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Weyl invariant E8 Jacobi forms and
E-strings

Kaiwen Sun and Haowu Wang

In 1992 Wirthmüller showed that for any irreducible root system
not of type E8 the ring of weak Jacobi forms invariant under Weyl
group is a polynomial algebra. However, it has recently been proved
that for E8 the ring is not a polynomial algebra. Weyl invariant E8

Jacobi forms have many applications in string theory and it is an
open problem to describe such forms. The scaled refined free ener-
gies of E-strings with certain η-function factors are conjectured to
be Weyl invariant E8 quasi holomorphic Jacobi forms. It is further
observed that the scaled refined free energies up to some powers of
E4 can be written as polynomials in nine Sakai’s E8 Jacobi forms
and Eisenstein series E2, E4, E6. Motivated by the physical con-
jectures, we prove that for any Weyl invariant E8 Jacobi form φt

of index t the function E
[t/5]
4 Δ[5t/6]φt can be expressed uniquely

as a polynomial in E4, E6 and Sakai’s forms, where [x] is the in-
teger part of x. This means that a Weyl invariant E8 Jacobi form
is completely determined by a solution of some linear equations.
By solving the linear systems, we determine the generators of the
free module of Weyl invariant E8 weak (resp. holomorphic) Jacobi
forms of given index t when t ≤ 13 (resp. t ≤ 11).
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1. Introduction

In 1985 Eichler and Zagier introduced the theory of Jacobi forms in their

monograph [7]. Jacobi forms are an elegant intermediate between different

types of modular forms and have many applications in mathematics and

physics. In 1992 Wirthmüller [25] investigated Weyl invariant Jacobi forms

associated with root systems. Let R be an irreducible root system of rank r.
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A W (R)-invariant Jacobi form is a holomorphic function of complex vari-
ables τ ∈ H and z ∈ R ⊗ C which is modular in τ and quasi-periodic in z

and is invariant under the action of the Weyl group W (R) on the lattice
variable z. All W (R)-invariant weak Jacobi forms of integral weight and in-

tegral index form a bigraded algebra J
w,W (R)
∗,R,∗ over C. When R is not of type

E8, Wirthmüller showed that J
w,W (R)
∗,R,∗ is a polynomial algebra generated

by r + 1 Jacobi forms over the ring M∗(SL2(Z)) = C[E4, E6] of SL2(Z)-
modular forms. For example, the algebra of W (A1)-invariant weak Jacobi
forms, that is, the ring of even-weight weak Jacobi forms introduced by
Eichler and Zagier, is freely generated by two forms of index 1 and weight
0 and −2. Recently, the second named author proved in [22] that the ring
of W (E8)-invariant weak Jacobi forms is not a polynomial algebra. In other
words, there exist some algebraic relations among generators. It is still un-
known if this ring is finitely generated. In the study on the Seiberg–Witten
curve of E-string theory [6], Sakai [18] constructed nine W (E8)-invariant
holomorphic Jacobi forms denoted A1, A2, A3, A4, A5, B2, B3, B4, B6. The
forms Ai have weight 4 and index i, and they reduce to the Eisenstein series
E4 when z = 0. The forms Bj have weight 6 and index j, and they reduce
to E6 when z = 0. In [19] Sakai conjectured that for any W (E8)-invariant
Jacobi form φ there exists a SL2(Z)-modular form f(τ) such that the prod-
uct fφ can be written as a polynomial in these Ai, Bj and E4, E6. This
conjecture was proved by the second named author in [22]. In this paper
we will determine the best possible f for arbitrary index and give some fur-
ther applications. Our description is inspired by some conjectures in string
theory. Let us briefly introduce the physical background.

The E-string theory is a typical 6d (1, 0) superconformal field theory
(SCFT) with E8 flavor symmetry [26, 20, 8]. In the S1/Z2 compactification
of M-theory, m E-strings are realized by m M2-branes stretched between a
M5-brane and a M9-brane. The bound state of m E-strings are captured by
topologically twisted 4d N = 4 U(m) Yang-Mills theories on half K3, which
is an elliptic surface realized as P2 with nine points blown up [14, 15]. From
the view point of Calabi–Yau geometry, the E-string theory is equivalent
to topological string theory on local half K3 Calabi–Yau threefold. By S1

compactification, E-string theory gives marginal 5d N = 1 SU(2) gauge
theory with eight fundamentals, which can flow to almost all 5d rank-one
SCFTs [21]. E-string theory is also closely connected to van Diejen integrable
model and elliptic Painlevé system [16, 17]. All these relations make E-
string theory the mother of almost all “genus one” theories in the sense
of mirror/spectral curves, or “rank one” theories in the sense of Coulomb
branch dimension.
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A general spacetime setting which preserves the supersymmetry for E-
string theory is the so called 6d Omega background (C2 × T 2)ε1,ε2 , where
each C plane is rotated by zi → eεizi around the cycles of the torus. For
such system, the ε1,2 expansion of the total instanton free energy F =∑

n,g,m≥0Q
m(−ε1ε2)

g−1(ε1 + ε2)
2nF(n,g,m) defines the refined free energies

of E-strings, where Q counts the number of strings. The situation when
keeping all E8 flavor fugacities z is often called massive, while turning z = 0
massless. It is generally conjectured that the refined free energies F(n,g,m) of
m E-strings in the massive case are W (E8)-invariant quasi Jacobi forms of

index m. The scaled refined free energies (η
12

√
q )

mF(n,g,m) of E-strings in the

massless case were found to be quasi modular forms of weight 2(n+g)+6m−2
on SL2(Z) and thus can be expressed as polynomials in E2, E4 and E6. It is

then natural to guess that the scaled refined free energies (η
12

√
q )

mF(n,g,m) in

the massive case can be written as polynomials in E2, E4, E6, Ai and Bj . The
process to fix all the polynomial coefficients to determine F(n,g,m) is called
modular bootstrap and the ansatz is called modular ansatz. In [13], Huang,
Klemm and Poretschkin developed the refined modular anomaly equation
to efficiently compute F(n,g,m) of E-strings. They found that the naive mod-
ular ansatz is true for index m ≤ 4, but usually not true for m ≥ 5. Indeed,
they found some (η

12

√
q )

5F(n,g,5) which cannot be expressed as polynomials in

Sakai’s nine forms unless further multiplied by E4. Later Del Zotto, Gu,
Huang, Kashani-Poor, Klemm and Lockhart [5] discovered an exceptional
W (E8)-invariant holomorphic Jacobi form of weight 16 and index 5 defined
by the polynomial

P16,5 = 864A3
1A2 + 3825A1B

2
2 − 770A3B2E6(1.1)

− 840A2B3E6 + 60A1B4E6 + 21A5E
2
6 .

They checked numerically that P16,5 vanishes at the zero points of E4 for
general lattice variable z and then conjectured that the quotient P16,5/E4 is
holomorphic. They did not find other similar polynomials, so they further
conjectured that any Jacobi form expressed as a polynomial in Ai, Bj and
E6 which vanishes at the zero points of E4 must be divisible by the above
polynomial. In this paper we will prove their conjectures.

In a similar manner, Sakai’s nine Ai, Bj forms are also used in the modu-
lar bootstrap of the elliptic genera of E-strings and E8×E8 Heterotic strings
[12, 4, 11]. One of the main goals of the current work is to establish a rig-
orous foundation for modular bootstrap whenever E8 symmetry, no matter
flavor or gauge, is involved.
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In [23] the second named author established the modular Jacobian crite-
rion to give an automorphic proof of Wirthmüller’s theorem. We will use this
approach and the distinguished Jacobi form P16,5/E4 to prove the following
theorem, which gives a full description of W (E8)-invariant Jacobi forms in
terms of Sakai’s forms.

Theorem 1.1.

1. The quotient P16,5/E4 is a W (E8)-invariant holomorphic Jacobi form
of weight 12 and index 5.

2. For any W (E8)-invariant Jacobi form P ∈ C[E6, A1, A2, B2, A3, B3,
A4, B4, A5, B6], if P/E4 is holomorphic on H× (E8 ⊗ C), then

P

P16,5
∈ C[E6, A1, A2, B2, A3, B3, A4, B4, A5, B6].

