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By exploiting new mathematical relations between Pandharipande-
Thomas (PT) invariants, closely related to Gopakumar-Vafa (GV)
invariants, and rank 0 Donaldson-Thomas (DT) invariants count-
ing D4-D2-D0 BPS bound states, we rigorously compute the first
few terms in the generating series of Abelian D4-D2-D0 indices
for compact one-parameter Calabi-Yau threefolds of hypergeomet-
ric type. In all cases where GV invariants can be computed to
sufficiently high genus, we find striking confirmation that the gen-
erating series is modular, and predict infinite series of Abelian D4-
D2-D0 indices. Conversely, we use these results to provide new con-
straints for the direct integration method, which allows to compute
GV invariants (and therefore the topological string partition func-
tion) to higher genus than hitherto possible. The triangle of rela-
tions between GV/PT/DT invariants is powered by a new explicit
formula relating PT and rank 0 DT invariants, which is proven in
an Appendix by the second named author. As a corollary, we ob-
tain rigorous Castelnuovo-type bounds for PT and GV invariants
for CY threefolds with Picard rank one.
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1. Introduction

More than 25 years after Strominger and Vafa’s celebrated breakthrough [1],
the precision counting of BPS black hole microstates in string vacua with
N = 2 supersymmetry in 4 dimensions remains an outstanding challenge
at the frontier of theoretical physics and mathematics. Unlike in cases with
higher supersymmetry, the index Ωz(γ) counting BPS states with fixed elec-
tromagnetic charge γ has an intricate chamber structure with respect to the
moduli z specifying the internal manifold, while that moduli space is itself
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subject to complicated quantum corrections. As a result, the indices Ωz(γ)
are almost never known exactly.

For type IIA strings compactified on a Calabi-Yau (CY) threefold Y,
the proper mathematical framework involves the derived category of co-
herent sheaves C = DbCohY, the associated space of Bridgeland stability
conditions S = Stab C and the Donaldson-Thomas (DT) invariants Ωσ(γ)
counting semi-stable objects in C with charge γ for a stability condition
σ = (Z,A) ∈ S, where Z is a central charge function and A a certain
Abelian subcategory of C locally determined by Z. While physics (or rather
mirror symmetry) selects a particular slice Π ⊂ S where Z is a computable
function of the (complexified) Kähler moduli z ∈ MK , the DT invariants
Ωσ(γ) are in principle well-defined in the larger space S. In cases where
Ωσ(γ) can be shown to vanish at some particular point σ ∈ S (which need
not belong to the physical slice Π), it then becomes possible to determine it
elsewhere using the universal wall-crossing formulae of [2, 3].

This strategy has been pursued in a recent series of mathematical
works [4, 5, 6, 7], which culminated in explicit formulae [8] relating rank 0
DT invariants, counting D4-D2-D0 bound states, to Pandharipande-Thomas
(PT) invariants, counting D6-D2-D0 bound states with one unit of D6-brane
charge. These rigorous results depend on a conjectural inequality which lies
at the heart of the construction of stability conditions on CY threefolds
[9, 10], and is widely believed to hold in general but proven only in a hand-
ful of cases. PT invariants are in turn related to Gopakumar-Vafa (GV)
invariants entering the A-model topological string partition function Ztop

on Y [11], and are in principle computable by integrating the holomorphic
anomaly equations satisfied by Ztop, a procedure sometimes called ‘direct
integration’ [12, 13, 14]. These relations between D4-D2-D0 indices and topo-
logical strings are in the spirit of the OSV conjecture [15], and in fact imply
a special case of the latter [16, 4, 8].

On the other hand, the fact that D4-D2-D0 bound states in type IIA
string theory lift to M5-branes wrapped on a divisor D ⊂ Y times a circle
strongly suggests that suitable generating series of rank 0 DT invariants
should exhibit modular properties [17]. Specifically, in the simplest case of
a single M5-brane wrapped on an ample divisor D, the corresponding series
of rank 0 DT invariants, which we call Abelian D4-D2-D0 indices, should
transform as a vector-valued modular form, arising from the theta-series
decomposition of the elliptic genus of the (0, 4) superconformal field theory
obtained by reducing the M5-brane along D [18, 19, 20, 21]. More generally,
for a reducible divisor the generating series should transform as a vector-
valued mock modular form of higher depth, with a fixed modular anomaly
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[22, 23, 24] (see [25, 26, 27, 28] for related work). Since the space of such
vector-valued (mock) modular forms is finite-dimensional, this opens up the
possibility of computing infinite families of D4-D2-D0 indices, provided the
singular terms in the generating series (also known as polar terms) can be
determined independently.

This approach was applied long ago for a few CY threefolds Y with
b2(Y) = 1 in [19, 20, 29, 30]. It was extended recently in [31] to the full list of
13 smooth complete intersections in weighted projected space (the so-called
hypergeometric CY threefolds), see Table 1. Unfortunately, the analysis in
[31] was based on an educated guess for the coefficients of the polar terms,
which reproduced earlier results in [19, 20] and provided plausible answers
for 5 additional models, but failed to produce a modular form for the last 3
models in Table 1. Although a strategy to compute non-Abelian D4-D2-D0
indices was spelled out, it was eventually inconclusive, again due to lack of
control on the polar coefficients.

In this work, we revisit the analysis in [31] in light of the recent math-
ematical results in [8]. More specifically, we exploit a new and powerful
explicit formula (4.12) relating PT and rank 0 DT invariants, which is
proven by one of the authors in Appendix A of this paper, and depicted
by the horizontal arrow at the bottom of Figure 1. Among other applica-
tions, this formula allows to prove rigorous Castelnuovo-type bounds for PT

and GV invariants, and determines the GV invariants GV
(g)
Q for maximal

genus g = gmax(Q), assuming some congruence condition on the degree Q.
Along with various optimizations of the computer implementation, this al-
lows us to push the direct integration method of [13] to high genus. By

Gopakumar-Vafa

invariants GV
(g)
Q

• Count 5d BPS particles

• Determine Ψtop

• Vanish unless g ≤ gC(Q)

Pandharipande-Thomas
invariants PT(Q,n)

• Count D6-D2-D0 bound states

• Stable pairs OY
s→ F

• Closely related to ideal sheaves

• Vanish unless n ≥ 1− gC(Q)

Rank 0 DT-invariants Ωr,μ(q̂0)

• Count D4-D2-D0 bound states
• Gieseker-semistable sheaves
• Vanish unless q̂0 ≤ r

24χ(D)
• The generating series is mock modular

of depth r − 1

Wall crossing
(r=1: Theorem 1)

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration method for Ψtop

Figure 1: The triangle of relations between GV/PT/DT invariants.
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Table 1: Relevant data for the 13 hypergeometric CY threefolds. The second
to fifth columns indicate the Euler number of Y, the self-intersection κ = H3

of the generator of PicY, the second Chern class c2 = c2(TY).H and the
holomorphic Euler characteristic χD = χ(OD) of the primitive divisor D dual
to H (not to be confused with its topological Euler characteristic χ(D)).
The columns np

1 and nc
1 indicate the number of polar terms and modular

constraints on the generating series of Abelian D4-D2-D0 invariants, taken
from [31]. The columns (ai) and “type” indicate the local exponents in the
Picard-Fuchs equation and the resulting degeneration type at z = ∞ in the
notation of [33]. The column ginteg and gmod indicate the maximal genus

for which GV invariants GV
(g)
Q can be determined by the direct integration

method, either using only the usual regularity conditions and the expression
(3.30) for GV invariants saturating the bound g ≤ gmax(Q) for Q = 0
mod κ, or also including GV invariants predicted by the modular series
of Abelian D4-D2-D0 indices. The column gavail indicates the genus up to
which complete tables of GV invariants are currently known. For updates
check [32]

Y χY κ c2 χD np
1 nc

1 (ai) type ginteg gmod gavail
X5(1

5) −200 5 50 5 7 0 ( 15 ,
2
5 ,

3
5 ,

4
5 ) F 53 69 64

X6(1
4, 2) −204 3 42 4 4 0 ( 16 ,

2
6 ,

4
6 ,

5
6 ) F 48 66 48

X8(1
4, 4) −296 2 44 4 4 0 ( 18 ,

3
8 ,

5
8 ,

7
8 ) F 60 84 64

X10(1
3, 2, 5) −288 1 34 3 2 0 ( 1

10 ,
3
10 ,

7
10 ,

9
10 ) F 50 70 68

X4,3(1
5, 2) −156 6 48 5 9 0 ( 14 ,

1
3 ,

2
3 ,

3
4 ) F 20 24 24

X6,4(1
3, 22, 3) −156 2 32 3 3 0 ( 16 ,

1
4 ,

3
4 ,

5
6 ) F 14 17 17

X3,3(1
6) −144 9 54 6 14 1 ( 13 ,

1
3 ,

2
3 ,

2
3 ) K 29 33 33

X4,4(1
4, 22) −144 4 40 4 6 1 ( 14 ,

1
4 ,

3
4 ,

3
4 ) K 26 34 34

X6,6(1
2, 22, 32) −120 1 22 2 1 0 ( 16 ,

1
6 ,

5
6 ,

5
6 ) K 18 21 21

X6,2(1
5, 3) −256 4 52 5 7 0 ( 16 ,

1
2 ,

1
2 ,

5
6 ) C 63 84 49

X4,2(1
6) −176 8 56 6 15 1 ( 14 ,

1
2 ,

1
2 ,

3
4 ) C 50 64 50

X3,2,2(1
7) −144 12 60 7 21 1 ( 13 ,

1
2 ,

1
2 ,

2
3 ) C 14 ? 14

X2,2,2,2(1
8) −128 16 64 8 33 3 ( 12 ,

1
2 ,

1
2 ,

1
2 ) M 17 ? 32

combining the formula (4.12) with these results for GV invariants, we are
able to rigorously compute all polar terms and a large number of non-polar
terms for most of the 13 hypergeometric CY threefolds, and find striking
confirmations of the modularity of the corresponding generating series (as
well as supporting evidence for the validity of the BMT inequality in those
models where it is not yet known to hold). Expanding these generating series
to arbitrary order, we predict an infinite set of Abelian D4-D2-D0 indices.
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Turning the logic around and assuming that the generating series of
Abelian D4-D2-D0 indices is indeed the one dictated by modularity, we

predict infinite series of GV invariants GV
(g)
Q lying at finite distance from the

Castelnuovo bound g = gC(Q). This in turn provides additional boundary
conditions for the direct integration method, which in principle allows us
to push it beyond the maximal genus (indicated as ginteg in Table 1) at
which the leading behaviour at special points in the moduli space and the
Castelnuovo vanishing conditions no longer suffice to fix the holomorphic
ambiguities. The maximal genus attainable using these additional boundary
conditions is indicated in the column gmod in Table 1. The updated data are
available at [32].

More specifically, we find the generating series of D4-D2-D0 indices for
11 out of 13 models listed in Table 1. For 5 models, namely X10, X4,3,
X6,2, X6,4 and X4,2, our results imply that the polar terms differ from the
naive Ansatz of [31] (in particular, the result for X10 disagrees with [20]
but confirms the proposal in [30]). In all these cases, we find spectacular
confirmation that the generating series is modular. For the last 2 models in
this Table, namely X3,2,2 and X2,2,2,2, we are not yet able to uniquely fix the
generating series due to our limited knowledge of GV invariants for these
models.

The outline of this work is as follows. In §2, we give a rather exten-
sive introduction to the main mathematical concepts which underlie this
work, including the space of Bridgeland stability conditions on the derived
category of coherent sheaves C = DbCohY and the associated generalized
DT invariants. We also introduce the family of weak stability conditions
νb,w, which plays a central role in relating rank 0 DT invariants and PT
invariants, and spell out the expected modular properties of generating se-
ries of Abelian D4-D2-D0 indices. In §3, we recall the relation between PT
invariants and GV invariants, and explain how the latter can be computed
using the direct integration method. We further give a heuristic computa-
tion of GV invariants for maximal genus g = gmax(Q) and submaximal genus
g = gmax(Q)− 1, which is confirmed in §4.2 as a consequence of Theorem 1
in Appendix §A. In §4, we explain the main results of Appendix A in more
physical terms, starting in §4.1 with Theorem 4 which expresses D4-D2-D0
indices as contributions of D6-D6-bound states, but whose applicability is
limited to the most polar terms, and continuing in §4.2 with Theorem 1,
which is less transparent physically but of much wider applicability. In §5
we use Theorem 1 to compute D4-D2-D0 indices and test modularity in three
representative models, namely X5, X10 and X4,2, leaving the details of other
models to Appendix B. Finally, in §6 we summarize our findings and discuss
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avenues for future research. Extensive tables of GV, PT and DT invariants
computed in the course of this project are available in Mathematica-readable
form at the website [32].

Glossary of invariants

For the reader’s convenience we summarize the notations for the various
types of enumerative invariants that appear in this work. More details will
be provided in the corresponding sections.

We generally denote by Ω•(γ) ∈ Q the rational Donaldson-Thomas in-
variants counting •-semistable objects of class γ defined as in [3], where •
denotes a (weak) stability condition or a limit thereof, and by Ω•(γ) the
(conjecturally integral) generalized Donaldson-Thomas invariants obtained
from Ω•(γ) via the ‘multicover formula’ (2.16). This applies to the following
invariants:

• Ωσ, with σ a general (weak) stability condition on C = DbCoh(Y),
introduced in §2.2;

• Ωb,w = Ωνb,w
, with νb,w the slope function (2.33) on the heart Ab;

• Ω∞ = lim
w→+∞

Ωb,w, introduced above (2.37);

• ΩH counting Gieseker-semistable sheaves with respect to an ample
class H, defined below (2.37);

• ΩΠ
z , the DT invariant along the Π-stability slice, defined in §2.4.

We deviate from this notation for the D4-D2-D0 index Ωr,μ(q̂0) introduced
in §2.6, which determines the rank 0 DT invariant ΩΠ

z (0, r, q1, q0) in the large
volume attractor chamber. In the special case of CY threefolds with Picard
group PicY = HZ, it coincides with the index ΩH(γ), see (2.54). In §2.7, we
also introduce lighter notations for rank ±1 DT invariants at large volume,

• Donaldson-Thomas invariants In,β = DT(β.H, n);
• Pandharipande-Thomas invariant Pn,β = PT(β.H, n).

As explained in §3.1, these invariants are closely related to Gromov-Witten

invariants GW
(g)
Q ∈ Q and Gopakumar-Vafa invariants GV

(g)
Q ∈ Z.

2. Preliminaries

In this section, we recall the basic definitions of the mathematical struc-
tures which we use in this work, emphasizing their physical interpretation.
In §2.1 we introduce the derived category of coherent sheaves C = DbCohY,
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which formalizes the notion of BPS states in type IIA string theory com-
pactified on a Calabi-Yau threefold Y. In §2.2 we recall the definition of
the space of Bridgeland stability conditions Stab C and the associated gen-
eralized Donaldson-Thomas invariants Ωσ(γ), which are the mathematical
counterpart of BPS indices. In §2.3 we review the mathematical construction
of Bridgeland stability conditions in an open set around the large volume
point. As an intermediate step, we introduce a two-parameter family of weak
stability conditions defined by the central charge (2.28) which will play a cen-
tral role in §4. In §2.4 we identify the physical slice of Π-stability conditions
inside Stab C. In §2.6, we introduce the rank 0 DT invariants counting D4-
D2-D0 bound states, and state the modular properties of generating series
of these invariants predicted by string theory arguments, restricting to the
Abelian case (one unit of D4-brane charge). Finally, in §2.7 we introduce the
rank 1 DT and PT invariants, DT(Q,n) and PT(Q,n), which count bound
states with ±1 unit of D6-brane charge at large volume. Their relation to
Gopakumar-Vafa invariants is deferred to §3.

After reading §2.1 where notations for charge vectors are introduced, a
reader uninterested in mathematical details may skip ahead to §2.5, where
we briefly summarize the necessary mathematical constructions. In the last
two subsections we introduce the main objects studied in this work, namely
the D4-D2-D0 indices and the rank 1 DT and PT invariants.

2.1. BPS branes and derived category of coherent sheaves

As explained in [34, 35, 36], BPS states in type IIA string theory compact-
ified on a Calabi-Yau (CY) threefold Y are identified with B-branes in the
A-twisted topological sigma model on Y. Mathematically, they are best un-
derstood as objects in the bounded derived category of coherent sheaves
C = DbCohY. Such an object is a bounded complex

E =
(
. . .

d−2

→ E−1 d−1

→ E0 d0

→ E1 d1

→ . . .
)
,(2.1)

where at each place k ∈ Z, Ek is a coherent sheaf on Y which vanishes for
all but a finite set of indices k, and dk : Ek → Ek+1 a morphism such that
dk+1dk = 0 for all k ∈ Z. Up to quasi-isomorphisms (which preserve the co-
homology of the complex and physically correspond to irrelevant boundary
deformations), the coherent sheaf Ek can be assumed to be a vector bundle
on Y, and is physically interpreted as a stack of wrapped D6-branes for k
even, respectively anti-D6-branes for k odd. The morphism dk is then inter-
preted as an open string tachyon field. More generally, the extension group
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Extn(E,E′) := Hom(E,E′[n]), where [n] is the translation functor mapping
E = (Ek, dk)k∈Z �→ E[n] = (Ek−n, dk−n)k∈Z, is interpreted physically as the
space of open strings of ghost number n.

Besides the grading by ghost number, the category C is also graded by
the numerical Grothendieck group K(C), which plays the role of the lattice
of electromagnetic charges. Using the Chern character map E �→ ch(E) =∑

k(−1)k ch(Ek), K(C) can be identified with the lattice Γ ⊂ Heven(Y,Q)
spanned by vectors v = (ch0, ch1, ch2, ch3) satisfying the quantization con-
ditions [3, Theorem 4.19]

ch0 ∈ H0(Y,Z), ch1 ∈ H2(Y,Z),

ch2−
1

2
ch21 ∈ H4(Y,Z), ch3+

1

2
c2(TY) ch1 ∈ H6(Y,Z).

(2.2)

The respective integer cohomology classes correspond physically to the D6,
D4, D2 and D0 brane charges. The lattice Γ is endowed with the integer
skew-symmetric pairing

(2.3) 〈ch(E), ch(E′)〉 :=
∫
Y

(chE′)∨ ch(E) Td(TY) ,

where ∨ acts as (−1)p on a form of degree 2p and Td(TY) = 1 + 1
12c2(TY)

is the Todd class of the tangent bundle. This pairing is skew-symmetric due
to Serre duality Extn(E,E′) = Ext3−n(E′, E), and integer valued by the
Grothendieck-Riemann-Roch (GRR) theorem, which identifies it with the
alternating sum of the dimensions

(2.4) χ(E′, E) :=
∑
n

(−1)n dimExtn(E′, E) = 〈ch(E), ch(E′)〉 .

Physically, (2.3) is interpreted as the Dirac-Schwinger-Zwanziger pairing be-
tween electromagnetic charge vectors. It is useful to introduce the Mukai
vector1

(2.5) γ(E) = ch(E)
√

Td(TY) ,

such that the pairing (2.3) takes the Darboux form
∫
Y
γ(E′)∨ γ(E). We shall

abuse notation and denote it by 〈v, v′〉 or 〈γ, γ′〉 interchangeably. We note
that both ch(E) and γ(E) change sign under the translation functor E �→

1Note that a different convention γ(E) = ch(E)∨
√
Td(TY) also appears in the

literature.
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E[1], corresponding to CPT symmetry in physics, which maps D-branes
to anti-D-branes. Instead, the transformation ch(E) �→ (chE)∨ follows by
taking the derived dual E �→ E∨, which is the physical counterpart of a
parity transformation.

In this paper, unless mentioned otherwise, we always assume that Y is
a smooth projective CY threefold Y with b2(Y) = 1 and H2(Y,Z)tors = 0.
This last property holds for any general complete intersection in weighted
projective spaces by a generalisation of Grothendieck-Lefschetz theorem
proved in [37, Theorem 1], in particular for all models in Table 1. We denote
by H the generator of Λ := H2(Y,Z) = HZ. The lattice Λ∗ = H4(Y,Z)
is then generated by H2/κ where κ =

∫
Y
H3. Poincaré duality maps H

to a primitive divisor class [D] in H4(Y,Z), where D is an ample divisor
with cubic self-intersection κ = [D]3, and H2/κ to a primitive curve class
[C] ∈ H2(Y,Z).

We identify the Chern character ch(E) with the vector of rational num-
bers
(2.6)

[C0, C1, C2, C3](E) :=

∫
Y

[H3 ch0(E), H2. ch1(E), H. ch2(E), ch3(E)] ∈ Q4 ,

such that ch = (C0 + C1H + C2H
2 + C3H

3)/κ. Its components satisfy the
quantization conditions

(2.7) C0 ∈ κZ, C1 ∈ κZ, C2 ∈ Z+
C2
1

2κ
, C3 ∈ Z− c2

12κ
C1,

where we use the shorthand notation c2 := H.c2(TY). We also define the
charge vector γ(E) = (p0, p1, q1, q0) obtained by expanding the Mukai vec-
tor (2.5) as in [38, (4.8)],

(2.8) γ(E) = p0 + p1H − q1
κ

H2 +
q0
κ

H3 .

The Chern and Mukai vectors are related by

p0 = ch0, p1 =
1

κ
H2. ch1,

q1 = −H. ch2−
c2
24κ

H3 ch0, q0 = ch3+
c2
24κ

H2. ch1,(2.9)

such that

(2.10) p0 ∈ Z, p1 ∈ Z, q1 ∈ Z+
κ

2
(p1)2− c2

24
p0, q0 ∈ Z− c2

24
p1.
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In this basis, the Dirac pairing (2.4) takes the Darboux form

(2.11) 〈γ, γ′〉 = q0p
′0 + q1p

′1 − q′1p
1 − q′0p

0 .

Under the action of the auto-equivalence E �→ E(k) := E ⊗ OY(kH) with

k ∈ Z, the Chern character transforms as ch(E) �→ ekH ch(E), while the

components of the Mukai vector transform as

p0 �→ p0, p1 �→ p1 + kp0, q1 �→ q1 − κk p1 − κk2

2
p0 ,

q0 �→ q0 − kq1 +
κk2

2
p1 +

κk3

6
p0 .

(2.12)

We refer to this transformation as a spectral flow.

For later reference, we record the Mukai vectors for the primitive D6,

D4, D2 and D0-branes, represented by the structure sheaves of the threefold

Y, of the ample divisor D, of the curve C and of a point x ∈ Y Poincaré

dual to H3/κ,

γ(OY) =
(
1, 0,− c2

24
, 0
)
, γ(OD) =

(
0, 1,

κ

2
,
κ

6
+

c2
24

)
,

γ(OC) = (0, 0, 1,−1), γ(Ox) = (0, 0, 0, 1).
(2.13)

It is immediate to check that the quantization conditions (2.10) are obeyed,

using the fact that χD := χ(OD) = κ
6 + c2

12 is integer (and equal to the

arithmetic genus plus one).

2.2. Bridgeland stability conditions and Donaldson-Thomas

invariants

Physically, BPS states are elements in the point particle spectrum whose

mass M saturate the Bogomolnyi-Prasad-Sommerfeld bound M ≥ |Z(γ)|,
where Z(γ) is a central generator in the super-Poincaré algebra, which de-

pends linearly on the electromagnetic charge vector γ and is otherwise a

transcendental function of the complexified Kähler moduli z ∈ MK(Y).

The BPS index Ωz(γ) counts the number of BPS states with charge γ,

weighted with a sign (−1)2J3 where J3 is the projection of the angular mo-

mentum along a fixed axis, such that Ωz(γ) becomes robust under complex

deformations of Y. Mathematically, this is formalized by introducing the no-

tion of Π-stability conditions, which are special cases of Bridgeland stability
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conditions2, and the associated generalized Donaldson-Thomas invariants.
A Bridgeland stability condition consists of a pair σ = (Z,A) satisfying

the following axioms [39]:

i) Z : Γ → C is a linear map, known as the (holomorphic) central charge
(we abuse notation and denote Z(E) = Z(γ(E)) for any E ∈ C);

ii) A is the heart of a bounded t-structure on C (i.e. A = D≤0 ∩ D≥0

where (D≤0,D>0) is a pair of orthogonal subcategories of C which are
invariant under the left and right translation functors [1] and [−1],
respectively), in particular A is an Abelian subcategory of C;

iii) For any non-zero E ∈ A, the central charge Z(E) is contained in the
Poincaré upper half-plane HB = H∪ (−∞, 0), i.e. Z(E) = ρ(E)eiπφ(E)

where ρ(E) > 0 and 0 < φ(E) ≤ 1;
iv) (Harder-Narasimhan property) Every non-zero E ∈ A admits a finite

filtration 0 ⊂ E0 ⊂ E1 · · · ⊂ En = E by objects Ei in A, such that each
factor Fi := Ei/Ei−1 is σ-semistable (as defined below) and φ(F1) >
φ(F2) · · · > φ(Fn);

v) (Support property) There exists a constant C > 0 such that, for all
σ-semistable objects E ∈ A, ‖γ(E)‖ ≤ C |Z(E)| where ‖ · ‖ is any
fixed Euclidean norm on Γ⊗R.

In the last two items above, an object F ∈ A is called σ-semistable if φ(F ′) ≤
φ(F ) for every non-zero subobject F ′ of F . More generally, an object F ∈ C
is called σ-semistable if there exists n ∈ Z such that F [n] ∈ A and F [n] is
σ-semistable in the previous sense. For most purposes in this paper, we shall
only need the notion of weak stability condition (as defined in [10, Appendix
B]), which essentially amounts to relaxing the axiom iii) and allowing A to
contain objects with vanishing central charge.

