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In recent years, a version of enumerative geometry over arbitrary
fields has been developed and studied by Kass-Wickelgren, Levine,
and others, in which the counts obtained are not integers but
quadratic forms. Aiming to understand the relation to other “re-
fined invariants”, and especially their possible interpretation in
quantum theory, we explain how to obtain a quadratic version of
Donaldson-Thomas invariants from the motivic invariants defined
in the work of Kontsevich and Soibelman and pose some ques-
tions. We calculate these invariants in a few simple examples that
provide standard tests for these questions, including degree zero
invariants of A3 and higher-genus Gopakumar-Vafa invariants re-
cently studied by Liu and Ruan. The comparison with known real
and complex counts plays a central role throughout.
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1. Introduction

Over the years, it has been a fruitful endeavour to elucidate the structure
of enumerative invariants attached to various classes of problems stemming
from algebraic geometry, symplectic geometry, and theoretical physics, see
e.g. [31]. One of the common themes in this context has been the identifica-
tion of problems attached to distinct geometric or algebraic setups (“dual-
ity”). Such an identification can uncover otherwise unexpected properties,
such as regularity, recursions, or modularity, and often allows for exact solu-
tions. More recently, it has been of interest to compare invariants attached
to the same geometry, but defined in different theories, relying on higher
structures or hidden symmetries (“refinement”). It is ultimately reasonable
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to expect, if not outright necessary for coherence, that any refinement or

structure present in one setup or theory can be ported to all the others, and

any missing piece is as much an opportunity for further progress.

In this note, we will be concerned mainly with the youngest type of

“arithmetic invariants” which are defined in A1-enumerative geometry and

take values in the Grothendieck-Witt ring of quadratic forms, and the some-

what older “motivic invariants”, which take values in the Grothendieck ring

of varieties. We briefly recall their salient features here, and their more

proper definition in the main text.

A1-enumerative geometry consists in applying the machinery of so-called

A1-homotopy theory to classical enumerative problems. This machinery was

introduced in the 90s, in the work of Morel and Voevodsky [29]. The main

idea is to consider the affine line A1 rather than the interval [0, 1] ⊂ R as

a parameter space and thereby construct a homotopy theory for schemes.

This allows us to define an algebraic or A1-degree for maps between schemes,

which naturally generalizes the classical degree from algebraic topology.

While the natural ring where this degree is defined is not Z but rather

the Grothendieck-Witt ring of quadratic forms, the theory has the highly

attractive feature of being defined over arbitrary fields, rather than just the

complex or real numbers. The latter, numerical, counts can be recovered

as special cases from rank and signature of the quadratic form. Problems

which have been solved in this theory include the classical enumeration of

lines on a cubic surface [16], lines on a quintic threefold [32] and the enumer-

ative geometry of twisted cubics [25]. The latter study in particular relies

on Atiyah-Bott localization, which was extended to this context in [23]. The

results for the quintic specialize to the real counts first obtained in [34] and

[36]. Even more recently, a refined enumeration of rational curves through

points in a del Pezzo surface was obtained in [14], which in particular refines

the classical counts of degree d rational curves in P2 trough 3d− 1 points.

Motivic Donaldson-Thomas (DT) invariants were introduced from a

rather different direction by Kontsevich and Soibelman [18]. Their main

motivation was to understand wall-crossing phenomena in the theory of

BPS states and specifically the enumerative geometry of Calabi-Yau 3-folds.

The most basic observation in this context is that enumerative invariants

arise from a perfect obstruction theory on a moduli space (equipped with a

stability condition), and the basic idea is to identify that algebraic obstruc-

tion class directly as a “motivic invariant”, while the standard “numerical”

DT-invariants can be recovered via the Euler Characteristic morphism (or

motivic integration).
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Apart from circumstantial evidence in the B-model [20], an early indica-
tion that the “refined” theory might be related to an enumerative geometry
over fields other than the complex numbers appeared in work of Göttsche
and Shende [13] on the enumerative geometry of curves on surfaces. The
main observation in this regard was that the real count, defined via the
compactly supported Euler characteristic, appears in a special limit of the
refinement parameter that is different from the standard complex one.

Our goal here is to shed light on the relationship between these two
generalizations of classical enumerative invariants, and on how they arise by
composing the complex and real counts, which are either known or accessible
by more standard methods. The basic mathematical idea is to utilize the
compactly supported A1-Euler characteristic

χA1

c : K0(Var(k)) → GW (k) ,

which is already considered for a similar purpose in the papers [2] and [33],
to go from motivic to arithmetic invariants, in a way that is compatible with
taking numerical degrees on the two sides. We illustrate the discussion by two
examples which to our knowledge have not been studied in the arithmetic
context before. The first is the Hilbert scheme of points on A3, for which the
motivic DT invariants were computed in the paper [6]. Using their formula
for the motivic partition function of the Hilbert scheme of points of C3

and passing to the arithmetic invariants, we get the expected result over
R (as computed in [19]) and, as a byproduct, a count that would make
sense over any field. Our second example is based on the recent calculation
of Gopakumar-Vafa invariants at the Castelnuovo-Mumford bound by Liu-
Ruan [27] and Alexandrov et al. in [1] and also leads to a prediction for a
count over any field.

In all these examples, the knowledge of the real (and of course, the com-
plex) count is sufficient to determine the arithmetic invariant (i.e., the value
of the invariant over any field). On the other hand, the real enumerative
invariants admit a physics interpretation, which mimics the relationship be-
tween real and open Gromov-Witten theory, as “open” or “relative” BPS
invariants. This is indicative of a much deeper relationship between arith-
metic refinements of enumerative geometry and the physics of BPS states.
In fact, our interest in the arithmetic invariants arises in part from the ob-
servations, recorded in [37] and otherwise, that enumerative predictions of
mirror symmetry depend in general on an arithmetic structure of the mirror
manifold, and that this is especially true in the context of relative invariants.
These observations have not been explained from the motivic point of view.
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An initial idea for the physics interpretation of the quadratic form is the
occurrence of the Eisenbud–Levine–Khimshiashvili class as local A1 degree
[15]. In such examples, the function whose critical locus defines the enu-
merative invariant enters as superpotential into the action functional of the
physical theory. A critical point defines a supersymmetric vacuum, and a
refinement via the Hessian would correspond to keeping track of the masses
of the physical fields.

