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Whittaker Fourier type solutions to
differential equations arising from string
theory”

KseENIA FEDOSOVA AND KiM KLINGER-LOGAN

In this article, we find the full Fourier expansion for solutions of
(A=XN)f(z) = —Er(2)E¢(2) for z = z+iy € $ for certain values of
parameters k, ¢ and \. When such an f is fully automorphic these
functions are referred to as generalized non-holomorphic Eisenstein
series. We give a connection of the boundary condition on such
Fourier series with convolution formulas on the divisor functions.
Additionally, we discuss a possible relation with the differential
Galois theory.

1. Introduction

The goal of this paper is to examine the Fourier expansion of the solutions
to inhomogeneous eigenvalue equations involving of a product of two non-
holomorphic Eisenstein series. Explicitly, for certain k,¢ € Zso + 1/2, we
find a Whittaker Fourier expansion for a solution f(z) to equations of the
form

(1) (A =N f(2) =—Ex(2)Ee(z), z=z+1iy€ 9N,

where the Eisenstein series, Fs(z), is defined as

(2) Ey(z):= Y Im(y2)°

yePNI\I'

for ' = SLy(Z) and P the subgroup of upper triangular matrices. We
recall the non-holomorphic Eisenstein series as FE(z) converge absolutely
for Re(s) > 1 and are eigenfunctions for the Laplace operator —A :=
—y2(8§+8§) with eigenvalue s(1—s). There is currently no universal method
for finding explicit solutions to equations of the form (1) and the method
we propose gives a general form for k, ¢ € Z~o + 1/2 and certain .
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Solutions to equations of the form (1) have been studied in [1, 2, 5, 6,
9, 13, 14, 17]. If they satisfy the SLg(Z)-automorphicity condition, these
solutions are sometimes referred to as generalised non-holomorphic Fisen-
stein series [2]. Such functions arise in the maximally supersymmetric N = 4
super-Yang-Mills (SYM) theory when studying the duality properties of cer-
tain correlation functions in the 1/N expansion. For k, ¢ € Z~o + 1/2 with

k+¢=q+2,q,..., the generalized non-holomorphic Eisenstein series ap-
pear in the the order % contributions with ¢ € Z~ to the SYM free energy
F = —logZ [2, p.6]. At low orders there is an explicit connection between

the correlator functions of the SU(N) N = 4 super Yang-Mills theory in the
1/N expansion [2] and the 10-dimensional type IIB superstring scattering
amplitude of gravitons. The DSR* interactions in the low energy expansion
of the 4-loop supergraviton is given by the the solution to (1) where A\ = 12
and k = ¢ = 3/2 [10, 9] and an explicit Fourier solution has been given this
case in [9]. More generally, solutions to (1) for k, ¢ € Z( are examples of
modular graph functions and solutions have been found in [4, 5, 6].

We use the following method to investigate solutions of (1): for z = x4y
we start by assuming f(z) is periodic in z and expand it in corresponding
Fourier series. From (1), we deduce an ordinary differential equation on every
Fourier mode of f. Each of these differential equations is an inhomogeneous
differential equation of the second order; the homogeneous part coincides
with the modified Bessel equation, while the inhomogeneous part comprises
an infinite sum involving polynomials and K-Bessel functions. The indices
of the K-Bessel function in the inhomogeneous part are independent on the
parameters in the homogeneous part. Assuming that the solution has this
form, we introduce a system of linear equations on parameters upon which
this special form depends. For certain physically relevant (A, k,¢) we solve
this system of linear equations using a symbolic algebra system to obtain
the searched parameters. In addition to finding all Fourier modes for such
solutions, we are able to determine conditions on (A, k, £) when solutions of
this form do not exist. Experimentally, we are able to find explicit Fourier
solutions in many instances outside those contained here; however, we have
chosen to only include these for brevity.

The method we present in this paper is motivated by the exact expres-
sion of the solution in [9]. In the former article, Green, Miller, and Vanhove
found the explicit expressions for the Fourier modes of the function, satis-
fying (1) with A = 12 and k = ¢ = 3/2. The Fourier modes of the solution
in [9] are exactly of the form Theorem A. We also note that the full spec-
tral solution for f in terms of L?(I'\$))-eigenfunctions is given in [13]. The
Fourier expansion of the solution f to (1) for k = £ = 3/2 and A\ = 12 was
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also explicitly computed [14] using the Poincaré series solution found in [9,
Appendix A]. The method used in [14] is different from that used in [9] and
outlined below. Importantly, in [14], the authors are not able to extend their
method outside of the case where k = ¢ in (1); however, the method outlined
in this paper does not require such a dependence.

In [2], Chester, Green, Pufu, Wang, and Wen generalized Eisenstein se-
ries were studied for certain values of k,¢, . Although each full Fourier
expansion was not obtained in [2], the authors provided many important
properties to the solution. We would like to note that they have expressed
the solution to the zeroth Fourier term not in terms of Ky and K; as we
did, but rather in terms of modified Bessel functions of integer index. These
representations are related to the ones found below via a recurrence relation
of K-Bessel functions.

Inhomogeneous differential equations of Bessel type with inhomogeneous
parts involving Bessel functions appear not only in string theory, but also
in the theory of vector-valued automorphic functions. More precisely, in [7],
Fedosova, Pohl, and Rowlett considered functions ¢ : $§ — V for some
complex finite-dimensional vector space V that are Laplace eigenfunctions
with eigenvalue s(1 — s) for s € C, thus

(3) (A—=s(1-s))p=0.

Additionally, they required that ¢ satisfies the twist-periodicity condition

(4) p(z+1) = Ap(2)

for all z € § for some A € GL(V). When A is a unitary matrix, one ob-
tains that the Fourier coefficients of ¢ satisfy a modified Bessel equation,
depending on A. For diagonalizable A, this modified Bessel equation is a
homogeneous differential equation. Interestingly enough, if we allow a non-
diagonalizable matrix, then some entries of the Fourier coefficient of ¢ satisfy
the differential equation

(V207 — X —4n*n®y?) f(y) = g(y), n €L,

where ¢ is a combination of the modified Bessel function of the second kind
and a certain polynomial in y.

1.1. Discussion of main results

We denote by .7 the set containing all (A, k, ) such that either
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(i) A=12,30,56 and k= ¢ =3, or
(i) A\=20and k=3,0=3 or
(iii) A =30 and k = Ezgor
(iv) A=30and k= 3,0=1.

Of these cases, in Appendix C of [2] Chester, Green, Pufu, Wang and
Wen examine the zero mode of solutions (i) for A = 12,30, 56,90 and (ii) for
A = 20,42 and (iii) and (iv) for A = 30,56,90. However, for the nonzero
modes the full Fourier coefficients were not explicitly given. The method
outlined in this paper gives all Fourier modes in these cases as well.!

Theorem A. Let (A =r(r+1),k,0) € ¥ and let f : $ — C be a 1-periodic

function in the x-variable that satisfies
(A=Nf(z) = —Ep(2)E(z), z=z+iyeh

for Eqo(2), ® € {k, £} as in (2). Then f(z) = >,z Fu(y)e2™™ and there
exist oy, By € C such that for n # 0,

A

fn(y) :an\/_Kr+1/2(27T|n’y)+/Bn\/_Ir+1/2(27T’n’y)

+ > > WEirlnly) E;(2xnsly),

ni, HQEK i,j€{0,1}
2=

ni+nqs=
and forn =0,
o) = a0y + Ao+ S W) Ki(nlnaly) K 2nlnaly),
ny,ng€”Z Z,JE{O 1}
n1+n2:0

where for n € C, I and K denote the modified Bessel function of the
first and second kind of index n, respectively, and where ¢*7 = qn1 Ak

and pl = ,unl A k0 OTE Laurent polynomials in y. In the case ning = 0,
the modified Bessel functions have to be replaced by appropriate limits, see
Sections 8.2 and 3.3. If we impose the requirement

(5) [fu(y)l = o(e¥), y— oo,

then By, with n # 0 vanishes.

n fact, this method gives a solution to (1) for hundreds of other triples as well
(see Section 4). We note that we did not check these solutions for convergence and
we leave them out of this paper for the interest of space.
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More precisely, we obtain the degrees of polynomials ¢/ in Figure 1. We
denote by m; ; and M; ; the lowest and highest power of y present in ¢*7/(y),
respectively.

(k;,f) mMo,0 Mo,o mo1 Mo,l mi M1,1
(3/2,3/2) | =r+2| 1 | —r+1| 0 —r + 2 1
(3/2,5/2) | =r+2| 0 | —r+1] 1 —r +2 0
(5/2,5/2) | —=r+2| 1 | —r+1| 0 |min{-r+1,-1}| 1
(3/2,7/2) | =r+2| 1 | —r+1| 0 —r+2 1

Figure 1: For A = r(r+1), let m; ; and M; ; be the lowest and highest power
of y present in ¢"7(y), respectively. Note that mg 1 = m1 9 and My = M.

1.2. Automorphy of the solution

Theorem A does not require the function f to be automorphic. However,
any function that is automorphic is also 1-periodic in the z-variable; thus,
the Fourier expansion of an automorphic solution to (1) has the form as
in Theorem A. We note that such an automorphic function always exists
for (A, k,£) € .7 as established in [13] with the help of spectral methods.
Additionally, in [14], the existence of an automorphic solution with Fourier
expansion of the form in Theorem A was verified in many cases where k = /.

If an automorphic function exhibits a certain large-y growth behavior,
its Fourier coefficients must obey a small-y boundary condition [9, Lemma
2.9]. More precisely, the Fourier expansion of every automorphic solution
to (1) with O(y*) for s > 1 as y — oo must satisfy O(y'~™*) asy — 0.
Hence, if we apriori know the large-y behavior of the solution, it is natural
to impose a small-y boundary condition on its Fourier coefficients.

In the course of the proof of Theorem A, we split fn(y) =
> i tna—n frvma (y) where each of f,, ,,(y) satisfies an ordinary differential
equation involving modified Bessel functions. The inhomogeneous part of
this differential equation corresponds to the product of the ni-th Fourier
coefficient of Ej(z) and the na-th Fourier coefficient of FEy(z) (for more
details on the splitting, see (13) and further). The space of solutions of
each ODE is two-dimensional. Specifically, for n # 0, this two-dimensional
space is parameterized by o, n, and B,, ,, so that Zn1+n2:n Oy ny = Oy,
Zn1+n2:n Brine = Pn, and for ning # 0,

f?’Ll,TLz (y) = Oém,nzKr—&-l/Q(Qﬂn‘y) + Bnl,n2[r+1/2(27r‘n|y)
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+ Y WKy K 2rlnaly).
i,j€{0,1}

For each mnj,ny there is a unique choice of solution fnhnz (y) from this
2-dimensional space so that fnhnz (y) satisfies O(y™") as y — 0 and o(eY) as
y — 00. We note that this does not guarantee that fn(y) itself satisfies both
of these growth conditions (though we suspect that it does). As seen from
[9, Lemma 2.9], f,(y) satisfying both of these conditions is necessary, but
not sufficient, for the full solution to be automorphic.

1.3. Theorem A for (A, k,£) ¢ .7

We are also able to find solutions of the form in Theorem A for values
(N Kk, 0) ¢ . Specifically, we find explicit solutions for £k = ¢ = 3/2 and
A =2 (see Section A.1); k =3/2,¢/ =5/2 and A = 6 (see Section A.2); k =
¢=5/2 and A =2 and 12 (see Sections A.3 and A.4); and k = 3/2,0 =7/2
and A = 12 (see Section A.5). However, in these cases, it is not clear what an
appropriate small-y condition for fnlm (y) means. More precisely, for each
ni and ng, there is a no choice of ay, n, so that fnhnz (y) is of necessary
order of vanishing and ), ., _ an, n, converges. In Section A we make a
unique choice based on the vanishing of the second term in the asymptotic
expansion as y — 0. We note that the divergence of the homogeneous sum
> nitna—n Qi m, S€EMS to occur when A is relatively small depending on the
size of k and /.

