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The quantization of the mirror curve to a toric Calabi–Yau three-
fold gives rise to quantum-mechanical operators, whose fermionic
spectral traces produce factorially divergent power series in the
Planck constant. These asymptotic expansions can be promoted
to resurgent trans-series. They show infinite towers of periodic sin-
gularities in their Borel plane and infinitely many rational Stokes
constants, which are encoded in generating functions expressed in
closed form in terms of q-series. We provide an exact solution to
the resurgent structure of the first fermionic spectral trace of the
local P2 geometry in the semiclassical limit of the spectral theory,
corresponding to the strongly-coupled regime of topological string
theory on the same background in the conjectural TS/ST corre-
spondence. Our approach straightforwardly applies to the dual
weakly-coupled limit of the topological string. We present and
prove closed formulae for the Stokes constants as explicit arith-
metic functions and for the perturbative coefficients as special val-
ues of known L-functions, while the duality between the two scal-
ing regimes of strong and weak string coupling constant appears
in number-theoretic form. A preliminary numerical investigation
of the local F0 geometry unveils a more complicated resurgent
structure with logarithmic sub-leading asymptotics. Finally, we ob-
tain a new analytic prediction on the asymptotic behavior of the
fermionic spectral traces in an appropriate WKB double-scaling
regime, which is captured by the refined topological string in the
Nekrasov–Shatashvili limit.
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1. Introduction

Resurgent asymptotic series arise naturally as perturbative expansions in
quantum theories. The machinery of resurgence uniquely associates them
with a non-trivial collection of complex numbers, known as Stokes con-
stants, which capture information about the large-order behavior of the
perturbative expansion and about the non-perturbative sectors which are
invisible in conventional perturbation theory. In some remarkable cases, the
Stokes constants are integers, and they possess an interpretation as enumer-
ative invariants based on the counting of BPS states. Recent progress in
this direction [118, 105, 106, 69, 125, 126] advocates for the investigation of
algebro-geometric theories within the analytic framework of the theory of
resurgence.

A first example is given by 4dN = 2 supersymmetric gauge theory in the
Nekrasov–Shatashvili limit [35] of the Omega-background [48], whose BPS
spectrum [28] is encoded in the Stokes constants of the asymptotic series ob-
tained by quantizing the Seiberg–Witten curve [118]. A second example is
given by complex Chern–Simons theory on the complement of a hyperbolic
knot. The Stokes constants of the asymptotic series arising as saddle-point
expansions of the quantum knot invariants around classical solutions are
integer numbers [105, 106], and they are closely related to the Dimofte–
Gaiotto–Gukov index of the three-dimensional manifold [26]. In both types
of quantum theories, it is conjectured in general, and verified numerically in
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some concrete cases, that the perturbative expansions of interest are resur-

gent series, and that their Borel transforms can be analytically continued as

multivalued functions in the complex plane except for a discrete and infinite

set of singular points, which are located along a finite number of vertical

lines, spaced by integer multiples of some fundamental constant of the the-

ory. Their arrangement in the complex plane is called a peacock pattern

in [105, 106]. These infinite towers of periodic singularities lead to infinitely

many Stokes constants, which are computed numerically in many examples,

and often conjectured analytically in closed form.

The formal connection between enumerative invariants and resurgence

has been applied to the context of topological string theory on Calabi–Yau

(CY) threefolds in the recent work of [69]. A family of factorially divergent

power series in the string coupling constant gs is obtained from the pertur-

bative expansion of the conventional, unrefined topological string partition

function, or exponential of the total free energy, in the weakly-coupled limit

of the string gs → 0. It is observed in examples, and conjectured in general,

that these asymptotic series lead to peacock patterns of singularities in their

Borel plane and to infinite sets of integer Stokes constants. However, differ-

ently from the previous two examples of N = 2 SU(2) super Yang–Mills

theory and complex Chern–Simons theory, a direct BPS interpretation of

these integer invariants is still missing. Following the logic of [69], we apply

the tools of resurgence to a new family of asymptotic series which appear

naturally in a dual strongly-coupled limit gs → ∞ of topological strings.

In this paper, we consider the perturbative expansion in the Planck con-

stant � ∝ g−1
s of the logarithm of the fermionic spectral traces of the set of

positive-definite, trace-class quantum operators which arise by quantization

of the mirror curve to a toric CY. We obtain in this way a collection of

factorially divergent perturbative series φN (�), which is indexed by a set

of non-negative integers N , one for each true complex modulus of the ge-

ometry. At fixed N , the resurgent series φN (�) can be promoted to a full

trans-series solution, unveiling an infinite collection of non-perturbative con-

tributions. We conjecture that its resurgent analysis produces peacock-type

arrangements of singularities in the complex Borel plane and an infinite set

of rational Stokes constants. This numerical data is uniquely determined

by the perturbative series under consideration, and it is yet intrinsically

non-perturbative, representing a new, conjectural class of enumerative in-

variants of the CY, whose identification in terms of BPS counting is still

to be understood. By means of the conjectural correspondence of [54, 40],

known as Topological Strings/Spectral Theory (TS/ST) correspondence, the
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semiclassical limit of the fermionic spectral traces turns out to be closely re-
lated to the all-orders WKB contribution to the total grand potential of
the CY, and therefore to the total free energy of the refined topological
string in the Nekrasov–Shatashvili (NS) limit. Note that the asymptotic se-
ries studied in [69] can be obtained as a perturbative expansion in gs of
the same fermionic spectral traces. This dual weakly-coupled regime selects
the worldsheet instanton contribution to the total grand potential, which is
captured, in turn, by the standard topological string total free energy. We
comment that, for each N , the fermionic spectral traces are well-defined,
analytic functions of � ∈ R>0 and provide a non-perturbative completion
of the corresponding perturbative series φN (�). Although the definition of
the proposed rational invariants as Stokes constants of appropriate pertur-
bative expansions in topological string theory does not rely on the existence
of a non-perturbative completion for the asymptotic series of interest, the
fermionic spectral traces significantly facilitate the computational tasks un-
dertaken in this paper, since they can be expressed as matrix integrals and
factorized in holomorphic/anti-holomorphic blocks.

We perform a detailed resurgent analysis of the first fermionic spectral
trace in the limit � → 0 for two well-known examples of toric CY three-
folds, namely, local P2 and local F0. In the case of local P2, the resurgent
structure of the asymptotic series φ1(�) turns out to be analytically solv-
able, leading to proven exact formulae for the Stokes constants, which are
rational numbers and simply related to an interesting sequence of integers.
The Stokes constants have a transparent and strikingly simple arithmetic
meaning as divisor sum functions, and they possess a generating function
given by q-series, while the perturbative coefficients are encoded in explicit
L-functions. We note that, differently from the dual case of [69], the Stokes
constants for the exponentiated series eφ1(�) appear to be generally complex
numbers, and they can be expressed in terms of the Stokes constants of the
series φ1(�) by means of a closed partition-theoretic formula. The symme-
tries and arithmetic properties described above are less easily accessible after
exponentiation. Our analytic approach is then straightforwardly applied to
the dual weakly-coupled limit gs → 0 of topological strings on the same
background, confirming the results of the numerical study of [69]. We find
that the Stokes constants and the perturbative coefficients are manifestly re-
lated to their semiclassical analogues. The duality between the weakly- and
strongly-coupled scaling regimes re-emerges in a concrete and exact number-
theoretic form. Let us stress that we do not yet have a clear understanding
of the possible generalization of the enticing number-theoretic formalism
presented for local P2 to arbitrary toric CY geometries. The case of local
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F0 immediately appears more complex. The resurgent structure of the first
fermionic spectral trace is only accessible via numerical methods, which al-
low us to unveil the presence of logarithmic-type terms in the sub-leading
asymptotics.

We note that, in contrast with what occurs in the dual limit � → ∞
studied in [69], the semiclassical perturbative expansion of the first fermionic
spectral trace of both local P2 and local F0 does not have a global exponential
behavior of the form e−1/� at leading order, thus suggesting that there is no
dual analogue of the conifold volume conjecture. We extend this observation
to a general statement on the dominant semiclassical asymptotics of the
fermionic spectral traces of toric CY threefolds. We study the topological
string total grand potential in an appropriate WKB ’t Hooft-like regime
associated with the semiclassical limit of the spectral theory, which selects
the contribution from the total free energy of the refined topological string in
the NS limit. After a suitable change of local symplectic frame in the moduli
space of the geometry, we obtain a new, non-trivial analytic prediction of the
TS/ST correspondence on the WKB asymptotic behavior of the fermionic
spectral traces, which implies, in particular, the statement above.

This paper is organized as follows. In Section 2, we review the basic
ingredients in the construction of quantum-mechanical operators from toric
CY geometries and in the definition of the refined topological string the-
ory, and its two one-parameter specializations, compactified on a toric CY
background. The section ends with a short summary of the recent conjec-
tural correspondence between topological strings and spectral theory, which
offers a powerful, practical perspective for the computational tasks under-
taken in this paper. In Section 3, we provide the necessary background from
the theory of resurgence, and we present a conjectural class of enumera-
tive invariants of topological strings on a CY target as Stokes constants of
appropriate asymptotic series, which arise naturally in the strong coupling
limit gs → ∞ of the string theory, and which can be promoted to resurgent
trans-series. The rational invariants studied in this paper represent a natu-
ral complement of the conjectural proposal of [69], which addresses the dual
weakly-coupled limit gs → 0. In Section 4, we present an exact and com-
plete solution to the resurgent structure of the first fermionic spectral trace
of the local P2 geometry in both scaling regimes � → 0 and � → ∞, and
we provide an independent numerical analysis for the semiclassical limit. In
Section 5, we perform a preliminary numerical study of the resurgent struc-
ture of the first fermionic spectral trace of the local F0 geometry for � → 0.
In Section 6, we present a new analytic prediction on the asymptotics of the
fermionic spectral traces of toric CY threefolds in the WKB double-scaling
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regime, and we analyze the example of local P2 in detail. In Section 7, we
conclude and mention further perspectives to be addressed by future work
and problems opened by this investigation. There are four Appendices.

2. From topological strings to spectral theory and back

In this section, we review the two-way connection between the spectral the-
ory of quantum-mechanical operators and the topological string theory on
toric CY manifolds, which builds upon notions of quantization and local
mirror symmetry, and it has recently found an explicit formulation in the
conjectural statement of [54, 40], known as Topological Strings/Spectral
Theory (TS/ST) correspondence. The conjecture, following the precursory
work of [35, 37, 52, 98, 99, 58, 79, 57, 78, 38, 53, 81], leads to exact formulae
for the spectral traces of the quantum operators in terms of the enumerative
invariants of the CY, and it provides a non-perturbative realization of the
topological string on this background. We refer to [91, 92, 93, 94] for an
introduction to toric geometry and mirror symmetry and to [127, 128] for
an introduction to topological string theory.

2.1. Geometric setup and local mirror symmetry

Let X be a toric CY threefold and t = (t1, . . . , ts), where s = b2(X), be
the complexified Kähler moduli of X. Local mirror symmetry pairs X with
a mirror CY threefold X̂ in such a way that the theory of variations of
complex structures of the mirror X̂ is encoded in an algebraic equation of
the form

(2.1) W (ex, ey) = 0,

which describes a Riemann surface Σ embedded in C∗ ×C∗, called the mir-
ror curve to X, and determines the B-model topological string theory on
X̂ [27, 29]. We denote the genus of Σ by gΣ. The complex deformation
parameters of X̂ can be divided into gΣ true moduli of the geometry, de-
noted by κ = (κ1, . . . , κgΣ), and rΣ = s − gΣ mass parameters, denoted
by ξ = (ξ1, . . . , ξrΣ) [33, 34]. They are related to the Batyrev coordinates
z = (z1, . . . , zs) of X̂ by1

(2.2) − log zi =

gΣ∑
j=1

Cijμj +

rΣ∑
k=1

αik log ξk, i = 1, . . . , s,

1We can choose the Batyrev coordinates in such a way that the first gΣ corre-
spond to true moduli and the remaining rΣ correspond to mass parameters.
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where the constant coefficients Cij , αik are determined by the toric data of
X, and the chemical potentials μj are defined by κj = eμj , j = 1, . . . , gΣ.
The mirror curve Σ can be identified with the family of equivalent canonical
forms

(2.3) Oj(x, y) + κj = 0, j = 1, . . . , gΣ,

where Oj(x, y) is a polynomial in the variables ex, ey. Different canonical
forms are related by SL(2,Z)-transformations and global translations in
x, y ∈ C.

The complex moduli of the mirror X̂ are related to the Kähler parame-
ters of X via the mirror map

(2.4) − ti(z) = log zi + Π̃i(z), i = 1, . . . , s,

where Π̃i(z) is a power series in z with finite radius of convergence. Together
with Eq. (2.2), it implies that

(2.5) ti(μ, ξ) =

gΣ∑
j=1

Cijμj +

rΣ∑
k=1

αik log ξk +O(e−μj ), i = 1, . . . , s.

Following a choice of symplectic basis Ai, Bi, i = 1, . . . , s, of one-cycles on
the spectral curve Σ, the classical periods of the meromorphic differential
one-form λ = y(x)dx, where the function y(x) is locally defined by Eq. (2.1),
satisfy

(2.6) ti(z) ∝
∮
Ai

λ, ∂tiF0(z) ∝
∮
Bi

λ, i = 1, . . . , s,

where the function F0(z) is the classical prepotential of the geometry [64],
which represents the genus zero amplitude of the B-model topological string
on X̂, that is, the generating functional of the genus zero Gromov–Witten
invariants of X convoluted with the mirror map.

Following [54, 40], the mirror curve in Eq. (2.1) can be quantized by
making an appropriate choice of reality conditions for the variables x, y ∈ C,
promoting x, y to self-adjoint Heisenberg operators x, y on the real line satis-
fying the commutation relation [x, y] = i�, and applying the standard Weyl
prescription for ordering ambiguities. Thus, the functions Oj(x, y) appearing
in the canonical forms in Eq. (2.3) are uniquely associated with gΣ differ-
ent Hermitian quantum-mechanical operators Oj , j = 1, . . . , gΣ, acting on
L2(R). The mass parameters ξ become parameters of the operators Oj , and
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a Planck constant � ∈ R>0 is introduced as a quantum deformation param-
eter. We define the inverse operators as

(2.7) ρj = O−1
j , j = 1, . . . , gΣ,

acting on L2(R). The classical mirror map ti(z) in Eq. (2.4) is consequently
promoted to a quantum mirror map ti(z, �) given by

(2.8) − ti(z, �) = log zi + Π̃i(z, �), i = 1, . . . , s,

which reproduces the conventional mirror map in the semiclassical limit
� → 0, and it is determined as an A-period of a quantum-corrected version
of the differential λ obtained via the all-orders, perturbative WKB approx-
imation [37, 52].

For simplicity, in the rest of this paper, we will often consider the case of
toric (almost) del Pezzo CY threefolds, which are defined as the total space
of the canonical line bundle on a toric (almost) del Pezzo surface S, that is,

(2.9) X = O(KS) → S,

also called local S. Examples of toric del Pezzo surfaces are the projective
space P2, the Hirzebruch surfaces Fn for n = 0, 1, 2, and the blowups of P2

at n points, denoted by Bn, for n = 1, 2, 3. In this case, the mirror curve Σ
has genus one and, correspondingly, there are one true complex modulus κ,
which is written in terms of the chemical potential μ as κ = eμ, and s − 1
mass parameters ξk, k = 1, . . . , s− 1. At leading order in the limit μ → ∞,
the classical mirror map in Eq. (2.5) has the form

(2.10) ti = ciμ+

s−1∑
k=1

αik log ξk +O(e−μ), i = 1, . . . , s,

where ci = Ci1, and the mirror curve in Eq. (2.1) admits a single canonical
parametrization

(2.11) OS(x, y) + κ = 0.

We observe that, when appropriate symmetry conditions are applied to the
mass parameters, the relation between the single Batyrev coordinate z of X
and its true modulus κ simplifies to z = 1/κr, where the value of r is deter-
mined by the geometry. For example, such symmetry restrictions trivially
apply to local P2, which has r = 3, while they correspond to imposing ξ = 1
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in the case of local F0, which has then r = 2. The canonical Weyl quanti-
zation scheme of [54] applied to the mirror curve in Eq. (2.11) produces a
single Hermitian differential operator OS acting on L2(R), whose inverse is
denoted by ρS = O−1

S . We stress that, in what follows, X will be a generic
toric CY threefold, and the simplified genus one case will only be considered
when explicitly stated.

2.2. Standard and NS topological strings

The total free energy of the A-model conventional topological string with
target X is formally given by the generating series2

(2.12) FWS(t, gs) =
∑
g≥0

Fg(t) g
2g−2
s ,

where the variable gs is the topological string coupling constant, and Fg(t) is
the free energy at fixed worldsheet genus g ≥ 0. In the so-called large radius
limit �(ti) � 1 of the moduli space of X, Eq. (2.12) has the expansion [25]

(2.13)

FWS(t, gs) =
1

6g2s

s∑
i,j,k=1

aijktitjtk +

s∑
i=1

biti

+
∑
g≥2

Cgg
2g−2
s + FGV(t, gs),

where d = (d1, . . . , ds) is a vector of non-negative integers representing a
class in the two-homology group H2(X,Z), called vector of degrees, the co-
efficients aijk, bi are cubic and linear couplings characterizing the perturba-
tive genus zero and genus one topological amplitudes, the constant Cg is the
so-called constant map contribution [65, 66], and FGV(t, gs) is given by the
formal power series

(2.14) FGV(t, gs) =
∑
g≥0

∑
d

∞∑
w=1

nd
g

1

w

(
2 sin

wgs
2

)2g−2
e−wd·t,

where nd
g ∈ Z is the Gopakumar–Vafa enumerative invariant [47] of X at

genus g and degree d.
When defined on a toric CY manifold, the topological string partition

function can be engineered as a special limit of the instanton partition func-
tion of Nekrasov [48]. A more general theory, known as refined topological

2The superscript WS in Eq. (2.12) stands for worldsheet.
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string theory [44, 45, 46], is constructed by splitting the string coupling
constant into two independent parameters as g2s = −ε1ε2, where ε1, ε2 corre-
spond to the two equivariant rotations of the space-time C2. Together with
gs, a second coupling constant � = ε1 + ε2 is introduced and identified with
the quantum deformation parameter which appears in the quantization of
the classical spectral curve in Eq. (2.1) in the mirror B-model. The total
free energy of the A-model refined topological string on X at large radius
has a double perturbative expansion in gs and � of the form [49, 50, 51]

(2.15) F (t, ε1, ε2) =
∑
g,n≥0

Fg,n(t) g
2g−2
s �2n,

from which the genus expansion of the standard topological string in Eq.
(2.12) is recovered in the limit gs = ε1 = −ε2, and we have Fg(t) = Fg,0(t),
g ≥ 0. Another remarkable one-parameter specialization of the refined the-
ory is obtained when one of the two equivariant parameters ε1, ε2 is sent to
zero and the other is kept finite, e.g., ε2 → 0 while � = ε1 is fixed, which is
known as the Nekrasov–Shatashvili (NS) limit [35]. Since the refined total
free energy in Eq. (2.15) has a simple pole in this limit, the NS total free
energy is defined as the one-parameter generating series3

(2.16) FNS(t, �) = lim
ε2→0

−ε2F (t, ε1, ε2) =
∑
n≥0

FNS
n (t) �2n−1,

where FNS
n (t) = F0,n(t) denotes the NS topological amplitude at fixed or-

der n in �. In the refined framework, the Gopakumar–Vafa invariants are
generalized to a wider set of integer enumerative invariants, called the re-
fined BPS invariants [43, 42]. We denote them by Nd

jL,jR
, where jL, jR are

two non-negative half-integers, and d is the degree vector. The perturbative
expansion at large radius of the NS total free energy is expressed as the
generating functional

(2.17)

FNS(t, �) =
1

6�

s∑
i,j,k=1

aijktitjtk + �

s∑
i=1

bNS
i ti

+
∑
jL,jR

∑
d

∞∑
w=1

Nd
jL,jR

sin �w(2jL+1)
2 sin �w(2jR+1)

2

2w2 sin3 �w
2

e−wd·t,

which reproduces Eq. (2.16) when expanded in powers of �. The coefficients
aijk are the same ones that appear in Eq. (2.14), while the constants bNS

i can

3The superscript NS in Eq. (2.16) stands for Nekrasov–Shatashvili.
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be obtained via mirror symmetry [45, 46]. Furthermore, FNS
0 (t) = F0(t), and

the higher-order NS free energies are given by the perturbative WKB quan-
tum corrections to the classical prepotential [37, 52]. Namely, the refined
topological string free energy in the NS limit is the quantum prepotential
associated with the quantum-deformed version of the classical B-period of
the differential λ in Eq. (2.6).

We recall that the total grand potential of topological string theory on
X is defined as the sum [38]

(2.18) J(μ, ξ, �) = JWS(μ, ξ, �) + JWKB(μ, ξ, �).

The worldsheet grand potential is obtained from the generating functional
of Gopakumar–Vafa invariants of X in Eq. (2.14) as

(2.19) JWS(μ, ξ, �) = FGV

(
2π

�
t(�) + πiB,

4π2

�

)
,

where t(�) is the quantum mirror map in Eq. (2.8), and B is a constant
vector determined by the geometry, called B-field, whose presence has the
effect of introducing a sign (−1)wd·B in the series in Eq. (2.14). The all-
genus worldsheet generating functional above encodes the non-perturbative
contributions in � due to complex instantons contained in the standard
topological string. Note that there is a strong-weak coupling duality between
the spectral theory of the operators arising from the quantization of the
mirror curve Σ and the standard topological string theory on X. Namely,

(2.20) gs =
4π2

�
.

The WKB grand potential is obtained from the NS generating functional in
Eq. (2.17) as

(2.21)

JWKB(μ, ξ, �) =

s∑
i=1

ti(�)

2π

∂FNS(t(�), �)

∂ti
+

�2

2π

∂

∂�

(
1

�
FNS(t(�), �)

)

+
2π

�

s∑
i=1

biti(�) +A(ξ, �),

where the derivative with respect to � in the second term on the RHS does
not act on the �-dependence of the quantum mirror map t(�). The coeffi-
cients bi are the same ones appearing in Eq. (2.13), while the function A(ξ, �)
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is not known in closed form for arbitrary geometries, although it has been
conjectured in many examples. The all-orders WKB generating functional
above takes into account the perturbative corrections in � to the quantum-
mechanical spectral problem associated with X, which are captured by the
NS refined topological string. The total grand potential of X can then be
expressed as a formal power series expansion in the large radius limit ti → ∞
with the structure

(2.22)
J(μ, ξ, �) =

1

12π�

s∑
i,j,k=1

aijktitjtk +

s∑
i=1

(
2π

�
bi +

�

2π
bNS
i

)
ti

+O(e−ti , e−2πti/�),

where the infinitesimally small corrections in e−ti , e−2πti/� have �-dependent
coefficients. Rigorous results on the properties of convergence of this expan-
sion are missing. However, extensive evidence suggests that it is analytic
in a neighbourhood of ti → ∞ when � is real [38, 63], while it appears to
inherit the divergent behavior of the generating functionals in Eqs. (2.13)
and (2.17) for complex �.

2.3. The TS/ST correspondence

Recall that the quantization of the mirror curve Σ to the toric CY threefold
X naturally leads to the quantum-mechanical operators ρj , j = 1, . . . , gΣ,
acting on L2(R), which are defined in Eq. (2.7). It was conjectured in [54, 40],
and rigorously proved in [56] in several examples, that the operators ρj are
positive-definite and of trace class, therefore possessing discrete, positive
spectra, provided the mass parameters ξ of the mirror CY X̂ satisfy suitable
reality and positivity conditions. As shown in [40, 41], one can define a
spectral (or Fredholm) determinant ΞX(κ, ξ, �) associated with the set of
operators ρj , which is an entire function on the moduli space parametrized
by κ. The fermionic spectral traces ZX(N , ξ, �), where Nj is a non-negative
integer for j = 1, . . . , gΣ, are then defined by a power series expansion of
the analytically continued spectral determinant ΞX(κ, ξ, �) around the point
κ = 0 in the moduli space of X, known as the orbifold point. Namely,

(2.23) ΞX(κ, ξ, �) =
∑
N1≥0

· · ·
∑

NgΣ
≥0

ZX(N , ξ, �)κN1

1 · · ·κNgΣ
gΣ ,

with ZX(0, . . . , 0, ξ, �) = 1. Classical results in Fredholm theory [75, 76, 77]
provide explicit determinant expressions for the fermionic spectral traces,
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which can be regarded as multi-cut matrix model integrals.4

Based on the previous insights of [58, 57, 78, 38, 53, 81], a conjectural
duality was recently proposed in [54, 40], which relates the topological string
theory on a toric CY manifold to the spectral theory of the quantum-
mechanical operators on the real line which are obtained by quantization
of the corresponding mirror curve. This is known as the TS/ST correspon-
dence, and it is now supported by a large amount of evidence obtained in
applications to concrete examples [56, 70, 71, 95, 96]. We refer to the de-
tailed review in [74] and references therein. The main conjectural statement
of the TS/ST correspondence provides exact expressions for the spectral
determinant and the fermionic spectral traces in terms of the standard and
NS topological string amplitudes on X. More precisely,

(2.24) ΞX(κ, ξ, �) =
∑

n∈ZgΣ

exp(J(μ+ 2πin, ξ, �)) = eJ(μ,ξ,�)Θ(μ, ξ, �),

where the sum over n ∈ ZgΣ produces a periodic function in the chemical
potentials μj , which can be equivalently recast by factoring out a quantum-
deformed Riemann theta function Θ(μ, ξ, �). It follows that the fermionic
spectral traces ZX(N , ξ, �), Nj ≥ 0, j = 1, . . . , gΣ, are determined by the
orbifold expansion of the topological string theory on X. Note that the
expression on the RHS of Eq. (2.24) can be interpreted as a well-defined
large-μj expansion in powers of e−μj , e−2πμj/�. Indeed, the total grand po-
tential and the quantum theta function appear to have a common region of
converge in a neighborhood of the limit μj → ∞, which corresponds to the
large radius point of moduli space. However, being the spectral determinant
an entire function of κ, the conjecture in Eq. (2.24) implies that such a
product in the RHS is, indeed, entire in μ. Moreover, Eqs. (2.24) and (2.23)
lead to an integral formula for ZX(N , ξ, �) as an appropriate residue at the
origin κ = 0. Namely, [57, 54, 40]

(2.25) ZX(N , ξ, �) =
1

(2πi)gΣ

∫ i∞

−i∞
dμ1 · · ·

∫ i∞

−i∞
dμgΣ eJ(μ,ξ,�)−N ·μ,

where the integration contour along the imaginary axes can be suitably de-
formed to make the integral convergent. Because of the trace-class property
of the quantum operators ρj , the fermionic spectral traces ZX(N , ξ, �) are
well-defined functions of � ∈ R>0, and, although being initially defined for

4The connection between fermionic spectral traces and matrix models has been
developed in [70, 71].
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positive integer values of Nj , the Airy-type integral in Eq. (2.25) naturally
extends them to entire functions of N ∈ CgΣ [63]. In what follows, for
simplicity, we will drop from our notation the explicit dependence on ξ of
ΞX(κ, ξ, �) and ZX(N , ξ, �).

