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Whittaker Fourier type solutions to
differential equations arising from string

theory∗

Ksenia Fedosova and Kim Klinger-Logan

In this article, we find the full Fourier expansion for solutions of
(Δ−λ)f(z) = −Ek(z)E�(z) for z = x+iy ∈ H for certain values of
parameters k, � and λ. When such an f is fully automorphic these
functions are referred to as generalized non-holomorphic Eisenstein
series. We give a connection of the boundary condition on such
Fourier series with convolution formulas on the divisor functions.
Additionally, we discuss a possible relation with the differential
Galois theory.

1. Introduction

The goal of this paper is to examine the Fourier expansion of the solutions
to inhomogeneous eigenvalue equations involving of a product of two non-
holomorphic Eisenstein series. Explicitly, for certain k, � ∈ Z>0 + 1/2, we
find a Whittaker Fourier expansion for a solution f(z) to equations of the
form

(1) (Δ− λ)f(z) = −Ek(z)E�(z), z = x+ iy ∈ H,

where the Eisenstein series, Es(z), is defined as

(2) Es(z) :=
∑

γ∈P∩Γ\Γ
Im(γz)s

for Γ = SL2(Z) and P the subgroup of upper triangular matrices. We
recall the non-holomorphic Eisenstein series as Es(z) converge absolutely
for Re(s) > 1 and are eigenfunctions for the Laplace operator −Δ :=
−y2(∂2

x+∂2
y) with eigenvalue s(1−s). There is currently no universal method

for finding explicit solutions to equations of the form (1) and the method
we propose gives a general form for k, � ∈ Z>0 + 1/2 and certain λ.
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Solutions to equations of the form (1) have been studied in [1, 2, 5, 6,
9, 13, 14, 17]. If they satisfy the SL2(Z)-automorphicity condition, these
solutions are sometimes referred to as generalised non-holomorphic Eisen-
stein series [2]. Such functions arise in the maximally supersymmetricN = 4
super-Yang-Mills (SYM) theory when studying the duality properties of cer-
tain correlation functions in the 1/N expansion. For k, � ∈ Z>0 + 1/2 with
k + � = q + 2, q, . . . , the generalized non-holomorphic Eisenstein series ap-
pear in the the order 1

Nq contributions with q ∈ Z>0 to the SYM free energy
F = − logZ [2, p. 6]. At low orders there is an explicit connection between
the correlator functions of the SU(N) N = 4 super Yang-Mills theory in the
1/N expansion [2] and the 10-dimensional type IIB superstring scattering
amplitude of gravitons. The D6R4 interactions in the low energy expansion
of the 4-loop supergraviton is given by the the solution to (1) where λ = 12
and k = � = 3/2 [10, 9] and an explicit Fourier solution has been given this
case in [9]. More generally, solutions to (1) for k, � ∈ Z>0 are examples of
modular graph functions and solutions have been found in [4, 5, 6].

We use the following method to investigate solutions of (1): for z = x+iy
we start by assuming f(z) is periodic in x and expand it in corresponding
Fourier series. From (1), we deduce an ordinary differential equation on every
Fourier mode of f . Each of these differential equations is an inhomogeneous
differential equation of the second order; the homogeneous part coincides
with the modified Bessel equation, while the inhomogeneous part comprises
an infinite sum involving polynomials and K-Bessel functions. The indices
of the K-Bessel function in the inhomogeneous part are independent on the
parameters in the homogeneous part. Assuming that the solution has this
form, we introduce a system of linear equations on parameters upon which
this special form depends. For certain physically relevant (λ, k, �) we solve
this system of linear equations using a symbolic algebra system to obtain
the searched parameters. In addition to finding all Fourier modes for such
solutions, we are able to determine conditions on (λ, k, �) when solutions of
this form do not exist. Experimentally, we are able to find explicit Fourier
solutions in many instances outside those contained here; however, we have
chosen to only include these for brevity.

The method we present in this paper is motivated by the exact expres-
sion of the solution in [9]. In the former article, Green, Miller, and Vanhove
found the explicit expressions for the Fourier modes of the function, satis-
fying (1) with λ = 12 and k = � = 3/2. The Fourier modes of the solution
in [9] are exactly of the form Theorem A. We also note that the full spec-
tral solution for f in terms of L2(Γ\H)-eigenfunctions is given in [13]. The
Fourier expansion of the solution f to (1) for k = � = 3/2 and λ = 12 was
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also explicitly computed [14] using the Poincaré series solution found in [9,
Appendix A]. The method used in [14] is different from that used in [9] and
outlined below. Importantly, in [14], the authors are not able to extend their
method outside of the case where k = � in (1); however, the method outlined
in this paper does not require such a dependence.

In [2], Chester, Green, Pufu, Wang, and Wen generalized Eisenstein se-
ries were studied for certain values of k, �, λ. Although each full Fourier
expansion was not obtained in [2], the authors provided many important
properties to the solution. We would like to note that they have expressed
the solution to the zeroth Fourier term not in terms of K0 and K1 as we
did, but rather in terms of modified Bessel functions of integer index. These
representations are related to the ones found below via a recurrence relation
of K-Bessel functions.

Inhomogeneous differential equations of Bessel type with inhomogeneous
parts involving Bessel functions appear not only in string theory, but also
in the theory of vector-valued automorphic functions. More precisely, in [7],
Fedosova, Pohl, and Rowlett considered functions ϕ : H → V for some
complex finite-dimensional vector space V that are Laplace eigenfunctions
with eigenvalue s(1− s) for s ∈ C, thus

(3)
(
Δ− s(1− s)

)
ϕ = 0.

Additionally, they required that ϕ satisfies the twist-periodicity condition

(4) ϕ(z + 1) = Aϕ(z)

for all z ∈ H for some A ∈ GL(V ). When A is a unitary matrix, one ob-
tains that the Fourier coefficients of ϕ satisfy a modified Bessel equation,
depending on A. For diagonalizable A, this modified Bessel equation is a
homogeneous differential equation. Interestingly enough, if we allow a non-
diagonalizable matrix, then some entries of the Fourier coefficient of ϕ satisfy
the differential equation(

y2∂2
y − λ− 4π2n2y2

)
f(y) = g(y), n ∈ Z,

where g is a combination of the modified Bessel function of the second kind
and a certain polynomial in y.

1.1. Discussion of main results

We denote by S the set containing all (λ, k, �) such that either
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(i) λ = 12, 30, 56 and k = � = 3
2 , or

(ii) λ = 20 and k = 3
2 , � =

5
2 , or

(iii) λ = 30 and k = � = 5
2 , or

(iv) λ = 30 and k = 3
2 , � =

7
2 .

Of these cases, in Appendix C of [2] Chester, Green, Pufu, Wang and
Wen examine the zero mode of solutions (i) for λ = 12, 30, 56, 90 and (ii) for
λ = 20, 42 and (iii) and (iv) for λ = 30, 56, 90. However, for the nonzero
modes the full Fourier coefficients were not explicitly given. The method
outlined in this paper gives all Fourier modes in these cases as well.1

Theorem A. Let (λ = r(r+1), k, �) ∈ S and let f : H → C be a 1-periodic
function in the x-variable that satisfies

(Δ− λ)f(z) = −Ek(z)E�(z), z = x+ iy ∈ H

for E•(z), • ∈ {k, �} as in (2). Then f(z) =
∑

n∈Z f̂n(y)e
2πinx and there

exist αn, βn ∈ C such that for n �= 0,

f̂n(y) = αn
√
yKr+1/2(2π|n|y) + βn

√
yIr+1/2(2π|n|y)

+
∑

n1,n2∈Z

n1+n2=n

∑
i,j∈{0,1}

qi,j(y)Ki(2π|n1|y)Kj(2π|n2|y),

and for n = 0,

f̂0(y) = α0y
−r + β0y

r+1 +
∑

n1,n2∈Z

n1+n2=0

∑
i,j∈{0,1}

μi,j(y)Ki(2π|n1|y)Kj(2π|n2|y),

where for η ∈ C, Iη and Kη denote the modified Bessel function of the

first and second kind of index η, respectively, and where qi,j = qi,jn1,n2,λ,k,�

and μi,j = μi,j
n1,n2,λ,k,�

are Laurent polynomials in y. In the case n1n2 = 0,
the modified Bessel functions have to be replaced by appropriate limits, see
Sections 3.2 and 3.3. If we impose the requirement

(5) |f̂n(y)| = o
(
ey
)
, y → ∞,

then βn with n �= 0 vanishes.

1In fact, this method gives a solution to (1) for hundreds of other triples as well
(see Section 4). We note that we did not check these solutions for convergence and
we leave them out of this paper for the interest of space.
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More precisely, we obtain the degrees of polynomials qi,j in Figure 1. We
denote by mi,j and Mi,j the lowest and highest power of y present in qi,j(y),
respectively.

(k, �) m0,0 M0,0 m0,1 M0,1 m1,1 M1,1

(3/2, 3/2) −r + 2 1 −r + 1 0 −r + 2 1
(3/2, 5/2) −r + 2 0 −r + 1 1 −r + 2 0
(5/2, 5/2) −r + 2 1 −r + 1 0 min{−r + 1,−1} 1
(3/2, 7/2) −r + 2 1 −r + 1 0 −r + 2 1

Figure 1: For λ = r(r+1), let mi,j and Mi,j be the lowest and highest power
of y present in qi,j(y), respectively. Note that m0,1 = m1,0 and M0,1 = M1,0.

1.2. Automorphy of the solution

Theorem A does not require the function f to be automorphic. However,
any function that is automorphic is also 1-periodic in the x-variable; thus,
the Fourier expansion of an automorphic solution to (1) has the form as
in Theorem A. We note that such an automorphic function always exists
for (λ, k, �) ∈ S as established in [13] with the help of spectral methods.
Additionally, in [14], the existence of an automorphic solution with Fourier
expansion of the form in Theorem A was verified in many cases where k = �.

If an automorphic function exhibits a certain large-y growth behavior,
its Fourier coefficients must obey a small-y boundary condition [9, Lemma
2.9]. More precisely, the Fourier expansion of every automorphic solution
to (1) with O(ys) for s > 1 as y → ∞ must satisfy O(y1−s) as y → 0.
Hence, if we apriori know the large-y behavior of the solution, it is natural
to impose a small-y boundary condition on its Fourier coefficients.

In the course of the proof of Theorem A, we split f̂n(y) =∑
n1+n2=n f̂n1,n2

(y) where each of f̂n1,n2
(y) satisfies an ordinary differential

equation involving modified Bessel functions. The inhomogeneous part of
this differential equation corresponds to the product of the n1-th Fourier
coefficient of Ek(z) and the n2-th Fourier coefficient of E�(z) (for more
details on the splitting, see (13) and further). The space of solutions of
each ODE is two-dimensional. Specifically, for n �= 0, this two-dimensional
space is parameterized by αn1,n2

and βn1,n2
so that

∑
n1+n2=n αn1,n2

= αn,∑
n1+n2=n βn1,n2

= βn, and for n1n2 �= 0,

f̂n1,n2
(y) = αn1,n2

Kr+1/2(2π|n|y) + βn1,n2
Ir+1/2(2π|n|y)
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+
∑

i,j∈{0,1}
qi,j(y)Ki(2π|n1|y)Kj(2π|n2|y).

For each n1, n2 there is a unique choice of solution f̂n1,n2
(y) from this

2-dimensional space so that f̂n1,n2
(y) satisfies O(y−r) as y → 0 and o(ey) as

y → ∞. We note that this does not guarantee that f̂n(y) itself satisfies both
of these growth conditions (though we suspect that it does). As seen from
[9, Lemma 2.9], fn(y) satisfying both of these conditions is necessary, but
not sufficient, for the full solution to be automorphic.

1.3. Theorem A for (λ, k, �) /∈ S

We are also able to find solutions of the form in Theorem A for values
(λ, k, �) /∈ S . Specifically, we find explicit solutions for k = � = 3/2 and
λ = 2 (see Section A.1); k = 3/2, � = 5/2 and λ = 6 (see Section A.2); k =
� = 5/2 and λ = 2 and 12 (see Sections A.3 and A.4); and k = 3/2, � = 7/2
and λ = 12 (see Section A.5). However, in these cases, it is not clear what an
appropriate small-y condition for f̂n1,n2

(y) means. More precisely, for each

n1 and n2, there is a no choice of αn1,n2
so that f̂n1,n2

(y) is of necessary
order of vanishing and

∑
n1+n2=n αn1,n2

converges. In Section A we make a
unique choice based on the vanishing of the second term in the asymptotic
expansion as y → 0. We note that the divergence of the homogeneous sum∑

n1+n2=n αn1,n2
seems to occur when λ is relatively small depending on the

size of k and �.

1.4. Shifted divisor sums

In [2, Section C.1 (a)], Chester, Green, Pufu, Wang, and Wen conjectured,
based on ideas from the AdS-CFT correspondence and Yang-Mills theory,
that for an automorphic f , the total sum of the Fourier coefficients cor-
responding to the homogeneous solution vanishes, that is, if n �= 0, then
αn = 0. In [14], the authors provided an argument in support of this con-
jecture for every non-zero Fourier term for λ = 12, k = � = 3/2 (the zeroth
term can be dealt with with the help of Ramanujan summation formulas).
We do not prove this conjecture in this article. However, the special choices
of f̂n1,n2

(y) made in each case in order to obtain a unique boundary condition
imply that αn can be evaluated with certain convolution series on divisor
functions. Following methods similar to those of [9] and [2], we show at least
for one choice of parameters and the zeroth coefficient (Section A.1.4), the
formal vanishing of the homogeneous part follows from a certain derivative
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of the Ramanujan identity. If we want to deal with the non-zero Fourier co-
efficient, we would have to prove a more general version of the Ramanujan
identity.

1.5. Application to large N expansion of integrated correlators

In [2], the authors gave an evidence that generalised Eisenstein series that
arise in coefficients H(q, τ, τ) of even terms in the 1/N up to order 1/N3 in
[2, (2.11)]. To be more precise, [2, (2.11)] expresses ∂4

m logZ|m=0,b=1, that is
a fourth derivative of the squashed sphere partition function of the N = 2
theory with respect to the squashing parameter b = 1 and mass parameter
m = 0. In Sections 5–8, we derive the Fourier coefficients for the generalised
Eisenstein series appearing the first few terms of the large-N expansion of
∂4
m logZ|m=0,b=1.

If we denote by E(r, k, �; z) the modular functions that satisfy the inho-
mogeneous Laplace equation(

Δ− r(r + 1)
)
E(r, k, �; z) = −4ζ(2k)ζ(2�)Ek(z)E�(z),

where ζ denotes the Riemann zeta function, then 1/N2 contribution from
[2, (2.13)] is conjectured to be equal to

T−2(y) = C1 +
14175

704π4
E
(
6, 52 ,

3
2

)
− 1215

88π4
E
(
4, 52 ,

3
2

)
for some constant C1.

