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Weyl invariant Eg Jacobi forms and
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In 1992 Wirthmiiller showed that for any irreducible root system
not of type Eg the ring of weak Jacobi forms invariant under Weyl
group is a polynomial algebra. However, it has recently been proved
that for Fg the ring is not a polynomial algebra. Weyl invariant Eg
Jacobi forms have many applications in string theory and it is an
open problem to describe such forms. The scaled refined free ener-
gies of F-strings with certain n-function factors are conjectured to
be Weyl invariant Eg quasi holomorphic Jacobi forms. It is further
observed that the scaled refined free energies up to some powers of
FE, can be written as polynomials in nine Sakai’s Eg Jacobi forms
and Eisenstein series Fs, F4, Eg. Motivated by the physical con-
jectures, we prove that for any Weyl invariant Fg Jacobi form ¢
of index ¢ the function Ez[f/ SIAI5t/6] %, can be expressed uniquely
as a polynomial in Fy, Fg and Sakai’s forms, where [z] is the in-
teger part of x. This means that a Weyl invariant Eg Jacobi form
is completely determined by a solution of some linear equations.
By solving the linear systems, we determine the generators of the
free module of Weyl invariant Eg weak (resp. holomorphic) Jacobi
forms of given index t when ¢ < 13 (resp. t < 11).

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 11F50, 17B22; secondary
81T30.
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1. Introduction

In 1985 Eichler and Zagier introduced the theory of Jacobi forms in their
monograph [7]. Jacobi forms are an elegant intermediate between different
types of modular forms and have many applications in mathematics and
physics. In 1992 Wirthmiiller [25] investigated Weyl invariant Jacobi forms
associated with root systems. Let R be an irreducible root system of rank r.
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A W (R)-invariant Jacobi form is a holomorphic function of complex vari-
ables 7 € H and 3 € R ® C which is modular in 7 and quasi-periodic in j
and is invariant under the action of the Weyl group W(R) on the lattice
variable 3. All W (R)-invariant weak Jacobi forms of integral weight and in-

(R)

tegral index form a bigraded algebra J:V}K over C. When R is not of type

Eg, Wirthmiiller showed that J:&(R) is a polynomial algebra generated
by r + 1 Jacobi forms over the ring M,(SLa(Z)) = C[E4, Es] of SLa(Z)-
modular forms. For example, the algebra of W (A;)-invariant weak Jacobi
forms, that is, the ring of even-weight weak Jacobi forms introduced by
FEichler and Zagier, is freely generated by two forms of index 1 and weight
0 and —2. Recently, the second named author proved in [22] that the ring
of W (Eg)-invariant weak Jacobi forms is not a polynomial algebra. In other
words, there exist some algebraic relations among generators. It is still un-
known if this ring is finitely generated. In the study on the Seiberg—Witten
curve of FE-string theory [6], Sakai [18] constructed nine W (Eg)-invariant
holomorphic Jacobi forms denoted A, Az, As, A4, As, B2, Bs, By, Bg. The
forms A; have weight 4 and index i, and they reduce to the Eisenstein series
E, when 3 = 0. The forms B; have weight 6 and index j, and they reduce
to Eg when 3 = 0. In [19] Sakai conjectured that for any W (Eg)-invariant
Jacobi form ¢ there exists a SLa(Z)-modular form f(7) such that the prod-
uct f¢ can be written as a polynomial in these A;, B; and FEj, Eg. This
conjecture was proved by the second named author in [22]. In this paper
we will determine the best possible f for arbitrary index and give some fur-
ther applications. Our description is inspired by some conjectures in string
theory. Let us briefly introduce the physical background.

The E-string theory is a typical 6d (1,0) superconformal field theory
(SCFT) with Eg flavor symmetry [26, 20, 8]. In the S!/Zy compactification
of M-theory, m FE-strings are realized by m M2-branes stretched between a
Mb5-brane and a M9-brane. The bound state of m FE-strings are captured by
topologically twisted 4d N' = 4 U(m) Yang-Mills theories on half K3, which
is an elliptic surface realized as P? with nine points blown up [14, 15]. From
the view point of Calabi-Yau geometry, the FE-string theory is equivalent
to topological string theory on local half K3 Calabi-Yau threefold. By S*
compactification, E-string theory gives marginal 5d N' = 1 SU(2) gauge
theory with eight fundamentals, which can flow to almost all 5d rank-one
SCFTs [21]. E-string theory is also closely connected to van Diejen integrable
model and elliptic Painlevé system [16, 17]. All these relations make FE-
string theory the mother of almost all “genus one” theories in the sense
of mirror/spectral curves, or “rank one” theories in the sense of Coulomb
branch dimension.
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A general spacetime setting which preserves the supersymmetry for FE-
string theory is the so called 6d Omega background (C? x T?), ,, where
each C plane is rotated by z; — e®z; around the cycles of the torus. For
such system, the €12 expansion of the total instanton free energy F =
> ngm>0 QM (—e162)97 e + €2)*"Fpy g.m) defines the refined free energies
of E-strings, where () counts the number of strings. The situation when
keeping all Fg flavor fugacities 3 is often called massive, while turning 3 = 0
massless. It is generally conjectured that the refined free energies Fi, g ) of
m E-strings in the massive case are W (Eg)-invariant quasi Jacobi forms of
%)mF(njg,m) of E-strings in the
massless case were found to be quasi modular forms of weight 2(n+g)+6m—2
on SLg(Z) and thus can be expressed as polynomials in Es, E4 and Eg. It is
then natural to guess that the scaled refined free energies (%)mF(n,g,m) in
the massive case can be written as polynomials in o, Fy, Fg, A; and B;. The
process to fix all the polynomial coefficients to determine F, , ,,,) is called
modular bootstrap and the ansatz is called modular ansatz. In [13], Huang,
Klemm and Poretschkin developed the refined modular anomaly equation
to efficiently compute F{, g ) of E-strings. They found that the naive mod-
ular ansatz is true flc;r index m < 4, but usually not true for m > 5. Indeed,
they found some (%)5F(n,g,5) which cannot be expressed as polynomials in
Sakai’s nine forms unless further multiplied by FE4. Later Del Zotto, Gu,
Huang, Kashani-Poor, Klemm and Lockhart [5] discovered an exceptional
W (Es)-invariant holomorphic Jacobi form of weight 16 and index 5 defined

by the polynomial

index m. The scaled refined free energies (

(1.1) Pig5 = 86443 Ay + 382541 B3 — 7T70A3B2Fs
— 840A9B3FEg + 60A1 By Eg + 21A5E§

They checked numerically that Pjg5 vanishes at the zero points of E4 for
general lattice variable 3 and then conjectured that the quotient Py 5/FEy is
holomorphic. They did not find other similar polynomials, so they further
conjectured that any Jacobi form expressed as a polynomial in A;, B; and
FEg which vanishes at the zero points of E4 must be divisible by the above
polynomial. In this paper we will prove their conjectures.

In a similar manner, Sakai’s nine A;, B; forms are also used in the modu-
lar bootstrap of the elliptic genera of E-strings and Eg x Eg Heterotic strings
[12, 4, 11]. One of the main goals of the current work is to establish a rig-
orous foundation for modular bootstrap whenever Eg symmetry, no matter
flavor or gauge, is involved.
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In [23] the second named author established the modular Jacobian crite-
rion to give an automorphic proof of Wirthmiiller’s theorem. We will use this
approach and the distinguished Jacobi form Pig 5/Ey to prove the following
theorem, which gives a full description of W (Eg)-invariant Jacobi forms in
terms of Sakai’s forms.