3. Stokes constants in topological string theory

In this section, we review how the resurgent analysis of formal power series
with factorial growth unveils a universal mathematical structure, which in-
volves a set of numerical data called Stokes constants. Following the recent
works of [118, 105, 106, 69, 125, 126], we apply the theory of resurgence
to the asymptotic series that arise naturally as appropriate perturbative
expansions in a strongly-coupled limit of the topological string on a toric
CY threefold, and we make a general proposal on the resurgent structure of
these series. See [100, 101, 14] for a formal introduction to the resurgence of
asymptotic expansions and [102, 103] for its application to gauge and string
theories. The resurgent structure of topological string theory on the special
geometry of the resolved conifold has been studied in [121, 122, 123, 124].

3.1. Notions from the theory of resurgence

Let φ(z) be a factorially divergent formal power series of the form

(3.1) φ(z) = z−α
∞∑
n=0

anz
n ∈ z−αC[[z]], an ∼ A−nn! n � 1,

for some constants α ∈ R\Z+ and A ∈ R, which is a Gevrey-1 asymptotic
series. Its Borel transform

(3.2) φ̂(ζ) =

∞∑
k=0

ak
Γ(k − α+ 1)

ζk−α

is a holomorphic function in an open neighborhood of ζ = 0 of radius |A|.
When extended to the complex ζ-plane, also known as Borel plane, φ̂(ζ) will
show a (possibly infinite) set of singularities ζω ∈ C, which we label by the
index ω ∈ Ω. A ray in the Borel plane of the form

(3.3) Cθω = eiθωR+, θω = arg(ζω),

which starts at the origin and passes through the singularity ζω, is called a
Stokes ray. The Borel plane is partitioned into sectors which are bounded
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by the Stokes rays. In each of these sectors, the Borel transform converges
to a generally different holomorphic function.

We recall that a Gevrey-1 asymptotic series is called resurgent if its Borel
transform has finitely many singularities on every finite line issuing from
the origin and if there exists a path circumventing these singularities along
which it can be analytically continued. If, additionally, its Borel transform
has only logarithmic singularities and simple poles, then it is called simple
resurgent. We will assume here that all formal power series are resurgent.
If the singularity ζω is a logarithmic branch cut, the local expansion of the
Borel transform in Eq. (3.2) around it has the form

(3.4) φ̂(ζ) = − Sω

2πi
log(ζ − ζω)φ̂ω(ζ − ζω) + · · · ,

where the dots denote regular terms in ζ − ζω, and Sω ∈ C is the Stokes
constant at ζω. If we introduce the variable ξ = ζ − ζω, the function

(3.5) φ̂ω(ξ) =

∞∑
k=0

âk,ωξ
k−β,

where β ∈ R\Z+, is locally analytic at ξ = 0, and it can be regarded as the
Borel transform of the Gevrey-1 asymptotic series

(3.6) φω(z) = z−β
∞∑
n=0

an,ωz
n ∈ z−βC[[z]], an,ω = Γ(n− β + 1) ân,ω.

Note that the value of the Stokes constant Sω depends on a choice of nor-
malization of the series φω(z). If the analytically continued Borel transform
φ̂(ζ) in Eq. (3.2) does not grow too fast at infinity, its Laplace transform at
an arbitrary angle θ in the Borel plane is given by5

(3.7) sθ(φ)(z) =

∫ eiθ∞

0
e−ζ φ̂(ζz) dζ = z−1

∫ eiθ∞

0
e−ζ/zφ̂(ζ) dζ,

and its asymptotics near the origin reconstructs the original, divergent for-
mal power series φ(z). If the Laplace integral in Eq. (3.7), for some choice
of angle θ, exists in some region of the complex z-plane, we say that the
series φ(z) is Borel summable, and we call sθ(φ)(z) the Borel resummation

5Roughly, we require that the Borel transform grows at most exponentially in
an open sector of the Borel plane containing the angle θ.
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of φ(z) along the direction θ. Note that the Borel resummation inherits the
sectorial structure of the Borel transform. It is a locally analytic function
with discontinuities at the special rays identified by

(3.8) arg(z) = arg(ζω), ω ∈ Ω.

The discontinuity across θ is the difference between the Borel resummations
along two rays in the complex ζ-plane which lie slightly above and slightly
below Cθ. Namely,

(3.9) discθφ(z) = sθ+(φ)(z)− sθ−(φ)(z) =

∫
Cθ+

−Cθ−

e−ζ φ̂(ζz) dζ,

where θ± = θ ± ε, for some small positive angle ε, and Cθ± are the corre-
sponding rays. A standard contour deformation argument shows that the
two lateral Borel resummations differ by exponentially small terms. More
precisely,

(3.10) discθφ(z) =
∑
ω∈Ωθ

Sωe
−ζω/zsθ−(φω)(z),

where the index ω labels the singularities ζω such that arg(ζω) = θ, while
φω(z) is the formal power series in Eq. (3.6), and the complex numbers Sω

are the same Stokes constants which appear in Eq. (3.4). If we regard the
lateral Borel resummations as operators, the Stokes automorphism Sθ is
defined by the convolution

(3.11) sθ+ = sθ− ◦Sθ,

and the discontinuity formula in Eq. (3.10) has the equivalent, more compact
form

(3.12) Sθ(φ) = φ+
∑
ω∈Ωθ

Sωe
−ζω/zφω.

Moreover, the Stokes automorphism can be written as

(3.13) Sθ = exp

(∑
ω∈Ωθ

e−ζω/zΔζω

)
,

where Δζω is the alien derivative associated with the singularity ζω, ω ∈ Ωθ.
Appendix D provides a short introduction to alien calculus.
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As we have shown, moving from one formal power series to a new one
encoded in the singularity structure of its Borel transform, we eventually
build a whole family of asymptotic series from the single input in Eq. (3.1).
We can then repeat the procedure with each new series obtained in this way.
We denote by Sωω′ ∈ C the Stokes constants of the asymptotic series φω(z).
Let us define the basic trans-series

(3.14) Φω(z) = e−ζω/zφω(z),

for each ω ∈ Ω, such that its Borel resummation along θ is given by

(3.15) sθ(Φω)(z) = e−ζω/zsθ(φω)(z),

and the corresponding Stokes automorphism acts as

(3.16) Sθ(Φω) = Φω +
∑

ω′∈Ωθ

Sωω′Φω′ .

The minimal resurgent structure associated with φ(z) is defined as the small-
est set of basic trans-series that resurge from it and form a closed set under
Stokes automorphisms. We denote it by [69]

(3.17) Bφ = {Φω(z)}ω∈Ω̄ ,

where Ω̄ ⊆ Ω. We observe that the minimal resurgent structure does not
necessarily include all the basic trans-series arising from φ(z). As pointed out
in [69], the complex Chern–Simons theory on the complement of a hyperbolic
knot provides an example of this situation. In this paper, we will focus on
the (possibly infinite-dimensional) matrix of Stokes constants indexed by
the distinct basic trans-series in the minimal resurgent structure of φ(z), as
they incorporate information about the non-analytic content of the original
asymptotic series. Namely,

(3.18) Sφ = {Sωω′}ω,ω′∈Ω̄.

3.2. The resurgent structure of topological strings

We want to apply the machinery described above to understand the resur-
gent structure of the asymptotic series which arise naturally from the per-
turbative expansion of the refined topological string on a toric CY threefold
X in a specific scaling limit of the coupling constants. Under the assump-
tion that the given series are resurgent, this will give us access to the hidden
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sectors of the topological string which are invisible in perturbation theory.

Let us go back to the definition of the fermionic spectral traces ZX(N , �),

Nj ≥ 0, j = 1, . . . , gΣ, in Eq. (2.23). Building on numerical evidence ob-

tained in some concrete genus-one examples, it was conjectured in [69] that

the Stokes constants appearing in the resurgent structure of these objects,

when perturbatively expanded in the limit � → ∞, with N fixed, are non-

trivial integer invariants of the geometry related to the counting of BPS

states. In this paper, we will illustrate how the same resurgent machine ad-

vocated in [69] can be applied to the asymptotic series that emerge in the

dual semiclassical limit � → 0 of the spectral theory. Note that this cor-

responds to the strongly-coupled regime gs → ∞ of the topological string

theory via the TS/ST correspondence. We will explore, in practice, the best

known examples of toric CY threefolds with one true complex modulus.

Along the lines of [69], let us describe a conjectural proposal for the

resurgent structure of the topological string in the limit � → 0, which is

supported by the concrete results obtained in the examples of local P2 and

local F0 in Sections 4 and 5, respectively. We consider the semiclassical

perturbative expansion of the fermionic spectral trace ZX(N , �), at fixedN .

The corresponding family of asymptotic series

(3.19) ψN (�) = ZX(N , � → 0),

indexed by the set of non-negative integers N , will be the main object of

study in this paper. We will comment in Section 6 how these asymptotic

expansions can be independently defined on the topological strings side of

the TS/ST correspondence via the integral in Eq. (2.25). We denote

(3.20) φN (�) = logψN (�),

for each choice of N .

Remark 3.1. Note that, in order to perform a resurgent analysis of the

fermionic spectral traces, it will be necessary to consider the case of com-

plex �. The issue of the complexification of �, or, equivalently, of gs, in

the context of the TS/ST correspondence has been addressed in various

studies [85, 86, 87, 88]. In this paper, we will assume that the TS/ST cor-

respondence can be extended to � ∈ C′ = C\R≤0 in such a way that the

quantum operators ρj remain of trace class, and the fermionic spectral traces

ZX(N , �) are analytically continued to � ∈ C′. This assumption will be ex-

plicitly tested in the examples considered in this paper.
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Figure 1: Infinite towers of singularities and the peacock arrangement of
Stokes rays in the complex Borel plane.

We will verify in examples that the series φN (�) are Gevrey-1 and (sim-

ple) resurgent, and we assume that this is the case in general. Each of the

formal power series in Eq. (3.20) is associated with a minimal resurgent

structure BφN
and a corresponding matrix of Stokes constants SφN

. For

fixed N , we observe a finite number of Gevrey-1 asymptotic series

(3.21) φσ;N (�), σ ∈ {0, . . . , l},

which resurge from the original perturbative expansion φN (�) = φ0;N (�),

where the positive integer l depends on N and on the CY geometry. For

each value of σ, the singularities of the Borel transform φ̂σ;N (ζ) are located

along infinite towers in the Borel ζ-plane, and every two singularities in the

same tower are spaced by an integer multiple of some constant A ∈ C, which

depends on N and on the CY geometry. Such a global arrangement is known

as a peacock pattern. See Fig. 1 for a schematic illustration. It was recently

conjectured in [69] that peacock patterns are typical of theories controlled

by a quantum curve in exponentiated variables.6 Each asymptotic series

φσ;N (�) gives rise to an infinite family of basic trans-series, labelled by a

6Peacock patterns have been previously observed in complex Chern–Simons the-

ory on the complement of a hyperbolic knot [105, 106] and in the weakly-coupled

topological string theory on a toric CY threefold [84, 69].
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non-negative integer n, that is,

(3.22) Φσ,n;N (�) = φσ;N (�)e−nA
� , n ∈ N,

and the minimal resurgent structure has the particular form

(3.23) BφN
= {Φσ,n;N (�)}n∈N, σ=0,...,l.

For fixed N , the Stokes constants are labelled by two indices σ, σ′ = 0, . . . , l
and by the integer n ∈ N. Let us denote them as Sσσ′,n;N . As we will find
in examples, we expect the Stokes constants to be rational numbers, after
choosing a canonical normalization of the asymptotic series in Eq. (3.21),
and to be closely related to non-trivial sequences of integer constants. More-
over, we conjecture that they can be naturally organized as coefficients of
generating functions in the form of q-series, which are determined by the
original perturbative expansion in a unique way. Schematically,

(3.24) Sσσ′;N (q) =
∑
n∈N

Sσσ′,n;N qn,

which we further expect to be intimately related to a non-trivial collection
of topological invariants of the theory. We stress that, analogously to [69],
we do not yet have a direct, physical or geometrical interpretation of the
proposed enumerative invariants. However, the exact solution to the resur-
gent structure of the first fermionic spectral trace of the local P2 geometry,
which is presented in Section 4 for both limits � → 0 and � → ∞, shows
that, when looking at the logarithm of the fermionic spectral trace, the
Stokes constants have a manifest and strikingly simple arithmetic meaning
as divisor sum functions. Moreover, the perturbative coefficients are encoded
in L-functions which factorize explicitly as products of zeta functions and
Dirichlet L-functions, while the duality between the weakly- and strongly-
coupled scaling regimes emerges in anumber-theoretic form. On the other
hand, the Stokes constants for the exponentiated series in Eq. (3.19) appear
to be generally complex numbers, and they can be expressed in terms of the
Stokes constants of the series φN (�) by means of a closed partition-theoretic
formula. Let us stress that we do not yet have a clear understanding of the
possible generalization of the arithmetic construction presented in Section 4
to arbitrary toric CY geometries. The case of local F0, which is analyzed
partially in Section 5 via numerical methods, is significantly more complex
as the first resurgent asymptotic series shows a leading-order behavior of
logarithmic type.



730 Claudia Rella

4. The example of local P2

The simplest example of a toric del Pezzo CY threefold is the total space of

the canonical bundle over P2, that is, O(−3) → P2, known as the local P2

geometry. It has one true complex modulus κ and no mass parameters. Its

moduli space is identified with the one-parameter family of mirror curves

described by the equation

(4.1) ex + ey + e−x−y + κ = 0, x, y ∈ C,

and the Batyrev coordinate z is given by z = 1
κ3 . The large radius point,

the maximal conifold point, and the orbifold point of the moduli space of

local P2 correspond to z = 0, z = −1/27, and z = ∞, respectively. The

quantization of the mirror curve in Eq. (4.1) gives the quantum operator

(4.2) OP2(x, y) = ex + ey + e−x−y,

acting on L2(R), where x, y are self-adjoint Heisenberg operators satisfying

[x, y] = i�. It was proven in [56] that the inverse operator

(4.3) ρP2 = O−1
P2

is positive-definite and of trace class. The fermionic spectral traces of ρP2

are well-defined and can be computed explicitly [70]. In this section, we will

study the resurgent structure of the first fermionic spectral trace

(4.4) ZP2(1, �) = Tr(ρP2)

in the semiclassical limit � → 0 and in the dual strongly-coupled limit

� → ∞.

4.1. Computing the perturbative series

Let us apply the phase-space formulation of quantum mechanics to obtain

the WKB expansion of the trace of the inverse operator ρP2 at next-to-

leading order (NLO) in � → 0, starting from the explicit expression of

the operator OP2 in Eq. (4.2), and following Appendix A. For simplicity,

we denote by OW , ρW the Wigner transforms of the operators OP2 , ρP2 ,

respectively. The Wigner transform of OP2 is obtained by performing the
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integration in Eq. (A.1) directly. As we show in Example A.1, this simply
gives the classical function

(4.5) OW = ex + ey + e−x−y.

Substituting it into Eqs. (A.11a) and (A.11b), we have

G2 =− �2

4

[
ex+y + e−x + e−y

]
+O(�4),(4.6a)

G3 =− �2

4
e−2(x+y)[−3e2x+2y + ex+3y + e3x+4y + ex(4.6b)

+ (x ↔ y)] +O(�4),

where (x ↔ y) indicates the symmetric expression after exchanging the vari-
ables x and y. It follows from Eq. (A.12) that the Wigner transform of ρP2 ,
up to order �2, is then given by

(4.7) ρW =
1

OW
− 9�2

4

1

O4
W

+O(�4).

We note that the same result can be obtained by solving Eq. (A.15) order by
order in powers of �2. Integrating Eq. (4.7) over phase space, as in Eq. (A.3),
we obtain the NLO perturbative expansion in � of the trace, that is,

(4.8)

Tr(ρP2) =
1

2π�

∫
R2

ρW dxdy

=
1

2π�

∫
R2

1

OW
dxdy − 9�

8π

∫
R2

1

O4
W

dxdy +O(�4),

and evaluating the integrals explicitly, we find

(4.9) Tr(ρP2) =
Γ
(
1
3

)3
6π�

{
1− �2

72
+O(�4)

}
,

where Γ(z) denotes the Gamma function. We stress that the phase-space
formalism adopted above provides, in principle, the perturbative expansion
of Tr(ρP2) at all orders in � by systematically extending all intermediate
computations beyond order �2. It is not, however, the most practical path.

The integral kernel for the operator ρP2 is given by [70]

(4.10) ρP2(x1, x2) =
eπb(x1+x2)/3

2b cosh(π(x1 − x2)/b+ iπ/6)

Φb(x2 + ib/3)

Φb(x1 − ib/3)
,
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where b is related to � by

(4.11) 2πb2 = 3�,

and Φb denotes Faddeev’s quantum dilogarithm. Note that the integral ker-
nel in Eq. (4.10) is well-defined for � ∈ C′, since Φb can be analytically
continued to all values of b such that b2 /∈ R≤0. A summary of the prop-
erties of this function is provided in Appendix B. In what follows, we will
assume that �(b) > 0. The first spectral trace has the integral representa-
tion [70]

(4.12) Tr(ρP2) =
1√
3b

∫
R

e2πbx/3
Φb(x+ ib/3)

Φb(x− ib/3)
dx,

which is an analytic function of � ∈ C′. As pointed out in [69], the analytic
continuation of the first spectral trace obtained in this way matches the
natural analytic continuation of the total grand potential of local P2 to
complex values of � such that �(�) > 0. The TS/ST correspondence is,
then, still applicable. The integral in Eq. (4.12) can be evaluated by using the
integral Ramanujan formula, or by analytically continuing x to the complex
domain, completing the integration contour from above, and summing over
residues, yielding the closed formula [56]

(4.13) Tr(ρP2) =
1√
3b

e−
πi

36
(12c2b+4b2−3)Φb

(
cb − ib

3

)2
Φb

(
cb − 2ib

3

) = 1

b

∣∣∣∣Φb

(
cb −

ib

3

)∣∣∣∣
3

,

where cb = i(b + b−1)/2. Moreover, the expression in Eq. (4.13) can be
factorized into a product of q- and q̃-series by applying the infinite product
representation in Eq. (B.21). Namely, we have that

(4.14) Φb

(
cb −

ib

3

)
=

(q2/3; q)∞
(w−1; q̃)∞

, Φb

(
cb −

2ib

3

)
=

(q1/3; q)∞
(w; q̃)∞

,

where (xqα; q)∞ is the quantum dilogarithm defined in Eq. (B.17), and
therefore

(4.15) Tr(ρP2) =
1√
3b

e−
πi

36
b2+ πi

12
b−2+πi

4
(q2/3; q)2∞
(q1/3; q)∞

(w; q̃)∞
(w−1; q̃)2∞

,

where q = e2πib
2

, q̃ = e−2πib−2

, and w = e2πi/3. Note that the factorization
in Eq. (4.15) is not symmetric in q, q̃. We assume that �(b2) > 0, which
implies |q|, |q̃| < 1, so that the q- and q̃-series converge.
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Let us consider the formula in Eq. (4.15) and derive its all-orders pertur-
bative expansion in the limit � → 0. The anti-holomorphic blocks contribute
the constant factor

(4.16)
(w; q̃)∞

(w−1; q̃)2∞
∼ 1− w

(1− w−1)2
=

−i√
3
.

Applying the known asymptotic expansion formula for the quantum dilog-
arithm in Eq. (B.26b), with the choice of α = 1/3, 2/3, and recalling the
identities [20]

(4.17) Γ(2/3) =
2π√
3
Γ(1/3)−1, B2n+1 = 0, Bn(1/3) = (−1)nBn(2/3),

where n ∈ N, we have that

(4.18)

log
(q2/3; q)2∞
(q1/3; q)∞

=− πi

12
b−2 − 1

2
log(−2πib2) + log

(
3
Γ(1/3)3

(2π)3/2

)

+
πi

36
b2 − 3

∞∑
n=1

(2πib2)2n
B2nB2n+1(2/3)

2n(2n+ 1)!
,

where Bn(z) is the n-th Bernoulli polynomial, Bn = Bn(0) is the n-th
Bernoulli number, and Γ(z) is the gamma function. We note that the terms
of order b2 and b−2 cancel with the opposite contributions from the ex-
ponential in Eq. (4.15), so that there is no global exponential pre-factor.
However, the logarithmic term in b2 gives a global pre-factor of the form
1/b2 after the exponential expansion. Substituting Eqs. (4.16) and (4.18)
into Eq. (4.15), and using 2πb2 = 3�, we obtain the all-orders semiclassical
expansion of the first spectral trace of local P2 in the form7

(4.19) Tr(ρP2) =
Γ
(
1
3

)3
6π�

exp

(
3

∞∑
n=1

(−1)n−1B2nB2n+1(2/3)

2n(2n+ 1)!
(3�)2n

)
,

which has coefficients in Q of alternating sign up to the global pre-factor. We
comment that ω2 = Γ(1/3)3/4π is the real half-period of the Weierstrass el-
liptic function in the equianharmonic case, which corresponds to the elliptic
invariants g2 = 0 and g3 = 1, while the other half-period is ω1 = eπi/3ω2 [12].
The formula in Eq. (4.19) allows us to compute the coefficients of the per-
turbative series for ZP2(1, � → 0) at arbitrarily high order. The first few

7The formula in Eq. (4.19) has also been obtained in [3].
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terms are

(4.20) 1− �2

72
+

23�4

51840
− 491�6

11197440
+

1119703�8

112870195200
+ O(�10),

multiplied by the global pre-factor in Eq. (4.19), which confirms our analytic
calculation at NLO in Eq. (4.9).

4.2. Exact solution to the resurgent structure for � → 0

4.2.1. Resumming the Borel transform Let us denote by φ(�) the
formal power series appearing in the exponent in Eq. (4.19). Namely,

φ(�) =

∞∑
n=1

a2n�
2n ∈ Q[[�]],(4.21a)

a2n = (−1)n−1B2nB2n+1(2/3)

2n(2n+ 1)!
32n+1 n ≥ 1,(4.21b)

which is simply related to the perturbative expansion in the limit � → 0 of
the logarithm of the first spectral trace of local P2 by

(4.22) log Tr(ρP2) = φ(�) + 3 log Γ(1/3)− log(6π�).

We recall that the Bernoulli polynomials have the asymptotic behavior [24]

B2n(z) ∼ (−1)n−1 2 cos(2πz)(2n)!

(2π)2n
n � 1,(4.23a)

B2n+1(z) ∼ (−1)n−1 2 sin(2πz)(2n+ 1)!

(2π)2n+1
n � 1.(4.23b)

It follows that the coefficients of φ(�) satisfy the factorial growth

(4.24) a2n ∼ (−1)n(2n)!

(
4π2

3

)−2n

n � 1,

and φ(�) is a Gevrey-1 asymptotic series. Its Borel transform is given by

(4.25) φ̂(ζ) = 3

∞∑
n=1

(−1)n−1 B2nB2n+1(2/3)

2n(2n)!(2n+ 1)!
(3ζ)2n ∈ Q[[ζ]],

and it is the germ of an analytic function in the complex ζ-plane.
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Proposition 4.1. Using the definition in Eq. (C.28), we can interpret the
Borel transform φ̂(ζ) in Eq. (4.25) as the Hadamard product

(4.26) φ̂(ζ) = (f � g)(ζ),

where the formal power series f(ζ) and g(ζ) have finite radius of convergence
at the origin ζ = 0 and can be resummed explicitly as8

(4.27) f(ζ) =

∞∑
n=1

B2n+1(2/3)

(2n+ 1)!
ζ2n =

1

2 + 4 cosh(ζ/3)
− 1

6
,

for |ζ| < 2π, and

(4.28) g(ζ) = 3

∞∑
n=1

(−1)n−1 B2n

2n(2n)!
(3ζ)2n = −3 log

(
2

3ζ
sin

(
3ζ

2

))
,

for |ζ| < 2π/3.

