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Numerical experiments on coefficients of
instanton partition functions

Aradhita Chattopadhyaya and Jan Manschot

We analyze the coefficients of partition functions of Vafa-Witten
(VW) theory on a four-manifold. These partition functions factor-
ize into a product of a function enumerating pointlike instantons
and a function enumerating smooth instantons. For gauge groups
SU(2) and SU(3) and four-manifold the complex projective plane
CP2, we experimentally study the latter functions, which are ex-
amples of mock modular forms of depth 1, weight 3/2, and depth 2,
weight 3 respectively. We also introduce the notion of “mock cusp
form”, and study an example of weight 3 related to the SU(3)
partition function. Numerical experiments on the first 200 coeffi-
cients of these mock modular forms suggest that the coefficients of
these functions grow as O(nk−1) for the respective weights k = 3/2
and 3. This growth is similar to that of a modular form of weight k.
On the other hand the coefficients of the mock cusp form of weight
3 appear to grow as O(n3/2), which exceeds the growth of classical
cusp forms of weight 3. We provide bounds using saddle point anal-
ysis, which however largely exceed the experimental observation.
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1. Introduction

Instantons are (anti-)self-dual solutions of the Yang-Mills equations of mo-
tion. These non-perturbative solutions are central in theoretical physics
[43, 6, 50, 29, 65, 70], and connect to many subjects including geometry
[68, 27, 28, 47, 75, 48] and analytic number theory [36, 69, 40, 13, 18].
Of particular interest are moduli spaces of instanton solutions and their
topological invariants. This article considers generating functions of Euler
numbers of instanton moduli spaces for four-manifolds, in particular CP2.
Rather strikingly, these partition functions are examples of (mock) modular
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forms as a consequence of electromagnetic duality [60, 69, 71], and even give
rise to new functions of this type [52, 55, 2, 56].

Physically, these generating functions are the partition functions of a
specific topological twist of N = 4 Yang-Mills theory [74, 69] on a four-
manifoldX. The supersymmetry makes an explicit analysis feasible for many
physical quantities of interest. For manifolds with the topological property
that b+2 (X) > 1, such as X = K3, the partition functions of the theory are
known to give rise to classical modular forms as a consequence of electric-
magnetic duality. On the other hand for four-manifolds with b+2 (X) = 1,
such as the rational surfaces, the duality leads to more intricate partition
functions, namely instances of mock modular forms [69, 53, 22] and even
mock modular forms of higher depth [2, 56]. More precisely, the functions
are examples of mixed mock modular forms and their coefficients grow ex-
ponentially. An exact formula of Rademacher type was derived for these
coefficients for the gauge group SU(2) in [13], and the gauge group SU(3)
in [15].

The partition functions can be expressed as a product of two functions
by a result of Göttsche [37, Prop. 3.1]. The coefficients of the first function
enumerate smooth instanton solutions, or locally free sheaves in algebraic
geometry. Assuming that X is simply connected, the second function is a
negative power of the Dedekind eta function, and its coefficients enumerate
pointlike instantons. These objects compactify the moduli space of smooth
instanton solutions, and correspond within algebraic geometry to sheaves
whose ranks jumps at these points. This function gives rise to the expo-
nential growth mentioned above, which is of crucial importance for physical
questions related to the quantum-mechanical entropy [19, 20].

On the other hand, much of the challenge in the determination of the
VW partition functions is in the first function [47, 75, 48, 55, 73]. This article
is mostly concerned with this function for gauge groups SU(2) and SU(3)
and X = CP2. These capture interesting arithmetic information and appear
to be pure mock modular forms. For the gauge group SU(2) these coeffi-
cients are famously Hurwitz class numbers [47, 77].1 This article explores the
coefficients for the gauge group SU(3). We find intriguing patterns for the
coefficients of these partition functions, while we furthermore determine an
upper bound on the asymptotic growth of these coefficients. In our analysis,
we introduce the notion of a “mock cusp form”. For our specific example
of a mock cusp form of weight k = 3, we find experimentally that the coef-
ficients of the function appear to grow as O(n3/2). We are however unable

1See for the definition of Hurwitz class number for example [42].
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to prove this growth. Using the saddle point method, we are able to put an
upper bound to the growth of the coefficients by O(n5/2), and using a more
heuristic argument based on lattice sums by O(n2). To put these bounds into
context, we note that the saddle point method applied to classical cusp forms
of weight k (or Hecke bound) gives O(nk/2), which is notably larger than
the sharper Deligne-Petersson-Ramanujan bound O(n(k−1)/2). It would be
interesting to explore the growth of similar functions, such as the coefficients
of VW partition functions for N > 3, and those of generating functions of
bound states of black holes [17].

We find it intriguing that the growth of the Euler numbers of non-
compact moduli spaces of smooth instantons is only polynomial as function
of the instanton number, whereas the Euler numbers of the compactified
moduli spaces, which include pointlike instantons, is exponential. It would
be interesting to understand the growth of the coefficients, as well as the
analytic properties of the partition functions, from a more geometric and
physical perspective.

The outline of this article is as follows. We briefly review VW theory in
Section 2.1, followed by a discussion of the partition functions for the gauge
groups SU(2) and SU(3) in Section 2.2. In Section 3.1, we recall aspects of
modular forms and their transformation properties. In Section 3.2, we review
aspects of the mock modular forms, state their transformation properties
and extend the definition to mock cusp forms. Section 4 provides detailed
numerical results and plots obtained for the partition functions of SU(3)
VW theory and how these functions grow for p-th coefficients for prime p.
Finally in Section 5, we analyse the asymptotics of the Fourier coefficients of
the partition functions of VW theory for gauge group SU(3). In Section 5.1,
we review the rough bound on the growth of coefficients of modular and cusp
forms. We extend this in Section 5.2 to the growth of coefficients of mock
cusp forms associated with the partition functions of VW theory. Section 5.3
provides an heuristic argument for the growth of the coefficients of theta
series.

2. Yang-Mills theory and mock modularity

This section briefly reviews N = 4 super Yang-Mills theory and its topo-
logically twisted version, Vafa-Witten theory [69]. For more detailed ex-
positions in mathematics and physics we suggest [47, 62, 63, 75, 76], and
[31, 32, 30, 29].
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2.1. Instanton solutions

For a simply connected gauge group G, we let Fij be the field strength for
the gauge potential Ai with i, j ∈ {1, . . . , 4},

Fij = ∂iAj − ∂jAi + [Ai, Aj ].(1)

The Yang-Mills action reads

(2) S =
1

2g2

∫
X
d4xTrFijF

ij ,

where the trace is over the indices of the representation of the Lie algebra of
G, and g is the gauge coupling. The action S is left invariant by the gauge
symmetry, which acts on the covariant derivative Di = ∂i +Ai as,

Di → h−1Dih, for h(�x) ∈ G.(3)

The action is bounded below by the instanton number

(4) k = − 1

8π2

∫
X
TrF ∧ F,

which is a topological invariant of a solution to the Yang-Mills equations of
motion. The instanton number gives a lower bound on the action,

S =
1

2g2

∫
X
d4xTrFijF

ij =
1

g2

∫
X
TrF ∧ ∗F

=
2

g2

∫
X
d4xTr

(
(F+)2 − 1

2
F ∧ F

)
(5)

≥ 8π2

g2
k,

where F = 1
2Fijdx

i ∧ dxj , and F±
ij are the self dual and anti-self dual com-

ponents of Fij :

2F+
ij = Fij +

1

2
εijklF

kl, 2F−
ij = Fij −

1

2
εijklF

kl.(6)

Solutions which saturate the bound (5), those with with F+ = 0, are called
“instantons”.
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Instanton solutions were studied by several physicists as well as mathe-
maticians since the 1970s. On the physics side, instantons are related to mag-
netic monopole solutions by dimensional reduction [43, 44, 45, 46]. A com-
plete construction using linear algebra alone for the Yang-Mills self dual
instantons in Euclidean S4 was first given in [5, 33].