Theorem 1.1.

1. The quotient Pis5/Ey4 is a W (Eg)-invariant holomorphic Jacobi form
of weight 12 and index 5.

2. For any W (Eg)-invariant Jacobi form P € C[Eg, A1, A2, Ba, As, Bs,
Ay, By, As, Bgl, if P/Ey is holomorphic on H x (Eg ® C), then

S C[E(S, A17 AQ, BZa A37 B3a A4a B47 A57 BG]
16,5

3. Every W (Eg)-invariant weak Jacobi form of index t can be expressed
uniquely as

t1 ) pti—J
>0 P EyPig 5
ANER

(1.2)

where
(i) t1 is the integer part of t/5;
(ii) P, € C|Ey, Eg, A1, Aa, Ba, As, Bs, Ay, By, As, Bg);
(iii) Pj € C[Eg, Ay, As, B, As, B, Ag, By, As, Bg) for 0 < j < t1;
(iv) Ny is defined as follows

ato, if t =6ty or 6ty + 1,
S5tg+ 1, ift =6ty + 2,

S5tg + 2, if t =6ty + 3,

Stg+ 3, if t =6ty + 4 or 6ty + 5.

The powers t; and V; here are sharp. There exist W (Eg)-invariant Jacobi
forms of arbitrary index which cannot be expressed in the form (1.2) if
we replace t; or N; with any smaller integer. Besides, our theorem implies
that there is no W (Eg)-invariant Jacobi form which vanishes at the zero
points of Fg and lies in the ring C[Ey4, A1, Ag, Bo, A3, B3, Ay, By, As, Bg].
This confirms the numerical search in [5].
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The function (1.2) is a weak Jacobi form if and only if the numerator
has Fourier expansion of the form

(1.3) ZP ElP ) =0(™), q=e.

We can find a basis of the space of W (Eg)-invariant weak Jacobi forms
of given weight and given index by solving the system of linear equations
defined by (1.3). In [22] the second named author proved that the space

J:}EVZ,(SES) of W (Es)-invariant weak Jacobi forms of integral weight and given
index t is a free module over M,(SLs(Z)) whose rank is determined by a
generating series. He also determined the generators of JWEWEES) for t < 4
using the differential operators on Jacobi forms. In this paper we calculate

the Fourier expansions of Sakai’s forms up to ¢-terms. By solving linear

systems of type (1.3), we figure out the structure of J:VEWEEg) for ¢t < 13.
We also successfully determine the space of W (FEjg)-invariant holomorphic
Jacobi forms of arbitrary weight and index ¢t < 11. The module JW}EWgES)
is quite complicated when the index t is large, such as the largest module
JXJEVZ(1§8) we have determined has 364 generators.

The paper is organized as follows. In §2 we give a brief introduce of

W (Eg)-invariant Jacobi forms. §3 is devoted to the proof of Theorem 1.1. We
calculate the generating series of .J, v W(ES) for index ¢ < 13 in §4 and present
their Laurent expansions in Appendlx A We discuss W (Eg)-invariant holo-
morphic Jacobi forms in §5 and construct three exceptional generators in
Appendix B. In §6 we propose five conjectures on Jacobi forms and provide

some evidence.
2. Preliminaries

In this section we define W (Eg)-invariant Jacobi forms. Let N be the set of
non-negative integers and (—, —) be the standard scalar product on R%. Let
W (Eg) denote the Weyl group of Eg. We use the model, simple roots and
fundamental weights of Fg fixed in [22, §3.1]. We say that a vector v € Eg
has norm n if (v,v) = 2n.

Definition 2.1. Let ¢ : H x (Eg ® C) — C be a holomorphic function and
k € Z, t € N. If © satisfies the following properties

(i) Weyl invariance:

@(770(5)) = 90(7—’5)7 o< W(ES)a



558 Kaiwen Sun and Haowu Wang

(ii) Quasi-periodicity:
o(7,5 + 27 +y) = exp (—twil(z, 2)7 + 2(2,3)]) 0(7,3), =,y € Eg,
(iii) Modularity:

ar+b
ct+d er+d

(3:3)
ct+d

> = (cr +d)¥exp (tm' ) o(7,3),

(¢ 5)estm,

(iv) ©(7,3) has the Fourier expansion

_ i Z f(n7£)e27ri(n7'+(€,3))7

n=0 éGEs

with

then ¢ is called a W (Eg)-invariant weak Jacobi form of weight k& and index t.
If f(n,f) = 0 whenever 2nt — (¢,¢) < 0, then ¢ is called a W (Eg)-invariant
holomorphic Jacobi form.

Every non-zero W ( Eg)-invariant weak Jacobi form has even weight. The
W (Eg)-invariant weak Jacobi forms of index 0 do not depend on the lattice
variable 3 and are actually modular forms on SLy(Z). The quasi-periodicity
implies that in the above Fourier expansion f(ni,¢1) = f(ne,¥2) if 2nit —
(01,01) = 2nat — (L2, l2) and if 1 — {9 € tEg. We denote the vector spaces of
W (Es)-invariant weak and holomorphic Jacobi forms of weight k£ and index
t respectively by

w,W (Es) W (Es)
Jeber 2 kBt -

We will investigate the free M, (SL2(Z))-modules
VW (Es) @wa (Bs)  yW(Bs) . _ W (Es)

* ,Es.,t k. Eg.t ’ * JEs it T k,Esg,t
keZ keZ

and the bigraded algebra

(e.)

W,W(Eg) e W,W(Eg)

J*,Es,* T @ J*,Es,t :
t=0

Sakai’s forms A1, Ao, Bo, A3, B3, A4, By, As, Bg were first constructed
in [18, Appendix A.1]. It was proved in [22, Theorem 4.1] that the nine
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Jacobi forms A; and Bj are algebraically independent over C[Ey, Eg|. Due
to its importance, we briefly explain how Sakai constructed these forms. One
starts with the Jacobi theta function of Eg

19E8 (7_’3) — Z efri(@,f)TJrQTri(E,g)
leEg

which is the unique W (FEg)-invariant holomorphic Jacobi form of weight 4
and index 1. Acting the index raising Hecke operators T_(t) on 9, (see e.g.
[22, Lemma 3.6]), one obtains W (Ejg)-invariant holomorphic Jacobi forms of
weight 4 and arbitrary index ¢

(2.1) Xi(r,3)=1+0(q), q=e"".
Sakai’s forms A; are constructed as
(22) AJ(T73) = Xj(Taj)') .7 = 17 27 37 57 A4<T73) - ﬁEs(Tv 23)

To construct By, one first takes an appropriate modular form g; of weight
2 on the congruence subgroup I'g(¢) of SLa(Z). Then the trace sum of
g¢(T)VE, (tT,t3) with respect to the cosets of I'g(t) \ SLa(Z) defines a W (Es)-
invariant holomorphic Jacobi form of weight 6 and index ¢. That is the
desired B;.