For any weak stability condition σ (subject to certain technical con-
ditions spelled out in [3]) and any charge vector γ ∈ Γ, one defines the
generalized Donaldson-Thomas invariant Ωσ(γ) as follows. Let Mσ(γ) be
the moduli stack of σ-semistable objects in A with γ(E) = ±γ, where the
sign is chosen such that ±Z(γ) ∈ HB. If γ is primitive and σ generic, Ωσ(γ)
can be defined as the weighted Euler number

(2.14) Ωσ(γ) = χ(Mσ(γ), ν) :=
∑
m∈Z

mχ(ν−1(m)),

2Stability conditions are defined on triangulated categories, which include the
data of a translation functor E �→ E[1] and a collection of distinguished triangles
A → B → C → A[1] satisfying various axioms. The derived category of coherent
sheaves is automatically endowed with a triangulated structure. For simplicity, we
conflate distinguished triangles with short exact sequences 0 → A → B → C → 0.
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where ν : Mσ(γ) → Z is Behrend’s constructible function [40].3 In the
simplest case when Mσ(γ) is a smooth projective variety (up to the trivial
C× action), Ωσ(γ) is equal to the topological Euler characteristic up to a
sign,

(2.15) Ωσ(γ) = (−1)dimC Mσ(γ) χ(Mσ(γ)).

For non-primitive charge vectors, one first defines a rational invariant Ωσ(γ)
∈ Q following [3], and then sets

(2.16) Ωσ(γ) =
∑
k|γ

μ(k)

k2
Ωσ(γ/k),

where μ(k) is the Möbius function.4 While Ωσ(γ) is manifestly integral when
γ is primitive, its integrality for general charge γ and σ generic remains
conjectural. We shall often abuse notation and denote Ωσ(v) = Ωσ(γ) where
v = γ/

√
Td(TY) is the Chern character associated to the Mukai vector γ.

For a compact CY threefold, the space of Bridgeland stability condi-
tions Stab(C) is hard to construct and poorly understood in general. As-
suming that it is non-empty (as physics strongly suggests), one can show
[39] that it is a complex manifold of dimension rk Γ, such that the for-
getful map Stab(C) → Hom(Γ,C) which sends σ = (Z,A) �→ Z is a lo-
cal homeomorphism. In other words, the heart A is locally determined
by the central charge function Z. In particular, the complex dimension
rk Γ = beven(Y) = 2b2(Y) + 2 is larger than the dimension b2(Y) of Kähler
moduli space MK(Y), which is conjecturally embedded as a co-dimension
b2(Y) + 2 submanifold Π ⊂ Stab(C), as we discuss in §2.4.

Moreover, Stab(C) admits an action of G̃L+(2,R) × Aut C [39, Lemma

8.2], where G̃L+(2,R) is the universal cover of the group of 2×2 real matrices
with positive determinant and Aut C is the group of autoequivalences of C.
The group GL+(2,R) acts on the central charge Z via

(2.17)

(
ReZ
ImZ

)
�→
(
a b
c d

)(
ReZ
ImZ

)
, ad− bc > 0 ,

3As explained e.g. in [41, §2.3], the weight ν(p) can be interpreted physically as
the dimension of the chiral ring of the superpotential whose critical locus determines
the moduli space Mσ(γ).

4Recall that μ(k) = 0 if k has repeated prime factors, otherwise μ(k) = (−1)n

with n the number of prime factors.
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preserving the orientation on R2, hence the phase ordering of the central

charges and hence stability of objects. Its universal cover acts on the sta-

bility condition (Z,A) by suitably tilting the heart A. By construction,

the Donaldson-Thomas invariant Ωσ(γ) is invariant under the action of

G̃L+(2,R) on σ, and under the combined action of Aut(C) on (γ, σ).

Importantly, being integer valued, the generalized DT invariants Ωσ(γ) ∈
Z are locally constant on Stab C, but they may jump when some object

E ∈ A of charge γ goes from being stable to unstable. This may happen when

the central charge Z(γ′) of a subobject E′ ⊂ E of charge γ′ becomes aligned

with Z(γ), therefore along the real-codimension one wall of instability (or

marginal stability)

(2.18) W(γ, γ′) := {σ = (Z,A) ∈ Stab C : Im (Z(γ′)Z(γ)) = 0} .

The discontinuity acrossW(γ, γ′) is determined from the invariants on either

side of the wall by the wall-crossing formulae of [2, 3]. Physically, the jump in

the BPS index is due to the appearance or disappearance of multi-centered

black hole bound states [16]. Of course, this physical interpretation only

holds along the physical slice of Π-stability conditions.

2.3. Stability conditions for one-modulus CY threefolds

We now restrict again to compact CY threefolds with b2(Y) = 1, and ex-

plain a general construction of an open set of Bridgeland stability conditions

around the large volume limit following [9, 10]. While the full construction is

not needed for the rest of the paper, it allows us to introduce, as an interme-

diate step, a family of weak stability conditions (2.28) (called tilt-stability

in [9, 10]) and a conjectural inequality (2.31), which will play an essential

role in relating rank 1 and rank 0 DT invariants in §4.

Parametrizing central charge functions modulo G̃L+(2,R) action

As explained in the previous subsection, the space of Bridgeland stability

conditions is parametrized locally by the central charges of the objects (2.13),

or equivalently by the components (X0, X1, F1, F0) ∈ C4 of the holomorphic

central charge in the Mukai basis,

(2.19) Z(γ) = q0X
0 + q1X

1 − p1F1 − p0F0.
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Using the G̃L+(2,R) action, we may restrict to the real four-dimensional
slice with central charge [10, §8]5 parametrized by (a, b, α, β) ∈ R4,

(2.20) Za,b,α,β(γ) =
(
− chb3+β chb2+α chb1

)
+ i

(
a chb2−

1

2
a3 chb0

)
,

where chbk(E) =
∫
Y
e−bH .H3−k. ch(E), or more explicitly

chb0 = C0, chb1 = C1 − bC0, chb2 = C2 − bC1 +
1

2
b2C0,

chb3 = C3 − bC2 +
1

2
b2C1 −

1

6
b3C0.

(2.21)

This slice is invariant under the spectral flow transformation (2.12) provided
it is accompanied by a translation b �→ b + k. We note that under derived
duality γ �→ γ∨ (see below (2.5)) accompanied by a sign flip of (b, β), the
central charge (2.20) transforms into its complex conjugate,

(2.22) Za,b,α,β(γ
∨) = −Za,−b,α,−β(γ) .

Upon setting

(2.23) a =

√
1

3
t2 − c2

12κ
, α =

1

2
t2 − c2

24κ
, β = 0 ,

the function (2.20) coincides with the large volume central charge6

(2.24) ZLV
b,t (E) = −

∫
Y

e−(b+it)Hγ(E) ,

up to rescaling of its imaginary part by t/a using the G̃L+(2,R) action.
In [9, 10], a method to construct a heart Aa,b (depending only on a

and b) is introduced so that the pair (Za,b,α,β,Aa,b) is a Bridgeland stability
condition on Db(Y) whenever the inequalities

(2.25) a > 0, α >
1

6
a2 +

1

2
a|β|

5We swap (a, b) and (α, β) compared to [10], and rescale the imaginary part by
the positive factor a.

6As discussed below (2.49), this formula agrees with the physical central charge
in the large volume t → ∞, up to an O(t0) correction proportional to ζ(3)χY.

Agreement up to O(e−t) can be achieved by replacing
√

Td(TY) in γ(E) (2.5) by
the Γ-class [42].
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are satisfied. The second condition ensures that the central charge (2.20)
never vanishes on objects OY(mH) with m ∈ Z. In particular, the re-
gion (2.25) includes the large volume slice (2.23) for t2 > c2

4κ . As we review
in the remainder of this subsection, the construction of [9, 10] proceeds in
two steps,

slope stability Nb,a-stability Bridgeland stability(
CohY , − chb1+i chb0

)
tilt−→ (Ab , Zb,a)

tilt−→ (Ab,a , Za,b,α,β)

Independently of its use for constructing Bridgeland stability conditions,
the family of weak stability conditions Nb,a appearing in the intermediate
step plays an essential role in relating rank 0 DT invariants to rank 1 DT
invariants.

Step 1 We first start with the Abelian category of coherent sheaves CohY
where for any b ∈ R we define the slope function

(2.26) μb(E) =
chb1(E)
chb0(E)

for ch0(E) �= 0, and μb(E) = +∞ otherwise. We say a coherent sheaf E
is slope semi-stable if μb(E ′) ≤ μb(E) for any subsheaf E ′ ⊂ E . We know
that any slope semistable sheaf satisfies the classical Bogomolov-Gieseker
inequality [10, Theorem 3.2]:

(2.27) ΔH(E) := (chb1(E))2 − 2 chb0(E) chb2(E) = C2
1 − 2C0C2 ≥ 0.

Following [9], one defines

• Tb ⊂ CohY as the subcategory generated by slope-semi-stable sheaves
E with μb(E) > 0,

• Fb ⊂ CohY as the subcategory generated by slope-semi-stable sheaves
E with μb(E) ≤ 0.

Then Ab := 〈Fb[1], Tb〉 is the heart of a bounded t-structure on Db(Y) gen-

erated by length two complexes of the form E = (F
d−→ T ) with ker d ∈ Tb

and cok d ∈ Fb. For objects in the heart Ab, we consider the central charge
function

(2.28) Zb,a(γ) = −a chb2+
1

2
a3 chb0+i a2 chb1 .
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Note that up to G̃L(2,R)-action, it can be obtained by setting β = 0 and α =
∞ in (2.20), effectively getting rid of the dependence on ch3. The resulting
pair (Zb,a,Ab) satisfies the axioms (i,ii,iv,v) in the previous subsection, but
not iii), since the central charge of skyscraper sheaves vanishes. Nonetheless,
it defines a family of weak stability conditions in the sense of [10, Appendix
B].

For an object E ∈ Ab, we define7

(2.29) Nb,a(E) := − Re [Zb,a(E)]

Im [Zb,a(E)]
=

chb2(E)− 1
2 a

2 chb0(E)

a chb1(E)
,

with Nb,a(E) = +∞ if chb1(E) = 0. Then by definition, E ∈ Ab is semistable
with respect to the pair (Zb,a,Ab) if and only if for any non-trivial subob-
ject F ⊂ E in Ab, we have Nb,a(F ) ≤ Nb,a(E). By [10, Theorem 3.5], any
such semistable object E ∈ Ab satisfies the classical Bogomolov inequal-
ity (2.27). Moreover, it is conjectured in [10, Conjecture 4.1] that it satisfies
the following inequality involving the third Chern class ch3(E):

(2.30) a2
[
(chb1)

2 − 2 chb0 ch
b
2

]
+ 4(chb2)

2 − 6 chb1 ch
b
3 ≥ 0 ,

which we refer to as the BMT inequality. Moreover [10, Theorem 4.2] shows
that the inequality (2.30) is equivalent to the original Conjecture 1.3.1 in
[9], which says that for any object E ∈ Ab which is semistable with respect
to the stability function Zb,a and satisfies Nb,a(E) = 0, i.e. chb2 = 1

2 a
2 chb0,

one has

(2.31) chb3 ≤
a2

6
chb1 .

Step 2 Similar to the construction of Ab in the first step, one defines

• Tb,a ⊂ Ab as the subcategory generated by semi-stable objects in Ab

with Nb,a(E) > 0,
• Fb,a ⊂ Ab as the subcategory generated by semi-stable objects in Ab

with Nb,a(E) ≤ 0.

Then we define Ab,a = 〈Fb,a[1], Tb,a〉. By construction, ImZa,b,α,β(E) ≥ 0 for
any object E ∈ Ab,a. The conjectural inequality (2.31) further guarantees
that ReZa,b,α,β(E) < 0 whenever ImZa,b,α,β(E) = 0 [10], which shows
that the axioms of §2.2 are indeed satisfied. This was in fact the original
motivation for the conjectural BMT inequality.

7The ratio (2.29) agrees with
√
3NbH,tH(E) in [9, 10], upon setting t = a

√
3.
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Wall-crossing in the space of weak stability condition To obtain
the formula relating rank zero DT invariants to rank one DT invariants
in Appendix A, we shall apply the wall-crossing formula in the space of
weak stability conditions (Zb,a,Ab), rather than in the space of Bridgeland
stability conditions Stab(C), as walls are much easier to control.

It will be convenient to rescale and shift the slope function Nb,a (2.29)
into

(2.32) νb,w := aNb,a + b, where w :=
1

2
(a2 + b2),

for w > b2/2. This is because the new slope

(2.33) νb,w(E) =

⎧⎨⎩
C2(E)− wC0(E)

C1(E)− bC0(E)
if chb1(E) �= 0,

+∞ if chb1(E) = 0

has a denominator that is linear in b and numerator linear in w, so the walls
of νb,w-instability (which is by construction equivalent to Nb,a-instability)
are line segments in the region

(2.34) U :=
{
(b, w) ∈ R2 : w > 1

2b
2
}

of the (b, w) plane (see the green line in Fig. 2). We shall abuse notation and
denote by Ωb,w(γ) the rational DT invariant Ωνb,w

(γ) counting νb,w-stable
objects of class γ.

More precisely, the slope (2.33) coincides for two objects E and E′ of
Chern character Ci and C ′

i along the line

(2.35) (C1C
′
0 − C ′

1C0)w + b(C0C
′
2 − C ′

0C2) + (C2C
′
1 − C1C

′
2) = 0 ,

passing through the points �(γ) and �(γ′) defined by

(2.36) �(γ) =

(
C1

C0
,
C2

C0

)
.

Note that the points �(γ) lie outside the region U when E and E′ are νb,w-
semistable objects, due to the Bogomolov-Gieseker inequality (2.27). In the
original coordinates (b, a), walls of Nb,a-instability are half-circles centered

at b = C0C′
2−C′

0C2

C0C′
1−C′

0C1
along the axis a = 0, or vertical lines going through

b = C1C′
2−C′

1C2

C0C′
2−C′

0C2
when C1C

′
0 − C ′

1C0 = 0.
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Figure 2: In the (b, w)-plane, walls of νb,w-instability are straight lines be-
tween �(γ) and �(γ′), where γ and γ′ are the charges of the destabilizing
objects. The BMT inequality (2.38) is saturated along the red line going
through �(γ) and �̃(γ). The parabola w = 1

2b
2 is shown in blue.

Wall and chamber structure For any fixed class γ with C0 �= 0, or
C0 = 0 and C1 �= 0, there exists a set of lines {i}i∈I in R2 [43, Proposition
4.1] such that the segments i∩U (called ‘walls’) are locally finite and satisfy

1. If C0 �= 0, then all lines i pass through �(γ), and if C0 = 0 then all
lines i are parallel of slope C2

C1
.

2. The νb,w-semistability of any object E ∈ C of class γ is unchanged as
(b, w) varies within any connected component (called a “chamber”) of
U \
⋃

i∈I i.
3. For any wall i∩U , there is an object E ∈ C of class γ which is strictly

νb,w-semistable for all (b, w) ∈ i ∩ U .

The DT invariant Ωb,w+(γ) at a point just above i is determined from the
invariant Ωb,w−(γ) at a point just below i by the wall-crossing formula of [3].
Note that with this definition, the DT invariant Ωb,w(γ) is not necessarily
discontinuous across the wall.

Tilt-stability and Gieseker stability Since the number of walls for
fixed charge γ which are crossed as w → +∞ is finite [7, Proposition 1.4],
the index Ωb,w(γ) reaches a fixed value as w → +∞. For p0 = 0, there is no
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vertical wall, so this value is independent of b, and we denote it by Ω∞(γ).
For p0 �= 0, the index may jump across the vertical wall at b = C1

C0
given by

the vanishing of the slope (2.26). We denote by Ω∞(γ) the limit of the index
Ωb,w(γ) as w → +∞ on the side b < C1

C0
for positive rank p0 > 0, or on the

side b > C1

C0
for negative rank p0 < 0.

For non-negative rank p0 ≥ 0 and γ primitive, it turns out that Ω∞(γ)
agrees with the weighted Euler number χ(Mtilt(γ), ν) of the moduli space
Mtilt(γ) of tilt-semi-stable sheaves of charge γ [8, Lemma 2.4]. Here, tilt-
stability is a variant of Gieseker semi-stability defined as follows: let PE(k)
be the Hilbert polynomial

PE(k) :=χ(O(−kH), E) =

∫
Y

ekH chE Td(TY)

=
κp0

6
k3 +

κp1

2
k2 −

(
q1 +

c2
24

p0
)
k +

(
q0 −

c2
24

p1
)
,

(2.37)

and pE(k) = PE(k)/aE the associated monic Hilbert polynomial, with aE
the coefficient of the highest degree term in k. Gieseker-(semi)stability for
a coherent sheaf E is the requirement that for all exact sequences 0 →
E′ → E → E′′ → 0 of coherent sheaves, we have deg pE′ > deg pE′′ , or
deg pE′ = deg pE′′ and pE′(k) < (≤)pE′′(k) for k � 1. We denote by ΩH(γ)
the rational index counting Gieseker-semistable sheaves with class γ, defined
as in [3]. Tilt-stability is defined in the same way, but discarding the constant
term of the Hilbert polynomial before dividing by its top coefficient as before.
However, for threefolds with PicY = HZ and two-dimensional class (i.e.
p0 = 0, p1 �= 0), the index Ω∞(γ) counting tilt-semistable objects coincides
with the index ΩH(γ) counting Gieseker-semistable sheaves [8, Lemma 5.2].
In §4, we shall present explicit formulae relating ΩH(γ) for rank 0 charges
(counting D4-D2-D0 bound states) and rank ±1 charges (counting D6-D2-
D0 bound states), which follow by a sequence of wall-crossings from an
empty chamber provided by the conjectural BMT inequality (2.30).

Conjectural BMT inequality In the plane parametrized by (b, w =
1
2(a

2 + b2)), the BMT inequality (2.30) implies the linear inequality

(2.38) Lb,w(γ) := (C2
1 −2C0C2)w+(3C0C3−C1C2)b+(2C2

2 −3C1C3) ≥ 0 ,

whenever there exists a νb,w-semistable object E ∈ Db(Y) of class γ. From
(2.27), the coefficient of w in the above equation is ΔH(E) ≥ 0. If ΔH(E) >
0, the inequality (2.38) says that E can be νb,w-semistable only for points
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(b, w) ∈ U above the line f (γ) defined by the equation Lb,w(γ) = 0 (see the

red line in Fig. 2). This line passes through the points �(γ) defined in (2.36)

and

(2.39) �̃(γ) =

(
2C2

C1
,
3C3

C1

)
.

The conjectural BMT inequality (2.38) has now been proved for the

quintic threefold X5 and for a degree (4, 2) complete intersection X4,2 in P5

when (b, w) satisfy [44, 45]

(2.40) w − 1

2
b2 >

1

2
[b](1− [b]) , [b] := b− �b� .

Moreover, a slightly weaker version of (2.38) is proved for the sextic and

octic CY threefolds, X6 and X8, in the same restricted region (2.40) [46].

The proofs of the BMT inequality for these models rely on a strengthen-

ing of the classical Bogomolov-Gieseker inequality (2.27), i.e. the existence

of a function G : R → R such that any slope-semistable sheaf E satisfies
ch2(E).H
ch0(E)H3 ≤ G

(
ch1(E).H2

ch0(E)H3

)
and G(b) ≤ b2

2 for all b ∈ R. When such a func-

tion is available, one can enlarge the space of weak stability conditions U to

UG := {(b, w) ∈ R2 : w > G(b)}, see Figure 3 for the quintic threefold. The

existence of such a function and the status of the BMT inequality for the

other hypergeometric models in Table 1 remains open at the time of writing.

2.4. Kähler moduli and Π-stability

While the DT invariants Ωσ(γ) are mathematically well-defined through-

out the space of Bridgeland stability conditions Stab C (away from walls of

marginal stability), they only acquire physical meaning along a particular

complex one-dimensional slice Π ⊂ Stab C where the central charge Z(γ)

coincides with the physical central charge Zz(γ) determined by the com-

plexified Kähler structure on Y, or equivalently by the complex structure

parametrized by z of the mirror family Ŷ. On the mirror side, the central

charge is given by the period integral

(2.41) Zz(γ) = Πz(γ̂) =

∫
γ̂
Ω3,0 ,

of the holomorphic 3-form on the cycle γ̂ ∈ H3(Ŷ,Z) dual to γ.
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Figure 3: For the quintic threefold X5, the stronger Bogomolov-Gieseker in-
equality established in [44, Theorem 1.1] implies that for any νb,w-semistable
object E, the point �(E) lies below the orange curve w = G(b), where
G(b) = −1

2 |b| for |b| < 1
4 , G(b) = 1

2 |b| −
1
4 for 1

4 < |b| < 3
4 , G(b) = 3

2 |b| − 1
for 3

4 < |b| < 1 and G(b) = G(b − �b�) + �b�b − 1
2�b�2 when b lies outside

the interval (−1, 1). Moreover, the BMT inequality is known to hold in the
region above the green curve given in (2.40) [44, Theorem 1.2]. These two
curves intersect the blue curve w = 1

2b
2 for integer values of b.

We shall restrict to CY threefolds obtained as a smooth complete inter-
section of degree (d1, . . . , dn) in weighted projective space Pn+3

w1,...,wn+4
. There

are 13 such threefolds Y, whose basic topological data are tabulated in Ta-
ble 1. In particular, we note that

∑
j dj =

∑
iwi by the CY condition, and

κ = H3 =
∏

i di/
∏

j wj . The mirror threefold Ŷ can be obtained, for exam-
ple, by applying the general construction of [47]. For all these models, the
periods satisfy a Picard-Fuchs equation of hypergeometric type,

(2.42) LΠz(γ̂) =

[
(z∂z)

4 − μ−1z

4∏
k=1

(z∂z + ak)

]
Πz(γ̂) = 0 ,

where μ =
∏

wwi

i /
∏

d
dj

j , the ‘local exponents’ ak satisfy
∑

k ak = 2 and
are ordered in increasing order for definiteness. The equation has singular-
ities at z = 0, z = μ and at z = ∞, such that the Kähler moduli space



70 Sergei Alexandrov et al.

of Y (or complex structure moduli space of Ŷ) consists of the punctured
sphere MK(Y) = P\{0, μ,∞}. The two singularities at z = 0 and z = μ
are universal, and correspond to the large volume limit and conifold point,
respectively. Following [33], we denote these two types of degeneration by
M (for maximal unipotent monodromy) and C (for conifold). The type of
degeneration at z = ∞ depends on the local exponents ak, and may be of
type F (when all ak are distinct, corresponding to a monodromy of finite
order), C (when a2 = a3), K (when a1 = a2 and a3 = a4), or M (when
all ak’s coincide). Degenerations of type K and M occur at infinite distance
with respect to the special Kähler metric on MK , while degenerations of
type F and C occur at finite distance. Under a type C degeneration, the
conformal field theory on Y becomes singular, due to a brane becoming
massless, while a type F degeneration leads to a regular CFT, often with
a Gepner-model type description. The regulator ρ, that will be relevant for
the direct integration of the holomorphic anomaly equations discussed in
Section 3.2, is defined to be the smallest denominator among the local ex-
ponents at z = ∞. The exponents and the type of the singularity at z = ∞
are indicated in Table 1.

To construct a basis of solutions adapted to the maximal unipotent mon-
odromy at z = 0 (corresponding to the large volume limit on the mirror),
we apply the Frobenius method. For ε ∈ C let

(2.43) Π(z, ε) =

∞∑
k=0

∏n
j=1 Γ(dj(k + ε) + 1)∏n+4
i=1 Γ(wi(k + ε) + 1)

zk+ε.

Using the identity

(2.44)

∏n
j=1

(
dj
∏dj−1

�=1 (djk + )
)

∏n+4
i=1

(
wi
∏wi−1

�=1 (wik + )
) = μ−1(k + a1)(k + a2)(k + a3)(k + a4),

one easily checks that

(2.45) LΠ(z, ε) = ε4zε
∏

j Γ(djε+ 1)∏
i Γ(wiε+ 1)

.

Thus, the first three terms Π0≤p≤3(z) in the Taylor expansion around ε = 0

(2.46) Π(z, ε) =

∞∑
p=0

Πp(z)(2πiε)
p ,
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are annihilated by L. In the Mukai basis (2.19), the coefficients (X0, X1, F1,
F0) are given by

X0 = Π0(z), F0 = κΠ3(z) +
c2
24

Π1(z),

X1 = Π1(z), F1 = −κΠ2(z)−
c2
24

Π0(z).
(2.47)

We define the flat coordinate z = b+it = X1/X0, such that z �→ z+1 under
monodromy z �→ e2πiz around z = 0. The components can be integrated to
a prepotential F (z) such that

(2.48)
F1/X

0 = ∂zF (z) ,

F0/X
0 = 2F (z)− z∂zF (z) .

In the large volume limit t → ∞, the prepotential has an asymptotic expan-
sion

(2.49) F (z) = −κ

6
z3 +

ζ(3)χY

2(2πi)3
− 1

(2πi)3

∞∑
Q=1

GV
(0)
Q Li3

(
e2πiQz

)
,

where GV
(0)
Q are the genus-zero Gopakumar-Vafa invariants. Keeping only

the leading cubic term in (2.49) and fixing the Kähler gauge X0 = −1
in (2.19), one arrives at

ZLV
b,t (γ) =

κ

6
z3p0 − κ

2
p1z2 − q1z− q0

=

(
− chb3+

(
1

2
t2 − c2

24κ

)
chb1

)
+ it

(
chb2−

(
1

6
t2 − c2

24κ

)
chb0

)
.

(2.50)

which reproduces (2.24) and coincides with the standard slice (2.20) upon
making the identifications in (2.23).