With the help of the method described in the article it is possible to
show that

C1 +
14175

704π4
E
(
6, 52 ,

3
2

)
− 1215

88π4
E
(
4, 52 ,

3
2

)
= C1 +

∑
n∈Z

T−2,n(y)e
2πinx,

where for n �= 0,

T−2,n(y) = C2,n
√
yK9/2(2π|n|y) + C3,n

√
yK13/2(2π|n|y)

+
∑

n1+n2=n

T−2,n1,n2
(y),

for some C2,n and C3,n, where for n1 + n2 �= 0 and n1n2 �= 0,

T−2,n1,n2
(y) = −|n1|2|n2|σ−4

(
|n1|

)
σ−2

(
|n2|

)
(6)
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×
1∑

i,j=0

wi,j(y)Ki(2π|n1|y)Kj(2π|n2|y)

for

w0,0(y) = sgn(n1)
27n2

π6(n1 + n2)12y4

×
(
25200n6

1 − 201600n5
1n2 + 441000n4

1n
2
2 − 352800n3

1n
3
2 + 88200n2

1n
4
2

+
(
7630π2n8

1 − 70840π2n2n
7
1 + 72460π2n2

2n
6
1 + 210200π2n3

2n
5
1

− 89240π2n4
2n

4
1 − 119080π2n5

2n
3
1 + 29620π2n6

2n
2
1 + 200π2n7

2n1

+ 10π2n8
2

)
y2

+
(
235π4n10

1 − 4180π4n2n
9
1 − 1899π4n2

2n
8
1 + 26848π4n3

2n
7
1

+ 35838π4n4
2n

6
1 − 3624π4n5

2n
5
1 − 23270π4n6

2n
4
1 − 6784π4n7

2n
3
1

+ 1383π4n8
2n

2
1 + 28π4n9

2n1 + π4n10
2

)
y4
)
,

w0,1(y) = sgn(n1) sgn(n2)
9

π7(n1 + n2)13y5

×
(
−75600n2

2n
5
1 + 529200n3

2n
4
1 − 793800n4

2n
3
1 + 264600n5

2n
2
1

+
(
210π2n9

1 + 9450π2n2n
8
1 − 351720π2n2

2n
7
1 + 587160π2n3

2n
6
1

+ 1159200π2n4
2n

5
1 − 675360π2n5

2n
4
1 − 665280π2n6

2n
3
1

+ 221760π2n7
2n

2
1 + 630π2n8

2n1 + 30π2n9
2

)
y2

+
(
45π4n11

1 + 2385π4n2n
10
1 − 63642π4n2

2n
9
1 − 28218π4n3

2n
8
1

+ 381438π4n4
2n

7
1 + 479622π4n5

2n
6
1 − 102672π4n6

2n
5
1

− 349392π4n7
2n

4
1 − 84243π4n8

2n
3
1 + 26913π4n9

2n
2
1

+ 402π4n10
2 n1 + 18π4n11

2

)
y4

+
(
20π6n2n

12
1 − 1140π6n2

2n
11
1 − 1940π6n3

2n
10
1 + 10004π6n4

2n
9
1

+ 34632π6n5
2n

8
1 + 37752π6n6

2n
7
1 + 7384π6n7

2n
6
1 − 15960π6n8

2n
5
1

− 11676π6n9
2n

4
1 − 1988π6n10

2 n3
1 + 252π6n11

2 n2
1 + 4π6n12

2 n1

)
y6
)
,

w1,0(y) =
9n2

π7n1(n1 + n2)13y5
(
75600n7

1 − 529200n6
1n2 + 793800n5

1n
2
2

− 264600n4
1n

3
2 +

(
60690π2n9

1 − 454230π2n2n
8
1 + 311040π2n2

2n
7
1

+ 1310400π2n3
2n

6
1 − 357840π2n4

2n
5
1 − 761040π2n5

2n
4
1

+ 88200π2n6
2n

3
1 + 7560π2n7

2n
2
1 + 630π2n8

2n1 + 30π2n9
2

)
y2

+
(
5850π4n11

1 − 62550π4n2n
10
1 − 53577π4n2

2n
9
1 + 352947π4n3

2n
8
1
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+ 508248π4n4
2n

7
1 − 50088π4n5

2n
6
1 − 342822π4n6

2n
5
1 + 3π4n11

2

− 102702π4n7
2n

4
1 + 21222π4n8

2n
3
1 + 1398π4n9

2n
2
1 + 87π4n10

2 n1

)
y4

+
(
20π6n13

1 − 1140π6n2n
12
1 − 1940π6n2

2n
11
1 + 10004π6n3

2n
10
1

+ 34632π6n4
2n

9
1 + 37752π6n5

2n
8
1 + 7384π6n6

2n
7
1 − 15960π6n7

2n
6
1

− 11676π6n8
2n

5
1 − 1988π6n9

2n
4
1 + 252π6n10

2 n3
1 + 4π6n11

2 n2
1

)
y6
)

w1,1(y) =
9 sgn(n2)

π6n1(n1 + n2)12y4
(
30n8

2 + 210n8
1 + 9240n7

1n2 − 451680n6
1n

2
2

+ 1633560n5
1n

3
2 − 1157280n4

1n
4
2 + 81240n3

1n
5
2 + 6960n2

1n
6
2 + 600n1n

7
2

+
(
150π2n10

1 + 6960π2n2n
9
1 − 218082π2n2

2n
8
1 + 315504π2n3

2n
7
1

+ 757824π2n4
2n

6
1 − 285072π2n5

2n
5
1 − 446400π2n6

2n
4
1 + 60528π2n7

2n
3
1

+ 4794π2n8
2n

2
1 + 384π2n9

2n1 + 18π2n10
2

)
y2

+
(
5π4n12

1 + 420π4n2n
11
1 − 13025π4n2

2n
10
1 − 3196π4n3

2n
9
1

+ 89202π4n4
2n

8
1 + 116952π4n5

2n
7
1 − 9026π4n6

2n
6
1 − 73800π4n7

2n
5
1

− 23271π4n8
2n

4
1 + 3652π4n9

2n
3
1 + 147π4n10

2 n2
1 + 4π4n11

2 n1

)
y4
)
.

The cases n1 + n2 = 0 or n1n2 = 0 can be obtained by a certain limiting

procedure.

The 1/N3 contribution from [2, (2.13)] is conjectured to be equal to

αrE
(
3, 32 ,

3
2

)
+

∑
r=5,7,9

αrE
(
r, 32 ,

3
2

)
+ βrE

(
r, 52 ,

5
2

)
+ γrE

(
r, 72 ,

3
2

)
,

where αr, βr, γr are not the same as in Theorem A but are defined in [2,

(2.14)]. We can write the expression above as

∑
n∈Z

T−3,n(y)e
2πinx,

where for n �= 0,

T−3,n(y) = C4,n
√
yK7/2(2π|n|y) + C5,n

√
yK11/2(2π|n|y)

+ C6,n
√
yK15/2(2π|n|y) + C7,n

√
yK19/2(2π|n|y)

+
∑

n1+n2=n

T−3,n1,n2
(y),
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for some Cj,n, j = 4, 5, 6, 7, where for n1 + n2 �= 0 and n1n2 �= 0,

T−3,n1,n2
(y) =

1∑
i,j=0

vi,j(y)Ki(2π|n1|y)Kj(2π|n2|y),

where vi,j(y) is some rational function on y.

2. Method of solution

In this section, we outline a method for finding the Fourier expansions of
solutions f(z) to equations of the form

(7) (Δ− λ)f(z) = ck,� ζ(2k)ζ(2�)Ek(z)E�(z)

where λ = r(r+1) for r ∈ N and k, � ∈ Z>0+1/2, and ck,� is some constant
depending on k and �. The constants ck,� ∈ C are chosen for the convenience
purpose and to shorten the outcome. For the particular k, � for which we
write down the exact solutions, we let

ck,� :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−4, k = � = 3/2,

−6, k = 3/2, � = 5/2,

−9, k = � = 5/2,

−30, k = 3/2, � = 7/2.

We start with recalling that for Re(s) > 1,

Es(z) =
∑
n∈Z

an,s(y)e
2πinx,

where

a0,s(y) = ys +

√
πΓ(s− 1

2)ζ(2s− 1)

Γ(s)ζ(2s)
y1−s

and for n �= 0,

(8) an,s(y) =
2πs

Γ(s)ζ(2s)
|n|s−

1
2σ1−2s(|n|)

√
yK

s−1
2
(2π|n|y),

where for z ∈ C and n ∈ N, σz(n) :=
∑

d|n d
z is the divisor function [18,

p. 278]. We note that in the notations of [2, (2.10)], Es(z) =
1

2ζ(2s)E(s, z, z),
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and thus

(9) 4ζ(2k)ζ(2�)Ek(z)E�(z) = E(k, z, z)E(�, z, z).

This expansion implies that for k, � > 1

(10) ck,� ζ(2k)ζ(2�)Ek(z)E�(z) =
∑
n∈Z

Sn(y)e
2πinx,

where

(11) Sn(y) =
∑

n1,n2∈Z
n1+n2=n

sn1,n2
(y)

for sn1,n2
(y) = ck,� ζ(2k)ζ(2�)an1,k(y)an2,�(y). Explicitly, each sn1,n2

(y) can
be written as follows:

(a) For n1 = n2 = 0:

s0,0(y) = ck,� ζ(2k)ζ(2�)y
k+� + ck,� ζ(2�)y

1−k+�

√
πΓ(k − 1

2)ζ(2k − 1)

Γ(k)

+ ck,� ζ(2k)y
1+k−�

√
πΓ(�− 1

2)ζ(2�− 1)

Γ(�)

+ ck,� y
2−k−�πΓ(k − 1

2)Γ(�−
1
2)ζ(2k − 1)ζ(2�− 1)

Γ(k)Γ(�)
.

(b) For n1 = 0, n2 �= 0:

s0,n(y) =
2ck,�π

�ζ(2k)

Γ(�)ζ(2�)
|n|�−

1
2σ1−2�(|n|)yk+1/2K

�−1
2
(2π|n|y)

+
2ck,�π

�+1/2Γ(k − 1
2)ζ(2k − 1)

Γ(k)Γ(�)ζ(2�)
|n|�−

1
2σ1−2�(|n|)

× y3/2−kK
�−1

2
(2π|n|y).

(c) For n1 �= 0, n2 = 0:

sn,0(y) =
2ck,�π

kζ(2�)

Γ(k)ζ(2k)
|n|k−

1
2σ1−2k(|n|)y�+1/2K

k−1
2
(2π|n|y)

+
2ck,�π

k+1/2Γ(�− 1
2)ζ(2�− 1)

Γ(�)Γ(k)ζ(2k)
|n|k−

1
2σ1−2k(|n|)
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× y3/2−�K
k−1

2
(2π|n|y).

(d) For n1n2 �= 0:

sn1,n2
(y) =

4ck,�π
k+�

Γ(k)Γ(�)
|n1|k−

1
2 |n2|�−

1
2σ1−2k(|n1|)σ1−2�(|n2|)(12)

× yK
k−1

2
(2π|n1|y)K

�−1
2
(2π|n2|y).

To solve (7), note that the Fourier expansion of the right is given by (10).

Although we do not assume the SL2(Z)-invariance of f , we do require that,

for z = x+ iy, f(z) is periodic in the x-direction with period 1. Given this

assumption, the differential equation, (7), can be equivalently stated as the

simultaneous differential equations on the Fourier coefficients, f̂n(y), of f(z):

(13)
(
y2∂2

y − λ− 4π2n2y2
)
f̂n(y) = Sn(y), n ∈ Z.

We express

(14) f̂n(y) =
∑

n1,n2∈Z

n1+n2=n

f̂n1,n2
(y),

for f̂n1,n2
(y) satisfying2

(15)
(
y2∂2

y − λ− 4π2(n1 + n2)
2y2

)
f̂n1,n2

(y) = sn1,n2
(y).

Each solution of (15) can be written as a sum of a solution, f̂H
n1,n2

(y), of the

homogeneous equation

(16)
(
y2∂2

y − λ− 4π2(n1 + n2)
2y2

)
f̂H
n1,n2

(y) = 0,

2There is an ambiguity in the decomposition (14) of f̂n(y) into a sum of solutions

of (15) since f̂n1,n2(y) is not uniquely defined by the property that it solves (15).

However, by (16), any f̂H
n1,n2

(y) depends on the sum n1+n2 but not on the individ-

ual values of n1 and n2. Hence f̂H
n1,n2

(y) can be simultaneously added to fn1,n2(y)
and subtracted from fn′

1,n
′
2
(y) for any n′

1, n
′
2 if n

′
1+n′

2 = n1+n2. Below, we make the

decomposition (14) unique by demanding certain boundary conditions on f̂n1,n2(y)
for y → ∞ and y → 0 (for the motivation for imposing boundary conditions, see
Section 1.2).
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and a particular solution, f̂P
n1,n2

(y), of (15). Thus,

(17) f̂n1,n2
(y) = f̂P

n1,n2
(y) + f̂H

n1,n2
(y).

We note that for λ = r(r + 1), r ∈ R and n1 + n2 �= 0,

f̂H
n1,n2

(y) = αn1,n2

√
yKr+1/2(2π|n1 + n2|y) + βn1,n2

√
yIr+1/2(2π|n1 + n2|y)

for some αn1,n2
, βn1,n2

∈ C. However, for βn1,n2
�= 0, the function f̂H

n1,n2
(y)

grows exponentially as y → ∞, that contradicts (5). From this we deduce
that βn1,n2

= 0 and thus

(18) f̂H
n1,n2

(y) = αn1,n2

√
yKr+1/2(2π|n1 + n2|y)

for some αn1,n2
∈ C. We note that for Re(r) > −1/2 and y → 0, [3, 10.30.2]

implies

f̂H
n1,n2

(y) = αn1,n2
y−r

(
1
2 |πn|

−r−1
2Γ

(
r + 1

2

)
+O

(
y2
))
.(19)

In the case where n1 + n2 = 0, for λ = r(r + 1), r ∈ R, r �= 1/2,

f̂H
n1,n2

(y) = αn1,n2
y−r + βn1,n2

yr+1

for some αn1,n2
, βn1,n2

∈ C. If we demand f̂H
n1,n2

(y) = o(yr+1) as y → ∞, we
would have to take βn1,n2

= 0 and thus

(20) f̂H
n1,n2

(y) = αn1,n2
y−r.

It remains to find a particular solution, f̂P
n1,n2

(y). In what follows we as-
sume that the solution is a linear combination of special functions multiplied
by rational functions. We find the explicit constants which appear in front
of these special functions by solving systems of certain linear equations. In
Section 3, we describe in more details which system of linear equations need
to be solved depending on the values of (n1, n2). More precisely, we will
consider the following cases:

1. In Section 3.1, we will consider the case n1n2 �= 0.
2. In Section 3.2, we will consider the case when exactly one of ni, i = 1, 2,

is equal to zero.
3. In Section 3.3, we will consider the case n1 = n2 = 0.
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Finally, in Section 9, we will show that the sums
∑

n1+n2=n f̂n1,n2
(y) converge

for each n (at least in the physically relevance cases we have considered in
Sections 5–8).