The Fourier expansion characterizes Jacobi forms. Due to the Weyl in-
variance, the Fourier expansion of any W (Ejg)-invariant Jacobi form can be
expressed in terms of Weyl orbits of vectors in Eg. We review some useful
facts following [22]. For any v € Eg we define the Weyl orbit of v as

(2.3) orb(v) = > e?milo(v)s)

c€W (Es)/W (Es)w

where W (Es), is the stabilizer subgroup of W (Es) with respect to v. For
any non-negative integer n the ¢"-term of ¢

[lgr = Y f(n,0)e*m D)

leFEg

can be written as a C-linear combination of Weyl orbits. Let «; and w;,
1 <4 < 8, be the simple roots and fundamental weights of Eg respectively
(see [22, §3.1] for their coordinates). The eight fundamental Weyl orbits
orb(w;) are algebraically independent over C. Moreover, every Weyl orbit
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orb(v) can be expressed as a polynomial in these fundamental orb(w;). By
[2], every Weyl orbit meets the set Ay in exactly one point, where

Ay ={me Eg: (a;j,m)>0,1<i<8}

8
:{m:Zmiwi:mieN,lgiSS}

i=1

is the closure of a Weyl chamber. Thus we only need to consider the Weyl
orbits of vectors in A,. With respect to the partial order on FEg, we have
the decomposition

8
orb(m) = Horb(wi)mi + Z c1,m orb(l),
i=1 leA,
l<m

where ¢ ,,, are some integers. Let us define
(2.4) T(m) = (m,wg) = 2mq +3mgy+4ms+6mgy+5ms+4me+3m7+2ms.

Since wg is the highest root of Eg, the condition [ < m implies that T'(]) <
T'(m). We then derive the further decomposition

8
(2.5) orb(m) = E clnorb(wi)l’i, em = 1.
leA, i=1
T(1)<T(m)

In this paper we first compute the Fourier expansions of Sakai’s forms in
terms of Weyl orbits. This can be calculated efficiently by their definitions.
We then use (2.5) to express their Fourier coefficients as polynomials in
the eight fundamental Weyl orbits. This expression is very convenient for
calculating the Fourier expansions of monomials in Sakai’s generators. The
¢°-term plays a crucial role in the study of weak Jacobi forms. We recall a
useful result. [22, Lemma 4.2] states that the ¢*-term of any W (Eg)-invariant
weak Jacobi form of index ¢ can be expressed as

8
(2.6) Z Cm H orb(w;)™.

m€A+ =1
T(m)<t

The number of monomials including the constant term in the above sum is

gV (Ee) (see [22, Theorem 4.1] and

equal to the rank of the free module J i ;
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its proof). This number also equals the number of orbits of the quotient
group Eg/tEg under the action of W(Eg), and {m € Ay : T'(m) < t} gives
a representative set of these orbits.

Finally, we describe the number of elements in a Weyl orbit orb(m),
which equals the index of the stabilizer W (Eg),, in W (Es). We remind that
Weyl orbits of the same norm do not necessarily have distinct number of
elements (see Appendix B for some examples).

Lemma 2.2. Let m = Z§:1 m;w; € Ay. Then the stabilizer of m in W (Ey)
18 given by the intersection of all stabilizers of fundamental weights w; with

Proof. Let g € W(Es). Then g(m) = m if and only if 35 | mig(w;) =
2?21 m;w;. With respect to the partial order on Eg, we have that g(w;) < w;
for 1 < i < 8 (see [2]). Therefore, g(m) = m if and only if g(w;) = w; for all
i such that m; # 0. O

3. The proof of Theorem 1.1

In this section we prove Theorem 1.1. We divide its proof into several lem-
mas.

As explained in [22, §3.2, pp. 529-530], we take g(7) = (5E2(57) —
E5(7))/4 which is a modular form of weight 2 on the congruence subgroup
I'o(5), and define Bs analogous to Sakai’s Bj as

~ 5% 1 < T+ k T+ k
(3 Bulriy) = 5 a9 050~ 55 320 (P o (T 3)

We note that Bs is a W (Es)-invariant holomorphic Jacobi form of weight 6
and index 5 whose reduction is Bs(7,0) = E.

Lemma 3.1. The Jacobi form §5 satisfies the identity
(32) 179712AE4§5 = E6P16,5 + E4Q1875,
where

Q185 = — 288043 By + 135041 Ay Bo By + 192042 B3 Ey — T0A3Bo B2
— 600A49B3F% — 604, B4E3 — 567A1 AZEq + 672A% A3
— 2400ByB3Eg — 504 Ay A3 E4Eg — 21 A5 B .
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Proof. Both sides of the above identity are W (Eg)-invariant Jacobi forms of
weight 22 and index 5. We check by computer that their Fourier coefficients
are the same up to ¢*-terms. Thus their difference divided by A* defines a
W (Eg)-invariant weak Jacobi form of weight —26 and index 5, which has
to be zero because the weight of a non-zero W (Eg)-invariant weak Jacobi
form of index 5 is at least —18 (see [22, Proposition 5.17]). This proves the
desired identity. O

We remark that Pyg 5/ E? is non-holomorphic because Py 5 reduces to
864E} + 2296 B4 E2 when 3 = 0.

In [23] the second named author defined the Jacobian of Jacobi forms and
used this tool to give a simple proof of Wirthmiiller’s theorem. We refer to
[23, Proposition 2.2, Proposition 2.3| for details. We will apply this method
to the case of Eg. Let us first calculate the Jacobian of Sakai’s generators
defined as the determinant

Ay 2Ay 2By 3A3 3B3 4A4 4By 5As 6D
A, 9A, 9By, 9As 9By 9A, 9By, 9As 9Bg

(3 3) 1 0z1 0z1 0z1 0z, 0z1 0z1 0z1 0z1 0z1
S 7 S S S S
0A1 0Ay; 9By 9As 9Bs 9As 0By 0As  9Bs
Ozs 0zs 0zs 0zs Ozs Ozs 0zs 0zs Ozs
where z;, i =1,...,8, are the standard basis of R8.

Lemma 3.2. The modular Jacobian of Sakai’s forms satisfies the identity

(3.4)
33

J = J(A1,AQ,BQ,A3,33,A4,B4,A5,BG) = CA14E4 . (I)E87 C = _W’

where @, is the theta block associated to Eg (see [10] for the general theory
of theta blocks developed by Gritsenko, Skoruppa and Zagier)

o (r.5) = [[ "o,

r

The above product takes over all positive roots of Eg and ¥ is the odd Jacobi
theta function

00 =

(C%—C_%) H(l_qng)(l_qng—l)(l_qn)’ q= e?m"l" C _ 627riz.

n=1

W1, 2) =q
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Proof. By [23, §4], ®g, is a weak Eg Jacobi form of weight —120 and index
30 which is anti-invariant under the action of W (Ejs) (i.e. invariant up to
the determinant character). Moreover, it vanishes precisely on

{(r,3) e Hx (Eg®C) : (r,3) € Z+ Zt for some positive root r}

with multiplicity one. By [23, Proposition 2.2], J also vanishes on the above
set. Thus J/®p, is holomorphic and defines a W ( Eg)-invariant weak Jacobi
form of weight 172 and index 0, which yields that J/®g, is a SLa(Z)-modular
form of weight 172. We notice that every partial derivative of A; or B;
cancels the ¢%-term. By calculating the Fourier expansions of A; and B;
up to ¢’-terms, it is sufficient to calculate the ¢'*-term of J. We find that
J/®p, = cqg*+0(g"®), which implies that J/® g, = cA E,. This completes
the proof. O

Remark 3.3. By [23, Proposition 2.2 (2)], the above Jacobian J is not
identically zero if and only if the forms A; and B; are algebraically inde-
pendent over C[Ey, Eg]. Thus Lemma 3.2 yields a new proof of the algebraic
independence of Sakai’s forms.