The moduli space Mk of instanton solutions modulo gauge transforma-
tions with instanton number k is finite dimensional. The dimension corre-
sponds physically to the number of fermionic zero modes (ground states), or
more precisely the index of the Dirac operator. The sequence of topological
invariants of instanton moduli spaces as function of the Euler number is
naturally combined to a generating function. For example, the generating
function of Euler numbers of moduli spaces of instantons on R4 with bound-
ary conditions for the gauge potential, A|r→∞ ∼ 1

r2 and F |r→∞ ∼ 1
r3 for

r → ∞ were computed in [62, 63]. Such generating functions are often real-
ized physically as a statistical partition function of a topologically twisted
supersymmetric Yang-Mills theory. Depending on the field content, different
topological observables can be realized [50]. The subject of this paper is the
Vafa-Witten twist of N = 4 Yang-Mills theory, whose partition function is
a generating function of Euler numbers of instanton and monopole moduli
spaces. The precise definition of the Euler numbers of these potentially sin-
gular spaces is an important aspect, which requires sophisticated techniques
within algebraic geometry. See for example [35, 67] for generic algebraic sur-
faces, and [58] for Fano surfaces. For the purpose of this paper, it is not
necessary to further review these techniques.

We recall a few aspects from [69] in what follows. The action of the
bosonic fields of N = 4 super Yang-Mills theory reads

Sb(Ai, va) =

1

g2

∫
X
d4xTr

(
1

2
FijF

ij +

6∑
a<b

[va, vb]
2 +

6∑
a=1

(Diva)
2 − ig2θ

8π2
F ∧ F

)
,

(7)

where va, a = 1, . . . , 6, are scalar fields, and θ is the theta angle. The the-
ory has a global R-symmetry group SU(4). The four scalars va transform
under the 6-dimensional representation of SU(4), whereas the gauge field
Ai is a singlet. The four supercharges transform under the four-dimensional
representation 4 of SU(4).

A topological twist of the N = 4 theory on a compact four-manifold
X identifies a principal SU(4) R-symmetry bundle. The identification fol-
lows by specifying the action of the space-time rotation group Spin(4)
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on the bundle associated to the four-dimensional representation 4 of the

SU(4) R-symmetry. The Vafa-Witten twist is the twist for which the 4 is

identified with the representation (1,2) ⊕ (1,2) of the local frame group

Spin(4) 
 SU(2)+ × SU(2)−. The identification of the principal SU(4) R-

symmetry bundle thus follows from the chiral spin bundle W− on X, i.e.

the bundle associated to the (1,2) representation of Spin(4). Crucially, the

supercharges of the topologically twisted theory include two scalar super-

charges. The fermionic fields of the theory consists of two self-dual two-forms,

two vectors and two scalars, whereas the bosonic field content of the twisted

theory is:

1. Gauge field Ai,

2. Self-dual two-form Bij . For i = 0, we abbreviate B0j = Bj ,

3. Real scalar C, and complex scalar φ.

The bosonic part of the action with φ, φ̄ set to zero is given by,

S(Ai, Bi, C) =
1

g2

∫
X

d4xTr

(
1

2
FijF

ij + (DiBj)
2 + (DiC)2

+
∑
i<j

[Bi, Bj ]
2 +

∑
i

[C,Bi]
2 − ig2θ

8π2
F ∧ F

⎞⎠ .

(8)

The instanton solutions are given by

Bij = C = F+
ij = 0 ∀ i, j.(9)

Depending on the choice of X, there may be a monopole or Abelian branch

[69]. This latter branch is absent on manifolds with positive constant scalar

curvature such as CP2.

2.2. Partition functions of Vafa-Witten theory

We review the partition functions of the Vafa-Witten theory with gauge

groups U(1) and SU(N), N ≥ 2, before specializing to the four-manifolds

K3 and CP2. The partition function for a four-manifold X is given schemat-

ically by the path integral formalism as

ZX
N (τ, τ̄) =

∫
D�Φ e−S(�Φ),(10)
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where the gauge group is U(1) for N = 1 and SU(N) for N ≥ 2. �Φ repre-
sents the field content of the theory, which besides the bosonic fields in (8)
includes the fermionic super-partners, ghost anti-ghost pairs and auxiliary
fields. Moreover,

τ =
θ

2π
+

4πi

g2
∈ H,(11)

is the complexified coupling constant, which takes values in the upperhalf
of the complex plane, H.

The partition function is formally independent of τ̄ , and localizes to
instanton solutions,

(12) ZX
N (τ) =

∑
n≥0

bN (n) qn−Nχ(X)/24

These partition functions are the generating functions of Euler numbers
of compactified moduli spaces of semi-stable coherent sheaves Mn. Thus
we have essentially bN (n) = χ(MN,n). The moduli spaces MN,n include
singular or pointlike instantons.

For manifolds with b2(X)+ > 1, it is increasingly rigorous established
that the partition functions are expressed in terms of Seiberg-Witten invari-
ants and modular forms [26, 67, 38, 39]. More precisely the generating func-
tions are weakly holomorphic modular forms of weight −χ(X)/2, with χ(X)
the Euler number of X. As a result, if X is simply connected, b1(X) = 0 and
thus χ(X) > 0, the Euler numbers grow exponentially with the instanton
number [4],

(13) bN (n) ∼ exp(π
√

2nNχ(X)/3).

On the other hand, the Euler numbers of moduli spaces of smooth instantons
related to these by an overall power of eta-functions [37, Prop. 3.1],

(14) ZX
N (τ) =

fX
N (τ)

η(τ)Nχ(X)
.

The numerator fX
N (τ) is the generating function of Euler numbers χ(NN,n) of

moduli spaces of smooth instantons, or locally free, semi-stable sheavesNN,n.
Thus the coefficients cN (n) of its Fourier expansion,

(15) fX
N (τ) =

∑
n≥0

cN (n) qn,
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equal χ(NN,n). The fX
N (τ) are expected to be modular forms of weight

(N − 1)χ(X)/2. As a result the coefficients cN (n) of fX
N grow much slower

than the cN (n), at most polynomially in the exponent n. We discuss in the
following sections suggest that

(16) |cN (n)| ≤ C n(N−1)χ(X)/2−1

for some positive constant C.