3. Every W (E8)-invariant weak Jacobi form of index t can be expressed
uniquely as

(1.2)

∑t1
j=0 PjE

j
4P

t1−j
16,5

ΔNtEt1
4

,

where

(i) t1 is the integer part of t/5;

(ii) Pt1 ∈ C[E4, E6, A1, A2, B2, A3, B3, A4, B4, A5, B6];

(iii) Pj ∈ C[E6, A1, A2, B2, A3, B3, A4, B4, A5, B6] for 0 ≤ j < t1;

(iv) Nt is defined as follows

Nt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5t0, if t = 6t0 or 6t0 + 1,

5t0 + 1, if t = 6t0 + 2,

5t0 + 2, if t = 6t0 + 3,

5t0 + 3, if t = 6t0 + 4 or 6t0 + 5.

The powers t1 andNt here are sharp. There existW (E8)-invariant Jacobi
forms of arbitrary index which cannot be expressed in the form (1.2) if
we replace t1 or Nt with any smaller integer. Besides, our theorem implies
that there is no W (E8)-invariant Jacobi form which vanishes at the zero
points of E6 and lies in the ring C[E4, A1, A2, B2, A3, B3, A4, B4, A5, B6].
This confirms the numerical search in [5].
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The function (1.2) is a weak Jacobi form if and only if the numerator
has Fourier expansion of the form

(1.3)

t1∑
j=0

PjE
j
4P

t1−j
16,5 = O(qNt), q = e2πiτ .

We can find a basis of the space of W (E8)-invariant weak Jacobi forms
of given weight and given index by solving the system of linear equations
defined by (1.3). In [22] the second named author proved that the space

J
w,W (E8)
∗,E8,t

of W (E8)-invariant weak Jacobi forms of integral weight and given
index t is a free module over M∗(SL2(Z)) whose rank is determined by a

generating series. He also determined the generators of J
w,W (E8)
∗,E8,t

for t ≤ 4
using the differential operators on Jacobi forms. In this paper we calculate
the Fourier expansions of Sakai’s forms up to q9-terms. By solving linear

systems of type (1.3), we figure out the structure of J
w,W (E8)
∗,E8,t

for t ≤ 13.
We also successfully determine the space of W (E8)-invariant holomorphic

Jacobi forms of arbitrary weight and index t ≤ 11. The module J
w,W (E8)
∗,E8,t

is quite complicated when the index t is large, such as the largest module

J
w,W (E8)
∗,E8,13

we have determined has 364 generators.
The paper is organized as follows. In §2 we give a brief introduce of

W (E8)-invariant Jacobi forms. §3 is devoted to the proof of Theorem 1.1. We

calculate the generating series of J
w,W (E8)
∗,E8,t

for index t ≤ 13 in §4 and present
their Laurent expansions in Appendix A. We discuss W (E8)-invariant holo-
morphic Jacobi forms in §5 and construct three exceptional generators in
Appendix B. In §6 we propose five conjectures on Jacobi forms and provide
some evidence.

2. Preliminaries

In this section we define W (E8)-invariant Jacobi forms. Let N be the set of
non-negative integers and (−,−) be the standard scalar product on R8. Let
W (E8) denote the Weyl group of E8. We use the model, simple roots and
fundamental weights of E8 fixed in [22, §3.1]. We say that a vector v ∈ E8

has norm n if (v, v) = 2n.

Definition 2.1. Let ϕ : H× (E8 ⊗ C) → C be a holomorphic function and
k ∈ Z, t ∈ N. If ϕ satisfies the following properties

(i) Weyl invariance:

ϕ(τ, σ(z)) = ϕ(τ, z), σ ∈ W (E8),



558 Kaiwen Sun and Haowu Wang

(ii) Quasi-periodicity:

ϕ(τ, z+ xτ + y) = exp (−tπi[(x, x)τ + 2(x, z)])ϕ(τ, z), x, y ∈ E8,

(iii) Modularity:

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
tπi

c(z, z)

cτ + d

)
ϕ(τ, z),

with (
a b
c d

)
∈ SL2(Z),

(iv) ϕ(τ, z) has the Fourier expansion

ϕ(τ, z) =

∞∑
n=0

∑
�∈E8

f(n, 	)e2πi(nτ+(�,z)),

then ϕ is called a W (E8)-invariant weak Jacobi form of weight k and index t.
If f(n, 	) = 0 whenever 2nt− (	, 	) < 0, then ϕ is called a W (E8)-invariant
holomorphic Jacobi form.

Every non-zero W (E8)-invariant weak Jacobi form has even weight. The
W (E8)-invariant weak Jacobi forms of index 0 do not depend on the lattice
variable z and are actually modular forms on SL2(Z). The quasi-periodicity
implies that in the above Fourier expansion f(n1, 	1) = f(n2, 	2) if 2n1t −
(	1, 	1) = 2n2t− (	2, 	2) and if 	1− 	2 ∈ tE8. We denote the vector spaces of
W (E8)-invariant weak and holomorphic Jacobi forms of weight k and index
t respectively by

J
w,W (E8)
k,E8,t

� J
W (E8)
k,E8,t

.

We will investigate the free M∗(SL2(Z))-modules

J
w,W (E8)
∗,E8,t

:=
⊕
k∈Z

J
w,W (E8)
k,E8,t

, J
W (E8)
∗,E8,t

:=
⊕
k∈Z

J
W (E8)
k,E8,t

and the bigraded algebra

J
w,W (E8)
∗,E8,∗ :=

∞⊕
t=0

J
w,W (E8)
∗,E8,t

.

Sakai’s forms A1, A2, B2, A3, B3, A4, B4, A5, B6 were first constructed
in [18, Appendix A.1]. It was proved in [22, Theorem 4.1] that the nine
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Jacobi forms Ai and Bj are algebraically independent over C[E4, E6]. Due
to its importance, we briefly explain how Sakai constructed these forms. One
starts with the Jacobi theta function of E8

ϑE8
(τ, z) =

∑
�∈E8

eπi(�,�)τ+2πi(�,z)

which is the unique W (E8)-invariant holomorphic Jacobi form of weight 4
and index 1. Acting the index raising Hecke operators T−(t) on ϑE8

(see e.g.
[22, Lemma 3.6]), one obtains W (E8)-invariant holomorphic Jacobi forms of
weight 4 and arbitrary index t

(2.1) Xt(τ, z) = 1 +O(q), q = e2πiτ .

Sakai’s forms Aj are constructed as

(2.2) Aj(τ, z) = Xj(τ, z), j = 1, 2, 3, 5, A4(τ, z) = ϑE8
(τ, 2z).

To construct Bt, one first takes an appropriate modular form gt of weight
2 on the congruence subgroup Γ0(t) of SL2(Z). Then the trace sum of
gt(τ)ϑE8

(tτ, tz) with respect to the cosets of Γ0(t)\SL2(Z) defines a W (E8)-
invariant holomorphic Jacobi form of weight 6 and index t. That is the
desired Bt.

The Fourier expansion characterizes Jacobi forms. Due to the Weyl in-
variance, the Fourier expansion of any W (E8)-invariant Jacobi form can be
expressed in terms of Weyl orbits of vectors in E8. We review some useful
facts following [22]. For any v ∈ E8 we define the Weyl orbit of v as

(2.3) orb(v) =
∑

σ∈W (E8)/W (E8)v

e2πi(σ(v),z),

where W (E8)v is the stabilizer subgroup of W (E8) with respect to v. For
any non-negative integer n the qn-term of ϕ

[ϕ]qn =
∑
�∈E8

f(n, 	)e2πi(�,z)

can be written as a C-linear combination of Weyl orbits. Let αi and wi,
1 ≤ i ≤ 8, be the simple roots and fundamental weights of E8 respectively
(see [22, §3.1] for their coordinates). The eight fundamental Weyl orbits
orb(wi) are algebraically independent over C. Moreover, every Weyl orbit
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orb(v) can be expressed as a polynomial in these fundamental orb(wi). By
[2], every Weyl orbit meets the set Λ+ in exactly one point, where

Λ+ = {m ∈ E8 : (αi,m) ≥ 0, 1 ≤ i ≤ 8}

=

{
m =

8∑
i=1

miwi : mi ∈ N, 1 ≤ i ≤ 8

}

is the closure of a Weyl chamber. Thus we only need to consider the Weyl
orbits of vectors in Λ+. With respect to the partial order on E8, we have
the decomposition

orb(m) =

8∏
i=1

orb(wi)
mi +

∑
l∈Λ+

l<m

cl,m orb(l),

where cl,m are some integers. Let us define

(2.4) T (m) := (m,w8) = 2m1+3m2+4m3+6m4+5m5+4m6+3m7+2m8.