Proof. The Bernoulli polynomials with argument 2/3 are defined by the
generating function

(4.29)

∞∑
n=0

Bn(2/3)

n!
ζn =

ζe2ζ/3

eζ − 1
, |ζ| < 2π.

We apply the hyperbolic identities

(4.30)
eζ − 1

2eζ/2
= sinh(ζ/2), eζ/6 = sinh(ζ/6) + cosh(ζ/6),

and we take the odd part of both sides of Eq. (4.29). We obtain in this way
that

(4.31)

∞∑
n=0

B2n+1(2/3)

(2n+ 1)!
ζ2n+1 =

ζ

2

sinh(ζ/6)

sinh(ζ/2)
, |ζ| < 2π.

Using the sum-of-arguments and the half-argument identities for sinh(ζ/3+
ζ/6) and coth(ζ/6), respectively, the formula in Eq. (4.31) yields the state-
ment in Eq. (4.27). Let us consider Eq. (C.31a) for a = 1 and apply the

8We impose that f(0) = g(0) = 0 in order to eliminate the removable singularities
of f(ζ), g(ζ) at the origin.
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identity in Eq. (4.80a) for ζ(2n, 1) = ζ(2n), n ≥ 1. We find that

(4.32)

∞∑
n=1

(−1)n−1 B2n

2n(2n)!
(3ζ)2n = log

(
Γ

(
1 +

3ζ

2π

)
Γ

(
1− 3ζ

2π

))
,

for |ζ| < 2π/3, and the statement in Eq. (4.28) then follows from Euler’s
reflection formula for the gamma function, that is,

(4.33) Γ (1 + x) Γ (1− x) =
πx

sin (πx)
, x ∈ C\Z,

with the choice x = 3ζ/2π.

After being analytically continued to the whole complex plane, the func-
tion f(ζ) has poles of order one along the imaginary axis at

(4.34) μ±
k = 2πi(±1 + 3k), k ∈ Z,

while the function g(ζ) has logarithmic branch points along the real axis at

(4.35) νm =
2π

3
m, m ∈ Z 	=0.

We illustrate the singularities of f(ζ), g(ζ) in the complex ζ-plane in Fig. 2
on the left.

Proposition 4.2. The Borel transform φ̂(ζ) in Eq. (4.25) can be expressed
as

(4.36) φ̂(ζ) = −3
√
3

2π

∑
k∈Z

1

1 + 3k
log

(
4πi(1 + 3k)

3ζ
sin

(
3ζ

4πi(1 + 3k)

))
,

which is a well-defined, exact function of ζ.

Proof. We will now apply Hadamard’s multiplication theorem [22, 23]. We
refer to Appendix C for a short introduction. Let γ be a circle in the complex
s-plane centered at the origin s = 0 with radius 0 < r < 2π. As a conse-
quence of the Hadamard decomposition in Eq. (4.26), the Borel transform
can be written as the integral

(4.37)

φ̂(ζ) =
1

2πi

∫
γ
f(s)g(ζ/s)

ds

s

= − 3

4πi

∫
γ

(
1

1 + 2 cosh(s/3)
− 1

3

)
log

(
2s

3ζ
sin

(
3ζ

2s

))
ds

s
,
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Figure 2: On the left, the first few singularities of f(ζ) (in red) and g(ζ)
(in blue) in the complex ζ-plane. On the right, the contour γ and the first
few singularities of f(s) (in red) and g(ζ/s) (in blue) in the complex s-plane
with reference values r = 5.5 and ζ = 10.

for |ζ| < 2πr/3. We note that, for such values of ζ, the function s �→ g(ζ/s)
has logarithmic branch points at s = ζ/νm, m ∈ Z 	=0, which sit inside the
contour of integration γ and accumulate at the origin, and no singularities
for |s| > r. The function f(s) has simple poles at the points s = μ±

k with
residues

(4.38) Res
s=2πi(±1+3k)

f(s) = ∓
√
3i

2
, k ∈ Z.

We illustrate the singularities of f(s), g(ζ/s) in the complex s-plane in Fig. 2
on the right. By Cauchy’s residue theorem, the integral in Eq. (4.37) can be
evaluated by summing the residues at the poles of the integrand which lie
outside γ, allowing us to express the Borel transform as an exact function
of ζ. More precisely, we find the desired analytic formula

(4.39)

φ̂(ζ) = −
∑
k∈Z

Res
s=2πi(±1+3k)

f(s)g(ζ/s)
1

s

= −3
√
3

2π

∑
k∈Z

1

1 + 3k
log

(
4πi(1 + 3k)

3ζ
sin

(
3ζ

4πi(1 + 3k)

))
.
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The convergence of the infinite sum in the second line of Eq. (4.39) can be
easily verified by, e.g., the limit comparison test.

Corollary 4.3. The singularities of the Borel transform φ̂(ζ) in Eq. (4.36)
are logarithmic branch points located along the imaginary axis at

(4.40) ζk,m = μ+
k νm =

4π2i

3
(1 + 3k)m, k ∈ Z, m ∈ Z 	=0,

which we write equivalently as

(4.41) ζn =
4π2i

3
n, n ∈ Z 	=0,

that is, the branch points lie at all non-zero integer multiples of the two
complex conjugate dominant singularities at ±4π2i/3, as illustrated in Fig. 3.

This is the simplest occurrence of the peacock pattern of singularities
described in Section 3.2. There are two Stokes lines at the angles ±π/2.
Note that the analytic expression for the Borel transform in Eq. (4.36) is
explicitly simple resurgent, and thus we expect its local singular behavior
to be of the form in Eq. (3.4).

Corollary 4.4. The local expansion of the Borel transform φ̂(ζ) in Eq. (4.36)
at ζ = ζn, n ∈ Z 	=0, is given by

(4.42) φ̂(ζ) = − Sn

2πi
log(ζ − ζn) + · · · ,

where Sn ∈ C is the Stokes constant.

Proof. The local expansion of φ̂(ζ) around the logarithmic singularity ζ = ζn
is obtained by summing the contributions from all pairs (k,m) ∈ Z × Z 	=0

such that n = (1 + 3k)m. There is finitely many such pairs of integers, and
we collect them into a set In for each n ∈ Z 	=0. For a fixed value of k ∈ Z,
we denote the corresponding term in the sum in Eq. (4.36) by

(4.43) fk(ζ) = − 3
√
3

2π(1 + 3k)
log

(
4πi(1 + 3k)

3ζ
sin

(
3ζ

4πi(1 + 3k)

))
.

We expand it locally around ζ = ζk,m for every choice of m ∈ Z 	=0, and we
obtain

(4.44) fk(ζ) = −sk,m
2πi

log(ζ − ζk,m) + · · · ,
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Figure 3: The first few singularities of the Borel transform of the asymp-
totic series φ(�), defined in Eq. (4.21), and the associated integer constants
αn ∈ Z 	=0, defined in Eq. (4.47).

where the dots denote regular terms in ζ− ζk,m, and sk,m is a complex num-
ber. Since ζn = ζk,m for all (k,m) ∈ In, it follows that the local expansion

of φ̂(ζ) at ζ = ζn is given by

(4.45) φ̂(ζ) =
∑
k∈Z

fk(ζ) = − Sn

2πi
log(ζ − ζn) + · · · ,

where the Stokes constant Sn is the finite sum

(4.46) Sn =
∑

(k,m)∈In

sk,m.

It follows from Corollary 4.4 that the locally analytic function that
resurges at ζ = ζn is trivially φ̂n(ζ − ζn) = 1, n ∈ Z 	=0. We observe that
the Laplace transform in Eq. (3.7) acts trivially on constants, and thus we
also have that φn(�) = 1, n ∈ Z 	=0, that is, there are no perturbative con-
tributions coming from the higher-order instanton sectors. Moreover, the
procedure above allows us to derive analytically all the Stokes constants.
After being suitably normalized, the Stokes constants Sn are rational num-
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bers, and they are simply related to an interesting sequence of integers αn,
n ∈ Z 	=0. In particular, we find that

S1 = 3
√
3i, Sn = S1

αn

n
n ∈ Z 	=0,1,(4.47a)

αn = −α−n, αn ∈ Z>0 n ∈ Z>0.(4.47b)

Explicitly, the first several integer constants αn, n > 0, are

(4.48) 1, 1, 3, 3, 4, 3, 8, 5, 9, 4, 10, 9, 14, 8, 12, 11, 16, 9, 20, 12, . . . .

The pattern of singularities in the Borel plane and the associated αn ∈ Z 	=0

are shown in Fig. 3.

4.2.2. Closed formulae for the Stokes constants We will now present
and prove a series of exact arithmetic formulae for the Stokes constants Sn

of the asymptotic series φ(�), defined in Eq. (4.21), and the related integer
constants αn, defined in Eq. (4.47), for n ∈ Z 	=0. Let us start by showing
that both sequences Sn and αn define explicit divisor sum functions.

Proposition 4.5. The normalized Stokes constant Sn/S1, where S1 = 3
√
3i,

is determined by the positive integer divisors of n ∈ Z 	=0 according to the
closed formula

(4.49)
Sn

S1
=
∑
d|n
d≡31

1

d
−
∑
d|n
d≡32

1

d
,

which implies that Sn = S−n and Sn/S1 ∈ Q>0.

Proof. Let us denote by Dn the set of positive integer divisors of n. We
recall that n satisfies the factorization property n = (1 + 3k)m for k ∈ Z

and m ∈ Z 	=0. It follows that either

(4.50) m =
n

d
, k =

d− 1

3
,

where d ∈ Dn such that d− 1 is divisible by 3, or

(4.51) m = −n

d
, k = −d+ 1

3
,

where d ∈ Dn such that d + 1 is divisible by 3. In the first case of d ≡3 1,
substituting the values of k,m from Eq. (4.50) into Eqs. (4.43) and (4.40), we
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find that the contribution to the Stokes constant Sn coming from the local
expansion of fk(ζ) around ζk,m is simply sk,m = 3

√
3i/d. In the second case

of d ≡3 2, substituting the values of k,m from Eq. (4.51) into Eqs. (4.43)
and (4.40), we find that the contribution to the Stokes constant Sn coming
from the local expansion of fk(ζ) around ζk,m is simply sk,m = −3

√
3i/d.

Finally, for any divisor d ∈ Dn which is a multiple of 3, neither d−1 or d+1
are divisible by 3, which implies that the choice m = ±n/d is not allowed,
and the corresponding contribution is sk,m = 0. Putting everything together
and using Eq. (4.46), we find the desired statement.

We note that the arithmetic formula for the Stokes constants in Eq. (4.49)
can be written equivalently as a closed expression for the integer constants
αn, n ∈ Z 	=0. Namely,

(4.52) αn =
∑
d|n

n

d
≡31

d−
∑
d|n

n

d
≡32

d,

which implies that αn = −α−n, and αn ∈ Z>0 for all n > 0. Two corollaries
then follow straightforwardly from Proposition 4.5.

Corollary 4.6. The positive integer constants αn, n ∈ Z>0, satisfy the
closed formulae

(4.53) αp
e1
1

=
pe1+1
1 − 1

p1 − 1
, αp

e2
2

=
pe2+1
2 + (−1)e2

p2 + 1
, αp

e3
3

= pe33 ,

where ei ∈ N, and pi ∈ P are prime numbers such that pi ≡3 i for i = 1, 2, 3.
Moreover, they obey the multiplicative property

(4.54) αn =
∏
p∈P

αpe , n =
∏
p∈P

pe, e ∈ N.

Proof. The three closed formulae follow directly from Eq. (4.52). Explicitly,
let n = pe with p ∈ P and e ∈ N. We have that∑

d|n
n

d
≡31

d = pe,
∑
d|n

n

d
≡32

d = 0, if p ≡3 0,(4.55a)

∑
d|n

n

d
≡31

d =

e∑
i=0

pi =
pe+1 − 1

p− 1
,
∑
d|n

n

d
≡32

d = 0, if p ≡3 1,(4.55b)
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∑
d|n

n

d
≡31

d =

�e/2�∑
i=0

pe−2i,
∑
d|n

n

d
≡32

d =

�e/2�∑
i=0

pe−(2i+1), if p ≡3 2.(4.55c)

Let us now prove the multiplicity property. We will prove a slightly stronger
statement. We write n = pq for p, q ∈ Z>0 coprimes. We choose a positive
integer divisor d|n, and we write d = st where s|p and t|q. Consider two
cases:

(1) Suppose that n/d ≡3 1. Then, either p/s ≡3 q/t ≡3 1, or p/s ≡3

q/t ≡3 2, and therefore

(4.56)
∑
d|n

n

d
≡31

d =
∑
s|p

p

s
≡31

s
∑
t|q

q

t
≡31

t+
∑
s|p

p

s
≡32

s
∑
t|q

q

t
≡32

t.

(2) Suppose that n/d ≡3 2. Then, either p/s ≡3 1 and q/t ≡3 2, or
p/s ≡3 2 and q/t ≡3 1, and therefore

(4.57)
∑
d|n

n

d
≡32

d =
∑
s|p

p

s
≡31

s
∑
t|q

q

t
≡32

t+
∑
s|p

p

s
≡32

s
∑
t|q

q

t
≡31

t.

Substituting Eqs. (4.56) and (4.57) into Eq. (4.52), we find that

(4.58) αn =

⎛
⎜⎜⎜⎝
∑
s|p

p

s
≡31

s−
∑
s|p

p

s
≡32

s

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
∑
t|q

q

t
≡31

t−
∑
t|q

q

t
≡32

t

⎞
⎟⎟⎟⎠ = αpαq,

which proves that the sequence αn, n ∈ Z>0, defines a multiplicative arith-
metic function. Note that the proof breaks if p, q are not coprimes, since
the formulae above lead in general to overcounting the contributions coming
from common factors. Therefore, the sequence αn is not totally multiplica-
tive. Note that the sequence of normalized Stokes constants Sn/S1, n ∈ Z>0,
is also a multiplicative arithmetic function.

Corollary 4.7. The positive integer constants αn, n ∈ Z>0, are encoded in
the generating function

(4.59)

∞∑
n=1

αnx
n =

∞∑
m=1

mxm

1 + xm + x2m
.
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Proof. We denote by f(x) the generating function in the RHS of Eq. (4.59).
We note that

(4.60) f(x) = f1(x)− f2(x),

where the functions f1(x), f2(x) are defined by

(4.61) f1(x) =
∑

m∈N �=0

mxm

1− x3m
, f2(x) =

∑
m∈N �=0

mx2m

1− x3m
.

The formula in Eq. (4.59) follows from the stronger statement

(4.62)
∑
d|n

n

d
≡31

d =
1

n!

dnf1(0)

dxn
,
∑
d|n

n

d
≡32

d =
1

n!

dnf2(0)

dxn
, n ∈ Z>0.

We will now prove this claim for the function f1(x). The case of f2(x) is
proven analogously. Let us denote by

(4.63) f1,m(x) =
mxm

1− x3m
, m ∈ N 	=0,

and consider the derivative dnf1,m(x)/dxn for fixedm. We want to determine
its contributions to dnf1(0)/dx

n. Since we are interested in those terms that
survive after taking x = 0, we look for the monomials of order xdm−n,
where d|n, in the numerator of dnf1,m(x)/dxn, and we take m = n/d. More
precisely, deriving a-times the factor mxm and (n− a)-times the factor (1−
x3m)−1, we have the term

(4.64)

(
n

a

)
da(mxm)

dxa
dn−a(1− x3m)−1

dxn−a
, a ∈ N 	=0.

Recall that the generalized binomial theorem for the geometric series yields

(4.65)
dn−a(1− x3m)−1

dxn−a
=

∞∑
k=0

(3mk)!

(3mk − n+ a)!
x3mk−n+a.

Substituting Eq. (4.65) into Eq. (4.64) and performing the derivation, we
have

(4.66) n!

∞∑
k=0

m

(
m

m− a

)(
3mk

3mk − n+ a

)
x(1+3k)m−n.
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It follows then that the only non-zero term at fixed m ∈ N 	=0 comes from

the values of k ∈ N and a ∈ N 	=0 such that (1+3k)m = n and a = m, which

implies in turn that m|n and n/m ≡3 1. Finally, summing the non-trivial

contributions over m gives precisely

(4.67)
dnf1(0)

dxn
=
∑
m|n
n

m
≡31

n!m

(
m

0

)(
n−m

0

)
= n!

∑
m|n
n

m
≡31

m.

A third notable consequence of Proposition 4.5 is that the Stokes con-

stants Sn, n ∈ Z>0, can be naturally organized as coefficients of an exact

generating function given by quantum dilogarithms.

Corollary 4.8. The Stokes constants Sn, n ∈ Z>0, are encoded in the

generating function

(4.68)

∞∑
n=1

Snx
n = −iπ − 3 log

(w; x)∞
(w−1; x)∞

, |x| < 1,

where w = e2πi/3.

Proof. We apply the definition of the quantum dilogarithm in Eq. (B.17)

and Taylor expand the logarithm function for |x| < 1. We obtain in this way

that

(4.69) log(w; x)∞ = log

∞∏
m=0

(1− wxm) = −
∞∑

m=0

∞∑
k=1

xmk

k
wk,

and therefore also

(4.70) log
(w; x)∞

(w−1; x)∞
= −

∞∑
m=0

∞∑
k=1

xmk

k
(wk − w−k).

We observe that

(4.71) wk − w−k = e2πik/3 − e−2πik/3 =

⎧⎪⎨
⎪⎩
0 for k ≡ 0 mod 3

i
√
3 for k ≡ 1 mod 3

−i
√
3 for k ≡ 2 mod 3

.

Substituting Eq. (4.71) into Eq. (4.70), and performing the change of variable
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n = mk, we find

(4.72) log
(w; x)∞

(w−1; x)∞
= −i

√
3

∞∑
n=1

⎛
⎜⎜⎝∑

d|n
d≡31

xn

d
−
∑
d|n
d≡32

xn

d

⎞
⎟⎟⎠−

∞∑
k=1

(wk − w−k)

k
,

where the last term in the RHS is simply resummed to

(4.73) −
∞∑
k=1

(wk − w−k)

k
= log(1− w)− log(1− w−1) = log(−w) = −πi

3
.

Substituting the arithmetic formula for the Stokes constants in Eq. (4.49)
into Eq. (4.72), we obtain the desired statement.

We note that, choosing x = q̃ = e−4π2i/3�, Corollary 4.8 directly implies
an exact expression in terms of q̃-series for the discontinuity of the asymp-
totic series φ(�) across the positive imaginary axis, which borders the only
two distinct Stokes sectors in the upper half of the Borel plane. Namely,
following the definition in Eq. (3.10), and recalling that the formal power
series that resurges from the Borel singularity ζn = n4π2i/3, n ∈ Z>0, is
trivially φn(�) = 1, we have that

(4.74) discπ/2φ(�) = s+(φ)(�)− s−(φ)(�) =
∞∑
n=1

Sne
−n4π2i/3�,

where s±(φ)(�) are the lateral Borel resummations at the angles π/2±ε with
ε � 1, which lie slightly above and slightly below the Stokes line along the
positive imaginary axis, respectively. Substituting Eq. (4.68) into Eq. (4.74),
we obtain the exact formula

(4.75) discπ/2φ(�) = −iπ − 3 log(w; q̃)∞ + 3 log(w−1; q̃)∞.

We stress that (w; q̃)∞ and (w−1; q̃)∞ are the same q̃-series which appear as
the anti-holomophic block of the first spectral trace of local P2 in Eq. (4.15).

4.2.3. Exact large-order relations We provide here an alternative
closed formula for the perturbative coefficients a2n, n ∈ N 	=0, of the asymp-
totic series φ(�) in Eq. (3.6), which highlights an interesting link to analytic
number theory. We recall that the large-n asymptotics of the coefficients a2n
is controlled at leading order by the singular behavior of the Borel transform
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φ̂(ζ) in the neighbourhood of its dominant complex conjugate singularities
ζ±1, which is encoded in the local expansion in Eq. (4.42). We have the
standard formula

(4.76) a2n ∼ (−1)n

πi

Γ(2n)

A2n
S1, n � 1,

where A = 4π2/3 and S1 = 3
√
3i. By systematically including the contri-

butions from all sub-dominant singularities in the Borel plane, the leading
asymptotics can be upgraded to an exact large-order relation, which is9

(4.77) a2n =
(−1)n

πi

Γ(2n)

A2n

∞∑
m=1

Sm

m2n
, n ∈ N 	=0,

where the Stokes constant Sm is given explicitly in Eq. (4.47).

Proposition 4.9. The Stokes constants Sm, m ∈ Z>0, satisfy the exact
relations

(4.78)

∞∑
m=1

Sm

m2n
= 3

√
3i
ζ(2n)

32n+1

(
ζ

(
2n+ 1,

1

3

)
− ζ

(
2n+ 1,

2

3

))
,

where n ∈ N 	=0, ζ(z) denotes the Riemann zeta function, and ζ(z, a) denotes
the Hurwitz zeta function.

Proof. Substituting the original expression for the perturbative coefficients
a2n, n ∈ N 	=0, in Eq. (4.21) into the exact large-order relation in Eq. (4.77),
we have that

(4.79)

∞∑
m=1

Sm

m2n
= −3πi(2π)4n

B2nB2n+1(2/3)

(2n)!(2n+ 1)!
.

Using the known identities

ζ(2n) = (−1)n+1 (2π)
2nB2n

2(2n)!
,(4.80a)

B2n+1(2/3) = −B2n+1(1/3), B2n+1(z) = −(2n+ 1)ζ(−2n, z),(4.80b)

the formula in Eq. (4.79) becomes

(4.81)

∞∑
m=1

Sm

m2n
= −3πi(−1)n(2π)2n

ζ(2n)

(2n)!

2∑
a=1

(−1)a ζ
(
−2n,

a

3

)
.

9The formula in Eq. (4.77) has also been obtained in [4].
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We recall that the Hurwitz zeta function satisfies the functional equation

(4.82) ζ
(
1− z,

a

b

)
=

2Γ(z)

(2πb)z

b∑
j=1

ζ

(
z,

j

b

)
cos

(
πz

2
− 2πja

b

)
,

for integers 1 ≤ a ≤ b, which gives in particular

(4.83)

2∑
a=1

(−1)a ζ
(
−2n,

a

3

)
= (−1)n

2
√
3(2n)!

(6π)2n+1

2∑
a=1

(−1)a ζ
(
2n+ 1,

a

3

)
.

Substituting Eq. (4.83) into Eq. (4.81), we obtain the desired statement.

Remark 4.10. We note that the exact expression in Eq. (4.78) can be
written equivalently in terms of the integer constants αm, m ∈ Z 	=0. Namely,

(4.84)

∞∑
m=1

αm

m2n+1
=

ζ(2n)

32n+1

(
ζ

(
2n+ 1,

1

3

)
− ζ

(
2n+ 1,

2

3

))
,

for n ∈ N 	=0, which hints at a fascinating connection to the analytic theory
of L-functions. More precisely, let us point out that the series in the LHS
of Eq. (4.84) belongs to the family of Dirichlet series [8]. As a consequence
of Corollary 4.6, the sequence of integers αm, m ∈ Z 	=0, defines a bounded
multiplicative arithmetic function. Therefore, the corresponding Dirichlet
series satisfies an expansion as an Euler product indexed by the set of prime
numbers P, that is,

(4.85)

∞∑
m=1

αm

m2n+1
=
∏
p∈P

∞∑
e=0

αpe

pe(2n+1)
, n ∈ N 	=0.

This proves that the given Dirichlet series is an L-series. We will further
explore this direction in Section 4.4.

4.2.4. Exponentiating with alien calculus We will now translate our
analytic solution to the resurgent structure of the asymptotic series φ(�) in
Eq. (4.21) into results on the original, exponentiated perturbative series in
Eq. (4.19), which we denote by

(4.86) ψ(�) = eφ(�) = exp

(
3

∞∑
n=1

(−1)n−1B2nB2n+1(2/3)

2n(2n+ 1)!
(3�)2n

)
∈ Q[[�]],
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and which is also a Gevrey-1 asymptotic series. Its Borel transform ψ̂(ζ)
inherits from φ̂(ζ) the same pattern of singularities in Eq. (4.41). Namely,
there are infinitely many and discrete logarithmic branch points located
along the imaginary axis of the complex ζ-plane at ζn = n4π2i/3, n ∈ Z 	=0.
We denote by s±(ψ)(�) the lateral Borel resummations at the angles π/2±ε
with ε � 1, which lie slightly above and slightly below the Stokes line along
the positive imaginary axis, respectively. Let us apply Eqs. (3.11) and (3.13)
and expand the exponential operator defining the Stokes automorphism. We
find that10

(4.87)

s+(ψ) = s− ◦Sπ/2(ψ) = s− ◦ exp
( ∞∑

n=1

e−ζn/�Δζn

)
(ψ)

= s−(ψ) +
∞∑
r=1

1

r!