Partition functions for X = K3

The partition function of Vafa-Witten theory on K3 and the gauge group
U(1) were given in [36, 69]

(17) ZK3
1 (τ) =

1

η(τ)24
= q−1

∑
k≥0

p24(n)q
k

where q = e2πiτ , for τ ∈ H, p24(k) is the partition of a positive integer k in
24 colors, and η(τ) is the Dedekind eta function given by,

(18) η(τ) = q1/24
∞∏
n=1

(1− qn).

The function in (17) is also the partition function of 24 free scalar fields in
two dimensions. The partition function for gauge group SU(2) with vanish-
ing ’t Hooft flux is given by,

ZK3
2 (τ) =

1

4
ZK3
1 (2τ) +

1

2
ZK3
1

(τ

2

)
+

1

2
ZK3
1

(
τ + 1

2

)
=

1

4
q−2 + 30 + 3200 q + 176337 q2 + · · · .

(19)

For fK3
2 (τ), we find

(20) fK3
2 (τ) = η(τ)48 ZK3

2 (τ) =
1

4
− 12 q + 300 q2 − 2000 q3 + · · · .

Thus we see experimentally that the coefficients of fK3
2 grow much slower

than those of ZK3
2 .
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More generally, the partition function for gauge group SU(N) with

prime N and vanishing ’t Hooft flux the partition function is argued to

be [69],

ZK3
N =

1

N2
ZK3
1 (Nτ) +

1

N

N−1∑
b=0

ZK3
1

(
τ + b

N

)
.(21)

The partition function for other ’t Hooft fluxes can be expressed in a similar

form [69].

Partition functions for X = CP2

We continue with the four-manifoldX = CP2 which has b2(X) = b+2 (X) = 1.

While the partition functions for K3 are given in terms of modular forms

for any N , we will see that the partition functions for CP2 give rise to new

functions,

(22) ZCP
2

N,μ =
f̂CP

2

N,μ(τ, τ̄)

η(τ)3N
.

Here we have included the ’t Hooft flux μ of the gauge bundle. As we will

spell out in further detail, functions f̂CP
2

N,μ =: f̂N,μ in the numerator are

non-holomorphic. Their holomorphic part enumerates smooth instanton so-

lutions. Since CP2 is a toric four-manifold, these numbers also enumerate

the number of fixed points of the toric action on the moduli space of locally

free sheaves [47, 48, 73].

The result for the gauge group U(1) is again given in terms of the

Dedekind eta function [36],

ZCP
2

1 =
1

η(τ)3
.(23)

For SU(2) with ’t Hooft flux μ, a combination of physics [69], algebraic

geometry [47, 75, 76] and analytic number theory [13] has demonstrated

that the partition functions read:

(24) ZCP
2

2,μ (τ, τ̄) =
f̂2,μ(τ, τ̄)

η(τ)6
, μ = 0, 1,
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with the f̂2,μ, explicitly given as

f̂2,μ(τ, τ̄) = f2,μ(τ)−
3i

4
√
2π

∫ i∞

−τ̄

Θμ/2(w)

(−i(w + τ))3/2
dw.(25)

The holomorphic parts f2,μ are a multiple of the generating functions Gμ of
Hurwitz class numbers H(n) [78, 77],

(26) f2,μ(τ) = 3Gμ(τ), Gμ(τ) =

∞∑
n=0

H(4n− μ) qn−μ/4.

Moreover, Θα in (25) is the theta series defined by

(27) Θα(τ) =
∑

n∈Z+α

qn
2/2.

See equation (93) for explicit generating series for the f2,μ(τ). Table 1 in
Section 4 lists the first few Hurwitz class numbers.

The holomorphic part f2,μ transforms as

f2,μ

(
−1

τ

)
= −τ3/2√

2

1∑
ν=0

(−1)μν
(
f2,ν(τ)−

3i

4
√
2π

∫ i∞

0

Θν/2(w)

(−i(w + τ))3/2
dw

)
,

f2,μ(τ + 1) = e−πiμ2/2f2,μ(τ).

(28)

Next we consider the transformations of the non-holomorphic function
f̂2,μ (25). For τ → −1/τ , the shift by the period integral in (28) is ab-

sorbed by the non-holomorphic integral in (25). As a result, f̂2,μ transforms
as a modular form of weight 3/2. The full partition function is thus a non-

holomorphic modular form of weight −3/2. The non-holomorphic f̂N,μ sat-
isfy a compact holomorphic anomaly equation, which can be derived using
localization techniques on the Coulomb branch of the effective field theory
[7, 22, 57], or in string theory [59, 1, 3].

For X = CP2, the partition functions of SU(N) Vafa-Witten theory are
determined for arbitrary N in [55]. These expressions give rise to higher
dimensional analogues of Appell functions. For SU(3), the complete non-
holomorphic partition function has a similar form to (24), it reads [56]:

ZCP
2

3,μ (τ, τ̄) =
f̂3,μ(τ, τ̄)

η(τ)9
,(29)
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where f̂3,μ reads

f̂3,μ(τ, τ̄) = f3,μ(τ)−
i (3/2)3/2

π

∑
ν=0,1

∫ i∞

−τ̄

f̂2,ν(τ,−v)Θμ

3
+ ν

2
(3v)

(−i(v + τ))3/2
dv,(30)

with f̂2,ν as in (25). The holomorphic part f3,1 was determined in [48, 73, 52]
and f3,0 in [54]. The first few terms of their q-expansions are:

f3,0(τ) =
1

9
− q + 3 q2 + · · · ,

f3,1(τ) = f3,2(τ) = 3 q5/3 + 15 q8/3 + 36 q11/3 + · · · .
(31)

Exact expressions for f3,μ are given in [56] and reproduced in Appendix A.
Table 2 in Section 4 provides a longer list of the first coefficients. The holo-
morphic parts of f̂3,μ transform as [56]:

f3,μ(−1/τ) =
iτ3√
3

2∑
ν=0

e−2πiμν/3

×
(
f3,ν(τ)−

i(3/2)3/2

π

∑
α=0,1

∫ i∞

0

f̂2,α(τ,−w)Θ 2ν+3α

6
(3w)

(−i(w + τ))3/2
dw

)
,

f3,μ(τ + 1) = (−1)μeπiμ
2/3f3,μ(τ).

(32)

In the next section, we will introduce various notions of modular forms
and mock modular forms to characterize the various functions, which ap-
peared above.

3. Modular forms and mock modular forms

In this section, we review the definitions of modular and mock modular
forms for SL2(Z) and their vector-valued counterparts. We also introduce
the notion of mock cusp forms.

3.1. Modular, mock modular and mock cusp forms

We start with basic definitions of modular forms. We refer for further aspects
to textbooks such as [4, 25, 16]
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Definition. A modular form of weight k is a holomorphic function f : H →
C, which

1. transforms under all SL2(Z) matrices
(
a b
c d

)
as follows:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),(33)

2. and whose growth as τ → i∞ is such that

(34) lim
τ→i∞

(cτ + d)−kf

(
aτ + b

cτ + d

)
is bounded for all

(
a b
c d

)
∈ SL2(Z).