Lemma 3.4. For any W (Eg)-invariant weak Jacobi form ¢, there exists an
integer N such that

AN¢ € C[Ey, Eg, A1, Ay, By, A3, B, Aq, By, As, Bg),

where

Proof. From the definition of the modular Jacobian, we see that

J(A1, Ay, By, Az, B3, Ay, By, A5, Bg)
= J(A1, Ay, By, A3, B3, Ay, By, Pig 5 — 21E;3 As, Bg)/Ey
=-21- 1728AJ(A17 A27 B27A3vB37A47 B47 A57 Bﬁ)/E4

By Lemma 3.2, we have
J(A1, Ay, By, As, Bs, Ay, By, As, Bg) /®p, = —36288¢A7.

We then prove the claim by applying the criterion established in [23, Propo-
sition 2.3 (2)]. O
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We also need the following eight specific W (FEg)-invariant weak Jacobi
forms of weight 4 whose ¢’-terms are a single fundamental Weyl orbit.

Lemma 3.5. The following W (Eg)-invariant weak Jacobi forms ¢_; of
weight 4 and index t with indicated ¢°-term exist.

P4a,2 = P1(Ey, Ee, Ai, Bj) /A = orb(w1) + O(q),
a2 = P2(Ey, Es, Ai, Bj) /A = orb(ws) + O(q),
904(1,3 — 3(E47E67AZ7-B )/A — orb(w7) +O(q)7
@av3 = Pi(Ey4, Eg, A, Bj) /A% = orb(ws) + O(q),
Paaa = P5(Ey, Eg, A, B;)/A* = orb(ws) + O(q),
904b,4 - G(E 7E67Ai7B )/A?) :Orb(wﬁ) +O(Q))
(p45 = P7(E ,Eﬁ,Ai, B; )/A3 = Ol“b(w5) + O(q),
P46 = Py(Ey, Eg, A;, Bj )/A5 = orb(wy) + O(q),
where
1
Pr=7 (- 12A3E7 + 1TA2E + 10A2E§ — 158y E4Ey)
1
P, = 7—(24A2E4 — 14A5E3 4+ 5A3E2 — 15ByE, ),
7
Py = 18( 27A1AyE} — 45A1 BoFg + 3TA3E} + 35A3E%),
1
Py = 864(126A3E4 A14A3F,E} + 675A1 Ay B E2 — 243A1 Ao F

— 1440A1 BoES — 251 A3 3 E2 + 122A3F$ 4 465 A3 F
— 20B3E{Fg + 980B3E,EY).

The other polynomials are very long and we omit their expressions here.
When the index is greater than 2 the above polynomial is not unique because

the associated space J " ; s E(EtS) s non-trivial.

Proof of Theorem 1.1. (1) This is a direct consequence of Lemma 3.1.
(2) It follows from Lemma 3.4.
(3) Let ¢ be a W (FEg)-invariant weak Jacobi form of index t. By Lem-
ma 3.4, there exists an integer N such that

ty i pti—J

>imo PiE Pig 5
N it
ANE!

(3.5) Pt =
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To prove the third assertion, it suffices to show that one can choose
N satisfying N < N,;. Recall that the space of all W (Ejg)-invariant weak
Jacobi forms of fixed index ¢ is a free module of rank r(t) over M, (SLa(Z))
(see [22, Theorem 4.1]). It is enough to prove that one can always choose
N < Ng such that (3.5) holds for every generator of the free module. Let bj,
1 < j < r(t), be the generators of the free module J;NEWEES) Clearly, every
¢ can be expressed in the form (3.5). We denote by M the smallest integer
N such that (3.5) holds for ¢;. Assume that M; is the largest of all M;.
Obviously, every generator ¢; has non-zero q°-term. Moreover, the qo—term
of every ¢; is a polynomial in the eight fundamental Weyl orbits satisfying
the restriction defined in (2.6). By [22, Lemma 4.2] and the construction
of forms in Lemma 3.5, for any sufficiently large integer D there exists a
W (Eg)-invariant weak Jacobi form v, of index ¢ in the ring

C[E4, Eg, A1, P1a,2, Pab,2; Pla,3: Pab3: Plads Pab4s P45, P4.6)

such that the ¢°-term of the difference E ¢; —; is zero. Therefore, (EP ¢1 —
i)/ A is a W (Eg)-invariant weak Jacobi form of index ¢ and then a C[Ey, Es]-
linear combination of the generators ¢;. It follows that the number M; de-
fined above is exactly the smallest integer N appearing in the expression of
type (3.5) for ¢;. We then derive the formula of NV; from the powers of A in
the construction of basic forms in Lemma 3.5. O

4. Free modules of weak Jacobi forms of given index

It was proved in [22, Theorem 4.1] that the space

Jv W (Es) | w,W(Es)
* Bt ’ @ Jk? E87 "
keZ
of W (Eg)-invariant weak Jacobi forms of integral weight and given index ¢ is

a free module over M, (SL2(Z)) and the rank r(t) is given by the generating
series

1 t
(4.1) (1—2)(1— 22)2(1 — 23)2(1 — 2%)2(1 — 25)(1 — 2°) = Zr(t)x .

We formulate the first values of r(¢) in Table 1.

In [22, §5] the generators were determined and constructed when the
index is less than 5 by an approach based on the weight raising differential
operators of Jacobi forms. In this section, as an application of Theorem 1.1,
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Table 1: The rank of JXK(ES) over M, (SL2(Z))

t

1123456 |7 |8]9]|10 11|12 | 13| 14 | 15

r(t) | 1]3|5]10|15 27|39 |63 |90 | 135 | 187 | 270 | 364 | 505 | 670

we determine the weights of generators and construct the generators in terms
of Sakai’s forms A; and B; when the index is less than 14. To this aim, we
introduce the following algorithm.

Algorithm 4.1.

W(

1. We determine a basis of szbg tEs) for any even weight k. The space

J,:V B, g *) is a finite-dimensional vector space over C. Every form in this

space has an expression of form (1.2) which corresponds to a solution
of the system of linear equations defined by the vanishing of ¢"-terms
(0 <n < N¢—1) in the Fourier expansion

t1
(4.2) > PiEiPS = 0(¢™)
=0

in weight k£ + 12N; + 4¢;. There are only finitely many linearly in-
dependent solutions in any fixed weight, because the weights and in-
dices of these P; (polynomials in Ey, g, A;, Bj) are bounded from
above.

We determine the minimal weight of non-zero W (Eg)-invariant weak
Jacobi forms of given index ¢. If the equation (4.2) has only zero solu-
tion in weight K 4+12N;+4¢; and in weight K +12N;+4t1 —2, then its
solution is always trivial in any lower weight and thus JXEVZ%E*;) = {0}
when k < K.

We collect all r(t) generators of the free module JZ’EVSEs) from the
minimal weight K to the larger weight.