Since w8 is the highest root of E8, the condition l ≤ m implies that T (l) ≤
T (m). We then derive the further decomposition

(2.5) orb(m) =
∑
l∈Λ+

T (l)≤T (m)

cl

8∏
i=1

orb(wi)
li , cm = 1.

In this paper we first compute the Fourier expansions of Sakai’s forms in
terms of Weyl orbits. This can be calculated efficiently by their definitions.
We then use (2.5) to express their Fourier coefficients as polynomials in
the eight fundamental Weyl orbits. This expression is very convenient for
calculating the Fourier expansions of monomials in Sakai’s generators. The
q0-term plays a crucial role in the study of weak Jacobi forms. We recall a
useful result. [22, Lemma 4.2] states that the q0-term of anyW (E8)-invariant
weak Jacobi form of index t can be expressed as

(2.6)
∑

m∈Λ+

T (m)≤t

cm

8∏
i=1

orb(wi)
mi .

The number of monomials including the constant term in the above sum is

equal to the rank of the free module J
w,W (E8)
∗,E8,t

(see [22, Theorem 4.1] and
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its proof). This number also equals the number of orbits of the quotient
group E8/tE8 under the action of W (E8), and {m ∈ Λ+ : T (m) ≤ t} gives
a representative set of these orbits.

Finally, we describe the number of elements in a Weyl orbit orb(m),
which equals the index of the stabilizer W (E8)m in W (E8). We remind that
Weyl orbits of the same norm do not necessarily have distinct number of
elements (see Appendix B for some examples).

Lemma 2.2. Let m =
∑8

i=1miwi ∈ Λ+. Then the stabilizer of m in W (E8)
is given by the intersection of all stabilizers of fundamental weights wi with
mi �= 0.

Proof. Let g ∈ W (E8). Then g(m) = m if and only if
∑8

i=1mig(wi) =∑8
i=1miwi. With respect to the partial order on E8, we have that g(wi) ≤ wi

for 1 ≤ i ≤ 8 (see [2]). Therefore, g(m) = m if and only if g(wi) = wi for all
i such that mi �= 0.

3. The proof of Theorem 1.1

In this section we prove Theorem 1.1. We divide its proof into several lem-
mas.

As explained in [22, §3.2, pp. 529–530], we take g(τ) = (5E2(5τ) −
E2(τ))/4 which is a modular form of weight 2 on the congruence subgroup
Γ0(5), and define B̂5 analogous to Sakai’s Bj as

(3.1) B̂5(τ, z) =
54

54 − 1

[
g(τ)ϑE8

(5τ, 5z)− 1

55

4∑
k=0

g
(τ + k

5

)
ϑE8

(τ + k

5
, z
)]

.

We note that B̂5 is a W (E8)-invariant holomorphic Jacobi form of weight 6
and index 5 whose reduction is B̂5(τ, 0) = E6.

Lemma 3.1. The Jacobi form B̂5 satisfies the identity

(3.2) 179712ΔE4B̂5 = E6P16,5 + E4Q18,5,

where

Q18,5 =− 2880A3
1B2 + 1350A1A2B2E4 + 1920A2

1B3E4 − 70A3B2E
2
4

− 600A2B3E
2
4 − 60A1B4E

2
4 − 567A1A

2
2E6 + 672A2

1A3E6

− 2400B2B3E6 − 504A2A3E4E6 − 21A5E
2
4E6.
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Proof. Both sides of the above identity are W (E8)-invariant Jacobi forms of

weight 22 and index 5. We check by computer that their Fourier coefficients

are the same up to q4-terms. Thus their difference divided by Δ4 defines a

W (E8)-invariant weak Jacobi form of weight −26 and index 5, which has

to be zero because the weight of a non-zero W (E8)-invariant weak Jacobi

form of index 5 is at least −18 (see [22, Proposition 5.17]). This proves the

desired identity.

We remark that P16,5/E
2
4 is non-holomorphic because P16,5 reduces to

864E4
4 + 2296E4E

2
6 when z = 0.

In [23] the second named author defined the Jacobian of Jacobi forms and

used this tool to give a simple proof of Wirthmüller’s theorem. We refer to

[23, Proposition 2.2, Proposition 2.3] for details. We will apply this method

to the case of E8. Let us first calculate the Jacobian of Sakai’s generators

defined as the determinant

(3.3)
1

(2πi)9

∣∣∣∣∣∣∣∣∣
A1 2A2 2B2 3A3 3B3 4A4 4B4 5A5 6B6
∂A1

∂z1
∂A2

∂z1
∂B2

∂z1
∂A3

∂z1
∂B3

∂z1
∂A4

∂z1
∂B4

∂z1
∂A5

∂z1
∂B6

∂z1
...

...
...

...
...

...
...

...
...

∂A1

∂z8
∂A2

∂z8
∂B2

∂z8
∂A3

∂z8
∂B3

∂z8
∂A4

∂z8
∂B4

∂z8
∂A5

∂z8
∂B6

∂z8

∣∣∣∣∣∣∣∣∣ ,

where zi, i = 1, . . . , 8, are the standard basis of R8.

Lemma 3.2. The modular Jacobian of Sakai’s forms satisfies the identity

J := J(A1, A2, B2, A3, B3, A4, B4, A5, B6) = cΔ14E4 · ΦE8
, c = − 33

5472
,

(3.4)

where ΦE8
is the theta block associated to E8 (see [10] for the general theory

of theta blocks developed by Gritsenko, Skoruppa and Zagier)

ΦE8
(τ, z) =

∏
r

ϑ(τ, (r, z))

η3(τ)
.

The above product takes over all positive roots of E8 and ϑ is the odd Jacobi

theta function

ϑ(τ, z) = q
1

8 (ζ
1

2 −ζ−
1

2 )

∞∏
n=1

(1−qnζ)(1−qnζ−1)(1−qn), q = e2πiτ , ζ = e2πiz.
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Proof. By [23, §4], ΦE8
is a weak E8 Jacobi form of weight −120 and index

30 which is anti-invariant under the action of W (E8) (i.e. invariant up to
the determinant character). Moreover, it vanishes precisely on

{(τ, z) ∈ H× (E8 ⊗ C) : (r, z) ∈ Z+ Zτ for some positive root r}

with multiplicity one. By [23, Proposition 2.2], J also vanishes on the above
set. Thus J/ΦE8

is holomorphic and defines a W (E8)-invariant weak Jacobi

form of weight 172 and index 0, which yields that J/ΦE8
is a SL2(Z)-modular

form of weight 172. We notice that every partial derivative of Ai or Bj

cancels the q0-term. By calculating the Fourier expansions of Ai and Bj

up to q7-terms, it is sufficient to calculate the q14-term of J . We find that
J/ΦE8

= cq14+O(q15), which implies that J/ΦE8
= cΔ14E4. This completes

the proof.

Remark 3.3. By [23, Proposition 2.2 (2)], the above Jacobian J is not

identically zero if and only if the forms Ai and Bj are algebraically inde-
pendent over C[E4, E6]. Thus Lemma 3.2 yields a new proof of the algebraic

independence of Sakai’s forms.

Lemma 3.4. For any W (E8)-invariant weak Jacobi form φ, there exists an

integer N such that

ΔNφ ∈ C[E4, E6, A1, A2, B2, A3, B3, A4, B4, Â5, B6],

where

Â5 :=
P16,5

E4
− 21E2

4A5.