There are two generators of SL2(Z), namely T = ( 1 1
0 1 ) and S = ( 0 −1

1 0 ).
Under these transformations

f(τ + 1) = f(τ), f

(
−1

τ

)
= τkf(τ).(35)

Due to the T -transformation, f(τ) can be expanded as a Fourier series. This
series starts with a constant term a(0) as a result of the growth condition,

f(τ) =

∞∑
n=0

a(n) qn, q = e2πiτ .

One can allow for a non-trivial character ε(γ) for any γ ∈ SL2(Z) with
|ε(γ)| = 1. The transformations for the generators then read,

f(τ + 1) = ε(T ) f(τ),

f

(
−1

τ

)
= ε(S) τkf(τ).

Since S2 = (ST )3 = −I we have ε(S) = ε(T )−3.
A weakly holomorphic modular form is a weaker notion than a modular

form. It is a function f which satisfies Eq. (35), but is allowed to have poles
at the cusps i∞∪Q.

We next recall the notion of a cusp form:

Definition. A modular form f(τ) for SL2(Z) is a cusp form for which the
limit (34) vanishes for τ → i∞.
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As a result, the constant term a(0) of its Fourier series vanishes.

The space of modular forms is well-known to be finite dimensional for

fixed weight k. The Petersson inner product [66]

(36) 〈f, g〉 =
∫
H/SL2(Z)

dτ ∧ dτ̄

y2−k
f(τ) g(τ),

forms a natural inner product on the space of cusp forms. Moreover, 〈f, g〉
vanishes for f an Eisenstein series and g a cusp form.

The definitions of a modular form and cusp are readily extended from

the full modular group SL2(Z) to a congruence subgroup Γ ⊂ SL2(Z) [4,

25]. Another useful notion is a vector-valued modular form, as for example

discussed in [34].

Definition. With d ≥ 1, a d-dimensional vector-valued modular form of

weight k under SL2(Z) is a vector of holomorphic functions

(37) �f =

⎡⎢⎣ f0
...

fd−1

⎤⎥⎦ : H → Cd,

with the following properties:

1. The elements of the vector transform under the S and T transforma-

tions as

S : �f

(
−1

τ

)
= τk M(S)�f(τ),(38)

T : �f(τ + 1) = M(T )�f(τ),(39)

with M(S) and M(T ) ∈ GL(d,C), with norm of their determinant

equal to 1, | det(M(T ))| = | det(M(S))| = 1.

2. For each element fμ, μ = 0, . . . , d− 1, the limit (34) is bounded for all

matrices
(
a b
c d

)
∈ SL2(Z).

We note that M(T ) is diagonal in many cases. This notion is readily

extended to a vector-valued cusp form. The elements fμ of the vector �f are

modular forms for a congruence subgroup Γ ⊂ SL2(Z).

We next continue with the definition of mock modular form [77, 79, 78].

We first introduce a map on non-holomorphic functions. For a function g :
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H× H̄ → C and l ∈ R, we define the function g∗l : H× H̄ → C by:

g∗l (τ, τ̄) = −21−ki

∫ i∞

−τ̄

g(τ,−v)

(−i(v + τ))l
dv.(40)

For the right hand side to be well defined, we require that g satisfies the
following growth condition,

(41) lim
v̄→−i∞

|g(τ, v̄)| ≤ |C(τ)| e−K |Im(v)|,

for some weakly holomorphic function C : H → C, and K, l satisfying

(42) {K > 0 | l ∈ R}, or {K = 0 | l > 1}.

Assuming that g transforms under elements of
(
a b
c d

)
∈ SL2(Z) as

(43) g

(
aτ + b

cτ + d
,
au+ b

cu+ d

)
= (cτ + d)k(cu+ d)2−k+�g(τ, u),

for some k and , the function g∗k−� transforms as,
(44)

g∗k−�

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
=(cτ+d)k

(
g∗k−�(τ, τ̄)+21−ki

∫ i∞

d/c

g(τ,−v)

(−i(v + τ))k−�
dv

)
.

We then define following [79, 78]:

Definition. A mock modular form of weight k is a holomorphic q-series
f : H → C, such that its completion,

(45) f̂(τ, τ̄) := f(τ) + g∗k(τ, τ̄),

1. transforms as a modular form of weight k,
2. g∗k is the image under the map (40) of the complex conjugate of a

modular form with weight 2− k,
3. The limit (34) is bounded for f and all matrices

(
a b
c d

)
∈ SL2(Z).

Since g∗k(τ + 1, τ̄ + 1) = g∗k(τ, τ̄) by (44), the holomorphic part is also
periodic f(τ + 1) = f(τ), such that f has a Fourier expansion.

There are many variations to the above definitions. One variation is a
mixed mock modular form as for example studied in [21, 11]. A mixed mock
modular form is a function f as above but with g a product of a modular
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form of weight k and the complex conjugate of a modular form of weight
2− k +  for some k and , such that

(46) f̂ = f + g∗k−�.

Similarly, one can consider g which are sums of products.
Clearly, the function g is crucial information to characterize the mock

modular form f . It is called the shadow of f , and can be obtained by taking
a non-holomorphic derivative of f̂ ,

(47) g := yk−�∂τ̄ f̂ ,

with y = Im(τ). Thus the shadow is an element of M2−k+�(Γ) for some
group Γ ⊂ SL2(Z), that is to say the shadow is the complex conjugate of
a modular form of weight 2 − k + . For  = 0, Eq. (47) demonstrates that

f̂ is a harmonic Maass form [11], which are functions annihilated by the
hyperbolic Laplacian Δk for weight k,

(48) Δk := −y2
(

∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

As a result, f is the holomorphic part of a harmonic Maass form in this case.
A further interesting extension of mock modular forms are those of depth

r ≥ 1. Mock modular forms of depth 1 are the functions defined in the
previous definition and equation (45). The notion of mock modular forms of
depth r is defined iteratively for r ≥ 1 as follows [64, 11, 56]. To this end, we
introduce the vector spaces Mr

k(Γ) of mock modular forms of depth r ≥ 1,
with weight k for the group Γ ⊂ SL2(Z). We furthermore let M−1

k (Γ) = ∅,
and M0

k(Γ) = Mk(Γ), i.e. the space of standard modular forms of weight k
introduced in the beginning of the section. We furthermore introduce the
vector spaces M̂r

k of the non-holomorphic completions of the functions in
Mr

k(Γ). We then have the following definition:

Definition. A mock modular form of depth r and with weight k for the
group Γ ⊂ SL2(Z) is defined by the property that its shadow is an element

of M̂r−1
k ⊗M2−k+�.

For r > 1, these functions are typically not annihilated by Δk and are
therefore not examples of harmonic Maass forms.

We introduce next the notion of a mock cusp form.

Definition. A mock cusp form of depth r is a mock modular form f(τ) of
depth r such that the limit (34) vanishes for all elements of SL2(Z).
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Since f has a Fourier expansion, the constant term of the Fourier series
for τ → i∞ of a mock cusp form vanishes.