After we outline the strategy of finding solutions, we provide in further
sections explicit examples of such for some physically relevant λ, k and �. We
stress that we are able to find the solutions as functions of n1 and n2 without
restricting ourselves to any particular values of n1 and n2. More precisely,
we write down the explicit solutions for f(z) in the following cases:

I. λ = 30, 56 and k = � = 3/2 in Section 5 (we omit λ = 12, because it has
been treated in [9]),

II. λ = 20 and k = 3/2, � = 5/2 in Section 6,

III. λ = 30 and k = � = 5/2 in Section 7,

IV. λ = 30 and k = 3/2, � = 7/2 in Section 8,

V. λ = 2 and k = � = 3/2; λ = 6 and k = 3/2, � = 5/2; λ = 2, 12 and
k = � = 5/2; and λ = 12 and k = 3/2, � = 7/2 in Section A.

We have not included the solutions of the differential equations that would
cover the full expansion of ∂4

m logZ|m=0,b=1 up to the order 1/N3 to keep
the length of the article reasonable.

3. Particular solutions

In this section, we explicitly describe the system of linear equations that
finds a particular solution of (15), depending on the values of (n1, n2). As
noted in Section 1.1, the convergence of the solution will depend on the
explicit form of fP

n1,n2
(y) and fH

n1,n2
(y) (as given in Sections 5–8). Thus the

proof that these solutions converge will be given in Section 9.

3.1. Solutions to (15) for n1n2 �= 0

Substituting (12) into (15) and denoting

f̂P
n1,n2

(y) =
4πk+�

Γ(k)ζ(2k)Γ(�)ζ(2�)
|n1|k−

1
2 |n2|�−

1
2σ1−2k(n1)σ1−2�(n2)g(y),

we obtain a differential equation on g:

(
−4π2y2(n1 + n2)

2 + y2∂2
y − λ

)
g(y) = yKk−1/2(2π|n1|y)K�−1/2(2π|n2|y),

(21)



Whittaker Fourier type solutions to differential equations 597

or (
−4π2y2

(
|n1|+ sgn(n1n2)|n2|

)2
+ y2∂2

y − λ
)
g(y)(22)

= yKk−1/2(2π|n1|y)K�−1/2(2π|n2|y).

We introduce the notation

Pλ := −4π2y2
(
|n1|+ sgn(n1n2)|n2|

)2
+ y2∂2

y − λ.

In this notation, (22) reads

(23) Pλg(y) = yKk−1/2(2π|n1|y)K�−1/2(2π|n2|y).

If k, � ∈ Z + 1
2 , then, using recursive formulas for the modified Bessel

functions as in [3, 10.29(i)] – or, for the particular choices of k and �, as in
Section B.2 – we can rewrite the right hand side for (23) as

(24)

1∑
i,j=0

hi,j(y)Ki(2π|n1|y)Kj(2π|n2|y),

where hi,j for each i, j ∈ {0, 1} is a polynomial in y and y−1.

We note that for any a, b, c, d ∈ Z,

Pλ

(
yaK0(2π|n1|y)K0(2π|n2|y)

)
(25)

=
(
− sgn(n1n2)8π

2|n1||n2|ya+2 + a2ya − λya − aya
)

×K0(2π|n1|y)K0(2π|n2|y)
+
(
2π|n2|ya+1 − 4π|n2|aya+1

)
K0(2π|n1|y)K1(2π|n2|y)

+
(
2π|n1|ya+1 − 4π|n1|aya+1

)
K1(2π|n1|y)K0(2π|n2|y)

+
(
8π2|n1||n2|ya+2

)
K1(2π|n1|y)K1(2π|n2|y),

Pλ

(
ybK0(2π|n1|y)K1(2π|n2|y)

)
(26)

=
(
2π|n2|yb+1 − 4πb|n2|yb+1

)
K0(2π|n1|y)K0(2π|n2|y)

+
(
b2yb − sgn(n1n2)8π

2|n1||n2|yb+2 − λyb − 3byb + 2yb
)

×K0(2π|n1|y)K1(2π|n2|y)
+
(
8π2|n1||n2|yb+2

)
K1(2π|n1|y)K0(2π|n2|y)

+
(
6π|n1|yb+1 − 6πb|n1|yb+1

)
K1(2π|n1|y)K1(2π|n2|y),

Pλ

(
ycK1(2π1|n1|y)K0(2π|n2|y)

)
(27)
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=
(
2π|n1|yc+1 − 4π|n1|cyc+1

)
K0(2π|n1|y)K0(2π|n2|y)

+
(
8π2|n1||n2|yc+2

)
K0(2π|n1|y)K1(2π|n2|y)

−
(
sgn(n1n2)28π

2|n1||n2|yc+2 − c2yc + λyc + 3cyc − 2yc
)

×K1(2π|n1|y)K0(2π|n2|y)
+
(
6π|n2|yc+1 − 4π|n2|cyc+1

)
K1(2π|n1|y)K1(2π|n2|y),

Pλ

(
ydK1(2π|n1|y)K1(2π|n2|y)

)
(28)

=
(
8π2|n1||n2|yd+2

)
K0(2π|n1|y)K0(2π|n2|y)

+
(
6π|n1|yd+1 − 4π|n1|dyd+1

)
K0(2π|n1|y)K1(2π|n2|y)

+
(
6π|n2|yd+1 − 4π|n2|dyd+1

)
K1(2π|n1|y)K0(2π|n2|y)

−
(
sgn(n1n2)8π

2|n1||n2|yd+2 − d2yd + λyd + 5dyd − 6yd
)

×K1(2π|n1|y)K1(2π|n2|y).

If we assume that a solution of (22) can be expressed as a sum

(29) g(y) =

1∑
i,j=0

qi,j(y)Ki(2π|n1|y)Kj(2π|n2|y),

where qi,j are some polynomials in y and y−1, then qi,j can be found by
solving a system of linear equations on the coefficients of qi,j . More precisely,
assume that

max
i,j

deg qi,j = M, min
i,j

deg qi,j = m.

Then each of qi,j for i, j ∈ {0, 1} is parametrized by (M −m + 1) complex
coefficients.

On the other hand,

Pλ(g) =

1∑
i,j=0

q̃i,j(y)Ki(2π|n1|y)Kj(2π|n2|y)

for some polynomials q̃i,j such that

max
i,j

deg q̃i,j = M + 2, min
i,j

deg q̃i,j = m.

Thus, (23) can be equivalently written as 4(M+3−m) linear equations with
4(M −m+ 1) variables: the variables are exactly the coefficients of qi,j , and
the linear equations come from the requirement that hi,j = q̃i,j .
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We note that as one can see from (25)–(27), the corresponding matrix
of the system of linear equation is a band matrix, that simplifies the calcu-
lations.

The possibility of writing g in such form depends on k, �, λ, M and m.
Below, we write down some elementary limitations on the set of parameters
that are needed in order for a solution of such form to exist. Further in the
article, we speculate on possible connection of restriction with the differential
Galois theory.

Proposition 3.1. A solution to (1) of the form (29) with the condition

min
i,j∈{0,1}

deg hi,j > min
i,j∈{0,1}

deg qi,j

does not exist unless λ is of the form r(r + 1) for r ∈ Z>0.

Proof. We note that from hi,j = q̃i,j , the equality

min
i,j∈{0,1}

deg hi,j = min
i,j∈{0,1}

deg q̃i,j

must hold, that implies

min
i,j∈{0,1}

deg q̃i,j < min
i,j∈{0,1}

deg qi,j .

Together with (25)–(28), the inequality above implies that there exist
a, b, c, d ∈ Z such that at least one of the following equalities holds:

a2 − λ− a = 0,

b2 − λ− 3b+ 2 = 0,

c2 − λ− 3c+ 2 = 0,

d2 − λ− 5d+ 6 = 0.

That implies the statement of the proposition.

Additionally, we prove the following elementary proposition:

Proposition 3.2. A solution to (1) of the form (29) does not exist unless
k ∈ 1

2 + Z and � ∈ 1
2 + Z.

Proof. We give the proof for k by contradiction; the proof for � is similar.
Consider the right hand sides of (25)–(28). Although we have assumed n1, n2

to be non-zero integers, the formulas above would hold if we let n1, n2 be
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non-zero real numbers. Keeping that in mind, we let n2 = n2(y) =
1
y depend

on y. Having fixed the product of n2 and y and keeping in mind asymptotic
expansions of the modified Bessel function of the second kind, we consider
the corresponding asymptotic expansions of Pλ,±g(y) for y → 0 only to find
integer powers of y and log(y).

On the other hand, if k �= 0, the asymptotic expansion of
yKk−1/2(2π|n1|y)K�−1/2(2π) as y → 0 contains only terms of the type

yk+1/2+� for � ∈ Z. Thus, k ∈ Z+ 1/2.

In what follows, we give explicit solutions to (22) for some physically
relevant combinations of k, � and λ.

3.2. Solutions to (15) for n1n2 = 0, but not both zero

Without loss of generality we assume n1 = 0, n2 �= 0. We note that if we
find g1 and g2 that satisfy

(
−4π2y2|n2|2 + y2∂2

y − λ
)
g1(y) = y

1
2+kK�−1/2(2π|n2|y)

or

(
−4π2y2|n2|2 + y2∂2

y − λ
)
g2(y) = y

3
2−kK�−1/2(2π|n2|y),

then the function

2π�

Γ(�)ζ(2�)
|n|�−

1
2σ1−2�(n)g1(y)

+
2π�+1/2Γ(k − 1

2)ζ(2k − 1)

Γ(k)ζ(2k)Γ(�)ζ(2�)
|n|�−

1
2σ1−2�(n)g2(y)

solves (15) for n1 = 0 and |n2| = |n|.
We assume that each of gi with i = 1, 2 can be represented as the

following sum:
1∑

j=0

pj(y)Kj(2π|n2|y),

where pj is a polynomial in y and y−1. We note that for g, h ∈ R,

Lλ

(
xgK0(2π|n2|y)

)
=

(
(g − 1)g − λ

)
xgK0(2π|n2|x)

+ 2π|n2|(1− 2g)xg+1K1(2π|n2|x),
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Lλ

(
xhK1(2π|n2|y)

)
=

(
−λ+ (h− 3)h+ 2

)
xhK1(2π|n2|x)

+ 2π|n2|(1− 2h)xh+1K0(2π|n2|x),

for Lλ := −4π2y2|n2|2 + y2∂2
y − λ. Let

max
j∈{0,1}

deg pj = M, min
j∈{0,1}

deg pj = m.

Then, in order to find coefficients of pj for j = 0, 1, we have to solve a system

of linear equations with 2(M −m+ 1) variables, that are coefficients of the

polynomials pj for j = 0, 1, and 2(M −m+ 1) + 2 equalities on coefficients

at
M+2⋃
�=m

1⋃
j=0

{
y�Kj(2π|n2|y)

}
.

3.3. Solutions to (15) for n1 = n2 = 0

We note that in order to solve (15) for n1 = n2 = 0 it is sufficient to find

solutions of

(
y2∂2

y − λ
)
g(y) = yj1+j2 , j1 ∈ {k, 1− k} and j2 ∈ {�, 1− �}.

A particular solution can be easily constructed as products and sums of

log(y) and polynomials in half-powers of y and y−1.

4. Differential Galois theory

This article gives explicit solutions for specific combination of k, � and λ =

r(r + 1) with r > 0 listed in Section 1.1; however, experimentally we were

able to compute solutions for other combinations of k, � and λ using the

same methods outlined above.

Finding solutions for large k, � and λ involves solving a systems of linear

equation for a large number of variables. This becomes computationally

challenging, even though the corresponding matrices are band matrices. We

obtained that a particular solution of (15) is of the form (24), at least, in

the cases where

(30) k, � ∈ Z+ 1
2 , k + �+ r ∈ 2Z, |k − �| < r
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and

(31) 1 < k < 30, 1 < � < 30, 0 < r < 15.

Note that the functions that appear in [2, (2.11)] satisfy the condition above.
We note that we did not check the convergence of the solution in each of
these cases.

Below, we make a conjecture that the solution are “nice” if (k, �, γ) be-
longs to (30), regardless of how large each parameter may be. Discussing in
which way they are “nice” would require some basic facts from the differen-
tial Galois theory, that we outline as follows.

The fundamental system of the homogeneous solution of (16) is well-
known for any values of r ∈ R and involves the modified Bessel functions
(see (17)). Moreover, it is possible to show3 that modified Bessel equations,
Kη, can be expressed via elementary functions if and only if their index, η,
belongs to 1

2 + Z. In our notations, this corresponds to demanding r ∈ Z.

Recall [12, Chapter 3] that a differential field, K, is a field together with
a derivation (i.e. an additive map that satisfies the Leibniz rule, ∂(ab) =
∂(a)b + a∂(b)). An elementary example of a differential field would be the
field C(t) of rational functions over C together with a usual operation of
differentiation. Solutions of the type (24) belong to a particular object in
differential Galois theory – namely, they belong to a certain Picard-Vessiot
extension of a differential field. A differential field P is called a Picard-Vessiot
extension of the field K, if there exists a linear differential equation with
coefficients in K such that P is obtained from K by adjoining a fundamental
system of solutions of this differential equation.

When n1, n2 ∈ Z \ {0} with n := n1 + n2 �= 0, the differential field, P ,
that we are interested in can be obtained by adjoining to C(t) solutions of
the equations

(
y2∂2

y − 4π2n2
1y

2 + 1/4
)
f(y) = 0,(32) (

y2∂2
y − 4π2n2

2y
2 + 1/4

)
f(y) = 0,(33)

and

(34)
(
y2∂2

y − r(r + 1)− 4π2(n1 + n2)
2y2

)
f(y) = 0.

3For J-Bessel functions, the proof can be found in [15, Appendix]; we can obtain
the same statement for K and I-Bessel functions by exploiting formulas relating
Bessel functions to each other.
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We note that P contains
√
y K0(2π|n1|y) and

√
y K0(2π|n2|y) by construc-

tion. Since it is an extension of C(t), it also contains any sum of the type

n∑
j=0

ajy
j+1/2K0(2π|n1|y), n ∈ N, aj ∈ C.

Moreover, the recurrence relation between K0 and K1 implies, that P con-
tains any sums of type

n∑
j=0

bjy
j+1/2K1(2π|n1|y), n ∈ N, bj ∈ C.

Thus, we obtain solutions of the type (24) belong to the field P that we have
just constructed.

On the other hand, we can reformulate the inhomogeneous differential
equation (15) as the following homogeneous differential equation of the third
order on gn1,n2

(y):

(35)
∂

∂y

(
(y2∂2

y − λ− 4π2(n1 + n2)
2y2)gn1,n2

(y)

sn1,n2
(y)

)
= 0.

We note that for any solution (35) there is a constant c such that gn1,n2
(y)

is a solution of(
y2∂2

y − λ− 4π2(n1 + n2)
2y2

)
gn1,n2

(y) = csn1,n2
(y).

And, on the other hand, every f̂n1,n2
(y) is also solution of (35).

