S(l—p,l—p—f) - Nl—p |: —p :| )
_ (=0 -P
(5.176) Sa-p—ta1-p) = N, [ p+L ] ’

which was illustrated in figure 9. How to find the (yet unknown) propor-
tionality factors was just discussed at length in the previous section 4. Some
things we do know, however. In particular, according to the analysis in [42],
the constants Nl(f)p are purely imaginary. The constants Nl(:?, on the other
hand, have both a real and imaginary part—albeit they are determined

from the Nl(z_)p through the backward-forward relation (4.140). We will first

build a generating function for the Nl(g_)p data, and then use it to construct
generating functions for the Stokes vectors themselves.

We claimed in subsection 4.2 that equations (4.171)-(4.172)—(4.173)—
(4.174) are enough to compute all these unknowns. Let us now see how. For

Py, introduce the ratios
(5.177) RO ._

which, for lack of a more imaginative name, we dub “Stokes ratios”. Follow-
ing upon the aforementioned results of subsection 4.2, these ratios immedi-
ately fulfill

(5.178)
p q
1 2 1 1 _
5wy (Z50) B (cn g 000 D)) =
q=0 '

The finite sum on the left-hand side of this expression may be regarded as
the coefficients for the Cauchy product?’ between the two (so far formal)

48In all equations that follow, p is a non-negative integer and /£ a strictly positive
integer.
49Given two formal series

+oo too
(5.179) AN =) al’ and B =Y bA?,
p=0 p=0
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series:

(5.182)

+oo
RON =Y RV N,
p=0

(5.183)

O =S~ L (2N Lo 1 o-

¢ 1 -1

= — | — - 1),...,— WY 1) | AP.
BOM) ;p!@gz) O I )
Furthermore, equation (5.178) may be equivalently rewritten as
1

5.184 RO =
(5.184) ™ = Fogy

which immediately implies that finding a generating functional for Stokes
data is equivalent to finding the closed-form of B (A). This is actually quite
simple. First, use well-known properties of Bell polynomials [3] to find®

0) 2 R 1 (k—1) 20 k
k=2

the Cauchy product of the two series is the formal power-series defined by

+oo P
(5.180) CN) =Y A with ¢, =Y agby g
p=0 q=0

In particular, given a formal power series A(A) as above, with ag # 0, we say that
the formal series B(A) is a formal inverse of A(A) if their Cauchy product is the
formal series 1. This means that the coefficients obey the relation

p
(5.181) > agby—q = .
q=0

This relation can also be used to determine the coeflicients of the inverse recursively.
50Recall Bell polynomials satisfy by the generating function

+oo L,k

“+o0
tr t
(5.185) exp (Z;x,,ﬁ> = 1+ZHBk(x1,...,xk).
p= k=1

The right-hand side is exactly of the form (5.183), with 21 = ¢, Tn = =t »(=1(1)
forn>1,and t = %)\6.
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2 X1/ 2\
(5.186) = exp (ﬁmﬂzgﬁ (—%> g(k)>,

where we have used the explicit values already discussed in subsection 4.2,
i.e., ¥ (1) = (=1)* kI ¢(k+1). The remaining power-series is now readily
evaluated in closed-form, leading to

BOM) = exp{%ﬁcﬂwi—ﬁ(logf‘(l—i—%)-1—2%)\)}—
(5.187) = F<1+\2/—}%>zexp{\2/—g(7E+Cg)7\}.

The corresponding inverse-function then yields R()(A), i.e., allows for a
closed-form computation of all Stokes ratios along the same fixed diagonal
£, in terms of the first ratio R((f). To make this explicit, use the expression

for ¢, (4.174) to obtain

2

>
~

(5.188) RO = AT

I3
2\
r(1+2)
In particular, this e)écpression further conveys the interesting property that
RO\ = (R(l)(A)) , unveiling how truly constrained this problem really
is. One final step makes everything explicit for the Stokes vectors (5.175).

Using the conjecture in [29] for the Stokes lattice boundary (recall figure 12),
alongside the known analytic Stokes coefficient (1.6), i.e.,

Bl

-1 2—¢ V3
0 _ 17 v o _
(5.189) N == (Nl ) and N N

the explicit generating function of full P Stokes data follows:

2—¢ A3
(5.190) NOR) = NOROMN) == ( N1<1>> S
22
r(i+2)
1 or

o _ 19
G191 N, = e VO

A=0

We have tested this expression thoroughly, which will be described in
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detail in section 6. In particular, setting

(5.192) Ay =96V3

for all £ and generating large sequences of the Nl(f)p coefficients yields precise
matches with our numerical results (at least up to very small numerical
errors—see section 6). In particular, we have found that all A, are equal. As
an example, the first coefficients of the first diagonal read®!

LGB
2/’

(5.194) NV = —% % <7E + log (96\/§)> ,

(5.195) NO = —% % <—%2 n (VE +log <96\/§>)2> .

In this way the complete Stokes data is dictated by two numbers: the “canon-
ical” Stokes coefficient we already know, (5.193), and either, say, (5.192)
appearing in the generating function (5.190); or else, say, (5.194) which ex-
plicitly appears in many of the patterns we shall illustrate below. Indeed,
Stokes data displays many curious patterns. Some patterns are trivial, as
the one along the Stokes lattice boundary in figure 12 we already know

1
(5.193) NI =

iﬁ—l (1) 2—0[ 1
(5196) S(l,l—@) — 7 (Nl ) |: 0 :| .