We first calculate the Fourier expansions of Sakai’s forms A; and B; up

to ¢”-terms. The Fourier expansions involve 268 Weyl orbits of vectors of

norm

$(v,v) < 54. We then express these Weyl orbits as polynomials in

the eight fundamental Weyl orbits. Using the data and Algorithm 4.1, we

successfully determine all generators of

JW,W(ES

Vv for 1 <t < 13
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Theorem 4.2. Let di; denote the number of generators of weight k of

JfbvggES). For 1 <t <13 the Laurent polynomials

th = E dk7tl‘k
kEZ

describing the weights of generators are determined as follows

PYV=z PY=at4ar?+1, Pr=aSt+aStatira?i,

sz :x—16 + 56_14 + $_12 + x—lO + 2$_8 + 1}_6 + CC_4 + 33_2 + 1’

PY =216 4271 130712 4 22710 120 B LS T2 0,

P = 2072 420722 £ 32720 4+ 3718 4 32710 1 327 M 4 3712 22710
+2: 8 4 Ot 241,

PY =720 1 3072 4 50722 1 72720 4 40718 1 4g 710 e 4 3712
+207 104208 Oyt a2 41,

Py =223 4 42730 4 707 £ 62720 4+ 7272 4 60722 + 62720 4 52718
+527 0 a4 3712 42 0y 2 B Ot 42 4 1,

Py =730 12273 £ 82732 1 102730 + 11272 + 92726 4 9272 - 7072
+ 72720 462 B 452710 44 4 3272 422710 p 2278 4 7O
4+t 2 4 1,

PR =427 4 72738 4 112730 412073 4 140732 1120730 4 122728
+ 112725 410272 + 82722 + 82720 4+ 62718 4 52710 4 42 M
+327 24200 428 4 bt a2 40,

Py =527 4 150719 4+ 192738 4 202730 + 162731 + 172732 + 152730
+ 14272 4+ 120720 + 11272 + 92722 4 82720 + 6271 4 52716
+ar U 437242070 42 B Ot a2

P =8z 4+ 132740 - 21274 1 220742 4 222710 - 224738 4 224,736
+ 20273 4+ 202732 + 172730 + 152728 + 132726 4+ 12072 4 92722
+827 0 46278 450710 4 4+ 372 4 22710 4 278 4 16
+or 2 4 1,

P =222 4100750 4 242748 4 322716 1 372744 4 282742 4 294740
4 282738 4+ 262730 + 232731 4220732 + 18273 + 16272 4 142726
+ 12072 49272 4+ 82720 £ 6278 4+ 52710 4 4 4 3712 4 2710



568 Kaiwen Sun and Haowu Wang

+20 8 4t 241,

Clearly, the Laurent expansion of the following rational function at z = 0
gives the dimension of the space of weak Jacobi forms of arbitrary weight
and given index ¢

Py dy, s ¥
t _ 2 ke Okt Z dim JZVEI'/V Bs) k-
(1—z(1—2%) (1—2%)(1— %) 8t
keZ
This series is called the generating series of weak Jacobi forms of given index.
We will present these generating series separately in Appendix A.

At the end of this section, we explicitly show some generators. For
W (Eg)-invariant weak Jacobi form of index ¢ = 2, the three generators

are
(4.3)
ban = A2 — AE, by = AyFg — ByEy b0y = A%E, — ByFg
—4.2 —A s —2,2 —A s 0,2 —A .

For index t = 3, the five generators are constructed as

1
(4.4) b 83 = F(6A§>E4 —9A 1 AyF? + A3(3E3 — 10E?)
+ 304, ByEs — 20B3 E Ey),
1
¢—6,3 = F(GA?EG + 3A1E4(1032E4 — 3A2E6)
— E2(20B3E4 + TA3Fg)),
G_43 = Z(AIAZ — A3Ey),
P23 = Z(AlBQ — A3Es),
1
0,3 = K(A:f — B3Eg).

For index t = 13, the two lowest weight —52 generators are

1
$—524,13 = ADE 2(281154281472A13E4 935841724416 AL AL E

— 1468672041600 A B3E] + ...)
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and ¢_s2p,13 = $_164%—36,9, Where

(4.5)
1
¢—16,4 = F(192A111E4 + 75B§E§ + QASEEI’ — A4E§,Ll + 90A3BoEyEg + ... ),

P—369 = W(1026432/1?E;1 — 265939247 Ay B} — 589140043 B2ES + ...),
4

are the unique generators of the lowest weight for index 4 and 9 respectively.
5. Weyl invariant holomorphic Jacobi forms

Similar to weak Jacobi forms, the space of W (Ejg)-invariant holomorphic
Jacobi forms of integral weight and given index ¢

W (Es)
k,Es,t
k=4

is also a free module of rank r(¢) over M,(SL2(Z)). In this section we intro-
duce some methods to compute the dimension of the space of holomorphic
Jacobi forms. Firstly, the following lemma shows that the difference between
the dimensions of the spaces of weak Jacobi forms and holomorphic Jacobi
forms depends only on the index when the weight is greater than 4.

Proposition 5.1. For any t > 1 and any even k > 6, the following identity

holds
(5.1) dim ' ) — dim J)7S%) = 6,
where

o0 ‘ a
(57522_;6,5(&)'5,5((1), e(a) == mm{:zEZ:xZ ;},
and 64(a) is the number of elements of the set Si(a) defined by

St(a) = {z = ()%, € N8\ {0} : 221 + 329 + 43 + 624 + 515
+ dag + 3wy + 218 < t,2' Sz = 2a},

here S is the Gram matrixz associated to the fundamental weights w; of Eg
fized in [22, §3.1]. The first values of §; are formulated in Table 2.
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Table 2: The value of §;

t(112/3|4 (5|6 |7 8|9 |10 11|12 13 14 15
0,10 [2]5|13|23|52|82| 154|240 | 403 | 601 | 959 | 1373 | 2063 | 2911

Proof. On the one hand, for any weak Jacobi form ¢; € JZV ];/V g 8), if its
Fourier expansion has no the following representatives of singular terms (i.e.

f(n,0)q™ - orb(¢) satistying 2nt — (¢,£) < 0)
".orb(z), 0 < n < ela), z € Sia),

then ¢; is a holomorphic Jacobi form. Recall that orb(z) stands for the

Weyl orbit of the vector -5 | z;w; € A,. This yields that dim JIZV };/V gES) —

dim "5 < 6.

On the other hand, we can view Jacobi forms as vector-valued modular
forms. By the theory of vector-valued modular forms for the Weil represen-
tation attached to the discriminant form of the rescaled lattice Eg(t) (see [1,
Theorem 3.1] or [3, Theorem 1.17]), the obstruction space, namely the space
of cusp forms for the dual Weil representation, has weight 6 — k£ and thus
is trivial when k > 6. In the context of Jacobi forms, this implies that for
each singular term above there exists a W (Eg)-invariant weak Jacobi form
of weight k and index ¢t whose Fourier expansion contains the given singular
term but does not contain other singular terms. From this we conclude that

dim J/,Zv };/V iES) di mJ:V éEff) > ;. We then prove the desired identity. O

By Proposition 5.1 and the generating series of J:’EW)EES) we can deter-
mine immediately the dimension of the space of W(Eg) invariant holomor-
phic Jacobi forms of weight k£ and index t when 1 <t < 13 and k& > 6. It
remains to determine the space of holomorphic Jacobi forms of weight 4. We
see from the above proof that

(5.2) dim J) 5 ") — dim ;) < .

The value of dim J; 5 W(E ) has been determined in [22, Lemma 5.5] when ¢ < 6.
By comparing the d1mens1ons, we find that

(5.3) dim J} ") — dim g} = 5, when t < 6.