∞∑
n1,...,nr=1

e−(ζn1+···+ζnr )/�s−

⎛
⎝ r∏

j=1

Δζnj
ψ

⎞
⎠

= s−(ψ) +
∞∑
k=1

e−ζk/�
∑

p∈P(k)

(
r

N1,...,Nk

)
r!

s−

⎛
⎝ r∏

j=1

Δζnj
ψ

⎞
⎠ ,

where Δζn is the alien derivative associated with the singularity ζn, n ∈ Z>0,
whose definition and basic properties are summarized in Appendix D, and
P(k) is the set of all partitions of the positive integer k. A partition p ∈ P(k)
of length |p| = r ∈ N 	=0 has the form p = (n1, . . . , nr) with 1 ≤ n1 ≤ · · · ≤
nr ≤ k such that n1 + · · · + nr = k. We denote by Ni ∈ N the number of
times that the positive integer i ∈ Z>0 is repeated in the partition p. Note
that

∑k
i=1Ni = r.

Since Eq. (D.37) directly applies to the asymptotic series φ(�), the action
of the alien derivative Δζn on φ(�) simplifies to give precisely the Stokes
constant at the singularity ζn, that is,

11

(4.88) Δζnφ(�) = Sn,

where Sn is written explicitly in Eq. (4.47), while the formula in Eq. (D.40)
becomes

(4.89) Δζnψ(�) = Δζne
φ(�) = Snψ(�),

10The argument of ψ(�) is hidden in Eq. (4.87) for simplicity.
11Let us stress that the output of alien derivation on a formal power series has,

in general, a more complex dependence on the Stokes constants. For more details,
see Appendix D.
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and therefore we have

(4.90) Δζn1
· · ·Δζnr

ψ(�) = Sn1
· · ·Snr

ψ(�), r ∈ N 	=0.

Substituting Eq. (4.90) into the last line of Eq. (4.87), we obtain that

(4.91) s+(ψ)(�) = s−(ψ)(�) + s−(ψ)(�)
∞∑
k=1

e−ζk/�S̄k,

where the asymptotic series ψk(�), which resurges from ψ(�) at the singu-
larity ζk, is simply

(4.92) ψk(�) = ψ(�), k ∈ Z>0,

and the Stokes constant S̄k ∈ C of ψ(�) at the singularity ζk is fully deter-
mined by the Stokes constants of φ(�) via the closed formula

(4.93) S̄k =
∑

p∈P(k)

1

r!

(
r

N1, . . . , Nk

)
Sn1

· · ·Snr
, k ∈ Z>0.

We stress that the sum over partitions in Eq. (4.93) is finite, and thus all the
Stokes constants of the original perturbative series ψ(�) are known exactly.
More precisely, the discontinuity formula in Eq. (4.91) solves the resurgent
structure of ψ(�) analytically. Note that the instanton sectors associated
with the symmetric singularities along the negative imaginary axis are ana-
lytically derived from the resurgent structure of φ(�) by applying the same
computations above to the discontinuity of ψ(�) across the angle 3π/2. We
find straightforwardly that, if we define P(k) = P(|k|) when k < 0, the for-
mulae in Eqs. (4.92) and (4.93) hold for all values of k ∈ Z 	=0. In particular,
we have that S̄k = S̄−k.

Let us point out that the Stokes constants S̄k, k ∈ Z 	=0, are generally
complex numbers. However, we can say something more. The discontinuity
formula in Eq. (4.75) can be directly exponentiated to give an exact generat-
ing function in terms of known q̃-series for the Stokes constants S̄k. Namely,
we find that

(4.94)

∞∑
k=1

S̄kq̃
k = e−iπ (w

−1; q̃)3∞
(w; q̃)3∞

,

where w = e2πi/3. As a consequence of the q-binomial theorem, the quotient
of q̃-series in the RHS of Eq. (4.94) can be expanded in powers of q̃, and the
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resulting numerical coefficients are combinations of integers, related to the
enumerative combinatorics of counting partitions, and complex numbers,
arising as integer powers of the complex constants w,w−1. Explicitly, the
first several Stokes constants S̄k, k > 0, are

(4.95) 3
√
3i,−27

2
+

3
√
3i

2
,−27

2
− 21

√
3i

2
,−18

√
3i, 27− 30

√
3i, . . . .

We stress that a special kind of simplification occurs when factoring out the
contribution from S1 = 3

√
3i. More precisely, if we divide the discontinuity

formula in Eq. (4.75) by S1 and take the exponential of both sides, we find
a new generating series, that is,

(4.96)

∞∑
k=1

S̄′
kq̃

k = e−
π

3
√

3

(
(w; q̃)∞

(w−1; q̃)∞

) i√
3

,

where the new constants S̄′
k are, notably, rational numbers. Let us remark

that these rational Stokes constants S̄′
k appear naturally in the resurgent

study of the normalized perturbative series φ′(�) = φ(�)/3
√
3i after expo-

nentiation. Explicitly, the first several values of S̄′
k, k > 0, are

(4.97) 1, 1,
5

3
,
13

6
,
83

30
,
299

90
,
419

90
,
409

72
,
23137

3240
,
138761

16200
,
1894921

178200
, . . . .

Finally, we note that the numbers k!S̄′
k, k ∈ Z>0, define a sequence of

positive integers, which is

(4.98) 1, 2, 10, 52, 332, 2392, 23464, 229040, 2591344, 31082464, . . . .

4.3. Exact solution to the resurgent structure for � → ∞

Let us go back to the exact formula for the first spectral trace of local P2

in Eq. (4.15) and derive its all-orders perturbative expansion in the dual
limit � → ∞. In the strong-weak coupling duality of Eq. (2.20) between the
spectral theory of the operator ρP2 and the standard topological string the-
ory on local P2, this regime corresponds to the weakly-coupled limit gs → 0
of the topological string. The resurgent structure of the perturbative series
ZP2(1, � → ∞) has been studied numerically in [69]. We will show here how
the same procedure that we have presented in Section 4.2 for the semiclassi-
cal limit � → 0 can be straightforwardly applied to the dual case. We obtain
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in this way a fully analytic solution to the resurgent structure of Tr(ρP2) for

� → ∞.

Let us start by applying the known asymptotic expansion formula for

the quantum dilogarithm in Eq. (B.26a) to the anti-holomorphic blocks in

Eq. (4.15) and explicitly evaluate the special functions that appear. We recall

that

log(1− w)− 2 log(1− w−1) = −πi

2
− 1

2
log(3),(4.99a)

Li2(w)− 2Li2(w
−1) =

π2

18
+ iV,(4.99b)

Li0(w)− 2Li0(w
−1) =

1

2
+ 3

√
3iB1(2/3),(4.99c)

where we have defined V = 2�
(
Li2(e

πi/3)
)
and w = e2πi/3, as before. For

integer n ≥ 2, the dilogarithm functions give

(4.100)

Li2−2n(w)− 2Li2−2n(w
−1) =

∞∑
s=1

1

s2−2n
(ws − 2w−s)

=− 32n−2 [ζ(2− 2n)

+
1 + 3

√
3i

2
ζ

(
2− 2n,

1

3

)

+
1− 3

√
3i

2
ζ

(
2− 2n,

2

3

)]
.

Using the identity

(4.101) ζ

(
2− 2n,

1

3

)
+ ζ

(
2− 2n,

2

3

)
∝ ζ(2− 2n) = 0, n ∈ Z>1,

and the formulae in Eq. (4.80b), the expression in Eq. (4.100) simplifies to

(4.102) Li2−2n(w)− 2Li2−2n(w
−1) = 32n−1

√
3i
B2n−1(2/3)

2n− 1
.

Substituting Eqs. (4.99) and (4.102) into the asymptotic expansion formula

in Eq. (B.26a), we find that the anti-holomorphic blocks contribute in the
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limit � → ∞ as

(4.103)

log
(w; q̃)∞

(w−1; q̃)2∞
=− πi

12
b−2 − πi

4
− 1

4
log(3) +

(
πi

36
− V

2π

)
b2

−
√
3i

∞∑
n=1

(6πib−2)2n−1B2nB2n−1(2/3)

(2n− 1)(2n)!
,

while the holomorphic blocks contribute trivially as

(4.104)
(q2/3; q)2∞
(q1/3; q)∞

∼ 1.

Remark 4.11. We note that the terms of order b2 and b−2 in Eq. (4.103)

only partially cancel with the opposite contributions from the exponential

in Eq. (4.15), leaving the exponential factor

(4.105) Tr(ρP2) ∼ exp

(
−3V

gs

)
, gs → 0,

which proves the statement of the conifold volume conjecture12 in the spe-

cial case of local P2. A dominant exponential of the form in Eq. (4.105)

was already found numerically in [69] for both local P2 and local F0 in the

weakly-coupled limit gs → 0. However, we show in this paper that, for the

same geometries, the perturbative expansion in the limit � → 0 of the first

fermionic spectral trace does not have such a global exponential pre-factor,

being dominated by a leading term of order �−1. This suggests that there is

no analogue of the conifold volume conjecture in the semiclassical regime.

Substituting Eqs. (4.103) and (4.104) into Eq. (4.15), and using 2πb2 =

3�, we obtain the all-orders perturbative expansion for � → ∞ of the first

spectral trace of local P2 in the form

Tr(ρP2) = p(�) exp

(
−i

√
3

∞∑
n=1

B2nB2n−1(2/3)

(2n)!(2n− 1)

(
4π2i

�

)2n−1
)
,(4.106a)

p(�) =

√
2π

35/2�
e−

3V

4π2 �,(4.106b)

12The conifold volume conjecture for toric CY manifolds has been tested in
examples of genus one and two in [40, 41, 70, 71, 72].
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which has coefficients in Q[π,
√
3] up to the global pre-factor p(�). The for-

mula in Eq. (4.106) allows us to compute the coefficients of the perturbative
series for ZP2(1, � → ∞) at arbitrarily high order. The first few terms are

(4.107) 1 +
π2

6
√
3�

+
π4

216�2
− 59π6

19440
√
3�3

− 251π8

1399680�4
+O(�−5),

multiplied by the global pre-factor in Eq. (4.106).

4.3.1. Resumming the Borel transform Let us introduce the param-
eter τ = −1/b2 = −2π/3� and denote by φ(τ) the formal power series
appearing in the exponent in Eq. (4.106). Namely,

φ(τ) =

∞∑
n=1

a2nτ
2n−1 ∈ Q[π,

√
3][[τ ]],(4.108a)

a2n = (−1)n
√
3
B2nB2n−1(2/3)

(2n)!(2n− 1)
(6π)2n−1 n ≥ 1,(4.108b)

which is simply related to the perturbative expansion in the limit � → ∞ of
the logarithm of the first spectral trace of local P2 by

(4.109) log Tr(ρP2) = φ(τ) +
V

2πτ
+

1

2
log(τ)− 3

4
log(3) +

πi

2
.

As a consequence of the known asymptotic behavior of the Bernoulli poly-
nomials in Eq. (4.23), we obtain that the coefficients of φ(τ) satisfy the
expected factorial growth

(4.110) a2n ∼ (−1)n(2n)!

(
2π

3

)−2n

n � 1,

and φ(τ) is a Gevrey-1 asymptotic series. Its Borel transform is given by

(4.111) φ̂(ζ) =
√
3

∞∑
n=1

(−1)nB2nB2n−1(2/3)

(2n)!(2n− 1)(2n− 1)!
(6πζ)2n−1 ∈ Q[π,

√
3][[ζ]],

and it is the germ of an analytic function in the complex ζ-plane.

Proposition 4.12. Using the definition in Eq. (C.28), we can interpret the
Borel transform φ̂(ζ) in Eq. (4.111) as the Hadamard product

(4.112) φ̂(ζ) = (f � g)(ζ),
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where the formal power series f(ζ) and g(ζ) have finite radius of convergence

at the origin ζ = 0 and can be resummed explicitly as13

(4.113) f(ζ) =

∞∑
n=1

B2n

(2n)!
ζ2n−1 = − 1

2ζ

(
2− ζ coth

(
ζ

2

))
,

for |ζ| < 2π, and

(4.114) g(ζ) =

∞∑
n=1

√
3i
B2n−1(2/3)(6πiζ)

2n−1

(2n− 1)(2n− 1)!
=

3

2
log

(
cos(π/6 + πζ)

cos(π/6− πζ)

)
,

for |ζ| < 1/3.

Proof. The Bernoulli numbers are defined by the generating function

(4.115)

∞∑
n=0

Bn

n!
ζn =

ζ

2

(
coth

(
ζ

2

)
− 1

)
, |ζ| < 2π.

Taking the even part of both sides of Eq. (4.115), and multiplying by 1/ζ,

we obtain the statement in Eq. (4.113). Let us apply the second identity

in Eq. (4.161b) to the power series in the LHS of Eq. (4.114) and use the

functional equation for the Hurwitz zeta function in Eq. (4.82) for ζ(2 −
2n, 2/3), n ≥ 2. We find that

(4.116) g(ζ) = −π
√
3ζ + 3

∞∑
n=2

(
ζ

(
2n− 1,

2

3

)
− ζ

(
2n− 1,

1

3

))
ζ2n−1

2n− 1
.

Let us now use the formula in Eq. (C.31b) for a = 2/3, 1/3 and recall the

known identity

(4.117) Ψ(2/3)−Ψ(1/3) =
π√
3
,

where Ψ(a) denotes the digamma function. We obtain in this way that

(4.118) g(ζ) =
3

2
log

(
Γ(2/3− ζ)Γ(1/3 + ζ)

Γ(2/3 + ζ)Γ(1/3− ζ)

)
, |ζ| < 1

3
.

13We impose that f(0) = g(0) = 0 in order to eliminate the removable singular-
ities of f(ζ), g(ζ) at the origin.
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After we apply Euler’s reflection formula in Eq. (4.33) with x = 1/3+ζ, 1/3−
ζ and use the trigonometric identities

(4.119) cos(π/6± πζ) = sin(π/3∓ πζ),

the formula in Eq. (4.118) then yields the statement in Eq. (4.114).

After being analytically continued to the whole complex plane, the func-
tion f(ζ) has poles of order one along the imaginary axis at

(4.120) μm = 2πim, m ∈ Z 	=0,

while the function g(ζ) has logarithmic branch points along the real axis at

(4.121) ν−k = −1

3
+ 2k, ν+k =

2

3
+ 2k, k ∈ Z.

Proposition 4.13. The Borel transform φ̂(ζ) in Eq. (4.111) can be ex-
pressed as14

(4.122) φ̂(ζ) = − 3

2πi

∑
m∈Z �=0

1

m
log

(
cos

(
π

6
+

ζ

2im

))
,

which is a well-defined, exact function of ζ.

Proof. We consider a circle γ in the complex s-plane with center s = 0 and
radius 0 < r < 2π and apply Theorem C.1. The Borel transform can be
written as the integral

(4.123)

φ̂(ζ) =
1

2πi

∫
γ
f(s)g(ζ/s)

ds

s

= − 3

4πi

∫
γ

2− s coth(s/2)

s
log

(
cos(π/6 + πζ/s)

cos(π/6− πζ/s)

)
ds

s
,

for |ζ| < r/3. We note that, for such values of ζ, the function s �→ g(ζ/s) has
logarithmic branch points at s = ζ/ν±k , k ∈ Z, which sit inside the contour of
integration γ and accumulate at the origin, and no singularities for |s| > r.
The function f(s) has simple poles at the points s = μm with residues

(4.124) Res
s=2πim

f(s) = 1, m ∈ Z 	=0.

14We remark that each of the infinite sums giving the Borel transforms in
Eqs. (4.36) and (4.122) can be straightforwardly written as the logarithm of an
infinite product.
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By Cauchy’s residue theorem, the integral in Eq. (4.123) can be evaluated
by summing the residues at the poles of the integrand which lie outside γ,
allowing us to express the Borel transform as an exact function of ζ. More
precisely, we find the desired analytic formula

(4.125)

φ̂(ζ) = −
∑

m∈Z �=0

Res
s=2πim

f(s)g(ζ/s)
1

s

= − 3

2πi

∑
m∈Z �=0

1

m
log

(
cos

(
π

6
+

ζ

2im

))
.

The convergence of the infinite sum in the RHS of Eq. (4.125) can be easily
verified by, e.g., the limit comparison test.

Corollary 4.14. The singularities of the Borel transform φ̂(ζ) in Eq. (4.122)
are logarithmic branch points located along the imaginary axis at

ζ−k,m = ν−−kμ−m =
2πi

3
(1 + 6k)m,(4.126a)

ζ+k,m = ν+−kμ−m =
2πi

3
(−2 + 6k)m,(4.126b)

where k ∈ Z and m ∈ Z 	=0, which we write equivalently as

(4.127) ζn =
2πi

3
n, n ∈ Z 	=0,

that is, the branch points lie at all non-zero integer multiples of the two
complex conjugate dominant singularities at ±2πi/3, as illustrated in Fig. 4.

Analogously to the dual case of � → 0, there are only two Stokes lines
at the angles ±π/2. Moreover, the analytic expression in Eq. (4.122) is ex-
plicitly simple resurgent.

Corollary 4.15. The local expansion of the Borel transform φ̂(ζ) in Eq.
(4.122) at ζ = ζn, n ∈ Z 	=0, is given by

(4.128) φ̂(ζ) = −Rn

2πi
log(ζ − ζn) + · · · ,

where Rn ∈ C is the Stokes constant.

Proof. The local expansion around the logarithmic singularity ζ = ζn is
obtained by summing the contributions from all pairs (k,m) ∈ Z×Z 	=0 such
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that n = (−1+ 6k)m or n = (2+ 6k)m. Let us collect such pairs of integers
into the finite sets I+n , I−n for each n ∈ Z 	=0, accordingly. For a fixed value of
m ∈ Z 	=0, we denote the corresponding term in the sum in Eq. (4.122) by

(4.129) fm(ζ) = − 3

2πim
log

(
cos

(
π

6
+

ζ

2im

))
,

whose expansion around ζ = ζ±k,m, for fixed k ∈ Z, is given by

(4.130) fm(ζ) = −
s±k,m
2πi

log(ζ − ζ±k,m) + · · · ,

where the dots denote regular terms in ζ− ζ±k,m, and s±k,m is a complex num-

ber. Since ζn = ζ±k,m for all (k,m) ∈ I±n , it follows that the local expansion

of φ̂(ζ) at ζ = ζn is again given by

(4.131) φ̂(ζ) =
∑

m∈Z �=0

fm(ζ) = −Rn

2πi
log(ζ − ζn) + · · · ,

where the Stokes constant Rn is now the finite sum

(4.132) Rn =
∑

(k,m)∈I+
n

s+k,m +
∑

(k,m)∈I−
n

s−k,m.

It follows from Corollary 4.15 that the locally analytic function that
resurges at ζ = ζn is trivially φ̂n(ζ − ζn) = 1, which also implies that
φn(τ) = 1, n ∈ Z 	=0. Once again, the procedure above allows us to derive all
the Stokes constants analytically. In the limit � → ∞, the Stokes constants
Rn are rational numbers, and they too are simply related to an interesting
sequence of integers βn, n ∈ Z 	=0. In particular, we find that

R1 = 3, Rn = R1
βn
n

n ∈ Z 	=0,1,(4.133a)

βn = β−n, βn ∈ Z 	=0 n ∈ Z>0.(4.133b)

Explicitly, the first several integer constants βn, n > 0, are

(4.134) 1,−1, 1, 3,−4,−1, 8,−5, 1, 4,−10, 3, 14,−8,−4, 11,−16,−1, . . . .

The pattern of singularities in the Borel plane and the associated βn ∈ Z 	=0

are shown in Fig. 4.
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Figure 4: The first few singularities of the Borel transform of the asymptotic
series φ(τ), defined in Eq. (4.108), and the associated integer constants βn ∈
Z 	=0, defined in Eq. (4.133).

4.3.2. Closed formulae for the Stokes constants The exact resum-
mation of the Borel transform in Eq. (4.122) allows us to obtain and prove a
series of exact arithmetic formulae for the Stokes constants Rn of the asymp-
totic series φ(τ), defined in Eq. (4.108), and the related integer constants
βn, defined in Eq. (4.133), for n ∈ Z 	=0. These new arithmetic statements
are manifestly dual to the analogous formulae that we have presented in
Section 4.2.2 for the semiclassical limit of � → 0. Besides, their proofs follow
very similar arguments. Let us start by showing that both sequences Rn, βn
are number-theoretic divisor sum functions.

Proposition 4.16. The normalized Stokes constant Rn/R1, where R1 = 3,
is determined by the positive integer divisors of n ∈ Z 	=0 according to the
closed formula

(4.135)
Rn

R1
=
∑
d|n
d≡31

d

n
−
∑
d|n
d≡32

d

n
,

which implies that Rn = −R−n and Rn/R1 ∈ Q 	=0.
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Proof. Let us denote by Dn the set of positive integer divisors of n. We
recall that n satisfies one of the two factorization properties n = (1 + 6k)m
or n = (−2+ 6k)m for k ∈ Z and m ∈ Z 	=0. It follows that one of four cases
apply. Namely,

m =
n

d
, k =

d− 1

6
, if d ≡6 1,(4.136a)

m = −n

d
, k = −d− 2

6
, if d ≡6 2,(4.136b)

m =
n

d
, k =

d+ 2

6
, if d ≡6 4,(4.136c)

m = −n

d
, k = −d+ 1

6
, if d ≡6 5,(4.136d)

where d ∈ Dn. In both cases of Eqs. (4.136a) and (4.136c), which represent
together the congruence class of d ≡3 1, substituting the given values of k,m
into Eqs. (4.129) and (4.126), we find that the contribution to the Stokes
constant Rn coming from the local expansion of fm(ζ) around ζ±k,m is simply

s±k,m = 3d/n. Furthermore, in both cases of Eqs. (4.136b) and (4.136d),
which populate the congruence class of d ≡3 2, substituting the given values
of k,m into Eqs. (4.129) and (4.126), we find that the contribution to the
Stokes constant Rn coming from the local expansion of fm(ζ) around ζ±k,m is

simply s±k,m = −3d/n. Finally, for any divisor d ∈ Dn which is a multiple of
3, neither d±1 or d±2 are divisible by 6, which implies that the choice m =
±n/d is not allowed, and the corresponding contribution is s±k,m = 0. Putting
everything together and using Eq. (4.132), we find the desired statement.

We note that the arithmetic formula for the Stokes constants in Eq.
(4.135) can be written equivalently as

(4.137) βn =
∑
d|n
d≡31

d−
∑
d|n
d≡32

d,

which implies that βn = β−n and βn ∈ Z 	=0 for all n > 0, as expected. We
highlight the simple symmetry between the formulae in Eqs. (4.49), (4.52)
and the formulae in Eqs. (4.135), (4.137). More precisely, the Stokes con-
stants Rn in the limit � → ∞ are obtained from the Stokes constants Sn in
the semiclassical limit � → 0 via the simple exchange of divisors d �→ n/d
in the arguments of the sums. As before, two corollaries follow straightfor-
wardly from Proposition 4.16.
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Corollary 4.17. The integer constants βn, n ∈ Z>0, satisfy the closed
formulae

(4.138) βpe1
1

=
pe1+1
1 − 1

p1 − 1
, βpe2

2
=

(−1)e2pe2+1
2 + 1

p2 + 1
, βpe3

3
= 1,

where ei ∈ N, and pi ∈ P are prime numbers such that pi ≡3 i for i = 1, 2, 3.
Moreover, they obey the multiplicative property

(4.139) βn =
∏
p∈P

βpe , n =
∏
p∈P

pe, e ∈ N.

Proof. The three closed formulae follow directly from Eq. (4.137). Explicitly,
let n = pe with p ∈ P and e ∈ N. We have that∑

d|n
d≡31

d = 1,
∑
d|n
d≡32

d = 0, if p ≡3 0,(4.140a)

∑
d|n
d≡31

d =

e∑
i=0

pi =
pe+1 − 1

p− 1
,
∑
d|n
d≡32

d = 0, if p ≡3 1,(4.140b)

∑
d|n
d≡31

d =

�e/2�∑
i=0

p2i,
∑
d|n
d≡32

d =

�e/2�∑
i=0

p2i+1, if p ≡3 2.(4.140c)

Let us now prove the multiplicity property. We will prove a slightly stronger
statement. We write n = pq for p, q ∈ Z>0 coprimes. We choose a positive
integer divisor d|n, and we write d = st where s|p and t|q. Consider two
cases:

(1) Suppose that d ≡3 1. Then, either s ≡3 t ≡3 1, or s ≡3 t ≡3 2, and
therefore

(4.141)
∑
d|n
d≡31

d =
∑
s|p

s≡31

s
∑
t|q

t≡31

t+
∑
s|p

s≡32

s
∑
t|q

t≡32

t.