1.4. Shifted divisor sums

In [2, Section C.1 (a)], Chester, Green, Pufu, Wang, and Wen conjectured,
based on ideas from the AdS-CFT correspondence and Yang-Mills theory,
that for an automorphic f, the total sum of the Fourier coefficients cor-
responding to the homogeneous solution vanishes, that is, if n # 0, then
ay, = 0. In [14], the authors provided an argument in support of this con-
jecture for every non-zero Fourier term for A = 12, k = ¢ = 3/2 (the zeroth
term can be dealt with with the help of Ramanujan summation formulas).
We do not prove this conjecture in this article. However, the special choices
of fnlm (y) made in each case in order to obtain a unique boundary condition
imply that a,, can be evaluated with certain convolution series on divisor
functions. Following methods similar to those of [9] and [2], we show at least
for one choice of parameters and the zeroth coefficient (Section A.1.4), the
formal vanishing of the homogeneous part follows from a certain derivative
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of the Ramanujan identity. If we want to deal with the non-zero Fourier co-
efficient, we would have to prove a more general version of the Ramanujan
identity.

1.5. Application to large N expansion of integrated correlators

In [2], the authors gave an evidence that generalised Eisenstein series that
arise in coefficients H(q, 7,7) of even terms in the 1/N up to order 1/N? in
[2, (2.11)]. To be more precise, [2, (2.11)] expresses 92, log Z|,n—0 p=1, that is
a fourth derivative of the squashed sphere partition function of the N = 2
theory with respect to the squashing parameter b = 1 and mass parameter
m = 0. In Sections 5-8, we derive the Fourier coefficients for the generalised
Eisenstein series appearing the first few terms of the large-N expansion of
97,108 Z | m—0,p—1-

If we denote by E(r, k, ¢; z) the modular functions that satisfy the inho-
mogeneous Laplace equation

(A =7r(r+1))E(r,k, b; 2) = —4C(2k)((20) B (2) Ey(2),

where ¢ denotes the Riemann zeta function, then 1/N? contribution from
[2, (2.13)] is conjectured to be equal to

14175 1215
T ( ) C1+ 704714 5(6 g’ %) - 8871’46(4’ g’%)

for some constant Cf.
With the help of the method described in the article it is possible to

show that
14175

Ch+ mg(fi, %, %)

1215
884

8( g % 01+ZT 2n 27rinr’
neZ

where for n # 0,

T-2,(y) = Con/yKg2(27|nly) + Cs.n/yK13/2(27[n[y)

+ Z T*Q,nl,nz (y)

ni+no.=n

for some Cy,, and Cj3 ,,, where for ny +ng # 0 and ning # 0,

(6) T 2m,m2(y) = —In1*Inalo_a(|nal)o—2(|nal)
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X Z w’L,] 27T|n1’y) (27T’n2|y)
4,j=0

for
27no
7r6(n1 +n2)12y4
x (25200n¢ — 201600n3n; + 441000n1n3 — 352800n3n3 + 88200nin;
(76307r n§ — 70840m%ngn] + 72460m°n3n8 + 21020073 n3n?
— 8924072 ngn] — 1190807°njns + 29620m*nSn? + 200w%nin,
+ 107*n3) y?
+ (235m*n1° — 41807 non] — 18997 n3nt + 268487 n3n]
+ 358387 inan$ — 3624 nint — 232707 nSnt — 6784n nIn?
+ 1383x% n2n1 + 287 n2n1 + 7min lo)y ),
9
7T7(n1 + n2)13y5
x (—75600n3n] 4+ 529200n3n] — 793800n3n} + 2646000507
+ (210720 + 94507 %nont — 3517207 n3n] + 5871607 n3ns
+ 11592007%n4n3 — 675360m°n5n; — 66528072nSn?
+ 22176072 nin? + 630772n§n1 + 307T2ng)y2
+ (457init + 23857 nant’ — 63642 n3n] — 282187 n3nt
+ 381438 ngn] + 4796227 n3n$ — 1026727 nSn
— 3493921 nIn] — 842437 nSn? + 2691374 nIn?
+ 4027*n lonl +187*n 11)y4
+ (207%non}? — 11407%n3nt' — 19407°n3ni® + 100047%n3n]
+ 34632750508 4 3775275nSn] 4 738475nIn8 — 15960750303
— 1167675n3n] — 19887%n10n3 4 25275nitn? + 47r6n12n1)y6),
9nsy
m'ny(n1 + ne) 3y
— 264600nin3 + (606907r n{ — 454230m°ngn + 3110407%n3n]
+ 13104007%n3n$ — 357840m%ngns — 7610407>n3n]
+ 882007%ndn 4+ 7560m*nini + 630m’n5ny + 30m°n3)y?
+ (58507 ni! — 625507 non i — 53577r n3n] + 352947 nin?

wo,o(y) = sgn(n1)

wo,1(y) = sgn(n1) sgn(ng)

wi0(y) = = (75600n] — 529200n5n; + 7938001703
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+ 5082487 ngnT — 500881 n3ns — 34282274 nSn? 4 3nini!

— 1027027 *ndnt + 212227 n8n? + 13987 ndn? + 877 ny’n; )y?
+ (20750} — 11407%n5n1® — 194075030 " + 100047°n3nt°
+ 346327%n3n 4 377527%n3nt 4 73847%n$nT — 159607 nIn$
— 116767%n3n} — 19887°nIn] + 2527°n"nd + 4n%nj'nd)yP)

9sgn(ns)

70n1(ny + ne) 2y
+ 16335600303 — 1157280n n3 + 81240n5n3 + 6960n3ns + 600n,1]

+ (1507?11 + 69607m%non] — 218082m2n3nt + 31550472 n3n]

+ 757824m%n3n8 — 28507212 n3n] — 4464007%nSnT + 6052872 nIn?

+ 47947°n8n? + 38477 nyny + 1872n 10)y2

+ (57'n}? + 4207 non it — 130257 n3ni® — 31967 n3n?

+ 892027 ngnt + 1169527 n3nT — 90267 nSn8 — 738007 nIng

— 232717*n3n] + 36521 ndnt + 1477 nd"nt + 4ntng'ni)yt).

30n5 + 21008 + 9240n]ny — 451680n°n3

wl,l(y) - 12 4(

The cases n1 +ny = 0 or nyne = 0 can be obtained by a certain limiting
procedure.
The 1/N3 contribution from [2, (2.13)] is conjectured to be equal to

047"5(3, %’ %) + Z O{rc‘:(r, %’ %) + ﬁ7’8(T’ %7 %) + 77"5(7'7 %7 %)7
r=>5,7,9

where a;, B;,7, are not the same as in Theorem A but are defined in [2,
(2.14)]. We can write the expression above as

> Togn(y)e™,

neL

where for n # 0,

T_5n(y) = Canv/yK72(2m|nly) + Cs.n/yK11/2(27[0]y)
+ Co,n/yK15/2(27[nly) + C7.n/YK19/2(27|N]Y)

+ Z T—3,n177’b2 (y)

ni+ne.=n
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for some Cj,,, j = 4,5,6,7, where for ny +no # 0 and ning # 0,

1
T—3,n1,7’12 (y) = Z ’UiJ(y)Ki(zW‘nl’y)Kj(27T’n2‘y)7
i,j=0

where v; j(y) is some rational function on y.
2. Method of solution

In this section, we outline a method for finding the Fourier expansions of
solutions f(z) to equations of the form

(7) (A= XN)f(2) = cre C(2k)C(20) Ey(2) Ee(2)

where A =r(r+1) for r € Nand k,{ € Z~o+1/2, and ¢ ¢ is some constant
depending on k and ¢. The constants ¢ ¢ € C are chosen for the convenience
purpose and to shorten the outcome. For the particular k, /¢ for which we
write down the exact solutions, we let

4, k=(=3/2,

—6, k:3/27€:5/27
Ck,g =

9, k=(=5/2,

30, k=3/2,0=7/2.
We start with recalling that for Re(s) > 1,

ES(Z) _ Zams(y)e%m’nx’

nez
where
s Vl(s — l)C@S —1) 1—s
s 0) =V TG )
and for n # 0,
®) o) = eyl 2 ean) VK, @alnly).

where for z € C and n € N, 0:(n) := >_,, d* is the divisor function [18,

p. 278]. We note that in the notations of [2, (2.10)], Es(z) = mE(s, 2,%),
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and thus

9) AC(2k)C(20)Ey(2)Ey(2) = E(k, 2, 2)E(L, 2, %).

This expansion implies that for £,/ > 1

(10) Ck,¢ C(Qk)C(QK)Ek Z S 27rznz
neZ
where
(11) Sa)= > sum)
ninzgz

for sn, m, (¥) = cke C(2k)((20)an, k(y)an, (y). Explicitly, each sp, n,(y) can
be written as follows:

(a) For ny =ng =0:

50,0(Y) = ke C(2k)C(20)y*H + Cre C(20)y" he VL (K %) (2k —1)

T'(k)
(¢ — 1 _
+ e (2k)y' T vt F?Z)C(% 1)
T o k_omL(k — %)F(Z - %)C(% —1)¢(2¢ - 1)
e T(k)T(0) .

(b) For ny =0, ny # 0:

C(2k
s0(0) =SB S,y (onlaly

N

¢k, Y2 (k — $)¢(2k — 1)
L(k)L(0)¢(20)

X y3/2*kK£_%(2wyn\y).

In|" 201 _90(|n))

(¢) For ny #0, ng =0:

2cp g7k C(%)‘ |k—%
L'(k)C(2k)
2k (TF LT (0 - 1)¢ (20 - 1)‘ -
(0T (k)C(2k)

sno(y) = —o(In)y 2K, 1 (2ninly)

1
2

1
201 ok (|n|)
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X y3/2_eKk_%(27T|n|y).
(d) For ning # 0:
461c gﬂ'k—"_e k—l g_l
12 N1 s = —"— 2 201_ _
( ) Sny, (y) I‘(k:)l“(ﬁ) |n1’ ’n2| 01 2k(|n1|)01 2€(|n2‘)
X ka_l(27r]n1\y)KZ_l(27r\n2|y).
2 2

To solve (7), note that the Fourier expansion of the right is given by (10).
Although we do not assume the SLs(Z)-invariance of f, we do require that,
for z = o + iy, f(2) is periodic in the z-direction with period 1. Given this
assumption, the differential equation, (7), can be equivalently stated as the
simultaneous differential equations on the Fourier coefficients, f,(y), of f(2):

(13) (205 = X — 4n*n*y®) fu(y) = Suly), n €.
We express

(14) fn(y) = Z fnl,n2 (y),

ny,mg €L
ni+na=n

for fnhnz (y) satisfying?

(15) (202 — X — 47 (n1 + 12)*Y) frr e (U) = Sy ma (9)-

Each solution of (15) can be written as a sum of a solution, f n,(Y), of the
homogeneous equation

(16) (y202 — X — dn?(ny +n2)%?) fH (y) = 0,

2There is an ambiguity in the decomposition (14) of f,(y) into a sum of solutions
of (15) since fu,.n,(y) is not uniquely defined by the property that it solves (15).
However, by (16), any f,ﬁ n,(y) depends on the sum n; +ny but not on the individ-
ual values of n; and ny. Hence ffi n,(y) can be simultaneously added to fu, n,(y)
and subtracted from f,1 ; (y) for any n}, nj if n} +n5 = n;+ny. Below, we make the
decomposition (14) unique by demanding certain boundary conditions on fnl,nz (y)

for y — oo and y — 0 (for the motivation for imposing boundary conditions, see
Section 1.2).
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and a particular solution, ffﬁ,nz (y), of (15). Thus,

(17) Frima@) = FL s ) + FE L ().