However, the identity of type (5.3) does not hold when ¢ > 7. For example,

dim JIVE(E;) > 2, but dim J}p ¢ = 65 = 154.
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As another application of Theorem 1.1, we compute the dimension of the
space of W (FEjg)-invariant holomorphic Jacobi forms of weight 4 and small
index. These so-called holomorphic Jacobi forms of singular (i.e. possible
minimal positive) weight are usually difficult to determine and construct in
the theory of modular forms.

Proposition 5.2. The dimension of the space JKE(ftS) fort <11 is formu-
lated in Table 3.

Table 3: The dimension of JKE(:E:)

t 112345678910 11
dim. |1 |11 (2(1|1|2|2]|2] 2| 2

Proof. There exist W (FEjg)-invariant holomorphic Jacobi forms of weight 4
and arbitrary index with Fourier expansion 14 O(q) (e.x. Xy = 1+ O(q),
see (2.1)). Thus we only need to determine holomorphic Jacobi forms of
weight 4 and index ¢ whose ¢°-term is zero. By Theorem 1.1, such forms can
be expressed as
>0 BB P 5
ANt’_lEztll

Since these holomorphic forms have singular weight 4, their Fourier expan-
sion only involves Fourier coefficients f(n, £)e2 ("7 +(£:3)) satisfying (¢, ¢) =
2nt (see [9]). Moreover, these forms are completely determined by coefficients
of the following terms in their Fourier expansion:

gz (™) orb(m)

where m are non-zero vectors satisfying (m,m) € 2tZ in the set (see (2.4)
for T'(m))

8
A = {m = zmiwi €Ny :T(m) < t} .
i=1

We define M; as the smallest integer greater than or equal to the number

1
max{ﬂ(m,m) tm € At}.

A W (Ejg)-invariant holomorphic Jacobi form of weight 4 and index ¢ whose
¢*-term is zero corresponds to a solution of the system of linear equations
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defined by the Fourier expansion

S o PEIPGE e
AN—Tgt Z q Z orb(m) + O(q™").
4 n=1

m€A+
(m,m)=2nt

(5.4)

(By the proof of Proposition 5.1, there is no singular Fourier coefficient in ¢"-
term when n > M;. Hence the above expression with given Fourier expansion
must be a holomorphic Jacobi form.) We then prove the proposition by
solving these systems of linear equations. When ¢t > 9, our data on the
Fourier coefficients of A; and Bj is not sufficient to solve directly (5.4). In
this case, we first solve (5.4) up to ¢~ Ne_terms. Fortunately, we find that all
solutions have an expression of type (5.4), replacing N; — 1 with a smaller
power. We then prove the result for ¢ = 9,10,11 by solving an analogue
of (5.4) with a smaller power of A. O

We give some direct constructions of generators of JZV E(Ef) When the
space is one-dimensional, it is generated by the form X; = 1+ O(q) con-
structed in (2.1). When ¢t = 4,8,9, we construct the second generator as
Ay = Ai(7,23), Aa(7,23) and A; (T, 33) respectively. We do not know how to
construct the second generator of J4 (ES) in a direct way for ¢ = 7,10, 11.
However, they can be constructed in terms of Sakai’s forms. We present this
nice construction in Appendix B. Combining Proposition 5.1 and Proposi-
tion 5.2, it is easy to derive the generating series of J, E(Ef ) from the gener-
ating series of weak Jacobi forms. We omit these series here.

6. Some conjectures

In this section we formulate some conjectures related to our work. The pull-
back to W (E7)-invariant Jacobi forms implies that the minimal weight of
W (Es)-invariant weak Jacobi forms of index ¢ is not less than —5¢ (see [22,
Proposition 6.1]). Here we propose a conjecture about the exact minimal
weight.

Conjecture 6.1. The weight of non-zero W (Eg)-invariant weak Jacobi
forms of index ¢ is not less than —4¢.

By our results in §4, there exist W (Eg)-invariant weak Jacobi forms of
weight —4¢ and index t if ¢ is even and greater than 2, or ift = 9, or if ¢ is odd
and greater than 11. These forms can be constructed as monomials in our
generators of index less than 10. We give some evidence for this conjecture
in the following lemma.
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Lemma 6.2. Lett > 2 and pp; € J,ZV}XEEE‘)

of orb(Lwy) (resp. orb(52 w1 +ws)) in the ¢°-term of ¢y is non-zero when
t is even (resp. odd). Then k > —4t if t is even, and k > —4(t — 1) if t is
odd.

Proof. We use the pull-back trick built in [22, §5.6]. Let vs be a vector of

Eg satisfying (v4,v4) = 4. If @4 € JZ%&ES), then ¢4 (7, zv4) € Ji'9; which
is the space of weak Jacobi forms of weight k& and index 2t in the sense of
Eichler and Zagier. Recall that the ring of classical weak Jacobi forms of
integral index and even weight is freely generated by forms of index 1 and

weight —2 and 0 denoted ¢_21 and ¢g 1. We calculate

. We assume that the coefficient

max(orb(x),vs) := max{(y,v4) : y € W(Eg)x}
= max{(z,uq) : ug € W(Eg)vs}.

We find that
max(orb(wy),vs) =4  max(orb(ws),vs) =5 max(orb(ws),vs) =7
max(orb(wy),vs) =10 max(orb(ws),vs) =8 max(orb(ws),vs) =6
max(orb(wy),v4) =4  max(orb(wsg),vs) = 2.

Since max(orb(z + y),v4) = max(orb(z),v4) + max(orb(y),v4) and the av-
erage contributions of the eight fundamental Weyl orbits (with respect to
index one) are respectively 4/2, 5/3, 7/4, 10/6, 8/5, 6/4, 4/3, 2/2, we con-
clude the following:

1. When t = 2m, max(orb(mwi),v4) = 4m and max(orb(x),vs) < 4m
for all other z € Ay;

2. When ¢ = 2m + 1, max(orb((m — 1)w; + wa),v4) = 4m + 1 and
max(orb(x),vq) < 4m + 1 for all other x € A;.

We note that the set A; is defined in the proof of Proposition 5.2.

When t = 2m, the pull-back ¢y (7, 2v4) = ((F™ + ) + O(q) is

obviously non-zero, where ¢ = 2™ If k < —8m, then i (T, 2v4) €
f’g’l * Jism,0> Which leads to a contradiction because there is no non-zero
SL2(Z) modular form of negative weight.

When t = 2m + 1, the pull-back ¢y, (7, zv4) = (CFEFD 4 ...) 4 O(q)
is also non-zero. If k < —8m, then ¢y, +(7, 2v4) € gbf’g’l “ S gm.2- In this case,
k+8m < 0. The only classical weak Jacobi forms of negative even weight and
index 2 are (;5272’1 and ¢_21¢0,1, which all have leading Fourier coefficients

¢*2 in their ¢°-terms. This contradicts the ¢"-term of ¢y, ;(7, 2v4). O
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We have checked that the q’-term of the unique W (Eg)-invariant weak
Jacobi form of weight —36 and index 9 has no the Weyl orbit orb(3w; +w2),
which is consistent with the above result.

Let dj, ; be the number of weight k generators of the free module J:ng EES)
By observing the generating series, we have the following conjecture on the
stability.

Conjecture 6.3. For any even K < 0, there exist positive integer L(K)
such that for any fixed k satisfying K < k < 0, the number dj,; is constant
for all t > L(K).