(2) Suppose that d ≡3 2. Then, either p/s ≡3 1 and q/t ≡3 2, or p/s ≡3 2
and q/t ≡3 1, and therefore

(4.142)
∑
d|n
d≡32

d =
∑
s|p

s≡31

s
∑
t|q

t≡32

t+
∑
s|p

s≡32

s
∑
t|q

t≡31

t.
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Substituting Eqs. (4.141) and (4.142) into Eq. (4.137), we find that

(4.143) βn =

⎛
⎜⎜⎝∑

s|p
s≡31

s−
∑
s|p

s≡32

s

⎞
⎟⎟⎠
⎛
⎜⎜⎝∑

t|q
t≡31

t−
∑
t|q

t≡32

t

⎞
⎟⎟⎠ = βpβq,

which proves that the sequence βn, n ∈ Z>0, defines a multiplicative arith-
metic function. Note that the proof breaks if p, q are not coprimes, since
the formulae above lead in general to overcounting the contributions coming
from common factors. Therefore, the sequence βn is not totally multiplica-
tive. Note that the sequence of normalized Stokes constants Rn/R1, n ∈ Z>0,
is also a multiplicative arithmetic function.

Corollary 4.18. The integer constants βn, n ∈ Z>0, are encoded in the
generating function

(4.144)

∞∑
n=1

βnx
n =

∞∑
m=1

xm(1− x2m)

(1 + xm + x2m)2
.

Proof. We denote by f(x) the generating function in the RHS of Eq. (4.144).
We note that

(4.145) f(x) = f1(x)− f2(x),

where the functions f1(x), f2(x) are defined by

(4.146) f1(x) =
∑
m∈N

(3m+ 1)x3m+1

1− x3m+1
, f2(x) =

∑
m∈N

(3m+ 2)x3m+2

1− x3m+2
.

The formula in Eq. (4.144) follows from the stronger statement

(4.147)
∑
d|n
d≡31

d =
1

n!

dnf1(0)

dxn
,
∑
d|n
d≡32

d =
1

n!

dnf2(0)

dxn
, n ∈ Z>0.

We will now prove this claim for the function f1(x). The case of f2(x) is
proven analogously. Let us denote by

(4.148) f1,m(x) =
(3m+ 1)x3m+1

1− x3m+1
, m ∈ N,
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and consider the derivative dnf1,m(x)/dxn for fixedm. We want to determine

its contributions to dnf1(0)/dx
n. Since we are interested in those terms that

survive after taking x = 0, we look for the monomials of order xd(3m+1)−n,

where d|n, in the numerator of dnf1,m(x)/dxn, and we take 3m+ 1 = n/d.

More precisely, let us introduce the parameter q = 3m + 1 for simplicity

of notation. Deriving a-times the factor qxq and (n − a)-times the factor

(1− xq)−1, we have the term

(4.149)

(
n

a

)
da(qxq)

dxa
dn−a(1− xq)−1

dxn−a
, a ∈ N 	=0.

Recall that the generalized binomial theorem for the geometric series yields

(4.150)
dn−a(1− xq)−1

dxn−a
=

∞∑
k=0

(qk)!

(qk − n+ a)!
xqk−n+a.

Substituting Eq. (4.150) into Eq. (4.149) and performing the derivation, we

find

(4.151) n!

∞∑
k=0

q

(
q

q − a

)(
qk

qk − n+ a

)
x(1+k)q−n.

It follows then that the only non-zero term at fixed m ∈ N comes from the

values of k ∈ N and a ∈ N 	=0 such that (1 + k)q = n and a = q = 3m + 1,

which implies in turn that q|n with q ≡3 1. Finally, summing the non-trivial

contributions over q gives precisely

(4.152)
dnf1(0)

dxn
=
∑
q|n
q≡31

n!q

(
q

0

)(
n− q

0

)
= n!

∑
q|n
q≡31

q.

Finally, Proposition 4.16 implies that the Stokes constants Rn, n ∈ Z>0,

can be naturally organized as coefficients of an exact generating function

given by quantum dilogarithms.

Corollary 4.19. The Stokes constants Rn, n ∈ Z>0, are encoded in the

generating function

(4.153)

∞∑
n=1

Rnx
n/3 = 3 log

(x2/3; x)∞
(x1/3; x)∞

, |x| < 1.
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Proof. We apply the definition of the quantum dilogarithm in Eq. (B.17)

and Taylor expand the logarithm function for |x| < 1. We obtain in this way

that

(4.154) log(x2/3; x)∞ = log

∞∏
k=0

(1− x2/3+k) = −
∞∑
k=0

∞∑
m=1

x2m/3+mk

m
,

and therefore also

(4.155) log
(x2/3; x)∞
(x1/3; x)∞

=

∞∑
k=0

∞∑
m=1

1

m
x(1+3k)m/3 −

∞∑
k=0

∞∑
m=1

1

m
x(2+3k)m/3.

Renaming n = (1 + 3k)m and n = (2 + 3k)m in the first and second terms

of the RHS, respectively, we find

(4.156) log
(x2/3; x)∞
(x1/3; x)∞

=

∞∑
n=1

xn/3

⎛
⎜⎜⎝∑

d|n
d≡31

d

n
−
∑
d|n
d≡32

d

n

⎞
⎟⎟⎠ .

Substituting the arithmetic formula for the Stokes constants in Eq. (4.135)

into the expression in Eq. (4.156), we obtain the desired statement.

We note that, choosing x = q = e2πib
2

= e−2πiτ−1

, Corollary 4.19 directly

provides an exact q-series expression for the discontinuity of the asymptotic

series φ(τ) across the positive imaginary axis, which borders the only two

distinct Stokes sectors in the upper half of the Borel plane. Namely, recalling

that φn(τ) = 1, n ∈ Z>0, we have that

(4.157) discπ/2φ(τ) =

∞∑
n=1

Rne
−n2πi/3τ = 3 log(q2/3; q)∞ − 3 log(q1/3; q)∞,

which is dual to the discontinuity formula in Eq. (4.75). We stress that the

q-series (q2/3; q)∞ and (q1/3; q)∞ occur as the holomophic block of the first

spectral trace of local P2 in Eq. (4.15).

4.3.3. Exact large-order relations Following the same arguments of

Section 4.2.3, we provide here a number-theoretic characterization of the

perturbative coefficients a2n, n ∈ N 	=0, of the asymptotic series φ(τ) in
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Eq. (4.108). Once again, we upgrade the large-n asymptotics of the co-

efficients a2n by systematically including the contributions from all sub-

dominant singularities in the Borel plane and obtain in this way an exact

large-order relation, that is,

(4.158) a2n =
(−1)n

π

Γ(2n− 1)

A2n−1

∞∑
m=1

Rm

m2n−1
, n ∈ N 	=0,

where the Stokes constant Rm is given explicitly in Eq. (4.133), and we have

defined A = 2π/3.

Proposition 4.20. The Stokes constants Rm, m ∈ Z>0, satisfy the exact

relations

(4.159)

∞∑
m=1

Rm

m2n−1
= 3

ζ(2n)

32n−1

(
ζ

(
2n− 1,

1

3

)
− ζ

(
2n− 1,

2

3

))
,

where n ∈ N 	=0, ζ(z) denotes the Riemann zeta function, and ζ(z, a) denotes

the Hurwitz zeta function.

Proof. Substituting the original expression for the perturbative coefficients

a2n, n ∈ N 	=0, in Eq. (4.108) into the exact large-order relation in Eq. (4.158),

we have that

(4.160)

∞∑
m=1

Rm

m2n−1
= π

√
3(2π)4n−2B2nB2n−1(2/3)

(2n)!(2n− 1)!
.

Using the known identities

ζ(2n) = (−1)n+1 (2π)
2nB2n

2(2n)!
,(4.161a)

B2n−1(2/3) = −B2n−1(1/3), B2n−1(z) = −(2n− 1)ζ(2− 2n, z),
(4.161b)

the formula in Eq. (4.160) becomes

(4.162)

∞∑
m=1

Rm

m2n−1
= −π

√
3(2πi)2n−2ζ(2n)

(2n− 2)!

2∑
a=1

(−1)a ζ
(
2− 2n,

a

3

)
.
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The functional identity for the Hurwitz zeta function in Eq. (4.82) yields

(4.163)

2∑
a=1

(−1)a ζ
(
2− 2n,

a

3

)
=

2
√
3(2n− 2)!

−i(6πi)2n−1

2∑
a=1

(−1)a ζ
(
2n− 1,

a

3

)
,

and substituting this into Eq. (4.162), we obtain the desired statement.

Remark 4.21. We note that the exact expression in Eq. (4.159) can be
written equivalently in terms of the integer constants βm, m ∈ Z 	=0. Namely,

(4.164)

∞∑
m=1

βm
m2n

=
ζ(2n)

32n−1

(
ζ

(
2n− 1,

1

3

)
− ζ

(
2n− 1,

2

3

))
, n ∈ N 	=0,

which is dual to the formula in Eq. (4.84). As before, let us point out that the
series in the LHS of Eq. (4.164) belongs to the family of Dirichlet series [8].
As a consequence of Corollary 4.17, the sequence of integers βm, m ∈ Z 	=0,
defines a bounded multiplicative arithmetic function, and the corresponding
Dirichlet series satisfies an expansion as an Euler product indexed by the
set of prime numbers P, that is,

(4.165)

∞∑
m=1

βm
m2n

=
∏
p∈P

∞∑
e=0

βpe

pe(2n)
, n ∈ N 	=0.

This proves that the given Dirichlet series is an L-series. We will further
explore this direction in Section 4.4.

4.3.4. Exponentiating with alien calculus Let us now translate our
analytic solution to the resurgent structure of the asymptotic series φ(τ) in
Eq. (4.108) into results on the original, exponentiated perturbative series in
Eq. (4.106), which we denote by ψ(τ) = eφ(τ), that is,

(4.166) ψ(τ) = exp

(
i
√
3

∞∑
n=1

B2nB2n−1(2/3)

(2n)!(2n− 1)
(6πiτ)2n−1

)
∈ Q[π,

√
3][[τ ]],

and which is also a Gevrey-1 asymptotic series. Its Borel transform ψ̂(ζ)
inherits from φ̂(ζ) the same pattern of singularities in Eq. (4.127). Namely,
there are infinitely many and discrete logarithmic branch points located
along the imaginary axis of the complex ζ-plane at ζn = n2πi/3, n ∈ Z 	=0.
Let us denote by s±(ψ)(τ) the lateral Borel resummations at the angles
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π/2 ± ε with ε � 1, which lie slightly above and slightly below the Stokes

line along the positive imaginary axis, respectively. The same arguments

developed in Section 4.2.4 with the use of alien derivation apply here as

well. In particular, we find that

(4.167) s+(ψ)(τ) = s−(ψ)(τ) + s−(ψ)(τ)
∞∑
k=1

e−ζk/τ R̄k,

where the asymptotic series ψk(τ), which resurges from ψ(τ) at the singu-

larity ζk, is simply

(4.168) ψk(τ) = ψ(τ), k ∈ Z>0,

and the Stokes constant R̄k ∈ C of ψ(τ) at the singularity ζk is fully deter-

mined by the Stokes constants of φ(τ) via the closed combinatorial formula

(4.169) R̄k =
∑

p∈P(k)

1

r!

(
r

N1, . . . , Nk

)
Rn1

· · ·Rnr
, k ∈ Z>0,

where P(k) is the set of all partitions p = (n1, . . . , nr) of the positive integer

k, r = |p| denotes the length of the partition, and Ni ∈ N is the number of

times that the positive integer i ∈ Z>0 is repeated in the partition p. Note

that
∑k

i=1Ni = r. We stress that the sum over partitions in Eq. (4.169)

is finite, and thus all the Stokes constants of the original perturbative se-

ries ψ(τ) are known exactly. More precisely, the discontinuity formula in

Eq. (4.167) solves the resurgent structure of ψ(τ) analytically. Applying the

same computations above to the discontinuity of ψ(τ) across the angle 3π/2,

and recalling that Rn = −R−n for all n ∈ Z 	=0, we find straightforwardly

that

(4.170) R̄k =
∑

p∈P(−k)

(−1)r

r!

(
r

N1, . . . , Nk

)
Rn1

· · ·Rnr
, k ∈ Z<0,

which implies that R̄k �= ±R̄−k in general.

Let us point out that the formulae in Eqs. (4.169) and (4.170) immedi-

ately prove that R̄k ∈ Q, k ∈ Z 	=0. However, we can say more. The disconti-

nuity formula in Eq. (4.157) can be directly exponentiated to give an exact

generating function in terms of known q-series for the Stokes constants R̄k.
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Namely, we find that

(4.171)

∞∑
k=1

R̄kq
k/3 =

(q2/3; q)3∞
(q1/3; q)3∞

,

∞∑
k=1

R̄−kq
k/3 =

(q1/3; q)3∞
(q2/3; q)3∞

.

As a consequence of the q-binomial theorem, the quotients of q-series in

Eq. (4.171) can be expanded in powers of q1/3, and the resulting numerical

coefficients possess a natural interpretation in terms of counting partitions.

In particular, they are integer numbers. Explicitly, the first several Stokes

constants R̄k, k > 0, are

(4.172) 3, 3, 1, 3, 6, 0,−3, 9, 9,−9, 0, 19,−6,−15, 27, 12, . . . ,

while the first several Stokes constants R̄k, k < 0, are

(4.173) − 3, 6,−10, 12,−9, 1, 9,−15, 8, 15,−42, 54,−36,−15, 73,−90, . . . .

We comment that our exact solution is in full agreement with the numerical

investigation of [69].

4.4. A number-theoretic duality

We will now further develop the simple arithmetic symmetry observed in the

closed formulae in Sections 4.2.2 and 4.3.2, and we will show how it can be

reformulated into a full-fledged analytic number-theoretic duality, shedding

new light on the statements of Sections 4.2.3 and 4.3.3. We refer to [5, 6, 7]

for background material on analytic number theory. Let us recall that the

Stokes constants associated with the limits � → 0 and � → ∞ are given by

the explicit divisor sum functions in Eqs. (4.49) and (4.135), respectively.

We can write these formulae equivalently as

Sn

S1
=
∑
d|n

χ3,2 (d)F−1 (d)F0

(n
d

)
= (χ3,2F−1 ∗ F0) (n),(4.174a)

Rn

R1
=
∑
d|n

χ3,2 (d)F0 (d)F−1

(n
d

)
= (χ3,2F0 ∗ F−1) (n),(4.174b)

where n ∈ N 	=0, and the product ∗ denotes the Dirichlet convolution of

arithmetic functions. We have introduced Fα(m) = mα, α ∈ R, and the
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unique non-principal Dirichlet character modulo 3 denoted χ3,2(m), which

is defined explicitly by

(4.175) χ3,2(m) =

⎧⎪⎨
⎪⎩
1 if m ≡3 1,

0 if m ≡3 0,

−1 if m ≡3 −1,

for m ∈ N. Note that, despite the arithmetic functions χ3,2, F0, F−1 being

totally multiplicative, the convolutions Sn/S1, Rn/R1, n ≥ 1, are multiplica-

tive only.

We have shown that the Dirichlet series associated with the Stokes con-

stants naturally appear in the exact large-order formulae for the perturba-

tive coefficients in Eqs. (4.78) and (4.159), and that they are, in particular,

L-series. We can say something more. Since the multiplication of Dirichlet

series is compatible with the Dirichlet convolution [8], it follows directly

from the decomposition in Eq. (4.174) that we have the formal factorization

∞∑
n=1

Sn

S1ns
=

∞∑
i=1

χ3,2(i)F−1(i)

is

∞∑
j=1

F0(j)

js
= L(s+ 1, χ3,2)ζ(s),(4.176a)

∞∑
n=1

Rn

R1ns
=

∞∑
i=1

χ3,2(i)F0(i)

is

∞∑
j=1

F−1(j)

js
= L(s, χ3,2)ζ(s+ 1),(4.176b)

where s ∈ C such that �(s) > 1, and L(s, χ3,2) is the Dirichlet L-series of

the primitive character χ3,2. We have found, in this way, that the arithmetic

duality which relates the weak- and strong-coupling Stokes constants Sn, Rn,

n ∈ N 	=0, in Eq. (4.174) is translated at the level of the L-series encoded in

the perturbative coefficients into a simple unitary shift of the arguments of

the factors in the RHS of Eq. (4.176). Furthermore, L(s, χ3,2) is absolutely

convergent for �(s) > 1, and it can be analytically continued to a meromor-

phic function on the whole complex s-plane, called a Dirichlet L-function.

Each of the two L-series in the LHS of Eq. (4.176) is, therefore, the product

of two well-known L-functions, and such a remarkable factorization explic-

itly proves the convergence in the right half-plane of the complex numbers

�(s) > 1 and the existence of a meromorphic continuation throughout the

complex s-plane. Namely, our L-series are, themselves, L-functions. Let us

comment that the formulae in Eqs. (4.78) and (4.159) follow from Eq. (4.176)

by means of the known relation between Dirichlet L-functions and Hurwitz
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zeta functions at rational values. Specifically, we have that

(4.177) L(s, χ3,2) =
1

3s

(
ζ

(
s,

1

3

)
− ζ

(
s,

2

3

))
, �(s) > 1.

Moreover, the Dirichlet L-function satisfies the Euler product expansion

(4.178) L(s, χ3,2) =
∏
p∈P

(
1− χ3,2(p)

ps

)−1

, �(s) > 1,

where P is the set of prime numbers.

4.5. Numerical tests

Let us conclude with a parallel and independent numerical analysis which
cross-checks and confirms our analytic results on the resurgent structure of
the asymptotic series ψ(�) in Eq. (4.86). We recall that this corresponds, up
to a global pre-factor, to the perturbative expansion of the first fermionic
spectral trace of local P2 in the semiclassical limit � → 0 in Eq. (4.19). An
analogous numerical investigation of the asymptotic series in Eq. (4.166) in
the dual weakly-coupled limit gs → 0 is performed in [69]. Let us truncate
the sum to a very high but finite order d � 1. We denote the resulting
Q-polynomial by ψd(�) and its Borel transform by ψ̂d(ζ). Namely,

(4.179) ψd(�) =

d∑
n=0

b2n�
2n ∈ Q[�], ψ̂d(ζ) =

d∑
n=0

b2n
(2n)!

ζ2n ∈ Q[ζ],

where the coefficients b2n, 1 ≤ n ≤ d, are computed by Taylor expanding
the exponential in the RHS of Eq. (4.86). The first few terms of ψd(�) are
shown in Eq. (4.20). It is straightforward to verify that the perturbative
coefficients satisfy the expected factorial growth

(4.180) b2n ∼ (−1)n(2n)!

(
4π2

3

)−2n

n � 1.

We assume � ∈ C′ and perform a full numerical Padé–Borel analysis [9, 11,
13] in the complex ζ-plane. Let d be even. We compute the singular points
of the diagonal Padé approximant of order d/2 of the truncated Borel ex-
pansion ψ̂d(ζ), which we denote by ψ̂PB

d (ζ), and we observe two dominant
complex conjugate branch points at ζ = ±4π2i/3 and their respective arcs of
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Figure 5: In the leftmost plot, a zoom-in to the poles of ψ̂PB
d (ζ) (in gray) in

the bottom part of the upper-half complex ζ-plane. We show the first few
integer multiples of the dominant pole (in red). In the central plot, a zoom-
in to the poles of ψ̂PB

d,probe(ζ) (in gray) in the bottom part of the upper-half
complex ζ-plane, including the test charge singularity at ζ = ζprobe (in blue).
We show the horizontal lines intersecting the positive imaginary axis at the
first few physical branch points (in red). In the rightmost plot, a zoom-in
to the poles of ψ̂PCB

d (η) (in gray) in the upper-right quarter of the complex
η-plane. We show the first few physical branch points (in red) and the unit
circle (in green). The plots are obtained with d = 300.

accumulating spurious poles mimicking two branch cuts along the positive

and negative imaginary axis. Let us introduce A = 4π2/3 and ζn = n4π2i/3,

n ∈ Z 	=0, as before. A zoom-in to the poles of the Padé approximant in

the bottom part of the upper-half complex ζ-plane is shown in the leftmost

plot in Fig. 5. To reveal the presence of subdominant singularities which

are hidden by the unphysical Padé poles, we apply the potential theory

interpretation of Padé approximation [1, 2]. More concretely, to test the

presence of the suspected next-to-leading order branch point at ζ = ζ2, we

introduce by hand the singular term ψ̂probe(ζ) = (ζ − ζprobe)
−1/5, where

ζprobe = A (1/14 + 3i/2), and we compute the (d/2)-diagonal Padé approxi-

mant of the sum

(4.181) ψ̂PB
d,probe(ζ) = (ψ̂d + ψ̂probe)

PB(ζ).

The resulting Padé–Borel poles distribution is distorted as shown in the

central plot in Fig. 5. The targeted true branch point at ζ = ζ2 is now

clearly visible, and so it is the test charge singularity at ζ = ζprobe. The

other true branch points at ζ = ζ3, ζ4 are outlined. We can further improve

the precision of the Padé extrapolation and analytic continuation of the
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truncated Borel series ψ̂d(ζ) with the use of conformal maps. Namely, we

perform the change of variable

(4.182) ζ = A
2η

1− η2
, η ∈ C,

which maps the cut Borel ζ-plane C\{(−∞, ζ−1]∪[ζ1,+∞)} into the interior

of the unit disk |η| < 1. The dominant branch points ζ = ζ±1 are mapped

into η = ±i, while the point at infinity is mapped into η = ±1. Correspond-

ingly, the branch cuts (−∞, ζ−1] and [ζ1,+∞) along the imaginary ζ-axis

split each one into two identical copies which lie onto the two lower-half

and upper-half quarters of the unit circle in the η-plane, respectively. The

inverse conformal map is explicitly given by

(4.183) η = ±
√

−1 +
√

1 + (ζ/A)2

1 +
√

1 + (ζ/A)2
, ζ ∈ C.

We compute the (d/2)-diagonal Padé approximant of the conformally

mapped Borel expansion, which we denote by ψ̂PCB
d (η). Its singularities in

the complex η-plane are shown in the rightmost plot in Fig. 5. We observe

two symmetric arcs of spurious poles emanating from the conformal map im-

ages of ζ = ζ±1 along the imaginary axis in opposite directions. The smaller

arcs of poles jumping along the unit circle towards the real axis represent

the Padé boundary of convergence joining the conformal map images of the

repeated singularities at ζ = ζn, n ∈ Z 	=0. Thus, the numerical analysis

confirms the pattern of singularities previously found analytically.

Let us now test the expected resurgent structure of the asymptotic series

ψ(�). We recall that the local expansions of the Borel transform ψ̂(ζ) in

the neighbourhoods of its dominant singularities at ζ = ζ±1 are governed

by the one-instanton perturbative corrections ψ±1(�) and the first Stokes

constants S̄±1. Let us consider the standard functional ansatz

(4.184) ψ1(�) =

∞∑
k=0

ck�
k−b ∈ �−bC[[�]],

where the coefficient ck ∈ C can be interpreted as the (k+1)-loop contribu-

tion around the one-instanton configuration in the upper-half Borel ζ-plane,

and b ∈ R\Z+ is the so-called characteristic exponent. We fix the normal-

ization condition c0 = 1, and we further assume that ψ−1(�) = ψ1(�) and
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S̄−1 = S̄1. By Cauchy’s integral theorem, the large-n asymptotics of the
perturbative coefficients b2n in Eq. (4.179) is controlled at leading order by

(4.185) b2n ∼ (−1)nS̄1

πi

Γ(2n+ b)

A2n+b

∞∑
k=0

ckA
k∏k

j=1(2n+ b− j)
n � 1.

An independent numerical estimate of A is obtained from the convergence
of the sequences

4n2 b2n
b2n+2

= |A|2 +O (1/n) ,(4.186a)

|A|2b2n+2

4n2b2n
+

4n2b2n−2

|A|2b2n
= 2 cos(2θA) +O (1/n) ,(4.186b)

which give the absolute value |A| ≈ 4π2/3 and the phase θA ≈ 0, as ex-
pected. Analogously, a numerical estimate of the characteristic exponent b
is obtained from the convergence of the sequence

(4.187)

(
A2

4n2

b2n+2

b2n
− 1

)
2n = 1 + 2b+O (1/n) ,

which gives b ≈ 0. Finally, we estimate the Stokes constant S̄1 as the large-n
limit of the sequence15

(4.188) πi(−1)n
A2n

Γ(2n)
b2n = S̄1 +O (1/n) ,

which gives S̄1 ≈ 3
√
3i. Let us proceed to systematically extract the coeffi-

cients ck, k ∈ N. We first Taylor expand the quotients appearing in the RHS
of Eq. (4.185) in the large-n limit and rearrange them to give

(4.189) b2n ∼ (−1)nS̄1

πi

Γ(2n)

A2n

∞∑
i=0

μi

(2n)i
n � 1,

where the new coefficients μi are expressed in closed form as

(4.190) μi =

i∑
k=1

ckA
k

⎛
⎜⎜⎝ ∑

1≤m1,...,mk≤i
m1+···+mk=i

k∏
j=1

jmj−1

⎞
⎟⎟⎠ , i ∈ N 	=0,

15Using the first 300 perturbative coefficients, the numerical estimate for the first
Stokes constant agrees with the exact value up to 32 digits.
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and μ0 = c0 = 1. We define the sequence Q2n, n ∈ N, such that

(4.191) Q2n = πi(−1)n
A2n

S̄1Γ(2n)
b2n ∼

∞∑
i=0

μi

(2n)i
n � 1,

and we obtain a numerical estimate of the coefficients μi, i ∈ N, as the
large-n limits of the recursively-defined sequences

Q
(1)
2n = 2n(Q2n − 1) = μ1 +O (1/n) ,(4.192a)

Q
(i)
2n = 2n(Q

(i−1)
2n − μi−1) = μi +O (1/n) , i ∈ N>0.(4.192b)

We substitute the numerical values for the coefficients μi in their explicit
relations with the coefficients ck in Eq. (4.190), and term-by-term we find
in this way that

(4.193) c2k ≈ b2k, c2k+1 ≈ 0, k ∈ N.