Proof. From the definition of the modular Jacobian, we see that

J(A1, A2, B2, A3, B3, A4, B4, Â5, B6)

= J(A1, A2, B2, A3, B3, A4, B4, P16,5 − 21E3
4A5, B6)/E4

=− 21 · 1728ΔJ(A1, A2, B2, A3, B3, A4, B4, A5, B6)/E4.

By Lemma 3.2, we have

J(A1, A2, B2, A3, B3, A4, B4, Â5, B6)/ΦE8
= −36288cΔ15.

We then prove the claim by applying the criterion established in [23, Propo-
sition 2.3 (2)].
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We also need the following eight specific W (E8)-invariant weak Jacobi
forms of weight 4 whose q0-terms are a single fundamental Weyl orbit.

Lemma 3.5. The following W (E8)-invariant weak Jacobi forms ϕ−,t of
weight 4 and index t with indicated q0-term exist.

ϕ4a,2 = P1(E4, E6, Ai, Bj)/Δ = orb(w1) +O(q),

ϕ4b,2 = P2(E4, E6, Ai, Bj)/Δ = orb(w8) +O(q),

ϕ4a,3 = P3(E4, E6, Ai, Bj)/Δ = orb(w7) +O(q),

ϕ4b,3 = P4(E4, E6, Ai, Bj)/Δ
2 = orb(w2) +O(q),

ϕ4a,4 = P5(E4, E6, Ai, Bj)/Δ
3 = orb(w3) +O(q),

ϕ4b,4 = P6(E4, E6, Ai, Bj)/Δ
3 = orb(w6) +O(q),

ϕ4,5 = P7(E4, E6, Ai, Bj)/Δ
3 = orb(w5) +O(q),

ϕ4,6 = P8(E4, E6, Ai, Bj)/Δ
5 = orb(w4) +O(q),

where

P1 =
1

4

(
−12A2

1E
2
4 + 17A2E

3
4 + 10A2E

2
6 − 15B2E4E6

)
,

P2 =
1

72
(24A2

1E
2
4 − 14A2E

3
4 + 5A2E

2
6 − 15B2E4E6),

P3 =
7

18
(−27A1A2E

2
4 − 45A1B2E6 + 37A3E

3
4 + 35A3E

2
6),

P4 =
1

864
(126A3

1E
4
4 − 414A3

1E4E
2
6 + 675A1A2E

2
4E

2
6 − 243A1A2E

5
4

− 1440A1B2E
3
6 − 251A3E

3
4E

2
6 + 122A3E

6
4 + 465A3E

4
6

− 20B3E
4
4E6 + 980B3E4E

3
6).

The other polynomials are very long and we omit their expressions here.
When the index is greater than 2 the above polynomial is not unique because

the associated space J
w,W (E8)
−8,E8,t

is non-trivial.

Proof of Theorem 1.1. (1) This is a direct consequence of Lemma 3.1.
(2) It follows from Lemma 3.4.
(3) Let ϕt be a W (E8)-invariant weak Jacobi form of index t. By Lem-

ma 3.4, there exists an integer N such that

(3.5) ϕt =

∑t1
j=0 PjE

j
4P

t1−j
16,5

ΔNEt1
4

.
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To prove the third assertion, it suffices to show that one can choose
N satisfying N ≤ Nt. Recall that the space of all W (E8)-invariant weak
Jacobi forms of fixed index t is a free module of rank r(t) over M∗(SL2(Z))
(see [22, Theorem 4.1]). It is enough to prove that one can always choose
N ≤ Nt such that (3.5) holds for every generator of the free module. Let φj ,

1 ≤ j ≤ r(t), be the generators of the free module J
w,W (E8)
∗,E8,t

. Clearly, every
φj can be expressed in the form (3.5). We denote by Mj the smallest integer
N such that (3.5) holds for φj . Assume that M1 is the largest of all Mj .
Obviously, every generator φj has non-zero q0-term. Moreover, the q0-term
of every φj is a polynomial in the eight fundamental Weyl orbits satisfying
the restriction defined in (2.6). By [22, Lemma 4.2] and the construction
of forms in Lemma 3.5, for any sufficiently large integer D there exists a
W (E8)-invariant weak Jacobi form ψt of index t in the ring

C[E4, E6, A1, ϕ4a,2, ϕ4b,2, ϕ4a,3, ϕ4b,3, ϕ4a,4, ϕ4b,4, ϕ4,5, ϕ4,6]

such that the q0-term of the difference ED
4 φ1−ψt is zero. Therefore, (E

D
4 φ1−

ψt)/Δ is aW (E8)-invariant weak Jacobi form of index t and then a C[E4, E6]-
linear combination of the generators φj . It follows that the number M1 de-
fined above is exactly the smallest integer N appearing in the expression of
type (3.5) for ψt. We then derive the formula of Nt from the powers of Δ in
the construction of basic forms in Lemma 3.5.

4. Free modules of weak Jacobi forms of given index

It was proved in [22, Theorem 4.1] that the space

J
w,W (E8)
∗,E8,t

:=
⊕
k∈Z

J
w,W (E8)
k,E8,t

of W (E8)-invariant weak Jacobi forms of integral weight and given index t is
a free module over M∗(SL2(Z)) and the rank r(t) is given by the generating
series

(4.1)
1

(1− x)(1− x2)2(1− x3)2(1− x4)2(1− x5)(1− x6)
=

∑
t≥0

r(t)xt.

We formulate the first values of r(t) in Table 1.
In [22, §5] the generators were determined and constructed when the

index is less than 5 by an approach based on the weight raising differential
operators of Jacobi forms. In this section, as an application of Theorem 1.1,
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Table 1: The rank of J
w,W (E8)
∗,E8,t

over M∗(SL2(Z))

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r(t) 1 3 5 10 15 27 39 63 90 135 187 270 364 505 670

we determine the weights of generators and construct the generators in terms
of Sakai’s forms Ai and Bj when the index is less than 14. To this aim, we
introduce the following algorithm.

Algorithm 4.1.

1. We determine a basis of J
w,W (E8)
k,E8,t

for any even weight k. The space

J
w,W (E8)
k,E8,t

is a finite-dimensional vector space over C. Every form in this
space has an expression of form (1.2) which corresponds to a solution
of the system of linear equations defined by the vanishing of qn-terms
(0 ≤ n ≤ Nt − 1) in the Fourier expansion

(4.2)

t1∑
j=0

PjE
j
4P

t1−j
16,5 = O(qNt)

in weight k + 12Nt + 4t1. There are only finitely many linearly in-
dependent solutions in any fixed weight, because the weights and in-
dices of these Pj (polynomials in E4, E6, Ai, Bj) are bounded from
above.

2. We determine the minimal weight of non-zero W (E8)-invariant weak
Jacobi forms of given index t. If the equation (4.2) has only zero solu-
tion in weight K+12Nt+4t1 and in weight K+12Nt+4t1−2, then its

solution is always trivial in any lower weight and thus J
w,W (E8)
k,E8,t

= {0}
when k ≤ K.

3. We collect all r(t) generators of the free module J
w,W (E8)
∗,E8,t

from the
minimal weight K to the larger weight.