While for r = 0 this definition reduces to the classical notion of cusp
form, for r = 1, this definition is slightly weaker than the notion of Maass
cusp form, which requires that f̂ is square integrable on H/Γ. Indeed, the
function Sμ we will study in the next section is not square integrable on
H/Γ. A related property is that f may not have a Fourier expansion near
other cusps of H/Γ.

The notion of mock modular form and mock cusp form are readily ex-
tended to vector-valued mock modular forms and vector-valued mock cusp
forms.

3.2. VW partition functions and (mock) modular forms

With the terminology developed in above, we can characterise the functions
appearing Section 2.2. It is well-known that the Dedekind eta function (18)
is a modular form of weight 1/2 with ε(T ) = e2πi/24 and ε(S) = ε(T )−3 =
e−2πi/8. Furthermore for μ = 0, 1, Θμ/2 are modular forms of weight 1/2 for

the congruence subgroup Γ0(4). The vector �Θ of the two functions,

(49) �Θ(τ) =

[
Θ0(τ)
Θ1/2(τ)

]
is a vector-valued modular form for SL2(Z).

The vector �f2 of the functions f2,μ, μ = 0, 1 (26),

(50) �f2(τ) =

[
f2,0(τ)
f2,1(τ)

]
,

is a vector-valued mock modular form of weight 3/2 and depth 1.
Moreover, the vector �f3 of the functions f3,μ, μ = 0, 1, 2 (31) is a vector-

valued mock modular form of weight 3 and depth 2 [56]. To further study
these functions, we first introduce the cubic theta series [9]

(51) b3,μ(τ) =
∑

k1,k2∈Z+μ/3

qk
2
1+k2

2+k1k2 .

The modular transformations of these functions are:

b3,μ

(
−1

τ

)
= − iτ√

3

2∑
ν=0

e−2πiμν/3b3,ν(τ),

b3,μ(τ + 1) = e2πiμ
2/3b3,μ(τ).

(52)
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We then form the 3-dimensional vector-valued modular form �m : H → C3,

�m =

⎡⎣m0

m1

m2

⎤⎦ =

⎡⎢⎢⎣
b33,0+2b33,1

9
b3,0b23,1

3
b3,0b23,1

3

⎤⎥⎥⎦ ,(53)

The transformations of mμ under the generators of SL2(Z) are given by,

mμ

(
−1

τ

)
=

iτ3√
3

2∑
ν=0

e−2πiνμ/3mν(τ),

mμ(τ + 1) = (−1)μeπiμ
2/3mμ(τ).

(54)

These transformations are identical to those of the completed mock modular

form f̂3,μ (30) obtained from SU(3) Vafa-Witten theory. There is no analog

of this type of purely holomorphic functions for SU(2), since a holomorphic

modular form with the same transformations as f̂2,μ does not exist [51].

The first few terms in the series expansion of mμ can be given by,

m0(τ) =
1

9
+ 8 q + 30 q2 + · · ·

m1(τ) = 3 q2/3 + 24 q5/3 + 51 q8/3 + · · ·
(55)

We can express mμ in terms of weight 3 Eisenstein series for Γ(3) [25], from

which we can derive the q-series of m0(τ) and m1(τ) explicitly as:

m0(τ) =
1

9
+

∑
n=0 mod 3

n>0

∑
d|n

χn,d d2qn/3,

m1(τ) =
∑

n=2 mod 3

∑
n

d
=1 mod 3

d∈Z

sgn(d) d2qn/3,
(56)

where, the character χn,d is given for n > 0 by,

(57) χn,d =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, if d = 1 mod 3, n/d = 0 mod 3,
1, if d = 2 mod 3, n/d = 0 mod 3,
1, if d = 0 mod 3, n/d = 1 mod 3,

−1, if d = 0 mod 3, n/d = 2 mod 3,
0, otherwise.
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As a result, the coefficient of qp/3 of m1(τ) with p a prime is given by p2−1.
The coefficients d0(p) of q

p of m0(τ) with p prime are of two types,

1. For p = 2 mod 3,

(58) d0(p) = 10p2 − 10,

2. For p = 1 mod 3,

(59) d0(p) = 8p2 + 8.

Having described �m, we can obtain an example �S of a vector-valued
mock cusp form of depth 2. Namely, we define �S as

(60) �S =
1

3
(�m− �f3).

The first terms in the q-series of S0 and S1 are:

S0(τ) = 3 q + 9 q2 + 21 q3 + · · · ,
S1(τ) = S2(τ) = q2/3 + 7 q5/3 + · · · .

(61)

The constant terms of Sμ thus vanish as for the classical cusp forms. More
terms are listed in Table 2 in Section 4.

From Eq. (32) and (54), it follows that the elements Sμ of �S transform
as

Sμ(−1/τ) =
iτ3√
3

2∑
ν=0

e−2πiμν/3

×

⎛⎝Sν(τ) +

√
3i

2
√
2π

∑
α=0,1

∫ i∞

0

f̂2,α(τ,−w)Θ 2ν+3α

6
(3w)

(−i(w + τ))3/2
dw

⎞⎠ ,

Sμ(τ + 1) = (−1)μeπiμ
2/3Sμ(τ).

(62)

Since

(63) lim
τ→∞

∫ i∞

0

f̂2,α(τ, w)Θ 2ν+3α

6
(3w)

(−i(w + τ)3/2)
dw = 0,

the limit (34) vanishes for Sμ. We thus confirm that Sμ are mock cusp forms
for the congruence subgroup Γ(3) ⊂ SL2(Z). It would be interesting to
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understand better the spaces of such functions, and for example define a
suitable inner product. The standard inner product (36) diverges for func-
tions such as Ŝμ(τ, τ̄), and a suitable regularization will need to be defined.
For different types of functions, such regularizations have been developed in
the literature before [41, 8, 10].

We have some interesting observations for the growth of the Fourier
coefficients of these functions. These are shown as plots in the next section.
In Section 5 we briefly discuss the behavior of the growth of coefficients of
cusp forms and how they might change when the there is a non-holomorphic
piece in the modular transformation.

4. Numerical experiments for the coefficients of VW
partition functions

This section carries out varies numerical experiments on the coefficients of
f2,μ, f3,μ, mμ and Sμ. Especially for Sμ we find some intriguing pattern,
namely the growth of the coefficients for prime powers of q appear to be
well approximated by a constant times p3/2.

4.1. Coefficients for N = 2

We study in this subsection the coefficients of f2,μ = 3Gμ. Since the coef-
ficients of Gμ are the well-known Hurwitz class numbers, we will focus on
these. We define for μ = 0, 1:

(64) Gμ(τ) =
∑

n∈Z−μ

4

aμ(n)q
n.

We first tabulate the coefficients for of Gμ up to n = 45 in Table 1.
We observe from the table that the behavior of the coefficients as func-

tion of n is not monotonic, but that the coefficients grow on average. To get
a better impression, we plot the coefficients up to n = 400 in Figure 1. The
distribution of the coefficients appears chaotic and highly scattered, but on
average the coefficients appear to grow as a power law.