We note that for A =r(r+1), r € R and ny +ng # 0,

e W) = iy VUK 112(270 |01 + n2y) + Bry o v/l 11/2(27 |01 + m2]y)

for some an, n,, Bnym, € C. However, for 3, », # 0, the function ;{{1 s (Y)
grows exponentially as y — oo, that contradicts (5). From this we deduce

that 8y, n, = 0 and thus

(18) P @) = iy g VI 41 2(27 |1 + naly)

for some ay, n, € C. We note that for Re(r) > —1/2 and y — 0, [3, 10.30.2]
implies

: 1
(19) s (W) = 0y nay ™ (510 720 (r + 3) + O(4%)).
In the case where n; +ng =0, for A=7r(r+1),r € R, r # 1/2,
f'f{{,n2 (y) = Oénhnzy_T + ﬂnlynzyr+1

for some o, ,, Bnyn, € C. If we demand £ | (y) = o(y™*!) as y — oo, we
would have to take 3, n, = 0 and thus

(20) Aﬁ,nz (y) = am,nzy_r'

It remains to find a particular solution, ff; o (y). In what follows we as-
sume that the solution is a linear combination of special functions multiplied
by rational functions. We find the explicit constants which appear in front
of these special functions by solving systems of certain linear equations. In
Section 3, we describe in more details which system of linear equations need
to be solved depending on the values of (nj,ns2). More precisely, we will
consider the following cases:

1. In Section 3.1, we will consider the case nins # 0.

2. In Section 3.2, we will consider the case when exactly one of n;, i = 1, 2,
is equal to zero.

3. In Section 3.3, we will consider the case n1 = ngy = 0.
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Finally, in Section 9, we will show that the sums > . fnhnz (y) converge
for each n (at least in the physically relevance cases we have considered in
Sections 5-8).

After we outline the strategy of finding solutions, we provide in further
sections explicit examples of such for some physically relevant A, k and £. We
stress that we are able to find the solutions as functions of n; and ny without
restricting ourselves to any particular values of ny and ny. More precisely,
we write down the explicit solutions for f(z) in the following cases:

I. A=30,56 and k = £ = 3/2 in Section 5 (we omit A = 12, because it has
been treated in [9]),

II. A =20 and k =3/2, £ =5/2 in Section 6,

III. A =30 and kK =¢=15/2 in Section 7,

IV. A=30and k= 3/2, £ ="7/2 in Section 8,

V.i=2and k=¢=3/2; A\ =6 and k = 3/2,{ = 5/2; A = 2,12 and
k=¢=5/2; and A =12 and k = 3/2,¢£ = 7/2 in Section A.

We have not included the solutions of the differential equations that would
cover the full expansion of 92 log Z lm=0p=1 up to the order 1/N 3 to keep
the length of the article reasonable.

3. Particular solutions

In this section, we explicitly describe the system of linear equations that
finds a particular solution of (15), depending on the values of (n,n2). As
noted in Section 1.1, the convergence of the solution will depend on the
explicit form of f , (y) and f (y) (as given in Sections 5-8). Thus the

ny,n2
proof that these solutions converge will be given in Section 9.

3.1. Solutions to (15) for ning # 0

Substituting (12) into (15) and denoting

4ﬂ.k+€
(K)C(2R)T(£)C(2¢

we obtain a differential equation on g:

;P k—l Z—l
fnl,nQ(y):F )|n1| 2|no| " 2010k (n1)o1-20(n2)9(y),

(21)
(—4m?y®(n1 + n2)? + y°0; — N)g(y) = yKy—1/2(2m|n1ly) Ko_y1 j2(27|naly),
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or

(22) (—47?2y2(|n1| + sgn(n1n2)|n2|)2 + y28§ — )\)g(y)
= yKy_1/2(27[n1|y) Ko_1 227 |n2]y).

We introduce the notation
2
P, = 747T2y2(|n1| + sgn(n1n2)|n2|) + y28§ - A

In this notation, (22) reads
(23) Prg(y) = yKy_1/227|n1|y) Ko_12(27[n2ly).

IfkteZ+ %, then, using recursive formulas for the modified Bessel
functions as in [3, 10.29(i)] — or, for the particular choices of k and ¢, as in
Section B.2 — we can rewrite the right hand side for (23) as

1
(24) > 0 (y) Ki(2m|nay) K (2n|naly),
i,j=0

where h%J for each 4,7 € {0,1} is a polynomial in y and y~*.
We note that for any a,b,c,d € Z,

(25)  Pa(y*Ko(27|n|y) Ko(27|n2ly))
= (—sgn(n1ng)8m%|n1l|n2ly* ™ + a’y® — \y® — ay®)
x Ko(27|n1|y) Ko(2m|n2|y)
+ (27|naly ™t — dm|ng|ay™tt) Ko(2m|na ly) K1 (27 [naly)
+ (2m|na |yt — A |ay® ) K1 (27| na y) Ko (27| n2ly)
+ (87 |na|[na|y®?) K1 (27 |n1 |y) K1 (27 |naly),
(26)  Px(y"Ko (27| |y) K1 (27 |naly))
= (2m|naly®™ — dmblno|y®t) Ko(27|n1|y) Ko (27 |noly)
+ (beb — sgn(n1n2)87r2]n1 \ |n2]yb+2 — )\yb — 3byb + 2yb)
x Ko(2m|n1|y) K1(27[naly)
+ (87 |na [naly"*?) K1 (2| na|y) Ko (2| naly)
+ (6naly®™ — 67b|na|y" ) K1 (2 |naly) K1 (27 |noly),
(27)  PA(y°K1(2m1|n1|y) Ko (27 |naly))
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= (2n|m |yt — dm|na ey ) Ko(2mna |y) Ko (27| naly)
+ (87 |na|naly™*?) Ko (27 |na|y) K1 (27 |na|y)
— (sgn(n1n2)287r2|n1Hn2|yc+2 — Ay° 4+ M€ + 3ey© — 2yc)
x K (2m(|n1|y) Ko(2m|n2ly)
+ (67|nay*™ — Ax|no|ey“™) K1 (2 |n1|y) K1 (27 naly),
(28)  Pa(y'Ki(27|m|y) K1 (27|naly))
= (8m%|n1||n2ly®*?) Ko(2n|n1|y) Ko(27|nay)
+ (67|ny[y™t — dm|ng |dy®t) Ko (27 |na |y) K1 (27 |naly)
+ (67[na|y®™ — dm|ng|dy™") K1 (27| na |y) Ko (27 na|y)
— (sgn(n1n2)87r2\n1|]n2|yd+2 — &Py + \y? + 5dy? — 6yd)
x Ki(27|ni|y) K1 (27 |naly).

If we assume that a solution of (22) can be expressed as a sum

1

(29) 9(y) = Y 0" (y) Ki(2m|na|y) K;(2|naly),
i,j=0

where ¢/ are some polynomials in y and y~!, then ¢*/ can be found by
solving a system of linear equations on the coefficients of ¢*7. More precisely,
assume that
maxdeg ¢/ = M, mindegq"™’/ =m.
,] 2¥)
Then each of ¢ for 4,57 € {0,1} is parametrized by (M — m + 1) complex
coefficients.
On the other hand,

1

Pa(9) = Y _ ¢ (y)Ki(2m|nay) K (27 |naly)
i,j=0

for some polynomials §*/ such that

maxdeg @’ = M +2, mindegg™’ =m.
17] Z?]
Thus, (23) can be equivalently written as 4(M +3—m) linear equations with
4(M — m + 1) variables: the variables are exactly the coefficients of ¢, and
the linear equations come from the requirement that h*/ = g*J.
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We note that as one can see from (25)—(27), the corresponding matrix
of the system of linear equation is a band matrix, that simplifies the calcu-
lations.

The possibility of writing g in such form depends on k, ¢, \, M and m.
Below, we write down some elementary limitations on the set of parameters
that are needed in order for a solution of such form to exist. Further in the
article, we speculate on possible connection of restriction with the differential
Galois theory.

Proposition 3.1. A solution to (1) of the form (29) with the condition

min degh®™ > min degq®™’
i,j€{0,1} i,j€{0,1}

does not exist unless X is of the form r(r + 1) for r € Z-y.

Proof. We note that from h%J = G/, the equality

min degh®™ = min deg g™’
i,j€{0,1} i,7€{0,1}

must hold, that implies

min deg@”’ < min degq™.
i,j€{0,1} i,j€{0,1}

Together with (25)—(28), the inequality above implies that there exist
a,b,c,d € Z such that at least one of the following equalities holds:

a2—A—a=0,
¥—A—-3b+2=0,
A —-X—3c+2=0,
d> =X —5d+6=0.

That implies the statement of the proposition. ]

Additionally, we prove the following elementary proposition:

Proposition 3.2. A solution to (1) of the form (29) does not exist unless
kel+Zandlei+Z

Proof. We give the proof for k by contradiction; the proof for ¢ is similar.
Consider the right hand sides of (25)—(28). Although we have assumed nq, no
to be non-zero integers, the formulas above would hold if we let ni,ns be
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non-zero real numbers. Keeping that in mind, we let ng = ny(y) = i depend
on y. Having fixed the product of ne and y and keeping in mind asymptotic
expansions of the modified Bessel function of the second kind, we consider
the corresponding asymptotic expansions of Py 1¢(y) for y — 0 only to find
integer powers of y and log(y).

On the other hand, if & # 0, the asymptotic expansion of
yKy_1/2(2m|n1|y) Ky_1/2(27) as y — 0 contains only terms of the type
yF 12+ for x € Z. Thus, k € Z + 1/2. O

In what follows, we give explicit solutions to (22) for some physically
relevant combinations of k, ¢ and .

3.2. Solutions to (15) for nyng = 0, but not both zero

Without loss of generality we assume n; = 0,ns # 0. We note that if we
find g1 and g9 that satisfy

1
(47?2 o) + 4202 — N) g1 (y) = y2 T Ky jo(27naly)
or
3_
(—4my|nal® + 5202 — N)g2(y) = y2 Ky o(2m|naly),

then the function

27'('Z eil
S — 2
F(E)C(QE) ’TL’ Jl*Qf(n)gl(y)

2n 2Dk — )¢(2k 1), 1
: n|""201_20(n)ga(y)
I'(k)C(2k)I(£)¢(20)
solves (15) for n; = 0 and |na| = |n|.
We assume that each of g; with ¢ = 1,2 can be represented as the

following sum:
1

> P (y)K;j(2mnaly),

j=0
where p/ is a polynomial in y and y~!. We note that for g, h € R,

L (29Ko(2m|naly)) = ((9 — 1)g — X) 29 Ko(27|n2|z)
+ 27 |no|(1 — 29)x9 T Ky (27| ng ),
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Ly (xhKl(QW]n2|y)) =(-A+(h—3)h+ 2)xhK1(27T|n2|:c)
+ 27|nsg|(1 — 2h) 2" T Ko (2n|ng ),

for Ly := —4m?y®|na|? + 4?02 — X. Let

max degp’ = M, min degp’ =m.
7€{0,1} 7€{0,1}

Then, in order to find coefficients of p’ for j = 0, 1, we have to solve a system
of linear equations with 2(M — m + 1) variables, that are coefficients of the
polynomials p/ for j = 0,1, and 2(M — m + 1) + 2 equalities on coefficients
at

M+2 1

U Uy K;@rlnaly) }-

f=m j=0
3.3. Solutions to (15) for ny =ny =0

We note that in order to solve (15) for ny = ny = 0 it is sufficient to find
solutions of

(V202 = Ngly) =y, ji € {k,1 -k} and jo € {£,1— ¢},

A particular solution can be easily constructed as products and sums of

log(y) and polynomials in half-powers of y and 3.

4. Differential Galois theory

This article gives explicit solutions for specific combination of k, £ and A =
r(r 4+ 1) with » > 0 listed in Section 1.1; however, experimentally we were
able to compute solutions for other combinations of k, ¢ and A using the
same methods outlined above.

Finding solutions for large k, ¢ and A involves solving a systems of linear
equation for a large number of variables. This becomes computationally
challenging, even though the corresponding matrices are band matrices. We
obtained that a particular solution of (15) is of the form (24), at least, in
the cases where

(30) k(€Z+3%, k+l+r€2Z, |k—t<r
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and
(31) 1<k<30, 1<¢<30, 0<r<l15.

Note that the functions that appear in [2, (2.11)] satisfy the condition above.
We note that we did not check the convergence of the solution in each of
these cases.

Below, we make a conjecture that the solution are “nice” if (k,¢,~) be-
longs to (30), regardless of how large each parameter may be. Discussing in
which way they are “nice” would require some basic facts from the differen-
tial Galois theory, that we outline as follows.

The fundamental system of the homogeneous solution of (16) is well-
known for any values of r € R and involves the modified Bessel functions
(see (17)). Moreover, it is possible to show? that modified Bessel equations,
K, can be expressed via elementary functions if and only if their index, 7,
belongs to % + Z. In our notations, this corresponds to demanding r € Z.