Taking into account subleading corrections, it is necessary to apply a

G̃L+(2,R) transformation in order to reach the form (2.20). The result-
ing values of a, b, α, β can be computed by equating the products xij =
Im (ZiZj), 0 ≤ i < j ≤ 3 where Zi is the central charge for the Chern vector
defined by Ck = δki . Indeed, these quantities are invariant up to scale under

˜GL(2,R)+ and satisfy the quadratic constraint x01x23+x02x31+x03x12 = 0,
so give the desired 4 local real coordinates. In this way, one finds
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a(z) =

√
( Im F̃1)2 − 2κ Im z Im F̃0

κ
√
Im z

, b(z) = − Im F̃1

κ Im z
,

α(z) = − Im (z̄F̃1)

κ Im z
− ( Im F̃1)

2

2κ2( Im z)2
,

β(z) =
6κ2( Im z)2 Im (z̄F̃0) + 6κ Im z Im F̃1 Im (F̃0 − z̄F̃1)− 4( Im F̃1)

3

3κ Im z
(
2κ Im z Im F̃0 − ( Im F̃1)2

) ,

(2.51)

where we denoted8 F̃0 = 2F − z∂zF + c2
24z, F̃1 = ∂zF − c2

24 . In the region
where α > 1

6a
2+ 1

2a|β|, the heart A(z) = Ab(z),a(z) is given by the double-tilt
construction explained in the previous subsection. The construction of the
heart on the full physical slice Π, including the vicinity of the singularities at
z = μ and z = ∞, remains a challenging open problem. Assuming that this
problem has been solved, we denote by ΩΠ

z (γ) the generalized DT invariant
along the physical slice. Fortunately, the relation between rank 0 and higher
rank DT invariants at large volume can be derived using only the family of
weak stability conditions νb,w, assuming that the BMT inequality holds.

2.5. Interlude – summary

Let us briefly summarize the previous subsections. First, we introduced the
space of Bridgeland stability conditions Stab C on the derived category C
of coherent sheaves, which is the appropriate mathematical framework for
BPS branes in type IIA string theory. A stability condition is a pair (Z,A)
of a central charge function Z and a heart A ⊂ C which determines which
constituents may bind into stable objects. For one-modulus CY threefolds,

after dividing out by the G̃L+(2,R) action (which preserves the phase or-
dering of central charges), the space of stability conditions effectively has
real dimension 4. Assuming the BMT conjecture (2.31), we outlined the
construction of an open set U in Stab C parametrized by (a, α, b, β) ∈ R4

subject to the inequalities (2.25). The physical subspace of Π-stability con-
ditions provides a real-codimension two slice Π in this open set, determined
by the prepotential F (z) (see Fig. 4). For z → i∞, this slice asymptotically
coincides with the large volume slice (2.50) or equivalently (2.24). On the
boundary of U , there is also an important family of weak stability condi-
tions with central charge (2.28) parametrized by (b, a) ∈ R × R+, which

8Note that the signs are such that shift by c2
24 cannot be absorbed into a linear

shift of F !
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Figure 4: Section of the space of Bridgeland stability conditions by the plane
β = 0, b = const, drawn in coordinates (e−a, e−α). The boundary of the set
constructed in [9, 10] corresponds to the inequalities (2.25). The red line is
the slice of weak νb,w-stability conditions with the central charge (2.28) and
the blue line represents the slice of Π-stability conditions parametrized by
the complexified Kähler structure of Y. The large volume limit corresponds
to the region near the origin where the two slices approach each other.

is obtained from (2.50) by omitting the contributions proportional to the

D0-brane charge chb3 and to the second Chern class c2(TY), and setting

t = a
√
3. This family, interchangeably called Nb,a-stability or νb,w-stability

with w = 1
2(a

2 + b2), serves as a key intermediate step for the construction

of the heart A throughout the open set U , and is the subject of the BMT

conjecture (2.31), which constrains the existence of νb,w-semi-stable objects

for small w. We denote by Ωb,w(γ) the rational Donaldson-Thomas invariant

counting νb,w-semistable objects of class γ in the heart Ab, and by ΩH(γ)

the rational Donaldson-Thomas invariant counting H-Gieseker-semi-stable

sheaves of class γ defined following [3]. In the next two subsections, we spell

out the modularity properties predicted by string theory for DT invariants

ΩH(γ) in the rank 0 case, and the relation with ordinary DT invariants and

PT invariants in the rank ±1 case.
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2.6. D4-D2-D0 indices and modularity conjecture

Here we consider the case p0 = 0, p1 := r > 0, corresponding to D4-D2-D0
bound states. As explained below (2.37), for a fixed charge γ, the index
Ωb,w(γ) reaches a finite value Ω∞(γ) as w → +∞, which turns out to co-
incide with the index ΩH(γ) counting Gieseker-semi-stable sheaves. For CY
threefolds with Picard rank one, this index also agrees with the ‘large volume
attractor index’ (also called MSW index in [48, 22, 23, 24])9

(2.52) Ω∞(0, r, q1, q0) = lim
λ→+∞

ΩΠ
− q1

κr
+iλr(0, r, q1, q0) ,

where ΩΠ
z=b+it(γ) denotes the DT invariant along the Π-stability slice. The

index Ω∞(0, r, q1, q0) is preserved under spectral flow (2.12) with k ∈ Z,
which leaves the D4-brane charge r invariant, as well as the reduced D0-
brane charge

(2.53) q̂0 := q0 −
q21
2κr

,

and the class of μ := q1− 1
2 κr

2 in Λ∗/Λ = Z/(κrZ). Accordingly, we denote

(2.54) Ωr,μ(q̂0) = Ω∞(γ) = ΩH(γ) .

Note that for fixed r ≥ 1, μ ∈ Z, the argument q̂0 is such that the combina-
tion

(2.55) n =
χ(Dr)

24
− μ2

2κr
− rμ

2
− q̂0 ,

is an integer. Here χ(Dr) is the topological Euler characteristic of the divisor
Dr Poincaré dual to rH, [17, (3.8)]10

(2.56) χ(Dr) = κr3 + c2r.

It follows from derived duality E �→ E∨, which acts on the Chern vector
by ch(E) �→ ch(E)∨ as defined below (2.3), that the index (2.54) is invariant

9In general, the MSW index is defined as the value of ΩΠ
z (γ) in the asymptotic

direction za = −κabqb + iλpa with λ � 1, where κab is the inverse of the matrix
κab = κabcp

c. When b2(Y) = 1, the distinction between Gieseker index and MSW
index becomes irrelevant.

10We urge the reader not to confuse χ(Dr) with the holomorphic Euler charac-
teristic χDr defined in (2.62).
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under μ �→ −μ, on top of the periodicity μ �→ μ + κr (note however that

the integer (2.55) is not invariant under these symmetries). Furthermore,

Ωr,μ(q̂0) vanishes unless the reduced charge q̂0 is bounded from above by [4,

Corollary 3.3]

(2.57) q̂0 ≤ q̂max
0 =

1

24
χ(Dr) .

Upon identifying q̂0 =
cL
24 −L0 with cL = χ(Dr), this coincides with the uni-

tarity bound L0 ≥ 0 in the two-dimensional (0, 4) superconformal field the-

ory obtained by reducing the worldvolume theory of an M5-brane wrapped

on Dr [17].

Since the reduced D0-brane charge is bounded from above for fixed D4-

brane charge r > 0 and D2-brane charge q1 = μ+ 1
2 κr

2, one can define the

generating series of rational invariants

(2.58) hr,μ(τ) =
∑

q̂0≤q̂max
0

Ωr,μ(q̂0) q
−q̂0 , q = e2πiτ ,

Since μ takes values in Z/(κrZ), (2.58) defines a vector with κr entries (half

of which being redundant due to the symmetry under μ �→ −μ). For r = 1,

the case of interest in this paper, the charge vector is primitive and therefore

the rational DT invariant Ω1,μ(q̂0) coincides with the integer DT invariant

Ω1,μ(q̂0), defined by replacing Ω∞(γ) by Ω∞(γ) in (2.54).

By exploiting the constraints of S-duality in string theory, it has been

argued that the generating series hr,μ must possess specific modular prop-

erties under SL(2,Z) transformations of the parameter τ [48, 22, 24, 49].

More precisely, hr,μ should transform as a weakly holomorphic vector valued

mock modular form of depth r− 1, with a specific modular anomaly. In this

paper, we restrict ourselves to the simplest Abelian case r = 1, and refer to

the invariants Ω1,μ(q̂0) as Abelian D4-D2-D0 indices. In this situation, the

modular anomaly disappears and h1,μ must transform as a vector-valued

modular form of weight −3/2 in the Weil representation attached to the

lattice Z[κ] with quadratic form m �→ κm2. Equivalently, it must transform

with the following matrices under T : τ �→ τ + 1 and S : τ �→ −1/τ [49,

Eq.(2.10)] (see also [19, 18, 16, 21])

Mμν(T ) = e
πi

κ
(μ+κ

2
)2+ πi

12
c2 δμν ,

Mμν(S) =
(−1)χD

√
iκ

e−
2πi

κ
μν ,

(2.59)
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where χD = κ
6 + c2

12 (see below (2.13)). We denote by M1(Y) the space of
weakly holomorphic vector-valued modular forms with these transformation
properties under SL(2,Z).

It is well known that any weakly holomorphic vector-valued modular
form of negative weight w < 0 is completely determined only by its ’polar
coefficients’, i.e. the terms in its Fourier expansion that become singular
in the limit τ → i∞. Such terms correspond to the terms with q̂0 > 0
in (2.58). Once the polar terms are known, the full modular form can then be
determined, for example by constructing the Poincaré-Rademacher sum (see
e.g. [50]). It is important however, that the dimension of the space of modular
forms can be strictly smaller than the number of polar terms, which means
that the polar coefficients must satisfy certain linear constraints, which are
related to the existence of cusp forms in dual weight 2 − w [51, 21, 52]. In
Table 1, we list the number of polar terms (denoted by np

1) and constraints
(denoted by nc

1) for the 13 smooth hypergeometric threefolds computed in
[31], such that the dimension of M1(Y) is given by np

1 − nc
1.

2.7. Rank 1 DT invariants and stable pair invariants

We now turn to the case p0 = ±1, as the corresponding invariants will turn
out to provide the information needed to compute the polar coefficients in
the generating series of D4-D2-D0 Abelian indices.

For p0 = 1 and p1 = 0, the index Ω∞(1, 0, q1, q0) reduces to the in-
variant originally defined in [53], counting ideal sheaves E with ch(E) =
1 − β − nH3, with β = (q1 +

c2
24)H

2/κ (identified by Poincaré duality with
a class in H2(Y,Z)) and n = −q0 ∈ Z. Equivalently, it counts dimension-
one subschemes C ⊂ Y with class [C] = β and holomorphic Euler number
χ(OC) = n. The moduli space of such subschemes is projective and admits
a perfect symmetric obstruction theory (see e.g. [54] and references therein).
We denote the corresponding DT invariant by

(2.60) In,β = DT(β.H, n) = Ω∞
(
1, 0,−β.H − c2

24
,−n

)
,

where the first notation is standard in the mathematics literature and the
second was used in [31]. The case p0 = 1, p1 �= 0 can be reached by tensoring
by a line bundle L on Y, or equivalently using the spectral flow (2.12).
As a result the index Ω∞(γ) = DT(Q+, n+) depends only on the invariant
combinations

(2.61) Q+ = q1 +
1

2
κ(p1)2 +

c2
24

, n+ = −q0 − p1q1 −
1

3
κ(p1)3 ,



Quantum geometry, stability and modularity 77

which both take integral values as a consequence of the quantization condi-
tions (2.10) and the integrality of the arithmetic genus of the divisor class
Dr with r = p1,

(2.62) χDr
:= χ(ODr

) =
1

6
κr3 +

1

12
c2r .

For p0 = −1 and p1 = 0, the index Ω∞(−1, 0, q1, q0) instead counts stable
pairs [4, §3] (more precisely, derived dual of stable pairs) E = (OY

s→ F )∨,
where F is a pure one-dimensional sheaf with [F ] = β = −q1H

2/κ and
χ(F ) = n = −q0, and s is a section with zero-dimensional cokernel. The
Chern character for this object is ch(E) = −1 + β − nH3. As shown by
Pandharipande and Thomas [55], the moduli space of stable pairs is also
projective and admits a perfect symmetric obstruction theory. We denote
the corresponding PT invariant by

(2.63) Pn,β = PT(β.H, n) = Ω∞
(
−1, 0, β.H +

c2
24

,−n
)
,

where the first notation is standard in the mathematics literature and the
second is similar to the one used for DT invariants. The case p0 = −1, p1 �= 0
can again be reached by tensoring by a line bundle L on Y, so that the index
Ω∞(γ) = PT(Q−, n−) depends only on the invariant combinations

Q− = −q1 +
1

2
κ(p1)2 +

c2
24

,

n− = −q0 + p1q1 −
1

3
κ(p1)3 .

(2.64)

As shown in Appendix A, Theorem 2, the invariants DT(Q,n) and
PT(Q,n) vanish unless

(2.65) Q ≥ 0 and n ≥ −
⌊
Q2

2κ
+

Q

2

⌋
.

where the first condition follows from the Bogomolov-Gieseker inequality
(2.27). In fact, in the range 0 ≤ Q < κ, the BMT inequality (2.30) implies
the slightly stronger bound

(2.66) n ≥ −
⌊
2Q2

3κ
+

Q

3

⌋
.

Given these lower bounds on Q and n we can define the generating series
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ZDT (y, q) =
∑
Q,n

DT(Q,n) yQ qn,

ZPT (y, q) =
∑
Q,n

PT(Q,n) yQ qn.
(2.67)

In terms of these formal series, the DT/PT relation conjectured in [55] and
proven in [56, 57] takes the simple form

(2.68) ZDT (y, q) = M(−q)χY ZPT (y, q),

where M(q) =
∏

k>0(1−qk)−k is the Mac-Mahon function. In §3.2, we shall
explain how PT invariants, hence also DT invariants, can be computed from
the knowledge of the topological string partition function.

3. Gopakumar-Vafa invariants and direct integration

In this section, we recall how Gopakumar-Vafa (GV) invariants can be de-
termined by integrating the holomorphic anomaly equations satisfied by the
topological string partition function. Physically, GV invariants were intro-
duced as multiplicities of five-dimensional BPS states that arise from M2-
branes wrapping curves in a CY threefold [58, 59]. We shall not go into
the details of the mathematical definition of GV invariants but instead refer
to [60] and for an introduction to [61].

3.1. PT/GV relation

As explained in [62], the A-twisted topological string associates to any CY
threefold Y an infinite family of genus g topological string free energies
F (g)(z, z̄), which depend on the Kähler moduli z in a non-holomorphic fash-
ion. In the ‘holomorphic limit’ z̄ → −i∞, and in an appropriate Kähler
gauge, F (g)(z, z̄) reduces to the generating series of Gromov-Witten invari-
ants,

F (g)(z) ≡ lim
z̄→−i∞

(X0)2g−2F (g)(z, z̄) =

∞∑
Q=1

GW
(g)
Q e2πiQz ,(3.1)

where GW
(g)
Q ∈ Q depends only on the symplectic structure of Y. For g =

0, 1, there are additional polynomial terms in z which we have dropped for
brevity. For g = 0, F (0) coincides (up to an overall factor −1/(2πi)3) with the
worldsheet instanton contribution to the tree-level prepotential (2.49). The
instanton part of the topological string partition function is then given by
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(3.2) Ψtop(z, λ) = exp

⎛⎝∑
g≥0

λ2g−2F (g)(z)

⎞⎠ ,

According to [58, 59], the Gromov-Witten invariants GW
(g)
Q can be traded

for new invariants GV
(g)
Q defined by equating

(3.3) logΨtop(z, λ) =

∞∑
g=0

∞∑
k=1

∞∑
Q=1

GV
(g)
Q

k

(
2 sin

kλ

2

)2g−2

e2πikQz .

The integrality of the Gopakumar-Vafa invariants GV
(g)
Q defined by (3.3)

was shown in [63]11. More recently, it was shown in [64] that for fixed degree

Q, there is only a finite number of non-vanishing invariants GV
(g)
Q . We shall

denote by gmax(Q) the maximal genus g such that GV
(g)
Q �= 0.

It was conjectured in [11, 65] that the topological string partition func-
tion is related to the generating series of PT invariants defined in (2.67)
via

(3.4) Ψtop(z, λ) = M(−eiλ)
1

2
χYZPT

(
e2πiz/λ, eiλ

)
.

The corresponding relation to the partition function ZDT , which follows
by using (2.68), was motivated physically in [66] and a derivation in M-
theory was given in [67]. The MNOP conjecture (3.4) is known to hold for
non-compact toric CY threefolds [11, 65], and for complete intersections in
products of projective spaces [68]. We shall assume that it continues to hold
for complete intersections in weighted projective spaces.

The MNOP relation (3.4) can be expressed in a product form such that
the PT invariants are related to the GV invariants by the following PT/GV
relation [11, 65]

ZPT (y, q) =
∏
Q>0

∏
k>0

(
1− (−q)kyQ

)kGV
(0)
Q

×
∏
Q>0

gmax(Q)∏
g=1

2g−2∏
�=0

(
1− (−q)g−�−1yQ

)(−1)g+�

(
2g − 2

�

)
GV(g)

Q

.

(3.5)

11As discussed in §3.3, an independent definition of GV invariants which makes
integrality manifest was proposed in [60], but its compatibility with (3.3) remains
conjectural.
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After some elementary algebra, one can rewrite (3.5) as a plethystic expo-

nential [54]

(3.6)

ZPT (y, q) = PE

⎡⎣∑
Q>0

gmax(Q)∑
g=0

(−1)g+1GV
(g)
Q (1− x)2g−2 x(1−g)yQ

⎤⎦ (−q, y),

where

(3.7) PE[f ](x, y) = exp

( ∞∑
k=1

1

k
f(xk, yk)

)
.

Conversely, GV invariants may be expressed in terms of PT invariants by

taking the plethystic logarithm (see e.g. [69]),

∑
Q>0

gmax(Q)∑
g=0

GV
(g)
Q (1 + q)2g−2q1−gyQ

=

∞∑
k=1

μ(k)

k
log

⎡⎣1 + ∑
Q>0,m

(−1)m(−q)km PT(Q,m) ykQ

⎤⎦ ,
(3.8)

where μ(k) is the Möbius function (see Footnote 4), and expanding in powers

of q and y on either side. The plethystic representation of the MNOP rela-

tion turns out to be computationally much more efficient than the original

formula (3.5).

It easily follows from this relation and the bound (2.65) that for any

Q > 0, the maximal genus gmax(Q) is bounded from above by

(3.9) gmax(Q) ≤ gC(Q) :=

⌊
Q2

2κ
+

Q

2

⌋
+ 1 .

As in (2.66), the bound is strengthened to gmax(Q) ≤
⌊
2Q2

3κ + Q
3

⌋
+ 1 when

0 < Q < κ. We refer to (3.9) as the Castelnuovo bound, in reference to

Castelnuovo’s work on the maximal arithmetic genus of irreducible curves

in projective space [70] (see e.g. [71] for a more recent account). In this work,

we have obtained (3.9) using rather different methods pioneered in [72] (see

Appendix A.3). We note that the bound (3.9) was established recently for

the quintic threefold in [73].
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It is worth noting that for m and g sufficiently close to the Castelnuovo
bound, the relation between PT and GV invariants becomes linear,

(3.10) PT(Q,m) =

gmax(Q)∑
g=1

(
2g − 2

g − 1−m

)
GV

(g)
Q .

The exact range of validity of this relation depends on Y, but it is easy to
check that it holds true for m = mmin(Q) + δ with mmin(Q) := 1− gmax(Q)
and δ = 0, 1:

PT(Q,mmin(Q)) = GV
(gmax(Q))
Q ,(3.11)

PT(Q,mmin(Q) + 1) = GV
(gmax(Q)−1)
Q

+(2gmax(Q)− 2)GV
(gmax(Q))
Q .

In particular, mmin(Q) is the minimal value of m such that PT(Q,m) �= 0,
and satisfies

(3.12) mmin(Q) ≥ mC(Q) := −
⌊
Q2

2κ
+

Q

2

⌋
.

3.2. Direct integration method for computing GV invariants

As shown in [12, 62], the topological string free energies F (g)(z, z̄) satisfy
the holomorphic anomaly equations

∂

∂z̄

∂

∂z
F (1) =

1

2
Czz
z̄ Czzz +

(χY

24
− 1
)
Gz̄z ,(3.13)

∂

∂z̄
F (g) =

1

2
C̄ zz
z̄

(
D2F (g−1) +

g−1∑
h=1

DF (g−h)DF (h)

)
, for g ≥ 2 ,(3.14)

where Czzz = ∂3
zF

(0)(z) is the so-called Yukawa coupling, C̄z̄z̄z̄ is its complex
conjugate, and indices are raised using the Kähler metric Gzz̄ = ∂z∂z̄K with
K = − log(z̄∂zF −z∂z̄F̄ ). In the flat coordinates z, z̄, the Christoffel symbols
Γz
zz = Gz̄z∂zGz̄z vanish. Denoting the Hodge line bundle with connection

Kz = ∂zK on the moduli space by L, the free energies F (g) are sections of
L2−2g and the covariant derivative acting on a section of Ln takes the form
D = ∂z+nKz. Given the amplitudes F (h)(z, z̄) for h < g, the equations (3.14)
determine F (g)(z, z̄) up to a holomorphic ambiguity f (g)(z).
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The non-holomorphic dependence of the free energies can be absorbed
in a set of ‘propagators’ Szz, Sz, S, satisfying [62]

(3.15) ∂z̄S
zz = C̄ zz

z̄ , ∂z̄S
z = Gzz̄S

zz , ∂z̄S = Gzz̄S
z .

More precisely, F (g)(z, z̄) is an inhomogeneous polynomial of degree 3g − 3
in Kz, S

zz, Sz, S (of respective degrees 1, 1, 2, 3) with holomorphic coeffi-
cients [74, 75, 76]. It turns out that the dependence on the connection Kz

can also be absorbed by introducing the shifted propagators [75, 76]

S̃zz = Szz , S̃z = Sz − SzzKz , S̃ = S − SzKz +
1

2
SzzKzKz .

(3.16)

Up to a holomorphic ambiguity f (1)(z), the equation (3.13) can then be
integrated to obtain

∂zF (1) =
1

2
CzzzS̃

zz −
(χY

24
− 1
)
Kz + f (1)(z) ,(3.17)

and the holomorphic anomaly equations (3.14) for g ≥ 2 can be rewritten
as

∂F (g)

∂S̃zz
−Kz

∂F (g)

∂S̃z
+

1

2
KzKz

∂F (g)

∂S̃
=

1

2
D2F (g−1) +

1

2

g−1∑
h=1

DF (g−h)DF (h) .

(3.18)

The holomorphic limit is obtained by replacing Kz, S̃
zz, S̃z, S̃ with the corre-

sponding holomorphic limits Kz, S
zz, Sz, S and F (g)(z, z̄) by F (g)(z). Since the

dependence of the free energies on Kz is absorbed in the shifted propagators,
the equations (3.18) can be integrated by collecting the powers of Kz on the
right-hand side, and identifying them with the corresponding derivatives on
the left-hand side.

In terms of the algebraic coordinate z, special geometry implies

Γz
zz = 2Kz − CzzzS̃

zz + szzz ,(3.19)

and the propagators are partially determined by the BCOV ring [75]

∂zS̃
zz =CzzzS̃

zzS̃zz + 2S̃z − 2szzzS̃
zz + hzzz ,(3.20)

∂zS̃
z =CzzzS̃

zzS̃z + 2S̃ − szzzS̃
z − hzzS̃

zz + hzz ,
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∂zS̃ =
1

2
CzzzS̃

zS̃z − hzzS̃
z + hz ,

∂zKz =KzKz − CzzzS̃
zz + szzzKz − CzzzS̃

z + hzz ,

up to another set of holomorphic (propagator) ambiguities szzz, h
zz
z , hzz, hz,

hzz. There is no canonical way to fix these ambiguities and different choices

lead to a different functional dependence of the free energies on the propa-

gators [76, 77]. For the 13 hypergeometric families, it turns out that there

are always solutions of the form

szzz =
1

z
s̃zzz , hzzz = zh̃zzz , hzz = 0 , hz =

1

z
h̃z , hzz =

1

z2
h̃zz ,

(3.21)

with s̃zzz, h̃
zz
z , h̃z, h̃zz ∈ Q. Such solutions are determined by a polynomial

equation in szzz, and we pick the root such that h̃z has the maximal possible

value.

The free energies in terms of the propagators can be obtained by inte-

grating (3.18). If necessary, the full non-holomorphic dependence can then

be restored by inserting the corresponding expressions for the propaga-

tors. However, to obtain the enumerative invariants that are encoded in

the free energies we only need to consider the holomorphic limit. Using

Kz = −∂z log(X
0) and the Ansatz (3.21), the BCOV ring (3.20) can be

used to calculate the holomorphic limits of the propagators. Before carrying

out the direct integration procedure, it remains to discuss how the holo-

morphic ambiguities f (g)(z) that arise at each genus from the integration

of (3.18) can be fixed.

Let us first discuss the solution at genus g = 1 for the hypergeometric

families. Combining (3.13) with (3.19) and using the behaviour in the large

volume limit [12] and at the conifold point [78], the holomorphic anomaly

equation for the genus one free energy can be integrated to obtain

F (1) = −1

2

(
4− χY

12

)
K − 1

2
log detGz̄z −

1

24
(12 + c2) log z −

1

12
logΔ ,

(3.22)

where Δ is the discriminant polynomial and c2 is the numerical second Chern

class defined below (2.7).

At genus g ≥ 2, the ambiguity can be written as a rational function in

terms of the algebraic coordinates. It follows from the analysis in [74, 13],
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see [79] for a review of B-model techniques, that

f (g)(z) =
1

Δ2g−2

2g−2∑
k=0

fkz
k +

N(g)∑
k=1

f ′
kz

k , N(g) =

⌊
2(g − 1)

ρ

⌋
,(3.23)

where the ‘regulator’ ρ is the smallest denominator among the local expo-

nents ai, and fk, f
′
k are rational coefficients. To fix the coefficients, one can

use known enumerative invariants — for example due to Castelnuovo like

vanishing — together with the behaviour of the free energies around special

points in the moduli space.