Now in many cases, such as Eisenstein series of integer weight, the growth
of the coefficients is more regular for prime numbers. This we for example
encountered for the functions mμ (56). We therefore present plots for aμ(p)
as function of prime p in Figures 2 and 3.
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Table 1: First few coefficients aμ(n) = H(4n − μ) of the class number gen-
erating functions Gμ (93)

n a0(n) a1(n− 1/4)

0 − 1
12

0
1 1

2
1
3

2 1 1
3 4

3
1

4 3
2

2
5 2 1
6 2 3
7 2 4

3

8 3 3
9 5

2
2

10 2 4
11 4 1
12 10

3
5

13 2 2
14 4 4
15 4 3
16 7

2
5

17 4 1
18 3 7
19 4 7

3

20 6 5
21 4 3
22 2 6
23 6 2
24 6 8
25 5

2
3

26 6 5
27 16

3
3

28 4 8
29 6 2
30 4 10
31 6 2
32 7 5
33 4 5
34 4 8
35 8 3
36 15

2
10

37 2 7
3

38 6 7
39 8 4
40 6 10
41 8 1
42 4 11
43 4 5
44 10 7
45 6 5
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Figure 1: Plot of the coefficients aμ(n) = H(4n− μ) of Gμ as function of n.
The red dots represent the coefficients a0(n), while the green ones represent
the coefficients a1(n− 1/4).

Figure 2: Diagram with the coefficients a0(p) as function of prime p.

4.2. Coefficients for N = 3

We proceed in this subsection with partition functions for SU(3), and com-

pare our findings with those for N = 2. We define the coefficients cμ(n),
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Figure 3: Diagram with the coefficients a1(p/4) as function for prime p of
type 4n+ 3.

dμ(n) and sμ(n) through

f3,μ(τ) =
∑

n∈Z−μ

3

cμ(n) q
n,

mμ(τ) =
∑

n∈Z−μ

3

dμ(n) q
n,

Sμ(τ) =
∑

n∈Z−μ

3

sμ(n) q
n.

(65)

First we list the coefficients of f3,μ and Sμ in Table 2. Since Sμ is a mock

cusp form, we expect that the coefficients are smaller than those of f3,μ for

n � 1. We observe from the table that this is indeed the case.

To get a better impression of the growth, we plot the coefficients of the

functions for a larger range, starting with f0 in Figure 4. We observe from the

table that for the vast majority of the coefficients their magnitude alternates

between even and odd n. More precisely, for μ = 0 and 16 ≤ 2n ≤ 300,

(66) c0(2n) < c0(2n− 1), c0(2n) < c0(2n+ 1),

we find only two exceptions, namely c(236) = 397 644 > 393 048 = c(235)

and c(296) = 629 850 > 624 582 = c(295).
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Table 2: First few coefficients of the mock modular forms f3,μ and the mock
cusp forms Sμ

n c0(n) c1(n− 1
3
) s0(n) s1(n− 1

3
)

0 1
9

0 0 0
1 −1 0 3 1
2 3 3 9 7
3 17 15 21 12
4 41 36 21 28
5 78 69 54 27
6 120 114 42 58
7 193 165 69 49
8 240 246 90 94
9 359 303 123 69
10 414 432 54 136
11 579 492 207 109
12 626 669 138 177
13 856 726 168 120
14 906 975 198 235
15 1194 999 258 187
16 1172 1332 156 292
17 1638 1338 414 155
18 1569 1743 207 355
19 1987 1716 303 278
20 2040 2226 360 418
21 2578 2130 474 252
22 2340 2775 180 435
23 3255 2625 675 373
24 2940 3354 414 562
25 3665 3129 381 327
26 3642 4041 486 653
27 4490 3735 690 395
28 3940 4752 420 712
29 5484 4317 972 411
30 4734 5532 342 796
31 5815 5070 627 598
32 5814 6393 792 765
33 7014 5694 942 553
34 5832 7317 360 961
35 8274 6582 1242 696
36 7115 8277 783 1057
37 8566 7272 798 456
38 8322 9345 846 1141
39 10018 8325 1194 865
40 8334 10425 486 1325
41 11778 9087 1674 693
42 9708 11541 864 1161
43 11785 10281 1005 942
44 11604 12855 1332 1435
45 13614 11058 1302 804
46 10998 14175 558 1531
47 15843 12327 2079 1091
48 13178 15486 1074 1638
49 15531 13263 1359 909
50 14817 16959 1071 1747
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Figure 4: Green dots represent the coefficients c0(n) for odd n while the red
ones represent the coefficients c0(n) for even n.

We therefore distinguish the even and odd coefficients with red and green
respectively. We observe from the plot in Figure 4 that the even and odd
coefficients remain separate. More precisely, it appears that for a sufficiently
large n, there exists a monotic function w(x) such that

(67) c0(2n) < w(n) < c0(2n+ 1).

This behavior is not unique to f3,0. Although not as strict, Figure 5 demon-
strates a similar behavior for the coefficients of m0.

We have seen in Section 3.2 that the growth of the coefficients of mμ for
prime powers of q has a simple form. See Eqs. (58) and (59). This is a general
property of Eisenstein series. Let us therefore plot the prime coefficients
d0(p) for m0, and c0(p) for f3,0. We observe that the plot is far less scattered
than the original plots for both m0 and f3,0. We also observe that the growth
in this range is roughly comparable. We will derive an upper bound for the
growth in the next section, as well as discuss an average.

Next we consider the coefficients of the mock cusp form, S0(τ) =
1
3(m0−

f3,0), which are possibly of the most interest. Its coefficients sμ(n) are plotted
in Figure 7, again distinguishing even and odd n. We observe that coefficients
are more scattered than the coefficients of f0 and m0, and that the two sets
of coefficients are not separated as was the case for f3,0 or m0. Still, the
coefficients of odd powers of q are typically larger than those of even powers
of q.
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Figure 5: Green dots represent the coefficients d0(n) for odd n while the red
ones represent the coefficients d0(n) for even n.

Figure 6: Blue dots represent the coefficients d0(p) of m0(τ), and the pink
ones represent the coefficients c0(p) of f3,0(τ) for prime p.

As mentioned above, the behavior of the coefficients is in general better
for the prime coefficients. We plot the coefficients s0(p) for prime p in Fig-
ure 8. Here we do see a striking behavior, namely that these points appear
to lie on a smooth curve. Such a regular curve is not generally the case for
classical cusp forms, such as η24.
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Figure 7: Green dots represent the coefficients s0(n) for odd n while the red
ones represent the coefficients s0(n) for even n.

Figure 8: Plot of coefficients s0(p) for prime p. Note that from 11 up to 199
all twin primes show the following behavior, if p and p+ 2 are twin primes
then s0(p) > s0(p+ 2).

We make a curve fit in Figure 9. The least square fit in the last plot
(except for p = 3), suggests that the coefficients grow as s0(p) ∼ p3/2.
Naturally, it is desirable to prove this growth. In Section 5, we give an
upper bound, which is unfortunately much weaker.

Next we repeat the above plots for the functions with μ = 1. Figure 10
plots the coefficient c1(n + 2/3) of f3,1. Similarly to Eq. (66), we checked
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Figure 9: Least square fits for s0(p) with primes p of the form 3n ± 1. The
red dots represent the coefficient s0(p) for prime p = 3n−1 and the grey line
is given by 6.75467x3/2, the green dots represent s0(p) for prime p = 3n+1
and the dashed line is given by 3.57843x3/2.