Recall [12, Chapter 3] that a differential field, K, is a field together with
a derivation (i.e. an additive map that satisfies the Leibniz rule, d(ab) =
0(a)b + ad(b)). An elementary example of a differential field would be the
field C(¢) of rational functions over C together with a usual operation of
differentiation. Solutions of the type (24) belong to a particular object in
differential Galois theory — namely, they belong to a certain Picard-Vessiot
extension of a differential field. A differential field P is called a Picard- Vessiot
extension of the field K, if there exists a linear differential equation with
coefficients in K such that P is obtained from K by adjoining a fundamental
system of solutions of this differential equation.

When ny,ns € Z \ {0} with n := ny 4+ ng # 0, the differential field, P,
that we are interested in can be obtained by adjoining to C(¢) solutions of
the equations

(32) (v°0; — ax’nly® +1/4) f(y) = 0,

(33) (y°0; — 4n*n3y® +1/4) f(y) = 0,

and

(34) (yza,? —r(r+1)-— 47r2(n1 + n2)2y2)f(y) = 0.

3For J-Bessel functions, the proof can be found in [15, Appendix]; we can obtain
the same statement for K and I-Bessel functions by exploiting formulas relating
Bessel functions to each other.
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We note that P contains /y Ko(27|n1|y) and |/y Ko(27|n2|y) by construc-
tion. Since it is an extension of C(t), it also contains any sum of the type

n
ZajyjH/QKo(Qﬂ]nl\y), n € N,a; € C.
=0

Moreover, the recurrence relation between Ky and K; implies, that P con-
tains any sums of type

Z by PY2 K (2nnly), neN,b; e C.
=0

Thus, we obtain solutions of the type (24) belong to the field P that we have
just constructed.

On the other hand, we can reformulate the inhomogeneous differential
equation (15) as the following homogeneous differential equation of the third
order on gn, n,(y):

(35)

0 <(y28§ — A — 47 (n1 + 12)%Y?) gns o (y)>
9 = 0.
82/ 8”1,”2 (y)

We note that for any solution (35) there is a constant ¢ such that g, n,(y)
is a solution of

(y28§ - A= 47T2(7'L1 + n2)2y2)gn1,n2 (y) = CSny,ns (y)

And, on the other hand, every f,, n,(y) is also solution of (35).

We will prove in this article, that for certain k, ¢, A, the function g be-
longs to P simply by providing an explicit solution. Moreover, every solution
of (35) is of the form cign, n,(y) + c2f(y) where f(y) is a solution of (34)
and c1,co € C. Note that f(y) € P, thus the Galois group of (35) is trivial.
On the other hand, calculations with the help of system of computer algebra
suggest that it is also trivial for all k, ¢, A satisfying (30) and (31).

Conjecture 4.1. Let P be a Picard-Vessiot extension of the field of rational
functions over C, obtained by adjoining solutions of (32)—(34). Then the
Galois group of (35) is trivial in the category of algebraic groups if k,¢,r,
however big they are, satisfy (30).

However, proving or disproving this conjecture is beyond the scope of
this paper. There are certain related results, see [16], where the authors
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present the algorithm that calculates the differential Galois group of a third-
order homogeneous linear differential equation. Specifically, in the case where
k,? € Z, the product of modified Bessel function in the inhomogeneous dif-
ferential equation will become a product rational functions and exponentials.
It appears that methods of differential Galois theory may be more directly
applicable to this context for k, ¢ € Z.

5. k=0=3/2
In this section, we solve

(A =N f(2) = —(2(3)E3a(2))?, z=a+iyes

for

=Y > fun@e™™

neZ ni+na=n

in terms of fu, n, (v) = £, (0) + FIL 1, (0):

When n; = ny = 0, foo(y) contains no K-Bessel or divisor functions
and is given by a a polynomial in y and 1/y below. For nyny = 0 but not
both zero,

oa(n)

(36) fon(y) = flo(y) = =167 > vi(n,y)Ki(2nnly),

7] i=0,1
for ning # 0 and ny 4+ ng # 0,
(37)

PP y) = —gan2 22n)oa(n2)

In1ns| Z ni.j(n1,n2, y) Ki (271 |y) K; (27 |naly),

i,j=0,1
and for ny = —no,

2 02(n2)o2(n2)
[na|?

X Z tij (n2, y) Ki(2m[na|y) K (2mnaly),
(4,7)€{(0,0),(0,1),(1,1)}

(38) fL,, 1, (y) = —647

—MN2,N2

where v;,7; ; and p; ; defined below depending on each value of A.
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51. A=30
This case corresponds to [2, Section C.3.1] with r = 5.

5.1.1. n; = 0 and ny = 0 Any solution of (15) for ny = ng = 0 is equal
to
105y%¢(3)? + 56m2y%((3) + 107t agp

£ 6
fooly) = 6307 5 + Booy

for some c1,co € C. Its asymptotic behavior for y — 0 can be described by

foo(y) = anoy™.

At this moment of time, we do not choose ag — that will be reserved for
Section 5.1.4. Our goal would be to choose o in such a way that

Z O, —pn = 0.

In our notation and after the evaluation of the Riemann zeta function at
even integers, the first three summands of the first line of [2, (C.27)] read

3 2 4

6 45

that coincides with our result.

5.1.2. minz = 0 but not both zero Though this case of o = ¢ = 3/2
and A = 30 is generally addressed in [2], we note that the term f(f o (y) was

not found explicitly. For f(f »(y) as in (36), we have

126y~3 35y~ ! y
vo(n,y) = sgn(n) [_C(3>( noo n3m3 + 2T

3y !
+2(2) (5n37r3 T onr )|

—4 _9 4 L
Vﬂmy%=—d®(1%y P )+2qm<3y Ly )‘

nOx6 nitt  2n2x2 5nidnt  15n272

Its asymptotic behavior for y — 0 can be described as follows

_ 4803(n)(7*¢(2)n* — 105((3))
5m6n8yd

(39) fonly) =
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n 32(m*¢(2)n* — 105¢(3))02(|n)) n O<i>‘

157T4n6y3 yz

The unique choice of ay, o = v, that gets rid of the O(y~>)-term in f(fn(y)+
fih(y) is

1024(7w2¢(2)n? — 105¢(3))o2(n)
1575m|n|>/2

(40) Oém() = Oéo,n = —

5.1.3. ning # 0 and ny + n2 # 0 In [2, p.46], many terms? in the
perturbative expansion ffl n, (y) were evaluated. However, these values were

not explicitly written or evaluated in full in [2]. For Afl n,(y) as in (37), we
have

-3

Yy °nine 126
Mo,0 =sgn(ning) m?
1

Yy T ning 2
(’I’Ll + TLQ)B ﬁ

yning 2
(n1 + 712)6 B

_ y~tnin? 126
10,1 =sgn(n1) (o)1 75

-2

(n‘l1 — 6n:fn2 + 10n%n% — 6n1n% + n%)
(89n1 — 792n3ny + 1598nin3 — 792nin3 + 89n3)
(5n1 — 92nins + 190n3n3 — 92n1n3 + 5n3) |,

(fn‘i’ + 5n2ngy — 5nyns + ng)

o 2 4 3,2
+ 53y ngy BT+ 99ning — 2728nin3

+ 6512nin3 — 3611nin; + 493n3)
= (513 + 147n%ny — 2614n3n3

* 307 (ny + ng)”

+ 5726nin3 — 2799n1n; + 239n3) |,

y~tniny 126
e

2
Yy "na
5731 L m2)? (493n7 — 3611n1ny + 6512n7n3 — 2728n7n3

(n} — 5ning + 5nin3 — nj)

+ 99n1n§‘ + 3ng)

4Powers of around D-instanton contributions with n # 0, that include the in-
stanton sectors of (n1,n2) = (2,0),(1,1), (1, -2), (1,—3), (2, —3) were found.
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o 5 4 3,2 2 3
+ 30m(ny £ ) (239n] — 2799n7ns + 57260 n; — 2614nin;

+ 147n1n3 + 5ng) )

M1 —ij)m (3n% + 102nTny — 3399nin3 + 8124n7ns — 3399nin;
+102n1n5 + 3n9)
* m (7n§ + 220n3ny — 4727n1n3 + 10280nin3
— 4727n3n3 + 220n1n3 + Tnf)
%% (5n1 — 92nng + 190n3n3 — 92n1n3 + 5nj).
Note that
(41)
il e (y) =—16y7° o3(n1)oa(n2)

5|ninal?mt(ny + ng)lt

X ((126011?71% — 6300n1n3 4 63001313 — 1260n%ng) log (|n1/mn2])
+3n] +105n8ny — 3297020 4+ 105n1nS + 3nd — 3297nin3
+ 4725n3n5 + 472571‘11713) + o(y_5).

We recall that by (19),

Aﬁ,nz (y) = am,m\/gKS-&-% (271-‘”1 + n2|y)
945
647°|ny + ng|11/2y5

+ o(y_5).

= Qnyny

Comparing the right hand sides of the two previous formulas, we obtain that
there is a unique choice of ay, ,, that guarantees that

Funana @) = Fir )+ Jit () = 0(y77),

as y — 0 given by

10247og(ny1)o2(ng) sgn(ny + na)
(42) an,m, = 2 11/2
4725|n1n2\ |n1 +n2| /
x (3n] 4+ 105n$ny — 3297ning + 1050103 + 3ns — 3297nin3
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+ 47251303 + 4725n1n3 + 1260n3n3 log (|n1 /na))
— 63001175 log (|n1/na|) + 63001303 log (|n1 /nal)
— 1260n3n3 log (In1/na|T)).

Moreover, it is not complicated to check that for fixed values of n,
(43) Qn—nyn, = O(|n1\*4), |ni| — oo.

5.1.4. n1 = —ngy This case has been considered in [2, (C.29)].
For fF nam, (¥) as in (38) we have

_ y ! Yy 8nin2y3 _ 512n3mty®  16384nS70y”
HOO = 1100272 " 110~ 1155 17325 51975
—2 2 3.-3,4 55,6
- Y 3 dnomy 256nymoy 8192nsmy
Ho = sgn(n2) (55n§7r3 T Tlomer T 385 17325 51975 )’
oy N y ' 1Ty 8n3r*y®  512ngmly° 16384nSm0y”
PLU= Tondrt " 55n2r2 770 1925 51975 51975

We note that

. 2 1 1
44 P _ _g®2(m)” o(=)).
( ) —MNa,Na (y) |n2|2 557r4ngy5 + y

The unique choice of a_p, ,, that gets rid of the O(y~>) term in the expres-
sion above is

802(n2)2

45 - = s
( ) QA —ny,n, 557T4|7’Lz|8

Summing it up and using (99) for a = 2,b = 2 and s = 8, we obtain

S ol _Glels— a)ols ~ bl —a )

Na=—00,n2#0 |n2‘8 N C(Qs_a’_b) a=2,b=2,5=8
143712
58769550’
and thus
[o@)
5278 104¢(8)
46 _ — — _
(46) Z G-namz = 146023875 31095

ne=—00,Nn27%0
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This means, that Zz:_oo’n#(] f{fnz’nz (y) = %ﬂg?y*? Motivated by the
desire to have the contribution from the homogeneous elements to be equal
to zero, we obtain o = — 1;3;%5?. This matches® the last summand in the
first line of [2, (C.27)].

5.2. A =56

This case corresponds to [2, Section C.3.1] with r = 7.

5.2.1. n; = 0 and ny = 0 The solution of (15) for n; = ng = 0 is equal
to

" 3402y*¢(3)% + 20257%y2((3) + 3507 ¢ 5
fooly) = 42525y Tty

for some c1,co € C. Its asymptotic behavior for y — 0 can be described by
foo(y) = % We do not specify the choice of ¢; for the moment, but we
can set ca = 0 so that the O(y®)-term vanishes. We note that the first three

summands® of f070 (y) coincide with the first three terms of the second line
of [2, (C.27)].

5.2.2. nins = 0 but not both zero Though this case of k = ¢=3/2
and A\ = 56 is generally addressed in [2], we note that the term f(f o (y) was
not found explicitly. This term is given by

Fnt) = ol = —16n 28

> viln,y)Ki(2minly),

3,j=0,1

with

30888y°  10692y~3 126y~ ! y
Y 5ndmd n3m3 2nm

() = seno)| -6 (3)

286y 0 99y 3 y !
20(2
+ 2 )<35n57r5 35097 | 6nm ) |
30888y %  26136y~% 3402y~2 14
5n8m8 51676 Sndrd n2m?