We will prove in this article, that for certain k, �, λ, the function g be-
longs to P simply by providing an explicit solution. Moreover, every solution
of (35) is of the form c1gn1,n2

(y) + c2f(y) where f(y) is a solution of (34)
and c1, c2 ∈ C. Note that f(y) ∈ P , thus the Galois group of (35) is trivial.
On the other hand, calculations with the help of system of computer algebra
suggest that it is also trivial for all k, �, λ satisfying (30) and (31).

Conjecture 4.1. Let P be a Picard-Vessiot extension of the field of rational
functions over C, obtained by adjoining solutions of (32)–(34). Then the
Galois group of (35) is trivial in the category of algebraic groups if k, �, r,
however big they are, satisfy (30).

However, proving or disproving this conjecture is beyond the scope of
this paper. There are certain related results, see [16], where the authors
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present the algorithm that calculates the differential Galois group of a third-
order homogeneous linear differential equation. Specifically, in the case where
k, � ∈ Z, the product of modified Bessel function in the inhomogeneous dif-
ferential equation will become a product rational functions and exponentials.
It appears that methods of differential Galois theory may be more directly
applicable to this context for k, � ∈ Z.

5. k = � = 3/2

In this section, we solve

(Δ− λ)f(z) = −
(
2ζ(3)E3/2(z)

)2
, z = x+ iy ∈ H

for

f(z) =
∑
n∈Z

∑
n1+n2=n

f̂n1,n2
(y)e2πinx

in terms of f̂n1,n2
(y) = f̂P

n1,n2
(y) + f̂H

n1,n2
(y).

When n1 = n2 = 0, f̂0,0(y) contains no K-Bessel or divisor functions
and is given by a a polynomial in y and 1/y below. For n1n1 = 0 but not
both zero,

(36) f̂P
0,n(y) = f̂P

n,0(y) = −16π
σ2(n)

|n|
∑
i=0,1

νi(n, y)Ki(2π|n|y),

for n1n2 �= 0 and n1 + n2 �= 0,

f̂P
n1,n2

(y) = −64π2σ2(n1)σ2(n2)

|n1n2|
∑

i,j=0,1

ηi,j(n1, n2, y)Ki(2π|n1|y)Kj(2π|n2|y),

(37)

and for n1 = −n2,

f̂P
−n2,n2

(y) = −64π2σ2(n2)σ2(n2)

|n2|2
(38)

×
∑

(i,j)∈{(0,0),(0,1),(1,1)}
μi,j(n2, y)Ki(2π|n2|y)Kj(2π|n2|y),

where νi, ηi,j and μi,j defined below depending on each value of λ.
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5.1. λ = 30

This case corresponds to [2, Section C.3.1] with r = 5.

5.1.1. n1 = 0 and n2 = 0 Any solution of (15) for n1 = n2 = 0 is equal
to

f̂0,0(y) =
105y4ζ(3)2 + 56π2y2ζ(3) + 10π4

630y
+

α0,0

y5
+ β0,0 y

6

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by

f̂0,0(y) = α0,0y
−5.

At this moment of time, we do not choose α0,0 – that will be reserved for
Section 5.1.4. Our goal would be to choose α0,0 in such a way that∑

n

αn,−n = 0.

In our notation and after the evaluation of the Riemann zeta function at
even integers, the first three summands of the first line of [2, (C.27)] read

y3ζ(3)2

6
+

4

45
π2yζ(3) +

π4

63y
,

that coincides with our result.

5.1.2. n1n2 = 0 but not both zero Though this case of α = � = 3/2
and λ = 30 is generally addressed in [2], we note that the term f̂P

0,n(y) was

not found explicitly. For f̂P
0,n(y) as in (36), we have

ν0(n, y) = sgn(n)

[
−ζ(3)

(
126y−3

n5π5
+

35y−1

n3π3
+

y

2nπ

)

+ 2ζ(2)

(
3y−3

5n3π3
+

y−1

6nπ

)]
,

ν1(n, y) = −ζ(3)

(
126y−4

n6π6
+

98y−2

n4π4
+

15

2n2π2

)
+ 2ζ(2)

(
3y−4

5n4π4
+

7y−2

15n2π2

)
.

Its asymptotic behavior for y → 0 can be described as follows

f̂P
0,n(y) = −48σ2(n)(π

2ζ(2)n2 − 105ζ(3))

5π6n8y5
(39)
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+
32(π2ζ(2)n2 − 105ζ(3))σ2(|n|)

15π4n6y3
+O

(
1

y2

)
.

The unique choice of αn,0 = α0,n that gets rid of the O(y−5)-term in f̂P
0,n(y)+

f̂H
0,n(y) is

αn,0 = α0,n = −1024(π2ζ(2)n2 − 105ζ(3))σ2(n)

1575π|n|5/2
.(40)

5.1.3. n1n2 �= 0 and n1 + n2 �= 0 In [2, p. 46], many terms4 in the

perturbative expansion f̂P
n1,n2

(y) were evaluated. However, these values were

not explicitly written or evaluated in full in [2]. For f̂P
n1,n2

(y) as in (37), we

have

η0,0 =sgn(n1n2)

[
y−3 n1n2

(n1 + n2)10
126

π4

(
n4
1 − 6n3

1n2 + 10n2
1n

2
2 − 6n1n

3
2 + n4

2

)
+

y−1 n1n2

(n1 + n2)8
2

5π2

(
89n4

1 − 792n3
1n2 + 1598n2

1n
2
2 − 792n1n

3
2 + 89n4

2

)
+

y n1n2

(n1 + n2)6
2

15

(
5n4

1 − 92n3
1n2 + 190n2

1n
2
2 − 92n1n

3
2 + 5n4

2

)]
,

η0,1 =sgn(n1)

[
y−4 n1n

2
2

(n1 + n2)11
126

π5

(
−n3

1 + 5n2
1n2 − 5n1n

2
2 + n3

2

)
+

y−2 n1

5π3(n1 + n2)9
(
3n5

1 + 99n4
1n2 − 2728n3

1n
2
2

+ 6512n2
1n

3
2 − 3611n1n

4
2 + 493n5

2

)
+

n1

30π(n1 + n2)7
(
5n5

1 + 147n4
1n2 − 2614n3

1n
2
2

+ 5726n2
1n

3
2 − 2799n1n

4
2 + 239n5

2

)]
,

η1,0 =sgn(n2)

[
y−4 n2

1n2

(n1 + n2)11
126

π5

(
n3
1 − 5n2

1n2 + 5n1n
2
2 − n3

2

)
+

y−2 n2

5π3(n1 + n2)9
(
493n5

1 − 3611n4
1n2 + 6512n3

1n
2
2 − 2728n2

1n
3
2

+ 99n1n
4
2 + 3n5

2

)
4Powers of around D-instanton contributions with n �= 0, that include the in-

stanton sectors of (n1, n2) = (2, 0), (1, 1), (1,−2), (1,−3), (2,−3) were found.



Whittaker Fourier type solutions to differential equations 607

+
n2

30π(n1 + n2)7
(
239n5

1 − 2799n4
1n2 + 5726n3

1n
2
2 − 2614n2

1n
3
2

+ 147n1n
4
2 + 5n5

2

)]
,

η1,1 =
y−3

5π4(n1 + n2)10
(
3n6

1 + 102n5
1n2 − 3399n4

1n
2
2 + 8124n3

1n
3
2 − 3399n2

1n
4
2

+ 102n1n
5
2 + 3n6

2

)
+

y−1

15π2(n1 + n2)8
(
7n6

1 + 220n5
1n2 − 4727n4

1n
2
2 + 10280n3

1n
3
2

− 4727n2
1n

4
2 + 220n1n

5
2 + 7n6

2

)
+

y n1n2

(n1 + n2)6
2

15

(
5n4

1 − 92n3
1n2 + 190n2

1n
2
2 − 92n1n

3
2 + 5n4

2

)
.

Note that

f̂P
n1,n2

(y) =− 16y−5 σ2(n1)σ2(n2)

5|n1n2|2π4(n1 + n2)11

(41)

×
((
1260n5

1n
2
2 − 6300n4

1n
3
2 + 6300n3

1n
4
2 − 1260n2

1n
5
2

)
log (|n1/n2|)

+ 3n7
1 + 105n6

1n2 − 3297n2
1n

5
2 + 105n1n

6
2 + 3n7

2 − 3297n5
1n

2
2

+ 4725n3
1n

4
2 + 4725n4

1n
3
2

)
+ o

(
y−5

)
.

We recall that by (19),

f̂H
n1,n2

(y) = αn1,n2

√
yK5+ 1

2
(2π|n1 + n2|y)

= αn1,n2

945

64π5|n1 + n2|11/2y5
+ o

(
y−5

)
.

Comparing the right hand sides of the two previous formulas, we obtain that

there is a unique choice of αn1,n2
that guarantees that

f̂n1,n2
(y) = f̂P

n1,n2
(y) + f̂H

n1,n2
(y) = o

(
y−5

)
,

as y → 0 given by

αn1,n2
=

1024πσ2(n1)σ2(n2) sgn(n1 + n2)

4725|n1n2|2|n1 + n2|11/2
(42)

×
(
3n7

1 + 105n6
1n2 − 3297n2

1n
5
2 + 105n1n

6
2 + 3n7

2 − 3297n5
1n

2
2
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+ 4725n3
1n

4
2 + 4725n4

1n
3
2 + 1260n5

1n
2
2 log (|n1/n2|)

− 6300n4
1n

3
2 log (|n1/n2|) + 6300n3

1n
4
2 log (|n1/n2|)

− 1260n2
1n

5
2 log (|n1/n2|π)

)
.

Moreover, it is not complicated to check that for fixed values of n,

(43) αn−n1,n1
= O

(
|n1|−4

)
, |n1| → ∞.

5.1.4. n1 = −n2 This case has been considered in [2, (C.29)].
For f̂P

−n2,n2
(y) as in (38) we have

μ0,0 =
y−1

110n2
2π

2
+

y

110
− 8n2

2π
2y3

1155
− 512n4

2π
4y5

17325
+

16384n6
2π

6y7

51975
,

μ0,1 = sgn(n2)

(
y−2

55n3
2π

3
+

3

110n2π
+

4n2πy
2

385
+

256n3
2π

3y4

17325
+

8192n5
2π

5y6

51975

)
,

μ1,1 =
y−3

110n4
2π

4
+

y−1

55n2
2π

2
− 17y

770
− 8n2

2π
2y3

1925
− 512n4

2π
4y5

51975
− 16384n6

2π
6y7

51975
.

We note that

(44) f̂P
−n2,n2

(y) = −8
σ2(n2)

2

|n2|2
·
(

1

55π4n6
2y

5
+O

(
1

y

))
.

The unique choice of α−n2,n2
that gets rid of the O(y−5) term in the expres-

sion above is

(45) α−n2,n2
=

8σ2(n2)
2

55π4|n2|8
.

Summing it up and using (99) for a = 2, b = 2 and s = 8, we obtain

∞∑
n2=−∞,n2 �=0

σ2(n2)
2

|n2|8
= 2

ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)

∣∣∣∣
a=2,b=2,s=8

=
143π12

58769550
,

and thus

(46)

∞∑
n2=−∞,n2 �=0

α−n2,n2
=

52π8

146923875
=

104ζ(8)

31095
.
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This means, that
∑∞

n2=−∞,n2 �=0 f̂
H
−n2,n2

(y) = 104ζ(8)
31095 y−5. Motivated by the

desire to have the contribution from the homogeneous elements to be equal

to zero, we obtain α0,0 = −104ζ(8)
31095 . This matches5 the last summand in the

first line of [2, (C.27)].

5.2. λ = 56

This case corresponds to [2, Section C.3.1] with r = 7.

5.2.1. n1 = 0 and n2 = 0 The solution of (15) for n1 = n2 = 0 is equal
to

f̂0,0(y) =
3402y4ζ(3)2 + 2025π2y2ζ(3) + 350π4

42525y
+

c1
y7

+ c2y
8

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by
f̂0,0(y) = c1

y7 . We do not specify the choice of c1 for the moment, but we

can set c2 = 0 so that the O(y8)-term vanishes. We note that the first three
summands6 of f̂0,0(y) coincide with the first three terms of the second line
of [2, (C.27)].

5.2.2. n1n2 = 0 but not both zero Though this case of k = � = 3/2
and λ = 56 is generally addressed in [2], we note that the term f̂P

0,n(y) was
not found explicitly. This term is given by

f̂P
0,n(y) = f̂P

n,0(y) = −16π
σ2(n)

|n|
∑

i,j=0,1

νi(n, y)Ki(2π|n|y),

with

ν0(n, y) = sgn(n)

[
−ζ(3)

(
30888y−5

5n7π7
+

10692y−3

5n5π5
+

126y−1

n3π3
+

y

2nπ

)

+ 2ζ(2)

(
286y−5

35n5π5
+

99y−3

35n3π3
+

y−1

6nπ

)]
,

ν1(n, y) = −ζ(3)

(
−30888y−6

5n8π8
+

26136y−4

5n6π6
+

3402y−2

5n4π4
+

14

n2π2

)

+ 2ζ(2)

(
286y−6

35n6π6
+

242y−4

35n4π4
+

9y−2

10n2π2

)
.

5Up to sign.
6However, our choice of c1 does not coincide with [2, (C.27)] coefficient at y−7.
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The asymptotic expansion is

f̂P
0,n(y) = f̂P

n,0(y) = −16
σ2(n)

|n|

(
286(π2ζ(2)n2 − 378ζ(3))

35π8|n|9y7 +O

(
1

y5

))
.

(47)

There exists a unique choice of α0,n = αn,0 such that f̂P
0,n(y) + f̂H

0,n(y) and

f̂P
n,0(y) + f̂H

n,0(y) are of order o(y−7). More precisely,

f̂H
0,n(y) =

√
yα0,nK7+ 1

2
(2π|n|y) = 135135αn,0

256π7|n|15/2y7 +O
(
y−5

)
,

and thus we may set

α0,n = αn,0 =
8192(π2ζ(2)n2 − 378ζ(3))σ2(|n|)

33075π|n|5/2 .