Figure 10: Plot of the coefficients c1(n + 2/3) of f3,1. The numbers on the
horizontal axis are 3n+ 2 for integer n ≤ 200.

that in the window 18 ≤ 2n ≤ 300,

c1(2n+ 2/3) < c1(2n− 1/3), c1(2n+ 2/3) < c1(2n+ 5/3).(68)

Similarly to the plot in Figure 4, we again observe that the points lie in
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Figure 11: Plot of the coefficients d1(n + 2/3) of m1. The numbers on the
horizontal axis are 3n+ 2 for n ≤ 200.

the neighborhood of a few smooth curves, three in this case. However, the
coefficients for f3,1 appear to follow the curves more closely than for f3,0.

We continue with the plot for the coefficients d1(n+ 2/3) of m1 in Fig-
ure 11. The plot is quite similar to Figures 5 and 10. The curves are quadratic
since for 3n+2 equal to a prime p, d1(p/3) = p2 − 1. The prime coefficients
of c1(p/3) of f3,1 are also well approximated by a parabolic curve.

Lastly, we consider the coefficients s1(n+2/3) of the mock cusp form S1.
We plot in Figure 12 the coefficients s1(n + 2/3), and the least square fit
for the prime coefficients s1(p/3). Similar to the coefficients of S0, the least
square fit for p ≤ 600 suggests that the coefficients grow as ∼ p3/2. Based on
this we conjecture that the leading term of sμ(n) is O(n3/2). This is notably
larger than Deligne’s bound ∼ n1 for the coefficients of proper cusp forms
of weight 3. Thus the modified transformation of Sμ involving the period
integral must have an important impact on the growth of the coefficients.

5. Asymptotics of Fourier coefficients

This section reviews the calculation of upper bounds on the growth of Fourier
coefficients of modular forms and cusp forms using the saddle point method.
We will then generalize this analysis to mock modular forms and cusp forms,
in particular to the function f2,μ, f3,μ and Sμ.

It is well known that the saddle point method (or Hecke bound) typically
gives a very large upper bound, that is to say order nk for modular forms



Numerical experiments 969

Figure 12: Plot of coefficients s1(n + 2/3) with the numbers 3n + 2 on the
horizontal axis. The least square fit for the prime coefficients s1(p/3) is given
by 0.993519x3/2.

of weight k, whereas the correct bound is order nk−1. For cusp forms the
saddle point method gives nk/2. On the other hand, the sharper Ramanujan-
Petersson conjecture, proved by Deligne in [23, 24], states that the Fourier
coefficients a(n) of a normalized cuspidal Hecke eigenform with weight k for
SL2(Z) are bounded by

(69) |a(n)| < σ0(n)n
k−1

2 ,

where σ0(n) is the number of divisors of n. Thus for prime numbers the
bound is given by

|a(p)| < 2p
k−1

2 .

Similarly, we do find that the saddle point analysis for mock modular
and mock cusp forms gives rise to larger exponents than those observed
in the previous section. We observe furthermore that the modified modular
transformations involving the iterated period integral increases the exponent
in the bound.

5.1. Bound for coefficients of modular forms and cusp forms

We review in this subsection the elementary saddle point analysis to deter-
mine a rough bound for modular forms. See for discussions in textbooks for
example [4, Section 6.15] and [16, page 20]. Since we know the bound is not
sharp, we will not be careful with errors to the bound.
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Modular forms We first discuss the case of modular forms. This is rele-
vant for the growth of the coefficients of fX

N for (simply connected) algebraic
surfaces with b+2 > 1 discussed in Section 2.2.

Let f(τ) =
∑

n≥0 a(n)q
n with n ∈ N0 and a(0) �= 0 be a modular form

of weight k. The transformation of f under S is given by,

f

(
−1

τ

)
= ε(S) τk f(τ),(70)

with ε(S) a phase as discussed in Section 3.
The n-th Fourier coefficient is by definition

(71) a(n) =

∫ 1

0
f(τ) e−2πinτ dτ.

Its magnitude is therefore bounded by

|a(n)| ≤
∫ 1

0
|f(τ) e−2πinτ | dτ

=

∫ 1

0

∣∣∣∣f(
−1

τ

)
τ−ke−2πinτ

∣∣∣∣ dτ.(72)

We then apply the saddle point method to the integrand. We assume that
Im(−1/τ) � 0 at the saddle point. Then the higher order terms in the
Fourier expansion of f are exponentially suppressed compared to the con-
stant term, a(0). Neglecting these non-constant terms, one finds for the
saddle point τ = τs,

− k

τs
= 2πin, τs =

ik

2πn
.(73)

Thus the assumption is indeed satisfied for sufficiently large n.
Substitution of τs in (72) gives as upper bound for a(n),

|a(n)| < cnk.(74)

for the constant c = |a(0)|
(
2πe
k

)k
. This is clearly not a sharp bound, since we

know from the discussion on Eisenstein series that the bound for modular
forms is proportional to pk−1 for prime coefficients a(p).
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Cusp forms We use the same approach to bound the coefficients of a cusp
form

h(τ) =
∑

n≥Δ>0

a(n)qn,

of weight k, gives c nk/2 for some constant c for the bound of its Fourier
coefficients. We assume the following transformation property for h(τ) un-
der S,

h

(
−1

τ

)
= ε(S) τkh(τ),(75)

for a phase ε(S). Assuming again that Im(−1/τ) � 0 at the saddle point,
we can approximate S(−1/τ) by its first non-vanishing term a(Δ) e−2πiΔ/τ .
We then have

|a(n)| ≤
∫ 1

0

∣∣f(τ)e−2πinτ
∣∣ dτ ≈

∫ 1

0

∣∣∣τ−ka(Δ) e−2πiΔ/τe−2πinτ
∣∣∣ dτ.(76)

Extremization of −k log(τ)− 2πiΔ/τ − 2πinτ , gives for the saddle point,

τs =
−k ±

√
k2 − 16π2Δn

4πin
=

−k ± i
√
δn

4πin
,(77)

where we introduced δn = 16π2Δn− k2. In the regime of interest i.e., large
n, δn > 0, and the assumption Im(−1/τs) � 0 is satisfied. We have for the
magnitude

(78) |τs|2 =
Δ

n
.

Substitution of τs in the exponents gives,

(79) e−2πiΔ/τse−2πinτs = e∓iδn .