We first calculate the Fourier expansions of Sakai’s forms Ai and Bj up
to q9-terms. The Fourier expansions involve 268 Weyl orbits of vectors of
norm 1

2(v, v) ≤ 54. We then express these Weyl orbits as polynomials in
the eight fundamental Weyl orbits. Using the data and Algorithm 4.1, we

successfully determine all generators of J
w,W (E8)
∗,E8,t

for 1 ≤ t ≤ 13.
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Theorem 4.2. Let dk,t denote the number of generators of weight k of

J
w,W (E8)
∗,E8,t

. For 1 ≤ t ≤ 13 the Laurent polynomials

Pw
t :=

∑
k∈Z

dk,tx
k

describing the weights of generators are determined as follows

Pw
1 =x4, Pw

2 = x−4 + x−2 + 1, Pw
3 = x−8 + x−6 + x−4 + x−2 + 1,

Pw
4 =x−16 + x−14 + x−12 + x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
5 =2x−16 + 2x−14 + 3x−12 + 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
6 =2x−24 + 2x−22 + 3x−20 + 3x−18 + 3x−16 + 3x−14 + 3x−12 + 2x−10

+ 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
7 =x−26 + 3x−24 + 5x−22 + 7x−20 + 4x−18 + 4x−16 + 4x−14 + 3x−12

+ 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
8 =2x−32 + 4x−30 + 7x−28 + 6x−26 + 7x−24 + 6x−22 + 6x−20 + 5x−18

+ 5x−16 + 4x−14 + 3x−12 + 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
9 =x−36 + 2x−34 + 8x−32 + 10x−30 + 11x−28 + 9x−26 + 9x−24 + 7x−22

+ 7x−20 + 6x−18 + 5x−16 + 4x−14 + 3x−12 + 2x−10 + 2x−8 + x−6

+ x−4 + x−2 + 1,

Pw
10 =4x−40 + 7x−38 + 11x−36 + 12x−34 + 14x−32 + 12x−30 + 12x−28

+ 11x−26 + 10x−24 + 8x−22 + 8x−20 + 6x−18 + 5x−16 + 4x−14

+ 3x−12 + 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
11 =5x−42 + 15x−40 + 19x−38 + 20x−36 + 16x−34 + 17x−32 + 15x−30

+ 14x−28 + 12x−26 + 11x−24 + 9x−22 + 8x−20 + 6x−18 + 5x−16

+ 4x−14 + 3x−12 + 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
12 =8x−48 + 13x−46 + 21x−44 + 22x−42 + 22x−40 + 22x−38 + 22x−36

+ 20x−34 + 20x−32 + 17x−30 + 15x−28 + 13x−26 + 12x−24 + 9x−22

+ 8x−20 + 6x−18 + 5x−16 + 4x−14 + 3x−12 + 2x−10 + 2x−8 + x−6

+ x−4 + x−2 + 1,

Pw
13 =2x−52 + 10x−50 + 24x−48 + 32x−46 + 37x−44 + 28x−42 + 29x−40

+ 28x−38 + 26x−36 + 23x−34 + 22x−32 + 18x−30 + 16x−28 + 14x−26

+ 12x−24 + 9x−22 + 8x−20 + 6x−18 + 5x−16 + 4x−14 + 3x−12 + 2x−10
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+ 2x−8 + x−6 + x−4 + x−2 + 1.

Clearly, the Laurent expansion of the following rational function at x = 0

gives the dimension of the space of weak Jacobi forms of arbitrary weight

and given index t

Pw
t

(1− x4)(1− x6)
=

∑
k∈Z dk,tx

k

(1− x4)(1− x6)
=

∑
k∈Z

dim J
w,W (E8)
k,E8,t

xk.

This series is called the generating series of weak Jacobi forms of given index.

We will present these generating series separately in Appendix A.

At the end of this section, we explicitly show some generators. For

W (E8)-invariant weak Jacobi form of index t = 2, the three generators

are

φ−4,2 =
A2

1 −A2E4

Δ
, φ−2,2 =

A2E6 −B2E4

Δ
, φ0,2 =

A2
1E4 −B2E6

Δ
.

(4.3)

For index t = 3, the five generators are constructed as

φ−8,3 =
1

Δ2
(6A3

1E4 − 9A1A2E
2
4 +A3(3E

3
4 − 10E2

6)(4.4)

+ 30A1B2E6 − 20B3E4E6),

φ−6,3 =
1

Δ2
(6A3

1E6 + 3A1E4(10B2E4 − 3A2E6)

− E2
4(20B3E4 + 7A3E6)),

φ−4,3 =
1

Δ
(A1A2 −A3E4),

φ−2,3 =
1

Δ
(A1B2 −A3E6),

φ0,3 =
1

Δ
(A3

1 −B3E6).

For index t = 13, the two lowest weight −52 generators are

φ−52a,13 =
1

Δ10E2
4

(281154281472A13
1 E6

4 − 935841724416A11
1 A2E

7
4

− 1468672041600A9
1B

2
2E

7
4 + . . . )
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and φ−52b,13 = φ−16,4φ−36,9, where

φ−16,4 =
1

Δ3
(192A4

1E4 + 75B2
2E

2
4 + 9A2

2E
3
4 −A4E

4
4 + 90A2B2E4E6 + . . . ),

φ−36,9 =
1

Δ7E4
(1026432A9

1E
4
4 − 2659392A7

1A2E
5
4 − 5891400A5

1B
2
2E

5
4 + . . . ),

(4.5)

are the unique generators of the lowest weight for index 4 and 9 respectively.

5. Weyl invariant holomorphic Jacobi forms

Similar to weak Jacobi forms, the space of W (E8)-invariant holomorphic

Jacobi forms of integral weight and given index t

J
W (E8)
∗,E8,t

:=

∞⊕
k=4

J
W (E8)
k,E8,t

is also a free module of rank r(t) over M∗(SL2(Z)). In this section we intro-

duce some methods to compute the dimension of the space of holomorphic

Jacobi forms. Firstly, the following lemma shows that the difference between

the dimensions of the spaces of weak Jacobi forms and holomorphic Jacobi

forms depends only on the index when the weight is greater than 4.

Proposition 5.1. For any t ≥ 1 and any even k ≥ 6, the following identity

holds

(5.1) dim J
w,W (E8)
k,E8,t

− dim J
W (E8)
k,E8,t

= δt,

where

δt =

∞∑
a=1

εt(a) · δt(a), εt(a) := min
{
x ∈ Z : x ≥ a

t

}
,

and δt(a) is the number of elements of the set St(a) defined by

St(a) = {x = (xi)
8
i=1 ∈ N8 \ {0} : 2x1 + 3x2 + 4x3 + 6x4 + 5x5

+ 4x6 + 3x7 + 2x8 ≤ t, xtSx = 2a},

here S is the Gram matrix associated to the fundamental weights wi of E8

fixed in [22, §3.1]. The first values of δt are formulated in Table 2.
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Table 2: The value of δt

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

δt 0 2 5 13 23 52 82 154 240 403 601 959 1373 2063 2911

Proof. On the one hand, for any weak Jacobi form φt ∈ J
w,W (E8)
k,E8,t

, if its
Fourier expansion has no the following representatives of singular terms (i.e.
f(n, 	)qn · orb(	) satisfying 2nt− (	, 	) < 0)

qn · orb(x), 0 ≤ n < εt(a), x ∈ St(a),

then φt is a holomorphic Jacobi form. Recall that orb(x) stands for the

Weyl orbit of the vector
∑8

i=1 xiwi ∈ Λ+. This yields that dim J
w,W (E8)
k,E8,t

−
dim J

W (E8)
k,E8,t

≤ δt.
On the other hand, we can view Jacobi forms as vector-valued modular

forms. By the theory of vector-valued modular forms for the Weil represen-
tation attached to the discriminant form of the rescaled lattice E8(t) (see [1,
Theorem 3.1] or [3, Theorem 1.17]), the obstruction space, namely the space
of cusp forms for the dual Weil representation, has weight 6 − k and thus
is trivial when k ≥ 6. In the context of Jacobi forms, this implies that for
each singular term above there exists a W (E8)-invariant weak Jacobi form
of weight k and index t whose Fourier expansion contains the given singular
term but does not contain other singular terms. From this we conclude that

dim J
w,W (E8)
k,E8,t

− dim J
W (E8)
k,E8,t

≥ δt. We then prove the desired identity.

By Proposition 5.1 and the generating series of J
w,W (E8)
∗,E8,t

, we can deter-
mine immediately the dimension of the space of W (E8)-invariant holomor-
phic Jacobi forms of weight k and index t when 1 ≤ t ≤ 13 and k ≥ 6. It
remains to determine the space of holomorphic Jacobi forms of weight 4. We
see from the above proof that

(5.2) dim J
w,W (E8)
4,E8,t

− dim J
W (E8)
4,E8,t

≤ δt.

The value of dim J
W (E8)
4,E8,t

has been determined in [22, Lemma 5.5] when t ≤ 6.
By comparing the dimensions, we find that

(5.3) dim J
w,W (E8)
4,E8,t

− dim J
W (E8)
4,E8,t

= δt, when t ≤ 6.