We list the L(K') and the relevant stable constants for weight K > —24
in Table 4.

Table 4: The values of L(K) and dg k)

K |0]-2|-4]|-6|-8|-10|-12|—14|-16 | —18 | —20 | —22 | —24
LK) |2/ 22|34 |5 |5 | 78] 9]10]11]12
depoy |1 1| 1122345 6] 8] 9|12

For any irreducible root system not of type Ejg, the ring of Weyl invariant
weak Jacobi forms is a polynomial algebra. In such case, it is easy to prove
the analogue of the above conjecture. We now prove the above conjecture
for some special weights.

Proposition 6.4. For any t > 2, the free module Jfg:gEg) s generated by

forms of non-positive weight. Moreover, the number of generators of weight
0, —2 and —4 are all one.

Proof. Let t be a positive integer greater than 9. We first fix some weak
WW(ES) . Let

. Let

¢_16,4 and @_144 be the generators of weight —16 and —14 of J:V}E 51 ).

Jacobi forms. Let ¢_42, p_22 and ¢g2 be the generators of J,

v_g3 and ¢_g3 be the generators of weight —8 and —6 of JW W(Es)

Let ¢_165 be the generator of weight —16 of J_ 5 whose ¢%-term in-
volves the fundamental Weyl orbit orb(ws). Let <,0 24 ¢ be the generator of

weight —24 of JW W(Es) whose ¢’-term involves orb(wy). Since the ¢%-terms
of the eight negatlve-welght forms p_ _ involve the eight fundamental Weyl
orbits respectively, the monomials of the eight forms in index ¢ have ¢°-
terms involving all monomials of fundamental Weyl orbits ]_[ -4 orb(w;)™

with T'(m) = t. Thus they are linearly independent over M, (SLg(Z)). More-
over, their weights are not greater than —t. Similarly, the products of their



Weyl invariant Fg Jacobi forms and E-strings 575

monomials in index ¢t — 1 with A; have weight < 5 — ¢ and have ¢’-terms
involving all monomials H§:1 orb(w;)™ satisfying T'(m) =t — 1. We prove
the proposition by induction on ¢t. Suppose that J:Vblz/f;) is generated by
forms of non-positive weight and has only one generator of weight 0, —2

and —4 respectively. Then the products of the generators of J:V]’EVSEZ) with

@02 have ¢*-terms involving all J[5_, orb(w;)™ with T(m) < t — 2. We
have constructed r(t) W (Eg)-invariant weak Jacobi forms of index ¢ which
are linearly independent over M, (SLg(Z)). All of them have non-positive
weight and the numbers of forms of weight 0, —2, —4 are all one. Therefore,
JXJ’EVZgES) is generated by forms of non-positive weight and there is at most
one generator of weight k for k = 0, —2, —4. It remains to prove that there do
exist generators of weight 0, —2, —4. The reduction of any weak Jacobi form
of negative weight is identically zero when 3 = 0. However, there are weak
Jacobi forms of weight 0 whose reduction is not zero. Therefore, there are
generators of weight 0. If there is no generator of weight —2, then there are
r(t) weak Jacobi forms of weight 0 whose ¢’-terms are linearly independent.
It follows that there exists a weak Jacobi form of weight 0 whose ¢"-term is
non-zero constant, which contradicts [22, Lemma 3.5]. If there is no gener-
ator of weight —4, then there are r(t) — 1 weak Jacobi forms of weight —2
whose ¢’-terms are linearly independent. Hence there exists a weak Jacobi
form of weight —2 whose ¢’-term is orb(wg) — 240. Acting the differential
operator on this form (see [22, Lemma 3.4]), we can construct a weak Jacobi
1

form of weight 0 whose ¢’-term is (3 — 1) orb(ws) — 120, which contradicts

[22, Lemma 3.5] again. We have thus proved the desired result. O

In principle, the proof above should be able to extend to the cases of
lower weights.

It is known that the ring of weak Jacobi forms of integral weight and
index one for a unimodular lattice L is generated over M, (SLy(Z)) by the
Jacobi theta function associated to L which has positive weight %rank(L). As
t F’g lattice is no longer unimodular for ¢ > 2, inspired by the above result, we
formulate a similar conjecture for general Jacobi forms on non-unimodular
lattices.

Conjecture 6.5. Let L be an even positive definite lattice. Assume that L
is irreducible and is not unimodular. Then the free module of weak Jacobi
forms of integral weight and index one associated to L is generated by forms
of non-positive weight.

We also make a conjecture on W ( Eg)-invariant holomorphic Jacobi forms
of singular weight.



576 Kaiwen Sun and Haowu Wang

Conjecture 6.6. Let H(¢) be the dimension of the space of W ( Eg)-invariant
holomorphic Jacobi forms of weight 4 and positive index t. Let N(¢) denote
the number of distinct Weyl orbits of vectors of norm ¢ (i.e. 3(v,v) = ?).
Then

H(t) = N(t).

Equivalently, for any Weyl orbit orb(m) of norm ¢, there exists a unique
W (Eg)-invariant holomorphic Jacobi form of weight 4 and index ¢ which
has the Fourier expansion

Pom =14 r—oﬁ(:n‘ﬂq “orb(m) +O(e")

This conjecture has been proved for index ¢ < 11 in Proposition 5.2.
Because we only calculated the Fourier expansions of A; and B; up to q°-
terms, it is not sufficient to extend Proposition 5.2 to index 12 and 13.
However, by solving Jacobi forms of weight 4 which can be expressed as
P(Ey, Es, A;, Bj)/ASE? and have Fourier expansion of type (5.4) up to g*-
terms, we find that the dimension of the solution space (including the form
X;) is 2 when t = 12 and 3 when ¢ = 13. These are consistent with the above
conjecture. We formulate some values of N(¢) in Table 5 below.

Table 5: The value of N (t)

t 123 ]4]|5]|6|7[8]9]10]11]12
Noy|[1]1]|1|2]1]|1|2]2]2|2]2]2
t 13|14 |15]16 |17 |18 |19 |20 |21 |22 23
Nt)[3|2|2|4]3|3|4][3[|3|4]4

Finally, we formulate a conjecture on the global structure of J:VgiES).

This is motivated by Conjecture 6.1 and Conjecture 6.3. In addition, it was
proved in [24] that the algebra of weak Jacobi forms for arbitrary rank-two
lattice is finitely generated, which also motivates our conjecture.

Conjecture 6.7. The algebra of all W (FEjg)-invariant weak Jacobi forms of
integral weight and integral index is finitely generated over M, (SL2(Z)).

By §4, the form ¢_524,13, which is one of the two generators of weight

—52 for JX]’EVZ(I%), has to be a generator of the bigraded algebra J:Vg;/iEs)

This means that Jfg:iES) has generators of large index and its structure is

extremely complicated.
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Appendix A

In this appendix we present the generating series of J:V}E‘Z/EE?;) for index t <
13. Let us define

T Py  Yhep it =Y dim (Fs),,

T M2 (1 —2%)  (1—a%) (1 — 5 kEt
(I—2a*)(1—2% (1—-2a%)(1l—2 Pt

We here present the series J," up to O(z??). It is known that the free

module J, E(Ef) of holomorphic Jacobi forms is generated by forms of weight

not greater than 16. Thus our data is sufficient to deduce the generating
W(Es)

series of J, o from the results in §5.

jlw :334 _1_338 +£L‘10 _1_1,12 _1_3314 + 2.1:16 +x18 + 21,20 + O(.CL‘22).