More intricate patterns may be found along each diagonal. Moving down
each diagonal, the absolute values of the Nl(z_)p display a “hump pattern”
as illustrated in figure 13 (for the first three diagonals ¢ = 1,2,3 and
p =0,1,...,25). The precise way in which these numbers actually behave
displays even more interesting patterns, starting at the boundary of the
Stokes lattice and moving deeper into the diagonal by the inclusion of more
and more zeta-number combinations. Some such patterns are illustrated in
figure 14, for both P, and Py cases (in fact, the only differences between

these two cases are the values of Nl(l), Nél), and «).

5IThe “single number” we were missing to identify analytically in [53] was pre-
cisely the Euler—Mascheroni constant vg &~ 0.5772156649..., which immediately
appears as we start moving down the first diagonal as in (5.194).
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Figure 13: Structure of the first few Nl({)p (in absolute value), for the first
three diagonals.

Having obtained the complete forward Stokes data, the backward Stokes
data immediately follows via the by-now familiar backward-forward sym-
metry. Start along the +1 diagonals, where the relation between Stokes
data (3.72) and Borel residues (3.73) is linear [27]. Then the backward-
forward equation (4.140) may be re-expressed at Stokes level quite simply,

p N\ 4
-1 . 2\ 1 (1)
(5.197) Ny, =i(-1) EO <——\/§) -0
q:

This expression may be again regarded as a Cauchy product,

(-1) _'+Oo )P - C2mi\T 1
(5.198) N (}\>—IZ( A) Z( \/g) NiZp—g)

|
p=0 q=0 ¢

R APZ < 7‘)
qO

:0
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Figure 14: Explicit results going down the first three diagonals, ¢ = 1,2, 3.
These expressions hold for the Stokes data associated to both Py and Py,
where of course the values of Nl(l), Nél), and « differ for each case. We
have used a color coding of the formulae in order to highlight key aspects
of these patterns; e.g., in red we note the increasing amount of zeta-number
combinations.

The last expression yields a generating-function backward-forward relation

2mi

(5.199) NEDVQA) =ievs

ANM ().

To compute the generating function N(=9(X), we first write it as N(=9(A) =
Nl(_z) R(=9 (A) and then impose the same property of the “forward” gener-
ating function R (A) = (R(I)O\))K, i.e., we impose RO (A) = (R(_l)O\))E
and use the backward-forward relations for both Nl(fl) and RV (A) to ob-
tain

(=)
(5.200) NCOy = M (N(—U()\))e.

(¢7)
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We can then use (5.199) and the lattice-boundary relation Nl(_g) =

—(—i)* Nl(e) (a consequence of the conjecture in [29]) to write

Y AEAYA ) omi Vi
(5.201) NEOQ) = % (ie%ANﬂ)(—)\)) .

After simplification, the final generating-function backward-forward relation
gets written as

(5.202) NEOQ) = —(—i)le s M NO(-A).

Again, we have tested this expression against our numerical results, and
more details will be discussed in the upcoming section 6. We illustrate all
these results for the Stokes-vectors lattice in figure 15. These bare numerical
values obviously hide the large number of patterns and structure we have
just uncovered, but they are now all analytically known—finally explaining
all the data which had been previously found in [28, 29, 30, 42].

The reader may now recall the generic discussion on bridge equations and
Stokes transitions in subsection 3.5; in particular the (directional, pointed)
bridge equation (3.110) and its associated (directional) Stokes vector field
(3.109) (where the flow of this vector field generated Stokes transitions as
in, e.g., (3.102)). One remark we had back then was that the Stokes vector
field Sy(o) may also be regarded as a generating function for Stokes data.
This may now be made precise, in light of our generating functions (5.190)—
(5.191) for Stokes vectors (5.175)—(5.176).

Start with the Stokes vector field Sy(o) (3.109) which we rewrite herein,

g
(5.203) Sy)= Y S ot | T e
£e{l,} pEker P 02 Se+p

What is left to do is to explicitly evaluate these sums—which may now be
done in light of the data we have previously computed. First focus on the
0s = 0 Stokes line and insert the (5.175)—(5.176) vectorial structure in the
expression above (after a shift in the p-summation). The equation becomes

SR o1 g1t 0 [olp+o)
_ p—1_p—1+
(5.204) Sy(o) = ;I;)Ul o2 N [ o2 (—p) } '



452 Salvatore Baldino et al.

7/ ,/ 7 =[1]
—{(+11 92i +6.580 ) [:1 }\H,( —3.2571 +5.900 ) {"1 }H( —3.286i —1.814 ) [ vl} { (+1.347i —2.440) ’;} _{/7037125& “U—.