In [22], Levine has given an alternative definition of DT invariants valued
in GW (k), based on obstruction theory. The construction is an A1-homotopy
version of the intrinsic normal cone used by Behrend and Fantechi [7] and
leads to a virtual class whose degree lies in GW (k). The relationship between
those invariants and the ones defined here is not entirely clear to us, but we
expect them to be closely related, see section 3.4.

To summarize, the main purpose of this paper is not so much to claim
any new fundamental insight, but merely to point out that the arithmetic
and motivic refinements are too closely related for this to be an accident,
that this applies specifically in a class of examples that are highly relevant
in the context of BPS state counting and M-theory dualities, and thereby
to pose the question for a physics interpretation of all these structures.

2. Motivic DT invariants

2.1. The Grothendieck ring of varieties

Let k be a field of characteristic zero.

Definition 2.1.1. The Grothendieck ring of varieties is the abelian group
generated by isomorphism classes of all varieties over k modulo relations

[X] = [Y ] + [X \ Y ],

where Y is closed in X.
The product structure that makes K0(Var(k)) a ring is given by the usual

Cartesian product [X] · [Y ] = [X × Y ]. The class of the affine line [A1
k] is

denoted by L in K0(Var(k)) and we set

Mk := K0(Var(k))[L
− 1

2 ],

which will be called ring of motivic weights.

Remark 2.1.2. The following statements are true:



Motivic and arithmetic Donaldson-Thomas invariants 157

• If f : X → S is a Zariski locally trivial fibration with fiber F , then
[X] = [S] · [F ].

• If f : X → Y is a bijective morphism, it is true that [X] = [Y ].

With this notation, the classes of cellular varieties can be computed in
terms of L, for example,

[Pn] = 1 + L+ L2 + · · ·+ Ln

and a similar expression can be written for the Grassmanians:

[Gr(n, k)] =
(Ln − 1)(Ln−1 − 1) · · · (L− 1)

(Ln−k)(Ln−k−1) · · · (L− 1) · (Lk − 1)(Lk−1 − 1) · · · (L− 1)
.

Remark 2.1.3. Notice that, over non algebraically closed fields, besides the
rational points, varieties have also points which correspond to Galois orbits
over the algebraic closure. This gives rise to different classes of points in
K0(Var(k)), which are the classes of Spec(L), with L ⊃ k.

Example 2.1.4. Over R, there are two classes of points: [SpecR] and [SpecC].
Therefore, although P1(R) is a circle, there are non rational points which
correspond to pairs of complex conjugate points. Indeed, P1 is not isomor-
phic to X = {x2 + y2 = 1} ⊂ A2, since there are two complex conjugate
points “at infinity”. In terms of the Grothendieck ring of varieties, we get
[X] = L+ 1− [SpecC] ∈ K0(Var(R)).

Over k = C, there is a morphism to Z given by the Euler characteristic
with compact support.

χc : K0(Var(C)) → Z

which can be extended to a morphism

χC
c : MC → Z

if we send L
1

2 to −1 (since L goes to 1). The same can be done for considering
the Euler characteristic of the real points. In Section 3, we will introduce the
A1-Euler characteristic, which is defined for varieties over any field. Notice
that we have to be careful when extending to MR. As χR

c (L) = −1, the
extended Euler characteristic takes values in Z[i], where i =

√
−1.

χR
c : MR → Z[i]
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If one does not want to consider compactly supported Euler characteris-
tics, one could actually only consider projective varieties. In fact, the abelian
group generated by projective varieties with relations given by

[X]− [Y ] = [BlY X]− [E](1)

[∅] = 0(2)

where BlY X is the blow up of X along Y and E is the exceptional divisor,
is isomorphic to K0(Var(k)). For details, see Theorem 3.1 of [8].

2.2. Donaldson-Thomas invariants

We consider Donaldson-Thomas invariants following [28]. Those are simply
numbers1 obtained by integration against virtual classes of moduli spaces of
ideal sheaves in the complex setting. If M is a smooth Calabi-Yau threefold,
any ideal sheaf defines a subscheme N . Then, the moduli spaces we are
interested in are the ones of the form X = In(M,β) and consist of sheaves
for which N represents the homology class β and χ(ON ) = n. Usually, we are
interested in the cases for which N has dimension at most one, which implies
that β is in H2(M). In(M,β) is, then, isomorphic to a Hilbert Scheme of
curves in M . In particular, for the case β = 0, we are considering exactly
the situation in which N has dimension 0, that is, In(M, 0) is the Hilbert
Scheme of points of M .

The DT invariants of M are defined by integrals:

(3) DT (n, β) =

∫
[In(M,β)]vir

1

where [In(M,β)]vir is a virtual class in the homology defined via obstruction
theory. It was proved, in [5], to depend only on the scheme structure of the
moduli space and not on the chosen obstruction theory. In particular, if
the moduli space ends up being smooth, this virtual class is, up to a factor
(−1)dim In(M,β), simply the Poincaré dual of the top Chern class, which means
that the integral above is given, up to sign, by the Euler characteristic with
compact support of the moduli space.

A natural way of refining such invariants is, therefore, to consider these
virtual classes as elements in the Grothendieck ring of varieties, since the
Euler characteristic gives us a natural morphism from this ring to Z. If the

1For emphasis, one sometimes refers to them as “numerical DT-invariants”, to
distinguish them from their “motivic” version, defined below.
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moduli space is smooth these virtual classes should be given by the classes
of In(M,β) in the ring MC, since the DT invariants coincide with the Euler
characteristic. Notice, though, that, if the moduli space is singular, it is
usually not straightforward to define such virtual classes in the Grothendieck
ring of varieties. Pictorially, we want a commutative diagram as below.