However, the identity of type (5.3) does not hold when t ≥ 7. For example,

dim J
W (E8)
4,E8,8

≥ 2, but dim J
w,W (E8)
4,E8,8

= δ8 = 154.
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As another application of Theorem 1.1, we compute the dimension of the
space of W (E8)-invariant holomorphic Jacobi forms of weight 4 and small
index. These so-called holomorphic Jacobi forms of singular (i.e. possible
minimal positive) weight are usually difficult to determine and construct in
the theory of modular forms.

Proposition 5.2. The dimension of the space J
W (E8)
4,E8,t

for t ≤ 11 is formu-
lated in Table 3.

Table 3: The dimension of J
W (E8)
4,E8,t

t 1 2 3 4 5 6 7 8 9 10 11

dim. 1 1 1 2 1 1 2 2 2 2 2

Proof. There exist W (E8)-invariant holomorphic Jacobi forms of weight 4
and arbitrary index with Fourier expansion 1 + O(q) (e.x. Xt = 1 + O(q),
see (2.1)). Thus we only need to determine holomorphic Jacobi forms of
weight 4 and index t whose q0-term is zero. By Theorem 1.1, such forms can
be expressed as ∑t1

j=0 PjE
j
4P

t1−j
16,5

ΔNt−1Et1
4

.

Since these holomorphic forms have singular weight 4, their Fourier expan-
sion only involves Fourier coefficients f(n, 	)e2πi(nτ+(�,z)) satisfying (	, 	) =
2nt (see [9]). Moreover, these forms are completely determined by coefficients
of the following terms in their Fourier expansion:

q
1

2t
(m,m) orb(m)

where m are non-zero vectors satisfying (m,m) ∈ 2tZ in the set (see (2.4)
for T (m))

At :=

{
m =

8∑
i=1

miwi ∈ Λ+ : T (m) ≤ t

}
.

We define Mt as the smallest integer greater than or equal to the number

max

{
1

2t
(m,m) : m ∈ At

}
.

A W (E8)-invariant holomorphic Jacobi form of weight 4 and index t whose
q0-term is zero corresponds to a solution of the system of linear equations
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defined by the Fourier expansion

(5.4)

∑t1
j=0 PjE

j
4P

t1−j
16,5

ΔNt−1Et1
4

=

Mt−1∑
n=1

qn
∑

m∈Λ+

(m,m)=2nt

orb(m) +O(qMt).

(By the proof of Proposition 5.1, there is no singular Fourier coefficient in qn-
term when n ≥ Mt. Hence the above expression with given Fourier expansion
must be a holomorphic Jacobi form.) We then prove the proposition by
solving these systems of linear equations. When t ≥ 9, our data on the
Fourier coefficients of Ai and Bj is not sufficient to solve directly (5.4). In
this case, we first solve (5.4) up to q10−Nt-terms. Fortunately, we find that all
solutions have an expression of type (5.4), replacing Nt − 1 with a smaller
power. We then prove the result for t = 9, 10, 11 by solving an analogue
of (5.4) with a smaller power of Δ.

We give some direct constructions of generators of J
W (E8)
4,E8,t

. When the
space is one-dimensional, it is generated by the form Xt = 1 + O(q) con-
structed in (2.1). When t = 4, 8, 9, we construct the second generator as
A4 = A1(τ, 2z), A2(τ, 2z) and A1(τ, 3z) respectively. We do not know how to

construct the second generator of J
W (E8)
4,E8,t

in a direct way for t = 7, 10, 11.
However, they can be constructed in terms of Sakai’s forms. We present this
nice construction in Appendix B. Combining Proposition 5.1 and Proposi-

tion 5.2, it is easy to derive the generating series of J
W (E8)
∗,E8,t

from the gener-
ating series of weak Jacobi forms. We omit these series here.

6. Some conjectures

In this section we formulate some conjectures related to our work. The pull-
back to W (E7)-invariant Jacobi forms implies that the minimal weight of
W (E8)-invariant weak Jacobi forms of index t is not less than −5t (see [22,
Proposition 6.1]). Here we propose a conjecture about the exact minimal
weight.

Conjecture 6.1. The weight of non-zero W (E8)-invariant weak Jacobi
forms of index t is not less than −4t.

By our results in §4, there exist W (E8)-invariant weak Jacobi forms of
weight −4t and index t if t is even and greater than 2, or if t = 9, or if t is odd
and greater than 11. These forms can be constructed as monomials in our
generators of index less than 10. We give some evidence for this conjecture
in the following lemma.
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Lemma 6.2. Let t ≥ 2 and ϕk,t ∈ J
w,W (E8)
k,E8,t

. We assume that the coefficient

of orb( t2w1) (resp. orb(
t−3
2 w1+w2)) in the q0-term of ϕk,t is non-zero when

t is even (resp. odd). Then k ≥ −4t if t is even, and k ≥ −4(t − 1) if t is
odd.

Proof. We use the pull-back trick built in [22, §5.6]. Let v4 be a vector of

E8 satisfying (v4, v4) = 4. If ϕk,t ∈ J
w,W (E8)
k,E8,t

, then ϕk,t(τ, zv4) ∈ Jw
k,2t which

is the space of weak Jacobi forms of weight k and index 2t in the sense of
Eichler and Zagier. Recall that the ring of classical weak Jacobi forms of
integral index and even weight is freely generated by forms of index 1 and
weight −2 and 0 denoted φ−2,1 and φ0,1. We calculate

max(orb(x), v4) := max{(y, v4) : y ∈ W (E8)x}
= max{(x, u4) : u4 ∈ W (E8)v4}.

We find that

max(orb(w1), v4) = 4 max(orb(w2), v4) = 5 max(orb(w3), v4) = 7

max(orb(w4), v4) = 10 max(orb(w5), v4) = 8 max(orb(w6), v4) = 6

max(orb(w7), v4) = 4 max(orb(w8), v4) = 2.

Since max(orb(x + y), v4) = max(orb(x), v4) + max(orb(y), v4) and the av-
erage contributions of the eight fundamental Weyl orbits (with respect to
index one) are respectively 4/2, 5/3, 7/4, 10/6, 8/5, 6/4, 4/3, 2/2, we con-
clude the following:

1. When t = 2m, max(orb(mw1), v4) = 4m and max(orb(x), v4) < 4m
for all other x ∈ At;

2. When t = 2m + 1, max(orb((m − 1)w1 + w2), v4) = 4m + 1 and
max(orb(x), v4) < 4m+ 1 for all other x ∈ At.

We note that the set At is defined in the proof of Proposition 5.2.
When t = 2m, the pull-back ϕk,t(τ, zv4) = (ζ±4m + · · · ) + O(q) is

obviously non-zero, where ζ = e2πiz. If k < −8m, then ϕk,t(τ, zv4) ∈
φ4m
−2,1 · Jw

k+8m,0, which leads to a contradiction because there is no non-zero
SL2(Z) modular form of negative weight.

When t = 2m + 1, the pull-back ϕk,t(τ, zv4) = (ζ±(4m+1) + · · · ) + O(q)
is also non-zero. If k < −8m, then ϕk,t(τ, zv4) ∈ φ4m

−2,1 ·Jw
k+8m,2. In this case,

k+8m < 0. The only classical weak Jacobi forms of negative even weight and
index 2 are φ2

−2,1 and φ−2,1φ0,1, which all have leading Fourier coefficients

ζ±2 in their q0-terms. This contradicts the q0-term of ϕk,t(τ, zv4).



574 Kaiwen Sun and Haowu Wang

We have checked that the q0-term of the unique W (E8)-invariant weak
Jacobi form of weight −36 and index 9 has no the Weyl orbit orb(3w1+w2),
which is consistent with the above result.

Let dk,t be the number of weight k generators of the free module J
w,W (E8)
∗,E8,t

.
By observing the generating series, we have the following conjecture on the
stability.

Conjecture 6.3. For any even K ≤ 0, there exist positive integer L(K)
such that for any fixed k satisfying K ≤ k ≤ 0, the number dk,t is constant
for all t ≥ L(K).