The generic constant map contribution of the free energies in the large

volume limit z = 0 and the so-called gap condition at the conifold point

z = μ can be used to fix all of the fk, k = 0, . . . , 2g − 2. On the other

hand, for most of the hypergeometric families the current knowledge about

the behaviour at z = ∞ is limited to the degree of regularity of the free

energies at this point and, as discussed in [13], determines the upper limit

N(g) of the second sum in (3.23). Additional constraints are currently only

understood for X6,2, X4,2 and most recently also for X2,2,2,2 [80]. For X6,2,

X4,2 the point at infinity is of conifold type and the expansion of the free

energies around this point satisfy an additional ‘small gap’. This imposes an

additional �2g/ρ′� constraints, with ρ′ for the two geometries respectively

given by 3 and 4. On the other hand, the point at infinity in the moduli space

of X2,2,2,2 corresponds to a ‘non-commutative resolution’ of a singular de-

generation of X8. The corresponding free energies encode certain Z2-refined

GV-invariants that also exhibit a Castelnuovo-like vanishing [80].

Using the Castelnuovo bound (3.9), together with the closed expres-

sion (3.30) for the invariants that saturate the bound and, in the case of

X6,2, X4,2, additional conditions at infinity, the coefficients of the holomor-

phic ambiguity can be completely fixed as long as

N(g) ≤
⌊
−κ

2
+

1

2

√
κ
(
8(g − 1) + κ

)⌋
+

⎧⎨⎩ �2g3 � for X6,2

�g2� for X4,2

0 else

.(3.24)

Moreover, as discussed in [80], for X2,2,2,2 taking into account the additional

Castelnuovo bound for the Z2-refined GV invariants at the point at infinity

determines the holomorphic ambiguity up to genus 32.

We denote by ginteg the maximal value of g for which the previously

discussed boundary conditions are sufficient to fix the holomorphic ambi-
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guity12, and tabulate its values for the various hypergeometric models in
Table 1. Due to computational limitations, we have not yet reached this
genus for all models. In §5, we shall see that the knowledge of D4-D2-D0
invariants can be used to push the direct integration method to even higher
genus, denoted by gmod in Table 1.

3.3. GV invariants at maximal and submaximal genus

Although the definition of GV invariants via Gromov-Witten invariants pre-
sented in §3.1 makes it clear that they are robust under complex structure
deformations of Y, its main drawback is that integrality of the resulting
invariants is not manifest. In [60] an alternative definition using moduli of
stable sheaves was proposed, inspired by the geometric picture developed
in [81] (and earlier attempts in [82, 83]). While the mathematical definition
in [60] is quite involved (see [61] for a review aimed at physicists), the ap-
proach of [81] can be used to calculate GV invariants near the Castelnuovo
bound, at least heuristically. The results (3.30) and (3.32) will be justified
rigorously in §4.2 by combining Theorem 2 with the MNOP conjecture.

Motivated by the interpretation in terms of bound states of D2-D0
branes in Type IIA string theory, one considers one dimensional (semi-
)stable sheaves supported on a curve of class β ∈ H2(Y,Z). The invariants
are conjecturally independent of the D0-brane charge [84, 60], which can
therefore be taken to be 1, such that semi-stability implies stability. For a
fixed curve class β, the corresponding moduli space of stable sheaves M̂β is
fibered over the Chow variety Mβ = Chow(β), which parametrizes effective

curves C ⊂ Y with [C] = β. If a point p ∈ M̂β projects to a smooth curve of
genus13 gmax(β), the corresponding fiber is the Jacobian torus T 2gmax(β) of
C.

It was argued in [81] that the little group Spin(4) = SU(2)L × SU(2)R
in the five-dimensional effective theory arising from M-theory compactified
on Y, should be identified with the product of the Lefschetz actions on
the cohomology of the fiber and base of M̂β. As a result, in cases where

M̂β is smooth, the genus zero GV invariants can be defined as GV
(0)
β =

(−1)dimC M̂βχ(M̂β). More generally, genus zero GV invariants are related to

12Ignoring the floor functions in (3.23) and (3.24), and absorbing the correction
term in (3.24) into an effective regulator ρ = 6 for X6,2 or ρ = 4 for X4,2, one finds
a rule-of-thumb estimate ginteg � 1

2κρ(ρ− 1) + 1.
13In this section we abuse notation and denote GV

(g)
β = GV

(g)
β.H and gmax(β) =

gmax(β.H).
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generalized Donaldson-Thomas invariants via GV
(0)
β = ΩH(0, 0, β, 1), where

H is any ample divisor on Y [85, 3].
On the other hand, if the Chow variety Mβ itself is smooth, one finds

that for maximal genus g = gmax(β) := gmax(β.H),

GV
(gmax(β))
β = (−1)dimC Mβχ(Mβ) .(3.25)

Invoking a localization argument motivated by [86], the authors of [81]
propose further geometric expressions for the invariants at genera close to
gmax(β). In particular, in favorable cases

GV
(gmax(β)−1)
β = (−1)dimC Mβ+1

[
χ(Cβ) + (2gmax(β)− 2)χ(Mβ)

]
,(3.26)

where Cβ ⊂ Y × Mβ is the the universal curve. We observe that these
relations agree with (3.11), (3.12), after identifying [87, 88]

PT(β,mmin(β)) = (−1)dimC Mβχ(Mβ) ,

PT(β,mmin(β) + 1) = (−1)dimC Mβ+1χ(Cβ) .
(3.27)

We shall now apply these relations to determine the GV invariants GV
(gmax(Q))
Q

and GV
(gmax(Q)−1)
Q for degree Q = κd with d ∈ N for the 13 hypergeometric

CY threefolds.
Let us consider a CY threefold Y obtained as a complete intersection of

n generic hypersurfaces of respective degrees (d1, . . . , dn) in weighted pro-
jective space W := Pn+3

w1,...,wn+4
. Curves of degree Q = κd on Y are obtained

by intersecting Y with two additional hypersurfaces of respective degrees 1
and d. Using the adjunction formula, one can check that a generic curve of
this type has the maximal possible genus g = gC(κd).

We can identify the restriction of the linear subspace toY with the ample
divisor D. By Bertini’s theorem, D is smooth if the restriction of OW (1) to
Y is base-point free.14 This is generically the case if the number

χD = #{ i |wi = 1 , i = 1, . . . , n+ 4} ,(3.28)

of weights that are equal to one is strictly greater than three. The equal-
ity with χ(OD) can be verified using the Hirzebruch-Riemann-Roch (HRR)
theorem. Then a generic (1, d)-curve is smooth if the restriction of OW (d) to

14Recall that the base locus of a bundle consists of the points where all sections
vanish simultaneously.
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D ⊂ Y is basepoint free as well, which is automatically implied. Comparing
with Table 1, we see that D is singular for X10, X6,4 and X6,6.

For d ≥ 2, the moduli space M(1, d) of complete intersection curves of
degree (1, d) is a projective bundle with fibers P

[
h0 (D,OD(d))− 1

]
over

P [χD − 1], using P[k] := Pk. Using again HRR or generating functions, we
further calculate that

h0 (D,OD(d)) =

{
χD − 1 d = 1,

1
2κd(d− 1) + χD d ≥ 2.

(3.29)

Assuming that every smooth curve of degree Q = κd is a complete intersec-
tion, we conclude that

GV
(gC(κd))
κd =

{ 1
2χD(χD − 1) d = 1,

(−1)
1

2
κd(d−1)χD h0 (D,OD(d)) d ≥ 2,

(3.30)

where for d = 1 we took into account the fact that the two linear sections
play a symmetric role.

To calculate GV
(gC(κd)−1)
κd , we first note that the universal curve Cκd is

fibered over Y, with the fiber over a point p being the subset Mp ⊂ M of
curves that intersect p (to avoid cluttering, we now suppress the subscript
denoting the curve class). If the point p is sufficiently generic, which is always
true if χD > 3, we obtain one condition on the linear section as well as on
the degree d section, such that

χ(Mp) =

{
1
2(χD − 1)(χD − 2) d = 1,

(χD − 1)
(
χD − 1 + 1

2κd(d− 1)
)

d ≥ 2.
(3.31)

For the nine hypergeometric cases with a smooth divisor D, using (3.26)
together with χ(C) = χ(Mp)× χ(Y) one then arrives at

GV
(gC(κd)−1)
κd = J1

(
h0 (D,OD(d))− 1

)
+ (2gC(κd)− 2)χD h0 (D,OD(d))

(3.32)

for d ≥ 2, and

GV(gC(κ)−1)
κ =

1

2
J1
(
h0 (D,OD(1))− 1

)
+ (gC(κ)− 1)(χD − 1)χD(3.33)

for d = 1, with J1 = χY(χD − 1).
In Section 4.2 we shall derive the expressions (3.30) and (3.32) using

the relation between PT invariants and rank 0 DT invariants. In particular,
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we shall find that (3.30) holds also for X10, X6,4, X6,6, and (3.32) holds for
those geometries if κd ≥ 4 and J1 is defined in terms of a particular rank 0
DT invariant counting D4-D0 bound states (see below (4.30)).

4. D4-D2-D0 indices from GV invariants

In this section, we explain how to compute the Abelian D4-D2-D0 indices

Ω1,μ(q̂0) introduced in §2.6 in terms of the Gopakumar-Vafa invariants GV
(g)
Q

determined by the topological string partition function. The strategy is to
combine the relation between rank 0 DT invariants and PT invariants, inves-
tigated in the series of mathematical papers [4, 5, 6, 7, 8], with the PT/GV
relation explained in §3.1. Unfortunately, the explicit formulae stated in
Thm 1.1 and Thm 1.2 of [8] are not yet sufficient for our purposes. In Ap-
pendix A, one of the authors proves a generalization of both theorems which
we present in the following two subsections using more physics-friendly no-
tations. The first theorem has a close relationship to the physical picture
based on D6-D6 bound states advocated in earlier works on D4-D2-D0 in-
dices [19, 20, 16, 29, 30, 89, 31], but turns out to be much less powerful
than the second theorem which is fully explicit and allows to compute a
large number of Abelian D4-D2-D0 indices. It also implies the Castelnuovo
bounds on PT and GV invariants, as we explain in §4.2.

4.1. Wall-crossing for rank 0 class

In Theorem 4 from Appendix A, a slightly stronger version of [8, Thm 1.1]
is established by studying the walls of νb,w-instability for rank 0 classes. In
this subsection we reformulate this result by restricting to CY threefolds
with b2(Y) = 1 and vanishing torsion H2(Y,Z)tors = 0, and translating to
the notations of §2.6 and §2.7. To this end, we identify in Eqs. (A.20)-(A.24)

D = rH, β.H = −μ− 1

2
κr2, m = n− 1

6
κr3 = −q0 +

rc2
24

,

Di =(−1)iriH, βi.H = Qi, ni = (−1)imi, i = 1, 2.

(4.1)

Under these identifications, we obtain that, provided the reduced D0-brane
charge q̂0 (2.53) lies in the range

(4.2) 0 ≤ χ(Dr)

24
− q̂0 <

κr

12
min

(
r2

2
− 1

8
, r − 1

2

)
,
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the rank 0 DT invariant (2.54) can be expressed as

(4.3) Ωr,μ(q̂0) =
∑

ri,Qi,ni

(−1)γ12 γ12 PT(Q1, n1) DT(Q2, n2) ,

where (using the notation (2.62))

(4.4) γ12 = r(Q1 +Q2) + n1 + n2 − χDr
,

and the sum runs over integers ri, Qi and ni restricted to satisfy

r1 + r2 = r ,

Q2 −Q1 =μ+ κrr2 ,

n1 + n2 =n− r1Q1 − r2Q2 −
κ

2
rr1r2 ,

(4.5)

and ∣∣∣∣∣ri −
√

r2

4
− 6

rκ

(
χ(Dr)

24
− q̂0

)
+ (−1)i

(r
2
+

μ

rκ

)∣∣∣∣∣ < 1 ,

0 ≤ Qi ≤
3

r

(
χ(Dr)

24
− q̂0

)
+

1

2κ

(μ
r
+

κ

2

(
r + 2(−1)iri

))2
− κr

8
,

ni ≥ −2

3
Qi

(
Qi

κ
+

1

2

)
.

(4.6)

Physically, the r.h.s. of (4.3) can be interpreted as contributions of two-
centered bound states of an anti-D6-brane bound to (Q1, n1) D2-D0 branes,
carrying index PT(Q1, n1), and a D6-brane bound to (Q2, n2) D2-D0 branes,
carrying index DT(Q2, n2), with the D4-brane charge arising from the fluxes
ri on either side.

Unfortunately, the condition (4.2) is so restrictive that the theorem can
only apply, at best, to the most polar term in each component of the modular

vector h1,μ. In particular, for μ = 0 it is valid only for q̂0 =
χ(Dr)
24 where only

Qi = ni = 0 contribute, leading to

(4.7) Ωr,0

(
χ(Dr)

24

)
= (−1)1+χDrχDr

,

where χDr
was defined in (2.62). In practice however, it was observed in

[31, §D] that the formula (4.3) predicts the correct polar terms in many
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examples with r = 1, provided one restricts the sum only to Q1 = n1 = 0.
Using PT(0, 0) = 1, one arrives at the naive Ansatz for polar coefficients in
[31, (5.20)],

(4.8) Ωr,μ(q̂0) = (−1)rμ+n+χDr (rμ+ n− χDr
) DT(μ, n) ,

where n is the integer defined in (2.55). The physical intuition for this Ansatz
was that D4-D2-D0 branes at large volume arise as bound states of a D6-
brane with D2-brane charge μ and D0-brane charge n, and an anti-D6-brane
carrying −r units of D4-brane flux. Unfortunately, it appears difficult to
relax the condition (4.2), and to justify physically or mathematically the
truncation to terms with Q1 = n1 = 0, which appears to work in many
cases.

4.2. Wall-crossing for rank −1 class

In [8, Thm 1.2], one of the authors of the present work obtained a different
formula relating rank 0 and rank 1 DT invariants, which is valid only for
CY threefolds with PicY = Z (hence b2(Y) = 1 and H2(Y,Z)tors = 0). The
formula follows by studying the possible walls for objects of rank −1 class

(4.9) vk = v − e−kH =
[
−1, D + kH, β − 1

2 k
2H2,−m+ 1

6 k
3H3

]
,

in the space of weak stability conditions for k � 1, and applies for arbitrary
D ∈ H2(Y,Z), Poincaré dual to an arbitrary divisor class. Unfortunately,
an explicit lower bound on k was not provided. In Appendix A, restricting to
the case of primitive divisor, which is sufficient for computing Abelian D4-
D2-D0 invariants, a more general formula is derived that does not require
taking k large. Below, we rephrase Theorem 1 from Appendix A using the
same notations as in the previous subsection, and explain how to use it to
compute Abelian D4-D2-D0 invariants from the knowledge of GV invariants.

Main result Let us fix (Q,m) ∈ Z+ × Z, and define the function f :
R+ → R by

(4.10) f(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x+ 1
2 if 0 < x < 1,√

2x+ 1
4 if 1 ≤ x < 15

8 ,

2
3x+ 3

4 if 15
8 ≤ x < 9

4 ,
1
3x+ 3

2 if 9
4 ≤ x < 3,

1
2x+ 1 if 3 ≤ x.
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Figure 5: Left: The blue line represents the curve f(x), above which Theorem
1 applies. The green line is the Castelnuovo line α = 3

4(x+ 1), above which

PT and DT invariants vanish. Below the orange line α =
√
2x, the BMT line

(2.38) does not intersect the parabola w = 1
2b

2 in the (b, w) plane, so the
argument in §A.7 fails. The dotted lines, oriented to the right, indicate the
trajectories induced by spectral flow (Q,m) �→ (Q+κk,m−Qk− 1

2κk(k+1)).
Right: Same diagram in the (x, δ) plane, where δ = m

κ + 1
2x(x + 1). In

these coordinates, Theorem 1 applies when (x, δ) lies below the blue line
δ = −2

3xf(x) +
1
2x(x + 1). The Castelnuovo line, below which PT and DT

invariants vanish, is the horizontal axis while the trajectories induced by
spectral flow are now horizontal lines, oriented to the right.

Note that this function is uniformly bounded by 1
2(x+1) ≤ f(x) ≤ 3

4(x+1)

(see Figure 5, left). Theorem 1 then shows that, whenever x > 0 and f(x) <

α, with x, α defined by15

(4.11) x =
Q

κ
, α = −3m

2Q
,

the stable pair invariant PT(Q,m) can be expressed in terms of invariants

PT(Q′,m′) with Q′ < Q and Abelian D4-D2-D0 invariants Ω1,μ(q̂0). More

precisely,16

15The ratio α is unrelated to the parameter in (2.20). Instead, the variables (x, α)

are the coefficients of the line f (v) defined by Lb,w(v) = 2κQ(w − αb + x) = 0

in (2.38) for the class v = [−1, 0, QH2/κ,−m].
16Translating the formula (A.4) to the notations of this section, one finds that

the index of the Abelian invariant should be μ = Q′ − Q − κ. Then we used the

invariance of Ω1,μ(q̂0) under shifts of μ by κ and the flip of the sign to get (4.12).
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(4.12) PT(Q,m) =
∑

(Q′,m′)

(−1)χ(Q
′,m′)χ(Q′,m′) PT(Q′,m′) Ω1,Q−Q′(q̂′0) ,

where on the right-hand side

χ(Q′,m′) =m−m′ +Q+Q′ − χD ,

q̂′0 =m′ −m− 1

2κ

(
Q′ −Q

)2 − 1

2
(Q+Q′) +

χ(D)

24
,

(4.13)

with χD and χ(D) defined in (2.62) and (2.56), respectively. The sum runs

over pairs of integers (Q′,m′) such that

0 ≤ Q′ ≤ Q+ κ

(
1

2
− α

)
,(4.14)

−Q′2

2κ
− Q′

2
≤ m′ ≤ m+

1

2κ
(Q−Q′)2 +

1

2
(Q+Q′) .(4.15)

Note that the lower bound on Q′ simply follows from vanishing of PT invari-

ants for negative degrees, while the upper bound onm′ similarly corresponds

to vanishing of Abelian invariants for charges spoiling (2.57). On the other

hand, the upper bound on Q′ implies that Q′ < Q, since α > f(x) > 1/2

which shows that (4.12) has a recursive nature.

Mathematically, the equality (4.12) follows by collecting the contribu-

tions from all walls for the Chern vector v0 = (−1, 0, β,−m), between an

empty chamber provided by the BMT inequality and the large volume limit

w → ∞ where the index Ωb,w(v) coincides with PT(Q,m). Schematically, the

formula (4.12) says that anti-D6-brane bound to (Q,m) D2-D0-branes arises

from bound states of anti-D6-branes bound to (Q′,m′) D2-D0-branes and

carrying −1 unit of D4-brane flux, and D4-brane bound to (Q−Q′,m−m′)
D2-D0-branes. The relation (4.12) in principle gives a recursive way of com-

puting the PT invariants if Abelian D4-D2-D0 invariants are known, with

the caveat that the terms (Q′,m′) contributing to the sum may not satisfy

the condition f(x′) < α′.
A crucial observation is that the term (Q′,m′) = (0, 0) with PT(0, 0) = 1

always contributes to the sum (4.12), so one may invert this relation to

extract the Abelian D4-D2-D0 invariant Ω1,Q(q̂0), where m should now be

seen as a function of Q and q̂0 obtained by setting Q′ = 0,m′ = 0 in (4.13),

(4.16) m(Q, q̂0) =
χ(D)

24
− q̂0 −

Q2

2κ
− Q

2
.
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As above, the resulting formula may be used to recursively compute Abelian

D4-D2-D0 invariants in terms of PT invariants, with the same caveat.

In practice, however, the condition f(x) < α is typically not satisfied for

the charges of interest. Indeed, to compute the generating functions (2.58),

we are interested in Q ∈ [0, κ/2] and it is easy to see that for such small

Q, in the best case, the condition is satisfied only for D0-brane charges very

close to the bound (2.57). Fortunately, we can always use the spectral flow

invariance to make Q large enough so that the condition becomes satisfied.

Indeed, for Q ≥ 3κ the condition f(x) < α can be rewritten as

(4.17)
χ(D)

24
− q̂0 <

Q2

6κ
− Q

6
,

and is clearly satisfied if Q is sufficiently large.

Thus, we arrive at the following recipe. To compute Ω1,μ(q̂0), let us

choose k ∈ Z+ such that

(4.18) f(Qk) < −3mk

2Qk
, where mk = m(Qk, q̂0), Qk = μ+ κk.

Then the Abelian index is given by the following formula

Ω1,μ(q̂0) =
(−1)mk+Qk−χD

mk +Qk − χD

[
PT(Qk,mk)

(4.19)

−
∑

(Q′,m′) 
=(0,0)

(−1)χ(Q
′,m′)χ(Q′,m′) PT(Q′,m′) Ω1,Qk−Q′(q̂′0)

]
,

where one should apply (4.13)-(4.15) with (Q,m) replaced by (Qk,mk).

For practical computations, it is of course convenient to choose the minimal

possible value of k satisfying (4.18), because PT invariants are usually known

for small degrees Q only.

Before we proceed in the next section to apply this result to the CY

threefolds listed in Table 1, we spell out two important consequences of the

formula (4.12), which are also proven in Appendix A (see §A.3 and §A.2).

Castelnuovo bound As a consequence of the wall structure established

for the proof of Theorem 1, and using induction on Q, one obtains a Castel-

nuovo-type inequality for PT invariants: namely, for any (Q,m) ∈ Z+ × Z,
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PT(Q,m) = 0 unless

(4.20) m ≥ −C(Q), C(Q) :=

⎧⎪⎨⎪⎩
⌊
Q2

2κ + Q
2

⌋
Q ≥ κ,⌊

2Q2

3κ + Q
3

⌋
0 < Q < κ.

As a result, we can replace the lower bound in (4.15) by −C(Q′) ≤ m′, as
stated in Appendix A. By the DT/PT relation, (4.20) implies the same state-
ment for the DT invariant DT(Q,m), while the PT/GV relation implies the
Castelnuovo bound for GV invariants in (3.9). Note that in terms of (x, α)
defined in (4.11), the bounds in (4.20) take a universal form independent of
κ:

(4.21) α ≤
{

3
4 (x+ 1) x ≥ 1,

x+ 1
2 x ≤ 1.

Since (4.12) provides a way to compute PT invariants in the range
1
2x + 1 < α ≤ 3

4(x + 1) (assuming that Q = κx is large, for the sake of
argument) in terms of PT invariants of lower degree, it follows that for fixed
degree Q, the number of unknown GV invariants is effectively reduced from
Q2/(2κ) to Q2/(3κ). Fixing instead the genus g, the number of constraints
on holomorphic ambiguities from known GV invariants now grows as

√
3κg,

rather than
√
2κg, therefore allowing to fix them up to genus g � 3

4κρ
2

rather than g � 1
2κρ

2 (see footnote 12). Thus, we expect that the additional
constraints from (4.12) will allow to push the direct integration method to
genus gmod � 3

2ginteg, i.e. a factor 3/2 higher than the maximal genus pre-
dicted by (3.24). Unfortunately, this reasoning overlooks the complicated
relation between PT and GV invariants, and in practice the gain in genus
will be slighter smaller (see the last column in Table 1).

Returning to the prescription (4.18), we note that the distance away
from the Castelnuovo bound (4.20) is independent of k,

(4.22) m(Qk) +
Q2

k

2κ
+

Qk

2
= q̂0 −

χ(D)

24
.

In Figure 5 (right), we represent the region of validity of Thm 1 in the

plane (x, δ) where δ = m
κ + Q2

2κ2 + Q
κ , where spectral flow acts by horizontal

translations x �→ x − k, keeping δ fixed. This makes it clear that Thm 1 is
always valid for k ≥ k0 large enough. Experimentally, we shall see in §5 and
§B that the formula (4.19) often gives the correct result for k = k0 − 1 or
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Figure 6: Left: Blue dots indicate values of (x, α) for which the formula (4.19)
turns out to give the correct D4-D2-D0 indices for X5. Red dots instead
indicate values of (x, α) for which (4.19) fails to give the correct result. The
values of (x, α) correspond to (Qk,mk) with k ∈ {k0, k0−1, k0−2} where k0
is the minimal value of k such that (4.18) holds. All red dots lie below the
line α = f(x) shown in blue, and in fact they all lie below the line α = x

2 +1
shown in orange (see Remark 4). Interestingly, there are also some blue dots
lying below this line, which indicates that the condition f(x) < α for the
validity of (4.19) can probably be weakened. Right: same diagram in the
(x, δ) plane.

(less often) k = k0−2, even though the assumptions of Thm 1 are no longer

satisfied, see in particular Figure 6 for the quintic threefold.

Optimal case The formula (4.12) becomes particularly simple in cases

where the sum over (Q′,m′) �= (0, 0) becomes empty. This occurs provided

(Q′,m′) = (0, 0) is the only solution to (4.14), (4.15) — in this case we call

the pair (Q,m) optimal. A sufficient set of conditions is that

(4.23) α > f(x), Ψ(x, 1/κ, α) < 0, Ψ
(
x, x− α+ 1

2 , α
)
< 0,

where

(4.24) Ψ(x, x′, α) :=
1

2
(x− x′)2 +

1

2
(x+ x′)− 2

3
αx+

1

2
x′2 +

1

2
x′

is the difference between the upper and lower bounds in (4.15), after ex-

pressing the result in terms of x = Q/κ and x′ = Q′/κ and rescaling by κ.

The values x′ = 1/κ and x′ = x − α + 1
2 correspond to the minimal and

maximal values Q′ = 1 and Q′ = κ(12 − α) to be ruled out. The condition
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Ψ (x, 1/κ, α) < 0 can be equivalently written as

(4.25)
3

4
(x+ 1)− 3(x− 1)

2xκ
+

3

2κ2x
< α.

This shows that the condition (4.25) can only be satisfied close to the Castel-

nuovo bound. The last condition in (4.23) turns out to be implied by the

condition α > f(x) when x > 1
4(5 +

√
7) � 1.91. When the conditions

in (4.23) are obeyed (or more generally when (Q,m) is optimal), (4.12) sim-

ply reduces to

(4.26) PT(Q,m) = (−1)m+Q−χD
(
m+Q− χD

)
Ω1,Q(q̂0) .