(4)

{Moduli Spaces In(M,β)}

Z

MC

Virtual Classes

DT Theory

χc

The idea of refining DT invariants via the Grothendieck ring of varieties
was first considered in [18]. For us, the interest behind this is that, as already
pointed out in the introduction and in [13], by considering real and complex
Euler characteristics, we can, in some cases, recover real DT invariants from
the same formulas in the Grothendieck ring. In general, the virtual classes
are not in Mk (or MC), but in a slightly larger, equivariant version of this
ring. In the next section, we present a way to define virtual classes over
a general field k of characteristic zero when the moduli spaces are defined
over k and can be represented as a critical locus of a smooth function, based
mainly on the work of Denef and Loser [11]. In practice, this is the case
in many interesting examples in which Db(X) ∼= Db(Q −mod), that is, in
which we can represent the moduli spaces as quiver varieties.

2.3. The motivic nearby class

Let X be a smooth variety and f : X → A1 be a regular function. Denote
the central fibre f−1(0) by X0. Our goal is to define a class [Z]vir for Z =
{df = 0}, the critical locus of f , which encodes also the scheme structure of
Z.

Definition 2.3.1. Let μn be the group of n-th roots of unity in k̄. Notice
that it has a structure of algebraic variety over k. We have maps μnd → μn

given by x �→ xd. This gives us a projective system. We denote the limit by μ̂.
A good μn action on X is a group action μn×X → X which is a morphism
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of varieties and such that each orbit is contained in an affine subvariety of
X. A good μ̂-action is a group action μ̂ ×X → X which factors through a
good action of μn for some n.

Definition 2.3.2. Consider the abelian group generated by symbols [X, μ̂] =
[X], where X is a variety with a good μ̂-action, modulo isomorphisms com-
patible with the action. The relations are the same scissor relations [X] =
[Y ] + [X \ Y ] that we have for K0(Var(k)) but such that the action on Y
is induced by the one on X. Finally, there is one more relation given by
[X × V ] = [X × An], where V is the affine space of dimension n with a
good μ̂-action and, on the other side, An has the trivial action. The product
is given by the usual Cartesian product with the product action. The class
of the affine line with the trivial action is denoted by L. This ring will be
denoted K0(Var

μ̂(k)) and its localization K0(Var
μ̂(k))[L− 1

2 ] by Mμ̂
k .

Take a resolution of f : X → A1, that is, a map h : Y → X, with Y
smooth and irreducible such that Y0 = h−1(X0) has only normal crossings
and the restriction h : Y − Y0 → X − X0 is an isomorphism. We fix the
notation:

• Ei, i ∈ J denote the components of Y0 and Ni their multiplicities;
• EI , I ⊂ J denote the intersections

⋂
i∈I Ei;

• E◦
I , I ⊂ J denote EI −

⋃
j /∈I Ej ∩ EI

To take multiplicities into account, we define natural covering spaces Ẽ◦
I →

E◦
I , which are unramified and Galois with Galois groups given by μmI

, where
mI is the greatest common divisor of the multiplicities of all Ei, i ∈ I. Take
U ⊂ Y an open set such that f ◦ h = uvmI , where u is a unit in OY (U) and
v is a morphism v : U → A1. We can define Ẽ◦

I by gluing the sets

{(x, t) ∈ (U ∩ E◦
I )× A1|tmI = u−1(x)}.

The considerations above show that Ẽ◦
I is a Galois covering and that there

exists a natural good action of μn (and thus, of μ̂) on it.

Definition 2.3.3. The motivic nearby class of f is defined as follows:

(5) Sf :=
∑
∅ �=I

(1− L)|I|−1[Ẽo
I ] ∈ Mμ̂

k

Among other remarks, the belief is stated in [11] that this is a motivic
incarnation of the complex of nearby cycles of X0, which was defined in
Exposé XIII of [10]. Restricting Sf to a point x ∈ X0, we get the local
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version, which the authors believe to be a motivic version of the classical
Milnor fibre of f over x.

(6) Sf,x :=
∑
∅ �=I

(1− L)|I|−1[F̃ o
I ] ∈ Mμ̂

k

where Fi is the fiber of Ei over x.

Example 2.3.4. Let f : A2 → A1 be given by f(x, y) = x2 − y2. Then
X0 has already only normal crossings, which are the two lines E1 and E2

intersecting at the origin. We have:

E◦
1 = E1 − {0}

E◦
2 = E2 − {0}

E◦
1,2 = {0}

As all multiplicities are equal to 1, we do not need to worry about the
covering spaces. Computing Sf , we get:

(7) Sf = [E1 − 0] + [E2 − 0] + (1− L)[0] = L− 1 + L− 1 + 1− L = L− 1

For Sf,0, we can write:

(8) Sf,x = [(E1−0)∩h−1(0)]+[(E2−0)∩h−1(0)]+(1−L)[0∩h−1(0)] = 1−L

It is instructive to compare these results with what happens over R and
C. The Milnor fibre over a point x ∈ X0, over C, is defined as the intersection
of the preimage f−1(w), for small w ∈ C, with a small ball around x. This
gives us a cylinder around x, which has Euler characteristic 0: this is what we
get by making L = 1 in equation 8. Considering the same definition over R
(which cannot be done in all cases, considering that the topology of the fibre
f−1(w) can change depending on w), we get two hyperbola segments. As we
are intersecting with a ball, those are compact and the Euler characteristic
should be 2, which is compatible with making L = −1 in equation 8. If we do
not intersect with the ball (that is, consider, in some sense, a global fibre),
we would get an infinite cylinder (χc = 0) or two non compact branches of
hyperbola(χc = −2). This is compatible with equation 7.