/ / / / -~ p I N
[(+[!421 —$J45)|: Z:|]‘(+l4-lb +2384)|: Z:D‘( —8.8501 +5. 106)[12]‘ ‘—Z-Iﬂ)()i |: 21:|‘ ‘+U?5U000i|:§:|‘
Y ) )
& / 3/ ) . - p —
(( —136.75 —1.21i )[ - D ‘Hzm +om)[ | ﬂ ‘—7.60857 [72“ ‘+}28l} [ 1“ ‘—029928:}x[0H
/ 4 > ) : / 4 / I 4 /—IiJ \
‘ (—35.41i —25.78 ) [ o ] ‘ ‘ —15.11141 [ ', } ‘ ‘ +21.04241 |: P ] ‘ ‘ —5.899991 [ } ‘ ‘ +0.45345011 [ ] ‘
t 5 1) | =3 -2 -1 o))
—21.60351 |: j4 } ‘ ‘ +87.68741 [ j} ] ‘ —=57.17091 [ jZ ] ‘ ‘+11.9189i { :’1 :I ‘ ‘ —0.781689 i { g } ‘
y Y

) ' g . / ' / . ~— . ) -
‘ 2379921 [ ] ‘ ‘+‘26783‘2i [ } ‘ 3632081 [ } ‘ ‘+154056| [ } ‘ ‘725 68341 [ } ‘ ‘+1452w\ [ } ‘

-5 —4 -3 -2 -1 0
/ . / . / /, / I . —
‘ +640.3301 l: /5 } ‘ ‘ —1704.211 l: /4 } ‘ ‘ +1321.301 [ 13 ] ‘ —417.6431 [ 12 ] ‘ ‘+57.G495] [ jl j| ‘ ‘7'2 893521 [ ll] } ‘
) ) ) )
‘ —6298.231 [ 8{ ] ‘ ‘+33G4 611 |: E: } ‘ ‘ —4482.591 [ 8,1 } ‘ ‘ +1126.871 [ —82 ] ‘ ‘ 133.0981 [ 8] ] ‘ ‘+5 967161 [ S :| ‘
y Y

Y Y el |

Figure 15: This plot illustrates (a subset of) Stokes data for Pj. All displayed
numerical values are of course truncated, as they generically correspond to
irrational quantities. Many of these numbers had been previously found in
[28, 29, 42], and they are now all explainable with closed-form analytical
expressions as discussed in the main text. They also encode many patterns
and (at the end of the day, quite simple) structure, which is less evident from
just staring at them. Comparing these numbers with the ones in [51, 52] we
see that therein both lattice boundary and first diagonal were correct, but
the “bulk” higher diagonals were not.

The sums over the kernel are now straightforward. Denoting®® p = oy09,
these are

+00

(5.205) S wn" = NO),
+oo ' d

(5.206) S pw Ny, = Hae VO ),

52The reader may also recall this variable has already appeared in diagonal-
framing transseries (2.63).
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which we could sum immediately given our generating function of P| Stokes
data (5.190). The Stokes vector field S,(o) is hence rewritten as

400 -1 d ©
o o +4) N ()
(5.207) Sy(o) = E : [ ’ <£—':ilud )(é) | ] '
— —0y @N (1)

The final sum over all diagonals is also easily implemented. Observing that—
via the above definitions and using a property inherited from the Stokes
ratios—one has

(5.208)

0

2 (. ND(y)
NOW) = 2 (N
w=-z (M) I(Nu))?
1
y4
d i 2 N

(G209) = 4 Crm —Z(Nl(l)> V0 4 N,

the final sums are evaluated to
(5.210)

2 -1 d 1 (1
Sylo) =1 N 72 (1 +Hglog v (H)) log | 1 —ioo N
0 L d &y 2
—02 g7 log N (p) (N1(1)>

Note how all the information is now solely encoded by the “canonical”
Stokes coefficient, Nl(l), alongside the generating-function of the first diag-
onal, N m(u). It is also interesting to note that this result has very explicit
dependence on p = ojo9—which partially recovers the diagonal framing
flavor of subsection 2.3. As a consistency check on this expression, we may
evaluate it when o9 = 0 (there is obviously no singular behavior). It follows

(5.211) Sy (01,0) = NV [ (1) ] ,

which is exactly what one would expect in light of the results discussed in
subsection 3.5. Likewise, albeit less trivial, the S,(o) Stokes vector field may
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also be evaluated at o1 = 0. It now follows

(5.212) Sy (0,09) = iNY o3 N g (1 o2
. ,09) =1 0 -——].
20 2 1 — 0oy Nél) g Nl(l)
Focusing on the g = 7w Stokes line instead, a completely analogous
procedure yields
(5.213)

—o1 410 N(*l)( ) (1)
(D)2 O1au o8 K . NTU()
=i(N log| 1 —ioy ——— .
Sx(o) 1( 1 ) [01_1 <1+udiulogN(_1)(p.)) U NG

At either o1 = 0 or g9 = 0, this vector field simplifies as

1

_ —oy NIV iy
5215) S (01,0) = NP | 791 log [1— —2L ).
( ) Sx(01,0) 1 [ ol N1(_1) 8 Nl(—l)

(5.214) S, (0,00) = NIV [ 0 ] ,

5.2. Global structure of 2D quantum gravity and minimal strings

As discussed in subsection 2.1, P; solutions describe the specific-heat of
the simplest (kK = 2 or ¢ = 0) multicritical model. Its free energy is given
by (2.24), which we repeat in here

(5.216) H'(2) = —up(2).

This integration is performed formally, which means that out of the

ug (z;01,09) transseries, in monomials 271 and transmonomials eiz%7 one
will obtain a Fj (z;01,09) transseries in the same (trans)monomials—albeit
it is also standard to use the string-coupling g5 = »~i. This was explicitly
carried through with many data in [29], and some brief examples were col-
lected throughout section 2. What this further implies is that out of specific-
heat Stokes data we will hence obtain free-energy Stokes data—allowing for
a global description of 2d quantum gravity.