In fact, using the invariance of Ω1,μ(q̂0) under spectral flow as above,

one can always choose the spectral flow parameter k large enough such that

(Qk,mk) is optimal. In particular, this implies that the ratio

(4.27) Ω1,Q(q̂0) = (−1)mk+Qk−χD
PT(Qk,mk)

mk +Qk − χD
,

must stabilize to a constant value for k larger than a suitable k1 ≥ k0.

It is also possible to use these relations to derive general formulae for

GV invariants near the Castelnuovo bound. Let us choose, for example,

Q = m = 0. Then using (4.26) and (4.7) with r = 1, we find that the

optimality condition is satisfied for any k ≥ 2, leading to17

(4.28) PT
(
κk,−1

2 κk(k + 1)
)
= (−1)

1

2
κk(k−1)

(
χD + 1

2 κk(k − 1)
)
χD .

Since the second argument on the left-hand side is equal to 1 − gC(κk),

one can use the relation (3.11) to obtain the GV invariant for Q = κk and

maximal genus,

(4.29) GV
(gmax(κk))
κk = (−1)

1

2
κk(k−1)

(
χD + 1

2 κk(k − 1)
)
χD .

This reproduces the result which was obtained by heuristic arguments in

(3.30) for d = k ≥ 2.

17This result reduces to the first part of Theorem 3 for the quintic upon setting

μ = κk, κ = χD = 5.
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Similarly, choosing Q = 0 and m = 1, we find18

(4.30)
PT
(
κk,−1

2 κk(k + 1) + 1
)

= (−1)
1

2
κk(k−1)+1

(
χD + 1

2 κk(k − 1)− 1
)
J1 ,

where J1 := (−1)χD+1Ω1,0

(
χ(D)
24 − 1

)
. Using (3.12), we conclude that the

GV invariant for Q = κk and submaximal genus is given by

GV
(gmax(κk)−1)
κk =(−1)

1

2
κk(k−1)

[
−1

2
κ2k4χD − 1

2
κk2
(
2χ2

D − κχD + J1
)

+κk

(
J1
2

− χ2
D

)
+ J1(1− χD)

]
.

(4.31)

This reproduces the result obtained by heuristic arguments in (3.32), al-

though the constant J1 is not determined by the present computation. In

the examples in §5 and §B, we shall see that J1 = χY(χD−1) when the divi-

sor D is smooth, which is the case when χD ≥ 4, but that it may otherwise

differ from this value.

5. Testing the modularity of rank 0 DT invariants

In this section, we apply the results explained in §4.2 to determine the

generating series of Abelian D4-D2-D0 indices for several examples of one-

parameter threefolds, including X5 (the quintic in P4), X10 (the decantic in

weighted projective space P4
5,2,1,1,1 and X4,2 (a complete intersection of de-

gree (4, 2) in P5). In particular, we rigorously compute the polar coefficients

and a large number of non-polar coefficients, and confirm the modularity

property predicted by string theory. For X5 our results coincide with those

in [19], for X10 we confirm the proposal in [30] (which deviates from the

original computation in [20]), while for X4,2 we determine the generating

series that was previously unknown. In Appendix B, we give similar results

for all other hypergeometric models, except for X3,2,2 and X2,2,2,2 for which

our current knowledge of GV invariants is still insufficient to determine (or

just guess) the polar terms.

18By a case-by-case analysis, one checks that the optimality conditions are veri-
fied when k ≥ 2 for X4,3, X3,3, X4,2, X3,2,2, X2,2,2,2, when k ≥ 3 for X8, X4,4, X6,2,
and when k ≥ 4 for X10 and X6,6.
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5.1. Basis of vector-valued modular forms

As explained in §2.6, string theory predicts that the generating series (2.58)

of Abelian D4-D2-D0 indices (for brevity we drop the rank index 1)

(5.1) hμ(τ) =
∑

q̂0≤χ(D)

24

Ω1,μ(q̂0) q
−q̂0

should behave under SL(2,Z) transformations as a vector-valued modular

form of weight −3/2, transforming in the Weil representation of the lattice

Z[κ]. The space M1(Y) of such functions has dimension np
1 − nc

1, where np
1

is the number of polar coefficients, corresponding to terms with negative

power q̂0 > 0 in (5.1), and nc
1 is the number of linear relations which these

coefficients must satisfy, in order for a modular form to exist (the numbers

np
1 and nc

1 are listed in Table 1).

An overcomplete basis of M1(Y) can be constructed as follows [31]. We

define the theta series

(5.2) ϑ(κ)
μ (τ) =

⎧⎨⎩(−1)μ+
κ

2

∑
k∈Z+μ

κ
+κ

2

q
κ
2 k2

κ even,

−iκ
∑

k∈Z+μ

κ
+κ

2

(−1)κk k q
κ
2 k2

κ odd.

They satisfy

(5.3) ϑ(κ)
μ (τ) = ϑ

(κ)
μ+κ(τ) = ϑ

(κ)
−μ(τ)

and transform under τ �→ aτ+b
cτ+d as vector-valued modular forms of weight

1/2 and 3/2, respectively. For κ = 1, we note that ϑ
(1)
μ (τ) = η3 where η(τ)

is the Dedekind theta function. More generally, for μ = 0 one has

(5.4) ϑ
(κ)
0 (τ) =

⎧⎨⎩2(−1)
κ

2
η(2κτ)2

η(κτ)
κ even,

κ(−1)
κ−1

2 η(κτ)3 κ odd.

We claim that any element of M1(Y) is a linear combination of the form

(5.5) hμ(τ) =

�0∑
�=0

k�∑
k=0

a�,k E
�w�/4�−ε�−3k
4 (τ)E2k+ε�

6 (τ)
D�θ

(κ)
μ (τ)

η4κ+c2(τ)
,
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where E4(τ) and E6(τ) are the standard Eisenstein series, and D� is the

iterated Serre derivative19, acting on holomorphic modular forms of weight

w through Dw = q∂q − w
12E2, where E2 is the normalized quasi-modular

Eisenstein series. Finally, the integers k�, ε�, w� in (5.5) are given by

k� = �w�/12� − δ
(12)
w�−2, ε� = δ

(2)
w�/2−1,

w� = 2κ+
1

2
c2 − 3− 2+ δ(2)κ ,

(5.6)

where δ
(n)
x is equal to 1 if x = 0 mod n and 0 otherwise, and 0 should

be chosen sufficiently large so that
∑�0

�=0(k� + 1) is not smaller than the

dimension of the space M1(Y). The coefficients a�,k are not unique in general

(since the basis is overcomplete), but the modular form hμ(τ) is uniquely

fixed by providing np
1 − nc

1 of its Fourier coefficients (for example the polar

coefficients). Having determined a suitable set of coefficients a�,k, it is then

straightforward to expand hμ(τ) to arbitrary order, and obtain a prediction

for an infinite number of Abelian D4-D2-D0 invariants.

5.2. X5

Abelian D4-D2-D0 invariants for the quintic threefold were first studied in

[19], using a different basis of modular forms and an ingenuous but non-

rigorous method for computing the polar terms. In this case, κ = 5, np
1 = 7

and nc
1 = 0 so the vector-valued modular form is uniquely determined by

computing 7 of its coefficients. Using the overcomplete basis of the previous

subsection, the result of [19] can be written as

hμ =
1

η70

[
−222887E8

4 + 1093010E5
4E

2
6 + 177095E2

4E
4
6

35831808

+
25
(
458287E6

4E6 + 967810E3
4E

3
6 + 66895E5

6

)
53747712

D

+
25
(
155587E7

4 + 1054810E4
4E

2
6 + 282595E4E

4
6

)
8957952

D2

]
ϑ(5)
μ ,

(5.7)

19Rather than the standard iterated Serre derivative, one can just as well use
its improved version introduced in [90, Eq (35)] or Rankin-Cohen brackets. Un-
fortunately this does not lead to smaller denominators in the resulting coefficients
a�,k.



100 Sergei Alexandrov et al.

In view of the symmetry properties (5.3), there are only three distinct com-
ponents, with the following expansion:
(5.8)

h0 =q−
55

24

(
5− 800q + 58500q2 + 5817125q3 + 75474060100q4

+ 28096675153255q5 + 3756542229485475q6 + 277591744202815875q7

+ 13610985014709888750q8 + 490353109065219393125q9 + . . .
)
,

h1 =q−
55

24
+ 3

5

(
0 + 8625q− 1138500q2

. . . . . . . . . .
+ 3777474000q3 + 3102750380125q4

+ 577727215123000q5 + 52559194851824125q6

+ 2990604504777589125q7 + . . .
)
,

h2 =q−
55

24
+ 2

5

(
0 + 0q− 1218500q2

. . . . . . . . . .
+ 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6

+ 1374043315791020500q7 + . . .
)
.

Here and elsewhere, the polar coefficients are underlined. Using Eq. (4.19)
and GV invariants up to genus 53, we have reproduced all terms up to (and
including) orders q9, q5 and q6 in these expansions, respectively.20 In many
cases, we find that (4.19) holds even though the assumption f(x) < α is not
obeyed (see Figure 6), in particular we can also reproduce the coefficients of
q6 in h1 and q7 in h2 using (4.19) with k = k0 − 1, where k0 is the minimal
value of k for which (4.18) is satisfied.

As already noted in [31], the naive Ansatz (4.8) with r = 1 gives the
correct polar terms in this case. In addition, it also correctly predicts the
O(q2) terms in h1 and h2, as indicated with dotted underline. The coefficient
of the order O(q3) term in h0 can be understood as

(5.9) 5817125 = −2DT(0, 3) + DT(0, 2) + DT(1, 1)2 ,

where the first term is the naive ansatz prediction, the second is a correc-
tion from the locus where the 3 D0-branes are aligned, and the last term

20For the coefficients up to q5 in h0, q
2 in h1 and q3 in h2, the relevant value of

(Q,m) is optimal and the formula (4.12) has only one non-vanishing contribution
(or none when the coefficient is zero). For the terms of order q6, q7, q8, q9 in in h0,
there are contributions from 2,3,4,5 walls, respectively. For the order q3, q4, q5, q6, q7

in h1, there are contributions from 2,3,4,4, 5 walls, respectively. For the terms of
order q4, q5, q6, q7 in in h2, there are contributions from 2,4,3,3,5 walls, respectively.
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Table 2: GV invariants GV
(gC(Q)−δ)
Q for X5, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 0 2875
2 2 0 0 609250

3 3 0 0 609250 317206375
4 4 0 8625 534750 3721431625 242467530000
5 6 10 1100 49250 −15663750 75478987900 12129909700200

6 7 0 −34500 −3079125 −7529331750 3156446162875 871708139638250
7 9 0 0 4874000 1300955250 −1917984531500 245477430615250

8 11 0 0 −6092500 −1670397000 2876330661125 −471852100909500
9 13 0 60375 5502750 18763368375 −12735865055000 1937652290971125

10 16 −50 −5700 −286650 50530375 −454092663150 150444095741780
11 18 0 −86250 −7357125 −29938013250 22562306494375 −4041708780324500

12 21 0 0 −13403500 −3937166500 8725919269125 −2017472506595500
13 24 0 0 −15840500 −4638330000 10690009494250 −2578098061480250

14 27 0 −138000 −10177500 −52227066000 42752384997625 −8759526658670500
15 31 −100 −9200 −342400 136695125 −1214106563650 484402370601245

16 34 0 181125 11178000 70714095125 −60120995398500 13182681427726625
17 38 0 0 −28025500 −7761538500 20623428936750 −5693356905665000

18 42 0 0 31681000 8578113250 −23636174920000 6726357908107750
19 46 0 −258750 −10246500 −103897578000 92567501962875 −22247603793898250

20 51 175 9700 113650 −271460000 2362533313525 −1059131220525950
21 55 0 319125 7158750 129691149375 −118821918509250 30276261813046500

22 60 0 0 48740000 11680440750 −37863219131500 12130764520281750
23 65 0 0 53614000 12356541750 −41972283930000 13849264699781000

24 70 0 422625 −2829000 174040666500 −165847969399750 46048552308175750
25 76 275 1950 −261225 −437171250 3908290893900 −1955377337896550

26 81 0 −500250 14145000 −207540563250 202764143836375 −59568660504287750
27 87 0 0 75547000 14268228250 −60651049880500 22529431755767500

28 93 0 0 −81639500 −14474860500 65883050745250 −25213918522757500
29 99 0 629625 −40175250 264127092375 −267394402192000 85401556513695875
30 106 −400 20800 −111400 631692625 −5861793912900 3278134921975475

corresponds to a bound state of D6-D2 and D6-D2-branes [29]. It would be

interesting to have a similar bound state interpretation for other non-polar

coefficients.

Using modularity we can also predict GV and PT invariants of arbitrary

degree, provided they are close enough to the Castelnuovo bound. In Table 2,

we list the GV invariants with δ = gC(Q)− g ≤ 5, and similarly in Table 3

we list the PT invariants with δ = m−mC(Q) ≤ 5, where gC(Q) and mC(Q)

were defined in (3.9) and (3.12), respectively. Using these GV invariants, we

have in principle sufficiently many boundary conditions to fix the holomor-

phic ambiguity up to genus 69. Due to limited computer resources, we have

currently pushed up the direct integration to genus 64, and confirmed the

predictions of modularity up to that order.
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Table 3: Stable pair invariants PT(Q,mC(Q) + δ) for X5, assuming
modularity

Q mC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 0 0 2875 −5750 8625 −11500 14375
2 −1 0 0 609250 2912875 −14703500 38888250

3 −2 0 0 609250 317206375 1117181000 −2098275750
4 −3 0 8625 569250 3722552875 244219693000 609122565875

5 −5 10 1200 58500 −15336250 75441932225 12282361758020
6 −6 0 −34500 −3395375 −7552124750 3111341190625 884181641560000

7 −8 0 0 4874000 1359443250 −1904746390000 230184283873875
8 −10 0 0 −6092500 −1767877000 2852214003125 −437477532060500

9 −12 0 60375 6831000 18887370000 −12396985924250 1736738444379375
10 −15 −50 −7200 −468000 40719875 −452993138850 140467307991350

11 −17 0 −86250 −10117125 −30201650750 21720393561500 −3466439656488000
12 −20 0 0 −13403500 −4419692500 8583611403125 −1740547789348750

13 −23 0 0 −15840500 −5303631000 10490837623750 −2175677447038750
14 −26 0 −138000 −17077500 −52884636000 40335754941625 −6932684543525000
15 −30 −100 −15200 −1053000 98891125 −1207584961600 421450499252120

16 −33 0 181125 22770000 71772279125 −55849465988500 9821365434297875
17 −37 0 0 −28025500 −9723323500 20027962736250 −4351425496412500

18 −41 0 0 31681000 11049231250 −22889100270000 5004138750546250
19 −45 0 −258750 −33016500 −105769272000 83774260263375 −15020907593198000

20 −50 175 27200 1930500 −186148000 2339695863100 −842900254597650
21 −54 0 319125 40986000 132211590000 −105493513413000 19064998024136500

22 −59 0 0 48740000 17236800750 −36241075427500 8050136250878750
23 −64 0 0 53614000 19004677750 −40055925472500 8920421250973750

24 −69 0 422625 54648000 177541278000 −142726517485750 25997724680535000
25 −75 275 43200 3100500 −302490500 3849177065100 −1404833757662750

26 −80 0 −500250 −64894500 −211538544000 170651270906875 −31197269617418250
27 −86 0 0 75547000 26960124250 −57222750675000 12836703751401250

28 −92 0 0 −81639500 −29169970500 61991313231250 −13924560001520000
29 −98 0 629625 81972000 268200654000 −217192526608750 39863177843487000

30 −105 −400 −63200 −4563000 447918625 −5736028567600 2107250636494125

5.3. X10

We now turn to the decantic in P4
5,2,1,1,1, which was first studied in [20] and

revisited in [30]. In this case, κ = 1, np
1 = 2 and nc

1 = 0 so the scalar modular
form h := h0 is uniquely fixed by 2 coefficients. In [20], it was suggested that

h
?
=

541E4
4 + 1187E4E

2
6

576 η35

=q−
35

24

(
3− 576q + 271704q2 + 206401533q3 + . . .

)
.

(5.10)

The same result was found in [31] using the naive Ansatz (4.8). Instead,
assuming that the BMT inequality is satisfied, Eq. (4.19) predicts that the
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coefficient of the subleading polar term should be −575, as suggested in [30].
In fact, using (4.19) and GV invariants up to genus 47, we can check all the
terms up to order q11 in the resulting expansion,

h =
203E4

4 + 445E4E
2
6

216 η35

(5.11)

=q−
35

24

(
3− 575q + 271955q2 + 206406410q3 + 21593817025q4

+ 1054724115956q5 + 32284130488575q6 + 712354737460415q7

+ 12285858824682770q8 + 174458903522212025q9

+ 2114022561929255740q10 + 22434520426025264925q11

+ 212611407819858981640q12 + · · ·
)
.

Here and in Appendix B, the double-underline underscores the fact that the
polar coefficient deviates from the naive ansatz (4.8). Interestingly, applying
Eq. (4.19) with k = k0− 1, where k0 is the minimal value for which (4.18) is
satisfied, one can reproduce the expansion (5.11) to even higher order q14.

As discussed in [30], the deviation from the naive ansatz arises because
the moduli space of D4-D0 bound states is in general not a bundle over the
moduli space of the D0-brane, which is Y itself. When the D0-brane is at a
generic position, the requirement that it should belong to the divisor imposes
one condition on the defining equation of the divisor. Since the divisor is the
vanishing locus of a linear polynomial in the three homogeneous coordinates
of weight one, the moduli space of divisors containing a given generic point
on Y is P1. However, when the D0-brane lies at the special point where
all homogeneous coordinates of weight one vanish, it no longer imposes any
condition on the divisor, whose moduli space is then enhanced to P2. Hence,
the index for a D4-brane bound to a single D0-brane should be [30]

χ(P1)× (χY − χ(pt)) + χ(P2)× χ(pt) = −575 ,(5.12)

in agreement with (5.11). Ignoring the effect of the special point, one would
instead find χ(P1)× χY = −576, as predicted by the naive ansatz.

While the maximal genus attainable by the standard direct integration
method is 50, using modularity, we can predict GV invariants close to the
Castelnuovo bound to arbitrary genus (see Table 4), and provide sufficiently
many boundary conditions to push the direct integration method, in prin-
ciple, up to genus 70.
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Table 4: GV invariants GV
(gC(Q)−δ)
Q for X10, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 2 3 280 231200
2 4 −12 −1656 −537976 207680960 12215785600

3 7 −18 −2646 −1057570 630052679 −46669244594 1264588024791
4 11 27 4060 1825541 −1268283512 125509540304 −5611087226688
5 16 39 5730 2814100 −2139555052 244759232792 −13239429980228

6 22 −54 −7507 −4004506 3254742758 −416588796648 25859458639950
7 29 −72 −9193 −5375708 4629222449 −655954806090 45976776864607

8 37 93 10554 6910207 −6280307986 981118531775 −77100442475920
9 46 117 11320 8597590 −8227101620 1413894771755 −124031731398850

10 56 −144 −11185 −10438670 10490492480 −1979933144970 193210634123311
11 67 −174 −9807 −12450166 13093396333 −2709028151150 293124778727973

12 79 207 6808 14669923 −16061324744 3635467145440 −434786567257064
13 92 243 1774 17162672 −19423381916 4798433274180 −632285283576376

14 106 −282 5745 −20026330 23213797570 −6242490557180 903422424012068
15 121 −324 16235 −23398840 27474114305 −8018190890070 1270440806044980

5.4. X4,2

Finally, we turn to the degree (4, 2) complete intersection in P5. For this

model κ = 8 and there are 15 polar coefficients with one modular con-

straint. In [31] it was found that the naive Ansatz (4.8) is incompatible with

modularity. Using (4.19) and GV invariants up to genus 50, we find that the

first terms of the generating function are given by

h
(p)
0 =q−

8

3

(
−6 + 880q− 60192q2 − 780416q3 + 23205244196q4

(5.13)

+ 36880172393344q5 + 10924546660884800q6

+ 1454816640629235200q7 + · · ·
)
,

h
(p)
1 =q−

8

3
+ 9

16

(
0− 5120q− 1

30 PT(25,−49)q2

+ 1
29 (222720 + PT(25,−48))q3 + · · ·

)
,

h
(p)
2 =q−

8

3
+ 1

4

(
0 + 0q + 1

33 PT(26,−53)q2 − 1
32 PT(26,−52)q3 + · · ·

)
,

h
(p)
3 =q−

8

3
+ 1

16

(
0 + 0q + 7680q2 + 1

35 PT(27,−56)q3 + · · ·
)
,

h
(p)
4 =q−

8

3

(
0 + 12q− 2112q2 − 34689216q3 + 1

37 PT(28,−59)q4 + · · ·
)
.



Quantum geometry, stability and modularity 105

Although not all polar terms are found in this way, the result (5.13) provides
an overdetermined set of coefficients which are compatible with the modular
constraint and sufficient to fix uniquely the corresponding modular form. It
is found to be

hμ =
1

η88

[
− 827243E7

6

13060694016

− E4(−71601885840E9
4−69248772786E6

4E
2
6+131750318292E3

4E
4
6+14988448525E6

6)
2190387225600 D

+ (−7850108795E8
4E6−3026319343E5

4E
3
6+15844024271E2

4E
5
6)

30422044800 D2

+ (41784458605E9
4+14762282727E6

4E
2
6−68049440469E3

4E
4
6−1016731100E6

6)
19013778000 D3

− 4(173171E7
4E6+342266E4

4E
3
6+44435E4E5

6)
229635 D4

+16(−93844535E8
4−89437029E5

4E
2
6+93510063E2

4E
4
6)

132040125 D5
]
ϑ(8)
μ ,

(5.14)

and produces the following expansions

h0 =q−
8

3

(
−6 + 880q− 60192q2 − 780416q3 + 23205244196q4

(5.15)

+ 36880172393344q5 + 10924546660884800q6

+ 1454816640629235200q7 + . . .
)
,

h1 =q−
8

3
+ 9

16

(
0− 5120q + 668160q2 + 112032256q3 + 2015342615552q4

+ 1027768507417600q5 + 184583137843579904q6

+ 17979440506308718592q7 + . . .
)
,

h2 =q−
8

3
+ 1

4

(
0 + 0q + 276864q2 − 32485376q3 + 176489687424q4

+ 168522803580928q5 + 39373360484128256q6

+ 4527688807584194560q7 + . . .
)
,

h3 =q−
8

3
+ 1

16

(
0 + 0q + 7680q2 − 32203776q3 + 27746555904q4

+ 53778203675136q5

+ 15108125739695104q6 + 1937976067726382592q7 + . . .
)
,
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Table 5: GV invariants GV
(gC(Q)−δ)
Q for X4,2, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5
1 1 0 1280
2 2 0 0 92288
3 3 0 0 2560 15655168
4 4 0 −8 −672 17407072 3883902528
5 5 0 0 7680 16069888 24834612736 1190923282176
6 6 0 0 276864 12679552 174937485184 23689021709568
7 7 0 7680 591360 −285585152 2016330670592 494602061689344
8 9 15 1520 67208 −8285120 −46434384200 37334304102560
9 10 0 −25600 −2270720 370290688 −4031209095680 1103462757073920

10 12 0 0 1384320 117390080 528559731712 −344741538150784
11 14 0 0 −46080 −160005120 −109083434240 163217721434624
12 16 0 −96 −12096 208486080 49221875968 −145360041245120
13 18 0 0 −61440 −223475712 −160179161088 272915443716096
14 20 0 0 2491776 175162624 1228486889728 −1047846937829632
15 22 0 −56320 −4428800 1220514304 −16165844458240 7742999973263360
16 25 84 7408 286784 −30323216 −231113426452 341194684288608
17 27 0 71680 5002240 −1685727232 22238429571584 −11254527777976576
18 30 0 0 4152960 230535424 2276356656640 −2136509421094912
19 33 0 0 130560 507426816 386536492032 −775389100867584
20 36 0 −240 −23808 626523936 144150871104 −587797370270104
21 39 0 0 161280 632463360 482500187136 −1002354648247296
22 42 0 0 6367872 217984256 3670593912832 −3643185915136000
23 45 0 133120 5255680 −3616804864 46617513355264 −26329088088999936
24 49 180 8240 90016 −91088144 −597217698472 974876677046816
25 52 0 −158720 −4172800 4443311104 −56810684083200 33070947498452480
26 56 0 0 9136512 71061760 5412945197824 −5609947543679488
27 60 0 0 −276480 −1095613440 −818893387776 1871635810564608
28 64 0 −480 −22848 1324638144 242234826816 −1337626038427488
29 68 0 0 −322560 −1278422016 −943519552512 2226739820757504
30 72 0 0 12458880 −289968896 7510718536448 −8087071198417408
31 76 0 −250880 5058560 7256038912 −93671359907840 59478452149884928
32 81 324 −5200 −169696 −165887120 −1137829570120 1982002329031968
33 85 0 286720 −10846720 −8197510144 108071476324864 −70629413377719296
34 90 0 0 16334976 −958134016 9978853510144 −11133687621246976

h4 =q−
8

3

(
0 + 12q− 2112q2 − 34689216q3 + 10834429824q4

+ 36099879476640q5 + 10900431340916352q6

+ 1454331023779312896q7 + . . .
)
.

Furthermore, coefficients of q2, q3 in h0, q
2, q3, q4 in h1, up to q5 in h2, q

3, q4,

q5 in h3, and q4 in h4 are also reproduced by (4.19) with k = k0 − 1. Thus,

there is overwhelming evidence that (5.14) is correct. While the maximal

genus attainable by the standard direct integration method is 50, using

modularity we can predict GV invariants close to the Castelnuovo bound

to arbitrary genus (see Table 5), and provide sufficiently many boundary

conditions to push the direct integration method up to genus 64.
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6. Discussion

In this work, we have exploited a triangle of relations between Gopakumar-

Vafa invariants GV
(g)
Q , which determine the topological string partition func-

tion on a CY threefold Y, Pandharipande-Thomas invariants PT(Q,m)
which count bound states of a single anti-D6-brane with Q D2 and m D0
branes, and D4-D2-D0 invariants Ωr,μ(q̂0), which count BPS black holes
with r units of D4-brane charge along an ample divisor D, and D2-D0 brane
charge determined by μ and q̂0. Mathematically, these invariants count em-
bedded curves, stable pairs and Gieseker-stable coherent sheaves supported
on D, respectively. While the relation between GV and PT invariants is stan-
dard [11], and relations between GV invariants and D4-D2-D0 indices were
first proposed in [15], we used a novel explicit formula (4.19) proven in Ap-
pendix A, which applies for one-parameter CY threefolds with PicY = ZH
(or more generally, CY threefolds satisfying Assumption (*) in Prop. 2) and
for r = 1 unit of D4-brane charge. We applied this formula for the 13 CY
threefolds of hypergeometric type, for which we have computed GV invari-
ants (and therefore PT invariants) to relatively high genus using the direct
integration method of [13].