As we will point out in Section 3, A1-enumerative geometry has an arith-
metic incarnation of the Milnor number for isolated singularities, which is
the EKL class of the gradient of f . Although, in order to compute DT invari-
ants, we use the definition above in the case of non isolated singularities, an
interesting problem would be to understand the relationship between Milnor
numbers and the class Sf . We elaborate on this in Section 3.
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2.4. Virtual class of a critical locus

Definition 2.4.1. Let X be a smooth variety and f : X → A1 be a regular
function. If Z is the critical locus of f and X0 = f−1(0), the virtual class of
the critical locus Z is defined as

(9) [Z]vir = −L− dimX

2 (Sf − [X0]) ∈ Mμ̂
k

The idea behind this definition is that, over the smooth points of X0,
the Milnor fibre should correspond to X0 itself. This means that this virtual
class encodes exactly what is happening on the singular locus of X0. Notice
that this definition depends on the function f chosen, that is, it depends on
how the variety is presented as a critical locus.

Remark 2.4.2. Definition 2.4.1 was given in the paper [6]. The extension
by the squareroot is related to the existence of a sign that appears when
relating DT invariants to the Euler characteristic (see [5]).

Example 2.4.3. If f = 0 is the zero function, then Z = X0 = X (every
point is critical). We can compute Sf = 0 using the fact that X0 can be seen
as the zero divisor. Therefore:

[Z]vir = −L− dimX

2 (0− [X0]) = L− dimX

2 [X]

This example shows that the virtual class of a smooth variety is its
class in Mk up to multiplication by a factor. In terms of DT invariants, this
factor correspond to the sign difference that we get with respect to the Euler
characteristics.

The virtual class is not always in Mk but, over C, Behrend, Bryan and
Szendrői showed, in [6], that, when f is equivariant with respect to a torus
action on X, [Z]vir ∈ Mk and can be computed from the difference between
the zero fiber and the generic fiber.

Proposition 2.4.4 (cf. Thm. B.1 in [6]). Let f : X → C be a regular
morphism on a smooth quasi-projective variety. Let Z be the critical locus
of f . Assume that there exists an action of a connected complex torus on
X such that f is equivariant with respect to a primitive character. If there
is a one parameter subgroup C× ⊂ T such that the induced action is circle
compact, that is, the set of fixed points is compact and the limit limλ→0 λx
exists for all x ∈ X, then, the virtual class [Z]vir is given by

[Z]vir = −L− dimX

2 ([X1]− [X0]) ∈ MC,
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where [X1] is the class of the fibre f−1(1).

The result above strongly uses the fact that the varieties are defined
over C, but our computations in section 4 show that, at least in the case
of degree zero invariants of A3, the real DT invariants are also encoded in
the formula. Inspired by the work of Levine on localization formulas in A1-
enumerative geometry [23], one may think that it could be possible to extend
these arguments to more general fields.

3. A1-Enumerative geometry

3.1. Rings of quadratic forms

In this section, k continues to be a field of characteristic zero.

Definition 3.1.1. The Grothendieck-Witt ring is the group completion of
the set of all quadratic forms over k up to isometries with the operations

(10) q + q′ : V ⊕W → k q + q′(x, y) = q(x) + q′(y)

(11) qq′ : V ⊗W → k qq′(x⊗ y) = q(x)q′(y)

where q : V → k and q′ : W → k are quadratic forms representing isometry
classes.

There are two important natural maps from GW (k) to Z which are the
rank and the signature.

• rk : GW (k) → Z computes the dimension of the vector space in which
the quadratic form is defined.

• sgn : GW (k) → Z computes the signature of the quadratic form.

Remark 3.1.2. If we have a field extension k ⊂ L, we can define a map
GW (L) → GW (k) by simply considering composition with the trace map
TrL/k : L → k.

Remark 3.1.3. Since every quadratic form can be diagonalized, GW (k) is
generated by elements of rank 1. These are represented by forms q(x) =
ax2, with a ∈ k×. They are denoted 〈a〉 ∈ GW (k). If a is a square, 〈a〉 =
〈1〉 in GW (k), and therefore the generators of GW (k) are the elements in
k×/(k×)2. Using this notation, we write H = 〈1〉 + 〈−1〉. This is called the
hyperbolic form. It has the property that 〈a〉H = H for any a ∈ k.
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The Grothendieck-Witt ring is suitable to refine the classical Z-valued
enumerative invariants (counts) defined over algebraically closed fields. Very
roughly, the intuition is that we count points considering local “orientations”
(as it is done over R), which correspond to quadratic forms. Counting with
such orientations allows us to get invariant counts over any field k. The ranks
of these quadratic forms correspond to the size of the Galois orbit of the point
and, therefore, they recover the counts over k̄. The signature recovers the
signed counts over R (when k ⊂ R), since the two square classes over R will
correspond to the two possible local orientations (signs). The definition of
the A1-degree of a map from An → An is a good example.

Definition 3.1.4. Let P : An → An be an étale morphism. The local degree
of P at a closed point x with rational image y = P (x) and which is isolated
in its fiber is given by:

(12) degA
1

x (P ) = Trk(x)/k〈detJ(x)〉

where J(x) denotes the derivative (Jacobian) of P at the point x and k(x)
denotes the residue field of x. The degree of P is simply the sum over all the
preimages.

(13) degA
1

(P ) =
∑

x∈P−1(y)

Trk(x)/k〈detJ(x)〉

Remark 3.1.5. When f is not étale, the degree can still be defined us-
ing more involved machinery from homotopy theory. We refer the reader to
section 2 of [15] for a more complete exposition and to [29] for technical
details.

Equation (12) corresponds to our local “orientation” and, in (13), we
“count” all the points. The simplest example is the function P (x) = x2

from A1 to A1.