() = ~63)(

286y~ 6 242y~%  9y~2
35n876  35ntwt  10n2n2

#2002

SUp to sign.
SHowever, our choice of ¢; does not coincide with [2, (C.27)] coefficient at y~7.
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The asymptotic expansion is

(47)
) = ) = 16720 (B S (1)

] 3575 |7y y°

There exists a unique choice of ag, = a0 such that f(f W (y) + fOHn(y) and
?Zo(y) + ffo(y) are of order o(y~7). More precisely,

13513500

_135135an0 -5
2567 [1|15/2y7 +0(y™°),

7 (0) = Vo n Ky (2mlnly) =

and thus we may set

8192(72¢(2)n? — 378¢(3))o2(|n|)
33075m|n|>/2 '

Qon = Qno =

5.2.3. ning # 0 and nq1 4+ nz2 # 0 Though this case of k = ¢ = 3/2 and
A = 56 is generally addressed in [2], we note that the term f(f »(y) was not

found explicitly. For f,ﬁ n,(y) as in (37), we have

y O niny 10296
ny + ng)l* 576

M0,0 =sgn(nins) ( (Bn? — 38niny + 140nin3 — 210n3n;

+ 140n2n3 — 38n1n3 + 3ng)
y*3 nino 22
(ny + ng)12 17574
—1907624nin3 + 1170813nin3 — 2607000113 + 17075n5)
n y~ ' ning
17572(ny + ng)10
—3778788nin; + 2255599nins — 445070010 + 22545n3)
2yning

525(711 + 712)8

(17075n§ — 260700niny + 1170813nin3

(2254515 — 445070nny + 2255599113

(17508 — 6510niny + 35745n1n3 — 61572nin3

+ 35745nin3 — 65100103 + 175n5))

y~Snin3 10296
ni —|—TL2)15 57

no.1 =sgn(n;) ( (—3nf + 35niny — 105nin3 + 105nin;

— 35n1m3 + 3ng)
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n y~ng 22
(n1 + ’I’L2)13 17575
— 3515111n¢nj + 2360373n7nj — 5794150115 + 41645n7)
i yim
1757T3(n1 + 712)11
+ 8955786n n3 — 15910621n3n3 + 9855297nn5

— 20666400113 + 120280n3)

n 7 6 5,2
175 9135 — 348825
+ 10507T(n1 T n2)9 ( nq + nina USRS

+ 1980687n ns — 3425931n3n;3 + 2035749n2n

(65n1+3965n9n; —283107nin3 +1865089nnj

(495n] + 287650 ns — 15015060713

— 384395110 + 15645n7)

y~n2ny 10296
ni —i—n2)15 57

71,0 =sgn(n2) ( (3n — 35nins + 1050503 — 105n3n3

+ 35n1n3 — 3n3)
—4 2
+ Yy "n2 (
(n1 + n2)13 17575
— 3515111n n3 + 1865089n3n3 — 283107n3n3
+ 39651115 + 65n])

-2
Yy "n2 7 6 5,2

+ s A (120280n{ — 2066640171, + 985529713 n5
— 159106210 n3 + 8955786n5n3 — 15015061315

+ 28765113 + 495712)

- 105%(2? 0 (15645n] — 384305nin; + 2035749070

— 3425931nin3 + 1980687n3ns — 3488250313

4164507 — 579415080 + 23603730502

+9135n1nS + 175n])

y—5

17576 (ny + ng)
+ 50271364n3n3 — 90631684nin; + 50271364n5n5

— 7388524n3n$ + 88660011 + 1430n3)

y—3

+ 17574 (ny + ng)'2

ma= (1430n + 88660n{ns — 7388524nin}

(1210nF + 72160n{n, — 4261268n5n3
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+ 259487361503 — 45143692nind + 259487361503

4261268n3nS + 72160010} + 1210n3)

y—l

* 35072 (ny + ng)10
+ 45228661703 — 77988060 N3 + 45228660315
— 785712ninS + 17550n1ns + 315n53)
2yning
525(n1 + ng)®

(315nf + 175500 ns — 785712n%n3

(17508 — 6510niny + 35745n1n3 — 61572nin;
+ 357451303 — 65100113 + 175n).
The asymptotic expansion is

(48) s (0) = - 17;5;;6%223(&11)?%25;/
+ 1499400308 — 1411200303 — 1411200507 + 149940n5n3
— 25524nn? + 315n8n, + 5n)

+ (7560n3n] — 88200n3n$ + 264600031} — 264600n5n]

+ 88200n5n7 — 7560nin) log(|n1/n2|)) + O (y~°).

- (5nf + 315nynf — 25524n3n]

We recall that by (19),

f'r{{,ng (y) = an1,n2\/§K7+%(277’n1 + n2|y)

135135 4 oly)
0 :
25677 |ny + ng|15/2y7 Y

= Qnyny

Comparing the right hand sides of the two previous formulas, we obtain
that there is a unique choice of a, n, that guarantees that fy, »,(y) =
s (W) T it s (W) = 0(y™7), y = 0:

(49)
1217536 sgn(ny + na)oa(ni)oz(n2) . 8 9 7
= 5n} + 315 — 25524
Onyny 236486257rn%n%|n1 + n2|15/2 ( nq nany USYS
+ 149940n3n8 — 1411200303 — 141120n3n7 + 149940n5n3

— 25524n2n? + 315050, + 5nd + (7560n2n1 88200n3n$

1
+ 264600031} + 88200n5n] — 7560n3n?) log(|n1 /nal)) + <—5>
Y
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Comparing the formula above with the leading terms in the asymptotic
expansion of n1 o (y) as y — 0, we get that there exists a unique choice

of an, n, such that fnhn2 (y) = fﬁm (y) + f?ﬁ,m (y) = o(y~"). Moreover, it
follows that for fixed n # 0,

(50) Op—ny g = O(\n1|78), |ny| — oo.
5.2.4. n1 = —ng This case has been considered in [2, (C.30)]. For
an,nz (y) defined in (38) we have
_5242887%n8y?  163847°n5y"  256m*njy°  8m?n3y’ 2
HO0 = T 441875 2480625 165375 4725 ' 175mindy3

Yy

* 175m2n3y o

2621447 nly® N 81927°n3ys N 128m3n3y!
7441875 2480625 55125

po,1 = sgn(na) (

6 1 4y,
+ 175m3n3y? + 175mon3y* + 945" '2Y + 1057Tn2> ’

5242887°n8y?  163847nfy”  256m'ngy°  8mniy’

7441875 7441875 275625 6615
4 2 3 23y

+ 175m4ngy3 + 175m6nSy5 + 175m2n3y 1890

p11 = —

The asymptotic expansion is

~ 3202(”2)2 1
51 r == L 0(=).
( ) —N2,Na2 (y) 1757r6\n2|10y7 + y4

Since f1 ama(U) = @y i,y ™7, in order to have

Afnz,nz( ) + f nz,nz( ) = O(y_7)7 y— 0,

3205 (ny)? o .
we must set a_p, n, = % Now it is time to decide on ag . We note

from (99),

0'2 ng 70727‘1’16
52 Ng,—MNg — = )
(52) nz;()a * 1757r6 Z 1695787498125

70728

and thus 0,0 = — 159577498135
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6. k=3/2and £ =5/2

In this section, for z = x + iy € § we solve

(A =XN)f(2) = —6C(3)C(5) E3/2(2) Es j2(2),

for

— Z Z fnth (y)627rinx

NnEZ ni+na=n

in terms of f,, ., (y) = ;fhnz (y)+ f . (y). In order to obtain £(X,5/2,3/2,
z,z) from [2, (2.13)], we use (9) to note that £(X,5/2,3/2, z,Z) can be ob-
tained from f solving the equation above by multiplying f by % Thus,

instead of —64 in (55), we need to take —122.

When n; = ny = 0, f070( ) contains no K-Bessel or divisor functions
and is given by a a polynomial in y and 1/y below. For njn; = 0 but not
both zero,

(53) fon(y) = =87 _a(m)[n* > vi(n,y) Ki(27|n|y)
i=0,1

and

(54) Fo(y) = =8mo_a(n)In| D viln,y)Ki(2n|nly),
1,7=0,1

and for nine # 0 and ny + ng # 0,

(55) L e (y) = =647 | [|na 20— (n1)o—4(n2)
XY mig(na,me, y) K27 |ng |y) K (2 naly),
i,j=0,1
and for ny = —no,

(56) [, 0. (y) = — 647%[noPo_5(n2)o4(ng)

x > i, (n2, y) K (2| n2ly) K (27| n2ly),
(5.0)€{(0,0),(0,),(1,1)}

where v;,7; ; and p; ; defined below depending on each value of \.
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6.1. A =20

This subsection corresponds to [2, (C.19)] with r = 4.

In what follows we find f n, (y) for different values of n; and na.

6.1.1. n; = 0 and ny = 0 The particular solution for n; = ny = 0 is
equal to

5 _ 1417545¢(3)¢(5) + 210072y (5) + 8474y2¢(3) + 4076 ¢

28 5
foo(y) 1890042 + /i + 2y
for some ¢y, co € C. Its asymptotic behavior for y — 0 can be described by
foo(y) = % and the leading term of the asymptotic behavior does not

depend on ¢; and cp. If we want to get rid of the O(y®)-asymptotic, we need
to set co = 0. We refrain for a moment from defining ¢;. However, we notice
that the first four summands in the r.h.s. of the formula above coincide with
the first four summands in the first line in [2, (C.21)].

6.1.2. ny =0 and ny # 0 For féjn(y) as in (53), we have

mn?(4¢(2) — 27¢(3)y*) — 126¢(3)
3mindy?

v(n,y) =

)

vi(n,y) = sgn(n)

(—126{ (3) + minty?(20(2) — 3¢(3)y?) + 2m?n*(2((2) — 45¢(3)y?)
’ 3mony3 > :

The asymptotic expansion of f(f 2(y) asy — 0is

8o _4(n)(m*n? — 189¢(3)) < 1 >
- + 0 .

9rintyl y2

There is a unique choice of ag,, that gets rid of the y~*-term in the asymp-
totic expansion of f(fn(y) + f(fn(y).

6.1.3. n; # 0 and nz =0 For f;:o(y) as in (54), we have

45¢(5)  33600¢(5) + 64mt¢(4)nt  ¢(5)y?
() = senn) (505 + OKIE AT I O
(128nm4¢(4) 4 67200¢(5))y 3 N 150¢(5)y~t N 9¢(5)y
320n676 ndmd 2n2m2’

Vl(”??/) =



616 Ksenia Fedosova and Kim Klinger-Logan

The asymptotic expansion of ff oly) asy = 0is

7T4 n4
gt (BRI ()

576|n|6y4

There is a unique choice of oy, o that gets rid of the y~*-term in the asymp-
totic expansion of ff’o(y) + f;fo(y).

6.1.4. niny # 0 and ny +nz # 0 For f£7n2 (y) as in (55), we have

y 2 7n1n§

2 2
—7T3(n1 n n2)8 (5n1 — 8ning + 3n2)

0,0 =sgn(ny) {

ny
+ m (377/1’L + 2677,?712 + 34871%71% — 81071171% + 14571%) )
Ly Tmng
m(ny 4 ng)?

y '

no,1 =sgn(n1) sgn(nz) [ (—5n1 + 3ns)

(3ni) + 29n1ny + 149n3n3 + 723n3n3

— 1820n1m3 + 460n3)
Yy 2n1ng
m (n:f + 15n%n2 — 45n1n% + 5n§) ,

—3,2,9

Yy nins

=— (3511 — 21
1,0 peTe nz)g( ni n2)

y—l

+ SomTin gy (31 + 29mitna 4+ 899ndnd — 1827
+ 190n1n3 + 10n3)
Y 2n1ng
15(”1 + n2)5

y—2

30nam3(ny + ng)8

(n? + 15n2ny — 45n1n3 + 5n%),

N1 = sgn(ng) (Sn? + 32n?n2 + 17871‘11713 + 872n?n%
— 2447nin3 + 200n1n5 + 10n3)

1
T 30m(n1 + 1a)® (4nf + 43nin, + 334n3n3 — 880n2n}

+ 1100103 + 5ng) .
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We note that

(57)
; —480-5(|n1[)o—a(|na])
P 2(|n1])o—4(|n2
Py =~y ol + m) (3n] + 35nfns + 210n7n3 + 1050nin3
+ 2100n3n3 log (|n1|7) — 2100n3n3 log (|ne|m) — 15750305
— 1260n2n3 log (|nq|7) + 1260n3n3 log (|ne|m) — 2247n3n3
+ 210m1n8 + 10n2) + o(y )
Requiring fn, »,(y) = o(y~*) gives us a unique ay,, ,, that cancels with

the O(y~*)-term. Comparing the formula above with the leading terms in
the asymptotic expansion of f,ﬁ n,(¥) as y — 0, we get that there exists a
unique choice of ay,, , such that fy, »,(y) = 7{{7”2( )+ nlm (y) = o(y™%).
Moreover, it follows that for fixed n # 0,

(58) Op—ny g = O(\n1|75), |ny| — oo.