5.2.3. n1n2 �= 0 and n1+n2 �= 0 Though this case of k = � = 3/2 and

λ = 56 is generally addressed in [2], we note that the term f̂P
0,n(y) was not

found explicitly. For f̂P
n1,n2

(y) as in (37), we have

η0,0 =sgn(n1n2)

[
y−5 n1n2

(n1 + n2)14
10296

5π6

(
3n6

1 − 38n5
1n2 + 140n4

1n
2
2 − 210n3

1n
3
2

+ 140n2
1n

4
2 − 38n1n

5
2 + 3n6

2

)
+

y−3 n1n2

(n1 + n2)12
22

175π4

(
17075n6

1 − 260700n5
1n2 + 1170813n4

1n
2
2

−1907624n3
1n

3
2 + 1170813n2

1n
4
2 − 260700n1n

5
2 + 17075n6

2

)
+

y−1 n1n2

175π2(n1 + n2)10
(
22545n6

1 − 445070n5
1n2 + 2255599n4

1n
2
2

−3778788n3
1n

3
2 + 2255599n2

1n
4
2 − 445070n1n

5
2 + 22545n6

2

)
+

2 y n1n2

525(n1 + n2)8
(
175n6

1 − 6510n5
1n2 + 35745n4

1n
2
2 − 61572n3

1n
3
2

+ 35745n2
1n

4
2 − 6510n1n

5
2 + 175n6

2

)
)

]

η0,1 =sgn(n1)

[
y−6 n1n

2
2

(n1 + n2)15
10296

5π7

(
−3n5

1 + 35n4
1n2 − 105n3

1n
2
2 + 105n2

1n
3
2

− 35n1n
4
2 + 3n5

2

)
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+
y−4 n1

(n1 + n2)13
22

175π5

(
65n7

1+3965n6
1n2−283107n5

1n
2
2+1865089n4

1n
3
2

− 3515111n3
1n

4
2 + 2360373n2

1n
5
2 − 579415n1n

6
2 + 41645n7

2

)
+

y−2 n1

175π3(n1 + n2)11
(
495n7

1 + 28765n6
1n2 − 1501506n5

1n
2
2

+ 8955786n4
1n

3
2 − 15910621n3

1n
4
2 + 9855297n2

1n
5
2

− 2066640n1n
6
2 + 120280n7

2

)
+

n1

1050π(n1 + n2)9
(
175n7

1 + 9135n6
1n2 − 348825n5

1n
2
2

+ 1980687n4
1n

3
2 − 3425931n3

1n
4
2 + 2035749n2

1n
5
2

− 384395n1n
6
2 + 15645n7

2

)]

η1,0 =sgn(n2)

[
y−6n2

1n2

(n1 + n2)15
10296

5π7

(
3n5

1 − 35n4
1n2 + 105n3

1n
2
2 − 105n2

1n
3
2

+ 35n1n
4
2 − 3n5

2

)
+

y−4 n2

(n1 + n2)13
22

175π5

(
41645n7

1 − 579415n6
1n2 + 2360373n5

1n
2
2

− 3515111n4
1n

3
2 + 1865089n3

1n
4
2 − 283107n2

1n
5
2

+ 3965n1n
6
2 + 65n7

2

)
+

y−2 n2

175π3(n1 + n2)11
(
120280n7

1 − 2066640n6
1n2 + 9855297n5

1n
2
2

− 15910621n4
1n

3
2 + 8955786n3

1n
4
2 − 1501506n2

1n
5
2

+ 28765n1n
6
2 + 495n7

2

)
+

n2

1050π(n1 + n2)9
(
15645n7

1 − 384395n6
1n2 + 2035749n5

1n
2
2

− 3425931n4
1n

3
2 + 1980687n3

1n
4
2 − 348825n2

1n
5
2

+ 9135n1n
6
2 + 175n7

2

)]

η1,1 =
y−5

175π6(n1 + n2)14
(
1430n8

1 + 88660n7
1n2 − 7388524n6

1n
2
2

+ 50271364n5
1n

3
2 − 90631684n4

1n
4
2 + 50271364n3

1n
5
2

− 7388524n2
1n

6
2 + 88660n1n

7
2 + 1430n8

2

)
+

y−3

175π4(n1 + n2)12
(
1210n8

1 + 72160n7
1n2 − 4261268n6

1n
2
2
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+ 25948736n5
1n

3
2 − 45143692n4

1n
4
2 + 25948736n3

1n
5
2

4261268n2
1n

6
2 + 72160n1n

7
2 + 1210n8

2

)
+

y−1

350π2(n1 + n2)10
(
315n8

1 + 17550n7
1n2 − 785712n6

1n
2
2

+ 4522866n5
1n

3
2 − 7798806n4

1n
4
2 + 4522866n3

1n
5
2

− 785712n2
1n

6
2 + 17550n1n

7
2 + 315n8

2

)
+

2yn1n2

525(n1 + n2)8
(
175n6

1 − 6510n5
1n2 + 35745n4

1n
2
2 − 61572n3

1n
3
2

+ 35745n2
1n

4
2 − 6510n1n

5
2 + 175n6

2

)
.

The asymptotic expansion is

f̂P
n1,n2

(y) =− 4576σ2(n1)σ2(n2)

175π6n2
1n

2
2(n1 + n2)15y7

(
5n9

1 + 315n2n
8
1 − 25524n2

2n
7
1(48)

+ 149940n3
2n

6
1 − 141120n4

2n
5
1 − 141120n5

2n
4
1 + 149940n6

2n
3
1

− 25524n7
2n

2
1 + 315n8

2n1 + 5n9
2

+
(
7560n2

2n
7
1 − 88200n3

2n
6
1 + 264600n4

2n
5
1 − 264600n5

2n
4
1

+ 88200n6
2n

3
1 − 7560n7

2n
2
1

)
log(|n1/n2|)

)
+O

(
y−5

)
.

We recall that by (19),

f̂H
n1,n2

(y) = αn1,n2

√
yK7+ 1

2
(2π|n1 + n2|y)

= αn1,n2

135135

256π7|n1 + n2|15/2y7
+ o

(
y−7

)
.

Comparing the right hand sides of the two previous formulas, we obtain
that there is a unique choice of αn1,n2

that guarantees that f̂n1,n2
(y) =

f̂P
n1,n2

(y) + f̂H
n1,n2

(y) = o(y−7), y → 0:

αn1,n2
=

1217536 sgn(n1 + n2)σ2(n1)σ2(n2)

23648625πn2
1n

2
2|n1 + n2|15/2

(
5n9

1 + 315n2n
8
1 − 25524n2

2n
7
1

(49)

+ 149940n3
2n

6
1 − 141120n4

2n
5
1 − 141120n5

2n
4
1 + 149940n6

2n
3
1

− 25524n7
2n

2
1 + 315n8

2n1 + 5n9
2 +

(
7560n2

2n
7
1 − 88200n3

2n
6
1

+ 264600n4
2n

5
1 + 88200n6

2n
3
1 − 7560n7

2n
2
1

)
log(|n1/n2|)

)
+O

(
1

y5

)
.
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Comparing the formula above with the leading terms in the asymptotic
expansion of f̂H

n1,n2
(y) as y → 0, we get that there exists a unique choice

of αn1,n2
such that f̂n1,n2

(y) = f̂H
n1,n2

(y) + f̂P
n1,n2

(y) = o(y−7). Moreover, it
follows that for fixed n �= 0,

(50) αn−n1,n1
= O

(
|n1|−8

)
, |n1| → ∞.

5.2.4. n1 = −n2 This case has been considered in [2, (C.30)]. For
f̂P
−n2,n2

(y) defined in (38) we have

μ0,0 =
524288π8n8

2y
9

7441875
− 16384π6n6y7

2480625
− 256π4n4

2y
5

165375
− 8π2n2

2y
3

4725
+

2

175π4n4
2y

3

+
2

175π2n2
2y

+
y

210
,

μ0,1 = sgn(n2)

(
262144π7n7

2y
8

7441875
+

8192π5n5
2y

6

2480625
+

128π3n3
2y

4

55125

+
6

175π3n3
2y

2
+

4

175π5n5
2y

4
+

4

945
πn2y

2 +
2

105πn2

)
,

μ1,1 = −524288π8n8
2y

9

7441875
− 16384π6n6

2y
7

7441875
− 256π4n4

2y
5

275625
− 8π2n2

2y
3

6615

+
4

175π4n4
2y

3
+

2

175π6n6
2y

5
+

3

175π2n2
2y

− 23y

1890
.

The asymptotic expansion is

(51) f̂P
−n2,n2

(y) = − 32σ2(n2)
2

175π6|n2|10y7
+O

(
1

y4

)
.

Since f̂H
−n2,n2

(y) = αn1,n2
y−7, in order to have

f̂P
−n2,n2

(y) + f̂H
−n2,n2

(y) = o
(
y−7

)
, y → 0,

we must set α−n2,n2
= 32σ2(n2)2

175π6|n2|10 . Now it is time to decide on α0,0. We note

from (99),

∑
n2 �=0

αn2,−n2
=

32

175π6

∑
n2 �=0

σ2(n2)
2

n10
2

=
7072π16

1695787498125
,(52)

and thus α0,0 = − 7072π16

1695787498125 .
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6. k = 3/2 and � = 5/2

In this section, for z = x+ iy ∈ H we solve

(Δ− λ)f(z) = −6ζ(3)ζ(5)E3/2(z)E5/2(z),

for

f(z) =
∑
n∈Z

∑
n1+n2=n

f̂n1,n2
(y)e2πinx

in terms of f̂n1,n2
(y) = f̂P

n1,n2
(y)+ f̂H

n1,n2
(y). In order to obtain E(λ, 5/2, 3/2,

z, z) from [2, (2.13)], we use (9) to note that E(λ, 5/2, 3/2, z, z) can be ob-

tained from f solving the equation above by multiplying f by 2
3 . Thus,

instead of −64 in (55), we need to take −128
3 .

When n1 = n2 = 0, f̂0,0(y) contains no K-Bessel or divisor functions

and is given by a a polynomial in y and 1/y below. For n1n1 = 0 but not

both zero,

(53) f̂P
0,n(y) = −8π2σ−4(n)|n|2

∑
i=0,1

νi(n, y)Ki(2π|n|y)

and

(54) f̂P
n,0(y) = −8πσ−2(n)|n|

∑
i,j=0,1

νi(n, y)Ki(2π|n|y),

and for n1n2 �= 0 and n1 + n2 �= 0,

f̂P
n1,n2

(y) = −64π3|n1||n2|2σ−2(n1)σ−4(n2)(55)

×
∑

i,j=0,1

ηi,j(n1, n2, y)Ki(2π|n1|y)Kj(2π|n2|y),

and for n1 = −n2,

f̂P
−n2,n2

(y) =− 64π3|n2|3σ−2(n2)σ−4(n2)(56)

×
∑

(i,j)∈{(0,0),(0,1),(1,1)}
μi,j(n2, y)Ki(2π|n2|y)Kj(2π|n2|y),

where νi, ηi,j and μi,j defined below depending on each value of λ.
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6.1. λ = 20

This subsection corresponds to [2, (C.19)] with r = 4.
In what follows we find f̂P

n1,n2
(y) for different values of n1 and n2.

6.1.1. n1 = 0 and n2 = 0 The particular solution for n1 = n2 = 0 is
equal to

f̂0,0(y) =
14175y6ζ(3)ζ(5) + 2100π2y4ζ(5) + 84π4y2ζ(3) + 40π6

18900y2
+

c1
y4

+ c2y
5

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by
f̂0,0(y) = 2π6

945y2 and the leading term of the asymptotic behavior does not

depend on c1 and c2. If we want to get rid of the O(y5)-asymptotic, we need
to set c2 = 0. We refrain for a moment from defining c1. However, we notice
that the first four summands in the r.h.s. of the formula above coincide with
the first four summands in the first line in [2, (C.21)].

6.1.2. n1 = 0 and n2 �= 0 For f̂P
0,n(y) as in (53), we have

ν0(n, y) =
π2n2(4ζ(2)− 27ζ(3)y2)− 126ζ(3)

3π4n4y2
,

ν1(n, y) = sgn(n)

·
(
−126ζ(3) + π4n4y2(2ζ(2)− 3ζ(3)y2) + 2π2n2(2ζ(2)− 45ζ(3)y2)

3π5n5y3

)
.

The asymptotic expansion of f̂P
0,n(y) as y → 0 is

−8σ−4(n)(π
4n2 − 189ζ(3))

9π4n4y4
+O

(
1

y2

)
.

There is a unique choice of α0,n that gets rid of the y−4-term in the asymp-

totic expansion of f̂P
0,n(y) + f̂H

0,n(y).

6.1.3. n1 �= 0 and n2 = 0 For f̂P
n,0(y) as in (54), we have

ν0(n, y) = sgn(n)

(
45ζ(5)

π3n3
+

33600ζ(5) + 64π4ζ(4)n4

160π5n5y2
− ζ(5)y2

2πn

)
,

ν1(n, y) =
(128n4π4ζ(4) + 67200ζ(5))y−3

320n6π6
+

150ζ(5)y−1

n4π4
+

9ζ(5)y

2n2π2
.
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The asymptotic expansion of f̂P
n,0(y) as y → 0 is

−8σ−2(n)

(
525ζ(5) + π4ζ(4)n4

5π6|n|6y4 +O
(
y−2

))
.

There is a unique choice of αn,0 that gets rid of the y−4-term in the asymp-

totic expansion of f̂P
n,0(y) + f̂H

n,0(y).

6.1.4. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (55), we have

η0,0 =sgn(n1)

[
y−2 7n1n

2
2

π3(n1 + n2)8
(
5n2

1 − 8n1n2 + 3n2
2

)
+

n1

30π(n1 + n2)6
(
3n4

1 + 26n3
1n2 + 348n2

1n
2
2 − 810n1n

3
2 + 145n4

2

)]
,

η0,1 =sgn(n1) sgn(n2)

[
y−3 7n1n

3
2

π4(n1 + n2)9
(−5n1 + 3n2)

+
y−1 n1

30n2π2(n1 + n2)7
(
3n5

1 + 29n4
1n2 + 149n3

1n
2
2 + 723n2

1n
3
2

− 1820n1n
4
2 + 460n5

2

)
+

y 2n1n2

15(n1 + n2)5
(
n3
1 + 15n2

1n2 − 45n1n
2
2 + 5n3

2

)]
,

η1,0 =
y−3 n2

1n
2
2

π4(n1 + n2)9
(35n1 − 21n2)

+
y−1

30π2(n1 + n2)7
(
3n5

1 + 29n4
1n2 + 899n3

1n
2
2 − 1827n2

1n
3
2

+ 190n1n
4
2 + 10n5

2

)
+

y 2n1n2

15(n1 + n2)5
(
n3
1 + 15n2

1n2 − 45n1n
2
2 + 5n3

2

)
,

η1,1 =sgn(n2)

[
y−2

30n2π3(n1 + n2)8
(
3n6

1 + 32n5
1n2 + 178n4

1n
2
2 + 872n3

1n
3
2

− 2447n2
1n

4
2 + 200n1n

5
2 + 10n6

2

)
+

1

30π(n1 + n2)6
(
4n5

1 + 43n4
1n2 + 334n3

1n
2
2 − 880n2

1n
3
2

+ 110n1n
4
2 + 5n5

2

)]
.
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We note that

f̂P
n1,n2

(y) = −y−4 8σ−2(|n1|)σ−4(|n2|)
15π2(n1 + n2)9

(
3n7

1 + 35n6
1n2 + 210n5

1n
2
2 + 1050n4

1n
3
2

(57)

+ 2100n3
1n

4
2 log (|n1|π)− 2100n3

1n
4
2 log (|n2|π)− 1575n3

1n
4
2

− 1260n2
1n

5
2 log (|n1|π) + 1260n2

1n
5
2 log (|n2|π)− 2247n2

1n
5
2

+ 210n1n
6
2 + 10n7

2

)
+ o

(
y−4

)
.