Example 3.1.6. Let k = Q and P (x) = x2 in A1. The derivative is given
by J(x) = 2x. Therefore, using equation (13) we can write, choosing y = 1
and y = −1, the following formulas.

degA
1

(P ) = TrQ(1)/Q〈2〉+TrQ(−1)/Q〈−2〉 = 〈2〉+ 〈−2〉 = H

degA
1

(P ) = TrQ(
√
−1)/Q〈2

√
−1〉 = TrQ(

√
−1)/Q〈1〉 = H

In the second formula we used that 2
√
−1 = (1 +

√
−1)2 and that the trace

is simply the quadratic form a+ b
√
−1 �→ a2 − b2.
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Notice that rk(H) = 2, which is the number of preimages in the algebraic
closure and that sgn(H) = 0, which is the real topological degree.

In the next section, we will introduce Chow-Witt groups, which are a
generalization of the classical Chow groups to this context. The idea is to
do intersection theory taking such “orientations” into account.

3.2. Chow-Witt groups and Euler characteristics

We start by recalling that, over k̄, one can define sheaves KM
n , known as

Milnor K-sheaves, for which

(14) Hn(X,KM
n ) ∼= CHn(X).

The idea is to replace this Chow group by the Chow-Witt groups, defined
in such a way that the group associated to Spec(k) equals GW (k).

The Chow-Witt groups are denoted C̃H(X,L) (for L a line bundle),
and were first defined in [4]. The easiest way to define them is to generalize
Equation 14, i.e, write

Hn(X,KMW
n (L)) ∼= C̃H

n
(X,L),

for a suitable family of sheaves KMW
n twisted by lines bundles.

The line bundles can be considered up to squares, that is, C̃H
n
(X,L′) ∼=

C̃H
n
(X,L′ ⊗ L⊗2) for any L,L′. This is related to the fact that GW (k) is

generated by classes in k×/(k×)2. We have pullbacks and pushforwards for
Chow-Witt groups, but we have to be careful about the line bundles. This
new technical complication is a result of considering “orientations”.

• For f : X → Y , relative dimension d:

– Pullback: f∗ : C̃H
n
(Y, L) → C̃H

n
(X, f∗L)

– Pushfoward (for f proper): f∗ : C̃H
n
(X,ωX ⊗ f∗ωY ⊗ f∗L) →

C̃H
n−d

(Y, L)

These definitions give us:

• a map
∫
X : C̃H

n
(X,ωX) → GW (k), given by pushforwarding to the

point Spec(k);

• the Euler class of a vector bundle ε(V ) ∈ C̃H
r
(X, det−1(V )), via push-

fowarding the class 1X by a section and then pulling it back.
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Remark 3.2.1. Notice that we can only compute the integral of an Eu-
ler class (that is, count the zeros of a generic section), if the determinant
of the bundle is, up to squares, given by ωX . This gives a notion of (rel-
atively) orientable vector bundles. For the tangent bundle TX, we have
that det−1(TX) = det−1((Ω1

X)−1) = ωX . This implies that we can compute∫
X ε(TX), for any X.

Definition 3.2.2. The Euler characteristic of a smooth and projective va-
riety X can be defined as

χA1

(X) :=

∫
X
ε(TX)

If X is not projective, one can still define the Euler characteristic. We
could consider the motivic stable homotopy category and use the fact that
the infinite suspension spectrum of X is strongly dualizable and gives rise to
an endomorphism of the sphere spectrum, which corresponds to an element
of GW (k). The relationship between these two definitions is explained in
[21] and was first proved in [26]. The same idea can extend this map to a
compactly supported Euler characteristic.

We can now consider the map defined on K0(Var(k)) that takes any
variety and evaluates its compactly supported Euler characteristic. Even
tough we have not defined this for non projective varieties, as stated in the
introduction, we only need to consider projective varieties. This was already
pointed out in [2] and they stated the following:

Proposition 3.2.3 (cf. [2] Thm. 1.13). Let k be a field with char(k) = 0.
Then the compactly supported A1-Euler characteristic is well defined and the
following map:

χA1

c : K0(Var(k)) → GW (k)

is a homomorphism of rings.

The proof of the above proposition simply follows from the usual prop-
erties of Euler characteristics, which are compatible with the relations in
K0(Var(k)). The morphism from Proposition 3.2.3 can be extended to the
localization of K0(Var(k)) in the same way as the topological Euler charac-
teristics (see Section 2.1) after adjoining a square root of 〈−1〉 to GW (k).

(15) χA1

c : Mk → GW (k)(α)

where α is such that α2 = χA1

c (L) = 〈−1〉
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The morphism above allows us to get a “numerical” version of DT in-
variants over any field, given that the motivic version defined in 2.4.1 is
in Mk (seen as a subring of Mμ̂

k). We call these invariants arithmetic DT
invariants. One could also consider an equivariant version of the A1-Euler
characteristic in order to define arithmetic invariants even when the virtual
classes are not in Mk.

An interesting question is whether there is a direct definition of such
invariants which is not related to the Grothendieck ring of varieties but
defined directly using the tools of A1-homotopy theory.

3.3. Local A1-degree and Eisenbud-Khimshiashvili-Levine classes

We now discuss some aspects of the Eisenbud-Khimshiashvili-Levine (EKL)
classes, which, as we stated in the introduction and in section 2.3, are an
important ingredient for possible physical interpretations and might be key
to finding a relationship between the motivic nearby cycles and the A1-
version of the Milnor number.

In the papers [12] and [17], the idea was to find a way of computing the
local topological degree of P : Rn → Rn from algebraic information in the
local ring of P at 0. They showed that there was a quadratic form (the EKL
form) defined on the local algebra whose signature corresponded to the local
degree. The same problem was considered for holomorphic maps, and the
rank of the EKL form ended up being equal to the local degree.

The rank and signature appearing as above is already a hint that, over an
arbitrary field k, the class of the EKL form (EKL class) in GW (k) should
be equal to the refinement of the local topological degree introduced in
definition 3.1.4. Using such refinement, J. Kass and K. Wickelgren showed
that the class of the EKL form in GW (k) correspond to the local A1-degree
[15]. We now give the definition of the EKL form.