The coefficients of the one-instanton asymptotic series ψ1(�) in Eq. (4.184)
identically correspond to the coefficients of the original perturbative series
ψ(�) in Eq. (4.179). We conclude that ψ1(�) = ψ(�), as expected from
the analytic solution. We comment that the numerical convergence of the
large-n limits of all sequences above has been accelerated using Richardson
transforms.

Finally, we perform a numerical test of the discontinuity formula in
Eq. (4.91). More precisely, let us rotate the Borel ζ-plane by an angle of
−π/2 in order to move the branch cuts of ψ̂(ζ) to the real axis. The corre-
sponding change of variable is z = −iζ. We analogously rotate the complex
�-plane and introduce the variable x = −i�. We fix a small positive angle
ε � 1 and a small positive value of x � 1. We compute numerically the
lateral Borel resummations across the positive real axis as16

(4.194) sPB± (ψ)(x) = e±iε

∫ ∞

0
ψ̂PB
d (ze±iεx) e−ze±iε

dz,

where ψ̂PB
d (z) is the diagonal Padé approximant of order d/2 of the truncated

Borel series ψ̂d(z). The corresponding discontinuity is evaluated as

(4.195) discPB(ψ)(x) = sPB+ (ψ)(x)− sPB− (ψ)(x) = 2i�
(
sPB+ (ψ)(x)

)
.

16Following [9, 11], the numerical precision of the lateral Borel resummations
can be improved with the use of conformal maps.
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Assuming that all higher-order perturbative series ψn(x) are trivially equal

to ψ(x), the Stokes constants S̄n, n ∈ Z>0, are estimated numerically by
means of the recursive relation17

(4.196) discPB(ψ) enA/x− sPB− (ψ)

n−1∑
k=1

S̄ke
(n−k)A/x = sPB− (ψ)S̄n+O(e−A/x),

which reproduces the exact results obtained in Section 4.2.4. Analogously,

we obtain a numerical estimate of the Stokes constants associated with the
branch points on the negative real axis in the rotated Borel z-plane. We

remark that all numerical checks described here for ψ(�) are straightfor-
wardly and successfully applied to the asymptotic series φ(�) = logψ(�) in

Eq. (3.6), confirming once more our analytic solution.

5. The example of local F0

The total space of the canonical bundle over the Hirzebruch surface F0 =
P1×P1, which is O(−2,−2) → P1×P1, called the local F0 geometry, has one

complex deformation parameter κ and one mass parameter ξF0
. Its moduli

space is identified with the family of mirror curves described by the equation

(5.1) ex + ξF0
e−x + ey + e−y + κ = 0, x, y ∈ C.

For simplicity, we will impose the condition18 ξF0
= 1, which implies the

parametrization z = 1
κ2 . The large radius point, the maximal conifold point,

and the orbifold point of the moduli space of local F0 correspond to z = 0,

z = 1/16, and z = ∞, respectively. The quantization of the mirror curve in
Eq. (5.1), under the assumption ξF0

= 1, gives the quantum operator

(5.2) OF0
(x, y) = ex + e−x + ey + e−y,

acting on L2(R), where x, y are self-adjoint Heisenberg operators satisfying

[x, y] = i�. It was proven in [56] that the inverse operator

(5.3) ρF0
= O−1

F0

17Note that the argument of discPB(ψ)(x) and sPB
− (ψ)(x) is not shown in

Eq. (4.196) for simplicity.
18We remark that the TS/ST correspondence is expected to hold for arbitrary

values of the mass parameters, as suggested by the evidence provided in [41].
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is positive-definite and of trace class. The fermionic spectral traces of ρF0

are well-defined and can be computed explicitly [71]. In this section, we will

study the resurgent structure of the first fermionic spectral trace

(5.4) ZF0
(1, �) = Tr(ρF0

)

in the semiclassical limit � → 0.

5.1. Computing the perturbative series

As we have done for local P2 in Section 4.1, we apply the phase-space for-

mulation of quantum mechanics to obtain the WKB expansion of the trace

of the inverse operator ρF0
at NLO in � → 0, starting from the explicit

expression of the operator OF0
in Eq. (5.2), and following Appendix A. For

simplicity, we denote by OW , ρW the Wigner transforms of the operators

OF0
, ρF0

, respectively. The Wigner transform of OF0
is obtained by perform-

ing the integration in Eq. (A.1). As we show in Example A.1, this simply

gives the classical function

(5.5) OW = ex + e−x + ey + e−y.

Substituting it into Eqs. (A.11a) and (A.11b), we have

G2 =− �2

4

[
ex+y + e−x+y + ex−y + e−x−y

]
+O(�4),(5.6a)

G3 =− �2

4
[e2x+y + e2x−y + e−2x+y + e−2x−y − 2ex − 2e−x(5.6b)

+ (x ↔ y)] +O(�4),

where (x ↔ y) indicates the symmetric expression after exchanging the vari-

ables x and y. It follows from Eq. (A.12) that the Wigner transform of ρF0
,

up to order �2, is then given by

(5.7) ρW =
1

OW
− �2

1

O3
W

+O(�4).

We note that the same result can be obtained by solving Eq. (A.15) or-

der by order in powers of �2. Integrating Eq. (5.7) over phase space, as in

Eq. (A.3), we obtain the NLO perturbative expansion in � of the trace, that
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is,

(5.8)

Tr(ρF0
) =

1

2π�

∫
R2

ρW dxdy

=
1

2π�

∫
R2

1

OW
dxdy − �

2π

∫
R2

1

O3
W

dxdy +O(�4),

and evaluating the integrals explicitly, we find

(5.9) Tr(ρF0
) =

π

4�

{
1− �2

64
+O(�4)

}
.

We stress that the phase-space formalism adopted above provides, in princi-
ple, the perturbative expansion of Tr(ρF0

) at all orders in � by systematically
extending all intermediate computations beyond order �2. However, as for
the case of local P2, a more efficient way to extract the perturbative coeffi-
cients is described below.

The integral kernel for the operator ρF0
is given by [71]

(5.10) ρF0
(x1, x2) =

eπb(x1+x2)/2

2b cosh(π(x1 − x2)/b)

Φb(x1 + ib/4)

Φb(x1 − ib/4)

Φb(x2 + ib/4)

Φb(x2 − ib/4)
,

where b is related to � by

(5.11) πb2 = �,

and Φb is Faddeev’s quantum dilogarithm. A summary of the properties
of this function is provided in Appendix B. As in the case of local P2, the
integral kernel in Eq. (5.10) can be analytically continued to � ∈ C′. The
first spectral trace has the integral representation [71]

(5.12) Tr(ρF0
) =

1

2b

∫
R

eπbx
Φb(x+ ib/4)2

Φb(x− ib/4)2
dx,

which is a well-defined, analytic function of � ∈ C′, under the assumption
that �(b) > 0. The integral in Eq. (5.12) can be evaluated explicitly by
analytically continuing x to the complex domain, closing the integration
contour from above, and applying Cauchy’s residue theorem. The resulting
expression for the first spectral trace of local F0 is the sum of products of
holomorphic and anti-holomorphic blocks given by q- and q̃-series, respec-
tively. Namely, we have that [69]

(5.13) Tr(ρF0
) = − i

2

(
G(q)g̃(q̃) + 8b−2g(q)G̃(q̃)

)
,
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where q = e2πib
2

and q̃ = e−2πib−2

. Note that the factorization in Eq. (5.13)
is not symmetric in q, q̃, and the holomorphic and anti-holomorphic blocks
are given by different series. More precisely, they are

g(q) =

∞∑
m=0

(q1/2; q)2m
(q; q)2m

qm/2 = 2φ1

(
q1/2, q1/2

q
; q, q1/2

)
,(5.14a)

G(q) =

∞∑
m=0

(q1/2; q)2m
(q; q)2m

qm/2

(
1 + 4

∞∑
s=1

qs(m+1/2)

1 + qs/2

)
,(5.14b)

g̃(q̃) =
1

2

∞∑
m=0

(−1; q̃)2m
(q̃; q̃)2m

(−q̃)m =
1

2
2φ1

(
−1, −1

q̃
; q̃, −q̃

)
,(5.14c)

G̃(q̃) =

∞∑
m=0

(−q̃; q̃)2m
(q̃; q̃)2m

(−1)m

( ∞∑
s=0

q̃(2s+1)(m+1)

1− q̃2s+1

)
,(5.14d)

where (x; q)m is the q-shifted factorial defined in Eq. (B.18), and r+1φs is
the q-hypergeometric series defined in Eq. (B.19). As in the case of local P2,
we will assume that �(b2) > 0, so that |q|, |q̃| < 1, and the q- and q̃-series
converge.

Let us consider the integral representation in Eq. (5.12) and derive its
all-orders perturbative expansion in the limit � → 0. We perform the change
of variable y = 2πbx and write it equivalently as

(5.15) Tr(ρF0
) =

1

4πb2

∫
R

exp

⎛
⎝y

2
+ 2 log

Φb

(
y+iπb2/2

2πb

)
Φb

(
y−iπb2/2

2πb

)
⎞
⎠ dy.

The asymptotic expansion formula in Eq. (B.25) for log(Φb) in the limit
b → 0 yields

(5.16) log Φb

(
y ± iπb2/2

2πb

)
=

∞∑
k=0

(2πib2)2k−1B2k(1/2)

(2k)!
Li2−2k(−ey±

iπb2

2 ),

where Bn(z) is the n-th Bernoulli polynomial, and Lin(z) is the polylog-
arithm of order n. We eliminate the remaining b-dependence of the poly-
logarithms in Eq. (5.16) by expanding them in turn around b → 0. More
precisely, we recall that the derivative of the polylogarithm function is

(5.17)
∂Lis(e

μ)

∂μ
= Lis−1(e

μ), s, μ ∈ C,
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and we derive the Taylor expansion

(5.18) Li2−2k(−ey±iπb2/2) =

∞∑
m=0

1

m!

(
± iπb2

2

)m

Li2−2k−m(−ey),

for all k ≥ 0. Let us denote the exponent of the integrand in Eq. (5.15) by
V (y, b). After recombining the terms in the nested expansions in Eqs. (5.16)
and (5.18), we obtain a well-defined fully-determined perturbation series in
b2, which is

V (y, b) =
y

2
+ 2

∞∑
k,m=0

(2πib2)2k+m−1 B2k(1/2)

4mm!(2k)!
Li2−2k−m(−ey)[1− (−1)m].

(5.19)

We note that the factor [1− (−1)m] is zero for even values of m. Therefore,
introducing the notation m = 2q + 1 and p = k + q, we have

(5.20) V (y, b) =
y

2
+

∞∑
p=0

(2πib2)2pLi1−2p(−ey)

p∑
q=0

B2p−2q(1/2)

42q(2q + 1)!(2p− 2q)!
.

This formula can be further simplified by using the symmetry and translation
identities for the Bernoulli polynomials. Namely,

(5.21) Bn(1− z) = (−1)nBn(z), Bn(z + v) =

n∑
k=0

(
n

k

)
Bk(z)v

n−k,

where n ∈ N and z, v ∈ C. Choosing z = 1/2, v = 1/4, and n = 2p + 1, a
simple computation shows that

(5.22)
4

(2p+ 1)!
B2p+1(3/4) =

p∑
q=0

B2p−2q(1/2)

42q(2q + 1)!(2p− 2q)!
.

Substituting Eq. (5.22) into Eq. (5.20), and recalling the special case

(5.23) Li1(−ey) = − log(1 + ey),

we finally obtain the perturbative expansion

(5.24) V (y, b) =
y

2
− log(1 + ey) + 4

∞∑
p=1

(2πib2)2p
B2p+1(3/4)

(2p+ 1)!
Li1−2p(−ey),
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where only one infinite sum remains. We note that the term of order b−2

in Eq. (5.24) vanishes, that is, the potential V (y, b) does not have a critical

point around which to perform a saddle point approximation of the integral

in Eq. (5.15). Moreover, for each p ≥ 1, the coefficient function of (2πib2)2p

can be written explicitly as a rational function in the variable t = ey with

coefficients in Q. Indeed, the polylogarithm of negative integer order is

(5.25) Li−n(z) =
1

(1− z)n+1

n−1∑
k=0

〈
n

k

〉
zn−k, n ∈ Z>0, z ∈ C,

where
〈
n
k

〉
are the Eulerian numbers. Applying Eq. (5.25) to Eq. (5.24), we

find that

(5.26) V (y, b) =
1

2
log(t)− log(1 + t) +

∞∑
p=1

b̃4p
Pp(t)

(1 + t)2p
,

where b̃2 = 2πib2, and Pp(t) is aQ-polynomial in t of degree 2p−1. Explicitly,

(5.27) Pp(t) = 4
B2p+1(3/4)

(2p+ 1)!

2p−1∑
m=1

(−1)m
〈

2p− 1

2p− 1−m

〉
tm, p ≥ 1.

We will now show how, by Taylor expanding the exponential eV (y, b) in

the limit b → 0, we obtain a second perturbative b-series with coefficients

which are identified Q-rational functions in t, and which can be explicitly in-

tegrated term-by-term to give the all-orders �-expansion of the first spectral

trace Tr(ρF0
) in Eq. (5.12). In particular, we find that

(5.28)

1 + t

t1/2
eV (y, b) = 1 +

∞∑
r=1

1

r!

⎛
⎝ ∞∑

p=1

b̃4p
Pp(t)

(1 + t)2p

⎞
⎠

r

= 1 +

∞∑
k=1

b̃4k

(1 + t)2k

∑
m∈P(k)

( |m|
N1,...,Nk

)
|m|!

|m|∏
j=1

Pmj
(t),

where P(k) is the set of all partitions m = (m1, . . . ,m|m|) of the positive

integer k, |m| denotes the length of the partition, and Ni ∈ N is the number

of times that the positive integer i ∈ Z>0 is repeated in the partition m.

Note that
∑k

i=1Ni = |m|. The expansion in Eq. (5.28) can be written in a
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more compact form as

(5.29) eV (y, b) =
t1/2

1 + t

(
1 +

∞∑
k=1

b̃4k
P ′
k(t)

(1 + t)2k

)
,

where P ′
k(t) is a new Q-polynomial in t of degree 2k − 1, which is given

explicitly by

(5.30) P ′
k(t) =

∑
m∈P(k)

1

N1! · · ·Nk!
Pm1

(t) · · ·Pm|m|(t) =

2k−1∑
n=1

ck,nt
n,

for k ≥ 1. The numbers ck,n ∈ Q are directly determined by the coefficients
of the polynomials Pp(t), p ≥ 1, in Eq. (5.27) via the exponential expansion
formula above. Let us now substitute Eqs. (5.29) and (5.30) into the integral
representation for the first spectral trace in Eq. (5.15), which gives

(5.31)

Tr(ρF0
) =

1

4πb2

∫
R

ey/2

1 + ey
dy

+
1

4πb2

∞∑
k=1

(2πib2)2k
2k−1∑
n=1

ck,n

∫
R

ey/2+ny

(1 + ey)1+2k
dy.

Explicitly evaluating the integrals in terms of gamma functions, and recalling
the property

(5.32) Γ

(
1

2
+ n

)
=

(2n)!
√
π

4nn!
, n ∈ N,

we obtain that

(5.33)

∫
R

ey/2+ny

(1 + ey)1+2k
dy =

Γ
(
1
2 + 2k − n

)
Γ
(
1
2 + n

)
Γ (1 + 2k)

= π
(2n− 1)!!(4k − 2n− 1)!!

4k(2k)!
,

for all k, n ≥ 0. Therefore, the all-orders expansion in b → 0 of the first
spectral trace of the local F0 geometry can be written as

Tr(ρF0
) =

1

4b2

(
1 +

∞∑
k=1

(πib2)2k

(2k)!

2k−1∑
n=1

ck,n(2n− 1)!!(4k − 2n− 1)!!

)
.

(5.34)
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We note that, substituting πb2 = � and factoring out π/4�, Eq. (5.34)
proves that the resulting perturbative series in �2 has coefficients in Q of
alternating sign. We describe in Section 5.1.1 how to numerically implement
the algorithmic procedure above in order to efficiently compute the pertur-
bative series for ZF0

(1, � → 0) up to very high order. The first few terms
are

(5.35) 1− �2

64
+

19�4

49152
− 1013�6

47185920
+

814339�8

338228674560
+ O(�10),

multiplied by the global pre-factor in Eq. (5.34), which confirms our analytic
calculation at NLO in Eq. (5.9).

5.1.1. Comments on the numerical implementation In order to ob-
tain several hundreds of terms of the perturbative series in � for the first
fermionic spectral trace of local F0 reasonably fast, we write a numerical
algorithm which reproduces the analytic procedure described above. We
comment here briefly on some technical details. Let us denote by dmax the
maximum order in b to be computed numerically. We will work in the vari-
able b̃, which is related to b by

(5.36) b̃2 = 2πib2.

After removing all non-rational factors from the intermediate steps, and
truncating all calculations at the power b̃dmax+1 at every step, the computa-
tional complexity is dominated by the heavy multiplication of large multi-
variate polynomials, which is required at the early stage of the exponential
expansion, and by the manipulation of the special functions that appear at
the last stage of the integral evaluation. We implement our algorithm as the
following two-step process.

(1) Starting from the series in Eq. (5.26), removing by hand the factor
1/(1+ t)2p, p ≥ 1, and truncating at order dmax+1 in b̃, we introduce
the polynomial

(5.37) ϕ1(b̃, t) =

dmax/4∑
p=1

b̃4pPp(t),

where Pp(t) is defined in Eq. (5.27), and its coefficients are computed
explicitly. Then, we apply the variable redefinition

(5.38) b̃ = tdmax/2,
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which transforms the two-variables polynomial in Eq. (5.37) into a
polynomial in the single variable t, which we denote by ϕ1(t). Note
that there is a one-to-one map between the coefficients of ϕ1(b̃, t) and
the coefficients of ϕ1(t). This allows us to perform the exponential
expansion in Eq. (5.28) in the univariate polynomial ring Q[t], instead
of the bivariate polynomial ring Q[t][b], without loss of information.
Truncating at order

(5.39) bmax + 1 = (dmax + 1)dmax/2,

we denote the resulting polynomial after the exponential expansion as

(5.40) ϕ2(t) = eϕ1(t) = 1 +

bmax∑
m=1

Cmtm,

where Cm ∈ Q is known numerically.
(2) Note that ϕ2(t) corresponds to the series in brackets in Eq. (5.29).

Indeed, we can write

(5.41)

ϕ2(t) = 1 +

dmax/4∑
k=1

(
tdmax/2

)4k 2k−1∑
n=1

ck,nt
n

= 1 +

dmax/4∑
k=1

2k−1∑
n=1

ck,nt
2kdmax+n,

where ck,n ∈ Q is defined in Eq. (5.30). Comparing Eqs. (5.40) and
(5.41), we have that

(5.42) ck,n = C2kdmax+n,

for all 1 ≤ n ≤ 2k−1 and k ≥ 1. Therefore, we extract the polynomial
P ′
k(t) in Eq. (5.29) by selecting the monomials of order tm in Eq. (5.40)

such that

(5.43) 2kdmax + 1 ≤ m ≤ 2kdmax + 2k − 1.

Finally, the numerical coefficient of the term b̃4k, k ≥ 1, in the pertur-
bative expansion of the first spectral trace Tr(ρF0

), up to the global
pre-factor, is given by the finite sum

(5.44)

2k−1∑
n=1

C2kdmax+nI(k, n),
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where I(k, n) ∈ πQ denotes the numerical result of the pre-evaluated
integral in Eq. (5.33). We stress that numerical integration is not nec-
essary.

5.2. Exploratory tests of higher instanton sectors

Let us denote by ψ(�) the formal power series appearing in the RHS of
Eq. (5.34), that is,

(5.45) ψ(�) = Tr(ρF0
)
4�

π
∈ Q[[�]].

We truncate the series to a very high but finite order d � 1 and denote the
resultingQ-polynomial by ψd(�) and its Borel transform by ψ̂d(ζ). Explicitly,

(5.46) ψd(�) =

d∑
n=0

b2n�
2n ∈ Q[�], ψ̂d(ζ) =

d∑
n=0

b2n
(2n)!

ζ2n ∈ Q[ζ],

where the coefficients b2n, 1 ≤ n ≤ d, have been computed numerically as
described in Section 5.1. The first few terms of ψd(�) are shown in Eq. (5.35).
It is straightforward to verify numerically that the perturbative coefficients
satisfy the factorial growth

(5.47) b2n ∼ (−1)n(2n)!(2π2)−2n n � 1,

and we conclude that ψ(�) is a Gevrey-1 asymptotic series. As we have done
in Section 4.5 in the case of local P2, we assume here � ∈ C′ and apply the
machinery of Padé–Borel approximation [9, 11, 13] to the truncated series
ψ̂d(ζ) in order to extrapolate the complex singularity structure of the exact
analytically-continued Borel function ψ̂(ζ).

Let d be even. We compute the singular points of the diagonal Padé
approximant of order d/2 of the truncated Borel expansion ψ̂d(ζ), which
we denote by ψ̂PB

d (ζ), and we observe two dominant complex conjugate
branch points at ζ = ±2π2i, which match the leading divergent growth of
the perturbative coefficients in Eq. (5.47). Two symmetric arcs of complex
conjugate spurious poles accumulate at the dominant singularities, mimick-
ing two branch cuts which emanate straight from the branch points along
the positive and negative imaginary axis in opposite directions. Let us in-
troduce A = 2π2 and ζn = n2π2i, n ∈ Z 	=0. A zoom-in to the poles of the
Padé approximant in the bottom part of the upper-half complex ζ-plane is
shown in the leftmost plot in Fig. 6. Note that there might be subdomi-
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Figure 6: In the leftmost plot, a zoom-in to the poles of ψ̂PB
d (ζ) (in gray) in

the bottom part of the upper-half complex ζ-plane. We show the first few
integer multiples of the dominant pole (in red). In the central plot, a zoom-
in to the poles of ψ̂PB

d,probe(ζ) (in gray) in the bottom part of the upper-half
complex ζ-plane, including the test charge singularity at ζ = ζprobe (in blue).
We show the horizontal lines intersecting the positive imaginary axis at the
first few physical branch points (in red). In the rightmost plot, a zoom-in
to the poles of ψ̂PCB

d (η) (in gray) in the upper-right quarter of the complex
η-plane. We show the first few physical branch points (in red) and the unit
circle (in green). The plots are obtained with d = 300.

nant true singularities of ψ̂d(ζ) which are obscured by the unphysical Padé
poles representing the dominant branch cuts. In particular, educated by the
example of local P2, we might guess that the dominant branch points at
ζ = ζ±1 are repeated at integer multiples of A along the imaginary axis
to form a discrete tower of singularities. To reveal their presence, we apply
again the interpretation of Padé approximation in terms of electrostatic po-
tential theory [1, 2]. More concretely, to test the presence of the suspected
next-to-leading order branch point at ζ = ζ2, we introduce by hand the sin-
gular term ψ̂probe(ζ) = (ζ − ζprobe)

−1/5, where ζprobe = A (1/20 + 3i/2), and
compute the (d/2)-diagonal Padé approximant of the sum

(5.48) ψ̂PB
d,probe(ζ) = (ψ̂d + ψ̂probe)

PB(ζ).

The resulting Padé–Borel poles distribution is distorted as shown in the
central plot in Fig. 6, but the genuine physical singularities of ψ̂d(ζ) did not
move. As a consequence, the targeted true branch point at ζ = ζ2 is now
clearly visible, and so it is the test charge singularity at ζ = ζprobe. The
other true branch points at ζ = ζ3, ζ4 are outlined.

We can further improve the precision of the Padé extrapolation and
analytic continuation of the truncated Borel series ψ̂d(ζ) with the use of
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conformal maps. Namely, we perform the change of variable

(5.49) ζ = A
2η

1− η2
, η ∈ C,

which maps the cut Borel ζ-plane C\{(−∞, ζ−1]∪[ζ1,+∞)} into the interior
of the unit disk |η| < 1. The dominant branch points ζ = ζ±1 are mapped
into η = ±i, while the point at infinity is mapped into η = ±1. Correspond-
ingly, the branch cuts (−∞, ζ−1] and [ζ1,+∞) along the imaginary ζ-axis
split each one into two identical copies which lie onto the two lower-half
and upper-half quarters of the unit circle in the η-plane, respectively. The
inverse conformal map is explicitly given by

(5.50) η = ±
√

−1 +
√

1 + (ζ/A)2

1 +
√

1 + (ζ/A)2
, ζ ∈ C.