One may repeat the same analyses as in the previous subsection, start-
ing out with a few of the free-energy Stokes-data (numerically) obtained in
[29]. The vectorial structure of free-energy Stokes data S is unchanged as
compared to their specific-heat counterparts (5.175)—(5.176), i.e.,

oF | p+{
(5.217) St iy = N [ . }



Resurgent Stokes data for Painlevé equations... 455

F _ (=OF —-Pp
(5.218) Sta—p-ti-p = N, [ bt } .
It is also physically convenient [77, 39, 29] to rescale the free-energy transse-
ries parameters as
o1 09
(5.219) of = —& ol = —5
Ny Ny

In order to obtain the Stokes data for the free energy, we first argue that
the Stokes data for a transseries and the Stokes data for its derivative with
respect to z are equal. This comes from the fact that the Ag operator and
the —0? operator commute [24], so applying the alien derivative operator
before or after the derivatives gives the same result (this is in contrast with
the discussion in [29]). Due to our scaling of the transseries parameters, the
Stokes data undergo the transformation

(5.220) N = (N1<1>)p‘1 (N{—D)”*e_lNl“_)p,
(5.221) Nl(:f;)F _ (Nl(l))pH—l <N1(_1))p_1N1(:ﬁ).

From these relations, the generating functions for free-energy Stokes data
immediately follow given (5.190)

()
(5.222) NOFy = X1 NO (Nu)N(fl)}\)
' NONCD 1 5
1 1

( 1(1))6

(-OF — N "7 nEn (WD
(5.223) N (A) Nl(l) 1(_1) N <N1 Ny A) .
The backward-forward relation for free energies is

(5.224) NEOFQ) = (=) ez M NOF ().

In particular, all Stokes-lattice boundary factors NI(K)F and Nl(_Z)F turn out
to be rational:

l+1

or _ (=1)
(5.225) NOF = "
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Figure 16: Structure of the first few N,

three diagonals.

(in absolute value), for the first

Explicitly, the forward-data generating-function is now given by
(_1)€+1 g&% A

(5.226) NOFR\) = :
Z T+

with ap = Nl(l)Nl(_l)a = % Nl(l)Nl(_l) = —% and A defined in the previous
subsection (5.192). Obtaining the corresponding backward-data generating-
function is a straightforward exercise.

Just like for the specific-heat, also now Stokes data display the usual in-
teresting patterns. There is a trivial pattern along the Stokes lattice bound-
ary,

l+1
F _ (=D 1
(5.227) S(Ll_g) i — [ 0 ] .
Then, moving down each diagonal, there are the “hump patterns” for the ab-
solute values of the N 1“_)5 . These “humps” now occur earlier-on as compared
to specific-heat data, as illustrated in figure 16 (for the first three diagonals
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A(F\ ! (OF\ Y 9
(f)F,l No (41‘)1‘"7l No f afp (OF ..
v () - () )
NN cor 1 (NOTY L ary? o NN e apy o
NOF No =g NOF 5(7) N+ NOF g(?) Ny C(3),
1NN 1 NOPN? 2 NOF\ ¢
NOF —— (Do) poFr__ (2o *(al) NOFe)+ (20 2
-3y Nf‘f)F 0 2! NIU)F 2\ 2 ! Nl(f')F 3
AOFN :
1 1‘\70 { rap\4 (OF ! 2
o <N1<é'>F> 1 (5) MO (e - 5e@2).

Figure 17: Free-energy zeta-number patterns, going down any diagonal /.
We have used the same color coding as before, in order to highlight key
aspects of these patterns—again, in red, one notices the increasing amount
of zeta-number combinations.

(SE) VO )

¢=1,2,3and p=0,1,...,25). Again, the precise way in which these num-
bers actually behave displays remarkable patterns—still seeing the general
appearance of zeta-number combinations; compare figure 14 with figure 17.
Bare numerical values for the free-energy Stokes-vectors lattice are finally
illustrated in figure 18.

Everything else follows in more-or-less the same lines as the discus-
sion in the previous subsection. For example, the exact same backward-
forward formulae for Stokes vectors hold. The Stokes vector field S¥ () is
also computed straightforwardly. Of course it is defined in the exact same
(resurgence) manner, in (5.203), only now using free-energy Stokes data
rather than specific-heat Stokes data (and further replacing specific-heat
transseries parameters with their rescaled free-energy counterparts). Evalu-
ating the sums with analogous reasoning now yields

(5.228)

oFYV1(1 4 pF -4 Jog NOOF (1 F
Sg (oF) = [( 2)" ar (w5)) log(1+ozFN(1)F(uF)),

—0} 3w log NDF (uF)

_-F _d log N(_l)F(uF)
Sf oy =— 71 dur log(1 — o NCDF(F ,
[=2 ( ) [(O‘f)_l(l + HFdﬁp log N(_l)F(pF)) g( 1 (H ))
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Figure 18: A subset of Stokes data for the free energy of the k = 2 multi-
critical model. Similar to P, many numerical values are of course truncated
irrational quantities. Yet, all these numbers are now fully understood with
closed-form analytical expressions (see the main text). Again, these numbers
encode many patterns, essentially inherited from those of P;.

with the standard simplifications at either vanishing of" or o,
F (. F 1
F F F (0'2F)71
(5.231) S; (0,05) = log(1+03) o NF [
2 Vo
(5.232) SE(0,0) = 0
* =TT Y 2 1 ?
—O'F N(—l)F
(5.233) SE(0f,0) = —log(1—-o0f) [ (1JF)0_1
1

One natural question which arises after looking at the explicit numbers
in figure 18 is whether one may find a redefinition of the transseries pa-
rameters such that more (if not all) Stokes vectors would turn out to solely