Definition 3.3.1. Consider a morphism P : An → An with P (0) = 0.
Assume that this zero is isolated. We can write P as (P1, . . . , Pn), with
Pi =

∑n
j=1 aijxj. Let A = k[x1, . . . , xn](x1,...,xm)/(P ) be the local algebra of

P at 0. Define E = det(aij), where aij are such that fi =
∑

j aijxj.
Let further φ : A → k be any k-linear map and define the bilinear form

βφ(p, q) = φ(pq). The Eisenbud-Khimshiashvili-Levine (EKL) class of P is
the class of βφ ∈ GW (k) for any φ with φ(E) = 1. It is denoted w0(P ).

Remark 3.3.2. E basically carries the same information as the Jacobian
determinant detJ of P . Specifically, detJ = dimk A · E. In particular, in
characteristic zero, one can consider J instead of E.
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Remark 3.3.3. If P has a simple zero at the origin, then w0(f) is simply
the class 〈E〉 = 〈detJ〉. This follows from the fact that in this case A ∼= k.
In particular, it corresponds to the local degree in this case, since P having
a simple zero implies P is étale.

EKL classes are related to critical loci and Milnor fibres for isolated
singularities. For f : An → k, the derivative of f gives us a map P := df :
An → An as we considered above. Then, the EKL class w0(P ) refines the
Milnor number of the singularity. Indeed, over C, the Milnor number is the
vector space dimension of the quotient A, which is, by definition, the rank
of the EKL quadratic form. This refinement was introduced in [15, Section
6].

Over C, the Milnor number of f is closely related to the topology of the
Milnor fibre, which is homotopic to a bouquet of μ spheres Sn, where μ is
the Milnor number of f . This gives us the classical formula:

χ(F ) = 1 + (−1)n−1μ(f),

where F is the Milnor fibre of f . We suspect that this formula generalizes.

Example 3.3.4. In the case considered in 2.3.4, we had f : A2 → A1 given
by x2 − y2. Its derivative is given by

P := df : A2 → A2

(x, y) �→ (2x,−2y).

The Jacobian matrix, in this context, is simply the Hessian of f . This
gives us:

J(x, y) =

[
2 0
0 −2

]
,

for any (x, y).

Now, the A1-Milnor number can be easily computed by the consideration
on Remark 3.3.3 and Equation 3.3.

μA1

= 〈detJ(0)〉 = 〈−4〉 = 〈−1〉 ∈ GW (k).

Finally,

χA1

c (Sf,0) = χA1

c (1− L) = 〈1〉 − 〈−1〉 = 〈1〉+ (−〈1〉)2−1 · 〈−1〉
= 〈1〉+ (−〈1〉)n−1μA1

(f).
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Of course, in general, one has to consider an equivariant version of the
A1-Euler characteristic, which takes into account the action of μ̂, since the
classes Sf,x are in Mμ̂

k . Many interesting questions can be asked regarding
this topic: what is the general relationship between the A1-Milnor number
of a function f and the A1-Euler characteristic of the motivic class Sf? Is
there anything that can be said for non isolated singularities?

3.4. Comparison with related work

As we mentioned in the introduction, Levine [22] has given an alternative
definition of “arithmetic DT invariants”, independently of the motivic invari-
ants. This construction relies on the definition of DT invariants for general
Deligne-Mumford stacks due to Behrend and Fantechi [7]. The idea is to
construct a motivic version of the intrinsic normal cone, called “intrinsic
stable normal cone”. For a scheme Z over B, this cone is an object in the
motivic stable homotopy category from A1-homotopy theory and, given any
perfect obstruction theory φ : E• → LZ/B, it can be used to construct a class

[Z, φ]vir ∈ C̃Hr(Z; detE•). Now, if detE is isomorphic to ωZ up to squares,
integration gives us an invariant in GW (k), as we described in 3.2.1 (of
course, one needs certain assumptions on Z for push-forwards and Chow-
Witt groups to be defined). The choice of an obstruction theory such that
E is relatively orientable is therefore essential for this theory.

In the case we considered above, i.e., Z given as a critical locus of a
function f on a smooth variety M , we have that Z is given by zeros of a
section of the cotangent bundle. In this case, there is a canonical obstruction
theory induced by the surjective morphism df : TM → IZ → 0, where IZ is
the ideal corresponding to Z. After tensoring by OZ , we see that df induces
a map F : TM ⊗ OZ → IZ/I2

Z . Then, by considering the composition with
the derivative in the first term of the complex, we get the obstruction theory

φ = (F, Id) :

(
TM ⊗OZ

∂φ→ ΩM/B ⊗OZ

)
→

(
IZ/I2

Z
d→ ΩM/B ⊗OZ

)
,

which induces a virtual class [Z]vir in the Chow-Witt group of Z twisted by
det(TM )⊗OZ , which is clearly orientable.

A more detailed comparison can be made based on the works of Azouri
[3] and Levine-Pepin-Lehalleur-Srinivas [24]. Specifically, the conductor for-
mulas for the nearby fiber functor given in these works show that our in-
variants would agree with the ones in [22] over R, but not necessarily in
general. It is also worth mentioning that such formulas also give partial



170 Felipe Espreafico and Johannes Walcher

answers to the questions at the end of the last section, with the formula
〈1〉+(−〈1〉)n−1μA1

(f) for the Euler charactersitic of the motivic Milnor fibre
being correct for the case of mappings An → A1 given by quasi-homogenous
singularities. Finally, we point out that adjoining α to GW (k) in (15) is
not related to orientation issues, but simply due to the appearance of the
class L

1

2 in K0(V ar(k)) needed to make up for the sign differences (see
remark 2.4.2).

4. Degree zero invariants of A3

4.1. The Hilbert scheme of points of the affine space as a critical
locus

We recall how to realize the Hilbert scheme of n points of A3 as a critical
locus of a function.