Requiring f̂n1,n2
(y) = o(y−4) gives us a unique αn1,n2

that cancels with

the O(y−4)-term. Comparing the formula above with the leading terms in

the asymptotic expansion of f̂H
n1,n2

(y) as y → 0, we get that there exists a

unique choice of αn1,n2
such that f̂n1,n2

(y) = f̂H
n1,n2

(y) + f̂P
n1,n2

(y) = o(y−4).

Moreover, it follows that for fixed n �= 0,

(58) αn−n1,n1
= O

(
|n1|−5

)
, |n1| → ∞.

6.1.5. n1 = −n2 For f̂P
−n2,n2

(y) as in (56), we have

μ0,0 = sgn(n2)

(
1

36n2π
+

2n2πy
2

315
+

128n3
2π

3y4

4725
− 4096n5

2π
5y6

14175

)
,

μ0,1 =
y−1

18n2
2π

2
− y

105
− 64n2

2π
2y3

4725
− 2048n4

2π
4y5

14175
,

μ1,1 = sgn(n2)

(
y−2

36n3
2π

3
− 1

63n2π
+

2n2πy
2

525
+

128n3
2π

3y4

14175
+

4096n5
2π

5y6

14175

)
.

The asymptotic expansion is

f̂P
−n2,n2

(y) = −64yσ−2(n2)σ−4(n2)

(
1

144π2|n2|2y4
− 1

56y2
+O(1)

)
.(59)

There is a unique choice of k−n2,n2
such that

f̂P
−n2,n2

(y) + f̂H
−n2,n2

(y) = o
(
y−4

)
:

α−n2,n2
=

4yσ−2(n2)σ−4(n2)

9π2|n2|2
.(60)
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7. k = � = 5/2

In this section we solve

(Δ− λ)f(z) = −
(
3ζ(5)E5/2(z)

)2
, z = x+ iy ∈ H

for

f(z) =
∑
n∈Z

∑
n1+n2=n

f̂n1,n2
(y)e2πinx

in terms of f̂n1,n2
(y) = f̂P

n1,n2
(y) + f̂H

n1,n2
(y).

When n1 = n2 = 0, f̂0,0(y) contains no K-Bessel or divisor functions
and is given by a polynomial in y and 1/y below. For n1n1 = 0 but not both
zero,

(61) f̂P
0,n(y) = f̂P

n,0(y) = −8π2σ−4(n)|n|2
∑
i=0

νi(n, y)Ki(2π|n|y),

for n1n2 �= 0 and n1 + n2 �= 0,

f̂P
n1,n2

(y) = −64π4|n1|2|n2|2σ−4(n1)σ−4(n2)(62)

×
∑

i,j=0,1

ηi,j(n1, n2, y)Ki(2π|n1|y)Kj(2π|n2|y),

and for n1 = −n2,

f̂P
−n2,n2

(y) = −64π4|n1|2|n2|2σ−4(n2)σ−4(n2)(63)

×
∑

(i,j)∈{(0,0),(0,1),(1,1)}
ηi,j(n2, y)Ki(2π|n2|y)Kj(2π|n2|y),

where νi, ηi,j and μi,j are defined below depending on each value of λ.

7.1. λ = 30

This case corresponds to [2, C.3.2] with r = 5.

7.1.1. n1 = 0 and n2 = 0 It is not complicated to show that

f̂0,0(y) =
80ζ(4)2 + 81ζ(5)2y8 + 72ζ(4)ζ(5)y4

90y3
+ c2y

6 +
c1
y5

for some c1, c2 ∈ C.
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7.1.2. n1n2 = 0 but not both zero For f̂P
0,n(y) as in (61), we have

ν0 =
4ζ(4)π4n4 + 7560ζ(5)

5π6n6y3
+

420ζ(5)y−1

n4π4
+

6ζ(5)y

n2π2

ν1 = sgn(n)

(
4ζ(4)π4n4 + 7560ζ(5)

5π7n7y4
+

4ζ(4)π4n4 + 11760ζ(5)

10π5n5y2

+
90ζ(5)

n3π3
− ζ(5)y2

2nπ

)
.

Its asymptotic behavior as y → 0 can be described as

−8σ−4(|n|)
(
2(1890ζ(5) + π4ζ(4)n4)

5π6n8y5
− 840ζ(5) + π4ζ(4)n2

5π4n4y3
+O

(
1

y2

))
.

(64)

7.1.3. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (62) we have

η0,0 =
y−3

π4(n1 + n2)10
(
252n2

1n
2
2

(
n2
1 − 2n1n2 + n2

2

))
+

y−1

5π2(n1 + n2)8
(
n6
1 + 12n5

1n2 + 431n4
1n

2
2 − 1400n3

1n
3
2

+ 431n2
1n

4
2 + 12n1n

5
2 + n6

2

)
+

y

15(n1 + n2)6
(
2n1n2

(
n4
1 + 20n3

1n2 − 90n2
1n

2
2 + 20n1n

3
2 + n4

2

))
,

η0,1 =sgn(n2)

(
y−4

π5(n1 + n2)11
(
252n2

1n
3
2(−n1 + n2)

)
+

y−2

5n2π3(n1 + n2)9
(
n7
1 + 13n6

1n2 + 93n5
1n

2
2 + 641n4

1n
3
2

− 2859n3
1n

4
2 + 1073n2

1n
5
2 + 13n1n

6
2 + n7

2

)
+

1

30π(n1 + n2)7
(
4n6

1 + 57n5
1n2 + 623n4

1n
2
2 − 2590n3

1n
3
2

+ 714n2
1n

4
2 + 37n1n

5
2 + 3n6

2

))
,

η1,0 =sgn(n1)

(
y−4

π5(n1 + n2)11
(
252n3

1n
2
2(n1 − n2)

)
+

y−2

5n1π3(n1 + n2)9
(
n7
1 + 13n6

1n2 + 1073n5
1n

2
2 − 2859n4

1n
3
2 + 641n3

1n
4
2
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+ 93n2
1n

5
2 + 13n1n

6
2 + n7

2

)
+

1

30π(n1 + n2)7
(
3n6

1 + 37n5
1n2 + 714n4

1n
2
2 − 2590n3

1n
3
2 + 623n2

1n
4
2

+ 57n1n
5
2 + 4n6

2

))
,

η1,1 =sgn(n1n2)

(
y−3

5n1n2π4(n1 + n2)10
(
n8
1 + 14n7

1n2 + 106n6
1n

2
2 + 734n5

1n
3
2

− 3758n4
1n

4
2 + 734n3

1n
5
2 + 106n2

1n
6
2 + 14n1n

7
2 + n8

2

)
+

y−1

30n1n2π2(n1 + n2)8
(
3n8

1 + 40n7
1n2 + 304n6

1n
2
2 + 2360n5

1n
3
2

− 9254n4
1n

4
2 + 2360n3

1n
5
2 + 304n2

1n
6
2 + 40n1n

7
2 + 3n8

2

)
+

y

15(n1 + n2)6
(
2n1n2

(
n4
1 + 20n3

1n2 − 90n2
1n

2
2 + 20n1n

3
2 + n4

2

)))
.

We note that

f̂P
n1,n2

(y) = −y−516σ−4(n1)σ−4(n2)

5π2(n1 + n2)11
(
n9
1 + 15n8

1n2 + 120n7
1n

2
2 + 840n6

1n
3
2

(65)

− 3024n5
1n

4
2 − 3024n4

1n
5
2 + 2520n4

1n
4
2(n1 − n2) log (|n1/n2|)

+ 840n3
1n

6
2 + 120n2

1n
7
2 + 15n1n

8
2 + n9

2

)
+ o

(
y−5

)
.

There exists a choice of αn1,n2
such that f̂n1,n2

(y) = o(y−5). Comparing
the formula above with the leading terms in the asymptotic expansion of
f̂H
n1,n2

(y) as y → 0, we get that there exists a unique choice of αn1,n2
such

that f̂n1,n2
(y) = f̂H

n1,n2
(y) + f̂P

n1,n2
(y) = o(y−5). Moreover, it follows that for

fixed n �= 0,

(66) αn−n1,n1
= O

(
|n1|−6

)
, |n1| → ∞.

7.1.4. n1 = −n2 For f̂P
−n2,n2

(y) as in (63), we have

μ0,0 =
2y−1

55n2
2π

2
− 19y

990
− 8n2

2π
2y3

3465
− 512n4

2π
4y5

51975
+

16384n6
2π

6y7

155925
,

μ0,1 = sgn(n2)

(
4y−2

55n3
2π

3
− 1

495n2π
+
4n2πy

2

1155
+
256n3

2π
3y4

51975
+
8192n5

2π
5y6

155925

)
,

μ1,1 =
2y−3

55n4
2π

4
+

17y−1

990n2
2π

2
+
103y

6930
− 8n2

2π
2y3

5775
− 512n4

2π
4y5

155925
− 16384n6

2π
6y7

155925
.
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Its asymptotic behavior for y → 0 is

(67) − 64σ−4(n2)
2

(
1

110π2n2
2y

5
− 1

72y3
+O

(
1

y2

))
.

From this we obtain that

(68) α−n2,n2
= O

(
|n2|−6

)
, |n2| → ∞.

8. k = 3/2 and � = 7/2

In this section we solve

(Δ− λ)f(z) = −30ζ(3)ζ(7)E3/2(z)E7/2(z), z = x+ iy ∈ H

for

f(z) =
∑
n∈Z

∑
n1+n2=n

f̂n1,n2
(y)e2πinx

in terms of f̂n1,n2
(y) = f̂P

n1,n2
(y) + f̂H

n1,n2
(y).

For n1n1 = 0 but not both zero,

(69) f̂P
0,n(y) = −16π3σ−6(n)|n|3

∑
i=0,1

νi(n, y)Ki(2π|n|y),

and

(70) f̂P
n,0(y) = −8πσ−2(n)|n|

∑
i=0,1

νi(n, y)Ki(2π|n|y),

for n1n2 �= 0 and n1 + n2 �= 0,

f̂P
n1,n2

(y) = −128π4|n1||n2|3σ−2(n1)σ−6(n2)

(71)

×
∑

(i,j)∈{(0,0),(0,1),(1,1)}
ηi,j(n1, n2, y)Ki(2π|n1|y)Kj(2π|n2|y),

and for n1 = −n2,

f̂P
−n2,n2

(y) = −128π4|n2|4σ−2(n2)σ−6(n2)(72)

×
∑

(i,j)∈{(0,0),(0,1),(1,1)}
μi,j(n2, y)Ki(2π|n2|y)Kj(2π|n2|y),

where νi, ηi,j and μi,j defined below depending on each value of λ.
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8.1. λ = 30

This case corresponds to [2, C.3.3] with r = 5.

8.1.1. n1 = 0 and n2 = 0 It is not complicated to show that

f̂0,0(y) =
2143260y8ζ(3)ζ(7) + 297675π2y6ζ(7) + 864π6y2ζ(3) + 448π8

714420y3

+
c1
y5

+ c2y
6

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by

f̂0,0(y) =
16π8

25515y3 and the leading term of the asymptotic behavior does not

depend on c1 and c2.

8.1.2. n1 = 0 and n2 �= 0 For n = n2 �= 0,

f̂P
0,n(y) = −16π3σ−6(n)|n|3

∑
i=0,1

νi(n, y)Ki(2π|n|y),

where

ν0(n, y) = sgn(n)

(
4ζ(2)

(
1

(π3n3)y3
+

1

(6πn)y

)

− 2ζ(3)

(
108

(π5n5)y3
+

30

(π3n3)y
+

y

2πn

))

ν1(n, y) = 4ζ(2)

(
1

(π4n4)y4
+

2

(3π2n2)y2

)

− 2ζ(3)

(
84

(π4n4)y2
+

108

(π6n6)y4
+

13

2π2n2

)
.

Its asymptotic behavior is

−16π3σ−6(n)|n|3
(
2(π2ζ(2)n2 − 54ζ(3))

π7n7y5
− 2(π2ζ(2)n2 − 36ζ(3))

3(π5n5)y3
+O

(
1

y2

))
.

8.1.3. n1 �= 0 and n2 = 0 For n = n1 �= 0,

f̂P
n,0(y) = −8πσ−2(n)|n|

∑
i=0,1

νi(n, y)Ki(2π|n|y)
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with

ν0 = sgn(n)

(
8πζ(6)y−3

7n
− 15ζ(7)

(
6y

π3n3
+

1512

(π7n7)y3
+

420

(π5n5)y
+

y3

10πn

))
,

ν1 =
8ζ(6)y−4

7n2
− 15ζ(7)

(
− 2y2

5π2n2
+

1176

(π6n6)y2
+

1512

(π8n8)y4
+

90

π4n4

)
.

Its asymptotic behavior is

−8σ−2(n)|n|
(
4(π6ζ(6)n6−19845ζ(7))

7π8n9y5
− 4(π6ζ(6)n6−4410ζ(7))

7(π6n7)y3
+O

(
1

y2

))
.

8.1.4. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (71), we have

η0,0 =sgn(n1n2)

(
y−3

π4(n1 + n2)10
(
36n1n

3
2

(
7n2

1 − 10n1n2 + 3n2
2

))
+

n1 y
−1

35n2π2(n1 + n2)8
(
5n6

1 + 48n5
1n2 + 219n4

1n
2
2 + 664n3

1n
3
2

+ 4163n2
1n

4
2 − 6440n1n

5
2 + 1085n6

2

)
+

2n1n2 y

105(n1 + n2)6
(
3n4

1 + 28n3
1n2 + 210n2

1n
2
2 − 420n1n

3
2 + 35n4

2

))

η0,1 =sgn(n1)

(
y−4

π5(n1 + n2)11
(
36n1n

4
2(−7n1 + 3n2)

)
+

n1 y
−2

35n2
2π

3(n1 + n2)9
(
5n7

1 + 53n6
1n2 + 267n5

1n
2
2 + 883n4

1n
3
2

+ 2377n3
1n

4
2 + 7593n2

1n
5
2 − 13545n1n

6
2 + 2975n7

2

)
+

n1

210π(n1 + n2)7
(
27n5

1 + 253n4
1n2 + 1270n3

1n
2
2 + 6594n2

1n
3
2

− 12145n1n
4
2 + 1505n5

2

))
η1,0 =sgn(n2)

(
y−4

π5(n1 + n2)11
(
n2
1n

3
2 · (252n1 − 108n2)

)
+

y−2

35n2π3(n1 + n2)9
(
5n7

1 + 53n6
1n2 + 267n5

1n
2
2 + 883n4

1n
3
2 + 9237n3

1n
4
2

− 12987n2
1n

5
2 + 875n1n

6
2 + 35n7

2

)
+

1

210π(n1 + n2)7
(
24n6

1 + 225n5
1n2 + 1063n4

1n
2
2 + 7042n3

1n
3
2

−11970n2
1n

4
2 + 1085n1n

5
2 + 35n6

2

))
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η1,1 =
y−3

35n2
2π

4(n1 + n2)10
(
5n8

1 + 58n7
1n2 + 320n6

1n
2
2 + 1150n5

1n
3
2 + 3260n4

1n
4
2

+ 9970n3
1n

5
2 − 16732n2

1n
6
2 + 910n1n

7
2 + 35n8

2

)
+

y−1

105n2π2(n1 + n2)8
(
12n7

1 + 132n6
1n2 + 716n5

1n
2
2 + 2806n4

1n
3
2

+ 12332n3
1n

4
2 − 21728n2

1n
5
2 + 1820n1n

6
2 + 70n7

2

)
+

y

105(n1 + n2)6
(
2n1n2

(
3n4

1 + 28n3
1n2+210n2

1n
2
2−420n1n

3
2+35n4

2

))
The leading term of the asymptotic expansion is

f̂P
n1,n2

(y) =− y−5 32π
4σ−2(n1)σ−6(n2)

35π6(n1 + n2)11
(
5n9

1 + 63n8
1n2

(73)

+ 378n7
1n

2
2 + 1470n6

1n
3
2 + 4410n5

1n
4
2 + 13230n4

1n
5
2

+ 17640n3
1n

6
2 log (|n1/n2|)− 6762n3

1n
6
2 − 7560n2

1n
7
2 log (|n1/n2|)

− 15822n2
1n

7
2 + 945n1n

8
2 + 35n9

2

)
+ o

(
y−5

)
.