Resurgent Stokes data for Painlevé equations... 459

have integer entries (a question which was motivated to us by the recent but
unrelated work [116, 117, 118]). As argued in [42], the most general trans-
formation that preserves semiclassical decoding is a rescaling of transseries
parameters by generally different factors—with a study of the transforma-
tion laws of the Stokes vectors under such rescaling. Whereas it is obvious
that any one fixed Stokes vector may always be turned into an integer-valued
vector by a specific transseries-parameters rescaling, this is much less evident
for sets of vectors. From the form of the transformation laws (5.220)—(5.221),
the parametrization with the greatest number of rational vectors turns out
to be ours (up to rescalings that will keep the same number of integer vec-
tors). This is because vectors which are not on the lattice-boundary have
complicated relations between each other (e.g., figure 14), which cannot be
reabsorbed by one of our transformation laws—as we can only pick two
numbers to rescale o’ , we can only pick a parametrization that makes any
two Stokes vectors rational (albeit the simplicity of (5.225) ensures that if

we decide to make the vectors S((f )) and S((o i) rational, then all vectors on
the boundary will be rational).

Falling short of finding a “purely rational” parametrization of Stokes
data, one could still ask whether that would be possible at the level of
Borel residues. This is, however, immediately unlikely as Borel residues are
computed out of Stokes vectors with the sole addition of rational-number
factors and integer-valued inner-products [27]. To be more explicit, Borel
residues will have integer or rational real and imaginary components when
they are obtained from Stokes vectors at the boundary of the lattice (in
the adequate free-energy parametrization in figure 18), and none others. For
example, for Borel residues of the form S(n )= (n+-6,1) this can only occur if
they only involve 5(1,0)7

¢
1 n+4¢
(5.234) Stnm)(nten) =~y 1;[ n+j) ( ’ )

All other Borel residues must involve Stokes vectors in the “bulk” of the
lattice, and hence cannot be integers. A couple of examples illustrating the
cumbersome structure of Borel residues may be found in table 1 for Py, in
table 2 for the rescaled version corresponding to the free energy, whereas in
table 3 we display some Borel residues which are actually integers.

Let us make one last comment, concerning the (2, 3) minimal-string nor-
malization of Py (2.10) and its free energy. In this context it is interesting to
ask what is the role of Stokes data within the minimal string theory. On what
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concerns “canonical” Stokes data, there is a strong connection between ZZ-
brane amplitudes and Stokes data which has been thoroughly established in
the literature, e.g., [65, 79, 98, 99]. It seems interesting to explore this connec-
tion further on what concerns the remaining “non-canonical” Stokes data,
which we will discuss elsewhere. Further note that knowledge of P, Stokes
data is enough to compute minimal-string Stokes data, given the discus-
sion in subsection 2.1. For completeness of the discussion and illustration
purposes, table 4 presents the relevant D-brane exponential factor along-
side “canonical” Stokes coefficient (i.e., the invariant quantity ugl,o)[o] 550)
[39, 29]) in the different relevant P| normalizations.

Having computed generating functions for Stokes vectors, the next step
would be to compute generating functions for Borel residues. This is a more
complicated task as Borel residues are complicated expressions of Stokes
data; hence a problem we shall later tackle in section 7.

5.3. Stokes data for the Painlevé II equation

Moving on to the second Painlevé equation is now almost straightforward.
In fact the discussion in subsection 2.2 completely parallels that of subsec-
tion 2.1, as was made clear in subsection 2.3; i.e., from a resurgent transseries
point-of-view, P; and Pj essentially have the exact same structure. It is
then only natural that P Stokes data turns out to be obtained in very
close—if not complete—analogy to what we did in our earlier subsection 5.1.
Note that in both present and next subsections, all symbols refer to specific
P quantities (we will not be labelling any with a II).

The structure of Stokes vectors is always the same for these two-parame-
ters transseries problems, either (3.98)—(3.99) or (5.175)—(5.176); herein again

+ 0

(5.235) Stpiop-ty = N, [p_p ]
0 | —-p

(5.236) St-p-tan) = N [pM}

The corresponding Py Stokes ratios (5.177) now fulfill (compare with (5.178)
for Py)

p

1 1 1 _
(5231 S R ., i (407 B, <c€, . sMA), ..., T e 1)(1)> = 6,0,
q=0 '



Table 1: Some Borel residues on the main diagonal, for the P, specific-heat. The complexity of these numbers
increases with n (more Stokes vectors from the “bulk” of the lattice may contribute) while ¢ has no apparent

effect

—S(n,n)—(£,0) (=1 (=2
_ _iv3 _V3
n=>0 27 4n
n=1 __i(2y8+210g 96v/3) 6y —2im+6log 961/3
- %ﬁ 27
—9 (3298 +410g96v3)° —27%) [ _1292 4+ 6iygm+n>—12(log 96/3)>+6ir log 96v/3—367E log 96v/3
n = 1 33/4/x V3n
—S(n.n)—(£,0) (=3
i33/4
n=~0 2377
_ 3V/3(2iyr+7+2ilog 961/3)
n = or3/2
_ 2(90iv +72ymm—13in” ) +180i(log 96v/3)>+72(27+5iy) log 961/3
n= 8 Y3mw3/2

“'suoryenbo 9Ad[UTRJ I0J BIRP SONO0}S JUOSINSIY]