Fix the notation Hilbn(Ar) for the Hilbert scheme of n points of Ar and

Ar = Spec k[x1, . . . , xr] = Spec k[x].

The following considerations can be found in the notes by Nakajima [30].
In the affine space, a subscheme B ⊂ Ar of dimension 0 and degree

n correspond to a quotient of k[x] of dimension n. Therefore, if we fix a
vector space Vn of dimension n, the structure we need to add in order to
get a module consists of an action of k[x] and an element 1 ∈ Vn which
generates the whole space under the action. An action of k[x] is the choice
of r elements of Hom(V, V ) which commute. This allows us consider the set:

B(V ) = {(A1, . . . , Ar, v) ∈ Homr(V, V )× V | [Ai, Aj ] = 0,

v generates V under the action}.

To get the Hilbert Space from B(V ), we need to mod by the action of
GL(V ) (by conjugation on the Ai). This implies that:

Proposition 4.1.1. Let V ∼= kn be an n-dimensional k-vector space. The
Hilbert scheme of points of Ar can be represented as

(16) Hilbn(Ar) ∼=
{
(A1, . . . , Ar, v)

∣∣∣∣
(i) [Ai, Aj ] = 0 for all i, j

(ii) v generates V under the action of the Aj

}/
GLn(k),



Motivic and arithmetic Donaldson-Thomas invariants 171

Proof. Each point on Hilbn(Ar) can be represented by an ideal I ⊂ k[x].

Take any isomorphism k[x]
I

∼= V . Let Ai be given by multiplication by xi

and let v = 1̄ ∈ k[x]
I . With such choices, (i) and (ii) are obvious. Notice

that this map does not depend on the choice of the isomorphism since any
two isomorphisms are related by conjugation by elements GLn(r) on V . On
the other hand, given an element (A1, . . . , Ar, v) satisfying (i) and (ii), we
can define a k-algebra structure on V via the map from k[x] → V given
by sending xi to Aiv and 1 to v. This map is well defined by (i) and it is
surjective by (ii). By taking the kernel, we get and ideal I ⊂ k[x] which
represents an element of the Hilbert scheme. Those considerations imply
that those two maps are inverses and therefore define an isomorphism.

Let us now restrict ourselves to the case r = 3. In this situation the
above the result from Proposition 4.1.1 allows us to write Hilbn(A3) as
critical locus of a regular function on a smooth space. This puts us in the
situation described in Section 2.3.

Proposition 4.1.2. Fix a vector space V ∼= kn of dimension n. Consider
the quotient

Mn =

{
(A,B,C, v)

∣∣∣∣ v generates V under the action of the
algebra generated by A, B and C

}/
GLn(V ),

and the function

fn : Mn → k

(A,B,C, v) �→ Tr([A,B]C)

Then Mn is a smooth variety, fn is a regular map and Hilbn(A3) =
{dfn = 0} ⊂ Mn.

Proof. Most of our argument comes from [6] and [35]. To see that Mn is an
algebraic variety, it suffices to notice that Mn is a quotient of an open subset
of a vector space by a free action. Indeed, the condition of the v generating
the whole V under the action is an open condition. To see that the action
is free, we have:

g(A,B,C, v) = (gAg−1, gBg−1, gCg−1, gv) = (A,B,C, v),

which implies that W = ker(g − id) is stable under the action of A,B and
C but contains v. By definition, v generates V under the action and so
W = V . This shows g = id. Now we use a construction from Geometric
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Invariant Theory (GIT). We consider the action on Hom(V, V )3 × V × C

given by

g(A,B,C, v, z) = (gAg−1, gBg−1, gCg−1, gv, det(g)−1z).

The semistable points of this action are given exactly by points whose
orbit closures are disjoint from Hom(V, V )3×V×0. We see that, if v generates
V under the action, this condition is satisfied. GIT, then, gives us that the
quotient is a smooth variety.

Now, by 4.1.1, it is enough to show that the condition dfn = 0 correspond
to commutativity of the Ai. Indeed, we have:

Tr([A,B]C) =
∑
i

∑
k

∑
j

(aijbjk − bijajk)cki.

Therefore, if the derivatives with respect to each entry of C are all zero,
we get that [A,B] = 0. As Tr([A,B]C) = Tr(A[B,C]) = Tr(B[C,A]), the
vanishing of the other derivatives implies that the other pairs of matrices
commute.

4.2. The virtual classes of the Hilbert scheme of points

To compute the virtual classes over C, the authors of [6] used Proposi-
tion 2.4.4 and the fact that there is a natural toric action on M which
descends given by

(t1, t2, t3) · (A,B,C, v) �→ (t1A, t2B, t3C, t1t2t3v)

which satisfies all the hypotheses. For details, see [6, Lemma 2.4].
This implies that the virtual class of Hilbn(C3) can be computed by

the difference
[
f−1
n (1)

]
−

[
f−1
n (0)

]
multiplied by the factor L

1

2 (see Defini-
tion 2.4.1). This difference was computed in [6] to correspond to a generating
series

(17) ZC3(t) =

∞∑
n=0

[Hilb(C3)]vir t
n =

∞∏
m=1

m−1∏
k=0

(1− Lk+2−m/2tm)−1.

Remark 4.2.1. The computation itself mainly relies on the motivic classes
of Grassmanians, general linear groups and of the variety of commuting ma-
trices, which are the same over any field. The only difficulty in generalizing
this computation would be to prove that the virtual class is given by the
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difference of the fibers. Sample targets for generalization include examples
studied by Choi-Katz-Klemm in [9].

Applying the morphism in equation 15, we can get arithmetic DT in-
variants as defined in Section 3.

Proposition 4.2.2. The degree zero DT invariants for A3 can be refined
over the ring GW (k)(α), that is, there are natural expressions in GW (k)(α)
for which the rank gives us the classical (complex) DT invariants. The refined
invariants are given in the generating series:

(18)

∞∏
n=1

(〈1〉 − (αt)2n−1)−1
∞∏
n=1

(〈1〉 − (αt)nH + 〈−1〉(αt)2n)−�n

2
�

Proof. Applying the morphism, we first just send L to 〈−1〉 and L
1

2 to α.