We list the L(K) and the relevant stable constants for weight K ≥ −24
in Table 4.

Table 4: The values of L(K) and dK,L(K)

K 0 −2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22 −24

L(K) 2 2 2 3 4 5 5 7 8 9 10 11 12

dK,L(K) 1 1 1 1 2 2 3 4 5 6 8 9 12

For any irreducible root system not of type E8, the ring of Weyl invariant
weak Jacobi forms is a polynomial algebra. In such case, it is easy to prove
the analogue of the above conjecture. We now prove the above conjecture
for some special weights.

Proposition 6.4. For any t ≥ 2, the free module J
w,W (E8)
∗,E8,t

is generated by
forms of non-positive weight. Moreover, the number of generators of weight
0, −2 and −4 are all one.

Proof. Let t be a positive integer greater than 9. We first fix some weak

Jacobi forms. Let ϕ−4,2, ϕ−2,2 and ϕ0,2 be the generators of J
w,W (E8)
∗,E8,2

. Let

ϕ−8,3 and ϕ−6,3 be the generators of weight −8 and −6 of J
w,W (E8)
∗,E8,3

. Let

ϕ−16,4 and ϕ−14,4 be the generators of weight −16 and −14 of J
w,W (E8)
∗,E8,4

.

Let ϕ−16,5 be the generator of weight −16 of J
w,W (E8)
∗,E8,5

whose q0-term in-
volves the fundamental Weyl orbit orb(w5). Let ϕ−24,6 be the generator of

weight −24 of J
w,W (E8)
∗,E8,6

whose q0-term involves orb(w4). Since the q0-terms
of the eight negative-weight forms ϕ−,− involve the eight fundamental Weyl
orbits respectively, the monomials of the eight forms in index t have q0-
terms involving all monomials of fundamental Weyl orbits

∏8
i=1 orb(wi)

mi

with T (m) = t. Thus they are linearly independent over M∗(SL2(Z)). More-
over, their weights are not greater than −t. Similarly, the products of their
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monomials in index t − 1 with A1 have weight ≤ 5 − t and have q0-terms
involving all monomials

∏8
i=1 orb(wi)

mi satisfying T (m) = t − 1. We prove

the proposition by induction on t. Suppose that J
w,W (E8)
∗,E8,t−2 is generated by

forms of non-positive weight and has only one generator of weight 0, −2

and −4 respectively. Then the products of the generators of J
w,W (E8)
∗,E8,t−2 with

ϕ0,2 have q0-terms involving all
∏8

i=1 orb(wi)
mi with T (m) ≤ t − 2. We

have constructed r(t) W (E8)-invariant weak Jacobi forms of index t which
are linearly independent over M∗(SL2(Z)). All of them have non-positive
weight and the numbers of forms of weight 0, −2, −4 are all one. Therefore,

J
w,W (E8)
∗,E8,t

is generated by forms of non-positive weight and there is at most
one generator of weight k for k = 0,−2,−4. It remains to prove that there do
exist generators of weight 0,−2,−4. The reduction of any weak Jacobi form
of negative weight is identically zero when z = 0. However, there are weak
Jacobi forms of weight 0 whose reduction is not zero. Therefore, there are
generators of weight 0. If there is no generator of weight −2, then there are
r(t) weak Jacobi forms of weight 0 whose q0-terms are linearly independent.
It follows that there exists a weak Jacobi form of weight 0 whose q0-term is
non-zero constant, which contradicts [22, Lemma 3.5]. If there is no gener-
ator of weight −4, then there are r(t) − 1 weak Jacobi forms of weight −2
whose q0-terms are linearly independent. Hence there exists a weak Jacobi
form of weight −2 whose q0-term is orb(w8) − 240. Acting the differential
operator on this form (see [22, Lemma 3.4]), we can construct a weak Jacobi
form of weight 0 whose q0-term is (12 − 1

t ) orb(w8)− 120, which contradicts
[22, Lemma 3.5] again. We have thus proved the desired result.

In principle, the proof above should be able to extend to the cases of
lower weights.

It is known that the ring of weak Jacobi forms of integral weight and
index one for a unimodular lattice L is generated over M∗(SL2(Z)) by the
Jacobi theta function associated to L which has positive weight 1

2rank(L). As
tE8 lattice is no longer unimodular for t ≥ 2, inspired by the above result, we
formulate a similar conjecture for general Jacobi forms on non-unimodular
lattices.

Conjecture 6.5. Let L be an even positive definite lattice. Assume that L
is irreducible and is not unimodular. Then the free module of weak Jacobi
forms of integral weight and index one associated to L is generated by forms
of non-positive weight.

We also make a conjecture onW (E8)-invariant holomorphic Jacobi forms
of singular weight.
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Conjecture 6.6. LetH(t) be the dimension of the space ofW (E8)-invariant
holomorphic Jacobi forms of weight 4 and positive index t. Let N(t) denote
the number of distinct Weyl orbits of vectors of norm t (i.e. 1

2(v, v) = t).
Then

H(t) = N(t).

Equivalently, for any Weyl orbit orb(m) of norm t, there exists a unique
W (E8)-invariant holomorphic Jacobi form of weight 4 and index t which
has the Fourier expansion

Φt,m = 1 +
240

| orb(m)|q · orb(m) +O(q2).

This conjecture has been proved for index t ≤ 11 in Proposition 5.2.
Because we only calculated the Fourier expansions of Ai and Bj up to q9-
terms, it is not sufficient to extend Proposition 5.2 to index 12 and 13.
However, by solving Jacobi forms of weight 4 which can be expressed as
P (E4, E6, Ai, Bj)/Δ

5E2
4 and have Fourier expansion of type (5.4) up to q4-

terms, we find that the dimension of the solution space (including the form
Xt) is 2 when t = 12 and 3 when t = 13. These are consistent with the above
conjecture. We formulate some values of N(t) in Table 5 below.

Table 5: The value of N(t)

t 1 2 3 4 5 6 7 8 9 10 11 12

N(t) 1 1 1 2 1 1 2 2 2 2 2 2

t 13 14 15 16 17 18 19 20 21 22 23

N(t) 3 2 2 4 3 3 4 3 3 4 4

Finally, we formulate a conjecture on the global structure of J
w,W (E8)
∗,E8,∗ .

This is motivated by Conjecture 6.1 and Conjecture 6.3. In addition, it was
proved in [24] that the algebra of weak Jacobi forms for arbitrary rank-two
lattice is finitely generated, which also motivates our conjecture.

Conjecture 6.7. The algebra of all W (E8)-invariant weak Jacobi forms of
integral weight and integral index is finitely generated over M∗(SL2(Z)).

By §4, the form φ−52a,13, which is one of the two generators of weight

−52 for J
w,W (E8)
∗,E8,13

, has to be a generator of the bigraded algebra J
w,W (E8)
∗,E8,∗ .

This means that J
w,W (E8)
∗,E8,∗ has generators of large index and its structure is

extremely complicated.
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Appendix A

In this appendix we present the generating series of J
w,W (E8)
∗,E8,t

for index t ≤
13. Let us define

J w
t :=

Pw
t

(1− x4)(1− x6)
=

∑
k∈Z dk,tx

k

(1− x4)(1− x6)
=

∑
k∈Z

dim J
w,W (E8)
k,E8,t

xk.

We here present the series J w
t up to O(x22). It is known that the free

module J
W (E8)
∗,E8,t

of holomorphic Jacobi forms is generated by forms of weight

not greater than 16. Thus our data is sufficient to deduce the generating

series of J
W (E8)
∗,E8,t

from the results in §5.

J w
1 =x4 + x8 + x10 + x12 + x14 + 2x16 + x18 + 2x20 +O(x22).

J w
2 =x−4 + x−2 + 2 + 2x2 + 3x4 + 3x6 + 4x8 + 4x10 + 5x12 + 5x14 + 6x16

+ 6x18 + 7x20 +O(x22).

J w
3 =x−8 + x−6 + 2x−4 + 3x−2 + 4 + 4x2 + 6x4 + 6x6 + 7x8 + 8x10 + 9x12

+ 9x14 + 11x16 + 11x18 + 12x20 +O(x22).