6.1.5. ny = —ng For fF nam, (Y) as in (56), we have

B 1 2namy?  128n3m3yt  4096n570y°
Hoo = sen(nz) <36n27r T35 T ams 14175 )
B y~ ! Y 64n3m2y> 2048n%w4y5
HOL= 18n2r2 ~ 105 4725 14175
y 2 1 2namy?  128n3m3yt  4096n570y°
pi1 = sgn(ng) 33 + .
36n373  63ngm 525 14175 14175

The asymptotic expansion is

1 1
14472 |no|?y* 56y

(59) FF0(v) = —64ya_2<n2>a_4<n2>( 1+ 0<1>).

There is a unique choice of k_,, ,, such that

s )+ () = 0(y™) -

_ 4yo_a(n2)o_4(n2)
(60) A nyny, = 97_‘_2‘”2|2 .
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7. k=4¢=5 / 2
In this section we solve

(A= Nf(2) = —(3¢(5)Es0(2))?, z=a+iyes

for

f(Z) — Z Z fnl,n2 (y)e%rinx

neZni+n2=n

in terms of fn, n, () = fi, 5, (U) + fil i, (¥)-

When n; = ny = 0, foo(y) contains no K-Bessel or divisor functions
and is given by a polynomial in y and 1/y below. For nyn; = 0 but not both
Zero,

61)  fon(w) = fao(y) = =87%0_a(n)[n|* > _vi(n,y) Ki(27|nly),
1=0

for nine # 0 and ny 4+ no # 0,

(62) IF () = =647 0y *naf?o_s(n1)o_a(no)

< S g (na, e, ) K (2 ) Ky (2 maly),

i,j=0,1
and for nqy = —ny,
(63)  fL,na(y) = =647 1?02?04 (n2)o—4(n2)
X > M, (N2, Y) I (27 [n2|y) K (27 |naly),

(4,)€{(0,0),(0,1),(1,1)}

where v;,7; ; and p; ; are defined below depending on each value of .
7.1. A =30
This case corresponds to [2, C.3.2] with r = 5.

7.1.1. n1 = 0 and ne = 0 It is not complicated to show that

_ 80¢(4) +81¢(5)%° + 72¢(4)¢(5)y"

f 0,0(y) 903

C
—|—02y6 + —é
Y

for some cq1,co € C.
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7.1.2. ninz = 0 but not both zero For fégn(y) as in (61), we have

4¢(4)m*n* + 7560¢(5) N 420¢(5)y~ " N 6¢(5)y

"= 5m6nby3 nimd n?m?
B 4¢(4)mint 4 7560¢(5)  4¢(4)mtnt + 11760¢(5)
v = sgn(n) S5rinTyt + 1075ndy?
L 906(5) ¢
n3m3 2nmw )’

Its asymptotic behavior as y — 0 can be described as

(64)
7T4 n4 71.4 n2
8o_(ln) <2(1890C(5) +ri¢(@)nt)  840¢(5) + ¢ (4) . o(%))

5m0n8y5 5rindy3 y

7.1.3. ninz # 0 and n; + nz # 0 For ffl%(y) as in (62) we have

-3

70,0 :W(
—1
y
B2y g 1+ 1200m2 4 4310402 — 1400n3n3
+ 431nin3 + 12n1n5 + nf)

4 4 3 2, 2 3 4
—2 (2 20n$ng — 90 20 ,
T B T n2)6( ning (ny + 20niny — 90ning + 20n1n; + nj))

252n2n3 (n% —2n1ng + n%))

—4
Yy 2.3
= ——= (252 —
Mo, = sgn(nz) (Ws(m )l (252nin5(—n1 + ny))
o’
5ram3 (1 + n2)° (n{ + 13n8ny + 93nin3 + 641nin3

— 2859n$n3 + 1073nin3 + 13n1nS + nd)
1

T 30m(ny +1a)7 - (4n8 + 57n3ns + 623n1n3 — 2590033

+ 714n2n3 + 3Tnynj + 3ng)>,

y74

o =sen() s

Y
5n17'r3(n1 T+ 7'[,2)9 (n1 + 13n1n2 + 1073711712 2859n1n2 + 641n1n2

252n3n3(n; — ng))
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+ 93n3n3 + 13n1nS + n;)
1

T S0y Ty (B + 8Tninz + Tldning — 2500nin; + 623ntn;

+ 57ning + 4ng)>,
y—3
5n1n27r4(n1 + nz)lo

— 3758n1n3 + 734nin3 + 106ning + 14nind + nf)

(n? + 14n7ng + 106nS$n3 + 734nn3

n1,1 =sgn(ning) <

y—l

307117127‘('2(711 + ng
— 9254n7n3 4+ 2360n3n3 + 304n3ns 4+ 40n,nl + 3n§)

g (3n% + 40nins + 304nSn3 + 2360nin3

Y

— 7 (2 1+ 20n3ny — 900303 + 20n1n3 +n3)) ) .
+15(n1+n2)6(n1n2(n1+ ning nins + 20nin; + ny))

We note that
(65)
fnpl,ng (y) =

y 5160 _4(n1)o_4(no)
5m2(ny + ng)tt
— 3024n5n3 — 3024nin3 4+ 2520nin3(ny — ny) log (|ny /na))

+ 840n3nS 4 120n3nk + 15n1n5 + n2) + o(y 5).

(n? + 15050y + 120n]n3 4 840n5n3

There exists a choice of ay, n, such that fnhnz (y) = o(y~%). Comparing
the formula above with the leading terms in the asymptotic expansion of
fH n,(¥) as y — 0, we get that there exists a unique choice of oy, n, such

that fn, n,(y) = Agm( )+ 1L ., () = o(y~?). Moreover, it follows that for
fixed n # 0,

(66) Qn—nyn, = O(|n1\*6), |ni| — oo.

7.1.4. ny = —ny For f£  (y) asin (63), we have

Nn2,N2

291 19y 8nir’y®  512mamly®  16384n§n0y”
55n272 990 3465 51975 155925 '
o1 — sgn(ns) <5451y;23 1 dngmy? N 256n3m3y* N 8192ng7r5y6> ?
n3md  495nem - 1155 51975 155925
23 17y~" 103y Snam*y®  512ngmiy®  16384ninly”
55ngm +990n§7r2 6930 " 5775 155925 155925

Ho,0 =

P11 =
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Its asymptotic behavior for y — 0 is

1 1 1
67 — 640 _ 2 — o =1)).
(67) o-4(n2) (11077272%3/5 2y3 * <y2>)

From this we obtain that

(68) Apymy = O(|n2|_6), |na| — 0.
8. k=3/2and £ =17/2
In this section we solve

(A= N)f(2) = =30C(3)C(T) E3jo(2)Era(2), z=x+iy€N

f(z) = Z Z fm,nz (y)€27rinm

nEZ ni+n2=n

in terms of fo, n, (Y) = f: 1, () + for 0, (Y)-
For niny = 0 but not both zero,

for

(69) finy) = =167 _g(n)[n* Y vi(n,y)Ki(2x|nly),
i=0,1
and
(70) ro(y) = =8mo_a(n)ln| Y vi(n,y)Ki(2x|nly),
i=0,1

for ning # 0 and n1 + ng # 0,

(71)
P e () = 12874y [[naPo_a(n1)o 6 (n2)
X > Mg (1, n2, y) K (2 |na |y) K (2 naly),
(4,)€{(0,0),(0,1),(1,1)}
and for n; = —no,

(72) fE,, 0 () = —1287%Ino[*o_a(n2)o_6(n2)

X Z ti i (n2, y) Ki(2m[na|y) K; (27 (naly),
(4,5)€{(0,0),(0,1),(1,1)}

where v;,7; ; and p; ; defined below depending on each value of A.
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8.1. A =30
This case corresponds to [2, C.3.3] with r = 5.

8.1.1. n; = 0 and ne = 0 It is not complicated to show that

2143260y3¢(3)¢(7) + 297675m%y5¢(7) + 864m5y2((3) + 44878
71442043

fooly) =
c
+ = + cay®
Yy
for some ¢, co € C. Its asymptotic behavior for y — 0 can be described by

fo,o( ) = 255617;/3 and the leading term of the asymptotic behavior does not
depend on ¢ and cs.

8.1.2. ny =0 and ny #0 For n=mny #0,

fonly) = —167°0_g(n)n*> Y vi(n,y)Ki(2x|nly),

i=0,1

where

VO(n,y)zsgn(n)<4g(2)( 1 - 1 >

(m3n3)y3 ~ (6mn)y

- QC(3)<(7T51nO§)y3 + (7r3:i§)3)y " 27ym>>

1 2
141 (7’L, y) = 4((2) < (7r4n4)y4 + (37r2n2)y2>

84 108 13
0 )<( T2 " oty 2ﬂ2n2>

Its asymptotic behavior is

72 n? — 2 n2 —
—mﬁ%4mwmﬁ(% C(2)n? —54¢(3)) _ 2(n¢(2) 3&m»+0<%>)

TTnTys 3(7on5)y?

8.1.3. n1 #0 and ny =0 Forn=mn; #0,

Po(y) = —8mo_s(n)|n] Z vi(n, y)Ki(2m|nly)
1=0,1
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with
8 (6)y~3 6y 1512 420 Y
_ SO~ _ 15¢(7
) sgn(n)< = ¢(7) i R (77 7)y3 + (75nB)y T Tom ) )
8¢(6)y~4 22 1176 1512 90
_ SV - :
1 N2 5¢(7) Em2n2 + (m6n6)y2 + (m8n8)yd + min4

Its asymptotic behavior is

70¢(6)nb— T8¢ (6)nb —
802(n)|n|<4( ((6)n®—19845¢(7)) 4(m°((6) 4410((7))+0<1>>,

7780995 T(7on7)y3

Y2
8.1.4. niny # 0 and ny +n2 #0 For fflm(y) as in (71), we have

-3

m (36n1n3(7nt — 10n1ns + 3n3))

1

n0,0 =sgn(ning) (

niy -
35n27r2(n1 + n2)8

(571(1i + 48nSny + 219n11n% + 664ni’n§’

+ 4163nin3 — 64400113 + 1085n3)

2ninoy
105(n1—+m)6(?)niL + 28n3ny 4 210n3n3 — 4200113 + 35n3)>
—4
Y
no,1 =sgn(n1) (m (36n1n§(—7n1 + 3n2))

-2
ny

35n3m3(n1 + ng)

5 (5n] + 53nfng + 267nin3 + 883ninj

+2377n3n3 + 7593n3n3 — 13545n1nS + 2975n7)
+ o
2107 (ny + n2)7”

(2708 + 253niny + 1270n7n3 + 6594nin;

— 121450103 + 1505n3))

y—4

™ (ny + ng) 1 (

y72

35n9m3 (m + n2)9

Mo =sgn(nz) ( ning - (252n; — 108n2))

(5n] + 53nSns + 267nin3 + 883nin3 + 9237nin;

— 12987n3n3 + 875n1nS + 35n§)
+ ! (
2107 (ny + n2)”

2418 + 225n3ns 4+ 1063703 + 7042n3n3

—11970nin3 + 1085n1n3 + 35n5))



624 Ksenia Fedosova and Kim Klinger-Logan

-3

M= (5n% + 58n na + 320nfn3 + 1150nin3 + 3260nin;

35n3m(ny + ng)t0
+9970nin3 — 16732n3ns + 910n1ns + 35n5)

y—l

105n9m2(ny + no

E (127& + 132n8ny + 7160703 + 2806n7n3

+12332nin; — 21728n3nj + 1820n:nS + 70n})
Y

+ m (2n1n2 (3n1 + 28n3ny+210n3n3 — 420013 +35n2))

The leading term of the asymptotic expansion is

(73)

P () = — g 32mto_o(ny1)o_g(n2)
nne 3576 (ny + ng) !