For most models, we could rigorously compute the first few coefficients in
the generating series of Abelian D4-D2-D0 invariants, including both polar
and non-polar terms, and find a unique vector-valued modular form which
reproduces all of them, providing a striking confirmation of the modular-
ity properties predicted by string theory. These results also provide indirect
support for the BMT inequality which is assumed in the derivation of (4.19),
in cases where it is not yet known to hold. For X3,3, X4,3, X3,2,2 and X2,2,2,2,
we could not compute sufficiently many terms rigorously to uniquely fix the
vector-valued modular form, but in the first two cases we could determine a
unique candidate which agrees with the formula (4.19) for many coefficients,
albeit outside the known regime of validity for this formula. For X3,2,2 and
X2,2,2,2, our current knowledge of GV invariants is not sufficient to iden-
tify the modular form with sufficient confidence. Conversely, in cases where
the vector-valued modular form could be identified, we used these modu-
lar predictions to determine GV invariants close to the Castelnuovo bound
for arbitrarily high genus. These results provide new boundary conditions
for the direct integration method, which in principle allow to reach higher
genus than hitherto possible (in practice, some computational limitations
need to be overcome in order to reach such high genera). The case of X4,3

is particularly noteworthy, as it requires combining information from di-
rect integration, modularity and wall-crossing to go beyond the restrictions
imposed by each of these methods separately.
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These results raise several natural questions. First, it is intriguing that
the naive Ansatz (4.8), which was proposed as an educated guess in [31],
so often manages to produce the correct polar terms. As discussed in §4.1,
a similar result (4.3) arises by studying the chamber structure of rank 0
DT-invariants in the space of weak stability conditions. Unfortunately, the
walls can only be controlled under the very restrictive assumption (4.2)
which in practice limits its use to the most polar terms. It would be very
interesting to relax the condition (4.2), but this seems to require a stronger
bound on ch3 than provided by the standard BMT inequality. Physically,
such a result would give a clear physical origin of the polar coefficients in
terms of bound states of D6-D6-branes, as proposed in [16]. Instead, the
formula (4.12) expresses the spectrum of anti-D6-branes as a sum of bound
states of D4-D2-D0 branes and anti-D6-branes with lower D4-D2-D0 brane
charge, and does not provide any insight on the micro-structure of D4-D2-D0
bound states by themselves.

A second question is, why on earth should the generating series of
Abelian D4-D2-D0 invariants be modular. Of course, physics gives a clear
reason, by identifying them with the elliptic genus of the
(0, 4)-superconformal field theory obtained by wrapping an M5-brane on
the divisor D. From the mathematics viewpoint however, modularity is still
largely mysterious. For non-compact CY threefolds of the form Y = KS

where S is a complex projective surface, the generating series of Abelian
D4-D2-D0 invariants supported on the divisor S is given by Göttsche’s for-
mula for the Euler number of the Hilbert scheme of points on S [91], which
is manifestly modular. For K3-fibered CY threefolds, the modularity of ver-
tical D4-D2-D0 indices (counting D4-branes supported on a K3-fiber) can be
shown to follow from Göttsche’s formula for the Hilbert scheme of points on
K3 and from the modularity of the generating series of Noether-Lefschetz
numbers determined by the fibration [41]. In our generating series (5.5) of
Abelian D4-D2-D0 invariants, it is tempting to identify the factor 1/ηκ+c2

as coming from the Hilbert scheme of points on the divisor D, and the re-
mainder as the generating series of some Noether-Lefschetz-type numbers
taking into account the moduli of the divisor D ⊂ Y equipped with a line
bundle [5]. Eventually, one would hope that modularity can be derived from
the existence of an underlying vertex operator algebra acting on the coho-
mology of the moduli space of semi-stable sheaves, similar to the case of
Hilbert scheme of points on surfaces [92].

Third, it would be very interesting to generalize this approach to the
case of non-Abelian D4-D2-D0 indices, where the generating series are ex-
pected to be mock modular. While the relation between rank 1 and rank
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0 DT invariants from [8, Thm 1.2] covers this case, it requires taking the
spectral flow parameter to be large enough, with unspecified lower bound.
Nonetheless, we expect that the approach in Appendix A can be generalized
and used to compute polar coefficients for r > 1 as well. The strategy out-
lined in [31] can then be used to construct a suitable mock modular series
(using the generating series of Hurwitz class numbers to cancel the modu-
lar anomaly in the r = 2 case). In a subsequent work [93], we apply this
strategy for the models X8 and X10 at rank r = 2 and verify the mock
modular properties predicted in [22, 23, 24, 49]. It would also be desirable
to generalize this approach to other classes of one-parameter CY threefolds
(such as freely acting orbifolds of hypergeometric models, or complete in-
tersections in Grassmannians or Pfaffians), and to the CY threefolds with
2 or more Kähler parameters. In particular, we expect an interesting inter-
play between the modularity of D4-D2-D0 invariants and the modularity
associated to elliptic fibrations [94, 95, 96].

Finally, having found the generating series of Abelian D4-D2-D0 in-
variants, it is now straightforward to extract the asymptotic growth of the
Fourier coefficients, and produce a Rademacher-type series which computes
them explicitly [97, 98, 99, 21]. It would be very interesting to reproduce
these microstate degeneracies from localization in supergravity, in analogy
to cases with N = 8 or N = 4 supersymmetry [100, 101, 102, 103, 104] (see
[105, 106, 107] for some progress in this direction). We hope to return to
these issues in near future.

Appendix A. New explicit formulae, by S. Feyzbakhsh

Let (Y, H) be a smooth polarised Calabi-Yau threefold (i.e. KY
∼= OY and

H1(Y,OY) = 0) with Pic(Y) = Z.H satisfying the BMT conjecture. In
§A.1, we improve the result of [8, Theorem 1.2] for rank zero classes with
minimal D4-brane charge ch1 = H and obtain, under some assumptions, an
explicit formula for the stable pair invariants PTm,β in terms of rank zero
DT invariants and stable pair invariants PTm′,β′ for β′.H < β.H. In §A.2,
we explain how this result can be inverted to determine rank 0 DT invariants
with minimal D4-brane charge from stable pair invariants. In §A.3, we apply
the wall-crossing argument for Theorem 1 to establish a Castelnuovo-type
bound for PT invariants, and compute the PT invariants saturating this
bound explicitly for the quintic threefold. In §A.4, we extend Theorem 1 to
a special case where non-primitive wall-crossing occurs. In §A.5, we state a
generalisation of Theorem 1 under the weaker assumption (�) that H3 di-
vides H ′.H2 for all H ′ ∈ Pic(Y). Finally, in §A.6, we strengthen [8, Theorem
1.1] under assumption (�). The proofs of these results are collected in §A.7.
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Notation: In this section, we label the charges by the Chern character (rather
than the Mukai vector), so for instance ΩH(v) countsH-Gieseker semi-stable
sheaves of Chern character v. Furthermore, for readability we decompose v
into its components in H0(Y,Z), H2(Y,Z), H4(Y,Q) and H6(Y,Q). For
example, v = (−1, 0, β,−m) stands for v = −1 + β − m. We also use the
notation ch≤2E for the projection of chE on

H0(Y,Z)⊕H2(Y,Z)⊕H4(Y,Q).

A.1. Stable pair invariants from rank 0 DT invariants with
minimal D4-brane charge

For any β ∈ H2(Y,Z) (which can also be regarded as a class in H4(Y,Z)
by Poincaré duality), we define the integer

(A.1) C(β) :=

⎧⎪⎨⎪⎩
⌊

2
3H3 (β.H)2 + β.H

3

⌋
if β.H < H3,⌊

1
2H3 (β.H)2 + β.H

2

⌋
if H3 ≤ β.H,

which determines the Castelnuovo bound as we explain below. Consider the
function

(A.2) f(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x+ 1
2 if 0 < x < 1,√

2x+ 1
4 if 1 < x < 15

8 ,

2
3x+ 3

4 if 15
8 ≤ x < 9

4 ,
1
3x+ 3

2 if 9
4 ≤ x < 3,

1
2x+ 1 if 3 ≤ x.

Theorem 1. Fix m ∈ Z and β ∈ H2(Y,Z) such that β.H > 0 and

(A.3) f

(
β.H

H3

)
< − 3m

2β.H
.

Then

Pm,β =
∑

(m′, β′)∈Mm, β

(−1)χm′,β′χm′,β′ Pm′,β′

× ΩH

(
0, H,

1

2
H2 − β′ + β ,

1

6
H3 +m′ −m− β′.H

)
,

(A.4)
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where

(A.5) χm′,β′ = β.H + β′.H +m−m′ − H3

6
− 1

12
c2(Y).H .

The set Mm,β consists of pairs (m′, β′) ∈ H0(Y,Z)⊕H2(Y,Z) such that

(A.6) 0 ≤ β′.H ≤ H3

2
+

3mH3

2β.H
+ β.H

and

−C(β′) ≤ m′ ≤ 1

2H3
(β.H − β′.H)2 +

1

2
(β.H + β′.H) +m.(A.7)

Since f(x) > 1
2 , (A.3) implies that 1

2 < − 3m
2β.H , thus β′.H < β.H in (A.6).

Remark 1. Here are three comments regarding Theorem 1: a) to prove

Theorem 1, we only need a weaker version of BMT conjecture explained

in Remark 3, b) one can strengthen Theorem 1 for specific CY threefolds

(e.g. quintic threefolds) where a stronger version of Bogomolov-Gieseker in-

equality holds, see Remark 4 for more details, and c) a generalisation of

Theorem 1, when Y is not of Picard rank one but satisfies assumption (�),

is proved in Proposition 2.

For any (m,β) ∈ H0(Y,Z)⊕H2(Y,Z), consider the function Ψ(x, x′, α)
defined in (4.24) for x = β.H

H3 and α = − 3m
2β.H . We define the function

Ψm,β : R → R as

Ψm,β(x
′) :=Ψ

(
β.H

H3
, x′, − 3m

2β.H

)
=
1

2

(
β.H

H3
− x′

)2

+
1

2

(
β.H

H3
+ x′

)
+

m

H3
+

1

2
x′2 +

1

2
x′ .(A.8)

Note that Ψm,β(x
′) is the difference of the right and the left hand side

of (A.7), up to a factor of H3, for x′ = β′.H/H3.

Definition 1. A value of (m,β) ∈ H0(Y,Z)⊕H2(Y,Z) is called optimal if

• the inequality (A.3) is satisfied, and

• Ψm,β(
1
H3 ) < 0 and Ψm,β

(
1
2 + 3m

2β.H + β.H
H3

)
< 0 (i.e. Ψm,β is negative

for all possible positive values of β′.H in (A.6)).
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For an optimal value of (m,β), the only possible value of β′ in the wall-

crossing formula (A.4) is β′ = 0. Since Pm′,0 = 1 if m′ = 0 and otherwise

vanishes, we get the following:

Corollary 1. For any optimal value (m,β) ∈ H0(Y,Z)⊕H2(Y,Z), we have

(A.9) Pm,β = (−1)1+χ(OY(H),w)χ(OY(H),w) ΩH(w),

where w =
(
0, H, β + H2

2 ,−m+ H3

6

)
.

A.2. Application I: An explicit formula for minimal rank zero

DT invariants

Corollary 1 gives us a way to write arbitrary minimal rank zero DT invari-

ants in terms of PT invariants. Pick β0 ∈ H4(Y,Q) and m0 ∈ Z. After

tensoring by the line bundle OY(kH) with k ∈ Z, the rank 0 DT invariant

is unchanged,

(A.10) ΩH(0, H, β0,m0) = ΩH

(
0, H, β0 + kH2,m0 + kβ0.H +

k2

2
H3

)
.

Then as a consequence of Corollary 1, one gets the following.

Corollary 2. There exists k(β0,m0) ∈ Z>0 such that for any integer k ≥
k(β0,m0), the class (m,β) for

(A.11) β := β0 + kH2 − H2

2
, m :=

H3

6
−m0 − kβ0.H − k2

2
H3

is optimal (see Definition 1), thus

ΩH(w) = (−1)1+χ
(
OY((1−k)H),w

)
Pm,β

χ
(
OY((1− k)H), w

) ,(A.12)

where w = (0, H, β0,m0).

A.3. Application II: Castelnuovo bound for PT invariants

As a result of wall-crossing for rank −1 classes and induction on β.H, we

can prove the following Castelnuovo-type bound for stable pairs.
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Theorem 2. Fix β ∈ H2(Y,Z) and m ∈ Z. Let OY
s−→ F be a stable pair

such that ch2(F ) = β and ch3(F ) = m, then

(A.13) m ≥ −C(β).

In particular, the invariant Pm,β vanishes unless the inequality (A.13) is

satisfied.

The nature of the proof of Theorem 2 is similar to [72, Proposition

1.3] where the same result is proved under the extra assumption that for

any E ∈ Coh(Y), we have ch2(E) ∈ H2

2 Z and ch3(E) ∈ H3

6 Z. Theorem 2

for quintic threefolds, as well as the first part of Theorem 3 below, is also

proved in the recent paper [73] via different arguments.

Remark 2. Note that when m is close to the Castelnuovo bound −C(β), then
one can apply Theorem 1 to find an explicit formula for Pm,β in terms of rank

zero invariants ΩH(w) with ch1(w) = H. Since ΩH(w) = ΩH(w⊗OY(kH))

for any k ∈ Z, the knowledge of a few rank zero DT invariants determines

PT invariants along the boundary of Castelnuovo bound.

Let us spell out Remark 2 for the case of the quintic threefold X5. Based

on physical arguments in §5.2, the following vanishings are expected (here

κ = H3 = 5):

Conjecture 1. (i) ΩH

(
0, H, ±(12 + 1

κ)H
2, H3

6

)
= 0,

(ii) ΩH

(
0, H, ±(12 + 2

κ)H
2, (−m

κ + 1
6)H

3
)
= 0 for m = 0,−1.

Theorem 3. Take an integer μ ≥ 13 or μ = 10. If μ
κ≡ 0 and m =

−C(μκH2), then

(A.14) Pm, μ

κ
H2 = (−1)m+μ(5−m− μ)× 5.

If μ
κ≡ ±p where p = 1 (resp. 2) and Conjecture 1(i) (resp. Conjecture 1(ii))

holds, then Pm, μ

κ
H2 vanishes if m < −C(μκH2) + p; moreover, for m =

−C(μκH2) + p, then

(A.15) Pm, μ

κ
H2 = (−1)1+χ(OY(H),w)χ(OY(H),w) ΩH(w),

where w =
(
0, H,

(
1
2 + μ

κ

)
H2,

(
− m

κ + 1
6

)
H3
)
.
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A.4. An example with non-primitive wall-crossing

In this part, we generalize Theorem 1 for some examples of pairs (m,β)

where the inequality (A.3) is saturated. Similar results can be obtained

when the inequality is mildly violated.

Proposition 1. If β.H > 4H3 and α = − 3m
2β.H = f(x), where (x, α)

are defined in (4.11), then Theorem 1 holds true. However if β.H = 4H3

and m = −8H3, then there is an additional wall with non-primitive wall-

crossing, leading to

Pm,β =
∑

(m′, β′)∈Mm,β

(−1)χm′,β′χm′, β′Pm′,β′

× ΩH

(
0, H,

1

2
H2 − β′ + β ,

1

6
H3 +m′ −m− β′.H

)
+

1

2

(
χ(OY,OY(2H))

)2 − 1

2
χ(OY,OY(2H)) ,

(A.16)

where we recall that χ(OY,OY(2H)) = χ2D = 4
3κ+ 1

6c2.

A.5. Relaxing the Picard rank one assumption

In this subsection, we relax the Picard rank one assumption to

Assumption (�) H3 divides H ′.H2 for all H ′ ∈ Pic(Y).

The following proposition generalises Theorem 1.

Proposition 2. Let (Y, H) be a smooth polarised Calabi-Yau threefold Y

satisfying the BMT conjecture and assumption (�). Fix m ∈ Z and β ∈
H2(Y,Z) such that the condition (A.3) is satisfied. Then

Pm,β =
∑

(H′,m′, β′)∈ M̃m,β

(−1)χH′,m′,β′χH′,m′,β′ Pm′,β′

×ΩH

(
0, H ′,

1

2
H ′2 − β′ + β ,

1

6
H ′3 +m′ −m− β′.H ′

)
,

(A.17)

where

(A.18) χH′,m′,β′ = β.H ′ + β′.H ′ +m−m′ − H ′3

6
− 1

12
c2(Y).H ′ ,
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and the set M̃m,β consists of triples (H ′,m′, β′) ∈ H2(X,Q) ⊕H0(Y,Z) ⊕
H2(Y,Z) such that

(i) H ′.H2 = H3,
(ii) 0 ≤ β′.H ≤ H′2.H

2 + 3mH3

2β.H + β.H,

(iii) m′ ≥ −2
3β

′.H
(
β′.H
H3 + 1

2

)
, and

(iv) m′ ≤ 1
2H3

(
1
2H

′2H − β′.H + β.H
)2

+ H3

24 − H′3

6 +m+ β′.H ′.

A.6. Rank 0 DT invariants from rank one DT and PT invariants

Finally, we provide a strengthening of the wall-crossing formula [8, Theorem
1.1] for rank zero classes, which holds for CY threefolds satisfying the BMT
inequality and assumption (�).

Given a polarization H ∈ H2(Y,Z) and a rank 0 Chern class21

(A.19) v = [0, D, β,−m] ∈ H2(Y,Q)⊕H4(Y,Q)⊕H6(Y,Q) ,

with D �= 0, let us define

(A.20) QH(v) =
1

2

(
D.H2

H3

)2

+ 6

(
β.H

D.H2

)2

+
12m

D.H2
.

Theorem 4. Let (Y, H) be a smooth polarised CY threefold Y satisfying the
BMT conjecture and assumption (�). If a rank zero class v = [0, D, β,−m]
satisfies QH(v) < min{ r2

2 − 1
8 , r −

1
2} for r = D.H2

H3 then

ΩH(v)

=
(
#H2(X,Z)tors

)2 ∑
v1 =−eD1 (1,0,−β1,−m1)
v2 = eD2 (1,0,−β2,−m2)

v1+v2 = v
(Di, βi, mi)∈Mi(v)

(−1)χ(v2,v1)−1 χ(v2, v1) P−m1,β1
Im2,β2

.

(A.21)

Here Mi(v) for i = 1, 2 is the set all classes (Di, βi, mi) ∈ H2(X,Q) ⊕
H4(X,Q)⊕H6(X,Q) such that∣∣∣∣Di.H

H3
− θi

∣∣∣∣ < 1 for θi :=
β.H

D.H2
+ (−1)i

√
r2

4
− 1

2
QH(v) ,(A.22)

21Note that the sign of m is flipped compared to [8, Theorem 1.1].
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−D2
i .H

2H3
+

βi.H

H3
+

β.H

D.H2

Di.H
2

H3
≤ −1

8

(
D.H2

H3

)
+

1

2

(
β.H

D.H2

)2

+
1

4
QH(v),

(A.23)

and

(A.24) (−1)i+1mi ≤
2

3
βi.H

(
βi.H

H3
+

1

2

)
.

Note that if QH(v) is as small as required in [8, Theorem 1.1], then one
can apply [8, Proposition 3.5 & 3.6] to show that the above sets Mi(v) reduce
to M(v) so that the final wall-crossing formulae agree.

A.7. Proofs

In this subsection, we collect the proofs of the various claims up to now.

To prove Theorem 1, we use weak stability conditions νb,w for (b, w) ∈ U

where U = {(b, w) ∈ R2 : w > b2

2 }, see Fig. 2 and [6, §1] for all details. We
study wall-crossing for the fixed class

(A.25) v = (−1, 0, β,−m) ∈
⊕3

i=0H
2i(Y,Q).

We start in the large volume limit b > 0 and w � 1 where an object E ∈ Ab

of class v is νb,w-semistable if and only if E∨ ⊗ det (E)−1[1] is a stable pair,
see [4, §3]. Then we move down and investigate all walls of instability for
objects of class v.

By the conjectural BMT inequality (2.38), if there is a νb,w-semistable
object in Ab of class v, then Lb,w(v) = w(2H3β.H) + 3b(−H3)(−m) +
2(β.H)2 ≥ 0, i.e.

(A.26) w ≥ −b
3m

2β.H
− β.H

H3
.

Hence any wall for class v lies above or on the line f of equation w = αb−x
where

(A.27) α = − 3m

2β.H
and x =

β.H

H3
.

Let b1 < b2 be the values of b at the intersection points of the line f with
the boundary ∂U .
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Assume there is a wall  for class v. Then there is an object E ∈ Ab of
class v which is strictly νb,w-semistable for all (b, w) ∈ ∩U . Let E′ → E →
E′′ be a destabilising sequence along the wall .

Lemma 1. Suppose

(i) 0 < b1 < 2,
(ii) 1 < b2 − b1, and
(iii) if b2r ≤ c ≤ b1(r+ 1) for some (r, c) ∈ Z≥0 ⊕Z≥0, then either (r, c) =

(0, 1) or (0, 0).

Then b1 ≥ 1 and there is an ordering E0, E1 of E′, E′′ such that

• E0 is a rank zero Gieseker-stable sheaf with ch1(E0) = H.
• E1 is a rank −1 object and νb,w-stable for b > −1 and w � 1.

Moreover, there is no νb,w-semistable object of class v for (b, w) ∈ U below
f .

Proof. Since rk(E) = −1, one of the objects E′, E′′ has rank < 0; call it E1.
The other E0 has rank ≥ 0. Let

(A.28) ch≤1(E0) = (r, cH) and ch≤1(E1) = (−1− r,−cH).

By [6, Remark 1.2] for any point (b, w) ∈  ∩ U , we have ch1(Ei)H
2 −

b ch0(Ei)H
3 ≥ 0 for i = 1, 2. Since  lies above f , this in particular holds

for b = b1, b2 which implies

(A.29) b2r ≤ c ≤ b1(1 + r).

By assumption (iii), it follows that either (r, c) = (0, 0) or (r, c) = (0, 1). In
the first case, E0 is of νb,w-slope +∞ for all (b, w) ∈ U , thus it cannot have
the same νb,w-slope as E along the wall . Thus (r, c) = (0, 1) and 1 ≤ b1.

Hence E1 is a rank −1 object with ch1(E1) = −H. By [108, Lemma
3.5], there is no wall for E1 crossing the vertical line b = 2, so if E1 is νb,w-
semistable for some b = 2 and w > 2, then it is νb,w-stable for b = 2 and any
w > 2. By conditions (i) and (ii), the wall f and so the wall  intersects the
vertical line b = 2 at a point inside U , thus νb,w-semistability of E1 along
the wall implies that E1 is νb,w-stable for b = 2 and w � 1. Then the wall
and chamber structure for the class ch(E1) implies that E1 is νb,w-stable for
any b > −1 and w � 1.

We claim that there is no wall for E0 when we move up from the wall  to
the large volume limit. Suppose for a contradiction that there was a wall 0
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with the destabilising sequence F1 ↪→ E0 � F2. Set ri := rk
(
H−1(Fi)

)
≥ 0.

By definition of the heart Ab, for (b, w) ∈ 0 ∩ U ,
(A.30)
ch1
(
H−1(Fi)

)
.H2 ≤ b riH

3 and ch1
(
H0(Fi)

)
.H2 ≥ b (ch0(Fi) + ri)H

3.

Since 0 lies above or on f , we may apply the left hand inequality for
b = b1 and the right hand for b = b2. Then subtracting gives ch1(Fi).H

2 ≥
b2 ch0(Fi)H

3 + (b2 − b1)riH
3. Adding over i = 0, 1 gives

(A.31) H3 = ch1(E).H2 ≥ (b2 − b1)(r0 + r1)H
3.

Since b2 − b1 > 1 by assumption (ii), we get r1 = r2 = 0. Thus H−1(Fi) = 0
as they are torsion-free sheaves by definition of the heart Ab. Thus Fi’s are
sheaves with ch0(F1) = ch0(F2) = 0. Hence they have the same νb,w-slope
as E0 with respect to any (b, w) ∈ U , so they cannot induce a wall. Thus E0

is νb,w-semistable for w � 1, hence is a torsion sheaf by [10, Lemma 2.7(c)].
By definition of the heartAb, any torsion sheaf F lies inAb and νb,w(F ) =

ch2(F ).H
ch1(F ).H2 if ch1(F ) �= 0, otherwise νb,w(F ) = +∞. In our case, since

ch1(E0).H
2

= H3 is minimal, the νb,w1-semistability of E0 immediately implies that
E0 is a Gieseker-stable sheaf.

Recall that the equation of f is w = αb − x for the values of α, x
in (A.27). The b-values of the intersection point of f with ∂U , which is the
parabola of equation w = 1

2b
2, are

(A.32) b1 = α−
√

α2 − 2x, b2 = α+
√

α2 − 2x .

The condition (i) that 0 < b1 < 2 is equivalent to

(A.33) α−
√

α2 − 2x < 2 i.e. 0 < α < 2 or 1 +
x

2
< α .

Also the condition (ii) that b2 − b1 > 1 is equivalent to

(A.34) 2
√

α2 − 2x > 1 i.e.

√
2x+

1

4
< α .