Ty =2+ 2% + 24 227 + 3% + 32°% + 42® + 420 + 521% + 521 4 6210
+ 628 + 722 + O(2??).

J3' = r 8420 27 43072 + 4 4+ 422 + 62 + 625 + 728 + 821V + 9212
4+ 92M + 11210 + 1128 4 12220 + 0(2??).

TF =210 M 2712 1 32710 458 150 $ 82t 4 9272 - 10
+ 1222 + 152% + 1525 + 182% + 19210 + 21212 + 2221 4 2521°
+ 25218 4 28220 4+ O(2??).

T =22710 42271 4 50712 4 62710 4 9278 + 10270 + 14271 + 15272
+ 19 + 2022 + 242 + 2525 + 292% 4 30210 + 3422 + 35211 4 39216
+ 4021 4 4422 4+ O(2??).

J& =207 422722 4 52720 4 7278 4 100710 + 1327 M 4 182712
+ 202710 + 26278 + 29276 + 34274 + 38272 + 44 + 4622 + 53
+ 562°% 4 612° + 65210 4 712" + 732 4 802'% 4 8328 + 882
+ O(z*).

J¥ =172 43272 + 62722 + 11272 + 132718 4 200710 + 25214
+ 302712 + 362710 + 44278 + 47270 4+ 5627 + 62272 + 68 + 742>
+ 83z + 862° + 952% + 101210 + 10722 + 1132 + 122216 + 125218
+ 13427 + O(2*2).

T =207 4 42730 1 92728 11220720 4 20272 - 252722 + 34270
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+ 412718 4+ 522710 £ 59271 4 712712 4 792710 1 91278 4 99276
+ 11227 % + 120272 + 133 + 14122 + 1542* + 16225 + 17525 +18321°
+ 19622 + 2042 + 21720 + 2252 + 238270 + O(2??).
T =270 42273 492732 1132730 4 220728 4 302720 + 42072 4 502722
+ 662204+ 762 ¥ +9127 10+ 10427 + 1202712 + 1312104 15028
+ 1612704178271 41922724209 + 2202 + 240" + 2512° + 2682°
+ 282219 4 299212 + 3102 + 3302'¢ + 34128 4 358270 + O(2??).
T =470 4 72738 4 152730 232734 4 360732 4 462730 4 6408
+ 782726 4 97272 + 1142722 + 1372720 + 1532718 + 1782716
4+ 1972 + 2202712 + 2402710 + 266278 + 283276 4 310271
+ 330272 4 354 4 3742 + 401z + 41825 + 44528 4 465210 + 489212
+ 5092 4 53621 + 55328 + 580220 + O(2??).
TN =527 4 152740 4 242738 4 40273¢ 4 552734 + 762732 + 955730
+ 1212728 + 1432720 + 1722724 4+ 1972722 + 228220 4 2542718
+ 2872710 4 314271 4 347272 + 3752710 4- 409278 4 43627
+ 471274 + 499272 + 533 + 56122 + 5962 + 62325 + 6582° +68621°
+ 72022 4 7482 + 783210 + 81028 + 845220 4 O(2%2).
T =821 4132710 4 2927 4 432712 4+ 64210 + 86278 + 116273¢
+ 141273 4+ 1792732 4 2102720 + 2492728 + 2862726 + 3302~
+ 365222 + 4142720 + 45221 4 4982716 4 5402714 + 588212
+ 626210 + 678278 + 717270 + 7652~ + 80822 + 857 + 89527
+ 94821 + 98725 + 10352% + 1078210 4+ 1127212 + 1165214 4 121821¢
+ 12572 +13052%° + O(222).
T =222 4102750 4 262718 4 442716 1 7327 + 962712 + 1362710
+ 1712738 + 2142736 4+ 2572734 4+ 3112732 + 3532730 4+ 4132728
+ 4642720 + 521272 4 5752722 + 640220 4 689218 + 756216
+ 81227 M + 8732712 49302710 + 9982 7° + 1048276 + 1117274
+ 1174272 4 1236 + 129322 + 13622 + 141225 + 14812® 4 1538210
+ 160022 + 16572 4 17262'% + 177628 + 1845220 4- O(2%2).
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Appendix B

In this appendix we show the construction of the second generator ®; of
J:Véff) for t = 7,10,11 (the form X is the first generator). In the following,
Py, +(E4, Eg, Ai, Bj) are some very long polynomials of weight w and index

t in F4, Fg and Sakai’s nine forms A;, B;, of which we omit the explicit
stands for the Weyl orbit of the vector

expression. The symbol Ogr;l--.mg]

8 .
> iy miw; of norm a whose number of elements is d.

_ Pyy7(E4, Es, A, Bj)
N A2E,

o7

q A[00000011] , 4~ ,[10000100] , 4 00000013 10000101
=1+ %O;,muo Iy fsoohﬁozxgoo} + 230 (50[21,13440 h 0[21,181440%))
4
q 00000022 10001001 5
T 520 (5058,13440 It O£8,4838401)> + O(q°).
B — Ps6.10(Ey, Eg, A;, Bj)
4

[10000002] q2 (50[20000002] I 0[10001000])

q
=1+ %010,30240 + @ 20,30240 20,1209600

3

4 [10000102] [00010010]

T 1260 <2030,1814400 + 030,4838400)
4

q [20000004] [00002000] [10100100] (00010011]
+ 1260 (10040,30240 + 10040 247920 + 20404838400 T+ O40,9676800>
5
q 50000000 10000006 10000120 10001003
+ 1260 (1400[50,2160 by 100%0,30240 Iy 2(9&[30,1814402) + 20[50,4838402)
[10101000] (00010101] 6
+ 2050 4838400 T+ O50,14515200> + O0(q").
Peo,11(Es, Es, As, Bj)
AYE?

®1 =

q  [00000101 q 00010001 10000020
=1+ ﬁoh,lsmm] + 3730 (3052,241920}0 + 50%2,181440}>

3
q (00000201] (00101000] [10000013] [11000011]
+ 7560 (10033,181440 + 6033 5419200 T 10033 362850 + 9033 5506080
4
30000010 q 00000202 00100110 01010001
+ 10(9{[53,181440]) + =560 (1004[14,18144()] + 604[14,725760}0 + 604[14,483840}0

5
[11000012] [20001001] q [00000211] (00010004]
+ 504 5806080 + 6044,4838400) + 7560 <10055,362880 + 6055 2419200

[00100200] (00101002] (01010010] [10000023]
+ 6055 2419200 T 6055 9676800 T 60559676800 T 10055 362880
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[11000021] [20001010] [30000012] 6
+ 5055 5806080 T 6055 7257600 + 10055 362880 ) +0(q°).

We remark that there are in total 11 Weyl orbits of norm 55 and nine
of them are involved in the ¢°-term of ®;;. As explained in the proof of
Proposition 5.2, the Fourier expansion of any W (Eg)-invariant holomorphic
Jacobi form of singular weight 4 and index ¢ is completely determined by the
finitely-many Weyl orbits related to the action of W (Eg) on the discriminant
group Eg/tFEs. Therefore, in each Fourier expansion of ®; or X; there are
only a finite number of different coefficients for the Weyl orbits.
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