197
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Table 2: The same Borel residues, now for the free energy of 2d quantum gravity. Residues starting at the
(0,0) perturbative sector are trivially —1, but all other residues have complicated expressions (albeit slightly less
complicated than the previous case)

~S(nn-(00) ¢=1 =2 (=3
n=0 1 1 1
n=1 —1 (ye +1og (96v3)) | =1 — 2 (yg +1og (96v3)) | =3 — & (vp + log (96v/3))
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Table 3: A larger set of integer-valued Borel residues for the free energy
of 2d quantum gravity. These are associated to transitions from a diagonal
(n,n)-sector into an off-diagonal (n+ ¢, n)-sector. The associated resurgence
relations [27] only involve the vector Slio , which itself is integer-valued.
Note that, in principle, other Borel residues could be integer- or rational-
valued after cancellation of the transcendental parts in the Stokes data—
but we did not find any such example after examining a large number of
possibilities

~SE ey | (=1 =2 =3 |t=4|(=5
n=0 1 1 1 1 1
n=1 2 3 1 5 6
n=2 3 6 0 | 15 | 2t
n=3 4 10 | 20 | 35 | 56
n—=4 5 15 | 35 | 70 | 126

where ¢, still satisfies (4.174). Following the same steps as earlier-on, from
this equation follows the Stokes-ratios generating-function (5.182) for Py,

A4
(5.238) ROMN) = —L—
T (1+47)

(compare with (5.188) for P;). We can generalize the conjecture in [29] for
the Py Stokes lattice boundary (5.189) to Py—see as well [30]. If we further
join-in the known analytic Stokes coefficient (1.7), alongside support from
numerical explorations (see section 6), we have

(0 _ )71 a2 W_ 1
(5.239) N == <N1> and N = i

And this is now all the information we need in order to write down the
explicit generating function of full P Stokes data:

21)5*1 N 24 Adre

5.240 NOoy = G o M

(5.240) ™) (M) o
1 or

5.241 NO = 2 NOn,

( ) 1-p p! ONP ( )7\:0

We have also tested this expression thoroughly, as will be described in
section 6. This time around, it is setting

(5.242) Ay =16



Salvatore Baldino et al.

464

Table 4: Values of Stokes data alongside corresponding D-brane exponential weights (and starting powers of z and
gs, when appropriate) of the standard (1,0)-instanton sector, for the different normalizations of P; discussed in
subsection 2.1. For the (2,3) minimal-string case we also give the result obtained when taking z to the conformal

background
P Equation ugl,o)[o] S{O) gfgs 2P oA(2:9) Conformal Background
1 1 5
W ()~ gu(z) — 2 =0 (-8) et
u?(2) — 1u"(z)—zzo 811 ) 1 —448:d
3 24/ 2%
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(again, A, turns out not to depend on ¢) which yields precise matches with
our numerics after generating large sequences of the Nl(e_)p coefficients—up
to very small errors; see section 6. With all this at hand, the first couple of
coefficients for the first diagonal read (compare with (5.193)—(5.194)—(5.195)
for Py)

1
(5.243) NY =

(5.244) NV = —4—— (yp +1og (16)),

Ver

i 2
(5.245) N9 = ; Ner (7 -3 (e +log(16))2> .

These P Stokes data display the same curious patterns as for Py (which we
already previewed in figure 14). Moving down each diagonal, the patterns of
figure 14 translate into the by-now familiar “hump patterns” for the absolute
values of the Nl(e_)p
Backward Stokes data also follows in complete parallel with Py. It is now

, as illustrated in figure 19.

encoded in the generating function
(5.246) N(—K)O\) _ _(_i)é e47ri}\€ N(ﬁ)(_)\)

All these expressions are numerically testable, and those will be discussed
in the upcoming section 6. We illustrate all these P results for the Stokes-
vectors lattice in figure 20.

Finally, we may address the Sy(o) Stokes vector field—which again re-
duces to its only non-trivial content, S,(o) and S, (o). Recalling the slight
difference in the structure of Nl(e) data (compare the factor of 2 in (5.189)
and (5.239)), the present Pjj results match the earlier P results in subsec-
tion 5.1 up to factors of 2. The computational steps of course remain the
same. Hence, we now find (compare with (5.210)—(5.213) for P)

(5.247)

N ()

(J\h(l))2 |

Sy(o) = i <N1(1))2 [a21 (1 + H% logNW(H))

i
— log | 1 — 2ioo
2 —02 %logN(l)(u) ]
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Figure 19: Structure of the first few Nl(f)p (in absolute value), for the first
three diagonals.

d 1
—0q mlogN( (W) N(_l)(u))

_ _ log (1 — 2i0p —————=
op? (1 + pg log N 1)(u)> (N2

with the familiar simplifications at either vanishing oy or o (compare with
(5.211)—(5.212)—(5.214)—(5.215) for Py)

1
(5249) §0 (0'170) = Nl(l) |: :| ’
: —1 as7(1) i
_ ol | o Ny _ Zioy
(5.250) Sy (0,02) = SN} [ e ] log (1 N(l)) ’

(5.251) S, (0,09) = NV [ 0 ] ,
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Figure 20: A subset of Stokes data for Pj. As usual, all displayed numerical
values are of course truncations of irrational quantities. Some of these num-
bers had been previously found in [30, 42] and they are now all understood
with closed-form analytical expressions, as discussed in the text. These num-
bers encode many patterns (illustrated by the arrows), which are essentially
the same as for P).