+ 378n1n3 4 1470n8n3 + 4410n3n3 + 13230nin3
+ 17640n3nS log (|n1 /na|) — 6762n3n5 — 7560n3nd log (|n1 /n2|)
— 15822n3nd + 945n1n5 + 35n3) + o(y~°).

(577}1) + 63n5ns

Comparing the formula above with the leading terms in the asymptotic
expansion of f, nz(y) as y — 0, we get that there exists a unique choice

of ay, n, such that fnhn2 (y) = fﬂnz (y) + f‘f;m (y) = o(y~%). Moreover, it
follows that for fixed n # 0,
(74) Qn—nyny, = O(|n1\_6), |ni| — oo.

8.1.5. ny = —ng For f L oma(y) as in (72), we have

3y~ ! 103y 8n3m*y®  512n3mly°  16384nfmSy”
Ho,0 = -

5nZr? | 6930 4851 72765 218295
_ 62 89 dngmy?  256m3m3yt  8192n570y°
HoL Sgn(”2)<55n§7r3 T 6030mpm 1617 | 72765 | 218295 )’
o3yt yTt 8Tly 8n3n%y® 512ngm'y® 16384nSm0y”
P = B5ndnt 495n372 48510 8085 218295 218295

Its asymptotic behavior is

3 1 1
75 —1280_ - B o\
(75) o-2(n2)o 6(n2)<2207r2n%y5 36y3 * <Z/2)>7
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and
(76) Oy —my = O(]ng\*ﬁ), |ng| — 0.
9. Convergence of each Fourier mode

We now examine the n-th Fourier mode ]?n(y) We note that in all of our com-

putations, the particular solution »_ . . ,fl n, (y) converges. However,

the homogeneous part of the solution only converges for large enough A. For-
tunately, these cases correspond to the physically relevant cases considered
in [2] and here we provide an argument that the solutions for (A, k,¢) € .
converge.

9.1. Zero Fourier modes

The zeroth Fourier mode is given by

Fo@) = Foo) + > Farem

mni 750

Furthermore, the sum above is given by

(77) D A () e N AN (1) B N i

7’L1?,£0 n1760 ’nq;éo
= Z fri,—nl (y)+y" Z Qny,—ny
nl;é(] nlséO

assuming both sums are convergent. Note that the second equality follows
from (20).
From (46), (52), (60), (68), and (76) we see that each }_, oo, —n,

converges. Each expression for f£7_nl(y) is given by (38), (56), (63), and
(72) and is exponentially suppressed as y — 00, as seen from the exponential
decay of the modified Bessel functions of the second kind.

9.2. Non-zero Fourier modes

In order to show that the Fourier series is convergent, we first note that

Fu0) = Foo) + Fon@) + 3 Fovreo (X + X )

ni=1 ni>n+1 ni<—1
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We must verify that the last sum is convergent. Note that by (18),

(78)
P *H
Z fn1,n ni ): Z fnl,nfnl(y)—i_ Z fnl,nfnl(y)
ni>n+1 ni>n+1 ni>n+1
Z nl,n n1 + VYK +1/2(27r|n’y Z Qny,n—n,
ny>n+1 ny>n+1

assuming both sums are convergent.
From (43), (50), (58), (66), (74) we see that

Uy ey = 0(|m’72)7 |m] — 00.

Estimating the behavior of ffhn,m(y) as |n1| — oo using (41), (48), (57),
(65), and (73) (as well as (80), (85), (89), (92), and (96)), we see that the con-
tribution from the modified Bessel functions, K;(2m|n1|y)K;(27|n — n1ly),
exponentially suppresses these terms as |ni| gets large. We treat the term
> n,<_1 in the same manner.

Appendix A

In this section, we will provide the explicit solutions which do not appear
in [2].

Al. k=¢=3/2and A =2

A.1.1. ny =0and nz =0 Any solution of (15) for ny = ny = 0 is equal
to

16¢(2)? — 9¢(3)%y* + 72¢(2)¢(3)y? + 48¢(2)* log(y)

1
fooly) = + ey + —
9y Yy

for some ¢, co € C.
Its asymptotic behavior for y — 0 can be described by

16¢(2)%log(y) | [ 16¢(2)*
B Ly 1<_

fooly) = 9

+ cl> +O0(1),

and the leading term of the asymptotic behavior does not depend on ¢;
and c. Taking ¢y = 0, the O(y?)-term in the asymptotic expansion of fo o (y)
vanishes. However, we refrain from choosing ¢; until Section A.1.4.
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A.1.2. niny = 0 but not both zero For ff’o as in (36), we have

vo(n,y) = sgn(n) <@ M)

3mny -~ 2mn

vi(n,y) = —555

We note that the asymptotic behavior of f(f »(y) for y — 0 is as follows:

_1409(n)(3¢(3) 4 4y7*¢(2)n? + 47%((2)n? log(w|n|))
¢ 3m2nt
16C(2)<;z7~1(2ny) log(y) +Oo(y),

+

where v is the Euler-Mascheroni constant. We recall from (19) that

R Qon T/ |n| agn 9
79 A (y) = n ’ O(y?).

There is a natural choice of ag,, that will get rid of the O(y~1)-term in
Je5.(w) + £, (y) (however, O(y~!)-term is not the leading term):

1602(n) (3¢(3) + 4ym>((2)n* + 47°¢(2)n” log(n|n|))
B 3nd/2x

@o,n

A.1.3. ning # 0 and ny +ny # 0 For ffhnz (y) as in (37), we have

_ sen(nyng)— 2112 _ san(ny) 1l 3n2)
70,0 1M2 3(n1 +12)2 70,1 1 6m(n1 + n2)8
na(3ny + ng) 2n1nay

n,0 = Sgn(n2) n,1 =

67 (n1 + n2)3’ 3(n1 +n9)?’

The asymptotic expansion of ffl n(y)asy —0is

(30) 1602(n1)oa(n2) <log(y) Lt log(r)

3n%n% Y Y
n n{ log(|n1) + 3nani log(|n1|) + 3n3ni log(|na|) + 13 log(|n2|) ) ‘
y(n1 + ng)3
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We further note that

5 Oy, T/ N1+ N2| Oy
(81) () = ot Y | 2y 4+ 0(y?).

KR 47 |ny + nal3/2y 2

We note that we cannot get rid of the O(y~*log(y))-term in f  (y) +

ny,N2
A,fl n,(y) by choosing an appropriate ay, »,, but we can get rid of O(y™1)
by setting

(82)
1
Oy iy = —dr|ny + n2‘3/2 ) 602;7112)022(712) (’Y + 10g(7r)
nin
nflog(hhl)*-3n2ﬂ110g(hhl)*-3n2”110gﬂn20‘+'n§10g(hw|)>
(n1 +ng)?

Choosing n = 1 and investigating the asymptotic behavior of ay, 1-n,
as np — oo, we note that the sum anJrnz:l O, n, does not converge. As we
show in the next section, it might still be reasonable to make such a choice
of an, n,-

A.1.4. ny = —ny For fF nam, (¥) defined in (38) we have

Y 8n3my? B 1 dngmy?
o0 = & + g v Ho1= sgn(nz) Grar + 9 )
_ 5y 8nim*y?
Hi1 = 18 9 .

Its asymptotic behavior can be described as

o2(ng)? (610g(7r\n2]) +6log(y) +6v+5
[na* 9y

(83) 8 ) +0(1).

Once again, we cannot get rid of the O(y~! log(y)) term by choosing a_p, n,
appropriately, but we can get rid of the O(y~!)-term by setting

8aa(ne)oa(n
O = —%ﬁf?)(ﬁ log(w|na|) + 6 — 5).

We note that for such choice of a_n,n,, the sum >°, . oo, n, di-
verges, because the sum

2 2
z a_pp = —g Z (pp+1>(6 log(mp) + 67 — 5)

p prime p prime
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diverges. However, it is still possible to formally calculate the sum of a_y, p,
using the Ramanujan summation (99) and its derivatives (100).

We note that we can choose ¢; from Section A.1.1 in such a way that at
least formally

(84) > apym =0
A2 k=3/2,£=5/2and A =6

A.2.1. n; =0 and ny =0 We can find a particular solution to be

~ c1
fooly) = 2 + coy?

%_——6750y6C(3)C(5)%—3375ﬂ2y4g(5)%-100ﬂ4y2f(3)%—4Oﬂﬁlog(y)%—8W6
675042

for some c1, o € C. Its asymptotic behavior for y — 0 can be described by

5 475 10g(y)
Jooly) = o2

and the leading term of the asymptotic behavior doesn’t depend on ¢; and cs.
A.2.2. n; =0and nz #0 For f(fn(y) as in (53), we have

Ry 2B

Vo (n7 y) =

5n2m2 n2n2’
2:27(9) — 6¢(3 5
v1(n,y) = sgn(n) <n T §35L3)7T3y ¢(3) wazy>

The asymptotic expansion of f(f 2(y) asy — 0is

setos(nl? (572~ 252 4 2, - S8 _ @) lstzi))

57m2n2  6m2n2  mipt 5m2n2
((2)log(y)
- O(1).
5m2n2y2 +0(1)

There is a unique choice of g, that gets rid of the y~2-term in the asymp-
totic expansion of f(fn(y) + f(fn(y).
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A.2.3. n1 #0and nz =0 For fgo(y) as in (54), we have

)y 2 ’
o) (B 5850
1
n(ny) = X SO

The asymptotic expansion of ff oy)asy — 0is

8o _s(n)nl <y2< 3C(6) _ 29¢(4) 24 logwn\)) 24 log<y>>

2m0|n>  Bmln| 57| 5m|n|y?
+0(1).

There is a unique choice of o, o that gets rid of the y~2-term in the asymp-
totic expansion of f(y) + f(y).

A.2.4. nyny #0 and ny +ny #0 For f2 (y) as in (55), we have

ny,n2

1 2 2
To,0 = sgn(nl) [m (’I’Ll (’I’Ll + 4ning + 11n2))] ,
-1
Y
10,1 =sgn(n1nz) [1()”2772(”1 )P (n1(n3 + 5ning + 100103 + 10n§))
Y
—(2 5
*mm4+mp(”mﬂM+mD}
y! 2 Yy
=7 5 —7 (2 5
MO = T0m2(my £ g (n3(5n1 +ng)) + 50 + ) (2n1n2(n1 + 5n2)),
s
mi = gn(ns) (4n + 19nTns + 44nyn3 + 5n3).

307 (ny + ng)?
We note that

(85)
. 80_4(n2)o—2(n1)
P _ 4(n2 2
fm,nz (v) 15n1n§ (n1 + ng)dy?

x (6n] log(y) + 30nant log(y) + 60n3nt log(y) + 60n3n? log(y)
+ 30n3n, log(y) 4 613 log(y) + 67n + 30yngnt — 4nani + 60ynans
— 23n3ni + 60ynint — 63n3n + 30 n3ny — 49n3ng + 6yn3 — 5nj

+ 6nf log(7|n1|) + 30n9ni log(r|ny|) + 60n3n3 log(r|ny|)
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+ 60n3n7 log(m|ny|) + 30n3n, log(m|na|) + 613 log(m|nal))) + O(1).

We are not able to eliminate the highest term, O(y~2log(y)), by choosing
appropriate au, ,,,. However, we are able to eliminate the O(y~2)-term.