Comparing the formula above with the leading terms in the asymptotic
expansion of f̂H

n1,n2
(y) as y → 0, we get that there exists a unique choice

of αn1,n2
such that f̂n1,n2

(y) = f̂H
n1,n2

(y) + f̂P
n1,n2

(y) = o(y−5). Moreover, it
follows that for fixed n �= 0,

(74) αn−n1,n1
= O

(
|n1|−6

)
, |n1| → ∞.

8.1.5. n1 = −n2 For f̂P
−n2,n2

(y) as in (72), we have

μ0,0 =
3y−1

55n2
2π

2
+

103y

6930
− 8n2

2π
2y3

4851
− 512n4

2π
4y5

72765
+

16384n6
2π

6y7

218295
,

μ0,1 = sgn(n2)

(
6y−2

55n3
2π

3
+

89

6930n2π
+
4n2πy

2

1617
+
256n3

2π
3y4

72765
+
8192n5

2π
5y6

218295

)
,

μ1,1 =
3y−3

55n4
2π

4
− y−1

495n2
2π

2
− 871y

48510
− 8n2

2π
2y3

8085
− 512n4

2π
4y5

218295
− 16384n6

2π
6y7

218295
.

Its asymptotic behavior is

(75) − 128σ−2(n2)σ−6(n2)

(
3

220π2n2
2y

5
− 1

36y3
+O

(
1

y2

))
,
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and

(76) αn2,−n2
= O

(
|n2|−6

)
, |n2| → ∞.

9. Convergence of each Fourier mode

We now examine the n-th Fourier mode f̂n(y). We note that in all of our com-
putations, the particular solution

∑
n1+n2=n f̂

P
n1,n2

(y) converges. However,
the homogeneous part of the solution only converges for large enough λ. For-
tunately, these cases correspond to the physically relevant cases considered
in [2] and here we provide an argument that the solutions for (λ, k, �) ∈ S
converge.

9.1. Zero Fourier modes

The zeroth Fourier mode is given by

f̂0(y) = f̂0,0(y) +
∑
n1 �=0

f̂n1,−n1
(y).

Furthermore, the sum above is given by∑
n1 �=0

f̂n1,−n1
(y) =

∑
n1 �=0

f̂P
n1,−n1

(y) +
∑
n1 �=0

f̂H
n1,−n1

(y)(77)

=
∑
n1 �=0

f̂P
n1,−n1

(y) + y−r
∑
n1 �=0

αn1,−n1

assuming both sums are convergent. Note that the second equality follows
from (20).

From (46), (52), (60), (68), and (76) we see that each
∑

n1 �=0 αn1,−n1

converges. Each expression for f̂P
n1,−n1

(y) is given by (38), (56), (63), and
(72) and is exponentially suppressed as y → ∞, as seen from the exponential
decay of the modified Bessel functions of the second kind.

9.2. Non-zero Fourier modes

In order to show that the Fourier series is convergent, we first note that

f̂n(y) = f̂n,0(y) + f̂0,n(y) +

n−1∑
n1=1

f̂n1,n−n1
(y) +

( ∑
n1≥n+1

+
∑

n1≤−1

)
f̂n1,n−n1

(y).
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We must verify that the last sum is convergent. Note that by (18),

∑
n1≥n+1

f̂n1,n−n1
(y) =

∑
n1≥n+1

f̂P
n1,n−n1

(y) +
∑

n1≥n+1

f̂H
n1,n−n1

(y)

(78)

=
∑

n1≥n+1

f̂P
n1,n−n1

(y) +
√
yKr+1/2(2π|n|y)

∑
n1≥n+1

αn1,n−n1

assuming both sums are convergent.
From (43), (50), (58), (66), (74) we see that

αn1,n−n1
= o

(
|n1|−2

)
, |n1| → ∞.

Estimating the behavior of f̂P
n1,n−n1

(y) as |n1| → ∞ using (41), (48), (57),
(65), and (73) (as well as (80), (85), (89), (92), and (96)), we see that the con-
tribution from the modified Bessel functions, Ki(2π|n1|y)Kj(2π|n− n1|y),
exponentially suppresses these terms as |n1| gets large. We treat the term∑

n1≤−1 in the same manner.

Appendix A

In this section, we will provide the explicit solutions which do not appear
in [2].

A.1. k = � = 3/2 and λ = 2

A.1.1. n1 = 0 and n2 = 0 Any solution of (15) for n1 = n2 = 0 is equal
to

f̂0,0(y) =
16ζ(2)2 − 9ζ(3)2y4 + 72ζ(2)ζ(3)y2 + 48ζ(2)2 log(y)

9y
+ c2y

2 +
c1
y

for some c1, c2 ∈ C.
Its asymptotic behavior for y → 0 can be described by

f̂0,0(y) =
16ζ(2)2 log(y)

3y
+ y−1

(
16ζ(2)2

9
+ c1

)
+O(1),

and the leading term of the asymptotic behavior does not depend on c1
and c2. Taking c2 = 0, the O(y2)-term in the asymptotic expansion of f̂0,0(y)
vanishes. However, we refrain from choosing c1 until Section A.1.4.
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A.1.2. n1n2 = 0 but not both zero For f̂P
n,0 as in (36), we have

ν0(n, y) = sgn(n)

(
ζ(2)

3πny
− ζ(3)y

2πn

)
,

ν1(n, y) = − ζ(3)

2π2n2
.

We note that the asymptotic behavior of f̂P
0,n(y) for y → 0 is as follows:

y−1 4σ2(n)(3ζ(3) + 4γπ2ζ(2)n2 + 4π2ζ(2)n2 log(π|n|))
3π2n4

+
16ζ(2)σ2(n) log(y)

3n2y
+O(y),

where γ is the Euler-Mascheroni constant. We recall from (19) that

(79) f̂H
0,n(y) =

α0,n

4π|n|3/2y − π
√

|n| α0,n

2
y +O

(
y2
)
.

There is a natural choice of α0,n that will get rid of the O(y−1)-term in

f̂H
0,n(y) + f̂P

0,n(y) (however, O(y−1)-term is not the leading term):

α0,n = −16σ2(n)(3ζ(3) + 4γπ2ζ(2)n2 + 4π2ζ(2)n2 log(π|n|))
3n5/2π

.

A.1.3. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (37), we have

η0,0 = sgn(n1n2)
2n1n2y

3(n1 + n2)2
, η0,1 = sgn(n1)

n1(n1 + 3n2)

6π(n1 + n2)3
,

η1,0 = sgn(n2)
n2(3n1 + n2)

6π(n1 + n2)3
, η1,1 =

2n1n2y

3(n1 + n2)2
.

The asymptotic expansion of f̂P
n1,n2

(y) as y → 0 is

16σ2(n1)σ2(n2)

3n2
1n

2
2

(
log(y)

y
+

γ + log(π)

y
(80)

+
n3
1 log(|n1|) + 3n2n

2
1 log(|n1|) + 3n2

2n1 log(|n2|) + n3
2 log(|n2|)

y(n1 + n2)3

)
.
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We further note that

(81) f̂H
n1,n2

(y) =
αn1,n2

4π|n1 + n2|3/2y
− π

√
|n1 + n2| αn1,n2

2
y +O

(
y2
)
.

We note that we cannot get rid of the O(y−1 log(y))-term in f̂H
n1,n2

(y) +

f̂P
n1,n2

(y) by choosing an appropriate αn1,n2
, but we can get rid of O(y−1)

by setting

αn1,n2
= −4π|n1 + n2|3/2 ·

16σ2(n1)σ2(n2)

3n2
1n

2
2

(
γ + log(π)

(82)

+
n3
1 log(|n1|) + 3n2n

2
1 log(|n1|) + 3n2

2n1 log(|n2|) + n3
2 log(|n2|)

(n1 + n2)3

)
.

Choosing n = 1 and investigating the asymptotic behavior of αn1,1−n1

as n1 → ∞, we note that the sum
∑

n1+n2=1 αn1,n2
does not converge. As we

show in the next section, it might still be reasonable to make such a choice
of αn1,n2

.

A.1.4. n1 = −n2 For f̂P
−n2,n2

(y) defined in (38) we have

μ0,0 =
y

6
+

8n2
2π

2y3

9
, μ0,1 = sgn(n2)

(
1

6n2π
+

4n2πy
2

9

)
,

μ1,1 = −5y

18
− 8n2

2π
2y3

9
.

Its asymptotic behavior can be described as

(83) 8
σ2(n2)

2

|n2|4
(
6 log(π|n2|) + 6 log(y) + 6γ + 5

9y

)
+O(1).

Once again, we cannot get rid of the O(y−1 log(y))-term by choosing α−n2,n2

appropriately, but we can get rid of the O(y−1)-term by setting

α−n2,n2
:= −8σ2(n2)σ2(n2)

9|n2|4
(
6 log(π|n2|) + 6γ − 5

)
.

We note that for such choice of α−n2,n2
, the sum

∑
n1+n2=0,n2 �=0 αn1,n2

di-
verges, because the sum

∑
p prime

α−p,p = −8

9

∑
p prime

(p2 + 1)2

p4
(
6 log(πp) + 6γ − 5

)
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diverges. However, it is still possible to formally calculate the sum of α−n2,n2

using the Ramanujan summation (99) and its derivatives (100).
We note that we can choose c1 from Section A.1.1 in such a way that at

least formally

(84)

∞∑
n2=−∞

α−n2,n2
= 0.

A.2. k = 3/2, � = 5/2 and λ = 6

A.2.1. n1 = 0 and n2 = 0 We can find a particular solution to be

f̂0,0(y) =
c1
y2

+ c2y
3

+
−6750y6ζ(3)ζ(5) + 3375π2y4ζ(5) + 100π4y2ζ(3) + 40π6 log(y) + 8π6

6750y2

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by

f̂0,0(y) =
4π6 log(y)

675y2

and the leading term of the asymptotic behavior doesn’t depend on c1 and c2.

A.2.2. n1 = 0 and n2 �= 0 For f̂P
0,n(y) as in (53), we have

ν0(n, y) =
ζ(2)y−2

5n2π2
− 2ζ(3)

n2π2
,

ν1(n, y) = sgn(n)

(
n2π2ζ(2)− 6ζ(3)

3n3π3y
− ζ(3)y

nπ

)
.

The asymptotic expansion of f̂P
0,n(y) as y → 0 is

−8π2σ−4(n)|n|2
(
y−2

(
− γζ(2)

5π2n2
+

ζ(2)

6π2n2
− ζ(3)

π4n4
− ζ(2) log(π|n|)

5π2n2

)

− ζ(2) log(y)

5π2n2y2

)
+O(1).

There is a unique choice of α0,n that gets rid of the y−2-term in the asymp-

totic expansion of f̂P
0,n(y) + f̂H

0,n(y).
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A.2.3. n1 �= 0 and n2 = 0 For f̂P
n,0(y) as in (54), we have

ν0(n, y) = sgn(n)

(
2ζ(4)y−2

5nπ
+

3ζ(5)

n3π3
− ζ(5)y2

2nπ

)
,

ν1(n, y) =
3ζ(5)y−1

n4π4
+

ζ(5)y

n2π2
.

The asymptotic expansion of f̂P
n,0(y) as y → 0 is

−8πσ−2(n)|n|
(
y−2

(
3ζ(5)

2π5|n|5 − 2γζ(4)

5π|n| − 2ζ(4) log(π|n|)
5π|n|

)
− 2ζ(4) log(y)

5π|n|y2
)

+O(1).

There is a unique choice of αn,0 that gets rid of the y−2-term in the asymp-

totic expansion of f̂P
n,0(y) + f̂H

n,0(y).

A.2.4. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (55), we have

η0,0 =sgn(n1)

[
1

10π(n1 + n2)4
(
n1

(
n2
1 + 4n1n2 + 11n2

2

))]
,

η0,1 =sgn(n1n2)

[
y−1

10n2π2(n1 + n2)5
(
n1

(
n3
1 + 5n2

1n2 + 10n1n
2
2 + 10n3

2

))
+

y

15(n1 + n2)3
(
2n1n2(n1 + 5n2)

)]
,

η1,0 =
y−1

10π2(n1 + n2)5
(
n2
2(5n1 + n2)

)
+

y

15(n1 + n2)3
(
2n1n2(n1 + 5n2)

)
,

η1,1 =
sgn(n2)

30π(n1 + n2)4
(
4n3

1 + 19n2
1n2 + 44n1n

2
2 + 5n3

2

)
.

We note that

f̂P
n1,n2

(y) =
8σ−4(n2)σ−2(n1)

15n1n2
2(n1 + n2)5y2

(85)

×
(
6n5

1 log(y) + 30n2n
4
1 log(y) + 60n2

2n
3
1 log(y) + 60n3

2n
2
1 log(y)

+ 30n4
2n1 log(y) + 6n5

2 log(y) + 6γn5
1 + 30γn2n

4
1 − 4n2n

4
1 + 60γn2

2n
3
1

− 23n2
2n

3
1 + 60γn3

2n
2
1 − 63n3

2n
2
1 + 30γn4

2n1 − 49n4
2n1 + 6γn5

2 − 5n5
2

+ 6n5
1 log(π|n1|) + 30n2n

4
1 log(π|n1|) + 60n2

2n
3
1 log(π|n1|)
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+ 60n3
2n

2
1 log(π|n1|) + 30n4

2n1 log(π|n2|) + 6n5
2 log(π|n2|)

)
) +O(1).

We are not able to eliminate the highest term, O(y−2 log(y)), by choosing
appropriate αn1,n2

. However, we are able to eliminate the O(y−2)-term.

A.2.5. n1 = −n2 For f̂P
−n2,n2

(y) as in (56), we have

μ0,0 = sgn(n2)

(
1

10n2π
+

2n2πy
2

75
− 64n3

2π
3y4

225

)
,

μ0,1 =
y−1

10n2
2π

2
− y

75
− 32n2

2π
2y3

225
,

μ1,1 = sgn(n2)

(
− 9

100n2π
+

2n2πy
2

225
+

64n3
2π

3y4

225

)
.