We compute the (d/2)-diagonal Padé approximant of the conformally
mapped Borel expansion, which we denote by ψ̂PCB

d (η). Its singularities in
the complex η-plane are shown in the rightmost plot in Fig. 6. We observe
two symmetric arcs of spurious poles emanating from the conformal map im-
ages of ζ = ζ±1 along the imaginary axis in opposite directions. The smaller
arcs of poles jumping along the unit circle towards the real axis represent
the Padé boundary of convergence joining the conformal map images of the
repeated singularities at ζ = ζn, n ∈ Z 	=0. Note that the convolution of
Padé approximation and conformal maps naturally solves the problem of
hidden singularities by separating the repeated branch points into different
accumulation points on the unit circle in the conformally mapped complex
η-plane. Thus, our numerical analysis motivates the following ansatz. The
singularities of the exact Borel series ψ̂(ζ) are logarithmic branch points at
ζ = ζn, n ∈ Z 	=0. We remark that the complex singularity pattern unveiled
here is entirely analogous to what has been found in Section 4.5 for the local
P2 geometry, and again it is a particularly simple example of the peacock
configurations described in Section 3.2. However, it turns out that the resur-
gent structure of the asymptotic series ψ(�) is more complex than what has
been observed in other examples.

Let us go back to the factorization formula for the first spectral trace
of local F0 in Eq. (5.13). In the semiclassical limit � → 0, we have that
q̃ = e−2π2i/� → 0 as well, and the anti-holomorphic blocks g̃(q̃), G̃(q̃) in
Eqs. (5.14c) and (5.14d) contribute trivially at leading order as

(5.51) g̃(q̃) ∼ 1

2
, G̃(q̃) ∼ q̃.
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On the other hand, the asymptotics of the holomorphic blocks g(q), G(q) in
Eqs. (5.14a) and (5.14b) for q = e2i� → 1 depends a priori on the ray in the
complex �-plane along which the limit � → 0 is taken. Let us introduce the
variable τ = �/π, such that q = e2πiτ , and take τ = eiα/N with α ∈ R fixed
and N → ∞. The formula in Eq. (5.13) gives the semiclassical asymptotics

(5.52) Tr(ρF0
) ∼ − i

4
G(q)− i4

τ
e−2πi/τg(q).

Note that the contribution of g(q) is suppressed by the exponentially-small
factor e−2π2i/�, corresponding to the one-instanton non-perturbative sector,
yielding that Tr(ρF0

) ∼ −iG(q)/4 at leading order. We expect then to be
able to recover the perturbative series ψ(�) in Eq. (5.45) from the radial
asymptotic behaviour of G(q). Let us show that this is indeed the case. We
test the expected functional form

(5.53) G
(
e2πiτ
)
∼ Cτ−1

(
1 +

∞∑
n=1

anτ
n

)
,

where C ∈ C, an ∈ R. We fix 0 < α < π/2 and take N ∈ N to infinity. A nu-
merical estimate of the overall constant C is obtained from the convergence
of the sequences

�
(
τG
(
e2πiτ
))

= �(C) +O (1/N) ,(5.54a)

�
(
τG
(
e2πiτ
))

= �(C) +O (1/N) ,(5.54b)

which give C ≈ i, and we proceed to systematically extract the coefficients
an as the large-N limits of the recursively-built sequences

(5.55) �
(

1

τn

(
−iτG

(
e2πiτ
)
−

n−1∑
j=0

ajτ
j

))
= an +O (1/N) , n ∈ N>0,

where a0 = 1. We obtain in this way the high-precision numerical estimates

(5.56) a2n ≈ π2nb2n, a2n+1 ≈ 0, n ∈ N,

where b2n ∈ Q are the coefficients of the perturbative series ψ(�) in Eq. (5.45),
as expected. The numerical convergence of the large-N limits of all sequences
above has been accelerated with the help of Richardson transforms. Let us
now move on to the sub-dominant term in the RHS of Eq. (5.52) and de-
termine the leading-order radial asymptotics of the q-hypergeometric series
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g(q), for which we do not have an independent prediction. We observe that
the standard functional ansatz

(5.57) g
(
e2πiτ
)
∼ C1e

C2/ττ b,

where C1, C2 ∈ C, b ∈ R, fails our numerical tests, hinting at a possible
logarithmic-type behavior. We formulate the new ansatz19

(5.58) g
(
e2πiτ
)
∼ C1 log(τ) + C2,

where C1, C2 ∈ C, and we test it as follows. Once more, let us fix 0 < α <
π/2. Fore each N ∈ N, we define the numerical sequences RN = �(g(q)) and
IN = �(g(q)), which satisfy

RN ∼ −�(C1) log(N) + �(C2)− α�(C1),(5.59a)

IN ∼ −�(C1) log(N) + �(C2) + α�(C1),(5.59b)

for N � 1. We find �(C1) = −1/π from the convergence of the large-N
relation

(5.60) S
(1)
N = N(RN+1 −RN ) ∼ −�(C1).

Analogously, we compute the large-N limit of the sequence

(5.61) S
(2)
N = RN + �(C1) log(N) ∼ �(C2)− α�(C1),

which turns out to be independent of α, giving �(C1) = 0 and �(C2) =
0.9225325 . . . . Finally, the estimate �(C2) = 1/2 is obtained from the con-
vergence of the sequence

(5.62) S
(3)
N = IN − α�(C1) ∼ �(C2),

forN � 1. Again, all sequences are accelerated using Richardson transforms,
as shown in the plots in Fig. 7. We conclude that the q-series g(q) has the pro-
posed leading order asymptotics in Eq. (5.58). More precisely, we have that

(5.63) g
(
e2πiτ
)
∼ − 1

π
log(τ) +B +

i

2
,

where B = 0.9225325 . . . . Note that the results that we have obtained from
the radial asymptotic analysis of g(q) and G(q) are effectively independent
of the choice of angle 0 < α < π/2.

19Note that the leading asymptotics of the standard hypergeometric function

2F1(1/2, 1/2; 1; e
πiτ ) in the limit τ → 0 is known to be − 1

π log(− πi
16τ).
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Figure 7: The sequences S
(1)
N (left), S

(2)
N (center), and S

(3)
N (right) are shown

in gray, their second Richardson transforms in blue, and their estimated
asymptotic limits in red. The plots are obtained with α = π/3 and N up to
200.

We remark that, as a consequence of Eq. (5.52), the holomorphic block
g(q) contains sub-dominant, exponentially-suppressed perturbative correc-
tions to the semiclassical perturbative expansion of the first spectral trace
of local F0, which is itself captured by the q-series G(q). It follows then
that the one-instanton resurgent contribution to the discontinuity, which we
have denoted before by ψ1(�), has a leading-order logarithmic behavior of
the functional form in Eq. (5.58). Indeed, a straightforward independent test
shows that the standard guess for ψ1(�) in Eq. (4.184) fails, since the corre-
sponding numerical extrapolation of the one-instanton coefficients does not
converge, in agreement with the radial asymptotics prediction. As a next
step, we can simply extend the leading-order behavior in Eq. (5.58) to a full
perturbative expansion captured by a complete ansatz of the form

(5.64) g
(
e2πiτ
)
∼ C1 log(τ)

(
1 +

∞∑
n=1

dnτ
n

)
+ C2

(
1 +

∞∑
n=1

enτ
n

)
,

where dn, en ∈ C, whose numerical investigation we leave for future work.

6. A new analytic prediction of the TS/ST correspondence

Let us go back to the general framework of Section 2 and consider the topo-
logical string on a toric CY threefold X. Because of the functional forms
of the worldsheet and WKB grand potentials in Eqs. (2.19) and (2.21), re-
spectively, there are appropriate scaling regimes in the coupling constants
in which only one of the two components effectively contributes to the total
grand potential in Eq. (2.18). In the standard double-scaling limit [58, 67, 68]

(6.1) � → ∞, μj → ∞,
μj

�
= ζj fixed, j = 1, . . . , gΣ,
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under the assumption that the mass parameters ξ scale in such a way that

mk = ξ
2π/�
k , k = 1, . . . , rΣ, are fixed as � → ∞, the quantum mirror map in

Eq. (2.8) becomes trivial, and the total grand potential has the asymptotic
genus expansion

(6.2) J ’t Hooft(ζ,m, �) =

∞∑
g=0

Jg(ζ,m) �2−2g,

where Jg(ζ,m) is essentially the genus g free energy of the conventional
topological string at large radius after the B-field has been turned on. As a
consequence of the TS/ST correspondence, there is a related ’t Hooft limit
for the fermionic spectral traces which extracts the perturbative, all-genus
expansion of the conventional topological string on X. Namely,

(6.3) � → ∞, Nj → ∞,
Nj

�
= λj fixed, j = 1, . . . , gΣ.

The saddle-point evaluation of the integral in Eq. (2.25) in the double-scaling
regime in Eq. (6.3), which is performed using the standard ’t Hooft expansion
in Eq. (6.2) for the total grand potential, represents a symplectic transfor-
mation from the large radius point in moduli space to the so-called maximal
conifold point20 [40, 41]. Specifically, it follows from the geometric formalism
of [39] that the ’t Hooft parameters λj are flat coordinates on the moduli
space of X corresponding to the maximal conifold frame of the geometry,
and we have the asymptotic expansion

(6.4) logZ ’t Hooft
X (N ,m, �) =

∞∑
g=0

Fg(λ,m) �2−2g,

where the coefficient Fg(λ,m) can be interpreted as the genus g free energy
of the standard topological string on X in the maximal conifold frame. As
a consequence of Eq. (6.4), the fermionic spectral traces give a well-defined,
non-perturbative completion of the conventional topological string theory
on X.

In this Section, we will show how a dual, WKB double-scaling regime
associated with the limit � → 0 can be similarly introduced in such a way
that the symplectic transformation encoded in the integral in Eq. (2.25) can
be interpreted as a change of frame in the moduli space of X. We will obtain

20The maximal conifold point can be defined as the unique point in the conifold
locus of moduli space where its connected components intersect transversally.
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a new analytic prediction for the semiclassical asymptotics of the fermionic
spectral traces in terms of the free energies of the refined topological string
in the NS limit, which allows us to propose a non-trivial analytic test of the
conjecture of [54, 40].

6.1. The WKB double-scaling regime

We examine a second scaling limit of the total grand potential, which is
dual to the standard ’t Hooft limit in Eq. (6.1). Namely, in the semiclassical
regime

(6.5) � → 0, μj , ξk fixed, j = 1, . . . , gΣ, k = 1, . . . , rΣ,

the quantum mirror map t(z, �) becomes classical by construction, reducing
to the formula in Eq. (2.5), and the total grand potential in Eq. (2.18)
retains only the WKB contribution coming from the NS limit of the refined
topological string in Eq. (2.21), which can be formally expanded in powers
of � as

(6.6) JWKB(μ, ξ, �) =

∞∑
n=0

Jn(μ, ξ) �
2n−1,

where the fixed-order WKB grand potentials Jn(μ, ξ) are given by

J0(μ, ξ) =

s∑
i=1

ti
2π

∂FNS
0 (t)

∂ti
− 1

π
FNS
0 (t) + 2π

s∑
i=1

biti +A0(ξ),(6.7a)

Jn(μ, ξ) =

s∑
i=1

ti
2π

∂FNS
n (t)

∂ti
+

(2n− 2)

2π
FNS
n (t) +An(ξ), n ≥ 1,(6.7b)

under the assumption that the function A(ξ, �), which is defined in Eq. (2.21),
has the perturbative power series expansion21

(6.8) A(ξ, �) =
∑
n≥0

An(ξ) �
2n−1.

The constants bi are the same ones that appear in Eq. (2.13), while FNS
n (t)

is the NS topological string amplitude of order n in Eq. (2.16). Note that
the worldsheet grand potential in Eq. (2.19) does not contribute to the semi-
classical perturbative expansion of the total grand potential, but it contains
explicit non-perturbative exponentially-small effects in �.

21The assumption on A(ξ, �) can be easily tested in examples.
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In view of the integral representation in Eq. (2.25), we can define a second
’t Hooft-like limit for the fermionic spectral traces ZX(N , ξ, �), which corre-
sponds to the semiclassical regime for the total grand potential in Eq. (6.5),
and it is dual to the standard ’t Hooft limit in Eq. (6.3). We refer to it as
the WKB double-scaling regime. Namely,

(6.9) � → 0, Nj → ∞, Nj� = σj fixed, j = 1, . . . , gΣ.

Let us consider the case of a toric del Pezzo CY threefold X, that is, gΣ = 1,
for simplicity. The following arguments can then be straightforwardly gen-
eralized to the case of arbitrary genus. Using the ’t Hooft-like expansion in
Eq. (6.6) for the total grand potential, the integral formula in Eq. (2.25) in
the WKB double-scaling regime in Eq. (6.9) becomes

(6.10) ZX(N, ξ, �) =
1

2πi

∫
C
dμ exp

(
JWKB(μ, ξ, �)− 1

�
μσ

)
,

where C is an integration contour going from e−iπ/3∞ to e+iπ/3∞ in the
complex plane of the chemical potential. Let us introduce the functions

S(μ, ξ, σ) = μσ − J0(μ, ξ),(6.11a)

Z(μ, ξ, �) = exp

( ∞∑
n=1

Jn(μ, ξ)�
2n−1

)
,(6.11b)

and write Eq. (6.10) equivalently as

(6.12) ZX(N, ξ, �) =
1

2πi

∫
C
dμ e−

1

�
S(μ,ξ,σ) Z(μ, ξ, �).

We identify the critical point μ = μ∗ of the integrand by solving the classical
relation

(6.13)
∂J0(μ

∗, ξ)

∂μ
= σ,

which gives σ as a function of μ∗, and vice-versa. Evaluating the integral in
Eq. (6.12) via saddle-point approximation around μ∗ in the limit � → 0, we
obtain the perturbative power series expansion

(6.14) ZX(N, ξ, �) = exp

( ∞∑
n=0

Jn(σ, ξ)�
2n−1

)
.
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The leading-order contribution is given by the Legendre transform

(6.15) J0(σ, ξ) = J0(μ
∗, ξ)− σμ∗,

where the saddle point μ∗ is expressed as a function of σ via Eq. (6.13), the

next-to-leading order correction is given by the one-loop approximation to

the integral in Eq. (6.12), that is,

(6.16) J1(σ, ξ) = J1(μ
∗, ξ)− 1

2
log

(
2π

∂2J0(μ
∗, ξ)

∂μ2

)
,

and the higher-order contributions Jn(σ, ξ), n ≥ 1, can be computed sys-

tematically by summing over higher-loop Feynman diagrams. Note that dif-

ferentiating the formula in Eq. (6.15) gives

(6.17)
∂J0(σ, ξ)

∂σ
= −μ∗.

6.2. Interpreting the change of frame

Let us consider the example of the local P2 geometry. We recall that, in the

parametrization of the moduli space given by the Batyrev coordinate z, the

Picard–Fuchs differential equation associated with the mirror of local P2 is

given by

(6.18) LzΠ =
(
Θ3 − 3z(3Θ + 1)(3Θ + 2)Θ

)
Π = 0,

where Θ = zd/dz, and Π is the full period vector of the meromorphic dif-

ferential one-form λ = y(x)dx. The Picard–Fuchs differential operator Lz

has three singular points: the large radius point at z = 0, the conifold point

at z = −1/27, and the orbifold point at 1/z = 0. Solving the Picard–Fuchs

equation locally around z = 0 and using, for instance, the Frobenius method,

gives a trivial constant solution and the two non-trivial independent solu-

tions

w1(z) =

{
log(−z) + w̃1(z), −1/27 < z < 0,

log(z) + w̃1(z), z > 0,
(6.19a)

w2(z) =

{
log(−z)2 + 2w̃1(z) log(−z) + w̃2(z), −1/27 < z < 0,

log(z)2 + 2w̃1(z) log(z) + w̃2(z), z > 0,
(6.19b)
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where w̃1(z), w̃2(z) are the formal power series

w̃1(z) = 3

∞∑
j=1

(−z)j
(3j − 1)!

(j!)3
(6.20a)

= −6z + 45z2 − 560z3 +
17325z4

2
+ · · · ,

w̃2(z) = 18

∞∑
j=1

(−z)j
(3j − 1)!

(j!)3

3j−1∑
n=j+1

1

n
(6.20b)

= −18z +
423z2

2
− 2972z3 +

389415z4

8
+ · · · .

Note that these series expansions converge for |z| < 1/27, and, with an
appropriate choice of normalization, the formulae in Eq. (2.6) become

(6.21) t = −w1(z), ∂tF0 =
w2(z)

6
.

Let us derive exact expressions in terms of special functions for the analytic
continuation of the classical periods at large radius. We remark that such
closed formulae have already been computed in the well-known context of
the standard ’t Hooft regime [70]. However, this involves the conventional
topological free energies after the B-field has been turned on, which is taken
into account by implementing the change of sign z �→ −z. Using the explicit
results of [70], and reversing the effects of the change of sign in z, we find that
the classical periods of local P2 at large radius can be analytically continued
and resummed in closed form in the two distinct regions −1/27 < z < 0
and z > 0 of moduli space. Choosing the branch of the logarithm functions
appropriately, the first period w1(z) is given by

w1(z) =

{
log(−z)− 6z 4F3

(
1, 1, 43 ,

5
3 ; 2, 2, 2; −27z

)
, −1/27 < z < 0,

log(z)− 6z 4F3

(
1, 1, 43 ,

5
3 ; 2, 2, 2; −27z

)
, z > 0,

(6.22)

while the second period w2(z) is given by

w2(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−5π2

3 + 3
π
√
3
G3,2

3,3

(
1/3, 2/3, 1

0, 0, 0
; −27z

)
, −1/27 < z < 0,

−2π2

3 + 3
π
√
3
G3,2

3,3

(
1/3, 2/3, 1

0, 0, 0
; −27z

)
−2πi log(z) + 12πiz 4F3

(
1, 1, 43 ,

5
3 ; 2, 2, 2; −27z

)
, z > 0,

(6.23)
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Figure 8: The functions w1(z) and w2(z) in Eqs. (6.22) and (6.23) (in solid
red) on the left and on the right, respectively, and their large radius expan-
sions in Eq. (6.19) (in dashed black), for −1/27 < z < 0 and z > 0. The
formal power series in Eq. (6.20) are truncated at j = 200.

where 4F3 is a generalized hypergeometric function, and G3,2
3,3 is a Meijer

G-function. We show in the plots in Fig. 8 the analytically continued pe-
riods together with their series expansions at the origin. Let us comment
briefly on their behavior at the critical points of the geometry. Both func-
tions w1(z), w2(z) have a vertical asymptote at the large radius point z = 0,
where they approach ∓∞ from both sides, respectively. In the orbifold limit
z → +∞, both periods have a horizontal asymptote corresponding to

(6.24) lim
z→+∞

w1(z) = 0, lim
z→+∞

w2(z) = −2π2

3
.

Finally, at the conifold point z = −1/27, they reach the finite limits

lim
z→− 1

27

+
w1(z) = −3 log(3) +

2

9
4F3

(
1, 1,

4

3
,
5

3
; 2, 2, 2; 1

)
(6.25a)

= −2.907593524 . . . ,

lim
z→− 1

27

+
w2(z) = π2.(6.25b)

We show in the plots in Fig. 9 the derivatives ∂zw1(z), ∂zw2(z) together with
their series expansions at the origin. Note that the function w1(z) is singular
at the conifold, while w2(z) is not, and we have that

(6.26) lim
z→− 1

27

+
∂zw1(z) = −∞, lim

z→− 1

27

+
∂zw2(z) = 36

√
3π.



Resurgence in topological string theory 795

Figure 9: The derivatives ∂zw1(z) and ∂zw2(z) of the periods in Eqs. (6.22)
and (6.23) (in solid red) on the left and on the right, respectively, and their
large radius expansions following Eq. (6.19) (in dashed black), for −1/27 <
z < 0 and z > 0. The formal power series in Eq. (6.20) are truncated at
j = 200.

We recall that the function A(�), which appears in Eq. (2.21), is conjec-
tured in closed form for the local P2 geometry, and it is given by [58]

(6.27) A(�) =
3

4
Ac(�/π)−

1

4
Ac(3�/π)

where the function Ac(�) can be expressed as [97, 10]

(6.28) Ac(�) =
2ζ(3)

π2�

(
1− �3

16

)
+

�2

π2

∫ ∞

0

x

e�x − 1
log
(
1− e−2x

)
dx.

It follows straightforwardly that the perturbative expansion in the limit
� → 0 of A(�) satisfies the functional form in Eq. (6.8). More precisely, we
find that

(6.29) A(�) =
4ζ(3)

3π�
+

�

8π
+

�3

2880π
− �5

604800π
+

�7

33868800π
+O(�9).

Substituting the values A0 = 4ζ(3)/3π and b = 1/12 in Eq. (6.7a), we obtain
that the leading order WKB grand potential is given by

(6.30) J0(μ) =
t

2π
∂tF0(t)−

1

π
F0(t) +

π

6
t+

4ζ(3)

3π
,

where F0(t) = FNS
0 (t) is the genus-zero topological free energy at large ra-

dius. Integrating Eq. (6.21) and fixing the integration constant appropriately,
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Figure 10: The ’t Hooft parameter σ (in solid blue) in Eq. (6.32) as a function
of the Batyrev coordinate z ∈ (−1/27, 0)∪ (0,+∞). We show the horizontal
lines corresponding to the values σ = π/4, 2π/3 (in solid red) and the vertical
line at z = −1/27 (in solid green).

one has that [32]

(6.31) F0(t) =
t3

18
+ 3e−t − 45

8
e−2t +

244

9
e−3t − 12333

64
e−4t +O

(
e−5t
)
.

We can now apply Eqs. (6.13), (6.21), and (6.30) in order to express the ’t
Hooft parameter σ as a function of z. Recalling that the Kähler parameter
t is related to the chemical potential by t = 3μ, we find that

(6.32)

σ =
3

2π

(
t ∂2

t F0(t)− ∂tF0(t)
)
+

π

2

=
1

4π

(
w1(z) ∂zw2(z)

∂zw1(z)
− w2(z)

)
+

π

2
.

Using the exact formulae for w1(z), w2(z) in Eqs. (6.22) and (6.23), we obtain
the explicit dependence of σ on the coordinate z ∈ (−1/27, 0) ∪ (0,+∞),
which is shown in the plot in Fig. 10. The two distinct analytic continuations
of the classical periods correspond to two distinct analyticity regions of the
’t Hooft parameter, whose behavior at the critical points is captured by the
limits

(6.33) lim
z→− 1

27

+
σ(z) =

π

4
, lim

z→0±
σ(z) = +∞, lim

z→+∞
σ(z) =

2π

3
.

Note that, analogously to the function w1(z), also σ is singular at the conifold
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point of moduli space. In particular, we have that

(6.34) lim
z→− 1

27

+
∂zσ(z) = +∞.

We stress that σ is strictly positive for all values of z considered here.

6.3. Analysis of the leading-order behavior

Let us now go back to the formula in Eq. (6.14) and the new analytic predic-

tion of the TS/ST correspondence which is contained in it. The asymptotic

behavior of the fermionic spectral traces ZX(N, ξ, �) in the WKB double-

scaling regime in Eq. (6.9) is determined by the WKB grand potential of

the topological string theory, that is, by the total free energy of the refined

topological string in the NS limit, after the transformation of local symplec-

tic frame of the moduli space which is encoded in the integral in Eq. (6.10).

We can write Eq. (6.14) at leading order as

(6.35) ZX(N, ξ, �) = exp

(
J0(σ, ξ)

1

�
+O(�)

)
,

where J0(σ, ξ) is a highly non-trivial function of the ’t Hooft parameter,

and it is given explicitly by the Legendre transform in Eq. (6.15). We stress

that the parametric dependence of the functional coefficients in Eq. (6.14)

on the moduli space makes studying directly the full resurgent structure

of the given asymptotic expansion a much more difficult task than it is to

investigate the numerical series ZX(N, ξ, � → 0) at fixed N , as we have done

in the previous sections of this paper. We can, however, perform a detailed

analysis of the dominant contribution in Eq. (6.35).