J w
4 =x−16 + x−14 + 2x−12 + 3x−10 + 5x−8 + 5x−6 + 8x−4 + 9x−2 + 11

+ 12x2 + 15x4 + 15x6 + 18x8 + 19x10 + 21x12 + 22x14 + 25x16

+ 25x18 + 28x20 +O(x22).

J w
5 =2x−16 + 2x−14 + 5x−12 + 6x−10 + 9x−8 + 10x−6 + 14x−4 + 15x−2

+ 19 + 20x2 + 24x4 + 25x6 + 29x8 + 30x10 + 34x12 + 35x14 + 39x16

+ 40x18 + 44x20 +O(x22).

J w
6 =2x−24 + 2x−22 + 5x−20 + 7x−18 + 10x−16 + 13x−14 + 18x−12

+ 20x−10 + 26x−8 + 29x−6 + 34x−4 + 38x−2 + 44 + 46x2 + 53x4

+ 56x6 + 61x8 + 65x10 + 71x12 + 73x14 + 80x16 + 83x18 + 88x20

+O(x22).

J w
7 =x−26 + 3x−24 + 6x−22 + 11x−20 + 13x−18 + 20x−16 + 25x−14

+ 30x−12 + 36x−10 + 44x−8 + 47x−6 + 56x−4 + 62x−2 + 68 + 74x2

+ 83x4 + 86x6 + 95x8 + 101x10 + 107x12 + 113x14 + 122x16 + 125x18

+ 134x20 +O(x22).

J w
8 =2x−32 + 4x−30 + 9x−28 + 12x−26 + 20x−24 + 25x−22 + 34x−20
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+ 41x−18 + 52x−16 + 59x−14 + 71x−12 + 79x−10 + 91x−8 + 99x−6

+ 112x−4 + 120x−2 + 133 + 141x2 + 154x4 + 162x6 + 175x8+183x10

+ 196x12 + 204x14 + 217x16 + 225x18 + 238x20 +O(x22).

J w
9 =x−36+2x−34+9x−32+13x−30 + 22x−28 + 30x−26 + 42x−24 + 50x−22

+ 66x−20+76x−18+91x−16+104x−14 + 120x−12 + 131x−10+ 150x−8

+ 161x−6+178x−4+192x−2+209 + 220x2 + 240x4 + 251x6 + 268x8

+ 282x10 + 299x12 + 310x14 + 330x16 + 341x18 + 358x20 +O(x22).

J w
10 =4x−40 + 7x−38 + 15x−36 + 23x−34 + 36x−32 + 46x−30 + 64x−28

+ 78x−26 + 97x−24 + 114x−22 + 137x−20 + 153x−18 + 178x−16

+ 197x−14 + 220x−12 + 240x−10 + 266x−8 + 283x−6 + 310x−4

+ 330x−2 + 354 + 374x2 + 401x4 + 418x6 + 445x8 + 465x10 + 489x12

+ 509x14 + 536x16 + 553x18 + 580x20 +O(x22).

J w
11 =5x−42 + 15x−40 + 24x−38 + 40x−36 + 55x−34 + 76x−32 + 95x−30

+ 121x−28 + 143x−26 + 172x−24 + 197x−22 + 228x−20 + 254x−18

+ 287x−16 + 314x−14 + 347x−12 + 375x−10 + 409x−8 + 436x−6

+ 471x−4 + 499x−2 + 533 + 561x2 + 596x4 + 623x6 + 658x8+686x10

+ 720x12 + 748x14 + 783x16 + 810x18 + 845x20 +O(x22).

J w
12 =8x−48 + 13x−46 + 29x−44 + 43x−42 + 64x−40 + 86x−38 + 116x−36

+ 141x−34 + 179x−32 + 210x−30 + 249x−28 + 286x−26 + 330x−24

+ 365x−22 + 414x−20 + 452x−18 + 498x−16 + 540x−14 + 588x−12

+ 626x−10 + 678x−8 + 717x−6 + 765x−4 + 808x−2 + 857 + 895x2

+ 948x4 + 987x6 + 1035x8 + 1078x10 + 1127x12 + 1165x14 + 1218x16

+ 1257x18 + 1305x20 +O(x22).

J w
13 =2x−52 + 10x−50 + 26x−48 + 44x−46 + 73x−44 + 96x−42 + 136x−40

+ 171x−38 + 214x−36 + 257x−34 + 311x−32 + 353x−30 + 413x−28

+ 464x−26 + 521x−24 + 575x−22 + 640x−20 + 689x−18 + 756x−16

+ 812x−14 + 873x−12 + 930x−10 + 998x−8 + 1048x−6 + 1117x−4

+ 1174x−2 + 1236 + 1293x2 + 1362x4 + 1412x6 + 1481x8 + 1538x10

+ 1600x12 + 1657x14 + 1726x16 + 1776x18 + 1845x20 +O(x22).
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Appendix B

In this appendix we show the construction of the second generator Φt of

J
W (E8)
∗,E8,t

for t = 7, 10, 11 (the form Xt is the first generator). In the following,
Pw,t(E4, E6, Ai, Bj) are some very long polynomials of weight w and index
t in E4, E6 and Sakai’s nine forms Ai, Bj , of which we omit the explicit

expression. The symbol O[m1...m8]
a,d stands for the Weyl orbit of the vector∑8

i=1miwi of norm a whose number of elements is d.

Φ7 =
P32,7(E4, E6, Ai, Bj)

Δ2E4

=1 +
q

56
O[00000011]

7,13440 +
q2

280
O[10000100]

14,604800 +
q3

280

(
5O[00000013]

21,13440 +O[10000101]
21,1814400

)
+

q4

280

(
5O[00000022]

28,13440 +O[10001001]
28,4838400

)
+O(q5).

Φ10 =
P56,10(E4, E6, Ai, Bj)

Δ4E4

=1 +
q

126
O[10000002]

10,30240 +
q2

630

(
5O[20000002]

20,30240 +O[10001000]
20,1209600

)
+

q3

1260

(
2O[10000102]

30,1814400 +O[00010010]
30,4838400

)
+

q4

1260

(
10O[20000004]

40,30240 + 10O[00002000]
40,241920 + 2O[10100100]

40,4838400 +O[00010011]
40,9676800

)
+

q5

1260

(
140O[50000000]

50,2160 + 10O[10000006]
50,30240 + 2O[10000120]

50,1814400 + 2O[10001003]
50,4838400

+ 2O[10101000]
50,4838400 +O[00010101]

50,14515200

)
+O(q6).

Φ11 =
P60,11(E4, E6, Ai, Bj)

Δ4E2
4

=1 +
q

756
O[00000101]

11,181440 +
q2

3780

(
3O[00010001]

22,2419200 + 5O[10000020]
22,181440

)
+

q3

7560

(
10O[00000201]

33,181440 + 6O[00101000]
33,2419200 + 10O[10000013]

33,362880 + 5O[11000011]
33,5806080

+ 10O[30000010]
33,181440

)
+

q4

7560

(
10O[00000202]

44,181440 + 6O[00100110]
44,7257600 + 6O[01010001]

44,4838400

+ 5O[11000012]
44,5806080 + 6O[20001001]

44,4838400

)
+

q5

7560

(
10O[00000211]

55,362880 + 6O[00010004]
55,2419200

+ 6O[00100200]
55,2419200 + 6O[00101002]

55,9676800 + 6O[01010010]
55,9676800 + 10O[10000023]

55,362880
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+ 5O[11000021]
55,5806080 + 6O[20001010]

55,7257600 + 10O[30000012]
55,362880

)
+O(q6).

We remark that there are in total 11 Weyl orbits of norm 55 and nine
of them are involved in the q5-term of Φ11. As explained in the proof of
Proposition 5.2, the Fourier expansion of any W (E8)-invariant holomorphic
Jacobi form of singular weight 4 and index t is completely determined by the
finitely-many Weyl orbits related to the action of W (E8) on the discriminant
group E8/tE8. Therefore, in each Fourier expansion of Φt or Xt there are
only a finite number of different coefficients for the Weyl orbits.
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