This has unit magnitude and thus does not contribute to the magnitude of
the integrand. We therefore find for the bound,

(80) |a(n)| ≤ c nk/2,

with c = Δ−k/2|a(Δ)|. This bound is known as the Hecke bound. We note
that this bound is less accurate than the bound proven by Deligne (69).
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5.2. Bound for coefficients of mock cusp forms

Next we proceed with the mock cusp form Sμ (60). From Eq. (62), we have
the the following relations under the S-transformation

S0(τ) =
−iτ−3

√
3

(S0(−1/τ) + 2S1(−1/τ) + J0(−1/τ)) ,

S1(τ) =
−iτ−3

√
3

(S0(−1/τ)− S1(−1/τ) + J1(−1/τ)) ,

(81)

where,

J0(τ) =

√
3i

2
√
2π

2∑
ν=0

1∑
α=0

∫ i∞

0

f̂2,α(τ, w)Θ 2ν+3α

6
(3w)

(−i(w + τ))3/2
dw,

J1(τ) =

√
3i

2
√
2π

2∑
ν=0

1∑
α=0

e−2πiν/3

∫ i∞

0

f̂2,α(τ, w)Θ 2ν+3α

6
(3w)

(−i(w + τ))3/2
dw.

(82)

Similarly to the discussion above, we have

|sμ(n)| ≤
∫ 1

0

∣∣Sμ(τ) e
−2πinτ

∣∣ dτ.(83)

We then have to determine the leading contribution among the terms on the
right hand side of (81). For large Im(−1/τ), the leading terms of Sμ(−1/τ)
follow from (61). These are exponentially decreasing. To compare these with
Jμ, we recall Lemma 3.1 in [13], (see also [12])∫ ∞

0

Θα/2(iz)

(z + x)3/2
dz =

2√
x
δα,0 +O(x−3/2),(84)

with the leading term coming from the constant term of Θ0. As a result, we
have

Jμ(τ) = −
√
3i

2
√
2π

1

4

2√
−iτ

+O(τ−1).(85)

Thus the contribution from Jμ(−1/τ) provides the leading term to the right
hand side in (81). We thus have for the coefficients

(86) |sμ(n)| ≤
1

4
√
2π

∫ 1

0

∣∣∣τ−5/2e−2πinτ
∣∣∣ dτ.
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Using the saddle point method, we then arrive at

(87) |sμ(n)| ≤ c n5/2,

with c = 1
4
√
2π
(4πe/5)5/2. This upper bound agrees with the numerical ex-

periments, in the sense that the numerics suggest a growth proportional to
n3/2, which is clearly much smaller than n5/2. We note that for a classical
cusp form terms like Jμ are absent in the modular transformation, and the
saddle point method (87) gives n3/2 for the growth.

5.3. Average growth for theta series

If more is known about the arithmetic nature of the coefficients, sharper
bounds can often be obtained than the saddle point method. This is for
example the case of Eisenstein series and cusp forms. Often the modular
forms can also be expressed as lattice sum or theta series.

We give a heuristic argument (probably well-known to many) that the
leading term of the average growth of the coefficients of a theta series equals
that of Eisenstein series. This should of course be the case since all theta
series which transform as modular forms can be expressed as linear com-
binations of Eisenstein series. To make the argument, let us consider a d-
dimensional positive definite lattice L with integral quadratic form Q. The
associated theta series ΘL(τ) and coefficients d(n) are defined through,

ΘL(τ) =
∑
k∈L

qQ(k)/2

=
∑
n≥0

d(n) qn.
(88)

We also introduce the cumulative sum D(N) as,

(89) D(N) =
∑

0≤n≤N

d(n),

such that

(90) d(N) = D(N)−D(N − 1).

For a theta series, D(N) is a count of lattice points and thus scales
as the volume of the domain in L, whose lattice points are enumerated by
D(N). The volume scales on average as |k|d = |Q(k)|d/2 = Nd/2, such that
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d(N) = D(N) − D(N − 1) scales as N (d−2)/2. Since the weight k of ΘL is
k = d/2, we find for the leading term

(91) d(n) ≈ C nk−1.

We can use the same approximation for indefinite theta series, which
involve a sum over a positive definite cone in an indefinite lattice.2 The class
number generating function Gμ can be expressed in this form. Moreover, the
expression of Kool [48] for f3,1 are of this form. This matches our observation
that the coefficients of f3,μ grow as n2, similar to the Eisenstein series of
weight 3. This rough estimate for the coefficients of f3,μ is even sharper
than the bound for the coefficients of Sμ using the saddle point method
(87).

Appendix A. Explicit expressions for fN,μ for N = 2, 3

Explicit expressions for generating functions of class numbers have been
determined starting with work of Kronecker, Mordell and Watson [49, 61,
72]. The generating function G reads:

(92) G(τ) =
∑
n≥0

H(n) qn = − 1

2Θ0(τ + 1/2)

∑
n∈Z

n(−1)nqn
2

1 + q2n
− 1

12
Θ3

0(τ),

where Θα as in (27). Generating functions of the arithmetic progressions 0, 3
mod 4 read

G1(τ) =
∑
n≥0

H(4n+ 3) qn+3/4

= − q−1/4

2Θ0(τ)

∑
n∈Z

(2n− 1)qn
2

1− q2n−1
+

1

6
Θ3

1/2(τ),

G0(τ) =
∑
n≥0

H(4n) qn

= G(τ/4)−G1(τ),

The explicit expressions for f3,μ as expansions in q series were given in
[56], which are quoted as follows:

2It is important that the boundaries of the positive definite cone are strictly
positive definite (except the tip at the origin of the lattice). Otherwise, the lattice
sum may not converge absolutely [79].
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b3,0(τ)f3,0(τ) =
13

240
+

E2(τ)

24
+

E2(τ)
2

72
+

E4(τ)

720

(93)

− 9

2

∑
k∈Z

k2q3k
2

+
∑

k1,k2∈Z
(k1 + 2k2)

2qk
2
1+k2

2+k1k2

+
∑
k∈Z
k 
=0

S1,0(k, q) q
3k2

+
∑

k1,k2∈Z
2k1+k2 
=0
k2−k1 
=0

S2(2k1 + k2, k2 − k1, q) q
k2
1+k2

2+k1k2+2k1+k2 ,

b3,0(τ)f3,1(τ) =
∑
k∈Z

S1,1(k, q) q
3k2−1/3

(94)

+
∑

k1,k2∈Z
2k1+k2 
=1
k2−k1 
=0

S2(2k1+k2−1, k2 − k1, q) q
k2
1+k2

2+k1k2+2k1+k2−1/3,

where we have,

S1,μ(k, q) =
(E2(τ)− 1)(k − μ+ 1)

2(1− q3k−μ)
+

9(k − μ)2 + 33(k − μ) + 31− E2(τ)

2(1− q3k−μ)2

− 15(k − μ) + 34

(1− qk−μ)3
+

19

(1− q3k−μ)4
,

S2(a, b, q) =
4qb

(1− qa)(1− qb)3
+

4qa

(1− qb)(1− qa)3
+

4

(1− qa)2(1− qb)2

− 2qb(a+ b+ 1)

(1− qa)(1− qb)2
− 2qa(a+ b+ 1)

(1− qb)(1− qa)2
+

(a+ b− 2)2 − 8

(1− qa)(1− qb)
.

(95)

The blow-up formula provides relations among different representations for
the q-series of f3,μ [14].

The Eisenstein series E2 and E4 are given by,

(96) E2(τ) = 1− 24

∞∑
n=1

σ1(n)q
n, E4(τ) = 1 + 240

∞∑
n=1

σ3(n)q
n

with σk(n) =
∑

d|n d
k.
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