Hence, a simple case by case analysis verifies the following:

Lemma 2. Consider the function f(x) defined in (A.2). If x > 1 and α >
f(x), then the conditions (i), (ii) and (iii) in Lemma 1 hold.
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By Lemma 1, the destabilising objects are of Chern character
(A.35)

v0m′,β′ := ch(E0) =

(
0, H,

1

2
H2 − β′ + β,

1

6
H3 +m′ −m− β′.H

)
and

(A.36) v1m′,β′ := ch(E1) =

(
−1, −H, −H2

2
+ β′, −1

6
H3 −m′ + β′.H

)
.

We know that the point �(ch(E1)) = (1 , −β′.H
H3 + 1

2) (defined in (2.36)) lies
above or on f , so

(A.37)
β′.H

H3
≤ 3m

2β.H
+

β.H

H3
+

1

2
.

Moreover, applying [6, Lemma B.3] for E0 implies

1

6
H3 +m′ −m− β′.H ≤ 1

2H3

(
1

2
H3 − β′.H + β.H

)2

+
H3

24
(A.38)

which is equivalent to

(A.39) m′ ≤ 1

2H3
(β.H − β′.H)2 +

1

2
(β.H + β′.H) +m.

Proof of Theorem 2. Suppose Pm,β �= 0, i.e. there is a νb,w-stable object of
class v = (−1, 0, β,−m) for b > 0 and w � 1. By [108, Lemma 3.5], there
is no wall for class v crossing the vertical line b = 1. Then the conjectural
BMT inequality (2.38) at the boundary point (b, w) = (1, 12) implies that

(A.40) − m

H3
≤ 2

3

(
β.H

H3

)2

+
β.H

3H3

which proves the claim (A.13) if β.H
H3 ≤ 1. Hence we may assume β.H3 > H3.

If (A.13) does not hold, then

(A.41) − 3m

2β.H
>

3β.H

4H3
+

3

4
> f

(
β.H

H3

)
.

Then by combining Lemma 1 and Lemma 2, it follows that as we move
down from the large volume limit, any large volume limit stable object
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E of class v gets destabilised along a wall with the destabilising objects
E0 and E1 as described in Lemma 1. By [10, Corollary 3.10], we know
that the discriminants ΔH of the destabilising factors are less than ΔH(v),
so β′.H < β.H. Thus by applying induction on β.H, we may assume the
object E1, which is large volume limit stable of rank −1, satisfies the claim.
Combining it with (A.39) implies that

− 1

2H3
(β′.H)2 − β′.H

2
≤ m′ ≤ 1

2H3
(β.H − β′.H)2 +

1

2
(β.H + β′.H) +m.

(A.42)

This in particular implies that

0 ≤ 1

2H3
(β.H − β′.H)2 +

1

2
(β.H + β′.H) +

1

2H3
(β′.H)2 +

β′.H

2
+m.

If the claim (A.13) does not hold, then

0 <
(β.H − β′.H)2

2H3
+

1

2
(β.H + β′.H) +

(β′.H)2

2H3
+

β′.H

2
− (β.H)2

2H3
− 1

2
β.H

= β′.H

(
β′.H

H3
− β.H

H3
+ 1

)
.

Since β′.H ≥ 0, we get β.H − H3 < β′.H, then (A.37) gives β.H − H3 <
3mH3

2β.H +β.H + H3

2 , i.e. − 3m
2β.H < 3

2 which is not possible by (A.41) for β.H >

H3.

Proof of Theorem 1. By [4, §3], any νb,w-semistable object E ∈ Ab of class
v for b > 0 and w � 1 is derived-dual of a stable pair up to tensoring by a
line bundle with torsion c1, so

(A.43) Ω∞(v) := Ωb>0, w→+∞(v) =
(
#H2(Y,Z)tors

)
Pm,β.

On the other hand, we know that there is no νb,w-semistable object of class
v when (b, w) ∈ U lies below f , so Ωb,w(v) = 0. Between, this point and
large volume limit, there are several walls .

If 0 < x ≤ 1 and α > f(x), then b1 < 1, implying PTm,β = 0 and
no non-trivial wall exists, so the claim follows. Therefore, we may assume
x > 1. Subsequently, by applying Lemma 2, we can utilize Lemma 1, which
describes the destabilizing factors along any wall . We know that the first
factor E0 is Gieseker-stable, and any Gieseker-stable sheaf of class ch(E0)
is νb,w-stable for (b, w) ∈  as there is no wall for ch(E0) between the large
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volume limit and . Thus for points (b, w±) above and below the wall , we
have

(A.44) Ωb,w±(v0m′,β′) = ΩH(v0m′,β′).

We also know that there is no wall for the other factor E1 between  and
the large volume limit, thus

(A.45) Ωb,w±(v1m′,β′) = Ω b>1, w→+∞(v1m′,β′) =
(
#H2(Y,Z)tors

)
Pm′,β′ .

Combining (A.37), (A.39) and Theorem 2 implies that (β′,m′) ∈ Mm,β as
defined in Theorem 1.

Then summing up the wall crossing formulae [3, Equation (5.13)] over
all walls for class v between the large volume limit and f gives

0 = Ω b, w<αb−x(v) = Ω∞(v) +
(
#H2(Y,Z)tors

)(A.46)

×
∑

(m′,β′)∈Mm,β

(−1)χ(v
1
m′,β′ ,v

0
m′,β′ )+1χ(v1m′,β′ , v0m′,β′) Pm′,β′ ΩH

(
v0m′,β′

)
.

This implies

Pm,β =
∑

(m′,β′)∈Mm,β

(−1)χ(v
1
m′,β′ ,v

0
m′,β′ )χ(v1m′,β′ , v0m′,β′) Pm′,β′ ΩH

(
v0m′,β′

)
,

(A.47)

where χ(v1m′,β′ , v0m′,β′) = β.H + β′.H +m −m′ − H3

6 − 1
12c2(Y).H = χm′,β′

as claimed.

Proof of Theorem 3. Suppose μ = nκ+ p where n ∈ Z≥0 and p = 0,±1,±2.
One can easily check that if μ ≥ 13 or μ = 10, the classes (i)

(
C(μκH2), μκH

2
)

and (ii)
(
C(μκH2)− 1, μκH

2
)
for p = ±1,±2, and if μ ≥ 18 the class (iii)(

C(μκH2)− 2, μκH
2
)
for p = ±2 are optimal in the sense of Definition 1.

Thus combining Corollary 1 and Conjecture 1 implies the claim. Note that
when μ = nκ, [8, Theorem 1.1] implies that

ΩH

(
0, H,

(
n+ 1

2

)
H2,

(
1
6 + n(n+1)

2

)
H3
)

(A.48)

=(−1)χ(O((n+1)H),O(nH))+1χ(O((n+ 1)H),O(nH)[1]) = 5.

If μ = 13 or 17, one can directly apply the wall-crossing formula A.4 in
Theorem 1 to show again β′ = 0 which implies the claim.
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Remark 3. To prove Theorem 1 and Theorem 2 (and so Corollary 1 and 2,

and Theorem 3), we applied the conjectural BMT inequality only for (i) the

rank zero classes v0m′,β′ to get (A.56) using [6, Lemma B.3], and (ii) rank

−1 class (−1, 0, β,−m) with β.H ≤ H3 to get (A.40). Thus we only need

the conjectural BMT inequality for the following two cases:

(i) Rank zero Gieseker-stable sheaves of class (0, H, β1,m1) for the values

(b, w) ∈ U lying along the line 1 which is of slope β1.H
H3 and intersects

∂U at two points with b-values b′ < b′′ so that b′′ − b′ = 1.

(ii) Rank one torsion-free sheaves of class (1, 0,−β2,m2) for β2.H ≤ H3

and the point (b, w) = (−1, 12) along the boundary ∂U .

This, in particular, shows that the weaker version of BMT conjecture proved

in [44] for quintic X5 and in [45] for X4,2 is sufficient for our result.

Remark 4. Suppose our CY threefold Y satisfies a stronger version of clas-

sical Bogomolov-Gieseker inequality (2.27), i.e. there is a function G : R →
R such that any slope-semistable sheaf E satisfies ch2(E).H

ch0(E)H3 ≤ G
(
ch1(E).H2

ch0(E)H3

)
and G(b) ≤ b2

2 for all b ∈ R. Then one can enlarge the space of weak stability

conditions U to UG := {(b, w) ∈ R2 : w > G(b)}, and apply all the arguments

in this section within the enlarged space UG instead of U . This, in particular,

shows that the intersection of the line f with ∂UG has b-values bG1 < bG2 so

that bG2 − bG1 ≥ b2 − b1, thus we can improve the function f in Theorem 1.

For instance, for a quintic threefold, one can apply Li’s version of stronger

Bogomolov-Gieseker inequality [44, Theorem 1.1] to show that equation of

the function f can be improved to x
2 +1 for any x > 0 (see Figures 3 and 6).

Proof of Proposition 1. Since α = x
2 + 1, the line f intersects ∂U at two

points with b-values b1 = 2 < b2 such that b2− b1 ≥ b1, where the inequality

is strict if x > 4. Then, using the same notations as in Lemma 1, it implies

that b2r ≤ c ≤ 2(r + 1). Thus if x > 4, we can have (i) (r, c) = (0, 1), or (ii)

(r, c) = (0, 2). If x = 4, there is a third possibility (iii) r = 1 and c = 4.

First consider a wall  of type (i). We know  lies above or on f , so there

is w+ > 2 such that the point (2, w+) ∈ U lies just above the wall . Since

no wall for E1 can cross the vertical line b = 2, we get Ωb=2,w+(ch(E1)) =

Ω b=2, w→+∞(ch(E1)). Thus the proof of Theorem 1 goes through.

In case (ii), we know that ch≤1(E1) = (−1,−2H). Thus �(E1) lies

on ∂U , so ch2(E1) = −2H2. Then [109, Proposition 4.20(ii)] implies that

E1 = OY(2H)[1], so ch2(E0).H2

H3 = x + 2 and ch3(E0) = 2
3αxH

3 + 4
3H

3 =
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H3

3 x2 + 2H3

3 x+ 4
3H

3. Applying [6, Lemma B.3] for E3 gives

ch3(E0)

H3
=

1

3
x2 +

2

3
x+

4

3
≤ (x+ 2)2

4
+

1

3

which holds only if x = 4. If β = 4H2 and m = −8H3, then ch(E0) =
(0, 2H, 6H2, 283 H

3). Applying the conjectural BMT inequality (2.38) implies
that the final wall for E0 coincides with the line f and this is the only wall
that can happen for E0 by [8, Theorem 1.1] where the destabilising factors
are OY(4H) and OY(2H)[1].

In case (iii) when x = 4, we know that �(E0) lies along the wall, so E1

is of class ch≤2(E0) = (1, 4H, 8H2). Since ΔH(E0) = 0, there is no wall for
E0 up to the large volume limit by [10, Corollary 3.10], so E0 is a slope-
stable sheaf and ch3(E0) ≤ 32

3 H
3. The other factor is of class ch≤2(E1) =

(−2,−4H,−4H2). Applying the BMT inequality (2.38) at the point (b =
2+ ε, w) on the wall, where 0 < ε � 1, implies that ch3(E1) ≤ −8

3H
3. Given

that ch3(E0) + ch3(E1) = 8H3, it follows that ch(E0) = ch(OY(4H)) and
ch(E1) = − ch(OY(2H)⊕2).

To summarise, case (i) only contributes to the walls which are of the
same form as described in Lemma 1. If x > 4, this is the only case that
we need to consider and so Theorem 1 is valid. But if β = 4H2, cases (ii)
and (iii) contribute to the last wall f . Define v1 := ch(OY(2H)[1]) and
v2 := ch(OY(4H)), and let (b, w

±
) be points in U just above and below

the final wall f . Then applying the wall-crossing formula [8, Equation (16)]
shows that we have three contributions along this wall:

1. {v1, v1 + v2} contribution (corresponding to case (ii)) to Ω b,w−(v) is

(A.49) (−1)χ(v1,v1+v2)+1χ(v1, v1 + v2) Ω b,w+(v1) Ω b,w+(v1 + v2).

As explained in case (ii), we know that Ω b,w+(vi) = ΩH(vi) = 1 for
i = 1, 2 and

Ω b,w+(v1 + v2) =(−1)χ(v1,v2)χ(v1, v2) Ω b,w+(v1) Ω b,w+(v2)

thus the contribution (A.49) is −
(
χ(OY,OY(2H))

)2
.

2. {2v1, v2} contribution (corresponding to case (iii)) to Ω b,w−(v) is

2χ(OY(2H),OY(4H))× ΩH(2v1)ΩH(v2),

where ΩH(2v1) =
1
4ΩH(v1) =

1
4 by [3, Example 6.2];
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3. {v1, v1, v2} contribution to Ω b,w−(v) is

(A.50)
1

2

(
χ(v1, v2)

)2
ΩH(v1)

2ΩH(v2) =
1

2

(
χ(OY,OY(2H))

)2
.

Hence the overall contribution of the wall f to Ω b,w−(v) is

(A.51) − 1

2

(
χ(OY,OY(2H))

)2
+

1

2
χ(OY,OY(2H)).

Combining this with the wall-crossing formula (A.46) implies the claim.

Proof of Proposition 2. As before, we do wall-crossing for the class v =
(−1, 0, β,−m). The same argument as in Lemma 1 implies that the desta-
bilising factors have Chern class
(A.52)

v0m′,β′,H′ = ch(E0) =

(
0, H ′,

1

2
H ′2 − β′ + β,

1

6
H ′3 +m′ −m− β′.H ′

)
and v1m′,β′,H′ where

(A.53) v1m′,β′,H′ ⊗OY(−H ′) = ch(E1(−H ′)) =
(
−1, 0, β′, −m′) .

where H′.H2

H3 = 1. Moreover E0 is a Gieseker-stable sheaf as ch1(E0).H
2 is

still minimal and E1(−H ′) is νb,w-stable for b > 0 and w � 1, thus β′.H ≥ 0.

We know that the point �(ch(E1)) = (1 , −β′.H
H3 + H.H′2

2H3 ) (defined in (2.36))
lies above or on f , so

(A.54)
β′.H

H3
≤ 3m

2β.H
+

β.H

H3
+

H.H ′2

2H3
.

Moreover, we know that E1 is νb,w-stable for b > −1 and w � 1, so (E1 ⊗
det (E1))

∨[1] is a stable pair, thus [5, Proposition 2.6] implies that

(A.55) −m′ ≤ 2

3
β′.H

(
β′.H

H3
+

1

2

)
.

On the other hand, applying [6, Lemma B.3] for E0 gives

1

6
H ′3 +m′ −m− β′.H ′ ≤ 1

2H3

(
1

2
H ′2H − β′.H + β.H

)2

+
H3

24
.(A.56)

Then the claim follows by a similar argument as in the wall-crossing for-
mula (A.46).



Quantum geometry, stability and modularity 125

Proof of Theorem 4. The argument is similar to [8], we include it for com-

pleteness. Define r = D.H2

H3 and s = β.H
H3 , then by our assumption r ∈ Z. The

conjectural BMT inequality implies that any wall  for class v lies above or

on the line f with equation

(A.57) w =
s

r
b+

r2

8
− s2

2r2
− 1

4
QH(v)

which intersects ∂U at two points with b-values

(A.58) b1 =
s

r
−
√

r2

4
− 1

2
QH(v), b2 =

s

r
+

√
r2

4
− 1

2
QH(v) .

Our assumption onQH(v) implies b2−b1 > max{r−1, 1
2}. Let E1 → E → E2

be a destabilising sequence along a wall  for class v. By definition of the

heart Ab,

(A.59) μ+
H(H−1(Ei)) ≤ b1 and b2 ≤ μ−

H(H0(Ei)).

Summing up over E1 and E2 and using rk(E) = rk(E1) + rk(E2) = 0 imply

(A.60) r ≥ (b2 − b1)
(
ch0(H0(E1)) + ch0(H0(E2))

)
.

Since b2 − b1 >
r
2 , we get

(A.61) ch0(H−1(E1)) + ch0(H−1(E2)) = ch0(H0(E1)) + ch0(H0(E2)) ≤ 1.

Therefore, one of the factors E1 is of rank −1 with H−1(E1) of rank one

and H0(E1) of rank zero; and the other factor E2 is a sheaf of rank one. We

claim

(A.62) μH(E2)− b2 < 1.

Otherwise, (A.59) gives

(A.63) b2 − b1 ≤ μH(E2)− 1− μH(H−1(E1)).

Since H0(E1) is of rank zero, we have μH(E1) ≤ μH(H−1(E1)), thus

(A.64) b2 − b1 ≤ μH(E2)− 1− μH(E1) = r − 1.
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The last equality comes from rk(E2) = − rk(E1) = 1. But the above is not
possible by our assumption on b2 − b1. Combining it with (A.59) gives

(A.65) b2 ≤ μH(E2) =
ch1(E2).H

2

H3
< b2 + 1.

We know that there is no wall for E2 crossing the vertical lines b = μ(E)− 1
2

and b = μ(E)− 1 [108, Lemma 3.5]. Since b2 − b1 > 1
2 at least one of these

vertical lines intersects the wall  at a point inside U . Thus νb,w-semistability
of E2 along the wall implies that E2 is νb,w-stable for b < μ(E2) and w � 1,
so E2 is a rank one torsion-free sheaf. A similar argument also shows that
E1 is stable in the large volume limit, so is the derived dual of a stable pair
(up to tensoring by a line bundle).

Hence the destabilising factors are of classes vi = (−1)ieDi(1, 0,−βi,−mi)

for i = 1, 2. We know that the point �(Ei) =
(
Di.H2

H3 , D2
i .H

2H3 − βi.H
H3

)
lies

above or on f , i.e.
(A.66)

D2
i .H

2H3
− βi.H

H3
− β.H

D.H2

Di.H
2

H3
≥ 1

8

(
D.H2

H3

)
− 1

2

(
β.H

D.H2

)2

− 1

4
QH(v).

Finally applying [5, Proposition 2.5 & 2.6] to Fi ⊗D−1
i imply

(A.67) (−1)i+1mi ≤ 2

3
βi.H

(
βi.H

H3
+

1

2

)
.

Conversely, take two classes vi = (−1)ieDi(1, 0,−βi,−mi) for i = 1, 2
satisfying v1 + v2 = v and conditions (A.22) and (A.23). Then we have

(A.68)

∣∣∣∣D1.H
2

H3
− b1

∣∣∣∣ < 1,

∣∣∣∣D2.H
2

H3
− b2

∣∣∣∣ < 1

and D2.H2

H3 − D1.H2

H3 = r. The Hodge index theorem implies

(A.69)
D2

i .H

2H3
− βi.H

H3
≤ 1

2

(
Di.H

2

H3

)2

,

thus �(Ei) lies outside U and above or on f by (A.23). Since by our as-
sumption on QH(v), we have b2 − b1 > max{r − 1, 1

2}, we get

(A.70) b1 − 1 <
D1.H

2

H3
< b1 < b2 <

D2.H
2

H3
< b2 + 1 .
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Then the same argument as above shows that there is no wall for classes v1
and v2 above or on f . Hence large volume limit stable objects of classes vi
for i = 1, 2 are νb,w-stable of the same νb,w-slope along the line  passing
through �(vi) for i = 1, 2, which lies above or on f . Thus they make a wall
for objects of class v. This completes the proof of the claim.

Appendix B. Other hypergeometric CY threefolds

In this section, we extend the analysis of §5 to the other hypergeometric CY
threefolds, with the exception of X3,2,2 and X2,2,2,2 for which the current
knowledge of GV invariants is not sufficient yet to uniquely determine (or
even guess) the generating series of Abelian D4-D2-D0 indices. In all cases,
we assume that the BMT inequality is satisfied.

B.1. X6

Here we consider the sextic in P4
2,1,1,1,1, first studied in [20]. In this case,

κ = 3, np
1 = 4 and nc

1 = 0 so the modular form hμ is uniquely fixed by 4
coefficients. Using the basis (5.5), the generating function proposed in [20]
reads

hμ =
1

η54

[
7E6

4 + 58E3
4E

2
6 + 7E4

6

216
+

5E4
4E6 + 3E4E

3
6

2
D

]
ϑ(3)
μ ,(B.1)

and has the following expansion:

h0 =q−
15

8

(
−4 + 612q− 40392q2 + 146464860q3 + 66864926808q4

+ 8105177463840q5 + 503852503057596q6

+ 20190917119833144q7 + . . .
)
,

h1 =q−
15

8
+ 2

3

(
0− 15768q + 7621020q2 + 10739279916q3 + 1794352963536q4

+ 134622976939812q5 + 6141990299963544q6

+ 196926747589177416q7 + . . .
)
.

(B.2)

Using (4.19), we can rigorously compute and confirm the terms up to (and
including) order q9 and q6 in these expansions. The term of order q6 in
h0 can be further verified using Prop. 1. Furthermore, the terms of order
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Table 6: GV invariants GV
(gC(Q)−δ)
Q for X6, assuming modularity

Q gC(Q) δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 0 7884
2 2 0 7884 6028452

3 4 6 576 17496 145114704 11900417220
4 5 0 −47304 −14966100 10801446444 1773044322885 34600752005688
5 7 0 63072 22232340 −21559102992 1985113680408 571861298748384

6 10 −28 −3168 −146988 −583398600 207237771936 −18316495265688
7 12 0 −110376 −43329384 54521267292 −8041642037676 513634614205788

8 15 0 −141912 −57278448 76595605884 −12434437188576 904511824896888
9 19 −52 −5472 −225504 −1453991342 645551751060 −82281995054250

10 22 0 220752 90243180 −132472407960 24441320028348 −2094555362224356
11 26 0 −268056 −109069632 166408768980 −32325403958928 2952049189946940

12 31 88 7572 212904 2755381840 −1352963727576 204189584421816
13 35 0 378432 150306948 −246695539464 52656199163280 −5391865451528568

14 40 0 441504 172213236 −293223343680 65474719151724 −7076432910134952
15 46 136 7956 47736 4489872516 −2384492136120 414897391102896

16 51 0 −583416 −217181952 399497240700 −97481656444968 11697806611060704
17 57 0 662256 239613660 −459419696640 117150837604344 −14795431515539352

18 64 −196 −4680 225396 −6665394192 3810518530344 −758652854479632
19 70 0 −835704 −282637296 593248436100 −165165188729184 23060985834155292

20 77 0 −930312 −302472360 667301101092 −194106551379768 28471201009767792
21 85 −268 4632 365112 −9289038760 5717547855792 −1296313683456384

22 92 0 1135296 336739140 −829978779600 263496783986604 −42580355264714232
23 100 0 −1245672 −350287848 918685187964 −304661265971256 51631322400126468

q10 and q11 in h0 as well as q7 and q8 in h1 are reproduced by (4.19) with

k = k0−1. Thus, there is overwhelming evidence that (B.1) is correct. While

the maximal genus attainable by the standard direct integration method is

48, using modularity, we can predict GV invariants close to the Casteln-

uovo bound to arbitrary genus (see Table 6), and provide sufficiently many

boundary conditions in principle to push the direct integration method up

to genus 63.

B.2. X8

We now consider the octic in P4
4,1,1,1,1, first studied in [20]. In this case,

κ = 2, np
1 = 4 and nc

1 = 0 so the modular form hμ is uniquely fixed by 4

coefficients. Using the basis (5.5), the generating function proposed in [20]

reads

hμ =
1

η52

[
103E6

4 + 1472E3
4E

2
6 + 153E4

6

5184
+

503E4
4E6 + 361E4E

3
6

108
D

]
ϑ(2)
μ ,

(B.3)
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and has the following expansion:

h0 =q−
46

24

(
−4 + 888q− 86140q2 + 132940136q3 + 86849300500q4

(B.4)

+ 11756367847000q5 + 787670811260144q6

+ 33531427162546608q7 + . . .
)
,

h1 =q−
46

24
+ 3

4

(
0− 59008q + 8615168q2 + 21430302976q3 + 3736977423872q4

+ 289181439668352q5 + 13588569634434304q6

+ 448400041603851008q7 + . . .
)
.

Using (4.19), we can rigorously compute and confirm the terms up to (and
including) order q9 and q7 in these expansions. The term of order q4 in h0 can
be further verified using Prop. 1. The terms of order q10, q11 in h0 as well as
q8, q9 and q10 in h1 are reproduced by (4.19) with k = k0 − 1. Thus, there
is overwhelming evidence that (B.3) is correct. While the maximal genus
attainable by the standard direct integration method is 60, using modularity,
we can predict GV invariants close to the Castelnuovo bound to arbitrary
genus (see Table 7), and provide sufficiently many boundary conditions in
principle to push the direct integration method up to genus 80.

B.3. X4,3

We now consider the complete intersection of degree (4, 3) in P5
2,1,1,1,1,1, In

this case, κ = 6, np
1 = 9 and nc

1 = 0 so the modular form hμ is uniquely fixed
by 9 coefficients. This model was first considered in [31], assuming the naive
Ansatz (4.8) for the polar terms. Unfortunately, with the GV invariants
being known only up to genus 20 using direct integration, Eq. (4.19) only
allows to determine 3 polar coefficients:

h0 =q−
9

4

(
5− 624q + 1

21 PT(18,−34)q2 − 1
20 PT(18,−33)q3 + . . .

)
,

h1 =q−
9

4
+ 7

12

(
− 1

12 PT(13,−20)− 1
24 PT(19,−38)q+ 1

23 PT(19,−37)q2+ . . .
)
,

h2 =q−
9

4
+ 1

3

(
− 1

14 PT(14,−23) + 1
13 PT(14,−22)q− 1

26 PT(20,−41)q2+ . . .
)
,

h3 =q−
9

4
+ 1

4

(
0 + 1

15 PT(15,−25)q− 1
14 PT(15,−24)q2 + . . .

)
.