The asymptotic expansion of f̂P
−n2,n2

(y) as y → 0 is

f̂P
−n2,n2

(y) = 4σ−2(n2)σ−4(n2)(86)

×
(
20 log(π|n2|) + 20 log(y) + 20γ + 9

25y
+O(1)

)
.

There is a choice of α−n2,n2
that gets rid of the y−1-term in the asymptotic

expansion of f̂P
−n2,n2

(y) + f̂H
−n2,n2

(y). However, manipulating α−n2,n2
cannot

help us get rid of the leading term. Thus, as in Section A.1.4, we can choose
c1 = α0,0 from Section A.1.1 so that the contribution from the homogeneous
solutions vanishes, that is, at least formally

(87)

∞∑
n2=−∞

α−n2,n2
= 0.

A.3. k = � = 5/2 and λ = 2

A.3.1. n1 = 0 and n2 = 0 We note that for n1 = n2 = 0

f̂0,0(y) =
−10125y8ζ(5)2 + 2700π4y4ζ(5)− 4π8

20250y3
+

c1
y

+ c2y
2

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by
f̂0,0(y) = − 2π8

10125y3 and the leading term of the asymptotic behavior doesn’t
depend on c1 and c2.
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A.3.2. n1n2 = 0 but not both zero For f̂P
0,n(y) as in (61), we have

ν0(n, y) = −ζ(5)y

n2π2
,

ν1(n, y) = sgn(n)

(
2ζ(4)y−2

5nπ
− ζ(5)

n3π3
− ζ(5)y2

2nπ

)
.

Its asymptotic behavior can be described by y → 0 as

−8π2σ−4(n)|n|2
(

ζ(4)

5π2n2y3

(88)

+
−5ζ(5) + 4γπ4ζ(4)n4 − 2π4ζ(4)n4 + 4π4ζ(4)n4 log(π|n|)

10π4n4y

+
4π4ζ(4)n4 log(y)

10π4n4y
+O(1)

)
.

The leading term of the asymptotic expansion is O(y−3), the second term

is O(y−1 log(y)). Manipulating homogeneous solution, we can get rid of the

third term in the asymptotic expansion; that is, to get rid of O(y−1).

A.3.3. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (62) we have

η0,0 =
y

15(n1 + n2)2
(2n1n2),

η0,1 = sgn(n2)
1

30π(n1 + n2)3
(
4n2

1 + 9n1n2 + 3n2
2

)
,

η1,0 = sgn(n1)
1

30π(n1 + n2)3
(
3n2

1 + 9n1n2 + 4n2
2

)
,

η1,1 = sgn(n1n2)

(
y−1

10n1n2π2
+

y

15(n1 + n2)2
(2n1n2)

)
.

We note that

f̂P
n1,n2

(y) = −8y−3σ−4(n1)σ−4(n2)

5
+ o

(
y−3

)
.(89)

We are not capable to make the O(y−3)-term vanish by manipulating αn1,n2
.
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A.3.4. n1 = −n2 For f̂P
−n2,n2

(y) as in (63), we have

η0,0 = −7y

30
− 8n2

2π
2y3

45
,

η0,1 = sgn(n2)

(
− 2

15n2π
− 4n2πy

2

45

)
,

η1,1 =
y−1

10n2
2π

2
+

23y

90
+

8n2
2π

2y3

45
.

The asymptotic expansion of f̂P
−n2,n2

(y) as y → 0 is

−8π2|n2|2
(
σ−4(n2)

)2(90)

×
(

1

5π2|n2|2y3
+

12 log(π|n2|) + 12 log(y) + 12γ + 1

9y
+O(1)

)
.

As in Section A.1.4, we can choose c1 = α0,0 from Section A.1.1 so that
the contribution from the homogeneous solutions vanishes, that is, at least
formally

(91)

∞∑
n2=−∞

α−n2,n2
= 0.

A.4. k = � = 5/2 and λ = 12

A.4.1. n1 = 0 and n2 = 0 We note that

f̂0,0(y) =
128ζ(4)2 − 441ζ(5)2y8 + 784ζ(4)ζ(5)y4 + 896ζ(4)2 log(y)

392y3

+ c2y
4 +

c1
y3

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by
f̂0,0(y) = and the leading term of the asymptotic behavior does not depend
on c1 and c2.

A.4.2. n1n2 = 0 but not both zero For f̂P
0,n(y) as in (61), we have

ν0(n0, y) =
2ζ(4)y−3

7n2π2
+

15ζ(5)y−1

n4π4
+

3ζ(5)y

2n2π2
,
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ν1(n0, y) = sgn(n)

(
(4ζ(4)π4n4 + 150ζ(5))y−2

10n5π5
+

9ζ(5)

n3π3
− ζ(5)y2

2nπ

)
.

Its asymptotic expansion as y → 0 is

−8π2σ−4(n)|n|2

×
(
525ζ(5)− 20γπ4ζ(4)n4 + 14π4ζ(4)n4 − 20π4ζ(4)n4 log(π|n|)

70π6n6y3

− 20π4ζ(4)n4 log(y)

70π6n6y3
+O

(
1

y

))
.

The leading asymptotic expansion as y → 0 is O(y−3 log(y)). The second
leading asymptotic expansion is O(y−3) – that one can be eliminated by
manipulating the homogeneous solution.

A.4.3. n1n2 �= 0, n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (62) we have

η0,0 =
y−1

14π2(n1 + n2)6
(
n4
1 + 6n3

1n2 + 50n2
1n

2
2 + 6n1n

3
2 + n4

2

)
+

y

105(n1 + n2)4
(
2n1n2 ·

(
7n2

1 + 54n1n2 + 7n2
2

))
,

η0,1 =sgn(n2)

[
y−2

14n2π3(n1 + n2)7
(
n2
1

(
n3
1 + 7n2

1n2 + 21n1n
2
2 + 35n3

2

))
+

1

210π(n1 + n2)5
(
28n4

1 + 199n3
1n2 + 775n2

1n
2
2 + 145n1n

3
2 + 21n4

2

)]
,

η1,0 =sgn(n1)

[
y−2

14n1π3(n1 + n2)7
(
n2
2 ·

(
35n3

1 + 21n2
1n2 + 7n1n

2
2 + n3

2

))
+

1

210π(n1 + n2)5
(
21n4

1 + 145n3
1n2 + 775n2

1n
2
2 + 199n1n

3
2 + 28n4

2

)]
,

η1,1 =sgn(n1n2)

[
y−1

210n1n2π2(n1 + n2)6
(
21n6

1 + 166n5
1n2 + 605n4

1n
2
2

+ 1520n3
1n

3
2 + 605n2

1n
4
2 + 166n1n

5
2 + 21n6

2

)
+

2n1n2 y

105(n1 + n2)4
(
7n2

1 + 54n1n2 + 7n2
2

)]
.

We note that the asymptotic expansion is given by

f̂P
n1,n2

(y) =
16σ−4(n1)σ−4(n2)

7
y−3 log(y) + o

(
y−3 log(y)

)
.(92)
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A.4.4. n1 = −n2 For f̂P
−n2,n2

(y) as in (63), we have

μ0,0 =
y−1

14n2
2π

2
− 13y

294
− 8n2

2π
2y3

735
+

256n4
2π

4y5

2205
,

μ0,1 = sgn(n2)

[
y−2

14n3
2π

3
− 5

294n2π
+

4n2πy
2

735
+

128n3
2π

3y4

2205

]
,

μ1,1 = − 5y−1

588n2
2π

2
+

59y

1470
− 8n2

2π
2y3

2205
− 256n4

2π
4y5

2205
.

The asymptotic expansion is

64π4|n2|4
(
σ−4(n2)

)2(84 log(π|n2|) + 84 log(y) + 84γ + 5

2352π4|n2|4y3
+O

(
1

y

))
.(93)

As in Section A.1.4, we can choose c1 = α0,0 from Section A.1.1 so that
the contribution from the homogeneous solutions vanishes, that is, at least
formally

(94)

∞∑
n2=−∞

α−n2,n2
= 0.

A.5. k = 3/2, � = 7/2 and λ = 12

A.5.1. n1 = 0 and n2 = 0 It is not complicated to show that

f̂0,0(y) =
−10418625y8ζ(3)ζ(7) + 4630500π2y6ζ(7) + 9408π6y2ζ(3)

2778300y3

+
4480π8 log(y) + 640π8

2778300y3
+ c2y

4 +
c1
y3

for some c1, c2 ∈ C. Its asymptotic behavior for y → 0 can be described by

f̂0,0(y) =
32π8 log(y)

19845y3

and the leading term of the asymptotic behavior doesn’t depend on c1
and c2.
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A.5.2. n1 = 0 and n2 �= 0 For f̂P
0,n(y) as in (69), we have

ν0 = sgn(n)

(
−2ζ(3)

(
3y−1

n3π3
+

y

2nπ

)
+ 4ζ(2)

(
y−3

7n3π3
+

y−1

6nπ

))
,

ν1 = −2ζ(3)

(
3y−2

n4π4
+

2

n2π2

)
+

22ζ(2)y−2

15n2π2
.

Its asymptotic behavior is

−16σ−6(n)

(
−315ζ(3)− 60γπ2ζ(2)n2 + 77π2ζ(2)n2

105π2n2y3

+
−60π2ζ(2)n2 log(πn)− 60π2ζ(2)n2 log(y)

105π2n2y3
O

(
1

y

))
.

A.5.3. n1 �= 0 and n2 = 0 For f̂P
n,0(y) as in (70), we have

ν0 = sgn(n)

(
16ζ(6)y−3

14n2π
− 15ζ(7)

(
6y−1

n5
2π

5
+

3y

5n3
2π

3
+

y3

10n2π

))
,

ν1 = 15ζ(7)

(
−6y−2

n6
2π

6
− 18

5n4
2π

4
+

y2

10n2
2π

2

)
.

Its asymptotic behavior is

−8σ−2(n)

(
−315ζ(7)− 8γπ6ζ(6)n6 − 8π6ζ(6)n6 log(πn)

7π6n6y3
(95)

− 8π6ζ(6)n6 log(y)

7π6n6y3
+O

(
1

y

))
.

A.5.4. n1n2 �= 0 and n1 + n2 �= 0 For f̂P
n1,n2

(y) as in (71), we have

η0,0 =sgn(n1) sgn(n2)(
y−1

7n2π2(n1 + n2)6

(
n1

(
n4
1 + 6n3

1n2 + 15n2
1n

2
2

+ 20n1n
3
2 + 22n4

2

)
+

y

105(n1 + n2)4
(
2n1n2 ·

(
3n2

1 + 14n1n2 + 35n2
2

)))
,

η0,1 =sgn(n1)

(
y−2

7n2
2π

3(n1 + n2)7
n1

(
n5
1 + 7n4

1n2 + 21n3
1n

2
2 + 35n2

1n
3
2

+ 35n1n
4
2 + 21n5

2

)
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+
1

210π(n1 + n2)5
(
n1 ·

(
27n3

1 + 143n2
1n2 + 325n1n

2
2 + 497n3

2

)))
,

η1,0 =sgn(n1)

(
y−2

7π3(n1 + n2)7
(
n3
2 · (7n1 + n2)

)
+

1

210π(n1 + n2)5
(
24n4

1 + 129n3
1n2 + 293n2

1n
2
2 + 511n1n

3
2 + 35n4

2

))
,

η1,1 =
y−1

210n2π2(n1 + n2)6
(
24n5

1 + 153n4
1n2 + 422n3

1n
2
2 + 678n2

1n
3
2

+ 822n1n
4
2 + 77n5

2

)
+

y

105(n1 + n2)4
(
2n1n2 ·

(
3n2

1 + 14n1n2 + 35n2
2

))
.

We note that

f̂P
n1,n2

(y) =
64σ−2(n1)σ−6(n2) log(y)y

−3

7
+ o

(
y−3 log(y)

)
.(96)

We cannot eliminate the leading term in the asymptotic expansion of
f̂n1,n2

(y) by manipulating αn1,n2
.

A.5.5. n1 = −n2 For f̂P
−n2,n2

(y) as in (72), we have

μ0,0 =
y−1

7n2
2π

2
+

59y

1470
− 8n2

2π
2y3

1225
+

256n4
2π

4y5

3675
,

μ0,1 = sgn(n2)

(
y−2

7n3
2π

3
+

17

735n2π
+

4n2πy
2

1225
+

128n3
2π

3y4

3675

)
,

μ1,1 = − 13y−1

147n2
2π

2
− 313y

7350
− 8n2

2π
2y3

3675
− 256n4

2π
4y5

3675
.

The asymptotic behavior is

−32σ−2(n2)σ−6(n2)

(
−42 log(π|n2|)− 42 log(y)− 42γ − 13

147y3
+O

(
1

y

))
.

(97)

As in Section A.1.4, we can choose c1 = α0,0 from Section A.1.1 so that
the contribution from the homogeneous solutions vanishes, that is, at least
formally

(98)

∞∑
n2=−∞

α−n2,n2
= 0.
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Appendix B

B.1. Convolution formulas for the divisor functions

We recall the two famous identities on divisor functions: by [11, Theorem
291], for s > 1 and s− a > 1,

∞∑
n=−∞,n�=0

σa(n)

|n|s = 2ζ(s)ζ(s− 2),

and by [11, Theorem 305], for s > 1, s− a > 1, s− b > 1 and s− a− b > 1,

(99)

∞∑
n=−∞,n�=0

σa(n)σb(n)

|n|s = 2
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
.

We note that the latter identity is sometimes referred to as a Ramanujan
identity. Differentiating (99) with respect to s, we obtain

∞∑
n=−∞,n�=0

σa(n)σb(n) log(|n|)
|n|s = −2

d

ds

(
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)

)
.

(100)

B.2. Bessel functions and relations between them

By [8],

(101) Kn+1(z) = Kn−1(z) + 2n
Kn(z)

z
,

thus

yK1(2|n1|πy)K2(2|n2|πy)

= yK1(2π|n1|y)
(
K0(2π|n2|y) +

1

π|n2|y
K1(2π|n2|y)

)
.

Explicitly, we use the following relations to formulate sn1,n2
in (12) in terms

of K0 and K1. From [8, 8.486(12) and 8.486(13)] and (101),

K3(y) =
yK1(y) + 4K2(y)

y
=

(y2 + 8)K1(y) + 4yK0(y)

y2
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= 8
K1(y)

y2
+K1(y) + 4

K0(y)

y
,

thus

yK1(2π|n1|y)K3(2π|n2|y)

= K1(2π|n1|y)
(
2
K1(2π|n2|y)
π2|n2|2y

+ 2
K0(2π|n2|y)

π|n2|
+ yK1(2π|n2|y)

)
.

By [8, 8.486(17)],

yK2(2π|n1|y)K2(2π|n2|y) = y

(
K0(2π|n1|y) +

1

π|n1|y
K1(2π|n1|y)

)

×
(
K0(2π|n2|y) +

1

π|n2|y
K1(2π|n2|y)

)
.
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