∞∏
m=1

m−1∏
k=0

(〈1〉 − 〈−1〉k+2α−mtm)−1

Notice that

(〈1〉 − 〈−1〉αmtm)(〈1〉 − αmtm) = (〈1〉 − αmtmH + 〈−1〉α2mt2m)

where H is the hyperbolic form given by 〈1〉+ 〈−1〉.
In the case m is even, the product above will appear exactly m

2 times.
For m odd, it appears m−1

2 = �m2 � times and we get an extra factor of the
form (〈1〉 − αmtm)−1.

∞∏
m=1

m−1∏
k=0

(〈1〉 − 〈−1〉k+2αmtm)−1 =

∏
m odd

(〈1〉 − αmtm)−1
∞∏

m=1

(〈1〉 − (αt)mH + 〈−1〉(αt)2m)−�m

2
�

By making m = 2n − 1 in the first product and m = n in the second, we
get:

(19)

∞∏
n=1

(〈1〉 − (αt)2n−1)−1
∞∏
n=1

(〈1〉(αt)nH + 〈−1〉(αt)2n)−�n

2
�



174 Felipe Espreafico and Johannes Walcher

Remark 4.2.3. The above refinement is compatible with previous results
over R and C.

Taking k = C, we have GW (k) = Z and α = −1, which results in the
classical MacMahon generating function for the number of plane partitions:

∞∏
n=1

(1− (−t)2n−1)−1
∞∏
n=1

(1− 2(−t)n + (−t)2n)−�n

2
� =

∞∏
n=1

(1− (−t)2n−1)−1
∞∏
n=1

(1− (−t)n)−2�n

2
� =

∞∏
n=1

(1− (−t)n)−n = M(−t)

For k = R, after computing the signature morphism (i.e., sending 〈1〉 to
1, 〈−1〉 to −1 and taking α = i), we get the symmetric MacMahon function,
counting symmetric plane partitions, which correspond to the real count as
computed by Pasquetti-Krefl-Walcher in [19].

∞∏
n=1

(1− (−it)2n−1)−1
∞∏
n=1

(1− 0(−it)n + (−it)2n)−�n

2
� =

∞∏
n=1

(1− (−it)2n−1)−1
∞∏
n=1

(1− (−it)2n)−�n

2
� = M sym(−it)

4.3. Real and refined Gopakumar-Vafa invariants at the
Castelnuovo bound

Our interest now turns to the computation of Gopakumar-Vafa invariants
for M a smooth quintic hypersurface in P4, through their relation to DT
invariants. In this case, the moduli spaces of interest are Mn,d := In(M,d),
which correspond to the Hilbert scheme parameterizing subschemes of M
with Hilbert polynomial given by dt + n, that is, curves of degree d and
arithmetic genus 1− n. The GV invariants nd

g correspond to DT invariants
I1−g,d. Recent work by Liu-Ruan [27] and Alexandrov-Feyzbakhsh-Klemm-
Pioline-Schimannek [1] has established the famous Castelnuovo bound for
Gopakumar-Vafa invariants, which was predicted in physics,

nd
g = I1−g,d = 0, for any d and g with g >

d2 + 5d+ 10

10
=: B(d).

and led to a computation of the numbers nd
B(d) = I1−B(d),d. That is, the

numbers nd
g when the pair (g, d) is on the bound. Here, we write formulae
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for the motivic and arithmetic refinements of such numbers at the bound.
This was done using the fact that, for n = B(d), Mn,d is not only smooth
but a projective bundle over a projective space (see [27, Prop. 6.2], where
they prove it over C).We believe that this is true over any k of characteristic
zero.

Proposition 4.3.1. Let g = B(d). This implies that B(d) is an integer,
which means that d can be written as d = 5m for some m. Assuming that
we can write the moduli space as a projective bundle as above, motivic and
arithmetic refinements of the invariants In,d for n = 1 − g = 1− B(d), are
given by the formulae:

[Mn,d]vir = L
N

2
+2 (L

N+1 − 1)(L5 − 1)

(L− 1)2
∈ Mk

and, applying the morphism χA1

:

χA1

([Mn,d]vir ) =

⎧⎪⎪⎨⎪⎪⎩
α ·

(
6 + 5N

2
〈1〉+ 4 + 5N

2
〈−1〉

)
, for m = 0, 1mod 4

5(N + 1)

2
H, for m = 2, 3mod 4

where N =
(
m+3
3

)
−
(
m−2
3

)
− 1.

Proof. As stated above, Mn,d is a projective bundle with base P4 and the
fibre PN , where N =

(
m+3
3

)
−
(
m−2
3

)
−1. The first part of the result is simply

given by using the fact that, for smooth varieties, the motivic virtual class is
simply the class of the variety times L−dimMn,d/2 (see Definition 2.4.1 and
Example 2.4.3). To compute [Mn,d], we use that the class of a fibre bundle
is the product of the fibre and the base.

Using that

[Pr] = Lr + Lr−1 + . . .L+ 1 =
Lr+1

L− 1

and that dimMd,n = N + 4, we get

[Mn,d]vir = L− dimMn,d

2 [Mn,d] =

L
N

2
+2[PN ] · [P4] = L

N

2
+2 (L

N+1 − 1)(L5 − 1)

(L− 1)2
∈ Mk.

Finally, applying the morphism, we only need to keep track of whether
N is even or odd. If it is even, the A1-Euler characteristic of PN is N+1

2 H

and if it is odd it is given by N+1
2 〈1〉+ N−1

2 〈−1〉.
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The formula above, specially the one in GW (k)(α), gives a prediction of
what should be the A1-count of curves of higher genus on the quintic over
any field. It would be interesting to check if this result can be reached with
direct methods, without making use of motivic DT invariants.
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