(B.5)
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Table 7: GV invariants GV
(gC(Q)−δ)
Q for X8, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 0 29504

2 3 6 864 41312 128834912

3 4 0 −177024 −16551744 21464350592 1423720546880

4 7 24 4152 301450 396215800 −174859503824 12499667277744

5 9 0 354048 37529088 −86307810432 12063928269056 −674562224718848

6 13 40 7032 523434 918424384 −537735889892 67237956960504

7 16 0 −649088 −67977216 194884427520 −34549033260480 2730733623512576

8 21 64 10760 747160 1693127408 −1100325268755 163574439433328

9 25 0 1062144 97599232 −348278532864 70573905748736 −6573094863849216

10 31 96 14664 874648 2715237856 −1885455097488 317498157747448

11 36 0 −1593216 −115655680 547020195328 −124368823627264 13265837355895808

12 43 136 17880 816224 3983508192 −2920617786752 550836611504760

13 49 0 2242304 107984640 −791226604800 201252013167104 −24393882174586624

14 57 184 19352 517696 5502562160 −4239252796968 892029516487568

15 64 0 −3009408 −57591808 1080060791808 −307623836581376 42224741744709120

16 73 240 17832 −7064 7283098000 −5881013303280 1377169141402320

17 81 0 3894528 −55349504 −1411208698624 450913093594624 −69905571017188608

18 91 304 11880 −637720 9339141568 −7892176820432 2051229771888392

19 100 0 −4897664 253498368 1780270216704 −639463383246336 111688644307754752

20 111 376 −136 −1103312 11680881536 −10326002693808 2969507704650056

21 121 0 6018816 −562346240 −2180065252608 882336333453824 −173179252180073216

22 133 456 −20040 −932336 14301420112 −13242624843432 4199274885440864

23 144 0 −7257984 1010216960 2599854822400 −1189005528876544 261596095595733504

24 157 544 −49848 602936 17155557680 −16707780101408 5821612261875808

25 169 0 8615168 −1628266752 −3024477174528 1568911793583616 −386029168134457600

Despite this discouraging result, one can proceed assuming that for some
coefficients Eq. (4.19) still holds for k = k0 − 1. This assumption will be
justified a posteriori by matching the predictions of (4.19) and modularity
for many more coefficients. For this choice of the spectral flow parameter,
one finds

(B.6)

h0
?
=q−

9

4

(
2− 234q + 35415q2 + 19018272q3 + 523497643503

7 q4 + . . .
)
,

h1
?
=q−

9

4
+ 7

12

(
0 +
(
5832 + 40

11GV
(21)
13

)
q−
(
544320 + 78GV

(21)
13

)
q2

+
(
3919923072 + 9880

9 GV
(21)
13

)
q3

+
(
2506521907872− 45695

4 GV
(21)
13

)
q4 + . . .

)
,

h2
?
=q−

9

4
+ 1

3

(
0 + 0q− 1

12

(
GV

(22)
14 + 44GV

(23)
14 + 1035GV

(24)
14

)
q2 + . . .

)
,

h3
?
=q−

9

4
+ 1

4

(
0 + 0q + 0q2 + 1

13 PT(15,−23)q3 + . . .
)
,
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where we expressed the result in terms of GV invariants and put question

marks to emphasize that these expansions need not be correct. For example,

the first two terms in h0 clearly disagree with the rigorous result (B.5).

Nonetheless, let us assume that all other polar terms, except the O(q) term

in h2, are correctly computed by (B.6). Comparing with (B.5), this implies

the vanishing of PT(13,−20) = GV
(21)
13 and PT(14,−23) = GV

(24)
14 , which

allows to further simplify (B.6). In particular, all polar terms, except the

O(q) term in h2, are now fixed.

To get a sufficient number of conditions to fix the modular form, let

us further assume that the O(q3) term in h0 is also correctly computed

by (B.6). This assumption provides the missing condition and allows to find

a unique modular form matching all coefficients

hμ =
1

η72

[
19161576E7

4E6 − 86969808E4
4E

3
6 − 36701208E4E

5
6

17199267840

+
29888136E8

4 + 147874032E5
4E

2
6 + 16326792E2

4E
4
6

716636160
D

− 4751784E6
4E6 + 9532080E3

4E
3
6 + 646056E5

6

5971968
D2

−1686312E7
4 + 10686384E4

4E
2
6 + 2557224E4E

4
6

1244160
D3

]
ϑ(6)
μ ,

(B.7)

with the following expansion:

(B.8)

h0 =q−
9

4

(
5− 624q + 35415q2 + 19018272q3 + 74785378407q4

+ 23744184704784q5 + 2912626940217084q6

+ 201892603398250080q7 + . . .
)
,

h1 =q−
9

4
+ 7

12

(
0 + 5832q− 544320q2 + 3919923072q3 + 2506521907872q4

+ 426826821029328q5 + 36510169956413184q6

+ 1975570599744644544q7 + . . .
)
,

h2 =q−
9

4
+ 1

3

(
0 + 81q− 455544q2

. . . . . . . . .
+ 418794867q3 + 589406293224q4

+ 127700521014312q5 + 12611391702441624q6

+ 754527616229888955q7 + . . .
)
,
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h3 =q−
9

4
+ 1

4

(
0 + 0q− 322496q2

. . . . . . . . .
+ 154768800q3 + 356674019472q4

+ 84550767361152q5 + 8789804684886144q6

+ 544775594940872640q7 + . . .
)
.

Remarkably, we find that all terms up to q4 in h1 turn out to coincide with
those in (B.6), which provides strong support for the above assumptions
leading to (B.7). Furthermore, only the O(q2) term in h0 differs from the
value 35334 given by the naive ansatz (4.8), while all other polar terms as
well as the O(q2) coefficients in h2 and h3 perfectly match (4.8).

We can apply a similar procedure to provide additional constraints on
GV invariants and additional checks on the modular function (B.7). First,

taking into account that PT(14,−22) = GV
(23)
14 + 46GV

(24)
14 = GV

(23)
14 and

matching theO(q) term in h2 between (B.5) and (B.8), one obtains GV
(23)
14 =

1053. To get a constraint at genus 22, we further assume that the O(q2) term
in h2 is correctly captured by (B.6). Comparing it with (B.8) and taking

into account the previous findings for GV invariants, one gets GV
(22)
14 =

5420196. With all these constraints, it is possible to compute GV invariants
up to genus 23 and check that the coefficients of q3 and q4 in h2 computed
using (4.19) with k = k0 − 1 match those in (B.8), which can be considered
as a verification of the above assumption.

To go to even higher genus, the predictions of modularity based on the
rigorous use of (4.19) are again insufficient because GV invariants at genus
24 turn out to depend on unknown PT invariants. In particular, it can

be shown that GV
(24)
15 = PT(15,−23) − 216717312. Fortunately, we can

apply the same trick as above: let us assume that the O(q3) term in h3 is
computed correctly by (B.6). This fixes the required PT invariant and gives

GV
(24)
15 = 1795277088. As a result, the direct integration method can be

pushed up to genus 24, while the maximal genus attainable by the standard
direct integration method is only 20. One can also check that the coefficients
of q4 and q5 in h3 computed using (4.19) with k = k0 − 1 match those
in (B.8), which supports the above assumption. Finally, using modularity,
we can predict GV invariants close to the Castelnuovo bound to arbitrary
genus (see Table 8).

B.4. X6,4

We now consider the complete intersection of degree (6, 4) in P5
3,2,2,1,1,1, In

this case, κ = 2, np
1 = 3 and nc

1 = 0 so the modular form hμ is uniquely
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Table 8: GV invariants GV
(gC(Q)−δ)
Q for X4,3, assuming modularity. A

question mark indicates that the result depends on as yet unknown PT
invariants

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 0 1944
2 2 0 27 223560

3 3 0 0 161248 64754568
4 4 0 81 227448 381704265 27482893704

5 5 0 5832 155520 3896917776 638555324400 14431471821504
6 7 10 816 26757 −40006768 75047188236 20929151321496

7 8 0 −23328 −1358856 −7825332240 2609489667744 1159250594105376
8 10 0 405 1815696 1246578255 −1193106464964 169353267859971

9 12 0 0 −1612480 −590680416 1077388111920 −185398224083488
10 14 0 567 2719656 2033988975 −2396370890772 426751496255367

11 16 0 −46656 −2503872 −23437746576 13091629897584 −1992347003533392
12 19 55 4260 139245 −159384576 528260763000 −157181565397200

13 21 0 64152 2908224 35118682704 −21249125934480 3648284023741704
14 24 0 1053 5420196 4378100382 −6073970861304 1376630062962426

15 27 0 0 4514944 ? ? ?
16 30 0 1377 7211592 5890376457 ? ?

17 33 0 110808 2927664 66253494456 −43956428447664 ?
18 37 115 5448 68415 −405033180 1447081995873 −519150013281888

19 40 0 −139968 −1881792 −85700360016 58822283187000 −12434745915614736
20 44 0 2187 11660436 9506092041 −14945171094720 4071759470600148

21 48 0 0 −9352384 −3491811840 9974934265584 −3041698928528400
22 52 0 2673 14310108 11567018943 −18861070782672 5421323164985343

23 56 0 −209952 3623616 −132448385088 96512552546400 −22792919002464096
24 61 205 360 −124995 −768252196 2853693391443 −1169466146662224
25 65 0 250776 −8736336 159825290616 −119774566448496 29839722776131176

26 70 0 3807 20437272 16072226307 −28239088327452 9015178386188196

fixed by 3 coefficients. This model was first considered in [31], assuming the

naive Ansatz (4.8) for the polar terms. Using GV invariants up to genus 14,

Eq. (4.19) predicts

h0 =q−
34

24

(
3− 304q + 1

13 PT(8,−18)q2 − 1
12 PT(8,−17)q3 + . . .

)
,

h1 =q−
34

24
+ 3

4

(
−16− 1

10 PT(7,−14)q + 1
9 (PT(7,−13) + 192) q2 + . . .

)
.

(B.9)

In particular, the polar part of h0 differs from the value 3− 312q predicted

by the naive Ansatz (4.8). There is a unique modular form that matches

these polar terms, namely
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Table 9: GV invariants GV
(gC(Q)−δ)
Q for X6,4, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 8 15552
2 3 3 128 258344 27904176

3 4 −48 −64432 36976576 5966034472 133884554688
4 7 15 1036 800065 −272993052 15929894952 4502079839576
5 9 96 160128 −148759496 14847229472 −592538522344 42148996229312

6 13 27 1784 1846330 −838903420 76751964798 −3326821152316
7 16 −176 −318240 338189520 −43591449792 2519386074032 −86921827226312

8 21 45 2456 3387175 −1727130716 ? ?
9 25 288 536160 −610236992 91763910544 −6449197272904 ?

10 31 69 2548 5409137 −2981186776 388162502583 −26079491452172
11 36 −432 −810912 970636496 −166948527648 13842057435472 −721713847987144

12 43 99 1412 7922463 −4655472528 697407486327 −55249696746420
13 49 608 1138656 −1426615872 278955967328 −26973362355200 1666567885265984

14 57 135 −1744 10981213 −6816859292 1167120353936 −107938440865312
15 64 −816 −1514784 1986583568 −440060692768 49244924907392 −3567835755931072

16 73 177 −7856 14707727 −9547461076 1857133031696 −198887588738688
17 81 1056 1933920 −2659986752 665252326368 −85577571342976 7205538528304192

18 91 225 −18004 19321425 −12950149776 2843375759861 −349939554154236
19 100 −1328 −2389920 3457146192 −972514271520 142892550610016 −13868257921375616

20 111 279 −33412 25171927 −17157902216 4221401587493 −592607749008964

hμ =
1

η40

[
−85E3

4E6 + 23E3
6

432
− 13E4

4 + 23E4E
2
6

6
D

]
ϑ(2)
μ ,(B.10)

with the following expansion:

h0 =q−
34

24

(
3− 304q + 270431q2 + 133585104q3 + 12401092398q4 + . . .

)
,

h1 =q−
34

24
+ 3

4

(
−16 + 32352q + 36578048q2 + 4364892672q3

+ 226014399392q4 + . . .
)
.

(B.11)

The term of order q in h1 is correctly reproduced by (4.19) with k = k0 −
1. Assuming that (B.19) is correct, one can produce additional boundary

conditions for the direct integration method (see Table 9), allowing to reach

genus 17, beyond the genus 14 available by standard methods. Note that to

get a boundary condition at genus 17, one uses the fact the O(q4) coefficient

in h0 is subject to Prop. 1.
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B.5. X3,3

Next, we consider the bicubic in P5, first studied in [20]. In this case, κ =
9, np

1 = 14 and nc
1 = 1 (as first noted in [52]) so the modular form hμ

is uniquely fixed by 13 coefficients. Using the basis (5.5), the generating
function proposed in [20] reads

hμ =
1

η90

[
47723E9

4E6 + 25095E6
4E

3
6 − 68943E3

4E
5
6 − 3875E7

6

107495424

+
289326E10

4 + 415189E7
4E

2
6 − 3458324E4

4E
4
6 − 729839E4E

6
6

334430208
D

+
2261629E8

4E6 + 3219046E5
4E

3
6 − 6371E2

4E
5
6

30965760
D2

− 94271E9
4 + 1496733E6

4E
2
6 + 1342665E3

4E
4
6 + 52315E6

6

5160960
D3

−162167E7
4E6 + 300338E4

4E
3
6 + 35159E4E

5
6

286720
D4

]
ϑ(9)
μ ,

(B.12)

and has the following expansion

h0 =q−
63

24

(
−6 + 720q− 40032q2 − 678474q3 + 30885198768q4

(B.13)

+ 35708825468142q5 + . . .
)
,

h1 =q−
63

24
+ 5

9

(
0− 4212q + 448578q2 + 374980104q3

+ 2020724648442q4 + . . .
)
,

h2 =q−
63

24
+ 2

9

(
0 + 0q + 158436q2 − 12471246q3 + 174600085086q4 + . . .

)
,

h3 =q−
63

24

(
0 + 0q + 10206q2 − 13828428q3

. . . . . . . . . . .
+ 24425287884q4 + . . .

)
,

h4 =q−
63

24
+ 8

9

(
0 + 0q− 11040786q2

. . . . . . . . . . .
+ 6769752552q3

+ 17629606262268q4 + . . .
)
.

Unfortunately, with GV invariants being known up to genus 29, Eq. (4.19)
only allows to confirm the coefficients −6+720q in h0 and 0 q0 in h3. Apply-
ing (4.19) with k = k0− 1, we find evidence that the coefficients of all terms
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Table 10: GV invariants GV
(gC(Q)−δ)
Q for X3,3, assuming modularity. A

question mark indicates that the result depends on as yet unknown PT
invariants

Q gC(Q) δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 0 1053
2 2 0 0 52812
3 3 0 0 3402 6424326
4 3 0 0 5520393 1139448384
5 4 0 0 5520393 4820744484 249787892583
6 6 0 0 10206 6852978 23395810338 3163476682080
7 7 0 0 158436 −484542 174007524240 42200615912499
8 8 0 6318 372762 −784819773 2028116431098 785786604262830
9 10 15 1170 39033 −5412348 −61753761036 36760497856020

10 11 0 −21060 −1421550 1150458714 −4055688274977 1055748342473838
11 13 0 0 792180 42487254 523544632866 −277740359622189
12 15 0 0 −61236 −67672476 −96817818078 107933688748656
13 16 0 0 66244716 32180134734 −71248361250798 17551409134469472
14 18 0 0 −77285502 −38299950252 89193730254030 −23552769634742655
15 21 0 0 91854 107320680 167270244048 −217376516354913
16 23 0 0 −1584360 −48866814 −1393793916300 990222417035712
17 25 0 50544 2609334 −3916924776 18349298486658 −7855011831413205
18 28 −90 −5220 −120186 23305068 338860808028 −372702765685392
19 30 0 −63180 −2653560 5125104738 −24509155811472 11014900785838314
20 33 0 0 −2534976 −34970130 −2437828042176 1882564212119436
21 36 0 0 −183708 −222958548 ? ?
22 38 0 0 −209774934 −107171300556 ? ?
23 41 0 0 −231856506 −117773956584 ? ?
24 45 0 0 −244944 −297478548 −512109217728 784094829426108
25 48 0 0 −4119336 58959090 −4179092501304 3448552834527066
26 51 0 −122148 −589680 10761641532 −53529168000492 27142164772551882
27 55 −198 −1656 78588 61819596 890324824482 −1089181917906228
28 58 0 143208 −1236222 −12753357660 63994621219614 −33427151297813844
29 62 0 0 −5703696 236542518 −5924469211524 5107223091368232
30 66 0 0 398034 475327980 841660464438 −1378633833342540
31 69 0 0 −452672226 −211037368248 718903306166688 −291661896939934680
32 73 0 0 485794584 223088117976 −775956404598264 320699529577227510
33 78 0 0 −489888 −576452916 −1032773712696 1747571748926544
34 82 0 0 8080236 −653114988 8557070940234 −7761488275449180
35 86 0 −231660 14695668 20684191104 −108491328034740 62714086906118814

up to q5 in h0 and all the vanishing coefficients in other components are
indeed correct. Moreover, the O(q3) coefficient in h3 and O(q2) coefficient
in h4 as well as all polar terms turn out to agree with the ansatz (4.8). In

addition, we observe that the coefficients −4212 in h1 and 10206 in h3 are
given by 1

5 PT(10,−9) and −1
6 PT(12,−12), even though the correspond-

ing values of (Q,m) do not satisfy the optimality conditions. Thus, there is

strong evidence that (B.13) is correct.

Assuming that it is, one can produce additional boundary conditions for

the direct integration method (see Table 10), allowing to reach genus 33,
beyond the genus 29 available using standard boundary conditions.
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B.6. X4,4

We now consider the complete intersection of degree (4, 4) in P5
2,2,1,1,1, In

this case, κ = 4, np
1 = 6 and nc

1 = 1 so the modular form hμ is uniquely

fixed by 5 coefficients. This model was first considered in [31], assuming the

naive Ansatz (4.8) for the polar terms. Using GV invariants up to genus 26,

Eq. (4.19) predicts

h0 =q−
44

24

(
−4 + 432q− 10032q2+148611456q3 − 1

24 PT(16,−36)4q
4+ . . .

)
,

h1 =q−
44

24
+ 5

8

(
0 + 1

17 PT(13,−26)q− 1
16 PT(13,−25)q2 + . . .

)
,

h2 =q−
44

24
+ 1

2

(
0− 2816q + 1

19 PT(14,−29)q2 + . . .
)
.

(B.14)

This is sufficient information to fully determine the generating series:

hμ =
1

η56

[
319E5

4E6 + 113E2
4E

3
6

11664
− 146E6

4 + 1025E3
4E

2
6 + 125E4

6

972
D

−566E4
4E6 + 298E4E

3
6

81
D2

]
ϑ(4)
μ ,

(B.15)

with the following expansion:

h0 =q−
44

24

(
−4 + 432q− 10032q2 + 148611456q3 + 53495321332q4

+ 5858228664240q5 + 338470263518000q6 ++12773210724578176q7

+ 352882974651781356q8 . . .
)
,

h1 =q−
44

24
+ 5

8

(
0− 7424q + 7488256q2 + 7149513728q3 + 1104027086592q4

+ 78370863237632q5 + 3411805769659904q6 + . . .
)
,

h2 =q−
44

24
+ 1

2

(
0− 2816q + 2167680q2 + 3503031296q3 + 619015800576q4

+ 47430532268544q5 + 2174342476769792q6 + . . .
)
.

(B.16)

In particular, the polar part agrees with the naive Ansatz (4.8) that was as-

sumed in [31]. Assuming that (B.15) is correct, one can produce additional
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Table 11: GV invariants GV
(gC(Q)−δ)
Q for X4,4, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 1 0 3712
2 2 0 1408 982464

3 3 0 3712 6953728 683478144
4 5 6 384 −12432 148208928 26841854688 699999511744
5 6 0 −22272 −14802048 7282971392 2161190443904 88647278203648

6 8 0 11264 6367872 −7046285440 773557598272 362668189458048
7 10 0 −37120 −29359104 21832649216 −2470237776768 278617066306304

8 13 32 2256 1728 742436816 −227235799678 21187753811008
9 15 0 59392 50769664 −44144389120 6476935523072 −435143766495232

10 18 0 28160 18608000 −28596423936 5125410035840 −407275256652416
11 21 0 89088 78985472 −74401243136 12415279501056 −983151655520000

12 25 64 3408 −88512 1931209232 −723035097878 91699351475728
13 28 0 −126208 −113249280 113072299008 −20742352242176 1847677262046464

14 32 0 56320 37806720 −65347039488 14118281042560 −1421834838533888
15 36 0 −170752 −153130496 160635374080 −32024183351808 3157850965939456

16 41 112 2704 −304000 3721068368 −1558763217664 236934426952368
17 45 0 222720 198005504 −217632888320 46941587427584 −5089550372194304

18 50 0 95744 62342016 −118393743616 29795537375872 −3617592752039168
19 55 0 282112 247161600 −284657253888 66297765350656 −7874526931335680

20 61 176 −2544 −535104 6123275152 −2835063806944 506679656992912
21 66 0 −348928 −299796992 362338625536 −91027164419584 11813373104231424

22 72 0 146432 90051200 −189003413760 55119444471424 −7968454696971008
23 78 0 −423168 −355020800 451332651008 −122204523786752 17290687427825664

24 85 256 −15792 −347712 9139883728 −4682106927504 976043266192272
25 91 0 504832 411853056 −552306662400 161054029205248 −24792539565154304

26 98 0 208384 118230912 −278503055616 93943868100224 −16042635201490176

boundary conditions for the direct integration method (see Table 11) allow-

ing to reach genus 32. Furthermore, the term of order q8 in h0 is subject

to Prop. 1 and provides an additional boundary condition at genus 33 that

allows to push the direct integration up to genus 34. With this new data,

we can further check that (B.16) is consistent up to orders q3, q4 and q5

with (4.19), and even reproduce the coefficients of order q5 in h1 and q6 in

h2 by applying (4.19) with k = k0−1. Thus, there is overwhelming evidence

that (B.15) (first conjectured in [31]) is indeed correct.

B.7. X6,6

We now consider the complete intersection of degree (6, 6) in P5
3,3,2,2,1,1, In

this case, κ = 1, np
1 = 1 and nc

1 = 0 so the scalar modular form h = h0 is

uniquely fixed by a single coefficient. Since the leading coefficient is known,
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Table 12: GV invariants GV
(gC(Q)−δ)
Q for X6,6, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

1 2 1 360 67104
2 4 −6 −928 291328 40692096 847288224
3 7 −10 −1807 867414 −39992931 1253312442 254022248925
4 11 16 3054 −1752454 111434794 −3192574724 53221926192
5 16 24 4582 −2962836 226181014 −8162501599 181541450026
6 22 −34 −6284 4516784 −401198640 17316022722 −470838831620
7 29 −46 −8028 6434962 −657358676 33294527348 −1078394245876
8 37 60 9658 −8736900 1020136914 −59981343076 2281585927834
9 46 76 10994 −11438612 1519838840 −102904929012 4549405838854

10 56 −94 −11832 14549836 −2191738688 169716778670 −8644920617316
11 67 −114 −11944 18070914 −3076075680 270744962214 −15768167683888
12 79 136 11078 −21989312 4217848666 −419620144388 27750103729188
13 92 160 8958 −26275780 5666343644 −633965979716 47309465417064
14 106 −186 −5284 30880152 −7474321920 936139362212 −78385363446040
15 121 −214 268 35726786 −9696789948 1353997949560 −126558933123332

the generating series is necessarily [31]

h = −2E4E6

η23
=q−

23

24

(
−2 + 482q + 282410q2 + 16775192q3 + 460175332q4

+ 8112401426q5 + 106227128612q6

+ 1118140132310q7 + . . .
)
.

(B.17)

Using GV invariants up to genus 18, we can use Eq. (4.19) to confirm all
terms up to (and including) q3. The O(q2) coefficient can also be verified
independently using Prop. 1. We note that the coefficient J1 = 482 differs
from the naive prediction χY(χD − 1) = −120, due to the singular curve
where the two degree-one homogeneous coordinates vanish simultaneously.
Assuming (B.17) is correct, one can produce additional boundary conditions
for the direct integration method (see Table 12), allowing to reach genus 22,
beyond the genus 18 available by standard methods.

B.8. X6,2

Finally, we consider the complete intersection of degree (6, 2) in P5
3,1,1,1,1,

In this case, κ = 4, np
1 = 7 and nc

1 = 0 so the modular form hμ is uniquely
fixed by 7 coefficients. This model was first considered in [31], assuming the
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naive Ansatz (4.8) for the polar terms. Using GV invariants up to genus 47,
Eq. (4.19) and Prop. 1 predict

h0 =q−
56

24

(
5− 1024q + 96390q2 + 2412544q3 + 79408559682q4

+ 34353222823936q5 + 4968007484511900q6 + 389580600939126784q7

+ 20087040094321343657q8 + . . .
)
,

h1 =q−
56

24
+ 5

8

(
0 + 14976q− 2520960q2 + 2887376128q3 + 3893723178368q4

+ 809149241398912q5 + 78688042019771776q6

+ 4713543813612260224q7 + 198770720341455440256q8 + . . .
)
,

h2 =q−
56

24
+ 1

2

(
6− 1536q− 4647736q2 + 621617152q3 + 1986721226130q4

+ 4539238704890883q
5 + 1

30 (−2242806300− PT(18,−43))q6 + . . .
)
.

(B.18)

In particular, the polar coefficients in h2 differ from the values 16 − 4608q
predicted by the naive Ansatz (4.8). There is indeed a unique modular form
which fits this vastly overdetermined set of coefficients:

hμ =
1

η68

[
−5(727E8

4 + 3322E5
4E

2
6 + 1135E2

4E
4
6)

559872

+
2409E6

4E6 + 5830E3
4E

3
6 + 401E5

6

5184
D

+
2519E7

4 + 17978E4
4E

2
6 + 5423E4E

4
6

1944
D2

]
ϑ(4)
μ .

(B.19)

Assuming that (B.19) is correct, one can produce additional boundary con-
ditions for the direct integration method (see Table 13), allowing in principle
to reach genus 78, beyond the genus 63 available by standard methods.
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Table 13: GV invariants GV
(gC(Q)−δ)
Q for X6,2, assuming modularity

Q gC δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5
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Laboratoire de Physique Théorique et Hautes Energies

CNRS and Sorbonne Université
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