. (1) .
1 (- | —o1 Ny 2io1
5.252) S_(01,0) = =N _ log|1———=].
( ) _7r( 1 ) 1 [ 0_1_1 N( 1) ] g( N(_l)
5.4. Global structure of 2D quantum supergravity

As discussed in subsection 2.2, Py solutions-squared describe the specific-
heat of the simplest (K = 1) unitary multicritical model. Its free energy is
given by (2.49), which we repeat in here

(5.253) Fii(2) = —un(z) = —pfi(2).

As already discussed for Py, the above integration is formal in which case out
of the g (x; 01, 092) transseries one hence obtains a Fi (x; 01, 02) transseries
in the same (trans)monomials. This was explicitly carried through with
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many data in [30], and some brief examples were collected throughout sec-
tion 2. As for Py, this further implies that out of the P solution Stokes data
we may hence obtain 2d supergravity free-energy Stokes data.

The whole calculational procedure follows in parallel with what was
done in subsection 5.2, and we will thus be brief in the present discussion.
The vectorial structure of Stokes data S is always the same, i.e., (5.175)—
(5.176),

oF | p+4

(5.254) SH iy = NI [ e }
F _ (=OF -p

(5.255) St iy = N LH g].

Rescaling the free-energy transseries parameters as

(5.256) of = % of = 22
Nl

then free-energy Stokes data scale as (same as (5.220)—(5.221) for Py)

(5.257) NOF = (N1<1>>”’1 (Nf—U)p”*lN{‘Z_)p,
(5.258) Nl(:]l;)F _ <N1(1)>p+€—1 (Nl(_l))pilNl(:?-

This transformation law is obtained by combining the results of section 5.2
(double integration does not change the Stokes data), together with the
result in [30] (squaring a transseries does not change the Stokes data). Thus,
the transformation law comes only from the rescaling of o1 and o in of and
o}, just as in subsection 5.2. From these relations the generating functions
for free-energy Stokes data follow from (5.240) (same as (5.222)—(5.223) for
Pr)

()
OF () = 0 (DD
(5.259) NOFQ) = Py N(><N1 N 7\),
1 1
m)*
N
(5.260) NEOEQY = M N0 (N1<1>N1<—1>)\>.
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The forward-data generating-functions have the same form as in subsec-
tion 5.2,

(_Q)Z—l ZQTF Al

(5.261) NOF\) =
T+

with ap = Nl(l)Nl(_l)a = 8N1(1)N1(_1) = —%, and A as in the previous
subsection. Backward data are generated by

(5.262) NEOFQ) = (=)L M NOF ().
Further as before, the edge boundary factors turn out to be rational:

26—1
23

(5.263) NOF = . NUOF -

The familiar Stokes-data patterns also repeat themselves. The trivial pattern
along the Stokes-lattice boundary is fixed in the free-energy normalization,

1
(5.264) Shio= [ 0 } .

Moving down each diagonal, the “hump patterns” (occurring earlier-on down
the diagonal as typical of free-energy data) are illustrated in figure 21 (for
the first three diagonals ¢ = 1,2,3 and p = 0,1,...,25). Their actual zeta-
number combinations may be then found in figure 22, with corresponding
bare numerical values illustrated in figure 23.

All we have left to address is the Stokes vector field S5 (o), which by-
now is computed straightforwardly. Evaluating all relevant sums in the usual
way yields (compare (5.228)—(5.229))

(5.265)
1) (1 +pF dr log N(l)F(uF))
5§ (0F) = —[ ? au log( 1+ 205 NWF(uF)),
2 —0} 3t log NDF (uF) < )
(5.266)

(o) — _I—Uf o log NV  (up) .
- 2 (Uf) <1 + uF% log N(*l)F(uF))

X 10g<1 —20F N(_l)F(uF)),
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Figure 21: Structure of the first few V. OF

1-p (in absolute value), for the first
three diagonals.

1 N,S{;)F O/Z‘ ap\4 S(OF 14 9
S ()™ (C(4>‘§<<2)>~

Figure 22: Free-energy zeta-number patters, going down any diagonal ¢. We
have used the same color coding as before, in order to highlight key aspects
of these patterns—as usual, in red, one notices the increasing amount of
zeta-number combinations.
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Figure 23: A subset of Stokes data for the free energy of the k = 1 unitary
multicritical model. As always, many numerical values are truncated irra-
tional quantities. All these numbers are now fully understood, with closed-
form analytical expressions. They encode many patterns (illustrated by the
arrows), essentially inherited from those of Py, and which end-up basically
the same as for P).
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with the standard simplifications at either vanishing of"/of (compare
(5.230)—(5.231)—(5.232)—(5.233)),

1
(5.267) 8§ (of,0) = { 0 ] )
1 n
(5:268) S (0,05) = log(1+207) [ _((,22]151)1? ] ’
0
(5.269)  SE(0,0f) = [ 1 ] :

6o SEGl) = —fc-2a) |
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Finally, we may recover the discussion we made at the end of subsec-
tion 5.2; asking if there might be better redefinitions of transseries param-
eters where more (if not all) Stokes vectors turn out to solely have integer
entries? The answer is pretty much the same: our parametrization is the one
in which the number of integer-valued Stokes vectors is maximized. Moving
towards Borel residues, again we find similar results: the only such numbers

F

(among the ones of the form Sgn}n)%(pMp))

integers are the Borel residues of the form S

that turn out to be (negative)
(F)

(n,n)—=(n+L,n
ples illustrating the cumbersome structure of Borel residues may be found

in table 5 for Py, in table 6 for the rescaled version corresponding to the free
energy, whereas in table 7 we display some Borel residues which are actually
integers. As in the previous P case, we will present results regarding the
generating functions for Borel residues in section 7.