Let us consider the example of the local P2 geometry again. Using

Eqs. (6.21), (6.30), and (6.32), we find that

(6.36)
J0(σ) = − t2

2π
∂2
t F0(t) +

t

π
∂tF0(t)−

1

π
F0(t) +

4ζ(3)

3π

= − 1

6π
w1(z)

(
w1(z)∂zw2(z)

2∂zw1(z)
+ w2(z)

)
− 1

π
F0(t) +

4ζ(3)

3π
,

where we apply Eqs. (6.22) and (6.23) in order to express the classical periods

as analytic functions of z ∈ (−1/27, 0)∪(0,+∞), as before. If we consider the

large radius expansion of the genus-zero topological free energy F0(t), which
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Figure 11: The transformed order-zero WKB grand potential J0(σ) (in solid
blue) in Eq. (6.36) as a function of the Batyrev coordinate z ≈ 0. We show
the vertical line at z = z0 (in solid green). We truncate the large radius
expansion of F0(t) in Eq. (6.31) at order O

(
e−15t

)
. We show the numerical

data obtained from the sequences in Eq. (6.44) (as red dots) for k = 7,
N up to 80, and σ = 2.2, 2.3, 2.4, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7. The
convergence is accelerated with a Richardson transform of order 2.

is given in Eq. (6.31), we find that J0(σ) has a vertical asymptote for z → 0±,
where it approaches −∞ from both sides, it remains negative for positive

values of z, while it reaches zero at the value z = z0 = −0.0232698 . . . ,

corresponding to σ = σ0 = 2.36250 . . . , and it becomes positive for values

of z smaller than z0. We show the resulting explicit dependence of J0(σ)

on z near the large radius point in the plot in Fig. 11. We can similarly

access the asymptotic behavior of J0(σ) in the orbifold limit of the special

geometry, where the ’t Hooft parameter σ approaches the natural limit of

2π/3. Recall that the Batyrev coordinate z is related to the true complex

structure parameter κ by z = κ−3. We express the analytically continued

classical periods w1(z), w2(z) for z > 0 in Eqs. (6.22) and (6.23) as functions

of κ. Substituting these into Eq. (6.21), and integrating in t, we find the

orbifold expansion of the classical prepotential F0(κ). More precisely, we

have that

(6.37) F0(κ) =
4ζ(3)

3
−

π2Γ(13)

9Γ(23)
2
κ+

πΓ(13)
2

6
√
3Γ(23)

4
κ2 +

π2Γ(23)
3

18Γ(13)
κ3 +O(κ4),

after fixing the integration constant appropriately [54]. As a consequence of

the orbifold limits in Eq. (6.24) and the orbifold expansion in Eq. (6.37),
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the formula in Eq. (6.36) gives the leading-order asymptotics

(6.38) J0

(
σ → 2π

3

)
∼ J0 (μ → 0) ∼ − 1

π
F0(κ) +

4ζ(3)

3π
= 0 +O(κ),

that is, the dominant term in the WKB expansion of logZP2(N, �), as given
in Eq. (6.35), vanishes at the orbifold point κ = 0 of moduli space, where
it matches the order-zero WKB grand potential in Eq. (6.30). Let us point
out that, expanding the conjectural formula for the spectral determinant in
Eq. (2.24) at leading order in the semiclassical regime in Eq. (6.5), we obtain
that

(6.39) log ΞP2(κ, �) ∼ JWKB(μ, �), � → 0, μ fixed,

while the theta function Θ(μ, �) gives sub-leading, oscillatory corrections to
the dominant asymptotics. Since the fixed-N fermionic spectral traces are
originally defined as the functional coefficients in the orbifold expansion of
ΞP2(κ, �) in Eq. (2.23), the statements in Eqs. (6.38) and (6.39) predict the
absence of a global exponential behavior of the form e−1/� in their semi-
classical asymptotic expansion, contrary to what occurs in the dual regime
� → ∞, as observed in [69] and in Section 4.3. This new prediction of the
TS/ST correspondence is explicitly verified for the first spectral trace of
both local P2 and local F0 in Sections 4.1 and 5.1, thus providing a first
successful quantum-mechanical test of the analytic formulation encoded in
Eq. (6.14). We comment that obtaining analytic results from Eqs. (2.23)
and (2.24) is generally a difficult task, as it requires knowledge of the ana-
lytic continuation of the total grand potential to the orbifold frame of the
geometry for the values of � of interest.

We conclude by presenting here a numerical test of consistency of the
analytic prediction in Eq. (6.36) at large radius for the local P2 geometry.
It is well-known that, by expanding the total grand potential J(μ, �) in
Eq. (2.25) in the large-μ limit, the fermionic spectral traces ZP2(N, �) can
be decomposed into an infinite sum of Airy functions and their derivatives.
More precisely, one has that [54]

(6.40) exp (J(μ, �)) = exp

(
C(�)

3
μ3 +B(�)μ+A(�)

)∑
l,n

al,nμ
ne−lμ,

where al,n ∈ C, and the sum runs over n ∈ N and l = 3p+6πq/� for p, q ∈ N.
We have denoted by A(�) the same function that appears in Eq. (2.21), and
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we have introduced

(6.41) B(�) =
π

2�
− �

16π
, C(�) =

9

4π�
.

Under some assumptions on the convergence of the expansion in Eq. (6.40),
one can substitute it into the formula in Eq. (2.25) and perform the inte-
gration term-by-term, which gives [54]

(6.42) ZP2(N, �) =
eA(�)

C(�)1/3

∑
l,n

al,n

(
− ∂

∂N

)n

Ai

(
N + l −B(�)

C(�)1/3

)
,

where Ai(x) is the Airy function, and the indices l, n are defined as above.
The leading-order behavior for N → ∞ and � fixed is given by the Airy
function

(6.43) ZP2(N, �) ∼ Ai

(
N −B(�)

C(�)1/3

)
, N � 1,

while all additional terms in the RHS of Eq. (6.42) are exponentially small
corrections. Note that the series in Eq. (6.42) appears to be convergent, and
it allows us to obtain highly accurate numerical estimates of the fermionic
spectral traces [74]. More precisely, we truncate it to the finite sum

Z
(k)
P2 (N, �), where k ∈ N denotes the number of terms that have been

retained. Since we are interested in the WKB double-scaling regime in
Eq. (6.9), let us fix a value of the ’t Hooft parameter σ ∈ R+ and take
� = σ/N for N ∈ N. Thus, the sequence of numerical approximations

Z
(k)
P2 (N, σ/N) tends to the true function ZP2(N, �) for k,N → ∞ for each

choice of σ. Note, however, that we can only access in this way those values
of σ which correspond to the large radius frame in moduli space, that is,
z ≈ 0. As we have found in Section 6.2, this corresponds to σ � 1. We obtain
a numerical estimate of the transformed order-zero WKB grand potential
J0(σ) in Eq. (6.36) near the large radius point from the convergence of the
sequence

(6.44)
σ

N
log
(
Z

(k)
P2

(
N,

σ

N

))
∼ J0(σ), N � 1,

which is accelerated with the help of Richardson transforms. The result-
ing numerical data correctly captures the analytic behavior described by
Eq. (6.36) at large radius, including the change of sign of J0(σ) occurring at
z = z0, as shown for a selection of points in the plot in Fig. 11. As expected,
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the agreement increases as the points get closer to z = 0, and it is system-
atically improved by taking larger values of k ∈ N. The two z-coordinates
corresponding to each choice of σ are obtained by inverting the relation in
Eq. (6.32).

7. Conclusions

In this paper, we have described how the machinery of resurgence can be
effectively applied to study the perturbative expansions of the fermionic
spectral traces in the semiclassical regime � → 0 of the spectral theory
dual to the topological string theory on a toric CY threefold. The resurgent
analysis of these asymptotic series uncovers a rich mathematical structure
of non-perturbative sectors, which appear in the complex Borel plane as
infinite towers of periodic singularities, whose arrangement is known as a
peacock pattern. We have conjectured that the Stokes constants associated
with the logarithm of the fermionic spectral traces are rational numbers, thus
representing a new, conjectural class of enumerative invariants of the CY.

We have analytically solved the full resurgent structure of the logarithm
of the first spectral trace of the local P2 geometry, which unveils a remarkable
arithmetic construction. The Stokes constants are given by explicit divisor
sum functions, which can be expressed as the Dirichlet convolution of simple
arithmetic functions, and they are encoded in a generating function given in
closed form by q-series. The perturbative coefficients are captured by special
values of a known L-function, which admits a notable factorization as the
product of a Riemann zeta function and a Dirichlet L-function, correspond-
ing to the Dirichlet factors in the decomposition of the Stokes constants.
Analogously, we have presented a complete analytic solution to the resur-
gent structure of the perturbative series arising in the dual weakly-coupled
limit gs → 0 of the conventional topological string on the same background,
previously studied numerically in [69]. We have found that the Stokes con-
stants are manifestly related to their semiclassical analogues, the mapping
being realised by a simple exchange of divisors, while the perturbative coeffi-
cients are special values of the same L-function above after unitary shifts in
the arguments of its factors. The more complex example of the local F0 ge-
ometry appears to be only accessible via numerical tools, and we have found
a logarithmic-type sub-leading asymptotics of the perturbative series of the
first spectral trace. Finally, we have analyzed the topological string total
grand potential of a toric CY threefold in an appropriate WKB ’t Hooft-like
regime associated with the semiclassical limit of the spectral theory, and
we have obtained a non-trivial analytic prediction on the asymptotics of
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the fermionic spectral traces in terms of the total free energy of the refined

topological string in the NS limit in a suitable symplectic frame.

Several questions and open problems follow from the investigation per-

formed in this paper. We will now give a short account of possible directions

for future work. We have often mentioned that an independent geometric

and physical understanding of the non-perturbative sectors studied in [69]

and in this paper is still missing, as it is an explicit identification of our ra-

tional Stokes constants as enumerative invariants of the topological string.

The number-theoretic fabric that we have discovered in the simple case of

the local P2 geometry in Section 4 sheds some light on this problem, but

it leaves room for further exploration. We would like to understand other

examples of toric CY threefolds in a similar way and possibly study higher-

order fermionic spectral traces in support of a potential generalization.

We have described how the integral representation of the fermionic spec-

tral traces in the WKB double-scaling regime can be interpreted as a sym-

plectic transformation of the WKB grand potential at large radius. As ex-

plained in [39], a change of symplectic frame in the moduli space of the CY

X corresponds to an electromagnetic duality transformation in Sp(2s,Z) of

the periods, where s = b2(X). However, a full geometric understanding of

the effect of the change of symplectic basis of Section 6 on the WKB grand

potential would require further work, and it would involve, in particular,

the use of the specific modular transformation properties of the topological

string amplitudes in the NS limit, which have been studied in [55].

In the first part of this work, we have considered the numerical series

obtained from the semiclassical expansion of the fermionic spectral traces at

fixed N . However, as we have seen in Section 6, we can rigorously define the

perturbative expansion of the fermionic spectral traces in the WKB double-

scaling regime directly. An advantage of this formulation is that it allows

us to make a precise statement on the TS/ST prediction of the asymptotic

behavior of these series. Studying their resurgent structure is a much more

complex endeavor than it is for the numerical series, because the perturbative

coefficients in this ’t Hooft-like limit retain a full parametric dependence on

the moduli space of the CY. Some work on similar problems of parametric

resurgence has been done for the standard ’t Hooft regime of conventional

topological string theory [84] and in the context of the large-N expansion of

gauge theories [102].

Let us mention that the analytic prediction that we have presented for

the WKB double-scaling regime of the fermionic spectral traces is, in prin-

ciple, verifiable from a matrix model perspective. A quantum-mechanical
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validation of our full statement would represent an important additional
piece of evidence in support of the conjecture of [54, 40].

Finally, in the recent works of [125, 126], an operator formulation of the
holomorphic anomaly equations, or BCOV equations [65, 66], satisfied by the
conventional and NS topological string free energies is applied to derive the
formal structure of the exact trans-series solutions, although a determination
of which of the possible Borel singularities are realized and the values of
their Stokes constants is missing. A detailed study of the connection and
complementarity between the formalism of [125, 126] and the framework
proposed in [69] and further advanced in the present work might help us
achieve a more comprehensive understanding of the resurgent structure of
topological string theory.

Appendix A. Wigner transform of the inverse operator

Let O be a quantum-mechanical operator acting on L2(R). We describe how
to obtain the WKB expansion in phase space of the inverse operator ρ = O−1

at NLO in the semiclassical limit � → 0. See [104] for an introduction to
the phase-space formulation of quantum mechanics. The Wigner transform
of the operator O is defined as

(A.1) OW(x, y) =

∫
R

e
iyx′

�

〈
x− x′

2

∣∣∣∣O
∣∣∣∣x+

x′

2

〉
dx′,

where x, y ∈ R are the phase-space coordinates, and the diagonal element
of O in the coordinate representation is given by

(A.2) 〈x|O |x〉 = 1

2π�

∫
R

OW(x, y) dy.

The trace of O is obtained by integrating its Wigner transform over phase
space, that is,

(A.3) Tr(O) =

∫
R

〈x|O |x〉 dx =
1

2π�

∫
R2

OW(x, y) dxdy.

Example A.1. Let us consider the quantum-mechanical operator

(A.4) O = emx+ny = e−i�mn/2emxeny, m, n ∈ Z,

where x, y are the Heisenberg operators corresponding to the classical vari-
ables x, y and satisfying [x, y] = i�, and the second equality follows from
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the Baker–Campbell–Hausdorff formula. The Wigner transform in Eq. (A.1)
becomes

(A.5)

OW(x, y) = e−
i�mn

2

∫
R

dx′e
iyx′

�

〈
x− x′

2

∣∣∣∣ emxeny
∣∣∣∣x+

x′

2

〉

= e−
i�mn

2

∫
R

dx′e
iyx′

� em(x−x′/2)

〈
x− x′

2

∣∣∣∣ eny
∣∣∣∣x+

x′

2

〉

= e−
i�mn

2 emx

∫
R2

dx′dy′

2π�
e

i(y−y′)x′
� e−

mx′
2 eny

′
.

After performing the change of variable u = x′/�, and Taylor expanding the
exponential factor e−mu�/2 around � = 0, we get

(A.6)

OW(x, y) = e−
i�mn

2
+mx

∞∑
k=0

(−i�m)k

2kk!

∫
R

dy′eny
′
∫
R

du

2π
ei(y−y′)u(−iu)k

= e−
i�mn

2
+mx

∞∑
k=0

(−i�m)k

2kk!

∫
R

dy′eny
′
δ(k)(y − y′)

= e−
i�mn

2
+mx

∞∑
k=0

(i�mn)k

2kk!
eny = emx+ny,

where δ(k) denotes the k-th derivative of the Dirac delta function.

We recall now the definition of the Moyal �-product of two quantum
operators A, B acting on L2(R), that is,

(A.7) A � B = AW(x, y) exp

[
i�

2

←→
Λ

]
BW(x, y),

where
←→
Λ =

←−
∂x

−→
∂y −

←−
∂y
−→
∂x, and the arrows indicate the direction in which the

derivatives act. Expanding around � = 0, we get

(A.8) A � B =
∑
n∈N

0≤m≤n

(−1)m(i�/2)n

m!(n−m)!
∂m
x ∂n−m

y AW(x, y) ∂m
y ∂n−m

x BW(x, y).

Theorem A.2. The Wigner transform of the inverse operator ρ = O−1 can
be expressed in terms of OW as

(A.9) ρW =

∞∑
r=0

(−1)r
Gr

Or+1
W

,
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where the quantities

(A.10) Gr = [(O−OW(x, y))r]W

are evaluated at the same point (x, y) in phase space.

We can compute the functions in Eq. (A.10) explicitly by using the Moyal

�-product in Eq. (A.7) and expand them in formal power series in �. More

precisely, the first four functions are G0 = 1, G1 = 0,

G2 =OW � OW −O2
W(A.11a)

=− �2

4

[
∂2OW

∂x2
∂2OW

∂y2
−
(
∂2OW

∂x∂y

)2
]
+O(�4),

G3 =OW � OW � OW − 3(OW � OW)OW + 2O3
W(A.11b)

=− �2

4

[(
∂OW

∂x

)2 ∂2OW

∂y2
+

∂2OW

∂x2

(
∂OW

∂y

)2

−2
∂OW

∂x

∂OW

∂y

∂2OW

∂x∂y

]
+O(�4).

It follows, then, from Eq. (A.9) that the Wigner transform of ρ, up to order

�2, is obtained by substituting Eqs. (A.11a) and (A.11b) into

(A.12) ρW =
1

OW
+

G2

O3
W

− G3

O4
W

+ · · ·

We note that the same result can be obtained by using the properties of the

�-product only. Indeed, the identity

(A.13) ρW � OW = OW � ρW = 1,

together with the definition in Eq. (A.7), implies that

(A.14) ρW cos

[
�

2

←→
Λ

]
OW = 1.

Expanding Eq. (A.14) in powers of �2, we have

(A.15) ρWOW − �2

8
ρW

(←→
Λ
)2

OW +O(�4) = 1,
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where

(A.16) ρW

(←→
Λ
)2

OW =
∂2ρW
∂x2

∂2OW

∂y2
+

∂2ρW
∂y2

∂2OW

∂x2
− 2

∂2ρW
∂x∂y

∂2OW

∂x∂y
,

and, solving order by order in �, we find the Wigner transform of ρ at NLO

in � → 0. Note that the formalism described here can be used to systemat-

ically extract the expansion up to any order by extending all intermediate

computations beyond order �2.

Appendix B. Quantum dilogarithms and some formulae

We call quantum dilogarithm the function of two variables defined by the

series [17, 18]

(B.17) (xqα; q)∞ =

∞∏
n=0

(1− xqα+n), α ∈ R,

which is analytic in x, q ∈ C with |x|, |q| < 1, and it has asymptotic expan-

sions around q a root of unity. Furthermore, we denote by

(B.18) (x; q)m =

m−1∏
n=0

(1− xqn) =
(x; q)∞

(xqm; q)∞
, m ∈ Z,

with (x; q)0 = 1, the q-shifted factorials, also known as q-Pochhammer sym-

bols, and by

r+1φs

(
a0, . . . , ar
b1, . . . , bs

; q, x

)
=

∞∑
n=0

xn
∏r

i=0(ai; q)n
(q; q)n

∏s
j=1(bj ; q)n

(
(−1)nq(

n

2)
)s−r

,

(B.19)

where ai, bj , x ∈ C, r, s ∈ N, the (unilateral) q-hypergeometric series, also

called (unilateral) basic hypergeometric series. Faddeev’s quantum diloga-

rithm Φb(x) is defined in the strip |�(z)| < |�(cb)| as [16, 17]

(B.20) Φb(x) = exp

(∫
R+iε

e−2ixz

4 sinh(zb) sinh(zb−1)

dz

z

)
,
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which can be analytically continued to all values of b such that b2 /∈ R≤0.
When �(b2) > 0, the formula in Eq. (B.20) is equivalent to

(B.21) Φb(x) =
(e2πb(x+cb); q)∞
(e2πb−1(x−cb); q̃)∞

=

∞∏
n=0

1− e2πb(x+cb)qn

1− e2πb−1(x−cb)q̃n
,

where q = e2πib
2

, q̃ = e−2πib−2

, and cb = i(b+ b−1)/2. It follows that Φb(x)
is a meromorphic function with poles at the points x = cb + imb + inb−1

and zeros at the points x = −cb − imb− inb−1, for m,n ∈ N. It satisfies the
inversion formula

(B.22) Φb(x)Φb(−x) = eπix
2

Φb(0)
2, Φb(0) =

(
q

q̃

)1/48

= eπi(b
2+b−2)/24,

and the complex conjugation formula

(B.23) Φb(x)
∗ =

1

Φb∗(x∗)
,

and it is a quasi-periodic function. More precisely, we have that

Φb(x+ cb + ib)

Φb(x+ cb)
=

1

1− qe2πbx
,(B.24a)

Φb(x+ cb + ib−1)

Φb(x+ cb)
=

1

1− q̃−1e2πb−1x
.(B.24b)

In the limit b → 0, under the assumption that �(b2) > 0, Faddeev’s quantum
dilogarithm has the asymptotic expansion [15]

(B.25) log Φb

( x

2πb

)
=

∞∑
k=0

(2πib2)2k−1B2k(1/2)

(2k)!
Li2−2k(−ex),

where Lin(z) is the polylogarithm of order n, and Bn(z) is the n-th Bernoulli
polynomial. Similarly, in the limit b → 0, under the assumption that �(b2) >
0, the following special cases of the quantum dilogarithm in Eq. (B.17) have
the asymptotic expansions [19]

log(x; q)∞ =
1

2
log(1− x) +

∞∑
k=0

(2πib2)2k−1 B2k

(2k)!
Li2−2k(x),(B.26a)

log(qα; q)∞ = − πi

12b2
−B1(α) log(−2πib2)− log

Γ(α)√
2π

(B.26b)
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−B2(α)
πib2

2
−

∞∑
k=2

(2πib2)k
BkBk+1(α)

k(k + 1)!
, α > 0,

where Γ(α) is the gamma function.

Appendix C. Hadamard’s multiplication theorem

We briefly recall the content of Hadamard’s multiplication theorem [22, 23],
following the introduction by [21].

Theorem C.1. Consider the two formal power series

(C.27) f(z) =

∞∑
n=0

anz
n, g(z) =

∞∑
n=0

bnz
n,

and suppose that f(z), g(z) are convergent for |z| < R,R′, respectively, where
R,R′ ∈ R+, and that their singularities in the complex z-plane are known.
Let us denote by {αi} the set of singularities of f(z) and by {βj} the set of
singularities of g(z). We introduce the formal power series

(C.28) F (z) = (f � g)(z) =
∞∑
n=0

anbnz
n,

also known as the Hadamard product of the given series f(z) and g(z), which
we denote with the symbol �. Then, F (z) has a finite radius of convergence
r > RR′, and its singularities belong to the set {αiβj} of products of the
singular points of f(z) and g(z). Furthermore, F (z) admits the integral rep-
resentation

(C.29) F (z) =
1

2πi

∫
γ
f(s)g(z/s)

ds

s
,

where γ is a closed contour encircling the origin s = 0 on which

(C.30) |s| < R,
∣∣∣z
s

∣∣∣ < R′.

Let us conclude by citing two results of [73] which we use in the explicit
resummation of the Hadamard factors considered in Section 4. Namely,

∞∑
k=1

ζ(2k, a)

2k
x2k =

1

2
log (Γ(a− x)Γ(a+ x))− log Γ(a), |x| < |a|,(C.31a)
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∞∑
k=1

ζ(2k + 1, a)

2k + 1
x2k+1 =

1

2
log

(
Γ(a− x)

Γ(a+ x)

)
+ xΨ(a), |x| < |a|,(C.31b)

where ζ(z, a) denotes the Hurwitz zeta function, Ψ(a) denotes the digamma
function, x ∈ C, and a ∈ C\Z≤0.

Appendix D. Elements of alien calculus

We briefly recall here the basic notions of alien calculus that are used in
this paper. We refer to [100, 101, 14]. Let φ(z) be a resurgent asymptotic
series, and let φ̂(ζ) be its Borel transform. We denote by ζω, ω ∈ Ωθ, the
singularities of φ̂(ζ) that lie on the same Stokes line at an angle

(D.32) θ = arg(ζω)

in the complex ζ-plane. For simplicity, we will now number the singularities
along the given Stokes ray according to their increasing distance from the
origin. Let us fix a value ω = r ∈ N 	=0. When analytically continuing φ̂(ζ)
from the origin to the singularity ζr along the direction in Eq. (D.32), each
singularity ζi, i = 1, . . . , r − 1, must be encircled by either passing slightly
above or slightly below it. This creates ambiguity in the prescription. We
label by εi = ±1 the two choices, and we introduce the notation

(D.33) φ̂
ε1,...,εr−1

ζ1,...,ζr
(ζ)

to indicate that the analytic continuation is performed in such a way that
the singularity ζi is avoided above or below according to the value of εi for
i = 1, . . . , r− 1. Suppose that the local expansion of the Borel transform at
ζ = ζr has the form

(D.34) φ̂
ε1,...,εr−1

ζ1,...,ζr
(ζ) = − 1

2πiξ
c
ε1,...,εr−1

ζ1,...,ζr
− log(ξ)

2πi
φ̂
ε1,...,εr−1

r; ζ1,...,ζr
(ξ) + · · · ,

where ξ = ζ − ζr, the dots denote regular terms in ξ, c
ε1,...,εr−1

ζ1,...,ζr
is a complex

number, and φ̂
ε1,...,εr−1

r; ζ1,...,ζr
(ξ) is the germ of an analytic function at ξ = 0. The

alien derivative at the singularity ζr, which has been introduced in Eq. (3.13),
acts on the formal power series φ(z) as

(D.35) Δζrφ(z) =
∑

ε1,...,εr−1

p(ε)!q(ε)!

r!

(
c
ε1,...,εr−1

ζ1,...,ζr
+ B−1φ̂

ε1,...,εr−1

r; ζ1,...,ζr
(z)
)
,
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where B−1 denotes the inverse Borel transform, and p(ε), q(ε) are the number
of times that ±1 occur in the set {ε1, . . . , εr−1}, respectively. Furthermore,
Δζφ(z) = 0 if ζ ∈ C is not a singular point in the Borel plane of φ(z).

Example D.1. Let us consider the simple example of

(D.36) φ̂
ε1,...,εr−1

ζ1,...,ζr
(ζ) = − log(ξ)

2πi
Sr + · · · ,

where Sr ∈ C is a constant which depends only on the choice of the sin-
gularity ζr. Since the inverse Borel transform acts trivially on numbers, we
have that

(D.37)

Δζrφ(z) =
∑

ε1,...,εr−1

p(ε)!q(ε)!

r!
Sr

=

r−1∑
p=0

p!(r − 1− p)!

r!

(
r − 1

p

)
Sr = Sr.

We observe that, in the case of

(D.38) φ̂
ε1,...,εr−1

ζ1,...,ζr
(ζ) = − 1

2πiξ
Sr + · · · ,

where Sr ∈ C is again a number which depends only on the choice of the
singularity ζr, the alien derivative at ζr acts on φ(z) according to the same
formula in Eq. (D.37).

We conclude by recalling that the alien derivative Δζ , ζ ∈ C, is indeed
a derivation in the algebra of resurgent functions. In particular, it satisfies
the expected Leibniz rule when acting on a product, that is,

(D.39) Δζ (φ1(z)φ2(z)) = (Δζφ1(z))φ2(z) + φ1(z) (Δζφ2(z)) ,

where φ1(z), φ2(z) are two given resurgent formal power series. As a conse-
quence, the alien derivative also acts naturally on exponentials. Namely,

(D.40) Δζe
φ(z) =

∞∑
k=0

Δζφ
k(z)

k!
=

∞∑
k=1

φk−1(z)

(k − 1)!
Δζφ(z) = eφ(z)Δζφ(z).
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