A.2.5. ny = —ny For f£_ (y) asin (56), we have

—n2,N2

1 2nomy?  64n3dmiy?
Ho,0 = Sgn(n2)< - 2 )

10nom 75 225
y~! Y 32n%772y3
HO1= T =5 5 — 5 — T oor
10n5m 75 225
B 9 2namy?  64n3miy?
“Ll"sgn(”2)< 100mor 225 225

P

The asymptotic expansion of f,n%nz (y) asy = 01is

(86) Afng,nz (y) = 40_2(n2)o_4(n2)
y (20 log(m|nz|) + 201og(y) + 20y + 9
25y

4—()(1)).

There is a choice of a_y, ,, that gets rid of the y~-term in the asymptotic
expansion of ffm’m (y) + ffln%m (y). However, manipulating a_, », cannot
help us get rid of the leading term. Thus, as in Section A.1.4, we can choose

c1 = ap from Section A.1.1 so that the contribution from the homogeneous
solutions vanishes, that is, at least formally

(87) > angm, =0.
A3. k=£=5/2and A =2
A.3.1. n; =0 and ny =0 We note that for ny =ny =0

—10125y8¢(5)? + 27007*y*¢(5) — 478
202503

~ C1
foo(y) = o + cay?

for some ¢y, co € C. Its asymptotic behavior for y — 0 can be described by
foo(y) = — 27 and the leading term of the asymptotic behavior doesn’t

1012533
depend on c¢; and cs.
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A.3.2. niny = 0 but not both zero For féjn(y) as in (61), we have

¢(5)y

n2m2’

() = seato)

w(n,y) =

O A B0

5nm n3m3 2n

Its asymptotic behavior can be described by y — 0 as

(88)
4
—877'20'_4(”)’774‘2 <57Ti(7n2)yg
—5¢(5) + dymt(4)n* — 274C(4)n* + 47t (4)n log(n|n])
_|_
1074nty
4r*¢(4)n* log(y)

1) ).
10m4nty +0( )>

The leading term of the asymptotic expansion is O(y~3), the second term
is O(y~!log(y)). Manipulating homogeneous solution, we can get rid of the
third term in the asymptotic expansion; that is, to get rid of O(y~1).

A.3.3. niny # 0 and ny +mny # 0 For fF (y) as in (62) we have

ni,n2

Y

= —-— 2
10,0 T50m + n2)2( nins),
1 2 2
77071 = sgn(ng)m (4n1 + 9’711712 + 3712),
1 2 2
Mo = Sgn(nl)m (3n1 + 9711’/22 + 47’L2),
m,1 = sgn(ning) v + Y (2n1ns) ).
’ 10ningm?  15(ny + ng)?

‘We note that

30'74(711)0'74(712)

5

(89) - +o(y™).

We are not capable to make the O(y~3)-term vanish by manipulating a,, 1, -
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A.3.4. ny = —ny For fF o, (¥) @s in (63), we have

7y 8n§7r2y3
No,0 =

30 45 7’
(n2) 2 Angmy?
= sgn - -
Mo = eI T T T 45 )
-1
Yy 23y 8n27r Y3
ML= Ton22 T 00 15

The asymptotic expansion of f% namy(Y) @8y — 0 is

(90)
—87r2]n2]2(0_4(n2))2
1 1210 na|) +121o +12v+1
L i2log(alma) +121o8) +127 41 )
5m2(nal?y 9y

As in Section A.1.4, we can choose c¢; = o, from Section A.1.1 so that
the contribution from the homogeneous solutions vanishes, that is, at least
formally

o0
(91) > anm, =0
No=—00
A4. k=£=5/2and X\ =12
A.4.1. nq; =0 and ny =0 We note that

128¢(4)% — 441¢(5)%y® + 784¢(4)¢(5)y* + 896¢(4)* log(y)
392y3

fooly) =
C

+ eyt + —;

Y

for some cyq,co € C. Its asymptotic behavior for y — 0 can be described by
fo,0(y) = and the leading term of the asymptotic behavior does not depend
on ¢ and cs.

A.4.2. ninz = 0 but not both zero For f(fn(y) as in (61), we have

20(4)y* N 15¢(5)y ! L X6y

vo(no,y) =
(n0, ) Tn2m?2 nmrd on2n2’
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mint -2 ?
() = sgn() (LT SO 8B SO,

Its asymptotic expansion as y — 0 is

—87120_4(n)|n|?

y <5Z5C(5) — 20y (4)n* + 1474¢(4)n? — 2074 (4)n* log(m|n])

T70m6nby3
20 4 4
_2owicamtion) | (1Y)
70m6n6y3 Y

The leading asymptotic expansion as y — 0 is O(y~>log(y)). The second
leading asymptotic expansion is O(y~2) — that one can be eliminated by
manipulating the homogeneous solution.

A.4.3. ningy #0, n; +ng #0 For f‘f;m (y) as in (62) we have
v
1472 (m + n2)6

Y

10500, gyt (Zane - (Tod 4 s £ ).

10,0 (ni‘ + 6n3ng + 50n3n3 + 6nyns + n%)

-2

no,1 = sgn(nz) [ ni(nf 4+ Tning + 21nin3 + 35n3))

14nom3(ny + n2)” (
1

+ 2107 (ny + n2) (
-2

28n] + 199n3ny + 7750303 + 1450113 + 21n§)} ,

n1,0 =sgn(ny) n3 - (35n£1)’ + 21n3ny + Tnini + n%))

14n17r3(n1 + n2)7 (
+ ! (
2107 (ny + n2)?

21n} + 145n3ns + 7750703 + 199n1n3 + 2871%)} )
y ! (
210n1n27r2(n1 + 77,2)6

+ 1520n3n3 + 605n2n3 + 166n1n3 + 21ng)

n1,1 =sgn(ning) [ 2171(1i + 166n‘;’n2 + 605n%n%

2ningy 9 9
—= (7 54 7
105(n1 + ng)? (71 + 5dmans + Tny)

We note that the asymptotic expansion is given by

02) 1) = STHTAE) ) 4oy os(y).
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A.4.4. ny = —ny For fF o, (¥) @s in (63), we have

y' 13y 8n3ry  256mymiy’

Ho,0 =

14n2r2 294 735 2205
y 2 ) dngmy? 128n%7r3y4
“OJ_'Sgn("2)[14ngw3'_ 204nym | 735 2205 }’
5yt 59y 8namiy®  256mymty°
HLL= T 5R8nZn? T 1470 | 2205 2205

The asymptotic expansion is

84 log(m|na|) + 84log(y) + 84y +5 1
+0(-]).
235274 |ng|*y3 y

(93) 6471'4‘77,2|4 (0_4(77,2))2 (

As in Section A.1.4, we can choose ¢; = oo from Section A.1.1 so that
the contribution from the homogeneous solutions vanishes, that is, at least
formally

o
(94) Z a—'flz,nfz =0
No=—00
A5 . k=3/2,£=T7/2and A =12
A.5.1. n; =0 and ny = 0 It is not complicated to show that

—10418625y3¢(3)¢(7) + 463050072y5¢(7) + 94087512 (3)

fooly) = 2778300y3

448078 log(y) + 64078
27783003

c
+ ey’ + y_é
for some c1,co € C. Its asymptotic behavior for y — 0 can be described by

5 3278 log(y)
fooly) = T10845y°

and the leading term of the asymptotic behavior doesn’t depend on ¢
and cs.
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A.5.2. ny =0and ny #0 For f(fn(y) as in (69), we have

3 -1 -3 -1
= sn(m) (2600 (B + 51 ) +402) (s + 1))

- 3y 2 2 22¢(2)y 2
v = —-2(3) <n47r4 * n27r2> 150272

Its asymptotic behavior is

—315¢(3) — 60ym2¢(2)n? + T7w2((2)n?
—160_6(n)< ¢(3) ;Y(;;f;ng; + 77m2((2)n
N —6072¢(2)n? log(mn) — 6072¢(2)n? log(y)o 1
1057m2n2y3 (5)) '

A.5.3. n1 #0and ny =0 For f};o(y) as in (70), we have
16¢(6)y 6yt 3y y’
———— —15¢(7

14ngm <(7) n3md + Snim3 + 10nem ) )’

6y 2 18 y?
= 15¢(7)| — — .
= ¢ )< n§m6  Bnjmd N 10n3n2

vy = sgn(n)(

Its asymptotic behavior is

_ _ 7.r6 nG— 71-6 n6 oo(mn
(95) —80_2(n)< 315¢(7) — 8v Céi)%%gs ¢(6)n8 log(mn)

_ 8n°(6)n°los(y) O(l)).
y

Tr6n6y3

A.5.4. ning # 0 and nq1 +n2 #0 For fflm(y) as in (71), we have

-1
Y
moo =sgn(n) sen(ne) (7 50— (nl(n‘{ + 6niny + 15ninj

+ 20n1n§ + 22n§)

Yy 2 2
— (2 - (3 14 35
+ 105(n1+n2)4( ning ( ny + 1dning + nQ))>,
-2
Y 4
no,1 =sgn(ny) <7n%7r3(n1 n n2)7n1 (n? + Tning + 21n3n3 + 35n3n3

+ 35n1n3 + 21n3)
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1

+ 2107‘((711 + n2)5 (
—2

Yy
M0 =sgn(n1) <m(”g (T +n2))

1

+ 2107 (n1 + na

y—l

210nom2(ny + ng)

ny - (2703 + 143n3ny + 3250103 + 49775)))’

E (24n + 129n3ns + 293nin3 + 511nin3 + 35n§)),

n, = (24nf + 153nny + 422nin3 + 678nin;

+ 822n1n3 + 77ng)
Yy 2 2
— (2 - (3 14 35 .
+ 105(n1 + n2)4( e ( T e n2))
We note that

96 F2 () = Br2)oola s (10,

We cannot eliminate the leading term in the asymptotic expansion of
Jnime(y) by manipulating o, n,.

A.5.5. ny = —ny For fF naum, (¥) @s in (72), we have

y_l o9y 8n27r2y3 256n4 4 5

HOO= 722 T 470~ 1295 3675
—2 2 3.3 4
B Y 17 dnagy 128nsm
o1 = sgn(no) <7n§7r3 T T35ngm T 1225 3675 )’
_ 13y~ ! 313y 8n%772y3 256n‘217r4y5
PLU= " 4n2n2 ~ 7350 3675 3675

The asymptotic behavior is

(97)

—32072(n2)a,6(n2)

<_42 log(m|na) — 42log(y) — 42y ~13 | O<1>>,

14743 y

As in Section A.1.4, we can choose c¢; = ag from Section A.1.1 so that
the contribution from the homogeneous solutions vanishes, that is, at least
formally

(98) i a—nzﬂ’bz = 0

Ng=—00
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Appendix B
B.1. Convolution formulas for the divisor functions

We recall the two famous identities on divisor functions: by [11, Theorem
291], for s > 1 and s —a > 1,

and by [11, Theorem 305], for s >1,s—a>1,s—b>1land s—a—b> 1,

—  oa(n)ap(n) _C(s)¢(s—a)((s —b)((s —a—b)
(99) n:_%;n#o ,n,f —2 e .

We note that the latter identity is sometimes referred to as a Ramanujan
identity. Differentiating (99) with respect to s, we obtain

(100)
= gmamlog(nl) . d ()5 — a)C(s — b)(s —a—b)
Z |n|s N 2ds< ¢(2s —a—0b) >

n=—00,n#0

B.2. Bessel functions and relations between them

By [8],
(101) Kni1(2) = Knoi(2) + 2nK”Z(Z),
thus

y K1 (2] [my) K2 (2|ns|my)

1
— YKy (2nlmly) <K0(27T”n2\y) n —K1(27T|n2!y)>-
m|naly

Explicitly, we use the following relations to formulate sy, , in (12) in terms
of Ky and K. From [8, 8.486(12) and 8.486(13)] and (101),

_ yEi(y) +4K(y) (2 +8)Ka(y) + 4y Ko(y)
y y?

Ks(y)
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K;S/) + Ky (y) + 4—K";y),

=38

thus
y K1 (2m|ny|y) K3 (2m|nz|y)

= K1(27|n1|y) <2

Ki(rlnaly) |, Ko2lnaly)

+ yK1(27|naly >
7T2|n2]2y 7T|n2| ( | | )

By [8, 8.486(17)],

yIKo(2mng |y) K2 (27 |naly) = y<K0(2W|n1]y) + K1(27r|n1|y)>

1

mlnaly
1

mlnaly

« (Koterlnaly) + o Ko 2alnaly) )
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