) A couple of exam-

5.5. Alien algebraic structures from Stokes data

Having computed full Stokes data for both P, and Py, alongside their quan-
tum gravity or minimal string incarnations, one may next ask what can one
do with it. The one obvious answer, which we already started tackling back
in subsection 3.5, is to compute Stokes transitions or connection formulae
associated to the respective Stokes automorphisms. This we shall do in detail
in upcoming section 7. But, as discussed in subsection 3.5, the road towards
Stokes transitions starts with the alien derivative as in (3.72) or in (3.77)
in the resonant case. Let us then address the computation of arbitrary alien
derivatives in the present subsection.

One natural question—which we already alluded to in passing just be-
fore (3.97), and which in fact was pivotal to start our Stokes data calcula-
tion—is whether the commutator of two alien derivatives, say A,.4 and
Am-a, with m # —n, will still result in an alien derivative, A(y4m).4, OF
not. This was discussed in detail in [27] and let us now briefly review it
also to put (3.97) in perspective. In analogy with the (non-resonant) alien
derivative (3.72)—recall

(5.271) Dpa®n =Sp- (n+£) Ppye

—introduce the linear operator Gy (v) (with £ € Z? and v € C?) acting on
arbitrary transseries sectors through [27]

(5.272) Ge (V) Py =v-(n+ L) Dppy.



Table 5: Some Borel residues on the main diagonal, for the Py specific-heat. The complexity of these numbers
increases with n (more Stokes vectors from the “bulk” of the lattice may contribute) while ¢ has no apparent

effect
~S(nn)(£.0) (=1 (=2
"0 & =
=1 _41\/g(7E +1og 16) _2(6'yE—i7T7r+610g 16)
n_9 _21\/g (6('YE +log16)? — 7r2) 8(71271%+31"/E7T+772712(10g7r16)27247E log 16+3im log 16
~S(nn)(£.0) t=3
n=0 m
n=1 3\/5(4iVE;—37;;&-4i log 16)
n—9 2\/5(—7iTr2+367r(’yE+7i:§216)+90i(75+10g 16)%)

“'suoryenbo 9Ad[UTRJ I0J BIRP SONO0}S JUOSINSIY]

LY
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Table 6: The same Borel residues, now for the free energy of 2d quantum
supergravity. Residues starting at the (0,0) perturbative sector are trivially
1, but all other residues have complicated expressions (albeit slightly less
complicated than the previous case)

=S e (=1 (=2 (=3
n=0 1 1 1
n=1 —T (g +10g16) | =2 — ZZ (g + log 16) | —6 — ZE (45 + log 16)

Table 7: A larger set of integer-valued Borel residues for the free energy of 2d
quantum supergravity. These are associated to transitions from a diagonal
(n,n)-sector into an off-diagonal (n + ¢, n)-sector, and are exactly the same
as the ones for 2d quantum gravity in table 3—in fact, due to normalization,
the only relevant Stokes vector is precisely the same in the two problems. As
such, also the same considerations we had concerning table 3 hold herein

_S@,n)a(nw,n) =1 |0=2|(=3|(=4|¢=5
n=1 2 3 4 5 6
n=2 3 6 10 15 21
n=23 4 10 20 35 56
n=4 5 15 35 70 126

The linear operator G (v) will match the alien derivative Ag. 4 if v = Sy
(plus the usual properties of Stokes data). The reason to introduce these
more general operators is that they form a Lie algebra with standard com-
mutator, as can be easily checked [27]

(5.273) (G (v),Gm (u)] = Gpgm((v-m)u — (u-n)v).

The above alien-derivation operators are certainly a subset of the Gy (v)
operators of the form Gy (Sg)—but not necessarily form a Lie subalgebra.
In fact, for these one finds [27]

(5.274) [Gn (Sn),Gm (Sm)] = Grnim ((Sn - m) Sm — (Sm - 1) Sp)
and the right-hand side is an alien derivative if and only if [27]

(5.275) (Sp,-m) Sy, — (S - M) Sn X Sptme-

In the case where there is resonance, (3.72) or (5.271) need to be up-
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graded to (3.77)—recall

(5.276) Nealn= Y Seip (n+L+p)Tpipp
pEker P

The condition for alien derivatives to form a Lie subalgebra is naturally now
different. Computing the commutator

(5.277)
[A'rvAa AmA] q)k: =
= > {(Snip M+ ) Smiq— (Smiq- (n+D)) Snip -

p,g<ker P

(5.278)
) (k +n+m+p+ q) (I)k+n+m+p+q =

= Z (Z {(Sn+p—Q'(m+Q)) Sm+q—

pekerP \gckerP
— (Smiq- (n+p—q) Snﬂ,q}) .

(5.279)
: (k +n+m+ p) (I)k-i-n-l—m-i-pa

and comparing it with

(5:280)  Apmym)a®k= Y. Snimip: (k+n+m+p) Prinimip,
peker P

we see that that closure of the alien algebra in the resonant case now requires
(compare with the simpler non-resonant (5.275) above)
(5.281)

Z {(Snerfq'(m“‘Q)) Sm+q— (Serq'(n"'p_Q)) Snerfq} X Sntm+p
gckerP

where if to fit with (5.280) the proportionality fa